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Abstract

A Blockchain is a distributed ledger composed of a network of computers that facilitates the
storage and retrieval of data and keeps a record in the form of transactions. Blockchains solve
double spending problems and eliminate the need for a trusted third party. Along with providing
a transaction processing platform, modern programmable blockchain platforms also provide an
execution environment to establish business processes through custom logic in the form of smart
contracts. Recent trends show growing interest in blockchain-based applications powered by smart
contracts. With a growing number of smart contract enabled blockchain platforms, executing a
business process that involves interacting with multiple heterogeneous blockchains has become
an intricate task. A previous work proposed the Smart Contract Invocation Protocol (SCIP),
a specification that defines a homogeneous interface that encapsulates the blockchain specific
interaction details to invoke a smart contract feature. An initial implementation of SCIP, referred to
as SCIP Gateway, enabled interaction with Ethereum, Hyperledger Fabric, and Bitcoin. For each
type of supported blockchain, the SCIP gateway has an adapter. Since the initial SCIP gateway
implementation in 2019, many new smart contract enabled blockchains have been launched. This
thesis proposes analysis of state of the art smart contract enabled blockchain platforms and, based
on the analysis, proposes adding four new methods to SCIP and updates to the methods proposed
in the previous work. Along with three new adapters for the selected blockchain platforms, as a
part of the work, this thesis proposes changes in existing adapters as well. Most importantly, SCIP
and SCIP gateway can now allow communication between the client application for a collaborative
execution of smart contract invocation(s). Another key feature that allows developers to create new
adapters in a programming language-agnostic way has been proposed in this work. Furthermore, a
testing framework for executing integration tests has been developed to validate the changes for the
new adapters.
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1 Introduction

An electronic payment system based on cryptographic proof [Mou16] was first described by
an unknown person or an organization named Satoshi Nakamoto, which led to the invention of
Bitcoin [Nak08]. Bitcoin was the first peer-to-peer electronic payment system that removed the need
for a central authority to facilitate the exchange of value. With the advent of Bitcoin, the Blockchain
technology has been adopted into many other application domains such as public services [ACG15],
Internet-of-Things [ZW15], security services [Noy16]. Blockchain technology is becoming one of
the most promising technologies for the next generation of internet interaction systems [ZXD+18].
Blockchain is a distributed ledger technology that maintains a record of transactions in an immutable
manner through a consensus mechanism [Mou16]. A detailed explanation of the Blockchain
technology is presented in more detail in Section 2.1.

A cryptocurrency is a digital money whose transactions are secured through cryptography [PPC15].
Bitcoin being the first such currency, provided an alternative to existing payment systems which
were characterised by high transaction fees, barriers imposed through regulations, censorship,
and transaction settlement spanning across days [Mou16]. Bitcoin, powered by the Blockchain
technology, provides a payment system that solves the double spending problem [Nak08] and
completes settlement within a short time compared to traditional payment systems, and provides
censorship resistance and transparency to the users [Mou16]. Later with the need to execute
custom business processes rather than just serving as a payment gateway, smart contract enabled
blockchains have been developed. Ethereum1 was the first blockchain to propose the support
of smart contracts. The initial implementation of Ethereum used Proof-of-Work as a consensus
mechanism, which required significant computing power and energy [JHGR20]. Since then, various
blockchain technologies have been developed to enable faster transaction processing, and save
on computation costs or even provide custom features to fit specific use case(s). Each of these
blockchains has an interface that enables the users to send transactions, read data from the blockchain,
or monitor events. A business process might involve interaction with multiple blockchains. When
multiple heterogeneous blockchains are involved in a business process, it becomes necessary to
develop separate interfacing logic for each blockchain, in order execute a complete business process.
Section 2.2 describes in detail the need for blockchain integration, and Section 2.2.1 describes
Smart Contract Invocation Protocol (SCIP) [FBD+20] which proposes a specification that defines
an abstraction layer that can hide interaction details with each type of blockchain as a solution to the
problem. The initial proposal was published in 2019 with the implementation gateway, also referred
to as Blockchain Access Layer (BAL), supporting Ethereum, Bitcoin2, and Hyperledger fabric3.

1https://ethereum.org/en/
2https://bitcoin.org/en/
3https://www.hyperledger.org/use/fabric
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1 Introduction

SCIP was constructed by analyzing a set of 6 blockchain technologies that support smart contracts
back in 2019. Since then, many new blockchain platforms have started supporting smart contracts
or similar concepts. This thesis aims to analyze such technologies and introduce updates to the
three standards/protocols to support these new smart contract platforms. The goals of this thesis
work are: to select three state of the art (i) Selection of 3 state of the art smart contract enabled
blockchain platforms, (ii) Analysis of the three platforms and determining the necessary changes to
the existing protocols and standards, (iii) Implementing necessary changes in the BAL and new
adapters for the three selected blockchains,

To achieve the goals of the thesis, the related work that provide solution on the problem of
blockchain integration has been studied to understand the differences and similarities in their
respective approaches. The related works that propose a solution to the problem of blockchain
integration have been discussed in Chapter 3. The chapter describes three approaches: Hyperledger
Cactus, Decentralized Oracle Networks, and HyperService, and their differences from SCIP and
SCIP gateway.

Before selecting the any specific platform, a list of eligible platforms was created through the
methodology explained in Section 4.1. During discovery process more than 20 platforms were
listed where were further filtered based a list of criterion which led towards achieving the goal of
selecting 3 platforms. Chapter 4 focuses on discovering platforms, defining selection criteria, and
analysis criteria, and finally gives information about Aptos, Sui, Flow, and Cosmos SDK. This
chapter discusses the similarities, differences, and features of the different blockchain platforms and
later comments on the feasibility of integrating three such platforms to which the SCIP gateway
support can be added. From the analysis of selected blockchain platforms, further chapters propose
changes to SCIP specification.

The new SCIP specification is described in Chapter 5, which proposes four new methods, modifica-
tions to existing methods, and new error messages. A method is an interface that allows external
consumers referred as client applications to interact with smart contracts [FBD+20]. Chapter 5
also describes data encoding and mapping between the format used by the SCIP protocol and
the native data types for the selected platforms in Section 5.4. These proposed changes are then
validated by implementing the new three adapters for selected platforms. Chapter 6 gives brief
background information about the SCIP gateway implementation and changes to it. The changes
to the implementation includes adding signature verification logic, support for four new methods
as defined in the updated specification and also, the testing methodology. Then, chapter further
proceeds to give a summary of changes in the components and URLs to the pull requests as a part
of the thesis work. Chapter 6 also introduces a generic adapter, which aims to improve developer
workflow for adding new blockchain platform support in SCIP gateway by removing the restriction
to build an adapter in a particular programming language.

Finally, Chapter 7 summarizes the outcome of the work, and achieved goals of the thesis work and
further possible scope of work. The outcome of the thesis work includes study of new blockchain
platforms, updated specification of the SCIP protocol as per the study, three new adapters that
support Aptos, Sui, and Flow platforms and the updated gateway implementation to align its working
with the proposed specification.
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2 Background and Motivation

This chapter lays the foundation of the research work proposed in this report. First, it describes
the concept of blockchains, common terms related to it, and the composition of blockchains in
Section 2.1. Later it describes the concept of blockchain integration and the incurred challenges
when dealing with multiple heterogeneous blockchains. Then, as a solution to the blockchain
integration problem, Section 2.2.1 discusses the SCIP protocol. Finally, Section 2.3 and Section 2.4
state the need for modifying the SCIP protocol and present the problem statement.

2.1 The Blockchain Technology

Before proceeding with the discovery of available blockchain platforms for this thesis, an under-
standing of the terminology, key concepts is required to perform searching using available tools
such as a search engine. A blockchain is composed of different technologies like a database,
a protocol to connect and communicate computers over the internet, clients that connect to it,
tools for development, a component to verify the transactions (discussed in Section 2.1.1) through
cryptographic proofs [RSA78], a consensus algorithm to reach an agreement on the state of
the blockchain, and even an execution environment for executing custom code known as smart
contracts. Based on its composition, a blockchain provides a varying degree of security, speed,
and efficiency [TT19]. Therefore, to analyze a blockchain, it becomes vital to understand the
components that a client interacting with the blockchain should be aware of and, thus, ultimately
help to decide which features should be considered while choosing a blockchain platform. Paolo
Tasca and Claudio J. Tessone presented a comparative study of blockchain platforms, deconstructed
them into their building blocks in a bottom-up manner, and presented a taxonomy of the terms
associated with a blockchain platform [TT19]. Based on the content presented in their research, the
commonly used terms and concepts relevant to understanding a blockchain platform are discussed
further.

2.1.1 Common Terminology

This section describes the terms commonly used for blockchains and their related components.

• Digital asset

A digital asset is a digitized version of a product that includes specific rights to use, and
typically has a value attached to it [Mou16]. E-books, images, songs, logo, and even money
are some of the examples of digital assets.
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2 Background and Motivation

• Account

An account is an entity capable of holding digital assets and creating transactions. An account
consist of an address for unique identification, a balance that represents native tokens that
can be used to pay for transaction fees.

For example, in Ethereum, an account can be externally-owned which can initiate transactions
in which case it comprises public and private keys, or it can be a contract with code but no
private key and cannot initiate transactions on its own. In the Flow1 blockchain, an account
comprises the following components: address, balance, public keys, code, and storage.

• Transaction

A transaction is a cryptographically signed instruction originating from an account that
updates the state of the blockchain. A transaction generally consists of the transaction payload,
the signature of the creator, the amount of fees the creator is willing to pay, and a sequence
number. A transaction payload indicates what action should be performed. For example,
it can indicate the transfer of assets from one account to another, invoking some arbitrary
code, or even deploying arbitrary code. Blockchains expose APIs that allow users to send
transactions to the blockchain.

• Block

Blocks are batches of transactions. A block consists of a blockhash derived from the
transactions included in it and the blockhash of the previous block. Any change in the data in
the block changes the block and invalidates the whole chain of subsequent blocks. Blocks are
used to maintain a synchronized state in the whole blockchain network, which is agreed upon
using a consensus algorithm. Typically each block references the previous block; thus, strict
ordering is maintained with an exception when the forking happens. Forking is splitting of a
blockchain network into multiple entities which might follow different set of rules form each
other. The first block in the blockchain is called a genesis block.

• Events

External applications might require performing some actions upon the invocation of certain
logic in the blockchain. By listening to emitted events when processing transactions, external
applications can react and perform actions, although they are not directly integrated with the
blockchain.

• Node

A node is a process that runs the blockchain protocol, executes the transactions, proposes
new blocks, validates transactions from its peers connected over the network. It also stores
the history of transactions and shares it with the other nodes on demand. The nodes holding
the complete history of the blockchain, validate transactions are called full nodes. A full
node can also participate in the block formation process. On the other hand, a light node
holds only partial content of the blockchain but still is a part of the blockchain network. By
not downloading the entire state of the blockchain, light nodes can operate with lower the

1https://flow.com/
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2.1 The Blockchain Technology

computational resources and storage space than the full nodes. Having light nodes allows a
wider range of participates to be part of the network. Section 2.1.4 gives more information
about the types of nodes in blockchains.

• Epoch

Blockchain platforms using Proof-of-Stake (PoS) consensus algorithm (described in Sec-
tion 2.1.2) like Sui2, Aptos3 partition the operations into approximate or fixed non-overlapping
time intervals called Epochs. In PoS, an epoch is used to manage the selection of validators
who are responsible for validating blocks and maintaining consensus. After can epoch is over,
parameters of the blockchain get updated e.g., new set of validators are selected.

• Sequence number

A sequence number ensures that a transaction is executed only once, also referred to as nonce.
Blockchain mitigates the risk of replay attacks by ensuring that transactions have a sequence
number higher than the last sequence number used by the same account. This number also
acts as a counter for the number of transactions for a given account. Using the same sequence
number twice results in only one transaction getting executed and the other getting rejected.

2.1.2 Consensus algorithms

The nodes in the blockchain network have to agree on which transactions can be added to the blocks
and the content of the blocks. The consensus mechanism ensures that the full transaction history
is consistent amongst the peers and consistently agreed upon. The peers maintain copies of the
history of the transaction to make the network crash fault-tolerant [Mou16] and available even
when some peers are unavailable. As the copies of data are maintained amongst peers, information
about the next block has to be communicated to peers and stored by them. The consensus algorithm
defines which node can propose the next block and which transactions should be included in a block.
During the consensus phase, the nodes communicate with each other to reach to an agreement on
the next block. Each consensus algorithm has its advantages and disadvantages. Based on the use
case, blockchains use specific consensus algorithms best fitting for the requirements. So to analyze
a blockchain network, it is important to consider how the underlying algorithm maintains the state
of the blockchain among the participating nodes.

In an open and distributed system like blockchains, malicious actors may try to collude and update
the state of the blockchain, which harms the other participants in the network. So, a consensus
algorithm has to consider the resistance to attacks and ensure the network’s security. A consensus
algorithm has to maintain resilience to faults in the system. In the context of distributed systems,
Byzantine Fault Tolerance (BFT) [LSP02] is the ability of a distributed computer network to function
as expected and correctly reach a sufficient agreement despite malicious actors trying to break the
system or propagating incorrect information to other peers. It is important to understand how a
system composed of n nodes can achieve a consensus even in the presence of m malicious nodes.
Following are some of the consensus algorithms widely used by blockchain networks:

2https://sui.io/
3https://aptoslabs.com/
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2 Background and Motivation

• Proof-of-Work (PoW)

In the PoW [Nak08] algorithm, the nodes, also referred to as peers, compete amongst each
other to solve a computation-intensive puzzle that would allow only one block to be accepted
from multiple proposed blocks. The node which presents a solution first and gets approval
from the peers wins and the proposed block gets added to the chain. In return, the solver gets
a reward. The reward can be a blockchain-native token or some mechanism compensating for
the computational resources. Bitcoin uses this consensus mechanism. Ethereum formerly
used this algorithm but shifted to PoS due to the high energy use of PoW [Eth21].

• Proof-of-Stake (PoS)

PoS [TT19] requires the node to stake a certain amount of collateral in the form of blockchain-
native currency to participate in the consensus process. These nodes are referred to as
validators. If a validator does not operate as per the specified protocol, then it is penalized
and loses the complete staked amount or a part thereof. This process is called slashing.
The validators can propose new blocks to be added to the chain and receive a certain
reward for doing so. The validators can be selected randomly or through a deterministic
algorithm. Compared to PoW, PoS imposes a lower barrier of entry by reducing the hardware
requirements, lowering energy requirement, and reducing centralization risk. Ethereum
switched from PoW to PoS because it is less energy-intensive than the former scheme [SHA+].

• Delegated Proof-of-Stake (DPoS)

DPoS [BKN+21] is a variant of PoS where users holding the tokens choose a delegate using
the voting mechanism. The delegate is then responsible for validating and executing the
transactions. The voting power of the users proportional to the number token held by them.
In contrast to PoW, where the node with the most computing power and PoS, where the node
with the most tokens is typically selected to validate transactions and add new blocks to the
blockchain, DPoS allows token holders to participate in the process of selecting delegates
who will mine new blocks and reward only the most competent ones [GY22]. This enables
mitigation of the risk of abuse of power in PoS system when a single token validator holds
significant voting power than all other token holders. Sui is one of the blockchains using
DPoS as consensus algorithm [RJCe22].

• Proof-of-Authority (PoA)

A pre-defined set of nodes in this setup collaborate to accept and execute transactions. They
also validate the transactions and blocks from other peer nodes. These nodes have exclusive
rights to maintain the state of the blockchain. This consensus algorithm is suitable for private
networks in which only selected nodes are allowed to update the state of the blockchain.
These nodes act as trusted signers and use their private keys to sign the new blocks. Using
this scheme helps to reduce the overall cost of maintaining the network by only requiring a
small number of authorized nodes.

• Proof-of-Capacity (PoC)

Unlike PoW, where the nodes need to allocate Central processing unit (CPU) as a compute
resource for the generation of new blocks, PoC focuses on utilizing storage space for
proposing the next blocks and getting rewards for it. The algorithm consists of Plotting where
nodes participating in the consensus pre-generate chunks of data necessary for forging the
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2.1 The Blockchain Technology

future blocks. The scheme not only has lower energy utilization than PoW, but also has a
lower entry barrier in terms of costs to run nodes, as storage disks are cheaper than CPUs.
SpaceMint [PKF+] and Burstcoin 4 are examples of blockchains using Proof-of-capacity as a
consensus mechanism algorithm.

• Byzantine Fault Tolerant (BFT)

BFT consensus algorithms use a fault-tolerant approach to reach agreement among nodes,
even in the presence of malicious actors [Buc16]. If the number of failures the system can
tolerate is f, such systems must have at least 2f + 1 processes [Buc16]. BFT is a generic
term that refers to any consensus algorithm that can tolerate Byzantine faults, which are
arbitrary and potentially malicious faults in the system. Practical Byzantine Fault Tolerance
(PBFT) [CL99], on the other hand, is a specific implementation of BFT that was proposed
in 1999. The PBFT consensus algorithm is designed to achieve consensus in a network of
n nodes by requiring a 2/3n + 1 majority of nodes to agree on a particular transaction.
Hyperledger Fabric5 and Tendermint Core [Int15] are examples of the projects based on BFT
consensus algorithm or the variants thereof.

