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Abstract

A crucial problem in the representation theory of finite groups is the determination of
the character tables of said groups. As the classification of finite simple groups shows,
the main difficulties arise for the finite groups of Lie type: These are defined as the
fixed-point sets G = G* of a connected reductive algebraic group G over an algebraic
closure of the finite field F,, with p elements (for a prime p) under so-called Frobenius
maps (or, more generally, Steinberg maps) F': G — G. In this way, there is an infinite
family of finite groups associated to a given connected reductive group G as above, so one
seeks to find ‘generic’ methods which should allow a ‘uniform’ treatment of the groups
G! with varying F. To that end, Lusztig developed the theory of character sheaves
on G in the 1980s. This theory yields a basis of the space of class functions CF(G) of
G = G, consisting of characteristic functions of F-stable character sheaves on G, and
these characteristic functions are ‘in principle’ computable. After introducing the almost
characters as certain explicitly defined linear combinations of the ordinary irreducible
characters of G and showing that these almost characters form a basis of CF(G) as well,
Lusztig conjectured that any almost character coincides with the characteristic function
of a suitable character sheaf up to multiplication with a root of unity.

In the case where the centre of G is connected, Lusztig’s Conjecture was proven in a
theorem of Shoji in 1995. In this framework, specifying the roots of unity which appear in
Lusztig’s Conjecture/Shoji’s Theorem is a major step towards determining the character
table of G = G*. With regard to the unipotent characters and unipotent character
sheaves and as far as classical groups G with a connected centre are concerned, these
roots of unity have been determined by Shoji (1997, 2009); it thus remains to consider the
exceptional groups G. On the other hand, already in 1986, Lusztig developed methods to
address the explicit computation of irreducible characters of G at unipotent elements:
Lusztig’s arguments in this context are ultimately based on exploiting certain congruence
conditions, but these are only valid under some restrictions on the characteristic p — in
particular, the bad primes p for G are excluded.

The main results of this thesis concern the exceptional groups and their bad primes

p. We determine the roots of unity appearing in Shoji’s Theorem with respect to the
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so-called cuspidal unipotent character sheaves for groups of type Eg in characteristic
p = 3 and for groups of type E7 in characteristic p = 2, and we resolve several cases for
groups of type Eg in the characteristics p = 2,3, 5. Based on those results (and combined
with earlier works), we obtain the complete tables containing the values of unipotent
characters at unipotent elements for the groups Eg(q) and E7(q) where ¢ is a power of
a prime p; these tables were previously not known for p = 2,3. (For groups of type
F4, these tables have been determined by Marcelo—Shinoda in 1995; for groups of type
Ga, the full character tables are known already since the 1970s-1980s anyway, due to
Chang—Ree, Enomoto and Enomoto—Yamada.) Because of the sheer size of groups of
type Eg, the picture will not be complete for these groups, but we are able to obtain new
information with regard to character values at unipotent elements here as well — as one
of the main outcomes during the work on this thesis, the author recently managed to
resolve the last open cases in the generalised Springer correspondence, which occur for
groups of type Eg in characteristic p = 3; the generalised Springer correspondence is thus
known in full generality now.

We begin with a short section recalling the definitions and main properties of connected
reductive groups and finite groups of Lie type. We then explain the classification of
irreducible characters of those finite groups of Lie type whose underlying connected
reductive group has a connected centre, due to Deligne-Lusztig (1976) and Lusztig (1984).
We further present the most important notions and results concerning Lusztig’s theory
of character sheaves, with a particular emphasis on those outcomes which have a direct
influence on the computation of character values. This includes a detailed discussion on
how one can single out ‘good’ normalisations of the characteristic functions of character
sheaves.

The core of this thesis is the investigation of the simple groups of exceptional type with
regard to determining the roots of unity involved in Shoji’s Theorem for the unipotent
character sheaves: We explain how this task can largely be reduced to considering cuspidal
unipotent character sheaves on simple groups. We then go through the simple groups of
exceptional type one by one and tackle this (reduced) problem or provide appropriate
references in the cases where it has already been solved. At the same time, we consider
the problem of computing the values of unipotent characters at unipotent elements for
any of these groups. The above two problems are then completely resolved except for the
groups of type Eg, but we obtain partial results here as well. Our argumentation mostly
relies on exploiting a formula due to Ree: This formula relates the unipotent principal
series characters of a finite group of Lie type G with characters of the associated Hecke

algebra in terms of intersections of conjugacy classes of G with Bruhat cells.

iv



Zusammenfassung

Ein zentrales Problem in der Darstellungstheorie endlicher Gruppen ist die Bestim-
mung der Charaktertafeln besagter Gruppen. Wie die Klassifikation der endlichen
einfachen Gruppen zeigt, treten die Hauptschwierigkeiten bei den endlichen Gruppen
vom Lie-Typ auf: Nach Definition sind diese durch die Fixpunktmengen G = G einer
zusammenhédngenden reduktiven algebraischen Gruppe G {iber einem algebraischen
Abschluss des endlichen Kérpers F), mit p Elementen (fiir eine Primzahl p) unter so-
genannten Frobenius-Abbildungen (oder allgemeiner Steinberg-Abbildungen) F': G — G
beschrieben. Demnach ist einer gegebenen zusammenhéngenden reduktiven Gruppe
G wie oben eine unendliche Familie endlicher Gruppen zugeordnet, fir die man somit
nach ,,generischen“ Methoden Ausschau héalt, welche eine ,,uniforme*“ Behandlung der
Gruppen G mit variierendem F erlauben sollen. Zu diesem Zweck entwickelte Lusztig
die Theorie der Charaktergarben auf G in den 1980er Jahren. Diese Theorie liefert eine
Basis des Raumes der Klassenfunktionen CF(G) von G = G, bestehend aus den charak-
teristischen Funktionen F-stabiler Charaktergarben auf G, und diese charakteristischen
Funktionen sind ,;im Prinzip“ berechenbar. Nach Einfithrung der Fast-Charaktere als
gewisse explizit definierte Linearkombinationen der gewdhnlichen irreduziblen Charaktere
von G sowie dem Nachweis, dass diese Fast-Charaktere ebenfalls eine Basis von CF(G)
bilden, vermutete Lusztig, dass jeder Fast-Charakter bis auf Multiplikation mit einer
Einheitswurzel mit der charakteristischen Funktion einer geeigneten Charaktergarbe
iibereinstimmt.

Falls G ein zusammenhéingendes Zentrum besitzt, wurde Lusztigs Vermutung in einem
Theorem von Shoji aus dem Jahre 1995 bewiesen. In diesem Bezugsrahmen stellt die
Festlegung der in Lusztigs Vermutung/Shojis Theorem auftretenden Einheitswurzeln
einen grofen Schritt in Richtung der Bestimmung der Charaktertafel von G = G dar.
Mit Blick auf die unipotenten Charaktere und unipotenten Charaktergarben und fiir
klassische Gruppen G mit zusammenhéngendem Zentrum wurden diese Einheitswurzeln
von Shoji bestimmt (1997, 2009); es verbleibt somit, sich den ezzeptionellen Gruppen G
zu widmen. Andererseits entwickelte Lusztig bereits im Jahre 1986 Methoden, um die

explizite Berechnung der irreduziblen Charaktere von GG auf unipotenten Elementen in



Angriff zu nehmen: Lusztigs Argumente in diesem Zusammenhang basieren letztlich auf
der Ausnutzung gewisser Kongruenzbedingungen, die allerdings nur unter bestimmten
Einschrankungen an die Charakteristik p giiltig sind — insbesondere sind die schlechten
Primzahlen p fiir G hierbei nicht mit eingeschlossen.

Die Hauptergebnisse dieser Arbeit betreffen die exzeptionellen Gruppen und deren
schlechte Primzahlen p. Wir erreichen die Bestimmung der in Shojis Theorem auftretenden
Einheitswurzeln in Bezug auf die sogenannten kuspidalen unipotenten Charaktergarben
fir Gruppen vom Typ Eg in Charakteristik p = 3 und fiir Gruppen vom Typ E7 in
Charakteristik p = 2 sowie die Losung mehrerer Félle fiir Gruppen vom Typ Eg in
den Charakteristiken p = 2,3, 5. Basierend auf diesen Resultaten (und kombiniert mit
fritheren Arbeiten) erhalten wir die kompletten Tafeln der Werte unipotenter Charaktere
auf unipotenten Elementen fiir die Gruppen Eg(¢q) und E7(q), wobei ¢ eine Potenz einer
Primzahl p ist; fir p = 2,3 waren diese Tafeln zuvor nicht bekannt. (Fir Gruppen
vom Typ F4 wurden diese Tafeln von Marcelo-Shinoda im Jahre 1995 bestimmt; fiir
Gruppen vom Typ Go sind die kompletten Charaktertafeln ohnehin bereits seit den
1970er—1980er Jahren bekannt, nach Chang—Ree, Enomoto und Enomoto—Yamada.)
Aufgrund der schieren Gréfle der Gruppen vom Typ Eg ist das Bild beziiglich dieser
Gruppen unvollstédndig, aber wir sind auch hier in der Lage, neue Informationen iiber die
Charakterwerte auf unipotenten Elementen zu gewinnen — als eines der Hauptergebnisse
wahrend der Arbeit an dieser Dissertation ist es dem Autor kiirzlich gelungen, die
letzten offenen Félle in der verallgemeinerten Springer-Korrespondenz zu 16sen, welche fiir
Gruppen vom Typ Eg in Charakteristik p = 3 auftreten; damit ist die verallgemeinerte
Springer-Korrespondenz nun in voller Allgemeinheit bekannt.

Wir beginnen mit einem kurzen Abschnitt, in welchem wir die Definitionen und wesent-
lichen Eigenschaften der zusammenhéngenden reduktiven Gruppen sowie der endlichen
Gruppen vom Lie-Typ in Erinnerung rufen. Dann beschreiben wir die Klassifikation
der irreduziblen Charaktere all solcher endlichen Gruppen vom Lie-Typ, deren zugrunde
liegende zusammenhéngende reduktive Gruppe ein zusammenhéngendes Zentrum besitzt,
nach Deligne-Lusztig (1976) und Lusztig (1984). Ferner stellen wir die wichtigsten Be-
griffe und Ergebnisse hinsichtlich Lusztigs Theorie der Charaktergarben vor; besonderes
Augenmerk legen wir dabei auf solche Resultate, die direkten Einfluss auf die Berechnung
von Charakterwerten haben. Dies beinhaltet eine detaillierte Diskussion {iber die Wahl
von ,,guten“ Normalisierungen der charakteristischen Funktionen von Charaktergarben.

Das Herzstiick dieser Arbeit bildet die Untersuchung der einfachen Gruppen von ex-
zeptionellem Typ im Hinblick auf die Bestimmung der in Shojis Theorem auftauchenden

Einheitswurzeln fiir die unipotenten Charaktergarben: Wir zeigen auf, wie diese Fra-
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gestellung weitestgehend auf die Betrachtung kuspidal unipotenter Charaktergarben
auf einfachen Gruppen zuriickgefithrt werden kann. Danach gehen wir nacheinander
die einfachen Gruppen von exzeptionellem Typ durch und nehmen dieses (reduzierte)
Problem in Angriff oder verweisen auf geeignete Quellen fiir die Félle, in denen dies bereits
bewerkstelligt wurde. Gleichzeitig betrachten wir das Problem der Berechnung der Werte
unipotenter Charaktere auf unipotenten Elementen fiir jede dieser Gruppen. Die beiden
oben genannten Probleme sind damit vollstidndig gelést mit Ausnahme von Gruppen
vom Typ Eg, fiir die wir jedoch ebenfalls Teilergebnisse erhalten. Unsere Argumentation
beruht grofitenteils auf der Auswertung einer Formel von Ree: Diese Formel setzt die
unipotenten Charaktere in der Hauptserie einer endlichen Gruppe vom Lie-Typ G mit
Charakteren der zugehérigen Hecke-Algebra beziiglich Schnitten von Konjugiertenklassen

von G mit Bruhat-Zellen in Verbindung.
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1. Introduction

Let G be a finite group, K a field and V a finite-dimensional K-vector space. A group
homomorphism

p: G — GL(V)

is called a K-representation of G. The K-representation p is called irreducible if V' # {0}
and if there exists no proper subspace {0} # V' C V which is invariant under the
endomorphisms in p(G) C GL(V). Associated to p is its (K-)character, defined as the
function

Xp: G =K, g+ Trace(p(g)).

The character x, is called irreducible if p is an irreducible representation. The study of K-
representations and K-characters for various G and K is referred to as the representation
theory and character theory of finite groups. This constitutes a very rich and intense
subject matter of current research with numerous applications, both in mathematics but
also in related natural sciences. By ‘linearising’ the structure of G (or, more precisely,
the G-actions on finite sets) via such representations, one hopes to obtain a better
understanding of the group G itself.

In the important special case where K = C is the field of complex numbers (or any other
algebraically closed field of characteristic zero), one speaks of ordinary representations and
ordinary characters rather than of C-representations and C-characters and writes Irr(G)
for the (finite) set consisting of all ordinary irreducible characters of G. The significance
of the ordinary (irreducible) characters is highlighted by the following basic facts: First
of all, any ordinary representation is (up to isomorphism) completely determined by its
character. Secondly, any ordinary representation p: G — GL(V') can be decomposed
as a direct sum of ordinary irreducible representations in the sense that there exist
p(G)-invariant subspaces V1, Va,..., V,, of V (m € N) such that V =V @ Vo @ ... &V,
and such that for any i € {1,2,...,m}, the group homomorphism p;: G — GL(V})

induced by p defines an ordinary irreducible representation of G. In this case, we have

Xp=Xp1 T+ Xpm:G—=C, g xp(9)+-. + Xp(9),
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where Xp.,...,Xpn € Irr(G). Therefore, studying the ordinary representations (re-
spectively, characters) of a given finite group G is equivalent to studying the ordinary
irreducible representations (respectively, characters) of G.

As for the ordinary irreducible characters themselves, let us denote by CF(G) the
C-vector space consisting of all functions G — C which are constant on the conjugacy
classes of G. It is well known that we have Irr(G) C CF(G) and that Irr(G) is an
orthonormal basis of CF(G) with respect to the scalar product

1

<f7f/>G ::@

> Flg9)f'(g) (for f, f' € CF(G)).

geG

In particular, the number of ordinary irreducible characters of G coincides with the
number of conjugacy classes of G. Hence, if Irt(G) = {x1, ..., x»} and if {g1,..., g} is

a set of representatives for the conjugacy classes of G, we obtain a square matrix

X(G) = (Xz‘ (gj)) 1<, j<r”

This matrix is called the character table of GG; it is unique up to reordering x1, ..., Xr
and ¢1,...,gr, which would lead to a corresponding swapping of its rows and columns,
respectively. Moreover, X (G) does not depend on the choice of the set of representatives
{g1,...,9r} since characters are constant on conjugacy classes. Thus, X(G) contains
all the information on ordinary representations and characters of GG in a concise form.
As we are exclusively dealing with ordinary representations and characters of finite
groups in this work, we will henceforth often omit the word ‘ordinary’ and just speak of
representations and characters of GG, thus tacitly assuming that the ground field of the
involved vector space V is an algebraically closed field of characteristic zero.

In this thesis, we are concerned with the (ordinary) representations and characters of
a very special and large class of finite groups G, the one consisting of finite groups of
Lie type. These are defined as the fixed-point sets G = G of a connected reductive
algebraic group G over an algebraic closure k of the finite field F), with p elements (for
a prime p) under certain bijective endomorphisms F': G — G called Frobenius maps
or, more generally, Steinberg maps. By means of varying F', any connected reductive
algebraic group G over k gives rise to an infinite family of finite groups of Lie type G
and, as one should expect, these groups G! inherit fundamental properties from the
algebraic group G coming from a geometric or topological origin. Given a connected
reductive group G over k, this often allows a ‘uniform’ description of the finite groups

G as well as of their representations and characters.



The standard example is the general linear group G = GL, (k) (n € N): For any power
q of p, the map
F: GLn(k’) — GLn(k), (CLZ']') — (agj),

defines a Frobenius map, and we obtain a finite group GL, (k)" = GL,(q) consisting of
all invertible n x n matrices with entries in the finite field F, C £ with ¢ elements. The
character tables of these groups have been determined already in 1955 by Green [Greb5|.

In general, determining the character table of a finite group of Lie type appears to be
a very difficult problem. In their landmark paper [DL76] from 1976, Deligne and Lusztig
utilised the concept of f-adic cohomology groups with compact support (where £ is a
prime different from p) to construct virtual representations (that is, Z-linear combinations
of irreducible representations) of finite groups of Lie type. Among other things, they
showed that any irreducible representation of G appears as a constituent of at least
one of these Deligne-Lusztig virtual representations. Based on this and other results
of [DL76], Lusztig [Lus84a], [Lus88| established a classification of Irr(G¥') in the 1980s.
In this picture, an essential role is played by the so-called unipotent characters of finite
groups of Lie type, which leads to a ‘Jordan decomposition’ of irreducible characters of
G* in terms of semisimple elements in the Langlands dual group G* of G and unipotent
characters of suitable Frobenius-fixed point subgroups of centralisers in G* of such
semisimple elements. With this approach, Lusztig also obtained explicitly computable
formulae for the values of irreducible characters at semisimple elements of G¥', which in
particular includes the degrees of the irreducible characters.

However, as far as character values at non-semisimple elements are concerned, other
methods seem to be required. In order to tackle this problem, Lusztig [LuCS1]-[LuCS5|
developed the theory of character sheaves on connected reductive groups G over k, certain
simple perverse sheaves in the bounded derived category 2G of constructible Q,-sheaves
which are equivariant for the conjugation action of G on itself. The Frobenius map
F: G — G naturally acts on G, and one obtains the notion of F-stable character
sheaves on G, which provide an analogue to the irreducible characters of G': To any
F-stable character sheaf A on G (up to isomorphism), one can associate a class function
of G (which is a priori only defined up to multiplication with a root of unity), called the
characteristic function of A. In [LuCS1|-|LuCS5] and |Lus12b], Lusztig proved that the
set of all these characteristic functions forms an orthonormal basis of the space of class
functions CF(GF ), which in principle is computable. Hence, finding the transformation
between this basis and the one consisting of the irreducible characters of G would be a

big step towards determining the character table of G
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After introducing a further orthonormal basis of CF(G!") consisting of the so-called
almost characters of G, which are defined as explicit linear combinations of Irr(G),
Lusztig conjectured that any almost character coincides with the characteristic function
of a suitable F-stable character sheaf on G (up to multiplication with a root of unity).
In 1995, Shoji [Sho95a], [Sho95b] proved Lusztig’s Conjecture in the case where G has a
connected centre; there are also partial results for groups with a non-connected centre,
due to Bonnafé [Bon06] and Waldspurger [Wal04] — in general, Lusztig’s Conjecture is
still open to this day.

But even in the cases where Lusztig’s Conjecture is known to hold, one needs to specify
the above-mentioned roots of unity (after having fixed normalisations of the characteristic
functions of F-stable character sheaves) before hoping to obtain explicit character values
in this framework. The determination of these roots of unity turns out to be a very
subtle problem and is the main object of study in this thesis. More precisely, we will
focus on the aforementioned unipotent characters of G and their analogues on the level
of character sheaves, which are accordingly called the unipotent character sheaves. In
this situation, our problem can largely be reduced to considering the so-called cuspidal
unipotent character sheaves on simple groups G. For classical groups, this has been
completely settled by Shoji in [Sho97], [Sho09]. We will thus examine the various simple

groups G of exceptional type and consider the following problem for such G:

Determine the roots of unity in Lusztig’s Conjecture/Shoji’'s Theorem

with respect to any F-stable cuspidal unipotent character sheaf on G. *)
This problem has been addressed by various authors before, and we will provide appro-
priate references in the cases where it is already solved. Our main focus in this thesis
with regard to lies on those groups G whose underlying field k& = F,, is of very small
(so-called ‘bad’) characteristic p with respect to G. As is well known, if p is not too small,
the essential structural properties of G and its related objects tend to behave rather
uniformly as p varies — however, this does typically not include the bad primes p for G,
and as it turns out, problem is no exception. Examples are the groups of type Eg in
characteristic p = 3 and the groups of type E7 in characteristic p = 2, for which has
been solved by the author in [Het19] and [Het22a], respectively; we present the full proofs
of said results during the course of this thesis. Combined with the above-mentioned
earlier solutions to , the picture will then be complete for all exceptional groups other
than the ones of type Eg — for the latter, a complete solution to () is not yet known,

but we are able to resolve several previously unknown cases regarding cuspidal unipotent



character sheaves whose support is contained in the unipotent variety, in particular with
respect to the bad primes p = 2, 3,5 for groups of type Eg.
On the other hand, we will also look at the following task:

For any simple group G of exceptional type with Frobenius map F': G — G,

()

compute the values of the unipotent characters of G at unipotent elements.