• Proof-of-Burn (PoB)

The nodes get the rights to propose blocks into the blockchain by sending some digital
assets to an unspendable address in the PoB [KKZ19] consensus mechanism. The protocol
generates an address to which the token can be irrevocably sent, and a verification function
checks whether the address is unspendable. This mechanism is suitable for bootstrapping a
new digital asset at the expense of an old asset [Gil18].

• Hybrid

A hybrid scheme can be used for advanced use cases where blocks generated using Proof-
of-Work act as checkpoints containing no transactions [WSW20]. The Zilliqa blockchain
uses PBFT along with a round of complex computations similar to PoW for every 100th

block [The17].

2.1.3 Finality

Finality describes whether the proposed transaction is eventually included in a block and stored
permanently. The two possible layouts for finality as described in [TT19] are:

• Deterministic

In this setup, transactions are immediately confirmed/rejected in the blockchain, with
consensus converging to a certainty. This property is useful for smart contracts where
consistent execution is achieved across multiple nodes. Deterministic finality provides the
significant advantage that application developers do not have to deal with the effects of chain

4https://www.burst-coin.org/
5https://wiki.hyperledger.org/display/fabric
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2 Background and Motivation

reorganizations [HSLZ19]. Lamport Byzantine Fault Tolerance [LSP02], PBFT are some
examples of the algorithms using which a deterministic consensus is achieved. Stellar [Ste14]
blockchain is an example of a system using deterministic finality.

• Non-Deterministic

In this model, the probability of disagreeing with an achieved state of the blockchain decreases
over time. Such systems use randomized or inherently probabilistic consensus. As competing
nodes can find multiple valid solutions simultaneously, the probability of having two or more
valid states still cannot be ruled out. Such blockchain use concurrency control mechanism
which attempts to rectify the outcomes of the parallel operations. For example, to minimize
the probability of multiple simultaneous valid states, Bitcoin’s block frequency is adjusted
by changing the difficulty level of mining a block. Therefore, the overall algorithm is non-
deterministic. In general, applications tend to wait for a certain number of block confirmations,
which is waiting for a certain number of blocks to be appended to the chain, which ultimately
reduces the probability of a block being overwritten by another longest chain.

2.1.4 Node types

A blockchain network can have nodes with different types of roles and responsibilities. Based on
the design of the blockchain, the terminology used for referring the type of nodes changes. For
example, the term validator nodes is typically used for blockchain systems using PoS algorithm.
The blow list provides name of different types of nodes, their roles, and examples of the platforms
using them.

• Full Node

A full node has all the information about the state of the blockchain. A full node can process
transactions, execute smart contracts, and query/serve blockchain data [Alc22]. Full nodes
make the blockchains highly redundant as the information is replicated across multiple nodes.

• Thin Node/Light client

Thin node, also call as Light client contains only partial information about the state of the
blockchain rather than storing the complete state. Thin nodes only store block headers, giving
them access to minimal blockchain data such as block timestamp, block hash [Alc22]. Thin
nodes can connect to full nodes, fetch block information and even validate it. Running a thin
node requires the least investment in hardware, operating costs [Alc22].

• Archival node

Archive nodes store the same information as full nodes as well as all previous states of the
blockchain [Alc22]. They are useful for querying arbitrary historical data.
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2.1.5 Smart contracts

Blockchains can allow users to develop custom business logic using a programming language.
These codes deployed and executed on the network are referred to as Smart contracts. The concept
of Smart contracts was first introduced in 1996 [Sza96]. Smart contracts are defined as "agreements
existing in the form of software code implemented on the Blockchain platform, which ensures
the autonomy and self-executive nature of Smart contract terms based on a predetermined set of
factors" [Sav17]. They are typically used to automate the execution of an agreement so that all
participants can be immediately certain of the outcome without any intermediary’s involvement.
They can also automate a workflow, triggering the next action when conditions are met. A smart
contract is a computer program stored in a decentralized network like a blockchain that verifies
without the need for any trusted third party anywhere in the process, because the code itself is trusted.
By deploying smart contracts, the conditions for the transaction to be terminated successfully or
with error can be controlled. Solidity, Rust, Move, and Cadence are some programming languages
available for writing smart contracts supported by platforms designed to execute the code compiled
using them.

2.1.6 Scalability of blockchains

When comparing various blockchain systems, the usual metric to evaluate their performance is
the number of Transactions Per Second (TPS) the system can process [TSH22]. For example,
the Bitcoin network can process up to 7 TPS [CDE+16], and Ethereum accomplishes a rate of
around 12 TPS [BMZ18]. Various scaling solutions have been proposed over the low TPS of
blockchain systems [HHS20]. Fist layer solutions, which is the modification of the mechanism
by which the blockchain system’s network handles the distributed blockchain, such as Sharding,
increasing block size, and the Second layer solutions by which another blockchain system runs on
top of another blockchain such as State channels, Sidechains, Rollups, Validums, Plasma have been
proposed [TSH22]. Blockchains can also use another blockchain as a base layer. Such setups are
referred to as Layer X blockchain where X is the number of the blockchain in the hierarchy. For
example, Optimism 6 is a layer two blockchain which uses Ethereum (Layer 1) as a base layer.

2.1.7 Security and Privacy

Blockchains can be configured to be open or even deployed in private environment i.e., permissioned,
for deploying any custom business logic and creating/holding/transferring digital assets having real
world tangible value. Such systems bring technical and operational risks which should be dealt
with seriously. Any blockchain system should ensure that the state of the blockchain is modified
only by valid means, even in the presence of malicious actors. To secure a blockchain, strong
cryptographic mechanism should be used. Blockchains provide a certain degree of anonymity to
the users because of infrastructure that allows users to transact without revealing their identity.
Thus, blockchains provide privacy to users without having them give away their identities. Also, to
achieve data privacy, the data can be encrypted in the transactions, which can be read only by the
intended party holding the private key that decrypts the transaction data. Data encryption refers to

6https://www.optimism.io/
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the cryptographic primitives used to ensure authenticity, integrity, and order of events. For example,
the Bitcoin blockchain uses the ECDSA digital signature scheme for authenticity and integrity. To
prove the integrity of a chunk of data, Cryptographic Hash Functions [AAA13], which produces
a fixed-size message digest from the input data, makes it computationally infeasible to find the
input that corresponds to a given message digest, and any change in input data changes the output
message digest. By computing the hash of the original data and then later computing the hash of the
same data again, it is possible to compare the two hash values to confirm that the data has not been
tampered with or altered. The specification of Secure Hash Standard [Dan12] defines secure hash
algorithms, SHA-1, SHA-224, SHA-256, SHA-384, SHA512, SHA-512/224 and SHA-512/256.
SHA stands for Secure Hash Algorithm, a family of cryptographic hash functions widely used
in developing applications requiring data integrity [Dan12]. Such hashing algorithms are used
in blockchains to calculate hash value of the a block (i.e., blockhash) and the hash of each block
includes the hash of the previous block, creating an unbreakable chain of blocks that is resistant to
tampering or modification.

2.1.8 Other concepts related to blockchains

The previous subsections described the key terminologies and concepts related to blockchains.
In addition, several other concepts are generally used while describing blockchain technologies.
This subsection acknowledges these concepts as they also hold significance in comprehending
blockchains. A non-exhaustive list of such concepts and terminologies is as follows:

• Consensus Network Topology types: Centralised, Decentralised and Hierarchical [TT19]

• Types of blockchains: Private, Public, and Hybrid 7

• Transaction models [TT19]

• Token [ASZ22]

• Digital wallet [ASZ22]

• Zero-knowledge proofs 8

2.2 Blockchain integration

Section 2.1 discussed about the composition of blockchains and related terminology. Blockchains
are a realization of the concept of Web 3.0, which refers to the products and services offered in
a decentralized manner without the need for a central authority [Woo14]. Applications built on
Web 3.0 provide features like ownership of digital assets, censorship resistance, and decentralized
decision-making, which are inherently not supported by web2. The term web2 refers to the products
and services where the ownership of assets is centrally controlled, and an entity mediates transactions
based on trust.

7https://en.wikipedia.org/wiki/Blockchain
8https://ethereum.org/en/zero-knowledge-proofs/
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Blockchains provide the infrastructure to deploy Web 3.0-enabled services. A blockchain can be
both: a generic execution framework for development like Ethereum or an application-specific entity
designed for a particular use case like Sei9 which is designed for trading-related applications. These
blockchains can exchange information and even transfer assets amongst each other through bridges.
For example, consider Figure 2.1, where the access to exclusive artwork by an artist is controlled by
owning an Non-fungible Token (NFT). NFT is defined as:"NFT is a digital asset that has a unique
value in each token, as a result, it is referred to as non-fungible since it cannot be traded for other
NFTs" [MMT+22]. The NFT marketplace, as shown in the diagram, is comprised of multiple
blockchains. The content creator lists the artwork on the marketplace with the initial minting price
on a permissionless blockchain (Blockchain 1) accessible to everyone 1 . A trader monitors the
network for new artwork listings, mints the NFT 2 , and moves it to some other blockchain 3 where
it could be sold in exchange for some tokens present only on Blockchain 2. Then, a user sees the
NFT on sell, decides to buy the artwork 4 , and ultimately moves it to a permissioned blockchain 5 ,
which is used to obtain exclusive access to the artwork 6 . Implementing this use case involves the
interaction of multiple parties with several blockchains. Each blockchain can have its specification
that allows external actors to send transactions, read the data, and subscribe to certain events. Each
participant in the system should understand the blockchain interface so that bridging assets, pricing
monitoring, listening to new proposed NFTs, and using the service are possible. Each type of
blockchain can have its own set of Application Programming Interfaces (APIs), which adds to the
effort to develop and maintain blockchain-specific requests.

9https://www.seinetwork.io/
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Figure 2.1: An example flow of user interaction with an application deployed across multiple
blockchain

2.2.1 Introduction to SCIP

As a solution to the problem of dealing with multiple heterogeneous blockchains, SCIP [FBD+20]
proposed a layer of abstraction on blockchain specific requests in the form of a protocol that
would allow developers to invoke the transaction specific to a particular blockchain, query the
state from a smart contract, and even subscribe and unsubscribe to the events emitted during the
execution of smart contract by using a homogeneous interface. Abstracting the details of interacting
with a specific blockchain simplifies the integration of business workflows dealing with multiple
heterogeneous blockchains with their own APIs. SCIP defines methods, data and message formats,
and error types. The entity providing concrete implementation of the methods is referred to as a
Gateway. The first iteration of SCIP, referred to as SCIP 1.0 hereon, defined four methods, namely:
Invoke, Query, Subscribe, and Unsubscribe. Each method consists of inputs and outputs
composed of fields which will be discussed in Chapter 5. The format of each of the methods is
shown in Figure 2.2. A brief summary of the use of each method is as follows:
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• Invoke

The Invoke method allows an external application to invoke a smart contract function. The
gateway formulates a transaction that complies with the format specific to the blockchain
in concern and submits it to a node on behalf of the client application. Upon successful
submission of the request or the occurence of an error during submission of request, the
gateway sends a synchronous response indicating a corresponding status. Upon successful
submission of transaction, the gateway starts monitoring the transaction status and informs
the client application about the result of execution in the form of Callback. The callbacks are
asynchronous responses sent to the client when the transaction is confirmed with enough
number of confirmations or fails to execute due to an error.

• Query

The Query method allows a client application to search for previous invocations of functions
or for events. The gateway scans the history of the blockchain and sends a synchronous
response to the client application containing Occurrences where each occurrence corresponds
to an event/function invocation.

• Subscribe

The Subscribe method allows the client applications to receive notifications whenever a
specific function is invoked or a specific event is emitted.

• Unsubscribe

The Unsubscribe is used to cancel the subscriptions created using the Subscribe
method.
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Figure 2.2: SCIP method request formats with inputs and outputs
Source: [FBD+20]
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2.2.2 SCL and SCDL

Smart Contract Locator (SCL) is a smart contract addressing format for identifying a smart contract
unambiguously, both externally over the internet and within the blockchain network [LFB+19]. SCL
helps an external consumer to invoke a smart contract function deployed on a blockchain network
to which it doesn’t have direct access but may have to utilize an entity i.e., gateway that meditates
between the blockchain node and the consumer. SCL is a specialization of a URL [BMM94] defined
in Listing 2.1

Listing 2.1 SCL specification for locating a smart contract [LFB+19]

SCL = scheme:[userinfo@]host[:port]path"?"scl_query
scl_query = blockchain="bc"&blockchain-id="id"&address="addr"
bc = "ethereum"| "bitcoin"| "fabric"| "eosio"| ...
id = NetworkIdentifier // not further detailed here
addr = eth_addr | bit_addr | fab_addr | eos_addr | ...
eth_addr = 40ByteHexString // not further detailed here
bit_addr = Bech32Address // not further detailed here
fab_addr = PathString // not further detailed here
eos_addr = 12CharacterString // not further detailed here

Suppose a gateway is hosted at the domain mygateway.com. Some examples of accessing
smart contracts for a set of supported blockchains using the https scheme using this gateway is as
follows:

• Ethereum

https://mygateway.com?blockchain=ethereum
&blockchain-id=eth-mainnet
&address=0x690B9A9E9aa1C9dB991C7721a92d351Db4FaC990

• Bitcoin

https://mygateway.com?blockchain=bitcoin
&blockchain-id=btc-mainnet
&address=3L8Ck6bm3sve1vJGKo6Ht2k167YKSKi8TZ

Smart Contract Descriptor Language (SCDL) defines the concepts related to smart contract like
variables, data types, functions and their inputs and outputs, in an abstract blockchain-independent
manner to cater to external consumers [LFB+19]. SCDL is a metamodel with concrete JSON
syntax. A general structure of a SCDL specification of a smart contract is show in Listing 2.2
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Listing 2.2 General structure of SCDL descriptor [LFB+19]

{"scdl_version" : "1.0.0", // generic smart contract properties
"name" : "TokenConversion", ...
"functions" : [

{ "name" : "convert", ... // function properties
"inputs" : [
{ "name" : "amount",

"type" : "number" // list of parameters
}, ...],

"outputs" : [...], // list of parameters
"events" : [...] // list of parameters
}, ... // list of functions

],
"events" : [

{ "name" : "...", ... // event properties
"outputs" : [...], // list of parameters

}, ... // list of events
]

}

The initial SCIP gateway prototype is reachable using SCL and the client application which is
interested in invoking smart contract functions must be aware of the relevant SCDL descriptors.

2.3 Motivation

Since the first SCIP protocol specification, many new blockchains have emerged with fundamental
differences in underlying working. Furthermore, the APIs exposed by these new blockchains have
introduced new features that add to the security and user experience. However, the SCIP 1.0
specification has not been updated with the evolving landscape of blockchain technology. A study of
new blockchain platforms by studying their composition, analysing the features of the programming
language used for smart contract development, and finding the feasibility of adding support for the
features of such platforms using SCIP will lead towards achieving the goal of determining what
changes need to be made to the SCIP protocol.

The current SCIP specification gives power to a single client to invoke any smart contract function
and limits the clients from collaborating amongst each other to invoke one single transaction. For
increased security and to mitigate the risks associated with single-key wallets, multi-sig wallets
have been put into practice [Bin18]. The lack of support for dealing with transactions involving
approval from multiple client applications at the protocol level, hinders the use of multi-sig wallet
or transactions supported by blockchains.

The prototype of SCIP gateway is currently only compatible with three blockchain technologies:
Ethereum, Bitcoin, and Hyperledger fabric. This limited compatibility limits the potential for
widespread adoption and usage of the prototype. A study on selection of such new platforms adding
the support to the prototype would make the prototype more versatile, unlock new use cases and
business workflows.
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2.4 Problem statement

This research will answer following questions (RQ):

RQ1 How can blockchains be selected for analysis?

This research question aims to propose a methodology for discovery and explore the criteria
for selecting blockchains for analysis.

RQ2 How to analyze blockchain technology?

This research question aims to propose the properties for studying blockchain technology and
present information about the selected technologies from the perspective of these properties.

RQ3 What updates can be proposed to SCIP for it to be suitable for new blockchains?

This research question aims to propose updates to the SCIP to make it suitable for new
blockchains and present the feasibility of adding support to the SCIP gateway by building
prototypes of selected blockchains.
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This chapter provides an overview of the related work in the fields of blockchain integration. This
chapter discusses three such works, namely: (i) Hyperledger Cactus (ii) Decentralized Oracle
Networks (iii) HyperService , provides a brief overview of the solution for blockchain integration
problem, and comments on their similarity and differences with SCIP protocol and the gateway.

3.1 Hyperledger Cactus

Hyperledger Cactus [MBH+22] is a pluggable framework for integrating multiple heterogeneous
blockchains. It aims to provide an abstraction over blockchain specific protocol implementations
and enable interoperability. It provides standardized interface across protocols which simplifies the
interactions with multiple blockchains. The framework implementation is developed in Typescript
and bundled with Webpack.

The key design principles of the framework are [Hyp22]:

• Plugin architecture

Enhance flexibility and ensure future compatibility by utilizing a plug-in architecture. The
framework allows different blockchain platforms to be integrated through the use of plugins.
This makes it easier to add support for new platforms and update existing ones without having
to modify the core framework.

• Secure by default

Minimize the need for users to take explicit actions for ensuring a secure deployment of the
framework.

• Toll free

The of tokens for the transactions should be hidden from the users. At the same time, the
operators should be mandated to charge fee on individual transactions.

• Low impact

The framework should not disrupt or hinder existing network requirements.

The key components of the Hyperledger Cactus framework are:

• Business Logic Plugin

This entity is composed of web application or smart contract in the form of single plugin, and
provides integration services across multiple blockchains and executes business logic.
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• CACTUS Node Server

This entity accepts requests from external entities like end user applications willing to execute
a business logic and returns an ID upon acceptance of the request.

• Validator

This component monitors the execution of a transaction on the blockchain platform for which
it has been configured. The result of execution can be failure, successful execution, or timeout,
which is then signed by the validator.

• Verifier

This component verifies and accepts the results from validators whose results are digitally
signed and valid.

• Ledger Plugin

This entity is responsible for executing a business logic on a particular blockchain for which
it has been developed. It is composed of a validator and a verifier.

Hyperledger Cactus has support for the following blockchain platforms: Hyperledger Besu,
Hyperledger Fabric, Geth, Corda, Quorum, Iroha, Xdai, and Hyperledger Sawtooth.

Hyperledger Cactus is a complete framework that defines the components, roles, and message flow
for a blockchain integration platform. At the same time, SCIP protocol is an abstract specification
for inputs and outputs for invoking a smart contract and with detailed specifications of in-between
the components involved in the process. SCIP provides a more versatile API to handle function
overloading. Moreover, the newly proposed specification can handle multiple signature transactions,
specifying type arguments in the invocation, canceling, and replacing the invocations. SCIP
gateway implementation is similar to a certain extent to the architecture of Hyperledger Cactus,
as both of them support extending the implementation through plugins. However, SCIP provides
a plugin-based capability add-on only for adding support for new blockchain platforms, whereas
Hyperledger Cactus supports adding plugins for other functions as well.

3.2 Decentralized Oracle Networks

An oracle is defined as follows: "Blockchain oracles are entities that connect blockchains to external
systems, thereby enabling smart contracts to execute based upon inputs and outputs from the real
world."[Cha21]. Blockchain platforms cannot directly fetch data from external sources like a REST
API service because of the consensus mechanisms underpinning blockchains. Many use cases, like
the outcome of a sports match, weather data, prices of products, and smart contracts, require data
from external sources. In such cases, oracles act as a data source and feed it into smart contracts.
However, relying on proving the authenticity of data provided by the oracle is a challenge. To solve
this problem, Chainlink conceptualized a fully decentralized network of oracles, also referred to
as oracle networks [SN17]. By taking a decentralized approach, oracle networks limit the trust in
a single party for providing required data from external sources. Oracle nodes, run by multiple
entities, relay data to the smart contracts in the form of reports. A group of such oracle nodes is
called a committee.
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The second iteration, called Chainlink 2.0, led to the foundation of Decentralized Oracles Networks
(DONs) [BCC+21]. DONs aims to mediate between a blockchain platform and an off-chain
system by offering extensible, flexible adapters. A committee of Oracle nodes maintains a DON
which decides what oracle function to execute. Thus, a DON acts as a blockchain abstraction
layer that interfaces off-chain services to smart contracts and other systems. A DON consists of
executables and adapters. An executable is a program that runs continuously, and an adapter acts as
a bidirectional connector with the blockchain. For example, the Figure 3.1 shows a basic DON
fetching data from external sources and relaying it to a smart contract using another adapter.

Figure 3.1: Chainlink: DON using adapters to fetch data from external sources and feeding into
blockchain
Source: https://research.chain.link/whitepaper-v2.pdf

One of the key goals of Chainlink 2.0 is abstracting away the complexity of the components behind
DONs and making it developer friendly. Chainlink 2.0 further aims at providing a decentralized
metalayer wherein developers seamlessly interact with multiple blockchains which having to deal
with specific details like fees, chain re-organizations, invocation interfaces.

DONs are a decentralized networks that interact with other distributed systems whereas, SCIP is an
abstract specification that can operated as a single centralized permissioned entity or can be also a
decentralized group of entities collaborating with each other.

3.3 HyperService

HyperService [LXS+19] is a platform for developing and executing decentralized applications
(dApps) across multiple blockchain networks. A dApp is a software application that runs on a
decentralized network, typically using blockchain technology. It features a programming framework
and a cryptography protocol to secure cross-chain dApps. The framework includes a Unified
State Model (USM) for describing cross-chain dApps in a blockchain-independent manner and a

35



3 Related Work

high-level programming language called HyperService Programming Language (HSL). The HSL
code is compiled into HyperService executables and executed through the cryptography protocol.
HyperService offers both interoperability and programmability across heterogeneous blockchains
and includes a virtualization layer to simplify the development of cross-chain dApps. The platform
also includes a Universal Inter-blockchain Protocol (UIP), a cryptography protocol, to handle
complex cross-chain operations securely. A prototype to prove the feasibility of the concepts
incorporates Ethereum and a permissioned blockchain built using Tendermint [Int15] consensus
engine.

SCIP and HyperService, although both aim to achieve interoperability, differ in their approaches for
realizing the solution. SCIP does not provide a specification or a framework to develop applications
but rather focuses on abstracting the invocation logic across multiple heterogeneous blockchain
platforms. With SCIP already existing, deployed smart contracts can be invoked, or even their state
can be read. Whereas, HyperService introduces its own development framework and mandates the
use of its own programming language.
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and SDK(s)

The previous chapters introduce the proposed work, outlining its motivation, the problem statement,
and related works that propose solutions relevant to the problem statement. This chapter delves
deeper into the analysis of different blockchain technologies by discussing the criteria used to
evaluate and compare them. By using these criteria, an objective analysis of various blockchain
platforms, as outlined in Section 4.1. Such an analysis would help list the features that could be
added to the SCIP protocol and if these platforms support multi-signature transaction invocations.
Also, understanding these platforms is a necessary step for creating adapters for the SCIP gateway.

After laying out the criteria for analysis, the chapter will discuss four specific blockchain platforms:
Aptos, Sui, Flow, and Cosmos SDK. Each of these platforms will be analyzed and evaluated based
on the criteria established in the previous section.

Finally, based on the analysis of these platforms, the chapter will propose updates to the first SCIP
specification and provide information on the updates made to the prototype, in Chapter 5 and
Chapter 6 respectively.

4.1 Blockchain Search and Selection Method

For each criterion discussed further, their importance and relevance have been provided. Furthermore,
examples of some blockchain platforms that qualify or do not qualify for criteria requirements
have been mentioned. To start with discovering the list of blockchain platforms that could be
considered for analysis, various websites and search engines like Google1, Bing2 were used. The
search keywords used were: blockchain, list of blockchain platforms, and then using snowballing,
the links that further lead to other sources of information were also considered. During the search,
after discovering a platform, its competitors were discovered, for example using keyword ethereum
competitor. The same technique was used to search for relevant content on websites with search
support like Wikipedia3. One of the references from Wikipedia used List of blockchains[Wik23]
which provided names of 44 blockchain platforms at the time of writing the report. Out of these
platforms, as a first filter, only those platforms (22 out of 44) have been considered that provided
support for executing custom programs in the form of smart contracts. Websites like Coindesk4

provide a dedicated section on the events, news, and innovations related to blockchain technology.

1https://www.google.com/
2https://www.bing.com/
3https://wikipedia.org/
4https://www.coindesk.com/
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This discovery process was performed during the initial phase of the thesis work and terminated
after two weeks as a time-bound activity. A summary of these platforms and their suitability for
analysis based on the criterion is shown in Table 4.1. A threat to the validity of the mentioned
method includes that the exact results might not be reproduced again because of changing search
algorithms used by the search engines and the use of the Internet as a general search tool that evolves
with time.

After defining the search method and listing potential platforms for analysis, the content further
discusses the key points for shortlisting the platforms. The shortlisting is required so that the
platforms can be studied within the time frame of the thesis work, and the goal of selecting three
state of the art platforms is accomplished. The reason behind selecting these specific key points is
explained further. The overall intuition behind choosing these specific properties is to improve the
usefulness of the SCIP and the SCIP gateway.

• Variety of platforms

The goal of the research work in this thesis is to enable the implementation of new business
processes across multiple heterogeneous blockchains by supporting a wide range of platforms
uniquely designed and built for specific use cases. To achieve this, the SCIP 2.0 gateway
must integrate with a diverse set of blockchain platforms, each with its distinct design and
implementation.

Although many blockchain platforms and scaling solutions bring innovative approaches for
low-cost transactions and faster finality without compromising security, they have not been
considered for integration into the SCIP gateway or for analysis in this work. This is because
many of these platforms are derivatives of an existing blockchain platform, for which the
SCIP gateway already has a plugin. However, this does not mean that these platforms are not
valuable; they could be considered in future work. For example, platforms like Arbitrum5,
and Optimism6 use Ethereum Virtual Machine as the underlying technology for which SCIP
gateway already has integration. Such platforms are referred to as sidechains or, in general,
Layer 2 scaling solutions [TSH22]. Applying the same criteria, platforms like Polygon7,
Neon 8 are not considered here because they are also based on EVM.

• Developer friendliness

A study on the value of software documentation has identified six quality attributes considered
important for software documentation: Accuracy, Clarity, Readability, Structuredness,
and Understandability [PDS14]. These attributes are critical for ensuring that software
documentation is effective in helping developers understand and use the software. In the
context of this report, all of the platforms discussed have documentation that meets the quality
mentioned above measurement attributes at the time of writing this report.

Platforms like Sui, Aptos, Flow and Cosmos SDK provide all the necessary guides for
the developers to understand the concepts, clear and adequate documentation of APIs to
interact with the platforms, and required practical tutorials to develop an understanding

5https://arbitrum.io/
6https://www.optimism.io/
7https://polygon.technology/
8https://neon-labs.org/
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of the technology at the time of writing this report. On the other hand, the platform
Cosmwasm [Cos21] has not been discussed in this report because its documentation was
still in the alpha stage and did not include the required APIs for developing a plugin for the
SCIP gateway. Therefore, the documentation was insufficient to fully evaluate the platform’s
capabilities or suitability for integration into the SCIP gateway. However, this is not to say
that Cosmwasm can never be integrated with the SCIP gateway; it could be considered in
future work.

• Availability of APIs

For a blockchain platform to be supported by the SCIP gateway, it must expose an Application
Programming Interface (API) that can be called to invoke smart contracts on that platform,
query events, and scan for new blocks and the transactions included in them. Aptos, Sui,
and Flow provide such APIs, making it possible for the SCIP gateway to interact with these
platforms. However, Cosmos SDK operates differently, as it is a framework that expects the
client to encode transaction data rather than providing a pre-built API.

This means that to create a transaction using Cosmos SDK, the client must have access to the
custom encoders that will serialize the transaction into a format accepted by the exposed API9.
This can be a complex process as the client must be aware of all the primary and derived data
types to encode the transaction properly. Compared to the other blockchain platforms meeting
the compatibility criteria in this report, the complexity of encoding transactions from the
SCIP inputs in Cosmos SDK goes beyond the scope of this thesis’s work. However, the report
includes the study of Cosmos SDK because a plugin could be built for a specific blockchain
created using Cosmos SDK rather than Cosmos SDK itself. The blockchain created using
Cosmos SDK would have specific use cases and provide the necessary encoders to create the
transactions. These specific encoders can be used to create a plugin for the SCIP gateway.

• Use cases

Another important aspect to consider while selecting the blockchain for integration with SCIP
is that it is not limited to cryptocurrency applications but can be used for various purposes.
Ideally, although blockchain could be designed for a specific purpose, it should offer the
possibility of deploying general-purpose applications. Therefore, the platform’s architecture
and interaction tools, like SDKs, should allow developers to develop and deploy any use case
rather than being restricted to one particular use case of cryptocurrency and payments.

For example, Litecoin10 and Peercoin11 do not satisfy this criterion.

• Programming language

Programming languages in Blockchain enable developers to develop smart contracts that are
used to execute arbitrary business logic. A smart contract can be developed using general-
purpose programming languages like Java, C++, Python, Golang, and Blockchain-specific
languages like Vyper and Solidity for Ethereum, Move for Sui and Aptos, Cadence for Flow,
WebAssembly for Cosmwasm. The code written using these programming languages is

9https://docs.cosmos.network/v0.47/core/encoding
10https://www.litecoin.net/
11https://www.peercoin.net/
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usually compiled into low-level instructions that are then executed by a virtual machine, i.e., a
component of blockchain nodes. Most of these programming languages offer general features
such as functions that either modify the state of the Blockchain or return the stored data, emit
events, and deploy new contracts at runtime. The semantics of defining smart contracts and
available data types vary greatly among the programming languages. For example, in Move12

language, smart contracts are developed in the form of modules. Cadence13 is a high-level
resource-oriented programming language that provides Capability-based Access Control.

The goal of SCIP is to abstract the variety of programming languages in terms of semantics.
These data types are directly related to smart contracts and provide a uniform interface
for their invocation. Therefore, the features like support for generics, object-oriented
programming paradigms like inheritance, abstraction, and encapsulation offered by many
of these programming languages and their respective platforms are potential features for
inclusion into SCIP specification.

Using this criteria, only those platforms should be selected that enable the development
of any general-purpose applications and do not restrict users to limited programmability.
For example, platforms like Litecoin and Peercoin are programmable but have limited
programmability.

Criteria→

Platform↓
Variety Developer

friendliness
Availability
of APIs

Use cases Programming
language

Sui [Mys22] ✓ ✓ ✓ ✓ ✓

Starknet [Sta21] ✓ ✓ ✓ ✓

Aptos [22] ✓ ✓ ✓ ✓ ✓

Cosmwasm [Cos21] ✓ ✓ ✓ ✓

Flow [HSL19] ✓ ✓ ✓ ✓ ✓

Cosmos
SDK [Ten19]

✓ ✓ ✓ ✓ ✓

Polkadot [Web17] ✓ ✓ ✓ ✓

Peercoin [Pee12] ✓ ✓ ✓
✓

(Limited)

Litecoin [Lit11] ✓ ✓ ✓
✓

(Limited)

Primecoin [Pri13] ✓
✓

(Limited)
Ethereum Classic [ETC16] ✓ ✓ ✓ ✓

Bitcoin Cash [Bit17] ✓ ✓
✓

(Limited)

Bitcoin SV [Bit18] ✓ ✓
✓

(Limited)

12https://developers.diem.com/docs/technical-papers/move-paper/
13https://developers.flow.com/cadence/language
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MazaCoin [Tea14] ✓ Unclear

Namecoin [Dur11] ✓ ✓ ✓
✓

(Limited)
Solana [Sol20] ✓ ✓ ✓

Arbitrum [Arb20] ✓ ✓ ✓

Tezos [BB14] ✓ ✓ ✓

Ploygon [KNAB17] ✓ ✓ ✓

Optimism [Opt20] ✓ ✓ ✓

R3 Corda [R316] ✓ ✓ ✓

Tron [Tro17] ✓ ✓ ✓

NEAR [NEA18] ✓ ✓ ✓ ✓

Table 4.1: List of blockchain platforms and their suitability to the criteria

4.2 Blockchain analysis

Having laid out the selection criteria for choosing platforms, the subsequent sections present a study
of four potential candidate platforms for inclusion into the SCIP gateway and the features that could
be part of the SCIP specification. An analysis of these platforms further leads to determining if
their SCIP protocol needs modification. The list below mentions properties used for studying the
selected platforms and their importance.

• Network setup

When evaluating a blockchain platform, it is important to consider factors such as the
consensus mechanism used, the number of validators, the structure of the network, and the
level of decentralization. The network infrastructure and scalability should also be considered,
as this will determine how well the network can handle a high volume of transactions.
Furthermore, the security measures implemented on the network and the ability to recover
from a network failure should also be evaluated.

In summary, understanding the network setup of a blockchain platform is crucial when
developing an adapter for the SCIP prototype. Furthermore, the factors related to the network
setup should be considered during the implementation of the prototype, as these details need
to be abstracted from the client application using the SCIP gateway.

• Consensus algorithm

As discussed in the previous chapter about the importance of the consensus algorithm and
its direct correlation to the security and resilience to adversaries, the type of consensus
mechanism used is another crucial aspect for the analysis of a blockchain platform. A
consensus algorithm also defines the computation power required to operate the network.
Therefore, a consensus algorithm of the selected blockchain platform for developing the
prototype should also consider environmental sustainability, energy consumption, and costs
as a part of its design and implementation. For example, PoS is more energy efficient than
the Proof-of-Work consensus algorithm [JHGR20]. Modern platforms like Flow, Sui, Aptos
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use the PoS consensus algorithm. Ethereum transitioned to PoS in 2022 because it is more
secure, less energy-intensive, and better for implementing new scaling solutions compared to
the previous proof-of-work architecture [SHA+].

• Programming language

Section 4.1 discussed about the importance of programming language while selecting a
blockchain platform. Even during the analysis phase, studying the platform from the
perspective of the programming language it uses will help to check if SCIP needs any changes
to allow the programming language features that could be supported in an abstract SCIP
specification.

• Accounts and Security

Blockchains work on the principles of cryptographic signatures, making them resistant to
tampering and manipulation by malicious actors. However, this does not mean that they are
completely immune to security threats. According to a report by SlowMist, over $3.7 billion
were lost due to Blockchain related hacks in the year 2022 [Slo23]. The report categorizes
the hacks into the following parts: (i) DeFi14, cross-chain bridges, and NFT (ii) Exchanges
(iii) Blockchain (iv) Others . Thus, while considering the security aspect, it is vital to consider
what mechanisms are in place to ensure the overall security of the network and deployed
applications.