This has been considered already in 1986 by Lusztig |[Lus86], who established with
some rather mild restrictions on p and F' — but again, the bad primes p for G are
excluded there. For groups of type Go, the complete character tables are known, due to
Chang—Ree |[CR74] for p > 5, Enomoto [Eno76] for p = 3, and Enomoto—Yamada [EY86]
for p = 2, which in particular includes . As far as groups of type F4 are concerned,
has been settled by Marcelo and Shinoda in [MS95|. Combined with earlier results
on the so-called Green functions (see [Gec20b] and the further references there) and our
solutions to , we conclude for the groups Eg(q) and E7(q) where ¢ is a power of p,
which was previously not established in the bad characteristics p = 2,3 for said groups.
Again, will not be complete for groups of type Eg, but we obtain partial results here as
well. As one of the main results during the work on this thesis, the author settled the last
open cases in the generalised Springer correspondence defined in |Lus84b|, which occur
for groups of type Eg in characteristic p = 3 (see [Het22b]). This result is a contribution
to ([f]); in fact, we will explicitly apply it to solve for two cuspidal unipotent character
sheaves when dealing with the groups Eg(gq) where ¢ is a power of 3.

Our main method to tackle both and relies on a reinterpretation of a formula
due to Ree (see [CR81), §11D]), which appears in |Lusllb] and [Gecll1]: It relates the
unipotent principal series characters of a finite group of Lie type G with characters
of the associated Hecke algebra in terms of intersections of G¥'-conjugacy classes with
Bruhat cells. While these intersections (or even their sizes) are very difficult to compute
in general, it will in many cases turn out to be sufficient to consider only one particular
of these intersections and show that it is non-empty.

This thesis is organised as follows. We begin by recalling a rather detailed account of the
theory of finite groups of Lie type and their ordinary representation theory in Chapter
with the aim of describing Lusztig’s ‘Main Theorem 4.23 in [Lus84a] on the classification
of irreducible characters of G¥ for connected reductive groups G with a connected centre
in a precise way; we conclude this chapter with a section on Hecke algebras associated
to finite groups of Lie type, which form a central ingredient in numerous arguments in

this thesis. — All of this is of course well known and covered in standard surveys such
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as [Car85], [DM20], [GM20], but the reader may find it convenient to have the most
important notions and properties all in one place with consistent notational conventions.
In Chapter [3| we start by introducing Lusztig’s theory of character sheaves. Apart from
providing the fundamental definitions and stating some of the most important results,
our focus always lies on those aspects which we will later explicitly refer to when dealing
with finite groups of Lie type and their character values. In Section [3.3] we are then
prepared to state Lusztig’s Conjecture and Shoji’s Theorem in a precise
way. We proceed by describing Shoji’s result with respect to the unipotent character
sheaves on simple non-twisted groups with a trivial centre in Section 3.4 This section
forms the foundation of our discussion in Chapter 4 where we go through the various
simple groups G of exceptional type one by one and focus on the problems and . In
the appendix, we include a short chapter recalling some basic properties of finite Coxeter
groups and generic Iwahori-Hecke algebras (Appendix , which play an important role
throughout this thesis. We conclude by collecting some of the bigger tables which appear
in this work (Appendix .

1.1. Notation and conventions

Let us start by stating some conventions and introducing the basic notation that we use

in this thesis.

Some conventions

Unless otherwise stated, p € N always denotes a prime number and k = Fp an algebraic
closure of the finite field F), = Z / pZ with p elements. As soon as p is prescribed, ¢ will
always be a power of p of the form ¢ = p®, e € N. Then we denote by

F,={vek|ai=2}Ck

the finite subfield of & with ¢ elements, so that

k?: U]Fpe.

eeN

Let us fix a prime ¢ € N different from p and denote by @, an algebraic closure of the field
Qg of ¢-adic numbers (see, e.g., [Kob84]). It will be convenient to assume the existence

of an isomorphism

Q ~C (1.1.0.1)



1.1. Notation and conventions

and to fix such an isomorphism once and for al]E| — in the representation theory of finite
groups of Lie type one usually works with Q, (see [DL76]), but we sometimes want to
be able to speak of complex conjugation, absolute values or the like. So we will also
often identify the rational numbers Q or the real numbers R with subsets of Q, and write
Q C R C Q, thus tacitly referring to the isomorphism . Another choice that we
need to make in several places is the one of a square root of p in Qy, so it is useful to do

this right away:

From now on we fix, once and for all, a square root /p of p in Q.

(1.1.0.2)
Whenever g = p© (e € N), we then set /g := /p°.

We will still sometimes explicitly refer to (1.1.0.2)) in order to emphasise that we are

dependent on such a choice in a given situation. Next, let
py = {x € @Z | 2™ =1 for some n € N which is prime to p}.
We also consider the subring of Q defined by

Zoy =10 € Q| m,n € Z, p does not divide n (1.1.0.3)
(p) n

(i.e., the localization of Z at the prime ideal (p) = pZ). Identifying Z with an additive

subgroup of Z,), we thus obtain an additive group L) /7. Now the abelian groups

p)
(B, (prs ), (Z(p) /7, +) are all isomorphic, although there is no canonical choice of such
isomorphisms ([DL76, §5], cf. [Car85, 3.1.3]). We thus take any two such isomorphisms,
denoted by

1 k= (1.1.0.4)

and
9: Loy )7 = kX, (1.1.0.5)

and keep them fixed once and for all.

1Strictly speaking, the existence of such an isomorphism can only be guaranteed by referring to the
axiom of choice. For the reader who is not willing to accept that axiom at this point, what we
really need is actually an isomorphism between algebraic closures of Q in Q, and C, and such an
isomorphism is known to exist without reference to the axiom of choice, cf. [Del80} 1.2.11].
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General notation

Here we give an overview of some of the most frequently used notation in this thesis.
Except for the very basic or standard notions, we usually introduce everything in the
text as well.

Numbers

In the following table, p, £ are primes with p # ¢, and ¢ is a power of p.

Symbol Meaning

N The natural numbers {1,2,3,...}

Np Nu {0}

®,,neN The nth cyclotomic polynomial, or its evaluation at ¢

Zipy €Q The localization of Z at the prime ideal (p) = pZ, see
Fy The finite field with p elements

k=F, An algebraic closure of IF,; using the letter £ thus tacitly assumes

that p is fixed in a given setting

F, The unique finite subfield of k£ with ¢ elements

Qy The field of ¢-adic numbers

Qy An algebraic closure of Q,

VP A fixed square root of p, usually assumed to be in Qy, see
R The set of all roots of unity in Q,

R, n €N The set of all nth roots of unity in Q,

1 The set of all roots of unity in Q, of order prime to p

(ny,m €N A (not necessarily fixed) primitive nth root of unity in R,; for

n < 4, we typically write 1, —1, w, i instead of (1, (2, (3, (4,

respectively

pn(k™), n € N The set of all nth roots of unity in £*

) A fixed isomorphism k* = p,,, see (1.1.0.4)
7 A fixed isomorphism Z(p) /7, = k*, see (1.1.0.5)
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Abstract groups and modules

Given a commutative ring K with identity, whenever we speak of a ‘K-algebra A’, we
assume that A is associative and with identity element 1 4; furthermore, if we just speak
of an ‘A-module’, we mean a left A-module, usually assumed to be of finite K-dimension.

In the following table, K is a field, A is a K-algebra, GG is any group, H is a subgroup
of G, g,¢" are elements of G, V and W are (left) .A-modules of finite K-dimension, I is a
finite group, and n € N.

Symbol Meaning
Cn The cyclic group of order n, written multiplicatively
Znz. The cyclic group of order n, written additively, whose elements are

denoted by @ := a + nZ for a € Z

G, The symmetric group on n letters

Do, The dihedral group of order 2n

Na(H) The normaliser of H in G

Ca(9) The centraliser of g in G

Ca(H) The centraliser of H in G, i.e., the set (e Ca(h)

Oy The conjugacy class of g in G (if G is clear from the context)

g~adg g is G-conjugate to ¢, i.e., there exists = € G such that gz~ = ¢’

Hom4(V, W) The set of all A-linear maps V" — W
Endy(V) The endomorphism algebra of the A-module V'

Trace or Tr Written with one argument, this refers to the trace of a matrix; if
¢ € Endg(V), Trace(p, V) or Tr(yp, V) is the trace of ¢ on V

KT or K[I'l  The group algebra of I' over K

CF(T) The finite-dimensional K-vector space consisting of the class func-

tions I' = K where K is either C or Q, depending on the context
Irr(T) The subset of CF(I") consisting of the irreducible characters of I'

Algebraic groups

In the following table, H denotes an algebraic group over k = F,, h an element of H and

F: H — H an endomorphism of algebraic groups.
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Symbol Meaning

Gn The multiplicative algebraic group (k*,-)

G, The additive algebraic group (k,+)

Z(H) The centre of H

H° The identity component of H

Her The derived group [H, H]

His The group H/7(f1)°

Hui The subvariety of H consisting of all unipotent elements in H
R,(H) The unipotent radical of H

Cxu(h)  Cu(h)°

(
Au(h)  The (finite) component group Cu(h)/ C¢(h), whose elements are
typically denoted by 7 := zC¢y(h) for z € Cu(h)
HF The set of fixed points of H under F

Operators

In the following table, we collect a few of the somewhat less standard symbols for

operators.

Symbol Meaning

11, O External disjoint union of sets, and its binary symbol
¥, W Internal disjoint union of sets, and its binary symbol
X External tensor product

10



2. Finite groups of Lie type

In this chapter, we give an overview of some of the most important properties of
finite groups of Lie type, with a special emphasis on their representation and character
theory due to Deligne-Lusztig [DL76] and Lusztig [Lus84aj. In particular, under the
assumption that the underlying connected reductive group has a connected centre, we
state Lusztig’s ‘Main Theorem 4.23" of [Lus84a], which provides a classification of the
irreducible characters of finite groups of Lie type.

In Section [2.1], we recall the essential notions of finite groups of Lie type, mostly
following [GM20]. This involves the definition of the underlying connected reductive
algebraic groups over k = F,, and the root data attached to them . We also
include a brief discussion on structural features of connected reductive groups over k
(most notably the Bruhat decomposition) and how they transfer to the finite groups of
Lie type (see[2.1.942.1.10[and [2.1.14}2.1.15| [2.1.20| respectively).

In Section we present the definition of the virtual Deligne-Lusztig characters
[DL76] (see Definition 2.2.3)), and we give a detailed explanation of Lusztig’s classification
of the ordinary irreducible characters of those finite groups of Lie type whose underlying
connected reductive group has a connected centre (Theorem [2.2.21]), due to [Lus84a].
This requires a discussion on families in Weyl groups and the associated Fourier matrices
(2.2.8-2.2.12), as well as the definition of almost characters (2.2.23). We briefly address the
concepts of Harish-Chandra induction and Lusztig induction (Definition [2.2.28).

Furthermore, we give a summary of the state of knowledge concerning the Green functions

in whose computation will be of special relevance in several places later.

Section is dedicated to Hecke algebras (cf. Appendix associated to finite groups
of Lie type. We explain how these Hecke algebras give rise to (a reinterpretation of) a
formula due to Ree (see [2.3.9)). Said formula plays a pivotal role throughout this thesis;
see especially Chapter [4 below, where we will exploit it numerous times in order to obtain

explicit information on character values of finite groups of Lie type.

11



2. Finite groups of Lie type

2.1. Connected reductive and finite reductive groups

We assume some familiarity with the basic definitions and properties concerning algebraic
groups over k = F,, (which we always assume to be affine) and refer to the literature
(e.g., the standard textbooks [Bor91], [Hum?75|, [Spr09|, see also [Gec03a]) for the details.

In this section, we introduce such notions which are of particular relevance in this
thesis, for instance the connected reductive and (semi)simple algebraic groups over k or
the associated finite groups of Lie type. For a much more elaborate discussion regarding
the general theory of these groups and their representations, the reader is referred to,

e.g., [Stel6], [DL76], [Cars5), [DM20], [MT11], [GM20].

Definition 2.1.1. Let G be a connected algebraic group over k. Recall that the unipotent
radical Ry (G) of G is the (unique) maximal closed connected unipotent normal subgroup

of G.

(a) G is called reductive if R,(G) = {1}, and in this case we will often just refer to G

as a connected reductive group (over k).

(b) G is called semisimple if G is reductive and the centre Z(G) of G is finite (or
equivalently, if its identity component Z(G) is the trivial subgroup {1} C G).

(c) G is called simple if it is non-abelian and {1}, G are the only closed connected

normal subgroups of G.

Root data

The concept of root data, originally introduced in [DG70, Exposé XXI|, provides a
powerful combinatorial tool for classifying connected reductive groups. Here we give the
definition of root data, following |[GM20, 1.2.1], and state some basic properties of them.
(For the proofs we refer to [GM20, §1.2].)

2.1.2. Let X,Y be free abelian groups of the same finite rank, and assume that there
exists a bilinear pairing (, ): X x Y — Z such that we have induced isomorphisms of
abelian groups

X S Hom(Y,Z), A= (v (\v)),

and
Y = Hom(X,Z), v— (A= (\v)).

(Thus, the bilinear pairing ( , ) is perfect.) Assume that there are finite subsets R C X,
RY CY, together with a bijection R — RY, a — oV, such that for any o € R, we have

12



2.1. Connected reductive and finite reductive groups

2a ¢ R and (a,aV) = 2. So for a € R, we obtain automorphisms of abelian groups
we: X =X, A= A=\ a)a,

and

wl:Y Y, v v—{a,v)a’.

We require that wa(R) = R and wl(RY) = RY for any a € R. If all of the above
conditions are satisfied, the quadruple Z = (X, R,Y, RY) is called a root datum. The

groups
W = (w, |a€ R) CAut(X) and WY :=(w!|ac R)C Aut(Y)

are called the Weyl groups of R and RV, respectively. We will refer to R as the roots and to
RY as the co-roots of the root datum %. Note that R is indeed a reduced crystallographic
root system in the subspace QR of Q ®z X in the sense of [Bou68, Chap. VI, §1, Déf. 1],
with Weyl group W; see [GM20, 1.2.5]. Similarly, R is a reduced crystallographic root
system in QRY C Q ®7 Y, with Weyl group WV.

2.1.3. A special example of a connected reductive group is a torus, that is, an algebraic
group which is isomorphic to the direct product of a finite number of copies of the
multiplicative group Gy, := (k*,-). Let T be a torus over k. The rank of T is defined
to be the number r € Ny such that T is isomorphic to (Gy,)", and is denoted by
r =rank T. The character group X (T) of T is the set consisting of all homomorphisms
of algebraic groups T — Gy; similarly, the co-character group Y (T) of T is the set of all
homomorphisms of algebraic groups Gy, — T. Both X (T) and Y (T) are indeed (abelian)
groups, with group operation written additively and defined by (for A\, A € X(T) and
v, € Y(T)):
AN T = G, t—=AON(1),

and
v+ Gy =T, & u({)y'(ﬁ)

In particular, the multiplicative group Gy, itself is a torus, and it is easy to see that
X(Gn) =Y(Gn) ={Gn—>Gn, {—=E" | neZ} =7

Thus, if T is a torus of rank r, we obtain isomorphisms

13
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We also see that, for A € X(T), v € Y(T), we have Aov € X(Gp) = Z, and we denote

the corresponding integer by (A, r). This gives rise to a perfect bilinear pairing
X(T)xY(T)—=7Z, (\v)—= (\v).

The torus T can be recovered from both its character group and its co-character group,

by means of the isomorphisms
T = Hom(X(T), k™), t— (x+— x(t)), (2.1.3.1)
and
Y(T) ®z k* = T, determined by v ® & = v(§) for v € Y(T), £ € k*, (2.1.3.2)

respectively (see [Car85| §3.1]).

2.1.4. Assume that we are given a connected reductive group G over k. A closed
subgroup T C G is called a mazimal torus (of G) if T is a torus and if T is maximal
among the closed subgroups of G which are tori. We denote by 7 the set of all maximal
tori of G. The group G acts by conjugation on 7, and this action is transitive, that is,
any two maximal tori of G are conjugate by some element of G (see [Hum75, §21.3)).

Let us fix a maximal torus T of G. The (finite) group
W = Wg(T) := Na(T)/p

is called the Weyl group of G with respect to T. It is clear that a different choice of T
gives rise to a Weyl group isomorphic to W since any two maximal tori are conjugate in
G. For the same reason, all the maximal tori of G have the same rank, so it makes sense
to define the rank of G as

rank G := rank T.

Following [GM20, 1.3.1], one can attach a root datum to the connected reductive group G.
Here, the set of roots R C X (T) of G (with respect to T) consists of all those o € X (T)
for which there exists a homomorphism of algebraic groups us: Ga — G (where G,

denotes the additive group (k,+)) such that u, is an isomorphism onto its image and

tug ()t = ug(a(t)f) forallteT, € ck.

14
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In this case,

U, = {ua(§) [ € € K}

is a one-dimensional closed connected unipotent subgroup of G which is normalised by
T. The group Uy, is called the root subgroup corresponding to a € R, and the assignment
a — U, gives a bijection between R and the set of one-dimensional closed connected

unipotent subgroups of G which are normalised by T. We have
G =(T,U, | a € R).
This allows a characterisation of the centre of G in terms of the roots: We have

Z(G) = () kera = Hom(X(T) /7R k™) (2.1.4.1)
aER

(see, e.g., [MT11, 8.17]); here, the second isomorphism is induced from the one in
(2.1.3.1). (In particular, the centre of G is contained in any maximal torus of G.) Next,
the conjugation action of Ng(T) on T induces actions of W on X(T) and on Y (T).
Namely, let w € W, A € X(T), v € Y(T), and denote by w € Ng(T) a representative of
w. Then we set

wA: T = G, t— N ttw),

and
wv: Gy =T, & uwv()uw

Note that this allows us to identify W with a subgroup of both Aut(X(T)) and Aut(Y (T)).
Using these actions and the perfect bilinear pairing (, ): X(T) x Y(T) — Z defined in
2.1.3] it is possible to define a subset {w, | @ € R} C W, as well as a set of co-roots
RY C Y(T), such that the quadruple Z = (X (T), R,Y(T), RY) together with the pairing
(, ) is indeed a root datum, with Weyl group W (viewed as a subgroup of Aut(X(T)),
as above), see [GM20} 1.3.1-1.3.2]. Finally, if we choose another maximal torus T in G,
the root datum of G with respect to T’ is isomorphic to Z in the sense of [GM20, 1.2.2],
see [GM20, 1.3.3]. Thus, we do not have to refer to a specific maximal torus in G when

speaking of (the isomorphism class of) a root datum attached to G.

2.1.5. Let Z = (X,R,Y,R"Y) be a root datum. One can show that there exists a
connected reductive group G over k such that applying the procedure outlined in [2.1.4]
to G gives rise to a root datum isomorphic to Z (see [GM20, 1.3.14] and the references
there); moreover, G is uniquely determined up to isomorphism, that is, any root datum

isomorphic to Z leads to a connected reductive group isomorphic to G |[GM20, 1.3.13].
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Conversely, isomorphic connected reductive groups G give rise to the same isomorphism
class of root data. Hence, the concept of root data provides a combinatorial tool for
classifying connected reductive groups. For later use we give some further notions and
properties of root data here (which are in fact mostly properties of the root system
involved), see [GM20, 1.2.6] and also the references there. So let Z = (X, R,Y,R") be a
root datum, and let G be a connected reductive group corresponding to #. There exists
a subset II C R which is linearly independent in the Q-vector subspace QR C Q ®7 X
and has the property that any root o € R can be written as

o= Z Na,g -8 where n, g € Z, ()
Bell

with either n, g > 0 for all 8 € II, or else n, g < 0 for all 3 € II. If these conditions are
satisfied, II is called a base for the root system R. Except when G is a torus, such a base
IT is not unique; in fact, the set of bases for R is in bijective correspondence with the
Weyl group W of the root system (where, for a fixed base II, such a bijection may be
chosen by requiring that w € W corresponds to the base w(II) C R). Let us fix a base II
of R. Whenever we have done so, we will refer to the elements of Il as the simple roots
of Z, or of R, or of G. The positive roots RT of R (with respect to II) are defined to be
those a € R such that the integers n, g in are non-negative; the negative roots R~ of
R (with respect to II) are defined by R~ := —R"™ C R. Writing IT = {«3,...,q,}, the

matrix
¢ .= (<aj7 az\‘/>)1<i,j<r

is called the Cartan matriz of the root datum Z or of the connected reductive group G.
Up to simultaneously reordering the rows and columns, € does not depend on the choice
of II, thus only on Z. Note that € is a Cartan matrix in the sense of Appendix more
precisely, € is a Cartan matrix of both finite and crystallographic type, that is, it satisfies
the conditions (€1), (€2), (¢fin) and (Ccrys) in The other notions are compatible
with the ones in as well: Indeed, W = W () is the reflection group associated with
¢, R = R(€) is the root system associated with € (an abstract reduced crystallographic
root system in the R-vector space with basis II = II(€)), and r = |II| is the rank of R. So
W is also a Weyl group in the sense of and, hence, a Coxeter group, with Coxeter

generators S = {w, | a € I} and defining relations
(wqwg)™# =1 for all a, f €11,

where m,g is the order of wows € W. The Dynkin diagram ©(€) of € is then also said
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to be the Dynkin diagram of G. Furthermore, if ®© is the name of © (<) (see and
Figure , it will sometimes be convenient to say that G has a root system of type
9. For instance, when talking about the connected centraliser Cg(s) of a semisimple
element s (note that Cg(s) is itself a connected reductive group, see [Car85, 3.5.4]), a
description as above for Cg(s) will often be sufficient to characterise the G-conjugacy

class of s, and we may not need any further information on the group Cg(s) itself.