Based on the above mentioned points for analysis of a blockchain platform and the shortlisted
platforms from Table 4.1, the further sections present information about Aptos, Sui, Flow, and
Cosmos SDK.

4.3 Aptos

Diem, formerly known as Libra, was a digital currency created by Meta (formerly Facebook) to be
a low-cost stablecoin that could be used globally. However, it was wound down in 2022 [CFI23].
Later, it led to the announcement of the Aptos blockchain, a spin-off of Deim, from the former
employees of Meta. Aptos blockchain is a smart contract platform focusing on the following
key principles: scalability, safety, reliability, and upgradeability [22]. In addition, Aptos natively
integrates and internally uses the Move language [BCD+20] and PoS algorithm for consensus.

4.3.1 Network setup

The components of Aptos blockchain as as follows:

14Decentralized Finance (DeFi) refers to the applications providing financial services such as lending, borrowing, and
swapping on a blockchain [SK22]
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Validator

A validator processes transactions using a BFT proof-of-stake consensus mechanism. Validators
are responsible for executing the transactions, validating them and maintaining the integrity of the
blockchain by ensuring that only valid transactions are included in new blocks. A validator has
to be in the active state to participate in consensus. Alternatively, a validator can be inactive if it
does not have enough stake to participate, rotates out of the validator set, elects to be offline as it
synchronizes blockchain state, or is deemed not participating by the consensus protocol due to poor
historical performance.

Client

A client is an entity that submits transactions and queries the state and history of the blockchain. In
addition, clients can download and verify validator-signed proofs of queried data.

Full node

A full node is a client that replicates the transaction and blockchain state from the validators or
other full nodes in the network. In addition, it may elect to prune transaction history and blockchain
state to reclaim storage.

Light client

A light client only maintains the current set of validators and can query partial blockchain state
securely, typically from full nodes. A wallet is an example of a light client.

Consensus algorithm

Aptos uses DPoS as the consensus algorithm to agree on ordering the blocks and their contents.
The validators must have a minimum amount of Aptos token staked, a native currency for the Aptos
blockchain. Users can delegate their tokens to validators as a stake and earn rewards proportional to
their staked amounts. At the end of every epoch, validators and their respective stakes will receive
rewards or get penalized through slashing.

4.3.2 Programming model

In the context of the Aptos ecosystem, a module can be mapped to a smart contract that can be
invoked, executed, and change the state of the blockchain. Aptos allows clients to submit transactions
that can publish new modules, upgrade existing modules, execute entry functions15 defined within a
module, or contain scripts that can directly interact with the public interfaces of modules. Module

15https://aptos.dev/guides/move-guides/move-on-aptos#visibility
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upgradeability differentiates Aptos from Ethereum, where smart contracts are immutable. Aptos
ecosystem provides a Move Prover, which enhances security by protecting contract invariants and
behaviors.

Move language is inspired by rust programming language. The Move ecosystem mainly contains
a virtual machine(VM) compiler. The modules written in Move language are compiled and
converted to byte code which the Move VM executes. Move’s support for module upgradeability
and comprehensive programmability enables seamless configuration changes and upgrades to the
Aptos blockchain. Move programming language supports generics. In programming, generics refer
to a feature that allows the creation of classes, interfaces, and methods that work with different types
of data. But, the current SCIP specification does not support generics for invoking smart contracts
or querying the state. Thus, creating a window for improving SCIP specification to add support for
generics.

Aptos supports the notion of transactions, events, and accounts and has HTTP REST APIs for
querying or invoking transactions. During the execution of a transaction, one or more events can
be emitted. Each registered event has a unique key that can be used to query event details. Aptos
supports only the generation of events during execution and does not allow querying events during
transaction execution to enforce the transaction execution to be a function of only current inputs.
An account is identified by a unique 256-bit value known as an account address.

A move module is identified by the address of the account where the module is declared, along with
a module name. For example, the module identifier 0x1::coin is deployed by account 0x1 and with
name coin. The combination of the account address and the module name must be unique. An
address owner can publish multiple modules in the form of package as a whole on-chain which
includes the bytecode and package metadata. A package can be upgradable or immutable and is
defined by the package metadata.

4.3.3 Accounts and Security

Hybrid custodial options and flexible key management helps developers to implement a smooth
user experience. In addition, Aptos supports shared or autonomous accounts represented entirely
on-chain. This allows complex Decentralized Autonomous Organizations (DAOs) to collaboratively
share accounts and use these accounts as containers for a heterogeneous collection of resources.
Aptos maintains the ledger state by maintaining the state of the account.

4.4 SUI

Sui is a Layer 1 Section 2.1.6 blockchain platform with smart contract capabilities developed by
Mysten Labs, primarily focusing on high-speed but low-cost transaction execution. The project,
initiated by former Meta employees, is also a spin-off of Deim blockchain. Although Aptos
and Sui are both derived from Deim, they differ from each other in their internal working, the
Move programming language used in Sui has been modified to suit its programming model16. So,

16https://www.sotatek.com/aptos-vs-sui-a-fight-of-the-new-generation-layer-1-
blockchain-platforms/
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considering these factors, the Variety of platforms criteria is not violated. Sui platform supports
smart contract execution developed in Sui Move programming language and is secured by a set
of validators. With an emphasis on horizontal scaling, Sui processes transactions in parallel and
thus increases throughput and uses computing resources better. Sui itself is developed in Rust
programming language. In addition, Sui platform has SUI token as a native asset that is used for
paying transaction fees and also for staking in the delegated PoS algorithm.

4.4.1 Network setup

Sui uses DPoS as a consensus algorithm and has a set of validators executing the transactions in
parallel using Byzantine Consistent Broadcast [Wik22] Nodes in Sui blockchain can be a light
client or a full node (discussed in Chapter 2).

4.4.2 Consensus algorithm

Sui uses DPoS (described in Chapter 2).

4.4.3 Programming model

Sui Move is derived from the Move programming language. Sui is a distributed ledger that
stores programmable objects, each referable by a unique identifier. The state constitutes a pool
of programmable objects managed by the Move packages. A move package is a collection of
move modules. A move module is analogous to the concepts of smart contracts made up of move
functions and types. A module can also invoke functions from other move modules. Sui enforces
support for type arguments, emitting events and defining custom data types.

4.4.4 Accounts and Security

In Sui, a transaction is valid only if signed using the EdDSA algorithm [Ham15] by the account’s
private key. If the account does not exist in the blockchain, it is created whenever any asset is
transferred. For a transaction to be finalized, it must be submitted to all the validators, has to be
certified by the validators, and the certificate has to be shared with all the validators. Sui ensures
that the transaction is finalized even when some validators do not act as per the protocol by using
cryptographic Byzantine fault tolerant agreement. Certain Sui tokens must be paid as transaction
fees even if the transaction is reverted due to an error. This increases the cost of a denial-of-service
attack where adversaries try to flood the network with transactions leading to transactions of other
users not being finalized. The validators have to stake Sui tokens to be able to participate in the
consensus process. Any deviation in the behavior of a validator from the defined protocol leads to
slashing, i.e., loss of the stake asset.
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4.5 Flow

CryptoKitties is a virtual cat collecting and breeding game built on the Ethereum blockchain, created
by Dapper Labs. Players can buy, collect, and sell unique digital cats within the game. In December
2017, the Ethereum network experienced congestion due to the high demand for the blockchain
game CryptoKitties [JL21]. The low throughput of Ethereum blockchain led the developers of
CryptoKitties to create the Flow blockchain. Flow aims to provide a scalable distributed computing
and execution platform for NFT-related applications such as marketplaces and crypto-infused video
games. Flow blockchain supports a hybrid set of nodes to reduce congestion and achieve speed and
high throughput. It uses PoS as the consensus algorithm. It is a programmable blockchain and uses
Cadence programming language for smart contract development. The further content is presented
from the Flow’s three technical papers 17:

(i) Technical Paper 1: Separating Consensus & compute [HSL19], (ii) Technical Paper 2: Block
Formation [HHS+20], (iii) Technical Paper 3: Execution Verification [HSLZ19], .

4.5.1 Network setup

Flow blockchain defines the following types of nodes to segregate the roles: Collector Nodes,
Consensus Nodes, Execution Nodes, and Verification Nodes.

Collector node

Collection nodes are partitioned into approximately equal-sized groups called clusters. The
transactions received by each cluster are grouped into collections. All the collector nodes in the
cluster collaborate with each other to generate a collection. The finalized collection generated
through consensus among the collectors is called guaranteed collection. The hash reference of the
collection is then submitted to the consensus nodes for inclusion in a block.

Consensus node

The consensus node maintains the state of the blockchain and appends new blocks. Collector nodes
run BFT consensus algorithm to decide which set of received guaranteed collections should be
included in the next block. After undergoing through BFT consensus algorithm as finalized block
consisting of ordered collections is generated. Consensus nodes are also responsible for slashing
any non-complying nodes.

17https://flow.com/technical-paper
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Execution node

Execution nodes execute the set of transactions included in the finalized block. They generate
a execution receipt. Execution nodes also provide the required information to the verification
nodes for examining the result of the execution phase. Execution nodes require high computational
resources.

Verification node

A verification node acts as a moderator in the network who provides approval by re-computing the
results of the execution node. The verification process is executed in parallel by breaking the result
of execution nodes into chunks and examining each chunk independently.

4.5.2 Consensus algorithm

As Flow blockchain uses PoS as a consensus algorithm, the protocol requires that any participant
node should stake a certain amount of asset as collateral. The flow ecosystem is open for anyone to
participate, so any node with enough stakes can detect any misbehavior by any other node. Upon
noticing such incidents, a slashing challenge is initiated, and consensus nodes decide whether the
node has committed any non-compliant action. The protocol assumes that 2/3 of the stake is owned
by the honest nodes in the network for each type of node.

4.5.3 Programming model

One of the key features of the smart contract programming model in Flow is its use of a new
programming language called Cadence. Cadence is a statically typed, object-oriented language
with a design focus on safety and security, auditiability, and simplicity. Cadence provides a familiar
syntax like Swift, Kotlin, and TypeScript programming language. In addition, it has rich support
for data structures, advanced control flow, and capabilities-based access control. Another important
feature of Flow’s smart contract programming model is its support for composability. This allows
developers to create and use reusable smart contract modules that can be combined to perform
more complex tasks. Flow also provides a built-in access control mechanism for smart contracts,
which allows for fine-grained control over who can access and execute a specific smart contract.
This helps ensure that only authorized parties can interact with a contract, which can improve the
system’s overall security.

Cadence enables resource-oriented programming on Flow. A resource can be a smart contract,
digital assets, or balances that are stored in the users’ accounts rather than in the form of a data entry
in a smart contract in Solidity. Resources can be created, moved, or destroyed by the users who have
appropriate access rights. Using Cadence, developers can emit events that can be used by external
applications to monitor state updates. In Flow, smart contracts functions can be invoked using a
script that is a part of a transaction rather than invoking some function directly with user inputs.
A transaction can be signed by multiple users, import multiple smart contracts, and invoke their
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functions along with other arbitrary calculations. Flow provides HTTP REST APIs and even client
libraries in Python, JavaScript, Swift, and Go to send the transactions, search for events, and query
the state. Overall, Flow blockchain is a suitable platform for adding support to the SCIP gateway.

4.5.4 Accounts and Security

Accounts in Flow are composed of the address, balance, public keys, code, and storage. The account
addresses in Flow are assigned by an on-chain function that determines the addresses through
deterministic sequencing rather than deriving from cryptographic public keys. This allows using
the same public key to control multiple accounts or multiple public keys to control a single account.
Unlike Ethereum, where an account need not be created explicitly, in Flow, a transaction is required
to create an account. While creating an account following information has to be provided: ID (used
to identify key within an account), raw public key, signature algorithm, hash algorithm, and weight
(integer between 1 and 1000). The Table 4.2 shows the available signature algorithms at the time
of writing this thesis. A transaction in Flow is not authorized to access an account unless it has
signatures from the accounts having aggregated sum of weight meeting the minimum required
threshold of 1000. Signing a transaction in Flow can be a multi-step process. A transaction consists
of multiple entities signing it with different purposes: proposer, payer, and authorizers.

Algorithm Curve
ECDSA P-256
ECDSA secp256k

Table 4.2: Flow signature algorithm

4.6 Cosmos SDK

Cosmos SDK is an open-source framework for building custom blockchains. Using the cosmos
SDK framework, customized, modular, inter-operable blockchains can be built to cater to the
application-specific requirements. Developers can either choose PoS or Proof-of-Authority as
the consensus algorithm. The framework consists of composable modules which can be tweaked
as needed. The framework is written in the Go programming language. Cosmos SDK provides
the flexibility to define the application’s state, transaction types, and state transition functions by
modifying the default setup and replacing any part of it with custom.

4.6.1 Network setup

The blockchain created using Cosmos SDK can be designed to have any desired setup. If the default
setup is used without any modification to the consensus algorithm, each node acts as a full node
identical to any other node in the network. The network would then consist of a set of validators
that run a consensus process and add new blocks.
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4.6.2 Consensus algorithm

Cosmos SDK uses Tendermint Core [Int15] as its default consensus engine. Tendermint core
is software replicating the state across multiple computing nodes and ensuring resilience to
failure even if 1/3 of the nodes fail to operate as per protocol specification. It is a language and
application-agnostic component responsible for ordering the transaction bytes and replicating the
data. Tendermint splits the consensus process into rounds, which is analogous to epochs Chapter 2.
Validators also vote on the new proposed blocks. There are two voting stages: pre-vote and
pre-commit. A block is added to the blockchain when at least two-thirds of the nodes pre-commit
for the same block in the same round. Every pre-commit must be justified by a polka in the same
round, which occurs when two-thirds of the nodes pre-vote a block. If any participating node
deviates from the protocol specification, the staked assets are destroyed through slashing.

4.6.3 Programming model

Cosmos SDK is a framework written in Golang for building custom blockchains. The underlying
consensus protocol, i.e., Tendermint, does not impose any programming language-specific constraints
on the type of data being added to the blockchain. An application communicates with Tendermint
using Application BlockChain Interface (ABCI) as shown in Figure 4.1. A blockchain built using
Cosmos can cater to a specific application or be designed to act as a platform to execute smart
contracts written using a programming language it supports.

Application

Tendermint

ABCI

Figure 4.1: Application and Tendermint communicate using ABCI

Cosmos SDK consists of modules containing some specialized business logic written in Go
programming language. The default setup of Cosmos SDK provides bare minimum modules such
as staking, accounts, and token management that are required to build a blockchain. A module
handles the message received in the transaction, updates the state, and persists data in a store.

Cosmwasm is a smart contract platform that supports the execution of smart contracts written in
Rust18 programming language. Cosmwasm is a module that can be plugged into any blockchain
built on Cosmos SDK to add support for smart contracts.

18https://www.rust-lang.org/
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4.6.4 Accounts and Security

Developers using Cosmos SDK to build their blockchains can choose the programming language
and libraries dealing with the cryptography of their choice. So, the security model of the application
and the underlying blockchain depends on the developers rather than Cosmos SDK itself. The
default x/auth module19 deals with account types of the application and specifies the base
transaction. It handles transaction validation.

4.7 Feature updates to SCIP

From the analysis of the selected blockchains, the following feature updates have been proposed in
the SCIP protocol:

• Adding support for generics

Programming languages like Move and Java provide support for generics and templating.
Also, generics might be supported in Solidity programming language in the future20. However,
the current SCIP specification does not allow calling functions that need type arguments;
thus, it does not allow calling transactions for Sui, Aptos, and other blockchains that need
type as an argument. Adding support for generics will solve this problem.

• Enabling invocation of transactions with multi-signature support

Blockchains like Flow and Sui allow calling transactions with multiple signers or ac-
counts/addresses that are controlled through other multiple accounts. Adding support for a
multi-signature flow in the SCIP will help abstract these details of handling such transactions
from the users and enable collaboration among SCIP clients.

• Adding support for canceling invocation

When dealing with transactions requiring approvals from multiple clients, adding a feature
to cancel the pending invocations or transactions not confirmed on the blockchain will
allow clients to build business workflows requiring canceling transactions. The current
SCIP specification lacks any feature allowing clients to revoke their transactions that are not
confirmed on the blockchain.

• Adding support for replacing invocation

Similar to adding support for revoking pending invocations, SCIP lacks support for replacing
invocations not confirmed on the blockchain. When dealing with transactions requiring
approvals from multiple clients, adding a feature to replace the pending invocations or the
transactions not confirmed on the blockchain will allow clients to build business workflows
requiring replacing them.

The details about adding the above features into the SCIP protocol have been discussed in
Chapter 5.

19https://docs.cosmos.network/v0.47/modules/auth
20https://github.com/ethereum/solidity/issues/869
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Based on the analysis of blockchain platforms in Chapter 4, the extension to the existing
SCIP (referred to as SCIP 1.0 henceforth) specification is discussed in the following sections to
accommodate the new features. The SCIP 1.0 introduced a set of methods. These blockchain-
external consumers are referred to as client applications [FBD+20]. The SCIP 1.0 specification
proposed 4 methods namely: Invoke, Subscribe, Unsubscribe and Query. The new SCIP
specification (referred to as SCIP 2.0) not only extends these methods but also provides additional
methods to utilize new features abstractly and generically without users having to know the internal
details of the underlying blockchain technology being used. The methods are namely: Replace,
Cancel, Sign, Get. All methods return a synchronous response indicating the success or failure
of the request message. Some of the methods additionally provide asynchronous responses in
the form of callbacks. Method calls require input parameters and return responses composed of
fields. These fields are mentioned in Section 5.1. The entity providing concrete implementation of
the methods that mediates between client applications and multiple heterogeneous blockchains is
referred to as Gateway. Gateway is reachable using a SCL discussed in Section 2.2.2.

5.1 SCIP 2.0 fields

Table 5.1 specifies the fields and their value in the SCIP protocol which are used with the methods.
Newly added fields are highlighted in bold.

Name Type Description
Function Identifier string the name of the function
Event Identifier string the name of the event
Inputs Parameter[ ] a list of function inputs
Outputs Parameter[ ] a list of function/event outputs

Callback URL string the URL to which the callback message
must be sent

Correlation identifier string a client-provided correlation identifier

Degree of confidence number the degree of confidence required
from the transaction

Timeout number
the number of seconds the gateway should
wait for the transaction to gain the required
degree of confidence

Signature string the client’s base 64-encoded signature of
the contents of a request message

51



5 SCIP 2.0

Timestamp string the time at which an event occurrence
/ function invocation happened.

Filter string
a C-style Boolean expression to
select only certain event occurrences
or function invocations

Timeframe string
the timeframe in which to consider
event occurrences / function
invocations

Occurrences Occurrence[] a list of event occurrences
/ function invocations

Signers string[]
The addresses or identifier of the entities
that are eligble to provide an approval
for the invocation

Minimum
number of
signatures

number
the minimum count of the entities from
the list of Signers that should approve
the invocation prior to submission

Invocation hash string
The hash of the fields that uniquely identify an
invocation (explained in more detail in
Section 5.2.3).

Type Argument string[]
a list of types used for specifying the types
when invoking methods that support
generics.

Parameter
Name string the name of the parameter

Type JSON Schema the abstract blockchain-agnostic type
of this parameter

Value any the value of this parameter
Occurrence
Parameters Parameter[ ] a list of event / function parameters
Timestamp see above

Table 5.1: Description of the fields used in SCIP 2.0 request and response messages.

5.2 SCIP 2.0 methods

This section defines the proposed updates to the existing four methods to the SCIP specification and
also described the four new methods: Get, Sign, Cancel, Replace.
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5.2.1 Invoke method

Invocation Callback

Function identifier

Parameter

Callback URL

inputs

outputs

0..n

0..n

Type

Name

Value

0..1

0..1

Correlation Identifier

Degree of confidence

Timeout

Timestamp

0..1

0..1

0..1 0..1

In positional
order

0..n

Type argument

type arguments
0..n

Type

Signers

Minimum number
of signatures

0..n

0..1

Signature

Figure 5.1: The structure of the Invoke method with the fields
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This method allows external applications to call a smart contract function deployed on a blockchain.
The invocation can be gasless if there is no state update in the contract, and the blockchain allows
reading the state without paying any fees. Otherwise, the gateway might have to pay certain
minimum fees for updating the contract state by sending a certain amount of tokens accepted by
the blockchain. For every invocation, the client application must send a correlation identifier to
identify the invocation request uniquely. In response to the invocation request, the gateway returns a
synchronous response indicating whether the request is accepted or rejected. The gateway converts
the request into a blockchain transaction specific to the blockchain platform by converting the Inputs
into its blockchain native request message.

Generics is a feature in many programming languages using which developers can develop functions
that run the same logic but on different data types. This powerful feature saves time developing the
same business logic on multiple data types. Using the field type arguments client application can
specify the data types that should be used for the function invocation. This field is optional and only
valid when the underlying blockchain platform allows using programming language that supports
generics.

As discussed in Chapter 4, each blockchain platform enforces the users to sign the transaction
as a security measure to ensure the authenticity of the request. The signing algorithm can differ
among the blockchain platforms; hence, to provide a uniform interface to the invocation request, the
gateway signs the transaction on behalf of the client application sending the invocation method.
However, the gateway itself has a provision to authenticate the validity of the client request by
verifying the Signature field. Therefore, the client should sign the invocation request using algorithm
SSHA256withECDSA-[Cer09].

Assets can be stored on blockchains in standard single-key addresses meaning that whoever has
access to the private key can control access to the assets. This means that anyone holding the
private key can move the assets from the address without requiring authorization from anybody else.
Regarding security, single-key addresses are prone to a single point of failure. If the private key
is lost or an unauthorized party gets access to the private key, the assets can be lost forever. To
mitigate this risk, multisig wallets can be used to secure access to the funds where the transaction is
approved only if a certain number of pre-defined addresses approve a transaction. These types of
transactions where approval from multiple user accounts is required can be implemented using a
smart contract or can also be a core feature of the blockchain platform e.g., Aptos. The funds in a
multisig account can be secured against private key loss or theft. Consider a scenario where a user
creates a 2-of-3 multisig account and stores the private keys at different places or devices. Now,
even if one private key is lost or stolen, the funds can be accessed using the remaining two accounts.
SCIP 1.0 is suitable for single key addresses but lacks the methods to leverage multisig features.

SCIP 2.0 facilitates using multisig account feature by allowing the client application to specify the
identifiers (can be a public address or an abstraction over it) of other client applications in the field
Signers. The field Minimum number of signatures can be used to define the threshold of the number
of signatures that must be accumulated for the invocation to be executed on the blockchain. The
minimum number of signature and signers are optional fields. Suppose these fields are specified by
the client application. In that case, the gateway makes the invocation available for discovery to other
client application(s) using the Get method discussed in Section 5.2.2 and Sign method discussed
in Section 5.2.3. The value of Minimum number of signatures should be less than or equal to the
cardinality of the field Signers. It is up to the gateway to decide how to accumulate the submitted
signatures. After gathering the required approvals from the client applications, the transaction
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request is automatically submitted to the blockchain by the gateway. One way the gateway can
implement this mechanism is by directly submitting the signatures to the blockchain platform, which
enforces multiple-signature verification before transaction execution. Another way is to store the
invocation off-chain in permanent storage before submitting the transaction to the blockchain.

A Callback message is sent to the entity listening to the message located at Callback URL. The result
of the invocation after the request processed by the blockchain platform is sent to the callback URL
is sent asynchronously by the gateway. The underlying blockchain either executes the transaction or
fails with an error reason. On execution failure, the error message is mapped to one of the errors
defined in Section 5.3.

5.2.2 Get method

Get resultGet

Pending invocation
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inputs

outputs
0..n
0..n
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Figure 5.2: The structure of the Get method
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The Get method is accessible to all the client applications so that they can know for which
invocations their signatures are required. This read-only method has no state change in the gateway
or the blockchain platforms in context. The result is a list of invocations the client applications can
examine and provide approval using Sign method. Get method takes no input parameters. The
structure of the response message is explained in Figure 5.2. The gateway provides a synchronous
response. The response gives details about the fields and values associated with the invocation. The
purpose of providing these details is only to inform the client applications about the invocation
parameters.

5.2.3 Sign method

Sign

Signature

Correlation Identifier

Figure 5.3: The structure of the Sign

Using Signmethod, the client application can provide approval for the transactions proposed by the
other client application. This method takes invocation hash, and signature as input parameters. The
structure of the message is explained in Figure 5.3. The client application must sign the Invocation
hash using ECDSA algorithm.

Invocation hash field is created using the serialized form of the fields: blockchain identifier,
smart contract path, function identifier, inputs, outputs, type arguments, callback URL, degree of
confidence, timeout, signers, correlation identifier and minimum number of signatures and then
hashing it using SHA256 algorithm. Invocation hash is required to identify if the fields in the
invocation associated with the correlation identifier haven’t been changed while processing the
Sign method. Consider a scenario where a user A creates an Invocation with two signers, namely
B and C. Suppose the Invocation hash for this request is X1 and the client application submits a
Sign request for this invocation. Now suppose user A calls Replace with new input parameters
for this invocation, and new Invocation hash is X2. Now suppose, the client application submits
a Sign request on behalf of the user C with invocation hash X1 and is unaware of the changed
invocation fields for the given correlation identifier. The gateway should reject this request as the
invocation has been updated for the given correlation identifier. Any change in the fields related to
the invocation request changes the hash, and thus, Invocation hash avoids accepting any outdated
invocation approvals.

On receiving Sign request, the gateway verifies if the public key of the signer is present in the singers
field for the pending invocation in context and also checks if the signed message corresponds to the
latest copy of the invocation hash, which the gateway has. If the invocation hash does not match
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with the version the gateway expects, then the request is rejected with error SignRejectedError.
After gathering the required valid signatures from the client applications, the SCIP gateway creates
a transaction native to the blockchain, submits it, and waits for confirmation from the node, just
as the Invoke method. Here, the gateway gathers signatures and signs the transaction using an
algorithm that the blockchain platform accepts with the corresponding private keys on behalf of the
clients, meaning that the gateway is in charge of the private keys used to sign the transaction.

This is a design choice to preserve the essence of abstracting transaction invocation complexities
from the clients. An alternative procedure for gathering signatures would be that the gateway
generates an unsigned transaction beforehand and provides it to the clients to sign it who hold
the private key(s). However, this approach would then force the client to sign a transaction that
is specific to a blockchain, which entails that the clients have to understand blockchain-specific
transaction structures so that they know what they are signing. The gateway provides a synchronous
response with success status if the signature is valid and acceptable for the invocation known by its
correlation identifier.

5.2.4 Replace method
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Figure 5.4: The structure of the Replace method
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As per SCIP 1.0 specification, it is impossible to make changes to an invocation request once
it is created and submitted to the gateway. Using Replace method specified in SCIP 2.0, the
client application can try to make changes to the invocation request provided that the initiator of
the request is same client calling this method. For example, suppose the transaction is not yet
submitted to the blockchain due to the number of approvals being less than the minimum number of
signatures and the client sends Replace request. In that case, the gateway will replace it with a
new invocation, and all the previous approvals will be cleared. All client applications will have to
provide new approvals. The correlation identifier is used to identify the transaction that should be
replaced. Suppose the invocation request is already submitted to the blockchain platform but not
yet confirmed. In that case, the gateway submits a new transaction request with the same sequence
number as the previous transaction but with a higher gas fee so that the probability of a node
picking the new transaction increases. If the transaction is already confirmed, the gateway returns
ReplaceRejectedError error. The Figure 5.4 mentions all the required parameters to replace an
invocation.

5.2.5 Cancel method

Cancel

Correlation Identifier

Signature

Figure 5.5: The structure of the Cancel method

As per SCIP 1.0 specification, it is not explicitly possible to cancel an invocation request once it
is created and submitted to the gateway. However, the client application can request the gateway
to cancel only its own invocation request using the Cancel method specified in SCIP 2.0. The
correlation identifier is used to identify the transaction that should be reneged and the Signature
is the signature of the signed invocation hash generated from the fields of the invocation request
(described in Section 5.2.3). For example, suppose the transaction is not yet submitted to the
blockchain due to the number of approvals being less than the required approval and the client calls
the Cancel method. In that case, the gateway will remove the invocation request from its own
state.
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On the other hand, suppose the invocation request is already submitted to the blockchain platform
but not yet added to the state of the blockchain. For example, Atpos has a mempool1, which is a
list of pending transactions. In that case, the gateway will submit a new transaction request with
the same sequence number Chapter 2 as the previous transaction that has no effect on the state
of the smart contract in consideration but with a higher gas fee so that the probability of a node
picking the new transaction increases. If the transaction is already confirmed, the gateway returns
CancelRejectedError error.

5.2.6 Query method

Query

Function identifier

Timeframe0..1

0..1

Event identifier0..1

Filter
0..1

Query Result

Occurence
0..n

Parameter
0..n

Name

Timestamp

Type arguments
0..n

Type

Value

Figure 5.6: The structure of the Query method and the result

1https://aptos.dev/guides/basics-life-of-txn/
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This method allows the client applications to query the invocation of previous events or functions.
The query structure and the result message are explained in the Figure 5.6. The timeframe field is
used to narrow down the scope of the search into a fixed time range period. Suppose the start of
the timeframe is not provided. In that case, the gateway considers the genesis block as the start
for the search, and similarly, if the end of the timeframe is not provided, then the gateway uses
the latest known block as the end. After receiving the Query request, the gateway searches the
blockchain history for the given combinations of event identifier / function identifier and the type
arguments. In response to the Query request, the gateway sends a synchronous response with the
list of occurrences indicating the parameters types and values of an invocation.
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5.2.7 Subscribe method

Subscribe
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Parameter

Callback URL

0..n

Type

Name

Correlation Identifier

Degree of confidence0..1

0..1

In positional
order
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Type argument

type arguments
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Figure 5.7: The structure of the Subscribe method

This method monitors the events/function invocations of a smart contract. The client application
can request the gateway to send the information about the invocation as they happen. The structure
of the Subscribe method is explained in the in Figure 5.7. On receiving the Subscribe request,
the gateway sends a synchronous response, whether the request is accepted or rejected, and starts
monitoring the smart contract on the blockchain for the event emissions or the function invocation.
Additionally, the filter parameter can be used to skip the invocations which are not of interest.
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Whenever the gateway detects an invocation of the smart contract which matches the criteria of
the subscription, the gateway sends the parameters of the invocation along with the correlation
identifier to the client application listening to the requests at the specified Callback URL field in
the subscription message. The format of the message sent by the gateway to the client is shown
in Figure 5.8. If the client application sends another request subscription request with identical
correlation identifier, the old request is replaced with a new one.

Subcribe callback

Occurence
0..n

Parameter
0..n

Name

Timestamp

Correlation Identifier

Figure 5.8: Callback message sent from gateway to client when function/event invocation on
blockchain matches the subscription parameters
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5.2.8 Unsubscribe method

Unsubscribe
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Parameter
0..n

Type

Name
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0..1

0..1
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Event identifier0..1

Type argument

type arguments
0..n

Type

Figure 5.9: The structure of the Unsubscribe method

This method is used to cancel the monitoring of the events/function invocations of a smart contract
created using the previous Subscribe method. The structure of the Unsubscribe method is explained
in Figure 5.9. On receiving the Unsubscribe request, the gateway sends a synchronous response,
whether the request is accepted or rejected, and immediately stops monitoring the smart contract on
the blockchain for the event emissions or the function invocation. Using the 4 optional fields, the
Unsubscribe method provides three valid combinations: (i) if the correlation identifier is provided,
then only the subscription that corresponds to this id is canceled, (ii) if either function identifier or
event identifier and the parameters are provided, then all the individual subscriptions with the these
combinations for the mentioned smart contract are canceled, (iii) if no parameters are given, then
all the subscriptions of the smart contract are canceled.
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5.3 Invocation Errors

SCIP specifies asynchronous and synchronous responses for the request messages that represent
successful execution or an error. The error types are split into two types accordingly as described in
Table 5.2 and Table 5.3. The new errors added to the possible error types are: CancelRejectedError,
ReplaceRejectedError, and SignRejectedError.

Synchronous error Code Description

NotFound -32000 The blockchain instance, smart contract,
event or function are not found

InvalidParameters -32001

Input parameter types, names, or order
mismatch the designated function or event.
This also indicates inability to map a
parameter’s abstract type to a native type.

MissingCertificate -32002 Client certificate is missing

NotAuthorized -32003
The client application is not authorized
to perform the requested task
Gateway-side authorization.

NotSupported -32004 The specified blockchain instance
does not support the requested operation.

ConnectionException -32005 Connection to the underlying blockchain
node is not possible.

InvalidScipParam -32007 A scip method parameter has an invalid value

BalNotAuthorized -32103
The BAL instance is not authorized to perform
the requested operation on the underlying
blockchain.

CorrelationIdAlreadyinUse -32208 The client tried to submit a transaction request with
a correlation identifier which is already in use.

CancelRejectedError -32209

Thrown when the client application requested
to cancel an invocation but it already confirmed
on the blockchain or signer’s public key is not
equal to public key of the initiator.

ReplaceRejectedError -32210

Thrown when the client application requested
to replace an invocation but it already
confirmed on the blockchain or signer’s
public key is not equal to public key of the
initiator.

SignRejectedError -32211
Thrown when the client application
provided approval for an outdated invocation
or invocation hash is invalid.

Table 5.2: Description of synchronous errors sent by the gateway to the client in case of failure to
call a method
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Asynchronous error Code Description

TransactionInvalidatedException -32006 The transaction associated with an function
invocation is invalidated after it was mined.

InvocationError -32100

A general error occurred when trying to
invoke a smart contract function. This error
is used when the specific cause of the error
cannot be determined.

ExecutionError -32101 The smart contract function threw an exception

InsufficientFunds -32102 Not enough funds to invoke the state-changing
smart contract function.

Timeout -32201 Timeout is reached before fulfilling the
desired degree of confidence.

Table 5.3: Description of asynchronous errors sent by the gateway to the client in the callback in
case of failure to call a method

5.4 Data encoding

In its initial conception, SCIP proposed the use of JSON Schema2 for hiding the heterogeneity
among the data types and values supported by the programming languages used for smart contract
development. Based on this work, Table 5.4 shows the mapping between data types that SCIP
accepts and the native data types for the specific blockchain. This mapping table is used while
developing the plugin prototypes and derived from Cadence values and types3, SuiJson4 and Aptos
Node API5.