Example 2.1.6. Let Z = (X, R, Y, RY) be a root datum, with pairing { , ): X xY — Z.
Then one easily checks that Z2* := (Y, RV, X, R) is a root datum as well, with pairing
given by

()Y XX —=Z, (r,\)":==(\v) forveY, AeX

(see [GM20| 1.2.3]). The quadruple Z* is called the root datum dual to %. As mentioned
in there exists a connected reductive group G* whose root datum is isomorphic to

Z*, and G* is uniquely determined up to isomorphism. The group G* is called the dual
group of G. Note that, since (Z*)* = %, we have (G*)* = G.

2.1.7. (a) Let G be a connected reductive group over k. We fix a maximal torus T C G,
which thus gives rise to the root datum Z = (X, R, Y, RY) of G with respect to T, where
X =X(T) and Y =Y (T). Following [MT11, pp. 70-71] (see also [Car85| 1.11]), let us
consider the group

Q) := Hom(ZR",Z).

The group G is semisimple if and only if ZRY C Y is a subgroup of finite index (which is
equivalent to ZR C X being a subgroup of finite index), and in this case we obtain an
embedding

X = Hom(Y,Z) — Hom(ZR",Z) =,

where the first map is the isomorphism defined in 2.1.2] and the second is given by
restriction of maps from Y to ZR". So we may canonically identify ZR C X C . Here,

ZR is a subgroup of finite index in €2, so
A:=AR):=8/zR

is a finite group, called the fundamental group of the root system R.

(b) Note that the definition of A in (a) only depends on R, R" and not on X or Y.
Hence, as in |[GM20, 1.2.8], we may as well start with a Cartan matrix € of both finite
and crystallographic type (see Appendix , without referring to a semisimple group
just yet: In this case, let R = R(€) be the root system associated with €. We then say
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2. Finite groups of Lie type

that

is the fundamental group of €. By |[GM20, 1.5.1, 1.5.2], any subgroup X /7R of A(R)
uniquely determines a root datum (X, R,Y,RY) up to isomorphism, which thus de-
termines a semisimple algebraic group up to isomorphism (since X /7R is finite by
construction). Moreover, every semisimple algebraic group with root system isomorphic
to R is obtained in this way (although the above procedure is in general not quite a
one-to-one correspondence between the subgroups of A(R) and the isomorphism classes of
semisimple algebraic groups whose root system is isomorphic to R, see [MT11} 9.16(3)]).
The fundamental groups of indecomposable Cartan matrices of finite and crystallographic
type are given by Table (see [GM20] p. 20]).

Type of € A(€)

An—1 Z/nZ

B, Cn Z/yg,

Zjog @ Z/og, if nis even

O Z/4g, if n is odd
Go,Fu,Es {0}

Eg Z/37,

E7 L)y,

Table 2.1.: Fundamental groups of indecomposable Cartan matrices € of finite and
crystallographic type

(c) Let us assume again that we are given a semisimple group G with root system R
and Cartan matrix €, and let ® be the name of the Dynkin diagram ©(€) of €, as in
[A1.8 We will then say that G is of type ©. If X = ZR, we say that G is the adjoint
group (of type ®), or sometimes just that G is adjoint or is of adjoint type in case we do
not want to specify R or €. If X = Q, we say that G is the simply connected group (of
type @), or sometimes just that G is simply connected or is of simply connected type in
case we do not want to specify R or €. If G is any semisimple group with root system R
(not necessarily of adjoint or simply connected type), we denote by G,q the (semisimple)
adjoint group with root system isomorphic to R; similarly, Gg. denotes the (semisimple)
simply connected group with root system isomorphic to R. (In particular, we write

G = G,q if G is semisimple of adjoint type and G = Gy if G is semisimple of simply
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2.1. Connected reductive and finite reductive groups

connected type.) In view of (2.1.4.1]), we have
Z(Gy) 2 Hom(A(R), k™) and Z(Gaq) = {1} (2.1.7.1)

Now, let us recall that a surjective homomorphism f: H; — Hs of connected algebraic
groups Hi, Hs is called an isogeny if its kernel ker f C Hj is finite; we then automatically
have ker f C Z(H;). There exist canonical isogenies (see [GM20, §1.5])

(1G)sc: Gse > G and (7@ )ad: G — Gag,

called the simply connected covering and the adjoint quotient of the semisimple group G,
respectively. Two non-isomorphic semisimple groups of type ® are said to be of different
isogeny type. Finally, we note that the semisimple group G is simple if and only if its
Cartan matrix € is indecomposable (or, equivalently, if the Weyl group W of G is an
irreducible Coxeter group). We refer to [MT11, Chap. 9] and [GM20, Chap. 1] (and the

further references there) for a much more detailed description.

While there are numerous properties of (connected reductive) algebraic groups G and
the associated finite groups of Lie type G which can be proven rather uniformly as
the characteristic p of the ground field k = F, varies, there are a few distinguished very
small primes p (depending on G) which require a different treatment from the others at
several places, or even give rise to features of G which are not shared by the analogous
groups over ground fields of larger characteristics (and vice versa). These exceptional

primes are specified by the following definition.

Definition 2.1.8 ([BCCISS| E-I-§4]). Let G be a connected reductive group over k,
and let Z = (X, R,Y, RY) be the corresponding root datum. Let IT C R be a base for
R, with corresponding positive roots R C R, and let ap € R™ be the highest root of R
with respect to II (that is, we have ag + 3 ¢ R for any 3 € RT; the root «yq is uniquely
determined by this property). A prime p € N is called good for G (or for R) if in the
decomposition in of a into simple roots, p does not divide any of the coefficients
Nag,8- (This does not depend on the choice of II.) A prime p € N is called bad for G (or
for R) if it is not good. The bad primes for simple groups G are listed in Table

Important subgroups and conjugacy classes

2.1.9. Let G be a connected reductive group over k. A Borel subgroup of G is, by
definition, a maximal closed connected solvable subgroup B C G. Let % be the variety of

all Borel subgroups of G. The group G acts transitively on % by conjugation (see [Hum75|
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2. Finite groups of Lie type

Type of G Bad primes p

An .
B,,Cn,Dn 2
E67E7,F4,G2 273
Es 2,3,5

Table 2.2.: Bad primes for simple groups G

§21.3]), and we obtain a transitive action of G on the set {(T,B) € J x | T C B}
given by simultaneous conjugation. Thus, for each two pairs (T,B), (T/,B') € F x £
such that T C B and TV C B/, there exists some z € G such that T/ = Tz~ ! and
B’ = 2Bx~!. Let us fix a maximal torus T € .7. Since T is connected and abelian, thus
solvable, there exists some Borel subgroup of G which contains T. More precisely, as
described in [GM20, 1.3.4], if Z = (X(T),R,Y(T),RY) is the root datum of G with
respect to T and if we fix a base II C R with corresponding positive roots R™ C R, the

group
B:=(T,U,|acR")

is a Borel subgroup of G which contains T, and for any Borel subgroup B’ of G containing
T, there exists a unique w € W = Wg(T) such that

B = wBw ™! = (T,U, | a« € w(R")).

(Note that w(R™) is the set of positive roots with respect to the base w(Il) C R.) In
particular, this defines a bijection between the set of Borel subgroups of G which contain
T and the set of bases for R.

2.1.10. Let G be a connected reductive group over k, and let us fix a maximal torus
T of G, so that we obtain the Weyl group W = NG(T)/T as well as the root datum
#Z = (X,R,Y,RY) (with X = X(T), Y = Y(T)) of G with respect to T. Let us
choose a Borel subgroup B of G such that T C B and denote by II C R the base
for R corresponding to B, as described in Setting B := B, N := Ng(T) and
S :={wq | a € II} C W, the groups B and N form a BN-pair (or Tits system) in G in
the sense of [Bou68, Chap. IV, §2], see [Car85, Chap. 2] or [DM20, §3.1]. For later use we
will state some of the most important properties and definitions related to G here, based

on the fact that it is a group with a BN-pair. For proofs we refer to [DM20, Chap. 3]
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2.1. Connected reductive and finite reductive groups

(or [Car85, Chap. 2]) and the references there. Firstly, there is the Bruhat decomposition

G= |4 BuB
weW

where for w € W, we write BwB := BwB for any chosen representative w € Ng(T)
of w € W (this is clearly independent of the concrete choice of w). Now we consider a
subset J C S and denote by W; = (J) C W the subgroup of W generated by J. Any

such W is itself a Coxeter group, with Coxeter generators J. We set

P,:=BW,;B:= [{ BuBCG.
weEW j

Then P is a subgroup of G, which we will call a standard parabolic subgroup of G. (It
should be noted that the term ‘standard’ only makes sense once a Borel subgroup B is
prescribed, and then it is meant as ‘standard with respect to B’.) The unipotent radical
of P is given by
RyP;)= J] Ua.=:U,.
a€ERT\R;
Any closed subgroup of G containing B has the form P ; for some J C .S. More generally,
a parabolic subgroup of G is a closed subgroup P C G which contains some Borel
subgroup of G. Every parabolic subgroup P of G is conjugate to a standard parabolic
subgroup P for a suitable J C S. Furthermore, any parabolic subgroup P C G has
a Levi decomposition, that is, there exist a closed subgroup L C P and a semi-direct
product decomposition
P =R,(P) x L.

In this case, we call L a Levi subgroup (or a Levi complement) of P. In general, L is not
uniquely determined by P; however, if T C P, there is exactly one Levi complement L
of P which contains T. If P = P; for some J C S, we denote by L; the unique Levi
complement of Py such that T C Ly, and we call L; the standard Levi subgroup of the
standard parabolic subgroup P (which assumes that T and B are prescribed). A more
direct description of L is given as follows: Let us denote by II; C II the subset of the
simple roots such that J = {w, | @ € II;} and by R; C R the set of those roots which
are in the subspace QII; of Q ®z X (T). Then Ry is a root system in that subspace, and
II; is a base for R;. We have

L;=(T,U,|a€R))CG,

21



2. Finite groups of Lie type

and this is a connected reductive group whose root datum with respect to T is given by
Z; = (X,Ry,Y,RY) where RY = {a" | a € R;}. The Weyl group NL,(T)/ of L is
isomorphic to W ;. Any Levi complement L of any parabolic subgroup is conjugate to
L for some J C S, so L is a connected reductive group. Finally, we mention that the
Levi complements of parabolic subgroups of G are precisely the subgroups of G of the
form Cg(S) for closed subgroups S C G which are tori (see [DM20, 3.4.6, 3.4.7]).

2.1.11 Conjugacy classes. Let G be a connected reductive group over k. For later use
and to fix our notation, we collect some well-known definitions and results concerning
conjugacy classes of G.
(a) For the following we refer to [Gec03a, §2.5]. Let € be a conjugacy class of G. For
any g € ¢, we have
dim G = dim % + dim Cg(g).

Furthermore, the (Zariski) closure 4 of € is a union of conjugacy classes of G. Given
two conjugacy classes €, 6" of G, we write ¥/ < € if €' C €. This defines a partial
order on the set of all conjugacy classes of G.

(b) An element g € G is called regular if the centraliser Cg(g) is of minimal dimension
among all centralisers of elements in G; this is equivalent to dim Cg(g) = rank G (see
[BCCISS, E-111-§1]). Clearly, this condition is invariant under G-conjugacy, so it makes
sense to say that a conjugacy class € of G is reqular if one (any) of its elements is regular.

(c) For g € G, let us write g = gsgu = gugs for its Jordan decomposition (that is,
gs € G is semisimple and ¢, € G is unipotent; the elements g5 and g, are uniquely
determined by this property). Let S C G be a set of representatives for the semisimple
conjugacy classes of G and, for each s € S, let Us C Cg(s) be a set of representatives for
the unipotent conjugacy classes of Cg(s). Then it immediately follows from the existence

and uniqueness of the Jordan decomposition that
{su=us|seS, uel}

is a set of representatives for the conjugacy classes of . Thus, studying the conjugacy
classes of G is reduced to studying the semisimple conjugacy classes of G and the
unipotent conjugacy classes of centralisers of semisimple elements of G. Note that, by
[Car85, 3.5.4], C&(s) is a connected reductive group for any semisimple element s € G.
In many instances the group Cg(s) is connected (although not in general), for example,
if the derived group Gger = [G, G| of G is simply connected; see |[Car85, 3.5.6]. This
highlights the importance of studying unipotent conjugacy classes of connected reductive

algebraic groups.
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2.1. Connected reductive and finite reductive groups

(d) Let us now focus on unipotent elements and unipotent (conjugacy) classes of G.
(A reference for the following is [Car85, Chap. 5].) First of all, the set Gy consisting of
all unipotent elements of G is a closed irreducible subset of G and is called the unipotent
variety of G. Thus, if & C G is a unipotent class, the set & is contained in G, and,
hence, is a union of unipotent classes of G. There exist unipotent elements in G which
are regular, and the set ¢ of all these regular unipotent elements turns out to be a
single (unipotent) conjugacy class of G, which is dense open in Gyyi. In particular, with
respect to the order relation < defined in (a), we have & < 0y¢ for any unipotent class
0 of G. This also shows that & N Oye; = @ for any unipotent class & # Oyeg.

It is known that in any given connected reductive group G, the number of unipotent
classes is finite, although the proof of this result in complete generality is very deep,
see [Lus76a]. It is however easily seen that the classification of unipotent classes of a
connected reductive group G can be reduced to the case where G is a simple (adjoint)
group, using the canonical map G — G/ Z(G) (see the introduction to |Car85, Chap. 5]).

If G is a simple group, and if the characteristic p of k is good for G, there exists
a natural bijection between the nilpotent orbits of the Lie algebra g of G (under the
adjoint action) and the unipotent conjugacy classes in G. This allows a classification
of the unipotent classes of G, due to Bala—Carter [BC76a|, [BC76b|. (In loc. cit., there
is some lower bound imposed on p; Pommerening [Pom77], [Pom80] showed that the
results of Bala—Carter hold whenever p is a good prime for G.) In bad characteristic,
there is in general no such bijection between the nilpotent orbits on g and the unipotent
conjugacy classes of G, but the classification of the unipotent classes has still been carried
out in all cases, see the detailed overview in |Car85| §5.11] and the references there. A
single reference for the complete classification of unipotent classes of simple algebraic
groups G (and also the nilpotent orbits on g), both in good and bad characteristic, is
the book [LS12|, which also contains results on centralisers of unipotent elements in G
(and nilpotent orbits on g) which were previously not known.

We will be particularly concerned with simple ezceptional groups (not necessarily of
adjoint type) later, that is, groups of type Eg, E7, Eg, F4 or Gg (cf. . So let us assume
that G is such a group. As mentioned in [Car85| p. 183] (see also [LS12, Chap. 22]), the
unipotent classes which occur in good characteristic may be parametrised in the same
way in bad characteristic, but in some cases there are a few additional unipotent classes
when p is bad for G. So it makes sense to use the names in |[Car85] (which in turn are
due to Bala—Carter) uniformly for all characteristics, although for groups of type E,
(n=16,7,8), we will often also provide the names of Mizuno [Miz77], [Miz80]. (Note that
this does not depend on the isogeny type of G, using again the fact that the canonical
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2. Finite groups of Lie type

map G — G / Z(G) induces a bijection between the unipotent classes of G and those of
G / Z(G)-) An exception is the regular unipotent conjugacy class, which we will denote
by Oreg (0r sometimes ﬁf‘;g where ® is the name of the Dynkin diagram of the Cartan

matrix of G, in case G is not clear from the context), as above.

Frobenius maps and Steinberg maps

In order to obtain finite groups from a given (connected reductive) algebraic group G
over k, one considers fixed-point sets of G under suitable bijective endomorphisms of G,

so-called Frobenius maps or, more generally, Steinberg maps.

2.1.12. Let us first recall the notion of Frobenius maps for affine varieties and how such
maps give rise to finite subsets of these varieties. So let Z be an affine variety over
k, and let A := A[Z] C Maps(Z, k) be the associated k-algebra consisting of regular
functions Z — k, with addition and multiplication defined pointwise (see [Gec03a, 2.1.6]).
Let F': Z — Z be a morphism of affine varieties. Any such F induces an algebra

homomorphism
F*:A— A, a+—raolF.

Let ¢ = p® for some e € N. Following [Gec03a, 4.1.1] (see also |[GM20, 1.4.3]), we say
that F'is a Frobenius map corresponding to an F,-rational structure on Z, or that Z is

defined over F, with corresponding Frobenius map I, if the following two conditions hold
for (F,q):
(i) F* is injective and F*(A) = {a? | a € A};

(ii) For each a € A, there exists some m > 1 such that (F*)"(a) = a? .

The associated set of fixed points
7V ={2€Z|F(z) =2}

is called the set of Fy-rational points in Z (with respect to the Fy-rational structure defined
by F') and is sometimes also denoted by Z(F,;). This definition implies, in particular,
that F is a bijective map and that Z(F,) = Z" is a finite set (see |Gec03al 4.1.4]).

Definition 2.1.13. Let G be an algebraic group over k. A map F': G — G which
is an endomorphism of the algebraic group G and at the same time a Frobenius map
of the affine variety underlying G in the sense of [2.1.12] (with respect to some power

q of p) is called a Frobenius map or a Frobenius endomorphism of G. More generally,
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2.1. Connected reductive and finite reductive groups

following [GM20, 1.4.7], we say that a homomorphism F': G — G of algebraic groups is
a Steinberg map of G if some power of F' is a Frobenius map of G. Thus, any Steinberg

map F': G — G is bijective, and
G ={geG|F(9) =g}

is a finite subgroup of G. If the algebraic group G is connected and reductive, the group

Gt is called a finite group of Lie type or a finite reductive group.

While we refer to the literature (e.g., |Gec03a, Chap. 4], |GM20, §1.4]) for standard
properties concerning Frobenius and Steinberg maps of algebraic groups, let us explicitly
state the following fundamental result, which is an indispensable tool when seeking to
transfer properties of a connected algebraic group G (endowed with a Steinberg map
F: G — G) to the finite group G,

Theorem 2.1.14 (Lang—Steinberg |[Lan56|, |[Ste68| 10.1]; see [GM20} 1.4.8]). Let G be
a connected algebraic group over k, and let F': G — G be a Steinberg map. Then the
Lang—Steinberg map

L:G—=G, g~ g 'F(g),

18 surjective.
Proof. See, e.g., [GM20, p. 43]. O
Here are some direct consequences of the Lang—Steinberg Theorem.

Corollary 2.1.15. Let G be a connected reductive group over k, and let F: G — G be
a Steinberg map. There exists a pair (To,Bo) € T x A such that Ty C By, F(Ty) = Ty
and F(Bg) = Bg. Moreover, the GF'-conjugacy class of the pair (To,Bg) is uniquely
determined by this property.

Proof. This is a standard application of the Lang—Steinberg Theorem [2.1.14] see, e.g.,
[GM20, 1.4.9, 1.4.12]. O

Definition 2.1.16. Let G be a connected reductive group over k, and let F': G —» G
be a Steinberg map. A maximal torus Ty C G is called maximally split if F(Ty) = Ty
and if there exists some Borel subgroup By of G such that F(Bg) = By and Ty C By.

By Corollary [2.1.15] every connected reductive group G over k with a given Steinberg
map F: G — G contains a maximally split torus, and any two maximally split tori of G

are conjugate by an element of G
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2. Finite groups of Lie type

2.1.17. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. We fix a maximally split torus To C G. Since Ng(Ty) is also F-stable, F' induces
an automorphism of the Weyl group W = N c(To) /T, of G with respect to To, which
we denote by o: W = W. Consider the action of W on itself defined by

WXxW W, (wy)—wyo(w) L

The orbits of this action are called the o-conjugacy classes of W. For w € W, let us
choose a representative @ € Ng(Tp) of w and some g € G such that ¢~ 'F(g) = w

(Theorem [2.1.14). Then

Ty = gT(]g_l

is an F-stable maximal torus of G, called a torus of type w with respect to Ty. The
GF-conjugacy class of T,, is independent of the choice of w and g above, and the
assignment w — T, induces a bijection between the o-conjugacy classes of W and the

GP'-conjugacy classes of F-stable maximal tori of G (see, e.g., [Gec03a, 4.3.7]).
For later use it will be convenient to introduce the following notation.

Definition 2.1.18 (cf. [Lus77, 7.2]). Let G be a connected reductive algebraic group
over k, and let F': G — G be a Steinberg map. A closed (connected) subgroup L C G is
called a regular subgroup of G if F(L) = L and L is the Levi complement of some (not
necessarily F-stable) parabolic subgroup of G.