Json Schema Type Data type
description

Aptos Sui Cadence

{
"type ": "integer ",
"minimum ": 0,
"maximum ": 2^M-1
}

Unsigned integer u<M>
max M=256

u<M>
max M=256

UInt<M>
max M=256

{
"type ": "integer ",
"minimum ": -2^(M-1),
"maximum ": +2^(M-1) - 1
}

Signed integer Not
supported

Not
supported

Int<M>
max M=256

2https://json-schema.org/
3https://developers.flow.com/cadence/language/values-and-types
4https://docs.sui.io/build/sui-json
5https://fullnode.devnet.aptoslabs.com/v1/spec#/
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5 SCIP 2.0

{ "type ": "boolean "}

A boolean value
representing 2
possible states:
True or False

boolean boolean Bool

{
"type ": "string "
}

A string type
with no length
constraint

string string String

{
"type ": "string ",
"pattern ":
"^[0-9a-fA-F]{64}$ "
}

A hex encoded
32 byte account
address.

address address address

{
"type ": "array ",
"items ": <type>
}

An array of items
having uniform
data type ‘T‘

vector<T> vector<T> array<T>

{
"type ": "number ",
"minimum ": -2^(64-1),
"maximum ": +2^(64-1) - 1,
"multipleOf ": 10^(-8)
}

Signed Fixed-
point numbers
used for
representing
fractional values

Not
supported

Not
supported

Fix64

{
"type ": "number ",
"minimum ": 0,
"maximum ": 2^64 - 1,
"multipleOf ": 10^(-9)
}

Unsigned Fixed-
point numbers
used for
representing
fractional values

Not
supported

Not
supported

UFix64

Table 5.4: Mapping between Json schema and native blockchain types for the selected platforms

5.5 JSON RPC Binding

SCIP protocol does not define any specific message communication format or channel. In their
paper, Ghareeb Falazi et al. [FBD+20], proposed JSON RPC [JSO10] binding for SCIP. Basedon
the proposal, Section 5.5.1, Section 5.5.2, Section 5.5.3 defines the format of requests that a gateway
implementing the APIs should accept or respond with.
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5.5.1 Request

Listing 5.1 Example: Request message to send a query request

{
'jsonrpc': '2.0',
'method': 'Query',
'id': 29433,
'params': {

'eventIdentifier': 'StringUpdate',
'filter': '', 'typeArguments': [],
'timeframe':

{
'from': '0',
'to': '16723413193760000'

},
'parameters': []
}

}

5.5.2 Synchronous response

Success

Listing 5.2 Synchronous response body on successful acceptance or execution of request

{
"jsonrpc": "2.0",
"result": <value>,
"id": <id>

}
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Listing 5.3 Example: Response body on successful execution of query request

{
"jsonrpc":"2.0",
"id":29433,
"result":

{
"occurrences":[
{

"parameters":
[

{"name":"oldValue","type":"string","value":"Hello
World!"},

{"name":"newValue","type":"string","value":"test
NFT"}

],
"isoTimestamp":"2023-02-06T11:04:51.450Z"

},
{

"parameters":
[

{"name":"oldValue","type":"string","value":"test
NFT"},

{"name":"newValue","type":"string","value":"test-2
NFT"}

],
"isoTimestamp":"2023-02-06T11:07:38.299Z"

}
]

},
}

Error

Listing 5.4 Example: Synchronous response body example on error

{
"jsonrpc":"2.0",
"id":6472,
"error":{

"code":-32000,
"message":"The specified blockchain-id cannot be found"
}

}
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5.5.3 Asynchronous response

Success

The asynchronous responses are JSON RPC requests sent from the gateway to the client application.

Listing 5.5 Asynchronous response body for the callback messages sent by the gateway

{
"jsonrpc": "2.0",
"method": "ReceiveResponse",
"params": <body>

}

Listing 5.6 Example: Asynchronous response body for the callback messages sent by the gateway

{
"jsonrpc":"2.0",
"method":"ReceiveResponse",
"params":{

"correlationIdentifier":"151XT324WV",
"parameters":[]

}
}

Error

Listing 5.7 Asynchronous response body on error

{
"jsonrpc": "2.0",
"method": "ReceiveResponse",
"params":

{
"correlationIdentifier": <corelation_identifier>,
"errorCode": <error_code>,
"errorMessage": <error_message>

}
}
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Listing 5.8 Example: Asynchronous response body on error

{
"jsonrpc":"2.0",
"method":"ReceiveResponse",
"params":

{
"correlationIdentifier":"EFZ7CWNWOY",
"errorCode":-32101,
"errorMessage":"\\"Execution failed.\\""

}
}
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This chapter discusses the background of the SCIP gateway prototype, its architecture, limitations
and updates to the prototype to mitigate these limitations in Section 6.1. Later, Section 6.2 explains
the changes to the prototype and information on the support for three new blockchain platforms:
Sui, Aptos and Flow. Finally Section 6.3, detail out the testing performed to validate the changes to
the gateway.

6.1 Background

The Figure 6.1 shows the components of the prototype of the SCIP Gateway before the new
methods were introduced. The initial implementation consisted of a JSON-RPC server that accepted
the requests from external clients, a BlockchainManager that managed the internal state of the
application, and Adapters wrapped into Plugins. The prototype uses a plugin based approach to
improve the developer workflow for adding support for new blockchains without modifying the
other parts of the source code of the prototype. An adapter is responsible to pass on the invocation
request to the blockchain it has been developed for. An adapter and a blockchain has a 1-to-1
mapping. Due it monolithic nature and design, extending the prototype by adding new adapters
required that the developer is aware of the gateway architecture. A connection profile manager
accepts new configuration values that are required to connect to multiple different instances of
the same blockchain type. For example gateway can connect to production instance or a test-net
instance of a blockchain type using different blockchain node addresses. The Figure 6.1 shows
only SCIP methods in JSON-RPC server and other gateway management APIs are excluded for the
purpose of simplicity.
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Figure 6.1: Prior architecture of the SCIP gateway prototype before supporting new methods

Figure 6.2 shows the package diagram of the three parts of the prototype (i) Core API, (ii) Application,
(iii) Plugin(s) . A brief description of the each of the three parts of the prototype is as follows:

• Core API

The core API defines interfaces, exceptions, possible transaction states, and common utility
methods required to create a plugin. These methods and interfaces are used by the Application
to invoke some logic on a blockchain but, without having the knowledge of blockchain specific
APIs. A plugin is responsible for handling the intricacies of interaction with a specific
platform.

• Application

The role of the Application component is to offer JSON RPC APIs for to the external client
applications and application managers. When an external client application sends any SCIP
method request, it finds the appropriate adapter instance from pool of available adapters
created using active plugins and then routes the message to it. This component also manages
the correlation of requests and replies.

• Plugin(s)
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For each blockchain type, there is one plugin. The prototype uses PF4J [Sui17] as a plugin
framework. Each plugin is responsible for handling the logic to interact with a specific
blockchain type and must import the Core API and implement the required interface defined
by the Core API. A plugin can be loaded, disabled or even removed at run-time without the
need of restarting the whole application. A plugin is jar uploaded to the gateway using the
plugin management APIs exposed by the application.

Core API

Application

<<access>>

<<SCIP>>

Ethereum plugin Bitcoin plugin Fabric plugin

<<import>>

<<import>>

<<import>>

<<access>> <<access>>

<<import>>

Figure 6.2: Package diagram of SCIP gateway with supported blockchain platforms

Using a plugin based approach allow the developers to create support for new blockchain indepen-
dently. But, even with this approach, it is required that the private keys are accessible to the gateway
for signing the transactions, creating a risk of loss of all the assets that can be controlled using the
private keys in case of a security breach. Another drawback of the current gateway framework is
that it enforces the developers to develop plugins in Java programming language. Not all blockchain
offer a Java client thus forcing developers to re-develop the blockchain specific client using Java.
Section 6.2 explains the extension of the current gateway to mitigate the above drawbacks.

6.2 SCIP 2.0 Gateway implementation

This section discusses the updates to the SCIP gateway as per the proposed specification in Chapter 5.
The scope of work for the implementation includes extension of the prototype discussed before,
support for three new blockchains, implementation of scripts for testing the changes and updates to
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the existing plugins. Generic plugin is a separate contribution from the defined scope of work as a
part of the thesis. Each of the subsection summarizes the changes in the source code, and mentions
the link of the pull request or source code.

Figure 6.3 shows the updated architecture of the prototype. The highlighted components in grey
colour are the additions to the gateway implementation. Also, the existing methods have been
updated with new fields. The details regarding the updates to the prototype, release versions, links
to the Pull request or the repository are discussed further.
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Figure 6.3: SCIP gateway architecture with four new methods and a generic plugin

6.2.1 Core API

Table 6.1 shows the changes to the Core api component. All the plugins that are supported by the
updated gateway use the mentioned version.
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Version
2.0.7
Pull request
https://github.com/TIHBS/blockchain-access-layer-api/pull/6

Summary of changes
Update interface BlockchainAdapter.java to add new proposed fields in existing methods,
define new methods that an adapter must implement.
Update interface BlockchainAdapter.java to add method delegating the subscription to
a service running remotely (discussed further in Section 6.2.4)
Create new error types

Table 6.1: Summary of changes for the Core API in SCIP prototype

6.2.2 Application

Table 6.2 summarizes the changes to the Application component. It includes adding the four new
methods introduced in the new proposed SCIP specification. The prior implementation of this
component did not include signature verification which is added in the updated version. Also, the
application component includes logic to cancel or replace the pending invocations if they have not
been submitted to the blockchain. If the invocation request is already submitted to the blockchain,
then it calls the plugin’s cancel and replace functionality defined in the updated Core API.

Version
2.0.0
Pull request
https://github.com/TIHBS/BlockchainAccessLayer/pull/20

Summary of changes
Update existing SCIP method implementation with new fields
Implement four new SCIP methods as per specification
Implement signature validation logic
Update dependency version of Core api to 2.0.7

Table 6.2: Summary of changes for the Application component in SCIP prototype

6.2.3 Aptos plugin

Aptos provides REST APIs1 for interacting with its node(s). These REST APIs allow users to send
transactions and query the state of the blockchain. Aptos ecosystem does not offer a java client,
so a SCIP gateway plugin has been developed using these REST APIs. The REST APIs do not
include the endpoints for subscribing to the events and function invocations. So, to overcome this

1https://fullnode.devnet.aptoslabs.com/v1/spec#/
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6 Prototype

limitation and allow the clients using the SCIP gateway to subscribe to the events, the Aptos plugin
periodically queries the node using the REST APIs and informs the client by sending callbacks
through the gateway. Table 6.3 gives a summary of the plugin offers.

Version
1.0.0
Repository
https://github.com/akshay-ap/bal-aptos-plugin

Supported features
Query event invocations in time frame
Invoke smart contract functions
Subscribe to events
Handle Unsubscription

Table 6.3: Summary of features for the Aptos plugin

6.2.4 Generic plugin

The SCIP gateway prototype is developed in Java programming language which meant the plugins
should also be developed using Java programming language before introduction of a generic plugin.
However, not every blockchain platform has a Java SDK. This creates hindrance in adding new
support for such platforms into SCIP. As a solution to let developers focus on integration rather
than dealing with implementing the SDK in a particular language, a generic plugin is composed of
two parts:

• A Java plugin for SCIP gateway which is independent of any blockchain platform. This
component calls HTTP REST APIs exposed by some external service for invoking transactions,
querying state, and even handling subscriptions.

• An external service which exposes REST APIs for and is aware of handling platform specific
requests. The service can be implemented using any programming language thus, providing
flexibility for developers to use blockchain SDK available in the language of their choice.

Splitting the working of plugin provides following benefits:

• Developers focus on developing the logic for integration rather than knowing the details of
implementing a plugin specifically in Java. The developers must only offer pre-defined REST
APIs through any means they choose.

• A remote service can handle SCIP requests that are computation heavy. Thus, a scalable, decen-
tralized SCIP gateway implementation is possible with the existing prototype. Using a remote
service, the SCIP gateway implementation can be transformed into a microservice-based archi-
tecture where each plugin would be an independent microservice that would offer scalability,
greatly eases software maintenance, and impose no additional lock-in [DGL+16]. Developers
can freely choose the optimal resources such as languages and frameworks [DGL+16].

76

https://github.com/akshay-ap/bal-aptos-plugin


6.2 SCIP 2.0 Gateway implementation

• A remote service handles the private keys rather than the gateway, meaning that the
responsibility of securely storing and managing the private keys is delegated to the remote
plugin located outside the gateway. So, the private is accessible only to the component that
requires it rather than the gateway and possibly to other plugins.

• A remote service can be upgraded without restarting the gateway.

The Table 6.4 show the HTTP REST APIs and format of requests that a remote service must offer.
As a part of thesis work, two platforms have been integrated into SCIP gateway using generic plugin
and the APIs listed below: Flow and Sui. Table 6.5 gives a summary of features supported by the
generic plugin.

Invoke method
Endpoint <host>/invoke
Method POST

Description
This method allows the gateway to send Invoke request to a remote service.
The request is originated from the client application interacting with the
SCIP gateway.

Query
parameters

-

Body

Content type: application/json
Template Example:

{ 
typeArguments: <array of types>,
outputs: <array of output parameters>,
signers: <array of public addresses>,
smartContractPath: <address of smart contract>,
inputs: <array of input parameters>,
requiredConfidence: < float>,
minimumNumberOfSignatures: <number>,
functionIdentifier: <function name>,
timeout: <number>,
signatures: [{ <public address>: <signature>}, ...]

}

Response

Template Example:

Response code: 200 
{ transactionHash : <transaction hash> }

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Query method
Endpoint <host>/query
Method POST
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Query
parameters

-

Description
This method allows the gateway to send Query request to a remote service.
The request is originated from the client application interacting with the
SCIP gateway.

Body

Content type: application/json
Template Example:

{ 
filter: <string>, 
timeframe: {from: <start time>, to: <end
time>}, 
smartContractPath: <smart contract path>, 
eventIdentifier: <string>, 
functionIdentifier: <string> 
outputParameters: <list of parameters>, 
inputParameters: <list of parameters>,
typeArguments: <array of types>

}

Response

Template Example:

Response code: 200 

<list of occurrences>

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Subscribe method
Endpoint <host>/subscribe
Method POST
Query
parameters

-

Description

This method allows the gateway to send Subscribe request to a remote service.
The remote plugin will start monitoring the blockchain for event/function
invocations after validating the request and send occurrences
to the client in the form of callbacks.
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Body

Content type: application/json
Template Example:

{
    smartContractPath: <smart contract path>,
    eventIdentifier: <string>,
    functionIdentifier: <string>,
    degreeOfConfidence: <number>,
    filter: <string>,
    parameters: <list of parameters>,
    callbackUrl: <string>,
    typeArguments: <array of types>,
    correlationId: <string>
}

Response

Template Example:

Response code: 200 
OK 

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Unsubscribe method
Endpoint <host>/unsubscribe
Method POST
Query
parameters

-

Description

This method allows the gateway to send unsubscribe message to the remote
plugin. The remote plugin will stop monitoring the blockchain and remove
subscriptions matching the criteria defined in
Section 5.2.8

Body

Content type: application/json
Template Example:

{
    smartContractPath: <smart contract path>,
    eventIdentifier: <string>,
    functionIdentifier: <string>,
    parameters: <list of parameters>,
    filter: <string>,
    typeArguments: <array of types>,
    correlationId: <string>
}
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Response

Template Example:

Response code: 200 
OK 

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Cancel method
Endpoint <host>/cancel
Method POST

Description

The gateway calls this API to inform the remote plugin to try to cancel the
transaction. The remote plugin checks whether the transaction is still not
confirmed. If not confirmed, remote plugin tries to replace this
transaction with any another transaction but with same sequence number
as the previous transaction.

Query
parameters

-

Body

Content type: application/json

Template Example:

{
    transactionHash : <transaction hash>
}

Response

Template Example:

Response code: 200 
OK 

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Replace method
Endpoint <host>/replace
Method POST
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Description

The gateway calls this API to inform the remote plugin to try to replace the
transaction. The remote plugin checks whether the transaction is still not
confirmed. If not confirmed, the remote plugin tries to replace this
transaction with a new transaction with given inputs,
but with the same sequence number as the previous transaction
from the same account that initiated the earlier transaction.

Query
parameters

-

Body

Content type: application/json

Template Example:
{
    transactionHash : <transaction hash>,
    typeArguments: <array of types>,
    outputs: <array of output parameters>,
    signers: <array of public addresses>,
    smartContractPath: <address of smart contract>,
    inputs: <array of input parameters>,
    requiredConfidence: < float>,
    minimumNumberOfSignatures: <number>,
    functionIdentifier: <function name>,
    timeout: <number>,
    signatures: [{ <public address>: <signature>},
...]
}

Response

Template Example:

Response code: 200 
OK 

Response code: 4xx 
{ errorCode: <scip error code>, errorMessage:
<string> }

Response code: 5xx
{ errorCode: <scip error code>, errorMessage:
<string> }

Table 6.4: HTTP REST APIs that a remote service implements when using a generic plugin
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Version
1.0.0
Repository
https://github.com/TIHBS/bal-generic-plugin

Supported features combined with generic plugin
Query event invocations in time frame by calling remote plugin through REST API
Invoke smart contract functions by calling external service through REST API
Subscribe to events/function invocations by periodically fetching new events/function
invocations from an external service using REST API.
Handle Unsubscription
Perform delegated subscription and unsubscription using REST API

Table 6.5: Summary of features for the Generic blockchain plugin

6.2.5 Flow blockchain plugin

Flow ecosystem provides a JavaScript client to interact with its nodes. A plugin for supporting
interaction with the Flow blockchain has been added using this Flow Client Library (JS)2. Using a
generic plugin and Express3 framework to provide a service that implements the APIs described in
Table 6.4, support for a new blockchain has been successfully added to the SCIP gateway. Table 6.6
gives the information about the supported features for the remote Flow plugin.

Version
1.0.0
Repository
https://github.com/TIHBS/bal-flow-plugin

Supported features combined with generic plugin
Query event invocations in time frame
Invoke smart contract functions
Subscribe to events
Handle Unsubscription

Table 6.6: Summary of features for the Flow blockchain plugin

2https://developers.flow.com/tools/fcl-js/reference/api
3https://expressjs.com/
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6.2 SCIP 2.0 Gateway implementation

6.2.6 Sui blockchain plugin

Sui ecosystem provides a TypeScript SDK to interact with its nodes. A plugin for supporting
interaction with the Sui blockchain has been added using this Sui TypeScript SDK4. Using a generic
plugin and Express framework to provide a service that implements the APIs described in Table 6.4,
support for a new blockchain has been successfully added to the SCIP gateway. Table 6.7 gives the
information about the supported features for the remote Sui plugin.

Version
1.0.0
Repository
https://github.com/TIHBS/bal-sui-plugin

Supported features combined with generic plugin
Query event invocations in time frame
Query function invocations
Invoke smart contract functions
Subscribe to events
Handle Unsubscription

Table 6.7: Summary of features for the Sui blockchain plugin

6.2.7 Ethereum

Table 6.8 provides the information about the changes to the Ethereum plugin for SCIP gateway so
that it can be used with the updated gateway implementation.

Version
2.0.0
Pull request
https://github.com/TIHBS/blockchain-access-layer-ethereum-
plugin/pull/3

Summary of changes
Update api version to 2.0.7

Table 6.8: Summary of changes for the Ethereum blockchain plugin

6.2.8 Hyperledger Fabric

Table 6.9 provides the information about the changes to the Hyperledger Fabric plugin for SCIP
gateway so that it can be used with the updated gateway implementation.

4https://github.com/MystenLabs/sui/tree/main/sdk/typescript
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Version
2.0.0
Pull request
https://github.com/TIHBS/blockchain-access-layer-fabric-
plugin/pull/3

Summary of changes
Update api version to 2.0.7

Table 6.9: Summary of changes for the Hyperledger fabric blockchain plugin

6.3 Testing and Case study implementation

Testing is a critical aspect of software development that ensures the quality and reliability of
the code. In software development, various testing methods, including integration testing, test
the interactions between multiple system components. The previous SCIP framework lacked
integration testing that deployed all the components like different blockchain nodes, SCIP gateway,
and plugins. To fill this gap, during the development of the SCIP plugins and validation of changes,
a repository dedicated to integration testing that manages multiple plugins and multiple flows for
a comprehensive coverage of gateway features has been introduced. The setup process is done
using docker-compose so that CI/CD [MFH22] flows can be established. As a part of the testing,
Python scripts have been developed which deploy plugins, upload connection profiles, and use SCIP
gateway APIs to invoke blockchain transactions and query events. Using the testing framework,
developers can reduce the time and effort required for setup and manually ensure that the system
works as expected in all scenarios. All the setup instructions and the tests are available at this
URL: https://github.com/TIHBS/BAL-Tests. As part of integration tests, each of the
individual plugins has unit tests in its respective code repository. The Table 6.10 summarizes the
implemented integration tests for each of the plugins.

Plugin →

Test case ↓
Flow Sui Aptos

Invoke transaction with single signer ✓ ✓ ✓

Invoke transaction with multiple signers ✓ ✓ ✓

Query function invocation ✓

Query event invocation ✓ ✓

Query event invocation with filter ✓ ✓

Subscribe to events ✓ ✓ ✓

Subscribe to function invocation ✓

Unsubscribe ✓ ✓ ✓

Table 6.10: SCIP plugin test case implementation

A test case for a multi-signature process shown in Figure 6.4 assuming that all the request execute
successfully is as follows:
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6.3 Testing and Case study implementation

The first step is for Client 1 to call the invoke method with 1 additional signer. This initiates the
multi-signature process, which requires more than one signature to execute a transaction on the
blockchain 1 . The gateway stores the state of the pending invocation in an in-memory store 2 and
returns a synchronous acknowledgement after validating the parameters of the Invoke request 3 .
After the invoke method is called, the Gateway validates the signature to ensure that it is authentic.
In the next step, Client 2 fetches the pending invoke using the Get method 4 . This allows Client 2
to view the details of the transaction and determine if they want to provide approval for it. If Client 2
decides to approve the transaction, they can do so by using the Sign method 6 . This provides the
necessary signature count to execute the transaction on the blockchain. After Client 2 provides the
approval, the Gateway validates the signature to ensure that it is authentic and returns synchronous
response OK 7 . If not, appropriate error is returned. Once the signature is validated, the Gateway
sends the transaction to the plugin. The plugin then creates a blockchain-specific transaction with
the multi-signer account 8 , which allows multiple parties to approve the transaction before it is
executed on the blockchain. After broadcasting the request 9 , the gateway monitors the state
of the transaction( 10 and 11 ). Finally, after the transaction is confirmed and required block
confirmations are acquired, the Gateway provides a callback, which informs the client which initiated
the invocation request that the transaction has been executed successfully on the blockchain( 12 ).
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Figure 6.4: Case study implementation showing a workflow of multiple clients signing a transaction

The above mentioned flow has been implemented using the Flow plugin for SCIP gateway.
The scripts for the case study are available the URL:https://github.com/TIHBS/BAL-
Tests/tree/main/tests/case_study/flow. The screenshots of the logs of the case
study are shown in Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8 and Figure 6.8, and Figure 6.9.
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Figure 6.5: Screenshot of the logs from Client-1 initiating the Invoke request
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6.3 Testing and Case study implementation

Figure 6.6: Screenshot of the logs from Client-2 signing the request created by Client-1

Figure 6.7: Screenshot of the logs of SCIP Gateway showing requests from clients
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Figure 6.8: Screenshot of the logs from the remote plugin for the Flow blockchain receiving the
Invoke request from the SCIP gateway

Figure 6.9: Screenshot of the logs from the Callback handler process showing successful execution
of the Invoke request initiated by the Client-1

In Section 4.1 the research question: "How can blockchains be selected for analysis? (RQ1)" has
been addressed by describing the search methodology and five properties for selection: Variety of
platforms, Developer friendliness, Availability of APIs, Use cases, and Programming language.
Section 4.2 answers the research question:"How to analyze blockchain technology? (RQ2)"
by describing four key aspects: Network setup, Consensus algorithm, Programming language,
Accounts and Security. Finally, "What updates can be proposed to SCIP for it to be suitable for new
blockchains? (RQ3) is addressed in Chapter 5, and the implementation details of the prototype
have been described in this chapter and thus, addressing all the research questions of this thesis.
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7 Conclusion and Outlook

This thesis work has aimed to address the problem statement of selecting blockchain for studying
their properties, analysis of selected blockchain platforms, and selecting features for SCIP protocol
by analysis of new blockchain platforms. To address the problem statement, this work first defined
blockchains and their terminology, then defined discovery and selection criteria for the blockchain.
Through selection, three blockchain technologies and an SDK was shortlisted to achieve the goals
in the given timeline. Further, this work described blockchain analysis methodology to understand
the selected blockchain platforms for feature selection. The result of the analysis described in the
work led to the requirement of improving SCIP without removing any of the previous parts of the
specification. During the implementation phase of the work, three new blockchain platforms have
been integrated into the SCIP gateway, and a testing framework that was previously missing has
been created. A demonstration of setup that simplifies gateway and plugin deployment using the
container and virtualization technology like docker would help create a smooth user onboarding
process and experience. As an additional outcome of the work, generic plugin opens the possibilities
of adding other platforms in the future with ease and offers a micro-service-based implementation
of the Gateway to manage multiple blockchain support simultaneously. Overall, all the goals set
during the initial phase of the thesis work have been completed.

The future outlook could be a whole ecosystem of tools that offer integration services with a minimal
entry-level barrier to developers from all skill and experience levels.

89





Bibliography

[22] The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3 Infrastructure. Aug.
2022. url: https://aptos.dev/assets/files/Aptos-Whitepaper-
47099b4b907b432f81fc0effd34f3b6a.pdf (visited on 10/09/2022) (cit. on
pp. 40, 42).

[AAA13] A. A. Alkandari, I. F. Al-Shaikhli, M. A. Alahmad. “Cryptographic Hash Function: A
High Level View”. In: 2013 International Conference on Informatics and Creative
Multimedia. 2013, pp. 128–134. doi: 10.1109/ICICM.2013.29 (cit. on p. 24).

[ACG15] B. Akins, J. Chapman, J. Gordon. “A Whole New World: Income Tax Considerations
of the Bitcoin Economy”. In: Pittsburgh Tax Review 12 (Feb. 2015). doi: 10.5195/
taxreview.2014.32 (cit. on p. 15).

[Alc22] Alchemy. Archive Nodes - Everything You Need to Know. 2022. url: https:
//www.alchemy.com/overviews/archive-nodes (cit. on p. 22).

[Arb20] Arbitrum Team. Arbitrum. https://arbitrum.io/. 2020 (cit. on p. 41).

[ASZ22] F. E. Alzhrani, K. A. Saeedi, L. Zhao. “A Taxonomy for Characterizing Blockchain
Systems”. In: IEEE Access 10 (2022), pp. 110568–110589. doi:10.1109/ACCESS.
2022.3214837 (cit. on p. 24).

[BB14] A. Breitman, K. Breitman. Tezos: A Self-Amending Crypto-Ledger. https://
tezos.com/. 2014 (cit. on p. 41).

[BCC+21] L. Breidenbach, C. Cachin, B. Chan, A. Coventry, S. Ellis, A. Juels, F. Koushanfar,
A. Miller, B. Magauran, D. Moroz, S. Nazarov, A. Topliceanu, F. Tramèr, F. Zhang.
Chainlink 2.0: Next Steps in the Evolution of Decentralized Oracle Networks. 2021.
url: https://research.chain.link/whitepaper-v2.pdf (visited on
01/06/2023) (cit. on p. 35).

[BCD+20] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki, A. Pott, S. Qadeer,
Rain, D. Russi, S. Sezer, T. Zakian, R. Zhou. Move: A Language With Programmable
Resources. 2020. url: https://diem-developers-components.netl
ify.app/papers/diem-move-a-language-with-programmable-
resources/2020-05-26.pdf (cit. on p. 42).

[Bin18] Binance Academy. What is a Multisig Wallet. Dec. 2018. url:https://academy.
binance.com/en/articles/what-is-a-multisig-wallet (visited
on 01/21/2023) (cit. on p. 30).

[Bit17] Bitcoincash community. Bitcoin Cash. https://www.bitcoincash.org/.
2017 (cit. on p. 40).

[Bit18] Bitcoin Association. Bitcoin SV. https://bitcoinsv.io/. 2018 (cit. on p. 40).

91

https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://aptos.dev/assets/files/Aptos-Whitepaper-47099b4b907b432f81fc0effd34f3b6a.pdf
https://doi.org/10.1109/ICICM.2013.29
https://doi.org/10.5195/taxreview.2014.32
https://doi.org/10.5195/taxreview.2014.32
https://www.alchemy.com/overviews/archive-nodes
https://www.alchemy.com/overviews/archive-nodes
https://arbitrum.io/
https://doi.org/10.1109/ACCESS.2022.3214837
https://doi.org/10.1109/ACCESS.2022.3214837
https://tezos.com/
https://tezos.com/
https://research.chain.link/whitepaper-v2.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/diem-move-a-language-with-programmable-resources/2020-05-26.pdf
https://academy.binance.com/en/articles/what-is-a-multisig-wallet
https://academy.binance.com/en/articles/what-is-a-multisig-wallet
https://www.bitcoincash.org/
https://bitcoinsv.io/


Bibliography

[BKN+21] M. N. M. Bhutta, A. Khwaja, A. Nadeem Al Hassan, H. Ahmad, K. Khan, M. Hanif,
H. Song, M. Alshamari, Y. Cao. “A Survey on Blockchain Technology: Evolution,
Architecture and Security”. In: IEEE Access PP (Apr. 2021), pp. 1–1. doi: 10.
1109/ACCESS.2021.3072849 (cit. on p. 20).

[BMM94] T. Berners-Lee, L. Masinter, M. McCahill. Uniform Resource Locators (URL). 1994.
url: https://www.ietf.org/rfc/rfc1738.txt (cit. on p. 29).

[BMZ18] L. M. Bach, B. Mihaljevic, M. Zagar. “Comparative analysis of blockchain consensus
algorithms”. In: 2018 41st International Convention on Information and Communica-
tion Technology, Electronics and Microelectronics (MIPRO). 2018, pp. 1545–1550.
doi: 10.23919/MIPRO.2018.8400278 (cit. on p. 23).

[Buc16] E. Buchman. “Tendermint: Byzantine Fault Tolerance in the Age of Blockchains”. In:
2016 (cit. on p. 21).

[CDE+16] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E. Gün Sirer, D. Song, R. Wattenhofer. “On Scaling Decentralized Blockchains”.
In: Financial Cryptography and Data Security. Ed. by J. Clark, S. Meiklejohn,
P. Y. Ryan, D. Wallach, M. Brenner, K. Rohloff. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 106–125. isbn: 978-3-662-53357-4 (cit. on p. 23).

[Cer09] Certicom Research: Standards for Efficient Cryptography. SEC 1: Elliptic Curve
Cryptography. 2009. url: https://www.secg.org/sec1-v2.pdf (cit. on
p. 54).

[CFI23] CFI Team. Libra Cryptocurrency. 2023. url: https://corporatefinancein
stitute.com/resources/cryptocurrency/libra-cryptocurren
cy/ (cit. on p. 42).

[Cha21] Chainlink. What Is a Blockchain Oracle? 2021. url: https://chain.link/
education/blockchain-oracles (visited on 01/06/2023) (cit. on p. 34).

[CL99] M. Castro, B. Liskov. “Practical Byzantine Fault Tolerance”. In: OSDI (Mar. 1999)
(cit. on p. 21).

[Cos21] CosmWasm. CosmWasm. 2021. (Visited on 01/08/2023) (cit. on pp. 39, 40).

[Dan12] Q. Dang. Secure Hash Standard (SHS). en. Mar. 2012. doi: https://doi.org/
10.6028/NIST.FIPS.180-4 (cit. on p. 24).

[DGL+16] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
L. Safina. Microservices: yesterday, today, and tomorrow. 2016. doi: 10.48550/
ARXIV.1606.04036. url: https://arxiv.org/abs/1606.04036
(cit. on p. 76).

[Dur11] V. Durham. Namecoin: A decentralized name registration system based on Bitcoin.
https://www.namecoin.org/. 2011 (cit. on p. 41).

[ETC16] ETC community. Ethereum Classic. https://ethereumclassic.org/. 2016
(cit. on p. 40).

[Eth21] Ethereum Foundation. Ethereum Energy Consumption. https://ethereum.
org/en/energy-consumption/. [Accessed: February 18, 2023]. 2021 (cit. on
p. 20).

92

https://doi.org/10.1109/ACCESS.2021.3072849
https://doi.org/10.1109/ACCESS.2021.3072849
https://www.ietf.org/rfc/rfc1738.txt
https://doi.org/10.23919/MIPRO.2018.8400278
https://www.secg.org/sec1-v2.pdf
https://corporatefinanceinstitute.com/resources/cryptocurrency/libra-cryptocurrency/
https://corporatefinanceinstitute.com/resources/cryptocurrency/libra-cryptocurrency/
https://corporatefinanceinstitute.com/resources/cryptocurrency/libra-cryptocurrency/
https://chain.link/education/blockchain-oracles
https://chain.link/education/blockchain-oracles
https://doi.org/https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.48550/ARXIV.1606.04036
https://doi.org/10.48550/ARXIV.1606.04036
https://arxiv.org/abs/1606.04036
https://www.namecoin.org/
https://ethereumclassic.org/
https://ethereum.org/en/energy-consumption/
https://ethereum.org/en/energy-consumption/


Bibliography

[FBD+20] G. Falazi, U. Breitenbücher, F. Daniel, A. Lamparelli, F. Leymann, V. Yussupov.
“Smart Contract Invocation Protocol (SCIP): A Protocol for the Uniform Integration of
Heterogeneous Blockchain Smart Contracts”. In: Lecture Notes in Computer Science
12127 (June 2020), pp. 134–149. doi: 10.1007/978-3-030-49435-3_9
(cit. on pp. 15, 16, 26, 28, 51, 66).

[Gil18] M. Gill. What is Proof of Burn? [Online; accessed 21-February-2023]. 2018. url:
https://99bitcoins.com/what-is-proof-of-burn/ (cit. on p. 21).

[GY22] H. Guo, X. Yu. “A survey on blockchain technology and its security”. In: Blockchain:
Research and Applications 3.2 (2022), p. 100067. issn: 2096-7209. doi: https:
//doi.org/10.1016/j.bcra.2022.100067. url: https://www.
sciencedirect.com/science/article/pii/S2096720922000070
(cit. on p. 20).