2.1.19. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. Let us fix a pair (To,Bg) € 7 x £ consisting of a maximally split torus Ty of
G and an F-stable Borel subgroup By of G such that To C Bg. Let Z = (X, R,Y, RY)
be the root datum of G with respect to Ty. (In particular, we have X = X(Ty) and
Y =Y(Tyh).) Asin F induces an automorphism o: W =+ W of the Weyl group
W = Na(To) /T, of G with respect to Tq. As before, we identify W with the Weyl group
of R, using the action of W on X defined in Let IT C R be the base determined
by By, with corresponding positive roots Rt C R, and let S = {w,, | @ € I} be the
associated set of simple reflections in W. Let a € R, and let us consider the corresponding
root subgroup U, C G, as in . Clearly, F(U,) is again a one-dimensional closed
connected unipotent subgroup of G which is normalised by F'(Ty) = To, so F(U,) = Ut

for some of € R. We thus obtain a bijection

R — R, a— al.
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2.1. Connected reductive and finite reductive groups

On the other hand, F' induces a group homomorphism
0: X =X, A= Ao Flp,,

and we have

o(a') = g for any o € R,

where ¢, € N are positive integers, each of which is a power of p (see [GM20, 1.3.11]). The
numbers ¢, (« € R) are called the root exponents of F' (and also of ¢), and ¢ is an example
of a p-isogeny of root data in the sense of [GM20| 1.2.9]. In the case where F is a Frobenius
map (and not only a Steinberg map) with respect to an F4-rational structure on G, we
have q, = q for all @ € R [GM20, 1.4.27]. Now let « € R*. Then U, C Ug := R,(By)
and, since By is F-stable, we also have U+ C Uy. Therefore, the assignment o + of
defines a permutation of R and also of II. Identifying W = (w, | @ € R) (as a subgroup
of Aut(X)), we get

o(wg) =wyr foralla € R

and

poo(w)=woyp foralweW,

see |[GM20, 1.2.10, 1.6.1]. In particular, we have o(S) = S. Following [Lus84a, 3.1]
(see also [GM20| 1.6.2]), the automorphism ¢ is called ordinary if for any two different
elements s # t of S which are in the same o-orbit on S, the product st is of order 2 or 3.
As in [GM20, 1.6.2], we say that the pair (G, F) is

non-twisted  if o = idw;
twisted if 0 # idw but o is ordinary;

very twisted otherwise.

Now let us assume that G is a simple group. Let d € N be such that F¢ is a Frobenius
map with respect to an Fy -rational structure on G (where qq is a power of p), and let
q € R-g be such that ¢? = gg. (The number ¢ does not depend on the choice of d or
o, see [GM20|, 1.4.19].) Let € be the (indecomposable) Cartan matrix of G, and let ©
be the name of the Dynkin diagram D(€) of €. If ¢ € N is the order of o € Aut(W),
we say that (G, F) is of type “© and write G = “D(g). A complete list containing all
the possible types of (G, F) (including the order |G¥|) for a simple group G is provided
in [GM20, Table 1.3 (p. 73)]. Among this list, the very twisted groups are the Suzuki
groups 282((]) with ¢ = \/§2m+1, and the Ree groups *F4(q) with ¢ = \/§2m+1, 2Ga(q)
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with ¢ = \/§2m+1, respectivel We refer to Steinberg’s lecture notes [Stel6, Chap. 11]

for further details.

2.1.20. We keep the setting of 2.1.19] Given a g-orbit x on S, we set
s i=wh € (Wy)? CW?

where, for any subset J C S, wy denotes the longest element in the Coxeter group
W, = (J) € W with respect to the length function determined by the Coxeter generators
J of W . Following [Car72, Chap. 13|, the group W7 = NG(TO)F/Tg is a finite Coxeter

group with Coxeter generators
Se :={sk | Kk C S a o-orbit}.

Of course, we just have W7 = W if ¢ = idw. In the case where W is irreducible (that
is, G is simple) and o # idw, the root system underlying W? is explicitly described in
|Car72, §13.3]; in particular, we see that W? is itself a Weyl group if o is ordinary. Just
as By and Ng(Tp) form a BN-pair in G, with Weyl group W and simple reflections
SCW , the groups BY' and Ng(To)? form a BN-pair in G¥', with Weyl group
WP¢ and simple reflections S, C W?. In particular, the Bruhat decomposition for G’
reads
G"= [ B{uwB{
weW?

where By wB{ := B{wB{ for any chosen representative w € Ng(Tg)!" of w € W©.
As described in |Car85, p. 36], given w € WP7, it is possible to uniquely specify a
representative i € Ng(To)" of w (using the generators S, for W?). It will sometimes

be convenient to refer to this explicit choice.

Example 2.1.21. We place ourselves in the setting of 2.1.19} By [DL76] 5.21] (see
also [Lus84al 8.4], [Car85, §4.3], [GM20, 1.5.17]), the quadruple (G, Ty, By, F) gives rise
to a dual quadruple (G*, T§, B, F”’) (we have chosen the symbol F’ instead of F* in
order to avoid confusion with the inverse image functor, see Chapter [3| below), with the
following ingredients: G* is a group dual to G (see Example and F': G* - G*
is a Steinberg map. Furthermore, T C G* is an F’-stable maximal torus of G* and
B C G* is an F’-stable Borel subgroup of G* containing T}, such that the pair (T, Bf)

'We decided to conform with the notation for algebraic groups. As far as the Suzuki and Ree groups are
concerned, this differs from the conventions in terms of finite group theory, where one would rather
write *Bs (¢®) for the Suzuki groups and 2F4(q?), 2G2(g?) for the Ree groups.
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satisfies the following property: There exists an isomorphism
§: X(To) = Y (T}) (2.1.21.1)

which maps the set of roots of G with respect to Ty onto the set of co-roots of G* with
respect to T, and the set of simple roots of G determined by (T, Bg) onto the set of
simple co-roots of G* determined by (T§,B{). Finally, we require that

5()\ o F|T0) = F/|T’6 o 5()\) for all A € X(To)

Let W* = Ng- (TS)/TS be the Weyl group of G* with respect to Tj;. By [Car85, 4.2.3],
the isomorphism ([2.1.21.1)) induces a group isomorphism

W S W* w = w®, (2.1.21.2)

uniquely determined by the condition that for any root a of G and its associated
reflection w, € W, w}, € W* is the reflection associated to the co-root d(a) of G*. This

isomorphism satisfies
O(w.A\) =w*.0(N) for any w € W, X € X(Ty),

where the actions of W on X (Ty) and of W* on Y (T}) are defined as in Moreover,
under the isomorphism (2.1.21.2)), the automorphism of W induced by F corresponds to
the inverse of the automorphism of W* induced by F’ (see |[Car85} 4.3.2]), that is, we
have

o(w)* =o' '(w*) for any w € W,

where ¢/: W* =5 W* denotes the automorphism induced by F’: G* — G*.

2.2. Lusztig's classification of irreducible characters (the

connected centre case)

We will be concerned with the ordinary representation theory of the finite groups of
Lie type G, that is, with representations (and characters) of G over an algebraically
closed field of characteristic zero. It is well known that it does not really matter which
exact algebraically closed field of characteristic zero we take for this purpose. While in
general the field C of complex numbers would be the canonical choice, when dealing with

finite groups of Lie type, the standard field to work with is an algebraic closure @, of the
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2. Finite groups of Lie type

field of f-adic numbers Q; (where, as soon as the field k = F,, is prescribed, ¢ is tacitly
assumed to be any fixed prime number different from p), so that the typical tools from
algebraic geometry or topology can be applied (see, e.g., [DL76], [Lus78]). Recall from
the introduction that, although not strictly necessary, we assume the existence of an

isomorphism between @, and C ((1.1.0.1]). Given a finite group I, let CF(T") be the set of
class functions I' = Qy, and let us denote by

ol =

= > fl9)f(g) (for f,f € CF(I)) (2.2.0.1)

gel

the standard scalar product on CF(I"), where the bar denotes the field automorphism
of @, which corresponds to complex conjugation under the isomorphism . (The
only property of this field automorphism that we actually need is that it maps any root of
unity in Qy to its inverse.) Let Irr(T') € CF(T") be the subset of irreducible characters of
I'. They form an orthonormal basis of CF(I") with respect to the scalar product ([2.2.0.1)).

Fundamental induction processes for characters

2.2.1. A vital role in the character theory of finite groups of Lie type is played by the
l-adic cohomology attached to suitable algebraic varieties (or, more generally, schemes),
due to SGA 4 [AGVT73|, SGA 43 [Del77], SGA 5 [Gro77], see also [Sri79, Chap. V], the
appendix of [Car85], and the further references there. So let us consider an algebraic
variety X over k = F,. As mentioned in [Lus78, 1.2] (see also [Car85, §7.1], |[GM20, 2.2.1]),
it is a very deep result that one can canonically attach to X a family of Q,-vector spaces
Hi(X,Qy) (for i € Z), called f-adic cohomology groups with compact support. Each of
these vector spaces is finite-dimensional, and we have H.(X,Q,) = {0} for i < 0 and
for ¢ > 2dim X. They are functorial in the sense that any finite morphism f: X — X’
of algebraic varieties induces a linear map f*: Hi(X',Qy) — HY(X,Qy), for each i € Z.

Assume that we are given a finite group I which acts on X via the homomorphism
©: T = Aut(X), g— 0,

(where Aut(X) denotes the group of all algebraic automorphisms of X). Then each
Hi{(X,Qy) (i € Z) has the structure of a I-module, with corresponding representation
given by

I' —» GL(HAX,Qp)), g+ (0,-1)".
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

The Lefschetz number of g € I' with respect to such an action is defined by

£(g,X) := Z(—l)i Trace((@gq)*, H!(X, Qy)).

1€Z

This number does not depend on the choice of £ # p, and we have
L9, X) =8¢, X)eZ forallgeTl.

For more properties related to the f-adic cohomology groups with compact support, we
refer to [Car85, §7.1], see also [Lus78, §1], [DM20, Chap. §].

2.2.2. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. The following construction based on the ¢-adic cohomology groups with compact
support will give rise to the definition of the virtual characters of Deligne and Lusztig in
[DL76] (see Definition below), which in turn are a central ingredient for Lusztig’s
classification of irreducible characters of GI" |[Lus84a], [Lus88|. It is very convenient to
use the model in [GM20, 2.2.5], as it allows the definition of Lusztig induction in a similar
way (see Definition below). We thus follow |[GM20| §2.2] here.

Recall the definition of the Lang—Steinberg map £: G — G in Theorem For a
closed subset Y C G, the preimage £71(Y) is a closed subset of G which is stable under
left multiplication by any element of GF'. Assume that we are given a finite subgroup H

of G which satisfies the property
R YYF(h) CY forall h € H.

Then £71(Y) is invariant under right multiplication by any element of H. Thus, we
obtain an (algebraic) action of G x H on £71(Y), defined by

(G x H)y x £7YY) = £7XY), ((g,h),z) — gzh™ L.

This gives rise to an induced action of G x H on the Q,-vector space H:(L™1(Y),Qy),
which makes the latter a module for the finite group G x H. For § € CF(H), we may

thus define (see |[GM20, 2.2.5])
— 1
heH

We have RﬁY(Q) € CF(GF). If 0 is a wvirtual character of H (that is, a Z-linear

combination of irreducible characters of H), then ng(ﬁ) is a virtual character of G
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2. Finite groups of Lie type

If H is an F-stable closed subgroup of G and H := H | it will be convenient to set
RSy (9) :== R§y(0) for 6 € CF(H).

Definition 2.2.3 (Deligne-Lusztig [DL76], Lusztig [Lus78]). Let G be a connected
reductive group over k and F': G — G be a Steinberg map. Let us fix a maximally split
torus Ty C G, and let W = NG(TO)/T0 be the Weyl group of G with respect to Ty.

(a) Let T C G be an F-stable maximal torus, and let B C G be a (not necessarily
F-stable) Borel subgroup such that T C B. We denote by U := R,(B) the unipotent
radical of B. Then Y := U and H := T¥ meet the requirements of For 0 € Trr(TT),
we set

RF(0) := RF (),

which is referred to as the virtual character of Deligne—Lusztig with respect to T, 6. (It
is justified to omit U from the notation since the definition turns out to be independent
of the choice of B, see [DL76, 4.3] or [Lus78, 2.4].) By a slight abuse of notation, we will
often omit the word ‘virtual” and just speak of the Deligne—Lusztig characters. If w € W
and T,, C G is a torus of type w with respect to T (see , it will be convenient to
write

Ry = R§ = R, (Lrr).

(We will omit G from the notation when it is clear from the context.)
(b) An irreducible character p € Irr(GF) is called unipotent if there exists some w € W
such that (p, Ry)qr # 0. We denote the set of unipotent characters of G by

Uch(GF) C Irr(GF).

2.2.4. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. We collect some of the most important properties of the Deligne—Lusztig characters
with regard to the irreducible characters of G" here. (They are all contained in [DL76]
and [LusT78|; see also the textbooks [Car85, Chap. 7], [DM20, Chap. 9] or [GM20, §2.2].)
First of all, for every p € Irr(GF), there exists some F-stable maximal torus T C G and
some 6 € Irr(TF) such that

(p, RF(0))gr # 0.

An irreducible character p € Irr(GT) is called uniform if it can be written as a linear
combination of R% (6;) for suitable F-stable maximal tori T; C G and 6; € Irr(T}). The

values of a Deligne-Lusztig character R.% (6) at unipotent elements of G" are shown to
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

be independent of § € Irr(TF), that is, for any F-stable maximal torus T C G, we have
R$(0)(u) = R§(1)(u) for any u € GE . and any 0 € Irr(TF).
(Here, 1 denotes the trivial character of TF.) The functions

QF: GEi = Qp u— RE(1)(w) (2.2.4.1)
(where T runs over the F-stable maximal tori of G) are called the Green functions of G¥'.
We have QG (u) € Z for all u € GE . If T = T,, is a torus of type w, one also sometimes
writes Qy 1= %w. The importance of the Green functions is highlighted by the following
character formula. Let g € G, and let g = su = us be the Jordan decomposition of ¢

(with s € G semisimple and u € G’ unipotent). Setting H := C&(s), we have

1 —
[HF| Z 0" s2)Qyrp, (). (2.24.2)
zeGF
z lszeT¥

RE(0)(g) =

Next, the Deligne—Lusztig characters satisfy the following ‘scalar product formula’, see
[GM20, 2.2.8]: For any two F-stable maximal tori T, T’ C G and any two irreducible
characters 6 € Irr(TF), ' € Irr(T'F), we have

1 -
(RF(0). B () ar = gy [{9 € G [ 9Ty = T/ and 76 =/}

where
99: T - Q,, t'— 0(g 1 H'g).

The scalar product formula has several immediate consequences. Namely, one deduces
that two Deligne-Lusztig characters RS (6), RS/(0') are equal if and only if there exists
some g € G such that gTg~! = T’ and 90 = ¢; in any other case, R$(0) and RS (¢')
are orthogonal to each other. Furthermore, we see that if § € Irr(TF) is in general
position, that is, we have 90 # 0 for all g € Ng(T)" \ T, either R$(#) or —R$(0) is

an irreducible character of G¥'.

2.2.5 Green functions. In view of the character formula , the computation
of the Deligne Lusztig characters at arbitrary elements of G is reduced to that of
the Green functions of finite reductive groups contained in G¥' (see [Gec21} §2, §3] for
information on the technical task of evaluating the coefficients of the Green functions in
(2.2.4.2)). It is thus no surprise that a lot of work has been dedicated to the computation
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2. Finite groups of Lie type

of the Green functions of finite groups of Lie type.

In good characteristic, based on a method due to Shoji [Sho82|, the determination of
the Green functions has been completely realised already in the 1980s (see Shoji [Sho82]
for G of type F4, [Sho83| for G of classical type, and Beynon—Spaltenstein [BS84] for G
of type Eg, E7 and Eg). However, this approach does not cover the cases where p is a bad
prime for G.

The obvious advantage of dealing with small primes is that the size of the group G’
is comparatively small, so one can try to take a simple group G and perform ad hoc
computations in order to get information on character values; in this way, the Green
functions have been determined for groups of type F4, 2F4 and Eg in characteristic 2 by
Malle [Mal90], [Mal93], and for groups of type Eg in characteristic 3 by Porsch [Por93].

But in order to obtain a uniform result for the infinite series of classical groups (or
also for the big exceptional groups of type E; or Eg), it seems that more general methods
are required. To this end, Lusztig defined another kind of Green functions |[LuCS5| §24],
using his theory of character sheaves, which we will introduce in Chapter [3] below. Up
to certain signs, these new Green functions are computable by a purely combinatorial
algorithm, which modifies and simplifies Shoji’s approach mentioned above; see the
explanations in Shoji’s survey |Sho87a]. In the case where F': G — G is the Frobenius
map for an F-rational structure on G (for a power ¢ of p) and if ¢ is large enough (but
with no restriction on p), Lusztig showed that these new Green functions coincide with
the original ones multiplied by (—1)4™To ([Lus90, Thm. 1.14], see also the remarks in
[Sho95a;, 1.12]); this result was then proven to hold for arbitrary p and ¢ by Shoji, see
[Sho95a, Thm. 2.2], [Sho95b, Thm. 5.5].

So it remains to determine the unknown signs appearing in Lusztig’s above-mentioned
algorithm. This has been accomplished in most cases (but still not in full generality):
Shoji [Sho06b], [Sho07], [Sho22] completed the computation of Green functions for any
classical group (in characteristic p = 2). As far as groups of type F4 are concerned,
it is noted in Marcelo—Shinoda [MS95] that Shoji’s tables for the Green functions are
valid for p = 3 as well. The groups 2Eg(p™) and E7(p") for p < 3 and n € N have been
settled recently by Geck [Gec20b|, by showing how the results of Lusztig and Shoji can
be reduced to the case where p = ¢ and then using computer algebra methods; |Gec20b|
also provides an independent verification of the results for Eg(3™) and F4(3"™). At least
one previously open case for Eg(2") is solved in [Gec20b|, §9] as well, but the complete
computation of the Green functions for the groups Eg(2"), Eg(3™) and Eg(5™) has not yet

been realised.

2.2.6 Harish-Chandra series. Before introducing the necessary set-up of [Lus84a] to
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

be able to state Lusztig’s ‘Main Theorem 4.23" (see Theorem below), let us briefly
mention another approach towards classifying the irreducible characters of finite groups
of Lie type, namely that of Harish-Chandra theory.

Let G be a connected reductive group over k and F': G — G be a Steinberg map. Let
us fix a maximally split torus Ty C G as well as an F-stable Borel subgroup By C G
which contains T¢. Thus, we obtain the Weyl group W = Ny c(To) /T, of G with respect
to Ty and denote by 0: W =+ W the automorphism induced by F. Let S C W be the
simple reflections determined by By D Ty.

e If L C G is an F-stable closed subgroup which is the Levi complement of some F-
stable parabolic subgroup P of G, then P¥ is the semi-direct product Ru(P)F x LF
(see [2.1.10)), so the canonical projection map P — L gives rise to the inflation
map

Ay : CF(LF) — CF(PF),

which sends (irreducible) characters of L to (irreducible) characters of P (cf.
[GM20,, 2.1.3]). The Harish-Chandra induction from L¥ to G (on the level of

characters, or class functions) is defined as
RE := IndSr oInfify : CF(LF) - CF(GF).

It is justified to omit P from the notation since RE turns out to be independent of
the chosen F'-stable parabolic subgroup P C G having L as a Levi complement,
see [DM20, 5.3.1]. Clearly, RY sends characters of L to characters of G, being
the composition of two maps with the analogous properties. There is a notational
overlap with the Deligne-Lusztig characters if L happens to be a maximally split
torus Ty of G, but this is no issue since these two induction concepts coincide in
this case (see |[Car85| 7.2.4]).

e An irreducible character p € Irr(GF) is called cuspidal if (p, RE(p'))gr = 0 for
any F'-stable closed subgroup L € G which is the Levi complement of some
proper F-stable parabolic subgroup of G, and any p’ € Irr(Lf). We denote by
Irr(GF)° C Irr(GT') the subset of cuspidal (irreducible) characters of G¥".

« For any p € Irr(GF), there exists some F-stable closed subgroup L C G which is
the Levi complement of some F-stable parabolic subgroup of G, and a cuspidal
character py € Irr(L¥)° such that (p, RZ(po))qr # 0. In fact, L can always be
chosen to be a standard Levi subgroup L for some o-stable J C S, and then p

determines L and pg uniquely up to simultaneous conjugation with an element of
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2. Finite groups of Lie type

W, see [Car85, Chap. 9]. This gives rise to a partition of Irr(G¥') into so-called
Harish-Chandra series, one for each ‘cuspidal pair’ (cf. [DM20, §5.3]) (L, po) as

above up to W-conjugacy.

Hence, in order to obtain a parametrisation of Irr(G*") in terms of Harish-Chandra series,
one needs to know the cuspidal characters for any finite reductive group which is of
the form Ll; as above and, for any pg € Irr(L}j )°, one has to find the decomposition of
REJ (po) into irreducible characters of GI'. The latter can be tackled using the Howlett-
Lehrer theory [HL80], which is based on the fact that there is a bijection between the
irreducible constituents of RS](PO) (counted without multiplicity) and the irreducible
representations (up to isomorphism) of the Q,[G]-endomorphism algebra of REJ (po),
for any ‘cuspidal pair’ (Ly, po) as above (see, e.g., [Car85, Chap. 10]). Now there is a
natural action of Ng (L) on Irr(LY), defined by

Na (L))" x Irr(LY) — Irr(LY),  (n,x) = "x,

where

" LE Qe x(nlan),

and this action leaves the set Irr(L§ )° invariant. It is also clear that *y = x for any

x € Lf; and any x € Irr(L}j ), so we obtain an induced action
Na(Ly)" /L E x Trr(LY) — Tie (L), (2.2.6.1)

Due to results of [HL80|, [Lus84a, Chap. 8], [Gec93|, it is known that the Q,[GY]-
endomorphism algebra of RE} (po) is always isomorphic to the group algebra (over Q) of
the stabiliser of pg in Na (L )F /LY, so the irreducible constituents of RE’J (po) (counted
without multiplicity) are parametrised by the irreducible characters of this stabiliser.
In the special case where L = Ty and py = 1T0F is the trivial character of Tg , this
leads to the so-called principal series of unipotent characters of G, that is, the set
of all irreducible constituents of IndgollwP (1Bév). The unipotent characters of G in the
principal series are thus parametrised by Irr(W?). In this situation, we will give a
precise description of said parametrisation in Section below. For a detailed coverage
of Harish-Chandra theory in general, we refer to the literature (e.g., [DM20, Chap. 5],
[GM20l Chap. 3]). However, note that this approach does not give any information on
the cuspidal characters of connected reductive groups themselves, so one needs another
method to determine the cuspidal characters of a given connected reductive group G

(with Steinberg map F': G — G). Such a criterion is provided by Lusztig in [Lus78, 2.18],
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

using the Deligne-Lusztig characters: An irreducible character p € Irr(GF) is cuspidal
if and only if for any F-stable maximal torus T C G which is contained in a proper

F-stable parabolic subgroup P C G, we have
(p,R$(0))gr =0 for any 6 € Trr(TF). (%)

The multiplicities of the irreducible characters of G in a given Deligne-Lusztig character
are explicitly known, thanks to results of Lusztig. (The case where the centre Z(G) of
G is connected is contained in [Lus84a, Main Theorem 4.23], which we will formulate
in Theorem below; this result is extended to the non-connected centre case in
[Lus88|.) In particular, the condition can be checked effectively, and this will provide

the list of cuspidal characters of G".

Lusztig’s parameter sets associated to Weyl groups and the non-abelian
Fourier transform

2.2.7. Let I be a finite group, and let us assume that we are given a group automorphism
v: T = T. Let d € N be the order of v € Aut(I'). Thus, we may consider the semidirect
product

I'(y):=T x(y) wherey-g-7 ! =~(g9) foranygeT. (2.2.7.1)

This uniquely determines a group structure for I'(y) (a finite group, the underlying set
being the Cartesian product of I' and the cyclic group (y) = Cy, such that the usual
inclusion maps I" < I'(y) and () < I'(y) are both group homomorphisms). Following
[GM20, 2.1.6, 2.1.9], we introduce some basic notions concerning extensions of characters
of I" to I'(y). Consider the map

Irr(T) — Irr(T), x+— x":=xo07, (2.2.7.2)

and denote by
Irr(T)” :={x € Irr(T") | x” = x}

the set of y-fixed points. Let y € Irr(I')”, and let ©: I' — GL,(Q,) (where n = x(1))
be a matrix representation which affords the character x. Then © o« also affords x, so
there exists an invertible matrix E € GL,(Q,) such that

O(y(g))=F-0(g)-E~! forallgel.
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2. Finite groups of Lie type

By Schur’s Lemma, this condition determines F up to multiplication with a non-zero
scalar. In fact, E can be chosen in such a way that E? is the identity matrix in GL,,(Q,)
(one can argue similarly as in the proof of [Fei82, I11.2.14]), and then E is unique up to
multiplication with a dth root of unity of Q,. Unless otherwise stated, we will always

assume that F' is chosen in this way in such a set-up. The map

: T — Qg g+ Trace(O(g) - E) = Trace(E - O(g)).

7 consists precisely

is called a y-extension of x. This notion is justified since the set Irr(I")
of those irreducible characters of I' which can be extended to a character of I'(7y), and
any such extension will automatically be an irreducible character of I'(y): Namely, if ©,

E are as above (coming from x € Irr(I)7), it is easy to check that

I'(7) = GL.(Q), (9.7") ~ O(g) - E,

is a well-defined representation of I'(v), whose restriction to I' is ©. The d possible
choices for E thus lead to d different extensions of x € Irr(T")” to I'(7), and any extension
of x arises in this way. By a slight abuse of notation, we will sometimes tacitly identify

the y-extension x with the corresponding extension of x to I'(7).

2.2.8. Let W be the Weyl group of a reduced crystallographic root system R in the
finite-dimensional R-vector space V spanned by R. We assume that a set of simple roots
in R has been fixed and denote by S C W the corresponding set of simple reflections in
W. In [Lus84a, 4.4-4.13], Lusztig describes a partition of the irreducible characters of
W into families, which relies on a case-by-case investigation of the different irreducible
Coxeter groups (W, S). To each family F C Irr(W) is associated a certain finite group
G = Gr and a set M(G), defined as

Mm(G) :=1{(9,0) g€ G, o €rr(Cg(9))}/ . (2.2.8.1)
where ~ denotes the equivalence relation given by
(9:0) ~ (hgh™","0) for h € G, o € Irr(Cg(g)),

with "o being the irreducible character of Cg(hgh™') = hCg(g)h~" defined by composing
o with conjugation by h=!. The set 9U(G) is equipped with a pairing

{1+ M(G) x M(G) = Q,
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

defined by

= 71 71 "¢ \e)o(zha™!
{(g,0),(h,7)} = Cola) 1ol xezg (z g 2)o(zha™?),  (2.2.8.2)

grhx—l=xzhx—lg

for (g,0), (h,7) € M(G). Then, for any family F C Irr(W), Lusztig specifies an embed-
ding F — M(Gr). Setting

XW)= J[ MGr), (2.2.8.3)
FCIrr(W)
family

we therefore obtain an embedding
r(W) = X(W), ¢ — x4. (2.2.8.4)

When no confusion may arise, we will sometimes write Irr(WW) C X(W) or even ¢ € X(WW),
thus tacitly referring to the embedding . The pairing { , } is extended to
X (W) x X(W) in such a way that {(g,0), (h,7)} := 0 whenever (g,0), (h,7) € X(W) are
not in the same M(Gr). Note that X(WW) is a finite set (whose definition also depends
on R, S, but we omit them from the notation since we will always keep them fixed in a
given setting). When we are given a concrete irreducible Weyl group W (of exceptional
type) later, we will sometimes denote a family of Irr(W) by F, where a = a4 € Ny is as
defined in [Lus84a) 4.1] for ¢ € F, (this does not depend on the choice of ¢ € F), cf.
[Lus80, 1.7]; the number a often uniquely specifies the family F,, although not in general.

Definition 2.2.9 (Lusztig [Lus79, §4]). In the setting and with the notation of [2.2.8 let
F C Irr(W) be a family of irreducible characters of W. Assuming that an order of the
elements in M(Gr) has been fixed, the matrix

Yr:=({z,9}),yemir)

is called ‘the’ Fourier matrixz of the family F (or of the group Gr). (YLr is thus only
determined up to simultaneously permuting its rows and columns.) If we fix an order
FLY F2,..., F® of the families in Irr(WW) and, for each such F?, an order of the elements
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in M(Gxi), we obtain a block diagonal matrix

T]:l 0
Ty = .
0 T 7

of size |X(W)| x |X(W)|. But even without having specified an order of the F? or of the
elements inside each M(G i), we will (by a slight abuse of notation) still speak of ‘the’
Fourier matriz Ty of W. (So Ty is only determined up to the order of the blocks T z:

and up to simultaneously permuting the rows and columns of each block T z:i.)

Remark 2.2.10. Let G be a finite group, and let M(G) be as defined in Following
[Lus79, p. 323] we may define, for any function f: M(G) — Qy, a function

~

Fr(G) = Qp me Y {mom}f(m),

m/'eM(G)

which Lusztig calls the ‘(non-abelian) Fourier transform of f’. This is motivated by the
fact that if G is abelian, we have 9(G) = G x Hom(g,@zX ) and, hence, the function
f: M(G) — Qy is given by

flg,0) = = > 7(9)a(h) f(h,7) for (g,0) € G x Hom(G,Q;).

| (h,7)€GxHom(G,Q; )

2.2.11. By [Lus79, (4.1), (4.2)], the Fourier matrix YTy in Definition is hermitian,
and Y%, is the identity matrix. As we see from the analysis in [Lus84al 4.4-4.13], the
group Gr associated to a family F C Irr(W) is always one of

{1}, C5 (direct product of e > 1 copies of the cyclic group of order 2), &3, &4, Ss.

A case-by-case inspection reveals that we actually have {m,m'} € R for any family
F C Irr(W) and any m,m' € 9M(Gr), that is, the Fourier matrix Yy is in fact a
symmetric matrix. Apart from the main reference [Lus84a), 4.3-4.15] on the families of
irreducible characters in a Weyl group and the associated Fourier matrices, one may
consult |Car85, §13.6], where the full 21 x 21 matrix arising from the group &, is included
(which occurs for W of type F4), except that the entry corresponding to ((1,0), (g3,1))
should be —% instead of % However, in either of these references, the full 39 x 39 matrix
associated to the group &5 (which occurs for W of type Eg) is not explicitly printed.

This matrix can be accessed electronically through Michel’s development version of the
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

CHEVIE package of GAP3 (see [MiChv]), using the commands

W:=CoxeterGroup("E",8);
FS5:=Fourier (UnipotentCharacters(W) .families[46]);
Display(UnipotentCharacters (W) .families[46]);

The second line gives the Fourier matrix Tz, of size 39 x 39, where the chosen order of
the labels inside M(Gr,,) can be read off from the output of the command in the third
line. One can also get the other Fourier matrices Yz with CHEVIE [MiChv|, using similar
commands as above, but it is important to note that, in general, the entry corresponding
to (m,m’) € M(Gr) x M(GF) is

A(m)A(m') - {m,m'} where A:M(Gr) — {£1} is as defined in [Lus84a) 4.14].

(For most of the families 7 C Irr(WW) however, we have A(m) = +1 for all m € M(Gr);
this includes the case where W is of type Eg and F = Fjg is the family considered above,
so the matrix FS5 does indeed coincide with Yz, if the order of the elements in M(Gx,,)
is chosen accordingly.) The complete ‘CHEVIE Fourier matrix’ (that is, including the A

function, as described above) can be obtained by typing
Fourier (UnipotentCharacters(W));

(with W assumed to be a Coxeter group), although this is not a block diagonal matrix
most of the time since the order of the elements of X(W) is in accordance with the one in
UnipotentCharacters (W), which is in terms of Harish-Chandra series rather than with
respect to families in Irr(W). Since the author could not find a non-electronic reference
for the Fourier matrix of &5 (of size 39 x 39), it is printed in Table in the appendix.

2.2.12. In the setting of assume that we are given an automorphism v: W = W
which satisfies v(S) = S. In [Lus84aj, 4.19-4.21], Lusztig generalises the situation in
2:2.8 to the present case by taking the automorphism + into account, at least under the
additional assumption that v is ordinary (see . We do not give these definitions
in the most general set-up at this point since they rely on quite an elaborate technical
machinery which we shall never need in full extent. (For instance, in all the cases that we
will be concerned with, the Weyl group W is actually irreducible; moreover, in most of
the cases v will in fact be just the identity on W, which leads to a drastic simplification
of the description, see below.) Instead, we only sketch the most important notation here,
which we shall make more explicit when dealing with the various specific examples later.

There is a finite set X(W,~) as well as an infinite set X(W,~) attached to (W,v) (see
[Lus84ay (4.21.11), (4.21.12)]). These are given by a disjoint union of certain sets which
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2. Finite groups of Lie type

are defined similarly to 9(Gr) in (2.2.8.1)), where F runs over all those families in Irr(W)
which are «y-stable with respect to the action of 7 on Irr(W) described in (2.2.7.2). (In
fact, as mentioned in [Lus84a, 4.17], if v is assumed to be an ordinary automorphism
of the Weyl group W, it follows from a case-by-case analysis that any ~y-stable family
F in Irr(W) is actually pointwise fixed by =, that is, we have F C Irr(W)".) The sets
X(W,5), X(W, ) are related by a pairing (defined similarly to the pairing , see
[Cus8dal (4.21.7), (4.21.13)])

{3 XWy) x X(W.q) — Q. (2.2.12.1)

Let R C @2( be the set consisting of all roots of unity in Q,. There is a natural free

action of R on X(W,~) and a canonical surjective map
X(W,7) = X(W,y), z—T, (2.2.12.2)

which induces a bijection between the set X(W.7) /R of R-orbits on X(W,~) and the set
X(W,7). Now consider the infinite cyclic group (7) = Z with generator 7, and let

W:=W(H):=W x (3) where ¥-w- 5! =~(w) forany wec W

(cf. (2.2.7.1), but here W(¥) is an infinite group). As in [Lus84al, 4.21], let us denote
by (W)Y, the set of all (isomorphism classes of) those irreducible representations of W
which factor through a finite quotient (that is, such that 4 acts as a map of finite order)

and whose restriction to W is an irreducible representation of W. There is a natural free
R-action on (W)Y,, defined by

ex?

Rx (W)l — (W)Y, (¢,0)— 086, (2.2.12.3)

ex ex?

where ég is the one-dimensional representation of W on which W acts trivially and

4 acts by multiplication with ¢ € R. Let Irr(W)cx be the set of all characters of the

representations in (W)Y,. Since all the representations in (W)Y, are assumed to factor

Vv

through a finite quotient, it is clear that associating to a representation in (fﬁv/)ex its

character in Irr(W)ex defines a bijection

(W)(\e/x 1> II‘I‘(W)QX,

so we can transfer the R-action (2.2.12.3) to Irr(W)eyx. Then there is an R-equivariant
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

embedding [Lus84al (4.21.14)]
Irr(W)ex < X(W,7), 0 = . (2.2.12.4)
The canonical projection

W= W), (w3) e (we) (forweW,ic)

induces an embedding Irr(W (7)) < Irr(WW)ex, and composition with the map ([2.2.12.4))

gives rise to an embedding

Ir(W(y)) = Irt(W)ex = X(W, ), U — xy. (2.2.12.5)

Now let ¢ € Irr(W)?, and denote by d € N the order of v € Aut(W). Let ¢ € Irr(W (7))
be one of the d extensions of ¢ (see [2.2.7), so we may view ¢ as an element of Irr(W)ex.
While ¢ is not uniquely determined by ¢ € Irr(W)?, the R-orbit of ¢ in Irr(W )ey certainly
is. Hence, using the R-equivariant embedding and the fact that X(W,) is in
bijection with the set of R-orbits on X(W,~), we obtain an embedding

Ir(W)7 — X(W,7), ¢ Ty, (2.2.12.6)

defined as follows: For any ¢ € Irr(W)?, T, € X(W,7) is the element corresponding to
the R-orbit of x5 in X(W, ), where ¢ € Trr(W(y)) is an extension of ¢ to W (7). In the

important special case where v = idyy is the identity on W, one can canonically identify

X(Wyidw) £ X(W) and X(W,idw) = X(W) x R,
with X(W) given by (2.2.8.3). With these identifications, we have (cf. [Lus84a, (4.21.8)])
{m,(m/,O)}y =¢1 - {m,m'} form,m € X(W)and (€ R,

where {m,m’} is given by (2.2.8.2)). Moreover, the embedding (2.2.12.6]) then coincides
with the embedding defined in ([2.2.8.4)).
A partition of Irr(GF)

2.2.13. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. Let Tg C G be a maximally split torus, Bg C G an F-stable Borel subgroup
containing Ty, and let Z = (X, R,Y, R") be the root datum of G with respect to Ty.
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2. Finite groups of Lie type

(In particular, we have X = X(Ty) and Y = Y (Ty).) Let W = Wg(Tp) be the Weyl
group of G with respect to Ty, and let 0: W = W be the automorphism induced by
F. As usual, we identify W with the Weyl group of R, using the action of W on X
defined in Denote by II C R the simple roots determined by By, with positive
roots Rt C R determined by II, and let S := {w, € W | a € II} be the set of simple
reflections corresponding to II. The subsequent notation is still based on [Lus84a] but,
as in [GM20, §2.4], we find it more convenient to work with the group X instead of line
bundles over the variety # of Borel subgroups of G: By [Lus84a, (1.3.2)], these line
bundles can be canonically identified with X. We will thus mostly refer to |[GM20, §2.4]
rather than [Lus84a] in the sequel.

For any natural number n € N which is prime to p, and for any A € X, we define
Zyni={w € W | there exists some \,, € X such that nA\, = Ao F' —w.\}

(see [GM20, 2.4.5]); it may happen that 2, = @. Assume that (\,n) is such that
oo # 3, and let w € Z,,,. It is easy to see that the \,, € X which occurs in the
definition of %, ,, is uniquely determined by w |[GM20, 2.4.5]. Let us choose g € G
such that g71F(g) = @ € Ng(Ty) is a representative of w (see Theorem . So

1

T, = gTog™ " is a torus of type w with respect to Ty. Following [GM20, 2.4.5], we obtain

a linear character 01(1,)‘770 of TE by setting
O™ TE 5 Q) t = 1(M(g™ ' tg)). (2.2.13.1)

(Recall that we have fixed an isomorphism 2: k* = p,y C Q, in (1.1.0.4).) We then
associate to (A, n) and w € Z,, the virtual Deligne-Lusztig character RE_ (91(1,’\’")); note

that this does not depend on the choices of w and g above. With these notions, we define
Enn = {p e Irr(GT) ‘ <R$’w (G&A’”)),p>GF # 0 for some w € Qﬁw}

(see [GM20, 2.4.6]). It immediately follows from the definition that, for any n’ € N which
is prime to p, the sets 2}, and 25/ 7, coincide, and for any w which lies in these sets,
the A, € X involved in their definition is the same. Hence, we also have &) ,, = Ey/x pin-
Therefore, it is enough to consider pairs (A, n) as above which are minimal in the sense
that it is not possible to write A = n/u, n = n'm, with y € X and n’,m e N, n’ > 2. In
this case, the pair (A, n) is called indivisible (see |GM20, 2.4.9]; note that this definition
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

coincides with Lusztig’s in [Lus84ay, 6.1]). As in [GM20, p. 148], we set
A(G,F) :={(A\n) € X xN|nis prime to p, 2\, # @&, (A, n) is indivisible}.

Then one can show (see [GM20, 2.4.11], [Lus84a, 6.5]) that for any p € Irr(GF), there
exists a suitable pair (A\,n) € A(G, F) such that p € £y ,,. In order to obtain a partition

of Irr(GF ) in terms of the sets &y ,,, one needs to impose an equivalence relation ~ on the
set A(G, F), given as follows (see [GM20, p. 148]). For (A\,n), (N, n’) € A(G, F), we set

(An)~N,n') & n=n"and N =2\ +nu for some z € W, pe X. (2.2.13.2)

It is easy to check that ~ defines an equivalence relation on A(G, F'). By [GM20, 2.4.27]
(cf. |Lus84ay 6.5]), we have, for any (\,n), (N,n') € A(G, F):

()" n) ~ ()‘/a TL/) — g)\,n = g)\’,n"

Proposition 2.2.14 ([Lus84a, 6.5], see |[GM20, 2.4.29]). In the setting of [2.2.13], we
have a partition

Irr(GF) = L'ij Exns
(An)eAN(G,F)/~

where MG, F)/N denotes a set of representatives for the equivalence classes of A(G, F)

under the relation ~ defined in (2.2.13.2]).

Proof. See [Lus84al, 6.5] or |[GM20, 2.4.29]. O

Remark 2.2.15. It is also shown in |[GM20, 2.4.29] that the pieces £ ,, in the partition in
Proposition [2.2.14] are precisely the geometric conjugacy classes of characters or geometric
series of characters (as defined, e.g., in |[GM20, 2.3.4]).

2.2.16. Let A\ € X, and let n € N be prime to p. As in [GM20, 2.4.13], we define

Wi i={we W |wA—-\ecnZR} (2.2.16.1)

and
Ryn:={a € R| (\a") € Z is divisible by n}.

As mentioned in [GM20, 2.4.13] (see also the references there), W ,, is a Weyl group

with root system R) ,. Moreover, R™ N Ry, is a system of positive roots in R) . Let
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2. Finite groups of Lie type

IT, ,, be the unique base for R}, which is contained in RN R, and denote by
S/\,n = {wa | (OAS H)\,n} c W/\,n

the corresponding set of simple reflections. (There is also another group VAVA,n defined
in |[GM20, 2.4.12], but this group turns out to coincide with W, ,, in the case where G
has a connected centre, see [GM20, 2.4.14]; since we will only be concerned with this
situation, we do not have to deal with VAVML here.) We want to apply the machinery in
[Lus84a, §4] (outlined in 2.2.12) to (W 5, Sx 1), so we need to specify an automorphism
of W .

Lemma 2.2.17 ([Lus84a;, 2.15, 2.19], see [GM20, 2.4.14]). In the setting of [2.2.13
assume that the centre Z(G) of G is connected. Then for any (A\,n) € A(G,F), the
following hold.

(a) There is a unique element w1 € 2, of minimal length with respect to the usual
length function of the Coxeter system (W, S). We have 2, = wi Wy .

(b) There is a well-defined group automorphism
OAn': W)\,n = W/\,na w +— a(wlwwl_l),

and this automorphism satisfies o n(Sxn) = Sxn-
Proof. See |[Lus84al 2.15, 2.19] or [GM20, 2.4.14]. O

2.2.18. We place ourselves in the setting of and assume in addition that Z(G)
is connected. Let us fix a pair (A\,n) € A(G, F). Lemma [2.2.17(b) provides the desired
group automorphism oy ,: Wy, — W, , satisfying o) ,(Sxn) = San, so that the
machinery in 2.2.12) can be applied to W = W ,,, S = S\, and v = oy ,. Let w; be the
unique element of minimal length in 2 ,,, so that 2, ,, = w1 W) ,, (see Lemma (a)).
Let ¢ € Irr(Wy ,,)?*", and let us choose a o) ,-extension b: Wi, — Qg as in m
Then we define a class function

Ry :=

5= e O o(w)-RE, (091) € CF(GY) (2.2.18.1)

’LUEW)\

(see [Lus84a) 3.7, 6.13]), which is called a uniform almost character of GI" [GM20, 2.4.17].
Note that, in general, we only know that the values ¢(w) (for w € W, ) are certain

algebraic integers in Q.
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

Lemma 2.2.19 ([Lus84al 3.2, 14.2], see [GM20, 2.1.14]). Assume that we are in the
setting of [2.2.13 and that Z(G) is connected. Let (A\,n) € A(G, F) and ¢ € Irr(Wy ,,)7*",
with oxn: Win — W, as defined in Lemma [2.2.17(b).

(a) There is a oy ,-extension ¢: Wy, — Qp of ¢ (see which satisfies p(w) € R
for allw e W .

(b) If F: G — G is a Frobenius map, then any o ,-extension ¢ as in (a) even satisfies

d(w) € Z for all w € Wy ,,.

Proof. This is essentially proven in [GM20, 2.1.14] (cf. [Lus84a, 3.2, 14.2]): For (a) we
only have to note in addition that W ,, is itself the Weyl group of a connected reductive
group H and that o) , is induced from a suitable Steinberg map on H, as explained in
[GM20, 2.5.10]. In order to deduce (b) from [GM20, 2.1.14], we need to know that o,
is ordinary if F' is a Frobenius map; this is stated in [Lus84al (3.4.1)]. (Alternatively,
one may also once again refer to [GM20, 2.5.10] and note that in this case oy, is in fact

induced from a Frobenius map on H.) O

Lusztig’s Main Theorem 4.23

2.2.20. We are now in a position to formulate Lusztig’s ‘Main Theorem 4.23” in [Lus84a].
To this end, we place ourselves in the setting of In addition, we assume that
Z(G) is connected and that F': G — G is a Frobenius map for an Fy-rational structure
on G, for some power ¢ of p. (One may extend the theorem to the case where F is a
Steinberg map, but then the formulation would become either somewhat less uniform or
more technical, due to the remarks in [Lus84a, 14.2]; see, e.g., [GM20, 2.4.15]. In any
case, the assumption on Z(G) is substantial.)

There is one more necessary piece of notation that we did not introduce so far. Namely,

for a given pair (A\,n) € A(G, F), Lusztig defines a map
A: X(Wyp,oxn) = {£1} (2.2.20.1)

in [Lus84aj, 4.14, 4.21]. Since the definition of A in the most general set-up is closely
related to the very technical description of the set X(Wy ,,, 0 ,,) itself (cf. , we
refrain from providing it here. We merely mention that, if o, is the identity on W,
(which will cover most of the cases that we shall consider), A can take the value —1 only
if W), ,, has an irreducible factor of type E7 or Eg, and this in turn only concerns very
few labels arising from these groups. Let us for now just refer to [Lus84a, Chap. 4] for
the exact definition of A.
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Theorem 2.2.21 (Lusztig [Lus84a, 4.23]). In the setting of (in particular, under
the assumption that Z(G) is connected), consider any pair (A\,n) € A(G,F). Let
wy be the unique element of minimal length in %, (see Lemma [2.2.17(a)), and let
oxn: Wan = W\, be the automorphism defined in Lemma (b) Then there is a
bijection

Exn = X(Wan,00n), pr Ty, (2.2.21.1)

such that for any p € Exy, any ¢ € It (W )" and any oy ,,-extension & of ¢, we have
(P By = (1) VA@ )T, 75}, (2.2.21.2)

where { , } is the pairing (2.2.12.1)) (see [Lus84aj (4.21.13)]) and x5 € X(Wipn,0nn) is
the image of ¢ under the embedding ([2.2.12.5)) with W = Win, ¥ =0rn-

Proof. The proof of this theorem occupies a large part of the book [Lus84al; see, in
particular, |[Lus84al, Chap. 10]. O

Remark 2.2.22. We place ourselves in the setting of Theorem In particular, let
(A\,n) € A(G, F), and let us adopt the further notation with respect to this pair (\,n).
(a) Lusztig requires the o ,-extension ¢ of ¢ € Trr(Wy )" in Theorem to be
as in Lemma (b) This is due to the fact that his underlying pairing on the class
functions of G¥ (or, more precisely, on the Grothendieck group of virtual G¥-modules
of finite dimension over Q) is actually Q,-bilinear, see |[Lus84a, 3.7]. Recall
that we defined (, )gr to be the standard scalar product on CF(G!"), which is therefore
antilinear in the second argument. Now note that, if we assume ¢ to be chosen as in
Lemma (b), Rj is a Q-linear combination of virtual characters, so (p, R3) ar (and,
hence, {Z,,z;}) is a rational number. So in this case, the formulation of is

completely analogous to the one in |[Lus84a, 4.23]. If we replace such a é by another

o) n-extension ( - ) (where ¢ € R), the left side of (2.2.21.2)) reads
<p7 RC'Q~5>GF = <P,C ' R¢~>>GF = Cil : <P, R<¢~’>GF
On the other hand, since the embedding (2.2.12.4)) is R-equivariant, we get
{TP’ xng} = {TP’ C%} - Cil : {wa(ﬁ}

(where the last equality follows from [Lus84al (4.21.8)]). Thus, the right side of (2.2.21.2)) is
also multiplied with ¢!, so we do not need to make any assumption on the o An-€xtension
in the formulation of Theorem [2.2.21] Whenever we perform any explicit calculations,
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

we will however choose an integer-valued o) ,,-extension ¢ as in Lemma (b)7 such
as the ‘preferred extension’ defined in [LuCS4, 17.2].

(b) The bijection is in general not uniquely determined by the condition
(2.2.21.2). We will be concerned with the task of uniquely specifying it for simple non-
twisted groups with a trivial centre in Section in the case where (\,n) = (0,1), when
Eo1 = Uch(GT) is the set of unipotent characters of G (see Example below). In
general, [DM90, §6, §7] deals with the problem of formulating conditions which guarantee
the ‘unicity of the parametrisation’ (2.2.21.1)).

(c) Once Theorem is established, the sign function A in can also be
described purely in terms of irreducible characters of G, see |[Lus84al, 6.6, 6.20]. Namely,

for p € Exn, A(T,) is uniquely determined by requiring that
(—1)DA(z,) - D(p) € Te(GF),

where D denotes the ‘duality homomorphism’, see |Lus84al 6.8].

2.2.23. We still keep the setting of Theorem [2.2.21} In particular, let (\,n) € A(G, F),
¢ € Trr(W) )7, and let ¢ be a o ,-extension of ¢. By [Lus84a, 3.9], Rj is a linear
combination of irreducible characters in &) ,. Hence, (2.2.21.2) implies that

R; = (_1)l(w1) Z A@p){fpvg%} P

peg)\,n

More generally, following |Lus84al (4.24.1)], we define for any x € X(W ) ,,0),) the

almost character

R, == (-1)"™) 3" A@,){@, 2} - p € CF(G). (2.2.23.1)
PEEAN

We thus have Ry = R%. (Note that the expressions for Rj and R, look somewhat
different than in |[Lus84aj 4.24]. This is due to the fact that the definition of our pairing

(, )gr differs from the one in [Lus84al 3.7], see Remark [2.2.22(a).) Recall from [2.2.12
that there is a free action of R on X(W) ,,00,). If ( € R, 2 € X(W),,05,) and

C.x € X(W) 5,00 ,) is the image of (¢, x) under this action, we have

(as follows from [Lus84al, (4.21.8)]). Hence, up to multiplication with a root of unity,

R, is uniquely determined by the R-orbit of z in X(Wy ,,0x,). Let us fix a set
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Xo(A\,n) C .’{(WA n>Oxn) of representatives for the R-orbits in X(W ) ,,, 05 ). As stated
in m, Xo(A, n) is in natural bijection with (W ,,, 0 ,,). Now the set

(R, |z € Xo(\n)}

is an orthonormal basis of the linear subspace of (CF(GF ), >Gp) spanned by &) ,,, see

[Lus84a, 4.25]. In particular, denoting by AG, F) /~ a set of representatives for the equi-

valence classes of A(G, F') under the relation (2.2.13.2)), we deduce from Proposition [2.2.14]
that the set

) (R, | x € Xo(\,n)} C CF(GF)
(An)EA(G,F)/~

is an orthonormal basis of (CF(GF ), >GF) The above discussion also shows that, for
(A, n) € A(G, F), an irreducible character p € &y, is expressed as

p=(-1)""A@,) Y {F, 2} R, (2.2.23.2)
z€Xp(A\,n)

cf. [Lus84a, 4.25]. In particular, for any (A\,n) € A(G, F), knowing the values of the

irreducible characters in &) ,, is equivalent to knowing the values of the R, for x € Xo(\, n).

Example 2.2.24. In the setting of Theorem consider the pair (0,1) € A(G, F).
We immediately see from the definition that 2o = Wy 1 = W. Furthermore, we have
Ro1 = R, So,1 =5, and the element wy of minimal length in W is certainly the identity
element of W. Thus,

o001 =0: W =W

is the map induced by F' on W. Also note that for any w € W, the A\, € X appearing
in the definition of 2 is the neutral element 0 of X. Thus, 01(,?’1) (see (2.2.13.1))) is the

trivial character of TE for any w € W, so
&1 = Uch(GT)
is just the set of unipotent characters of G¥'. Hence, Theorem gives a bijection
Uch(GF) = X(W,0), pr T,

such that for any p € Uch(GF), any ¢ € Irr(W)? and any o-extension ¢ of ¢, we have

(p; Rg) qr = ATp){Tp, 75} (2.2.24.1)
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The (uniform) almost characters are given as follows: For ¢ € Irr(W)? and a o-extension

¢ of ¢, we get

1 7 F
Ry = Wi > ¢(w)- Ry € CF(G"). (2.2.24.2)
weW
We will refer to Rq; as a unipotent uniform almost character (cf.[2.2.18). Moreover, for

x € X(W,0), the definition of R, now reads

Ry= > A@){zp ) p. (2.2.24.3)
peUch(GF)

Accordingly, we call R, a unipotent almost character. As in [2.2.23] let us fix a set of
representatives Xo(0,1) C X(W, o) for the R-orbits in X(W, o). Thus, X((0,1) is in
natural bijection with X(W, o), so (2.2.23.2)) becomes

p=AE,) Y  {Z,a} R, forpe Uch(GF). (2.2.24.4)
z€X(W,0)

We will sometimes refer to the following notion, cf. [Lus80, 1.2]: We say that two unipotent
characters p, p’ € Uch(GT) are in the same family if there exists some n € Ny and a
sequence of unipotent characters p = pg, p1,...,pn = p', as well as ¢1,..., ¢, € Irr(W)?,
with o-extensions ¢, ..., dn, such that <pi_1,R¢~)i>GF #0+# <pi,Rd~)i>GF for 1 <i < n.
It follows from and the classification of families of Weyl groups provided in
[Lus84al, §4] that p,p’ € Uch(GF) are in the same family if and only if there exists a
family F C Irr(W) such that z,,7, € M(GF).

Remark 2.2.25. With the notation of Example [2.2.24] let us write Q& = R(Z)’GF for

uni

¢ € Irr(W)7; we also recall from that Qu = Ryl|gr for w € W. By (2.2.24.2), we

have .
W > d(w) - Qu € CF(GF).

weW

Qs =

Inverting these relations, one obtains

Qu = Z &(M)Q&
PEIrr(W)?
(see |GM20, 2.8.2]). Thus, the knowledge of the Green functions @, for w € W (cf.
2.2.5) is equivalent to that of the functions @ for ¢ € Irr(W)?. Since it is often more
convenient to work with unipotent uniform almost characters rather than with the R,,

(w € W), we will tacitly refer to this fact in numerous places below.
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Parametrisation of Irr(G”) in terms of semisimple classes in the dual group

2.2.26. Let G be a connected reductive group over k, and let F': G — G be a Steinberg
map. Let us fix a maximally split torus Ty C G as well as an F-stable Borel subgroup
By C G containing Ty, and let Z = (X, R,Y, RY) = (X(Ty), R,Y(Ty), RV) be the root
datum of G with respect to T¢. Let (G*, T}, B§, F’) be a quadruple dual to (G, To, By, F)
and W* = Nag- (TS)/T[’S (see Example , and let §: X(To) — Y (T§) be as in
(2.1.21.1). Consider a pair (A\,n) € X x N where n is prime to p. Using the notation of
[GM20, §2.5], we define an element

=0\ (5(L +2)) e T,

where 7: Zp) /7, =5 kX is the isomorphism (1.1.0.5). Note that tan is the image of
A® (% 4+ Z) under the isomorphism

4 * ~ *
X ® L) )7, 225 YV (TE) @ k% = T,

the last map being defined by ([2.1.3.2)) applied to the torus T{. Here, as mentioned
in |[GM?20, 2.5.3], any element of X ®z Z(p)/7, can be written as A ® (% + Z) for some
A € X and some n € N which is prime to p. Hence, as (A, n) runs over all elements of
X x (N\ pN), ty, runs over all elements of T.

Now assume that (A\,n) € A(G, F). If we replace (A\,n) by another element of its
equivalence class under the relation (2.2.13.2)), say by (x.A+nu,n) where x € W, p € X
then one quickly verifies that

t:r.)\Jrn,u,n = tx.)\,n = j;'*t)\,n(i*)_lv
where W = W* w + w*, is defined in (2.1.21.2), and i* € Ng«(T) denotes a

representative of x* € W*. Therefore, the set
{tvn | (V,n) € A(G,F), (N,n) ~(A\,n)} C T

is the W*-class of t), (with respect to the natural action of W* on T{ induced by
the conjugation action of Ng+(Tj)). The W*-classes inside T} are in natural bijection
with the semisimple conjugacy classes of G* (by assigning to the W*-class of s € T}
the G*-conjugacy class of s, see [Car85, 3.7.1]). By [GM20} 2.5.4], the assumption that
Zn # @ is equivalent to the assumption that the G*-conjugacy class of ¢y ,, is F’-stable.

Hence, mapping the equivalence class of (A, n) to the G*-conjugacy class of t) ,, defines a
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)
bijection
ANG,F)/ Rt {F’'-stable semisimple conjugacy classes of G*},

where MG, F) /~ is a set of representatives for the equivalence classes of A(G, F’) under

the relation (2.2.13.2)).
2.2.27. In the setting of [2.2.26] assume that Z(G) is connected. Instead of working with

the set A(G, F'), it is sometimes convenient to be able to express everything in terms of
semisimple elements in the dual group G*. So let us consider an element s € T(; whose

conjugacy class in G* is F’-stable. We define a subgroup (cf. [Sho95al §5])
Wi = {we W* |wsi ! =s} CW*
as well as a subset
ZF={w e W* | F'(s) = wsu '} C W,

where w € Ng+(T{) denotes a representative of w € W*. In view of our assumption
that Z(G) = Z(G)°, we have Cg+(s) = Cg&-(s) (see [Car85, 4.5.9]); by [Car85, 3.5.4],
Cg+(s) is thus a connected reductive group over k, whose Weyl group with respect to
the maximal torus T C Cg-(s) is WZ. (Indeed, by definition, the Weyl group of Cg(s)
with respect to the maximal torus T§ is Nog- (g)(Tﬁ) / T} which is nothing but W7 if we
identify the Weyl group of Cg+(s) with a subgroup of W* via the canonical embedding
induced by Neg,.(s)(Th) = Na+(T§).) The discussion in shows that there exists
some (A, n) € A(G, F) such that s =t ,. Using [GM20, 2.5.3, 2.5.4], it is easy to see
that the isomorphism W = W*, w — w*, defined in , induces (by restriction)
an isomorphism

Wi, — Wi,

and it maps Z) , bijectively onto Z7*. Let II C R be the simple roots determined by
By, and let S = {w, | @ € II} € W be the corresponding set of simple reflections.
Then S* := {w} | a € II} C W* is the set of simple reflections in W* determined
by B§. So it is clear that, if wy € 2, is the unique element of minimal length with
respect to the length function of (W, S), as in Lemma [2.2.17(a), wi € 2" is the unique
element of minimal length with respect to the length function of (W* S*) and we have

ZF = wiW?. The automorphism o} € Aut(W?) corresponding to the automorphism
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2. Finite groups of Lie type

oxn € Aut(Wy ;) defined in Lemma [2.2.17((b) is given by
of Wi S Wi g U’_l(wly wi™!) for any y € Wy,

and, since o(Syn) = S\ (see Lemma [2.2.17(b)), the set S5, = {wj [ a € I\ ,,} is
left invariant by o¥. Hence, we can label everything in terms of F’-stable semisimple
conjugacy classes in G*. For any (\,n) € A(G, F'), let us denote the (F’-stable semisimple)
conjugacy class of s =ty , in G* by [s]. We may thus set

E(GF[s]) := Exny X(WE00) := E(Win,0an), (W2 07) :=X(Wyn,onn)

s S

In particular, Proposition [2:2.14] then states that

Irr( GF U5 GF [s])
[s]

(where [s] runs over the F'-stable semisimple classes in G*), and for each s = ¢y, as

above, the parametrisation (2.2.21.1]) can be written as

E(GF,[s]) = X(W,07), pr Ty,
such that the conditions in Theorem [2.2.21] are satisfied. For the unipotent characters,

we thus have
Uch(GF) = E(GF, [1]) = ?(W*,a’_l).

Lusztig induction

Definition 2.2.28 (Lusztig [Lus76a]). Let G be a connected reductive group over k
and F': G — G be a Steinberg map. Let L C G be an F-stable closed subgroup which
is the Levi complement of some (not necessarily F-stable) parabolic subgroup P C G.
(So L is a regular subgroup of G, see Definition [2.1.18]) Denote by Up := R,(P) the
unipotent radical of P. Then Y := F(Up) and H := L meet the requirements of
so that we can apply the construction there. In particular, for any irreducible character

7 € Irr(LY), we have

RLF(UP)( ) G _>Q27 g'_> Z 2 g? > 1 (UP)))W(Z)a
leLF
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2.2. Lusztig’s classification of irreducible characters (the connected centre case)

a virtual character of G¥". This induction process was defined by Lusztig |[Lus76a] and is

usually called Lusztig induction, or sometimes twisted induction [Lus90, 1.7].

Remark 2.2.29. We keep the setting of Definition [2.2.2§

(a) Consider the special case where L = T is an F-stable maximal torus of G, so that
P = B is a Borel subgroup of G, and U = R,(B). As mentioned in Definition the
definition of R () (for 6 € Trr(TF)) is independent of the choice of the Borel subgroup
containing T, so we may as well apply the construction with F'(B) instead of B, and we
see that Lusztig induction generalises the concept of the Deligne-Lusztig characters. In
particular, it is justified to use the same symbol for both the Deligne—Lusztig characters
and the Lusztig induction in this case.

(b) If the regular subgroup L is the Levi complement of some F'-stable parabolic
subgroup P C G, then Rﬁ F(Up) is in fact just Harish-Chandra induction (cf. , as
remarked in the introduction of [Lus76a] (see also the note after [DM20, 9.1.4]). Hence,
Lusztig induction also generalises Harish-Chandra induction, and again we do not have
to worry about using the same symbol for these two concepts.

(c) As mentioned in [Lus76a, p. 204] (see also [DM20, 9.1.8] for a detailed proof),
Lusztig induction is transitive, in the sense that if L is a Levi complement of some
parabolic subgroup P of G, and if M is a Levi complement of some parabolic subgroup
Q of L, such that F(L) = L and F(M) = M, then

RS,F(UP) © RIM7F(UQ) = RE/LF(UQ)

(with the notation of [2.2.2)).

(d) If g = v € GE ; is a unipotent element and 7 € Irr(L"), we have

(RENUP)(w))(u):H;‘ S £((u,0), £ (F(Up))r(l)
leL¥

uni

by [Lus76al p. 203]. (This follows at once from a property of the ¢-adic cohomology
groups with compact support, see |Car85, 7.1.10].)

(e) It has been conjectured by Lusztig [Lus76a] that the twisted induction with respect
to a regular subgroup L C G is independent of the choice of a parabolic subgroup with
Levi complement L used in its construction. At least if F' is a Frobenius map for an
F,-rational structure on G and if ¢ > 2 (or alternatively, if the centre Z(G) of G is
connected, in which case no assumption on ¢ is necessary), this is known due to |[Lus90]
and [BM11] (and [Sho96, §4], combined with the results in [Lus12b| as far as certain
small p are concerned); see also below for some more details.
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2. Finite groups of Lie type

2.3. Hecke algebras associated to finite groups of Lie type

In this section, we consider the permutation module Q, [G/ B] where G is a finite group
of Lie type and B C G is a subgroup occurring in a BN-pair (B, N) in G (see [2.1.20)).
The endomorphism algebra of Q, [G/ B] is a deformation of the group algebra of the
Weyl group associated to the BN-pair (B, N) in G (cf. , and this fact gives rise to
a formula which relates the irreducible characters of said endomorphism algebra with
the unipotent principal series characters of GG in terms of intersections of G-conjugacy
classes with Bruhat cells, see below. This formula is well known and appeared
explicitly in [Gecll, §3], [Lusllb|, cf. Ree’s formula in [CR81, §11D], but since it is
a crucial ingredient of numerous arguments in this thesis, we will provide a detailed
exhibition here.

Let us fix the following notation and assumptions, which remain in force throughout
this section. We denote by G a connected reductive group over k = F,, defined over F,
(where ¢ is a power of p), with corresponding Frobenius map F': G — G; furthermore, we
assume that the centre Z(G) of G is connected. We also fix a maximally split torus T
of G and an F-stable Borel subgroup By C G which contains Ty. Let Z = (X, R,Y, RV)
be the root datum of G with respect to Ty. (In particular, we have X = X (Ty) and
Y = Y(Ty).) Let W = NG(TO)/TO be the Weyl group of G with respect to Ty,
and let 0: W = W be the automorphism induced by F. We identify W with the
Weyl group of R, using the action of W on X defined in Denote by IT C R the
simple roots determined by By, with positive roots Rt C R determined by II, and let
S :={w, € W | a € II} be the set of simple reflections corresponding to II; we have
o(S) =S (see2.1.19). Recall from that W7 is a finite Coxeter group with Coxeter
generators S,. We denote by l,: W? — Ny the length function of W with respect to
Sy

2.3.1. Let us consider the set of left cosets GrF/B(l)’ of BY in GF'. The left multiplication
action of the finite group G¥ on itself induces an action of G on G" / B Extending
this action by linearity thus gives rise to a (left) module Q, [GF / Bl | for the group
algebra Q,[G*] of G, called the permutation module of Q,[G*] with respect to the
subgroup B{" C G¥'. The character of G afforded by the corresponding representation
is given by
GF _ G
tdir (1ns) = A%, (1ry)

(see[2.2.6)). In particular, the characters of the irreducible representations which appear

as direct summands of the module Q, [GF /BE | are unipotent. The irreducible represen-
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2.3. Hecke algebras associated to finite groups of Lie type

tations (characters) thus obtained are called the unipotent principal series representations
(characters) of GF' (cf.[2.2.6). We consider the endomorphism algebra

opp

— [ F
Mo = Endg, or)(Q|C"/BE])
here, ‘opp’ stands for the opposite algebra, that is, the multiplication in H, 4 is given by

f’g:gof forfage/HU,q-

We define a function

BYsBJ| _ ye)

S, —>7 S,i—> ;=
o Qb qs |B0F|

(Here, I denotes the length function for the Coxeter system (W, .S); the last equality
follows from the sharp form of the Bruhat decomposition in the sense of [Car85, 2.5.14]
or |Gec03al, 1.7.2], combined with a theorem of Rosenlicht |[Gec03al §4.2]. We typically
write s’ instead of s for elements of S, in order to avoid confusion with elements of S, as
S, is in general not necessarily a subset of S.) We call H,, the Hecke algebra of G*
(with respect to the BN-pair (BY', Na(To)) in GF, see , and gy (s’ € S,) the
parameters of Hyq. The justification of this notion will be given in Proposition [2.3.2]
below. Following |Gecl1, 3.6] (cf. [GP00, 8.4.1]) we define, for any w € W7, a Q,-linear
map

To: Q[G"/BF] - Q,[G"/BE],

uniquely determined by

Tw (:UBg) = Z yBY for z € GF.
yBFeGF /Bl
xilyEngBg

Proposition 2.3.2 (Lusztig [Lus76b, §5, (7.7)], see [Lus78, Thm. 3.26]). In the setting
and with the notation of [2.3.1, we have Ty, € Heyq for any w € W, Furthermore, the
following hold.

(a) The set {Ty | w € W} is a Qp-basis of Heq-

(b) With the notation of Hoq arises from the generic Iwahori-Hecke algebra
H(W,v% | s € S,) over A = Z[vE' | s’ € S,] by specialisation along the ring
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2. Finite groups of Lie type

homomorphism
0: A — Qy, wuniquely determined by ¢(vy) = \/qs for any s’ € S,.

(Note that, since each qg is an integral power of p, the choice of the square roots

/s 18 taken care of by convention (1.1.0.2)), see also Remark below.) Hence,

forw e W7 and s’ € S,, we have

Ty Ty = T if lo(ws') =ls(w) + 1,
QS’Tws’ + (QS’ - 1>Tw @f lG(wS/) = le(w) - L

Proof. This is very similar to [GP00, §8.4], the main difference is that in our setting, we
have to deal with the left cosets of G modulo B{ instead of right cosets, and that we
consider the opposite endomorphism algebra. We will thus only sketch the proof here
and mostly refer to the proof in loc. cit.

To simplify the notation, we write B := B}, G := G, For 1 € End@é (Q, [G/B}), we
define a function (cf. [GP00, 8.4.1])

): G/pxG/p—Q
by the requirement that

Y(xB) = Z Y(xB,yB)yB for all zB € G/p.
yBeG/B

For w € W7, we thus have

. 1 if Bs—'yB = BwB,
Tw(zB,yB) =

0 otherwise.

Showing that the T, (w € W) are actually in Endg ¢ (Q[G/B]) and that they form a
basis of this Q,-vector space is completely analogous to the proof of [GP00, 8.4.2]. Now

58



2.3. Hecke algebras associated to finite groups of Lie type

let w,w’ € W?. Then

(Tw - Tw)(B) = Tw’(Tw(B)) = Tw’( Z Tw(B7yB)yB>
yBeG/B

= X ( > Tw(ByyB)wa(yB,y/B)>y’B-

y'BeG/B \yBeG/B
Hence, the coefficient of ¢/ B in the above expression is given by

|BwB Ny Bw'~'B|
| Bl

{yB € G/B | BuB = ByB and Bw'B = By 'y B}| =
By the Bruhat decomposition (see [2.1.20]), there is a unique w” € W7 such that
By'B = Bw"B, and this w” satisfies

|BwBNy'Bw='B| |BwBNw"Bw'!B|
— =.Qa ! ap! .
B E ot

On the other hand, we have

Z aw,w/,w”T’w” (B) = Z ( Z aw,w/@//Tw// (B7 y/B)> y/B

,w//EWo- y’BGG/B w//eWa

So if w” € W7 is the (unique) element such that Bw” B = By’B, the coeflicient of 3B

in the above expression is @, . . This proves that

Tw . Tw/ = E aw,w’,w”Tw”-
w//EWo'

(Note that it is sufficient to compare the evaluation of either side at B, since on both
sides we have a Q,[G]-linear function and Q,[G/p] is a cyclic Qy[G]-module generated
by B.)

Verifying the multiplication rules for Ty, - Ty (w € W7, §' € S,) thus amounts to
evaluating the a,, ¢~ for w” € W, which is a simple computation based on the BN-pair
axioms, entirely analogous to the proof of |[GP00, 8.4.6]. These multiplication rules
completely determine the multiplication of the Q-algebra H, 4. Hence, in order to show
that Hy 4 is the specialisation of the generic Iwahori-Hecke algebra H(W?,v? | s’ € S,)
along the map ¢ in the proposition, we only need to know that ¢ is actually well-defined.
This follows from the fact that gs = gs» whenever §',s” € S, are conjugate in W7 (see
[Lus78, 3.26] and [Lus76b, (7.7)]). O
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2. Finite groups of Lie type

Remark 2.3.3. (a) Since Proposition is a special case of |[Lus78, Thm. 3.26], we
can extract the description of the Coxeter group (W?,S,) as well as the numbers ¢y
from [Lus78|, for any simple algebraic group G of adjoint type. (The relevant lines in
[Lus78, Table IT (p. 35)] are those where I'" is empty; the function S, — Q, s’ > gy, is
denoted by A in loc. cit.) For example, if 0 = idw, we have ¢s = ¢ for all s € S.

(b) Let e € N be such that ¢ = p°. Recall that we fixed a square root /p € Qy of p
in . Since gy = ¢"*") is an integral power of ¢ for any s’ € S,, our convention
tells us that

qs = (\/13)6‘1(3,) for s’ € S,,

so the map ¢ in Proposition [2.3.2] is defined unambiguously.

2.3.4. We place ourselves in the setting of 2.3.1] By Example [A:24] in the appendix, we

have a natural bijection
Irr(Hp (W, v2 | 8" € 55)) = Irr(W9), ¢ — ¢1,

where L = Q(vy | s’ € S,) is the field of fractions of A = Z[v3' | ' € S,]. On the
other hand, in view of Proposition we can also apply the procedure in to the
specialisation Hq 4 = H@e (W7, qy | 8 € S,). (Clearly, H, 4 is a split semisimple algebra
since Qy is an algebraically closed field of characteristic zero, so condition @ in is
satisfied.) We thus obtain a bijection

Irr(H (W7, vgl | s €55)) = Iir(Hoyg), & bog-

Hence, once a square root of p is chosen as in (|1.1.0.2)), there is a natural bijection

between the irreducible characters of W7 and the irreducible characters of Hg 4.

2.3.5. We keep the setting of [2.3.1, The algebra H, , acts from the right on GrF/BOF by

G"/BE x Hoq — G /BE, (gBE. f) > f(gBE).

Extending this action by linearity thus provides E := Q, [GF / BOF | with the structure
of a right H, ,-module. Hence, in view of the left Q;[G]-module structure defined in
2.3.1) E is a (Qy[GY], Hsq)-bimodule. For any left Q,[G¥]-module M, the algebra H,,

naturally acts from the right on the Q,-vector space

Vi := Homg o ry (M,E)
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2.3. Hecke algebras associated to finite groups of Lie type

by composition of functions, and the Hom-functor
Homg g r (= E): M — Vi (for a left Qy[GF]-module M)

defines a bijection between the isomorphism classes of the simple left Q,[Gf]-modules
which appear as direct summands of E and the isomorphism classes of the simple right
Mo q-modules. (This is a special case of a general statement concerning the Hom-functor
with respect to a semisimple object E in any locally finite Q,-linear abelian category, see,
e.g., [TT20, Appendix A].) For any simple left Q,[G*]-module M which is isomorphic to
a direct summand of E, the left action of Q,[G¥] on M and the right action of H,, on
Vs make the tensor product M ®7g, Vi into a (Q,[GF], Hs4)-bimodule, whose structure

is uniquely determined by
g f). T =(gv)®(Tof) forany g€ G, T € Hyy, v € M, f € Vi

Lemma 2.3.6. We place ourselves in the setting of 2.3.5. There is an isomorphism of
(Qu[GT], Hy q)-bimodules
D Meg Vu) > E (2.3.6.1)
(M|E)/~
(where the index (M’E>/2 means that the sum is taken over a set of representatives for
the isomorphism classes of the simple left Q[GY]|-submodules of E), such that for any
M occurring in the sum, any v € M and any f € Vi, v® f corresponds to f(v) under

E35).

Proof. Let us decompose E into a direct sum of simple left Q,[G¥]-submodules, and let
My, My, ..., M, (n € N) be a set of representatives for the isomorphism classes of left

Q/[GF]-modules which occur in this decomposition. We can thus write

n m;

E =DMy,

i=1j=1

where for any 1 < i < n and for any 1 < j < my, M;; is a simple Q/[GF]-submodule
of E which is isomorphic to M;. (Hence, m; € N is the number of Q,[G]-submodules
of E which are isomorphic to M;.) Choosing isomorphisms M; — M;; (for 1 <i < n,

1 < j < m;) thus determines embeddings

LijZMil)Mij‘—)E forlgzgn,lgjgmz
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Now for 1 < i < n, consider the Q,-bilinear map
M; x Vg, = B, (vi, fi) = fi(vi).

Taking the direct sum and using the universal property of the tensor product, we obtain
a unique Q-linear map .
P M; @, Vs, + E (2.3.6.2)
i=1
with the property that v; ® f; is sent to f;(v;) for any i € {1,...,n}, v; € M; and f; € Viy,.
Since 15 € Vi, and v;(M;) = M;; for any 1 <i < n, 1 < j < my, the map (2.3.6.2) is
surjective. On the other hand, for any 1 < i < n, the ¢;; (1 < j < m;) form a basis of
the Qg-vector space Vi, so dim@g Vi, = my, and it follows that both sides of
have the same dimension. Hence, the map defines an isomorphism of Q,-vector
spaces. Finally, it is clear from the construction that this isomorphism respects the
Q[GF]-structure as well as the H, ,-structure. O

Remark 2.3.7. The correspondence M — Vs in between the isomorphism classes
of simple left Q;[G*]-modules which appear in £ = Q, [GF / Bl ] and the isomorphism
classes of simple right H, ,-modules is the same as the one described in [GP00, 8.4.4]
(and also the one in [CR81, §11D]). Indeed, since H, 4 is a split semisimple Q,-algebra,

it has a Wedderburn decomposition of the form

Hoqg= B HogV)
Velrr(Heo,q)

(cf. [GP0O, Chap. 7]), where Irr(H, 4) denotes a set of representatives for the isomorphism
classes of simple right H, ,-modules, and where H, (V) is a two-sided ideal in H, g,

which is itself a simple Q-algebra isomorphic to M, (Q,) with ny = dim@é V. Thus,

Iy, , = Z ey

Velrr(Ho,q)

we have a decomposition

of the identity element of H, , into pairwise orthogonal centrally primitive idempotents
of Hy 4. For each V € Irr(H, ), the right Hy -module ey - H, 4 is isomorphic to V&V,

On the other hand, we may further decompose ey as a sum
ny

eV:Ze}g

i=1
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of orthogonally primitive idempotents ex in Hgy g, so that

ny
1H0,q = Z Z ex

Velrr(Ho,q) =1

Since M4 4 is the (opposite) endomorphism algebra of E, this corresponds to a decompos-
ition -
E= P Pei(E

Velrn(Ho,q) i=1
of E into a direct sum of simple left Q,[G’]-submodules. For any fixed V € Irr(Ho4),
the simple left Q,[G*]-modules e}, (E) (1 <14 < ny) are isomorphic to each other, and
their isomorphism class is the one corresponding to the simple H, ,-module V' in the
setting of |[GP00, 8.4.4]. Thus, we have to show that V" = ey - H, , is isomorphic to
Homg [GF](eV(E) E) as right H, ,-modules. Such an isomorphism is given by

ev - Hoq — Homs gcr)(ev(E), E), ev-h— hle, (p).

Proposition 2.3.8 (cf. [Gecll, 3.6(b)], [Lusllb, 1.5(a)]). Let w € W°, g € GI', and
denote by Oy C G the GF-conjugacy class of g. Then, with the notation of we

have

0 NBiwB{ | - |Car(g)]
B | ’

Z Trace(g, M) Trace(Ty, Vir) =
(M|E)/~
where the sum is taken over a set of representatives for the isomorphism classes of the
simple left Q[GT]-submodules of E = Q, [GF/Bg].

Proof. We set G := G, B:= B}, F:= Q,[G/B]. Let g,x € G and w € W°. Then,

using the notation of the proof of Proposition [2.3.2 we get

“L(@B).Ty=Tulg 'aB)= > Tu(g 'aB,yB)yB,
yBeG/B
SO 1

Trace((g~ ', Ty), E) = Z Tw(g 'zB,zB) = Bl

zBeG/B

Z T(g'zB,zB).
el

By the definition of T},, we have

L 1 if 27 'gx € BwB,
Tw(g  zB,xB) =
0 otherwise.
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In particular, if O, N BuB = @, we get Trace((g~!,Ty), E) = 0. Now assume that
Oy N BwB # @; let us fix some z € O, N BwB and ¢ € G such that xalgxo = z. Then
for x € G, we have 7 'gx = 2 if and only if 2 € Cg(g)wo. This shows that for any
z € O, N BwB, there are exactly |Ce(g)| different z € G with 27 1gz = 2. We deduce

that
_ 10,0 BwB| - |Caly)]

Bl
(regardless of the assumption on O, N BwB). Using Lemma we obtain

Trace((g_l, Tw), E)

BwB| -
Z T]race(g_l,M)'I‘rance(Tw’VM):‘Ogm “}’B" ICq(g)|

(M|E)/~

Viewing this as an equation in C by means of the isomorphism (|1.1.0.1f), we certainly
have Trace(Ty, Var) € R (see |GP00, 9.3.5]), so applying ‘complex conjugation’ yields the
result. O

2.3.9. As discussed in once a square root of p in Q, is fixed as in (1.1.0.2)), we

have a natural bijection
Ir(W7) 5 Iir(Heq), ¢+ V.

(Here, we write Irr(Hs4) for a set of representatives for the isomorphism classes of
simple right H, ,-modules, while Irr(W?) is the set of irreducible characters of W7, as
usual.) For any ¢ € Irr(W?), we choose a left Q;[G¥]-submodule M of Q, [GF/B(I)’]
which corresponds to Vg € Irr(Hqq) (so that Vi, = Vi, see and denote by
[¢] € Uch(GF) C Irr(GF) the character of M. With this notation, we set

m(g,w) := Z [¢](g) Trace(T,, Vy) for g € GF, we WO, (2.3.9.1)
¢elrr(Wo)

By Proposition we have, for any g € G and any w € W?:

_ 10,0 BEwB{ | [Car ()|
|B{ |

m(g,w) (2.3.9.2)
Note that the character tables [GP00, 8.2.9] of the (generic) Iwahori-Hecke algebras have
been completely determined (see [GP00, Chapters 10, 11]), so the numbers Trace(T,, Vi)
are known for all w € W7 and all ¢ € Irr(W?). They are readily available through
Michel’s CHEVIE [MiChv], using the function HeckeCharValues. As already indicated in
the introduction to this section (and also in the global introduction), will be of
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paramount importance for numerous arguments in this thesis related to the computation

of character values of finite groups of Lie type.

Remark 2.3.10. Proposition 2.3.2] (and even [Lus78, Thm. 3.26]) is just a special case
of [Lus84al Thm. 8.6], which covers the general situation (under the assumption that
Z(QG) is connected). Namely, for any o-stable subset J C S and any cuspidal character
po € Trr(LE)°, consider the Harish-Chandra induced character RE}(po) of GF'. (Note
that both the standard Levi subgroup L; and the standard parabolic subgroup P ; are
F-stable.) Let W(JJ, po) be the stabiliser of pg in NG(LJ)F/LfJ’ under the action defined
in (2.2.6.1). From |Lus84a, 8.5] (cf. [Lus76b, §5]), it follows that W (.J, pg) is a Coxeter
group in a natural way. Then [Lus84a, Thm. 8.6] provides an isomorphism between the
Q/[GT]-endomorphism algebra of REJ (po) and a suitable specialisation (along a map
which generalises the definition of ¢ in Proposition of the generic Iwahori—-Hecke
algebra associated to W(.J, pp). Let us denote by

Irr(GF | J, po) C Trr(GT)

the subset consisting of those irreducible characters of G which appear as constituents

of REJ (po). By [Lus84al 8.7], our choice ([1.1.0.2)) of a square root of p (cf.[2.3.4)) gives
rise to a natural bijection

r(W(J, p0) = (G | Jopo), & pold], (2.3.10.1)

and this is exactly the parametrisation that we already referred to in If J =@ and
po is the trivial character of LL = TE', we have W (2, 1T0F) >~ W°, and Irr(GF | &, 1T6v)

is the set of irreducible constituents of
G GF
RTo(ng) = Indgp (1B0F)a

so we recover our special case treated in this section. (In this situation, it is common to
omit pg = lpr from the notation in (2.3.10.1)) and just write ¢ — [¢], as we have done

in 259)
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In this chapter, we present some of the essential features concerning Lusztig’s theory
of character sheaves on connected reductive groups over k = F,, [LuCS1]-[LuCS5] and
their consequences for the finite groups of Lie type. Our main references are |[Lus84b],
[LuCS1|-|LuCS5|, [Lus12b] and [Sho95a], [Sho95b]. We put a special emphasis on those
properties and results which are directly linked to the character theory of finite groups of
Lie type, most notably with regard to the computation of actual character values.

In Section [3:1] we state the fundamental definitions and structural properties of char-
acter sheaves on connected reductive groups over k, without yet taking any IF -structure
into consideration; this includes the unipotent character sheaves (Definition , as well
as the cuspidal character sheaves and their relation to the irreducible cuspidal perverse
sheaves . In analogy to the significance of cuspidal characters to the classi-
fication of irreducible characters of finite groups of Lie type in terms of Harish-Chandra
series, we can then indicate the relevance of cuspidal character sheaves by means of
a certain induction process on the level of perverse sheaves. The cuspidal character
sheaves on connected reductive groups have been completely classified by Lusztig (see
Remark .

In Section we explain how an [F,-rational structure on a connected reductive group
over k transfers to the perverse sheaves on such a group and how this gives rise to
characteristic functions of Frobenius-invariant character sheaves (see[3.2.1). We can then
state Lusztig’s result (Theorem that these characteristic functions form a basis
of the space of class functions of the associated finite group of Lie type. We proceed
with a detailed discussion on the computation of characteristic functions and how this
is in principle reduced to the computation of the generalised Green functions on finite
reductive groups . These generalised Green functions are defined on the
set of [F -rational points of the unipotent variety of the connected reductive group in
question. As for their computation, Lusztig developed a purely combinatorial algorithm
(which is implemented in Michel’s CHEVIE [MiChv|) based on the generalised Springer
correspondence (see |3.2.1343.2.14] and [3.2.16H3.2.18)). Since the generalised Springer

correspondence is now explicitly known in complete generality (due to Lusztig [Lus84b],
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[Lus19]; Lusztig—Spaltenstein [LS85]; Spaltenstein [Spa85|; and the author [Het22b,
where the last open cases for groups of type Eg are settled), Lusztig’s algorithm allows
the determination of the generalised Green functions up to certain roots of unity (see
. One of the problems which remains to be addressed in this framework is that
of specifying suitable normalisations of characteristic functions of Frobenius-invariant
character sheaves; we discuss this thoroughly in [3.2.20 where, in particular, the
choice of a ‘good’ representative in the set of Frobenius-fixed points of a conjugacy class
of the underlying connected reductive group plays an important role.

In Section [3:3] we start by describing a parametrisation of character sheaves in
terms of a multiplicity formula for character sheaves due to Lusztig (see Theorem m
Proposition , which highlights the analogy to the classification of irreducible
characters of finite groups of Lie type via Theorem [2.2.21] Having those ‘parallel’
parametrisations of Frobenius-invariant character sheaves and almost characters at
hand, we are then prepared to formulate Lusztig’s Conjecture, which states that any
almost character should coincide with a suitably normalised characteristic function of
the corresponding character sheaf. — Hence, as the characteristic functions of character
sheaves are computable ‘in principle’ and since the almost characters are given by explicit
linear combinations of irreducible characters, the proof of Lusztig’s Conjecture would
constitute a major step towards determining the generic character tables of finite groups
of Lie type. In the case where the underlying connected reductive group over k has a
connected centre, Lusztig’s Conjecture was proven by Shoji (see Theorem , by means
of showing that any almost character coincides with a chosen characteristic function of
the corresponding character sheaf up to multiplication with a non-zero scalar. Thus, the
problem of determining the scalars involved in Shoji’s Theorem remains to be resolved,
and the investigation of said problem forms the core of this thesis. More precisely, we
will consider this problem as far as the unipotent character sheaves on simple groups
are concerned. In this situation, Shoji [Sho97|, [Sho09] has determined the scalars in
question for any classical group (see .

In Section we consider non-twisted finite groups of Lie type arising from simple
groups with a trivial centre, and we focus on the unipotent character sheaves on those
groups. In this case, one obtains explicit parametrisations of the unipotent characters
and unipotent character sheaves, which are ‘compatible’ in the sense of Corollary [3.4.8]
We then explain how the task of determining the scalars in Shoji’s Theorem with respect
to unipotent character sheaves on simple groups of exceptional type can be reduced to
considering cuspidal unipotent character sheaves on such groups (Corollary . In
3.4.18H3.4.24] we conclude this chapter by presenting the main methods that we utilise
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in Chapter [4 below to determine the scalars in Shoji’s Theorem with regard to cuspidal
unipotent character sheaves on various simple groups of exceptional type and also to
complete the computation of the values of unipotent characters at unipotent elements for
the groups Eg(q) and E;(q), where ¢ is any power of any prime p. To this end, the Hecke
algebras associated to finite groups of Lie type (see Section and the generalised

Springer correspondence are of crucial importance.

3.1. Definition and some properties

We begin by introducing some notions of the theory of character sheaves, following
[LuCS1]|-[LuCS5], [Lus87|, [Lus12b|, [Sho95a]. For the definitions and properties of the
underlying theory of perverse sheaves, we refer to [BBD82] (whose notation we adopt
here as well, mostly without explicitly mentioning it in the sequel; see also [Lus87]). As
before and throughout this chapter, k = F,, is an algebraic closure of the finite field with
p elements (for a prime p) and, as soon as p is prescribed, we fix any prime ¢ different
from p and denote by Q, an algebraic closure of the field of f-adic numbers. Starting
from G will always denote a connected reductive group over k.

3.1.1. Given an algebraic variety X over k, we denote by 2X := 2°(X,Q,) the bounded
derived category of constructible Q,-sheaves on X, whose objects are typically called
complezes (cf. [LuCS1} 1.2]). For a morphism f: X — Y of algebraic varieties X, Y over
k, let

29 - 9X

be the inverse image functor and
f!: 92X - 9Y

be the direct image functor with compact support. They admit adjoint functors, denoted
by
fo: 9X = 9Y, f':9Y - 9X,

respectively. For instance, if X C Y is a subvariety, K € 2Y, and i: X — Y is the

inclusion, the restriction of K to X is defined as
K’X ="K € 9X.

Now let K € 92X and i € Z. Associated to K is the ith cohomology sheaf 'K, a
constructible Q-sheaf on X. There exists a complex K[i] € 2X, called the ith shift of
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3. Character sheaves

K, which satisfies
HI(Ki]) = #7(K) forall j € Z.

For x € X, we denote the stalk of /'K at x by #'K, a Q,-vector space of finite
dimension. The support of K € 2X is defined as

supp K :={x € X | K #0 for some i € Z} C X
(where the bar stands for the Zariski closure, here in X'). For later use we set
E 1= (—1)dimX—dimsupp K ) [0 € 9 X (3.1.1.1)

If .7 is itself a constructible Q,-sheaf on X (or even a Q-local system on X), there exists

a unique complex K € ZX such that
HVK)=F and H'(K)=0 ifi+#0,

so we will tacitly identify .# with this K and write # € 2X. To simplify the notation,
we shall mostly just speak of a local system when we mean a Q-local system.

Let .# X be the full subcategory of ZX consisting of the perverse sheaves on X in
the sense of [BBD82| (see also [LuCS1, 1.3]). The category .# X is abelian, and every
simple object of .#Z X can be expressed in terms of an intersection cohomology complex
due to Deligne-Goresky—MacPherson [GMS83|, [BBD82|. More precisely, for any locally
closed, smooth irreducible subvariety Y of X and any irreducible local system .Z on Y,
Z[dim Y] is an irreducible perverse sheaf on Y, and there is a unique irreducible perverse
sheaf extending .Z[dim Y] to the closure Y, namely, IC(Y,.Z)[dimY]. Let i: Y < X be

the inclusion. It will be convenient to use the notation
IC(Y,.2)[dim Y]#¥ := i, (IC(Y, £)[dimY]) € 2X.

(In other words, IC(Y, .Z)[dim Y]#¥ extends the complex IC(Y,.Z)[dim Y] to X, by 0
on X \Y.) Then IC(Y,.%)[dim Y]#X is an irreducible perverse sheaf on X, and any
irreducible perverse sheaf on X is obtained in this way. We note that for any smooth
morphism f: X — Y of algebraic varieties with connected fibres of dimension d € Ny,

the shifted inverse image functor f*[d]: 2Y — X restricts to a functor

fd): Y - X (3.1.1.2)
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(see [BBD82, 4.2.5] or [LuCS1, 1.8]). We will also need the cohomological functor
PH: 9X - #X  (i€Z)

(see [BBD82, §1.3] or [LuCS1} 1.4]), which associates to any complex in 2X (and any
i € Z) a perverse sheaf on X.

If H is a connected algebraic group acting on the algebraic variety X via the morphism
m: Hx X — X, and if mx: Hx X — X is the projection onto X, a perverse sheaf
K € #X is said to be H-equivariant (for the action of H on X) if

% [dim H](K) = m*[dim H](K) in .#(H x X).

Now let . be a local system on X; we thus have Z[dim X| € .# X. We say that the local
system £ is H-equivariant (for the action of H on X) if the perverse sheaf Z[dim X] is
H-equivariant (for the action of H on X). Let us assume in addition that the action of

H on X is transitive, and let us fix any x € X. Consider the stabiliser
Staby(z) :== {h € H| m(h,z) =z}

of z in H. Following [Sho88, 3.5], for any H-equivariant irreducible local system . on
X, the group Stabyy(x) naturally acts on the stalk £, of £ at x, and this action induces

a linear action on .%, of the finite group
Ap(z) = Stabr(2) /Stabe, (o),

which gives %, the structure of an irreducible Ag(z)-module. In fact, the assignment
£ — £, as above defines a bijection between the isomorphism classes of H-equivariant
irreducible local systems on X and the isomorphism classes of irreducible Agg(x)-modules.
If ¢ € Irr(Am(x)) is the character of the Ag(z)-module ., we often just write ¢ instead
of Z. In several applications that we will be concerned with later (mostly occurring
when X = % C H is a conjugacy class of H), the group Ag(z) turns out to be cyclic and
generated by the image T of € Stabg(x) under the canonical map Staby(x) — An(x).
In this case, we typically denote the irreducible characters of Ag(x) by their values at T;
thus, if the character of the irreducible Ag(z)-module %, takes the value ( € R at T,
we will often denote the pair (X,.%) by (X, (), or by (z,() if we have fixed x € X in a

given setting.

3.1.2. Assume that the algebraic variety X over k is defined over F, (¢ a power of p),
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with Frobenius morphism F': X — X. Thus, for K € X, we may consider the inverse
image F*K € 2X. If F*K is isomorphic to K, choosing an isomorphism ¢: F*K = K

gives rise, for any z € X and any i € Z, to a linear map
i K (K) = A (K)

at the level of stalks. Since for a fixed € X only finitely many of the J# K are non-zero,
it makes sense to define the characteristic function xk ,: X F — Qy of K with respect to
¢ by

XK, p(T) = Z(—l)iTrace(goi,x,%i(K)) for z € X%, (3.1.2.1)

1€EZ

see [LuCS2| 8.4]. Assume in addition that H is a connected algebraic group over k,
defined over IF,, which acts on X such that the action is defined over F,. Then if
K € .#X is a perverse sheaf such that there exists an isomorphism ¢: F*K = K, and
it K is H-equivariant for the action of H on X, the characteristic function xx , is an
H(F,)-invariant function on X ¥, see [Sho95a, 1.1].

3.1.3. Let S be a torus over k, and let . be a local system on S. (Since S is abelian, it
is a trivial fact that . is automatically S-equivariant for the conjugation action of S on
itself, as this action is just the second projection S x S — S.) Following [Sho95a, 1.2], we
call .Z a tame local system if it has dimension 1 and if .Z®" = Q, for some n € N which
is prime to p. We denote by .(S) the set of isomorphism classes of tame local systems
on S, even though we will (by a slight abuse of notation) often just speak of .(S) as
‘the’ tame local systems on S and write .Z € .(S) instead of [.Z] € .(S) or the like.
Another description of .(S) is given as follows (see [LuCS1] 1.11, 2.2]). Recall that
we have fixed an isomorphism 1: k% = i,y in (1.1.0.4). So if we denote by s, (k) the
group consisting of all nth roots of unity in £* (for n € N which is prime to p), we get

an injective group homomorphism
s pn(B) = B S py — Q)
Now consider the morphism
on: Gy — G, & &

The group py, (k) acts naturally on the direct image local system (05, ).Q, on Gy,, and we
denote by &, the summand of (0,)+Q, on which u, (k*) acts according to the character
i1n. Then for A € X(8S), we have \*(&,,,,) € -7(S), and this construction gives rise to an
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isomorphism
X(8)@2Le) /7. S (S), A® (L +Z) = M (G- (3.1.3.1)

(Recall the definition of Z, in (1.1.0.3).)

If the torus S is defined over F, (¢ a power of p), with Frobenius map F': S — S, let

us consider the set

SO ={ZLec SO Fr =2}

of F-stable local systems in .#(S). Given .# € .#(S)F, we can make a canonical choice
for an isomorphism ¢q: F*.¢ = £ by requiring that ¢g induces the identity on the
stalk of .Z at the identity element of S. In this case, we just write

XZ ‘= XZ,p0 - SF — @K'
In fact, ¢ is a (linear) character of S, and the assignment .2 — y & defines a bijection
Z(S)F = Hom(SF,Q,)

(see |Sho95a;, (1.2.1)]), so we may think of the F-stable tame local systems on S (up to

isomorphism) just as the irreducible characters of S using this correspondence.

3.1.4. From now until the end of this chapter, G denotes a connected reductive group
over k. Furthermore, we fix a Borel subgroup Bg C G and a maximal torus T of G such
that To C By. Let Ug := Ry(Bo) be the unipotent radical of By and W = Na(To)/,
be the Weyl group of G with respect to Ty. As usual, for w € W, we denote by w a
representative of w in Ng(Tp). Thus, W acts on T by

W x Tg — To, (w,t)— w(t) :=wtw !, (3.1.4.1)

which is clearly independent of the choice of the representative w of w. Using the inverse

image functor, we obtain an induced action of W on .(Ty), given by
W x .7(To) — S (To), (0, L) (w )*Z. (3.1.4.2)

(Here, w1 is viewed as a map To — Tp via (3.1.4.1)), and (w™1)*: #(To) = .#(To) is
the corresponding inverse image functor, not to be confused with the map (2.1.21.2]).)

73



3. Character sheaves

Then for £ € #(Ty), we define W'y, to be the fixed-point set under this action, that is,
Wy ={weW|(w )y Z=z) (3.1.4.3)

By , the set .#(Ty) can be described in a purely combinatorial way in terms of
X(To) ®z L(p)/7. Thus, if £ = X\*(&,.,,) corresponds to A @ (% + Z) under
(where A € X(Ty) and n € N is prime to p), it follows from standard properties of tensor
products (see, e.g., [GM20, 2.5.3]) that

W'y ={we W |w—XenX(Ty)}.

This characterisation shows that W', is the group denoted by VAV)\,n in |[GM20, 2.4.12); if
G has a connected centre, we have W'y, = W ,, , see |GM20, 2.4.14]. In general
(when Z(G) is not necessarily connected), W, coincides with the group Wy C W/,
defined in [LuCS1} 2.3], but most of the time we will only be concerned with the connected

centre case.

3.1.5. By applying the machinery outlined in[3.1.1]to X = G, Lusztig gives the definition
of character sheaves on G |[LuCS1, 2.10], which we shall describe below. We mainly follow
[Sho95a), 1.3] (although we only give the ‘non-twisted’ version of character sheaves here),
the original references are [LuCS1, §2], [LuCS3, 12.1]. For w € W and a representative
w € Ng(Ty) of w, consider the diagram

T0 Qv }A/w o Yw Tw G-
Yo
where
Y = {(9,hBo) € G x G/B,, | k™ 'gh € BowBy},
Y ={(9.hBy) € G x G/B, | h~'gh € BouwBy},
Yo = {(g,h) € G x G | h™'gh € BouBy},
and

mw(g,hBo) =g,  Tw(g,hBo) = g,
a(g,h) = (g,hBo),  0u(g,h) = pry(h~'gh).

Here, pr,: BowBy — Ty is defined by pry,(vwtu') =t (for u,u’ € Uy, t € Ty). Now
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let Z € .7(Ty) be a tame local system on Ty, and let w € W'y,. Consider the inverse
image ¢};-Z of £ under p;. Then there exists a canonical local system %, of dimension
1 on Y, such that ¢%.%Z = o*.%,;, (see [Sho95a, 1.3] or [LuCS1, 2.4], [LuCS3, 12.1]). The
isomorphism class of .%,, is independent of the choice of the representative w of w, so it

makes sense to define
KZ = (muyhZy € 2G  (for £ € S (Ty), w e W'y). (3.1.5.1)

Similarly, using the intersection cohomology complex to extend Ly 10 Yoy, we set

KL = @ W(IC(Yw, ) € 2G  (for £ € #(Ty), w € W'y).

We can now give Lusztig’s definition of character sheaves.

Definition 3.1.6 (Lusztig [LuCS1, 2.10]). For £ € .#(Ty), we denote by G & the set of
isomorphism classes of irreducible perverse sheaves A on G such that A is a constituent
of PHI(KZ) for some w € W'y, and some i € Z. A character sheaf on G is an irreducible
perverse sheaf A € .# G whose isomorphism class is in G ¢ for some . € .% (To). We
denote by G the set of isomorphism classes of character sheaves on G. By a slight abuse
of notation, we will also write 4 € G (or A € G ) if A is a character sheaf on G whose

isomorphism class is in G (or G ) and speak of G just as ‘the’ character sheaves on G.

Remark 3.1.7. (a) Let .Z,.¢" € .#(Ty). By |[LuCS3, 11.2], the sets G and G o
coincide provided .Z, .’ are in the same orbit of the action of W on .#(Ty) defined in
, while they are disjoint otherwise. Thus, if we denote by < (To) /W a set of
representatives for the W-orbits on .%(Ty) under , we obtain a partition

G= W G
ZeS(To)/W

(b) Let .Z = X*(&n,,) € -L(To) where A € X(Ty) and n € N is prime to p, see
(31.3.1). By [LuCS1, 2.18], any A € G4 is (G x Z(G)°)-equivariant for the action of
G x Z(G)° on G defined by

(GXZ(G))xG =G, ((z,2),9) 2"zgzt.

In particular, any character sheaf on G is G-equivariant for the conjugation action of G
on itself.
(c) Let £ € .#(Ty), and let A be an irreducible perverse sheaf on G. By |[LuCS3| 12.7],
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we have A € Gy if and only if A is a constituent of PH* (F‘f) for some w € W'y, and
some ¢ € Z. The advantage of using this characterisation is that the complex f‘f € 9G
is semisimple [LuCS3, 12.8], that is, each PH* (?‘f) is a semisimple object of the abelian
category A G.

Definition 3.1.8. Consider the trivial local system £y = Q, € .’(Ty) (thus, W'y, = W).

The unipotent character sheaves on G are defined as
G .= G 2 C G.

As we shall see later (Section Section [3.4)), in the case where F': G — G is a
Frobenius map, the set G is indeed closely related to the set of unipotent characters of
GF.

3.1.9. In analogy to Harish-Chandra induction and restriction for finite groups of Lie
type, there are induction and restriction functors for perverse sheaves, defined as follows
([LuCS1, §3, §4], see also [TT20, §7]). Let L C G be the Levi complement of some
parabolic subgroup P of G. Denote by Up = R, (P) the unipotent radical of P. Let
mpoL: P — L be the canonical projection with kernel Up, and let i: P — G be the

inclusion. Then the functor
res(ﬁg,: 292G — YL

is given by
res%gP(A) := (mpor)i"A[dim Up] € ZL  (for A € 2G).

Now consider the diagram

where

Vi={(g,2) € G x G|z gz € P},
Vo ={(9,2P) € G x G/p | 27 gz € P},

and

m(g.7) = mpor(z 'gz), 7'(9,7) = (9,2P), "(g9,2P)=g.

Let K € .#L be a perverse sheaf on L which is L-equivariant for the conjugation action

of L on itself. Then one can show that there exists a unique perverse sheaf Ky € .#V>

76



3.1. Definition and some properties

(up to isomorphism) such that 7*K[dim G + dim Up| = (7’)* K2[dim P]. Setting
indEgP(K) = ("), K2 € 2G
then gives a functor
indggpz {L-equivariant perverse sheaves on L} — ZG. (3.1.9.1)

Definition 3.1.10 ([LuCS1} 3.10], [LuCS2, 7.1]). Let A € ZG.

(a) We say that A is a cuspidal perverse sheaf if it satisfies the following two conditions.

(i) There is an integer n € N which is prime to p such that A is (G x Z(G)°)-
equivariant for the action of G x Z(G)° on G defined by

(GXZ(G))xG =G, ((x,2),9)— 2"zgz "

(ii) For any proper parabolic subgroup P C G with Levi complement L C P, we
have
dim supp %i(res%gP(A)) < —i forallieZ.

(b) If A € G, we say that A is a cuspidal character sheaf on G if it is a cuspidal
perverse sheaf in the sense of (a). We denote by G° C G the subset consisting of

the cuspidal character sheaves on G.

Definition 3.1.11 (|[LuCS2, 7.7], [LuCS3| 13.9]). (a) A cuspidal perverse sheaf A € #ZG
is called clean if there exists a subset ¥ C G which is the preimage of a conjugacy class

of G/z(g)o under the canonical map G — G/z(g)o such that
suppA =3 and A‘E\E =0.

(b) G is called clean if for any Levi complement L of any parabolic subgroup of G,

every cuspidal character sheaf on L is clean in the sense of (a) applied to L instead of G.

Remark 3.1.12. A character sheaf A € G automatically satisfies condition (i) in
Definition (a), as mentioned in Remark (b) If Ae G°, it can be shown that
we even have res%gP(A) =0 in ZL for any proper parabolic subgroup P of G with Levi
complement L C P, see [LuCS1, 6.9(b)].

In [LuCS1|, Lusztig actually always assumes that Ty C L and By C P (that is, with
the notions in L is the standard Levi subgroup of the standard parabolic subgroup
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P with respect to the pair Ty C By), but as remarked in [LuCS2| 7.1], one can drop
this assumption for condition (ii) in Definition [3.1.10(a). Using suitable transitivity and
‘Frobenius reciprocity’ properties of res and ind (see [LuCS1, 4.2 and 4.4(d)]), we obtain
the following characterisation of cuspidal character sheaves: A € G is in G° if and only
if for any (standard) Levi subgroup of any proper (standard) parabolic subgroup P C G,
and any Ay € L°, A is not a summand of indEgP(Ao). (We may or may not include the

‘standard’ in this characterisation, whatever is more convenient in a given situation.)

Theorem 3.1.13 (Lusztig, see [LuCS5, Thm. 23.1], [Lusl2b|). Let G be a connected

reductive group over k.
(a) Any irreducible cuspidal perverse sheaf on G is a (cuspidal) character sheaf.
(b) G is clean.

Proof. The proof of this theorem occupies almost all of [LuCS4] and [LuCS5, §22, §23],
and is finally concluded in [Lus12b] (which deals with some small primes p that have
been excluded in |[LuCS5, (23.0.1)]). O

Remark 3.1.14. (a) The (isomorphism classes of) irreducible cuspidal perverse sheaves
on G are classified by Lusztig in [Lus84b| (cf. Example below), which yields the
classification of G° in view of Theorem (a). It should be mentioned that the proof
of Theorem [3.1.13] is essentially based on a case-by-case analysis and strongly relies
upon the classification of irreducible cuspidal perverse sheaves on connected reductive
groups; in particular, showing that a given irreducible cuspidal perverse sheaf is in fact a
character sheaf does not seem to be a direct consequence of the conditions (i) and (ii) in
Definition [3.1.10|(a). We also note that parts of the proof in [