[Ham15] M. Hamburg. “EdDSA for more curves”. In: IACR Cryptology ePrint Archive 2015
(2015), p. 618 (cit. on p. 45).

[HHS+20] A. Hentschel, Y. Hassanzadeh-Nazarabadi, R. Seraj, D. Shirley, L. Lafrance. Flow:
Separating Consensus and Compute – Block Formation and Execution. 2020. doi:
10.48550/ARXIV.2002.07403. url: https://arxiv.org/abs/2002.
07403 (cit. on p. 46).

[HHS20] A. Hafid, A. S. Hafid, M. Samih. “Scaling Blockchains: A Comprehensive Survey”.
In: IEEE Access 8 (2020), pp. 125244–125262. doi: 10.1109/ACCESS.2020.
3007251 (cit. on p. 23).

[HSL19] A. Hentschel, D. Shirley, L. Lafrance. Flow: Separating Consensus and Compute.
2019. doi: 10.48550/ARXIV.1909.05821. url: https://arxiv.org/
abs/1909.05821 (cit. on pp. 40, 46).

[HSLZ19] A. Hentschel, D. Shirley, L. Lafrance, M. Zamski. Flow: Separating Consensus and
Compute – Execution Verification. 2019. doi: 10.48550/ARXIV.1909.05832.
url: https://arxiv.org/abs/1909.05832 (cit. on pp. 22, 46).

[Hyp22] Hyperledger Foundation. Hyperledger Cactus Wiki. Tech. rep. Hyperledger, 2022.
url: https://wiki.hyperledger.org/display/cactus (visited on
02/18/2023) (cit. on p. 33).

[Int15] Interchain GmbH. Tendermint Core. 2015. url: https://github.com/
tendermint/tendermint (visited on 01/08/2023) (cit. on pp. 21, 36, 49).

[JHGR20] S. Johannes, U. B. Hans, F. Gilbert, K. Robert. “The Energy Consumption of
Blockchain Technology: Beyond Myth”. In: Business and Information Systems
Engineering 62 (2020), pp. 599–608. doi: 10.1007/s12599-020-00656-x
(cit. on pp. 15, 41).

[JL21] X.-J. Jiang, X. F. Liu. “CryptoKitties Transaction Network Analysis: The Rise and
Fall of the First Blockchain Game Mania”. In: Frontiers in Physics 9 (2021). issn:
2296-424X. doi: 10.3389/fphy.2021.631665. url: https://www.
frontiersin.org/articles/10.3389/fphy.2021.631665 (cit. on
p. 46).

[JSO10] JSON-RPC Working Group. JSON-RPC 2.0 Specification. 2010. url: https:
//www.jsonrpc.org/specification (cit. on p. 66).

93

https://doi.org/10.1007/978-3-030-49435-3_9
https://99bitcoins.com/what-is-proof-of-burn/
https://doi.org/https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/https://doi.org/10.1016/j.bcra.2022.100067
https://www.sciencedirect.com/science/article/pii/S2096720922000070
https://www.sciencedirect.com/science/article/pii/S2096720922000070
https://doi.org/10.48550/ARXIV.2002.07403
https://arxiv.org/abs/2002.07403
https://arxiv.org/abs/2002.07403
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.1109/ACCESS.2020.3007251
https://doi.org/10.48550/ARXIV.1909.05821
https://arxiv.org/abs/1909.05821
https://arxiv.org/abs/1909.05821
https://doi.org/10.48550/ARXIV.1909.05832
https://arxiv.org/abs/1909.05832
https://wiki.hyperledger.org/display/cactus
https://github.com/tendermint/tendermint
https://github.com/tendermint/tendermint
https://doi.org/10.1007/s12599-020-00656-x
https://doi.org/10.3389/fphy.2021.631665
https://www.frontiersin.org/articles/10.3389/fphy.2021.631665
https://www.frontiersin.org/articles/10.3389/fphy.2021.631665
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification


Bibliography

[KKZ19] K. Karantias, A. Kiayias, D. Zindros. Proof-of-Burn. 2019. url: https://
eprint.iacr.org/2019/1096.pdf (cit. on p. 21).

[KNAB17] J. Kanani, S. Nailwal, A. Arjun, M. Bjelic. Polygon. https://polygon.
technology/. 2017 (cit. on p. 41).

[LFB+19] A. Lamparelli, G. Falazi, U. Breitenbücher, F. Daniel, F. Leymann. Smart Contract
Locator (SCL) and Smart Contract Description Language (SCDL). Oct. 2019 (cit. on
pp. 29, 30).

[Lit11] Litecoin foundation. Litecoin. https://litecoin.org/. 2011 (cit. on p. 40).

[LSP02] L. Lamport, R. Shostak, M. Pease. “The Byzantine Generals Problem”. In: ACM
Trans. Program. Lang. Syst. 4 (Feb. 2002). doi: 10.1145/357172.357176
(cit. on pp. 19, 22).

[LXS+19] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, Y.-C. Hu. “HyperService:
Interoperability and Programmability Across Heterogeneous Blockchains”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (2019) (cit. on p. 35).

[MBH+22] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogyvari, S. Fu-
jimoto, T. Takeuchi, T. Kuhrt, R. Belchior. Hyperledger Cactus Whitepaper. Mar.
2022. url: https://github.com/hyperledger/cactus/blob/main/
whitepaper/whitepaper.md (cit. on p. 33).

[MFH22] A. M. Mowad, H. Fawareh, M. A. Hassan. “Effect of Using Continuous Integration
(CI) and Continuous Delivery (CD) Deployment in DevOps to reduce the Gap between
Developer and Operation”. In: 2022 International Arab Conference on Information
Technology (ACIT). 2022, pp. 1–8. doi: 10.1109/ACIT57182.2022.9994139
(cit. on p. 84).

[MMT+22] R. A. A. Mochram, C. T. Makawowor, K. M. Tanujaya, J. V. Moniaga, B. A. Jabar.
“Systematic Literature Review: Blockchain Security in NFT Ownership”. In: 2022
International Conference on Electrical and Information Technology (IEIT). 2022,
pp. 302–306. doi: 10.1109/IEIT56384.2022.9967897 (cit. on p. 25).

[Mou16] W. Mougayar. The Business Blockchain: Promise, Practice, and Application of the
Next Internet Technology. 1. John Wiley and Sons, May 2016 (cit. on pp. 15, 17, 19).

[Mys22] MystenLabs. Sui. 2022. url: https://sui.io/ (visited on 02/25/2023) (cit. on
p. 40).

[Nak08] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.https://bitcoin.
org/bitcoin.pdf. 2008 (cit. on pp. 15, 20).

[NEA18] NEAR Foundation. NEAR Protocol. https://near.org/. 2018 (cit. on p. 41).

[Noy16] C. Noyes. BitAV: Fast Anti-Malware by Distributed Blockchain Consensus and
Feedforward Scanning. 2016. doi: 10.48550/ARXIV.1601.01405. url:
https://arxiv.org/abs/1601.01405 (cit. on p. 15).

[Opt20] Optimism Foundation. Optimism. https://optimism.io/. 2020 (cit. on p. 41).

[PDS14] R. Plösch, A. Dautovic, M. Saft. “The Value of Software Documentation Quality”.
In: 2014 14th International Conference on Quality Software. 2014, pp. 333–342. doi:
10.1109/QSIC.2014.22 (cit. on p. 38).

94

https://eprint.iacr.org/2019/1096.pdf
https://eprint.iacr.org/2019/1096.pdf
https://polygon.technology/
https://polygon.technology/
https://litecoin.org/
https://doi.org/10.1145/357172.357176
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://github.com/hyperledger/cactus/blob/main/whitepaper/whitepaper.md
https://doi.org/10.1109/ACIT57182.2022.9994139
https://doi.org/10.1109/IEIT56384.2022.9967897
https://sui.io/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://near.org/
https://doi.org/10.48550/ARXIV.1601.01405
https://arxiv.org/abs/1601.01405
https://optimism.io/
https://doi.org/10.1109/QSIC.2014.22


Bibliography

[Pee12] Peercoin foundation. peercoin. https://www.peercoin.net/. 2012 (cit. on
p. 40).

[PKF+] S. Park, A. Kwon, G. Fuchsbauer, P. Gaži, J. Alwen, K. Pietrzak. SpaceMint: A
Cryptocurrency Based on Proofs of Space. url: https://eprint.iacr.org/
2015/528.pdf (cit. on p. 21).

[PPC15] G. Peters, E. Panayi, A. Chapelle. “Trends in Crypto-Currencies and Blockchain
Technologies: A Monetary Theory and Regulation Perspective”. In: SSRN Electronic
Journal (Sept. 2015). doi: 10.2139/ssrn.2646618 (cit. on p. 15).

[Pri13] Primecoin community. Primecoin. https://primecoin.io/. 2013 (cit. on
p. 40).

[R316] R3. Corda. https://corda.net/. 2016 (cit. on p. 41).

[RJCe22] Randall-Mysten, Jibz1, Clay-Mysten, econmysten. Proof of Stake. Last update:
1/25/2023, 1:20:13 AM. 2022. url: https://docs.sui.io/learn/
tokenomics/proof-of-stake#sui-token-delegation (visited on
02/18/2022) (cit. on p. 20).

[RSA78] R. L. Rivest, A. Shamir, L. Adleman. “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”. In: Commun. ACM 21.2 (Feb. 1978), pp. 120–126.
issn: 0001-0782. doi: 10.1145/359340.359342. url: https://doi.org/
10.1145/359340.359342 (cit. on p. 17).

[Sav17] A. Savelyev. “Contract law 2.0: ‘Smart’ contracts as the beginning of the end of
classic contract law”. In: Information & Communications Technology Law 26.2
(2017), pp. 116–134. doi: 10.1080/13600834.2017.1301036. eprint:
https://doi.org/10.1080/13600834.2017.1301036. url: https:
//doi.org/10.1080/13600834.2017.1301036 (cit. on p. 23).

[SHA+] C. Smith, HaoTian, E. Awosika, R. Pujari, ethosdev, P. Wackerow, Y. Yadav, Joshua,
J. Cook, S. A. Green, M. Havel, J. Degesys, S. Richards, selfwithin anbd Victor Luna,
A. Ismodes, R. Cordell, tentodev, Alwin. PROOF-OF-STAKE (POS). url: https:
//ethereum.org/en/developers/docs/consensus-mechanisms/
pos/ (cit. on pp. 20, 42).

[SK22] B. Sriman, S. G. Kumar. “Decentralized finance (DeFi): The Future of Finance and Defi
Application for Ethereum blockchain based Finance Market”. In: 2022 International
Conference on Advances in Computing, Communication and Applied Informatics
(ACCAI). 2022, pp. 1–9. doi: 10.1109/ACCAI53970.2022.9752657 (cit. on
p. 42).

[Slo23] SlowMist. Blockchain Security and AML Analysis report. 2023. url: https:
//www.slowmist.com/report/2022-Blockchain-Security-and-
AML-Analysis-Annual-Report(EN).pdf (cit. on p. 42).

[SN17] A. J. Steve Ellis, S. Nazarov. ChainLink A Decentralized Oracle Network. 2017. url:
https://research.chain.link/whitepaper-v1.pdf (visited on
01/06/2023) (cit. on p. 34).

[Sol20] Solana Foundation. Solana. https://solana.com/. 2020 (cit. on p. 41).

[Sta21] Starknet community. Starknet. https://www.starknet.io/. 2021 (cit. on
p. 40).

95

https://www.peercoin.net/
https://eprint.iacr.org/2015/528.pdf
https://eprint.iacr.org/2015/528.pdf
https://doi.org/10.2139/ssrn.2646618
https://primecoin.io/
https://corda.net/
https://docs.sui.io/learn/tokenomics/proof-of-stake#sui-token-delegation
https://docs.sui.io/learn/tokenomics/proof-of-stake#sui-token-delegation
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1080/13600834.2017.1301036
https://doi.org/10.1080/13600834.2017.1301036
https://doi.org/10.1080/13600834.2017.1301036
https://doi.org/10.1080/13600834.2017.1301036
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://doi.org/10.1109/ACCAI53970.2022.9752657
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report(EN).pdf
https://research.chain.link/whitepaper-v1.pdf
https://solana.com/
https://www.starknet.io/


[Ste14] Stellar Development Foundation. Stellar. https://www.stellar.org. 2014
(cit. on p. 22).

[Sui17] D. Suiu. Plugin Framework for Java. 2017. url: https://pf4j.org/ (visited
on 01/21/2023) (cit. on p. 73).

[Sza96] N. Szabo. “Smart Contracts: Building Blocks for Digital Markets”. In: (1996). url:
https://www.fon.hum.uva.nl/rob/Courses/InformationIn
Speech/CDROM/Literature/LOTwinterschool2006/szabo.best.
vwh.net/smart_contracts_2.html (cit. on p. 23).

[Tea14] M. D. Team. Mazacoin. https://www.mazacoin.org/. 2014 (cit. on p. 41).

[Ten19] Tendermint. Cosmos SDK. https://v1.cosmos.network/sdk. 2019 (cit. on
p. 40).

[The17] The ZILLIQA Team. The ZILLIQA Technical Whitepaper. 2017. url: https:
//docs.zilliqa.com/whitepaper.pdf (cit. on p. 21).

[Tro17] Tron Foundation. Tron. https://tron.network/. 2017 (cit. on p. 41).

[TSH22] L. T. Thibault, T. Sarry, A. S. Hafid. “Blockchain Scaling Using Rollups: A Compre-
hensive Survey”. In: IEEE Access 10 (2022), pp. 93039–93054. doi: 10.1109/
ACCESS.2022.3200051 (cit. on pp. 23, 38).

[TT19] P. Tasca, C. J. Tessone. “A Taxonomy of Blockchain Technologies: Principles of
Identification and Classification”. In: Ledger 4 (Feb. 2019). doi: 10.5195/
ledger.2019.140. url: https://ledger.pitt.edu/ojs/ledger/
article/view/140 (cit. on pp. 17, 20, 21, 24).

[Web17] Web3 foundation. Polkadot. https://polkadot.network/. 2017 (cit. on
p. 40).

[Wik22] Wikipedia contributors. Byzantine fault. Dec. 2022. url: https://en.wikiped
ia.org/wiki/Byzantine_fault (cit. on p. 45).

[Wik23] Wikipedia. List of blockchains. 2023. url: https://en.wikipedia.org/
wiki/List_of_blockchains (visited on 02/18/2023) (cit. on p. 37).

[Woo14] G. Wood. Less-techy: What is Web 3.0? Apr. 2014. url: http://gavwood.com/
web3lt.html (visited on 01/17/2023) (cit. on p. 24).

[WSW20] Y. Wu, P. Song, F. Wang. “Hybrid Consensus Algorithm Optimization: A Mathe-
matical Method Based on POS and PBFT and Its Application in Blockchain”. In:
Mathematical Problems in Engineering 2020 (Apr. 2020), pp. 1–13. doi: 10.1155/
2020/7270624 (cit. on p. 21).

[ZW15] Y. Zhang, J. Wen. “An IoT electric business model based on the protocol of bitcoin”.
In: 2015 18th International Conference on Intelligence in Next Generation Networks.
2015, pp. 184–191. doi: 10.1109/ICIN.2015.7073830 (cit. on p. 15).

[ZXD+18] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, H. Wang. “Blockchain challenges and
opportunities: A survey”. In: International Journal of Web and Grid Services 14 (Oct.
2018), p. 352. doi: 10.1504/IJWGS.2018.095647 (cit. on p. 15).

All links were last followed on February 22, 2023.

https://www.stellar.org
https://pf4j.org/
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.mazacoin.org/
https://v1.cosmos.network/sdk
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://tron.network/
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.1109/ACCESS.2022.3200051
https://doi.org/10.5195/ledger.2019.140
https://doi.org/10.5195/ledger.2019.140
https://ledger.pitt.edu/ojs/ledger/article/view/140
https://ledger.pitt.edu/ojs/ledger/article/view/140
https://polkadot.network/
https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/Byzantine_fault
https://en.wikipedia.org/wiki/List_of_blockchains
https://en.wikipedia.org/wiki/List_of_blockchains
http://gavwood.com/web3lt.html
http://gavwood.com/web3lt.html
https://doi.org/10.1155/2020/7270624
https://doi.org/10.1155/2020/7270624
https://doi.org/10.1109/ICIN.2015.7073830
https://doi.org/10.1504/IJWGS.2018.095647


Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature


	1 Introduction
	2 Background and Motivation
	2.1 The Blockchain Technology
	2.2 Blockchain integration
	2.3 Motivation
	2.4 Problem statement

	3 Related Work
	3.1 Hyperledger Cactus
	3.2 Decentralized Oracle Networks
	3.3 HyperService

	4 An analysis of existing blockchain platforms and SDK(s)
	4.1 Blockchain Search and Selection Method
	4.2 Blockchain analysis
	4.3 Aptos
	4.4 SUI
	4.5 Flow
	4.6 Cosmos SDK
	4.7 Feature updates to SCIP

	5 SCIP 2.0
	5.1 SCIP 2.0 fields
	5.2 SCIP 2.0 methods
	5.3 Invocation Errors
	5.4 Data encoding
	5.5 JSON RPC Binding

	6 Prototype
	6.1 Background
	6.2 SCIP 2.0 Gateway implementation
	6.3 Testing and Case study implementation

	7 Conclusion and Outlook
	Bibliography

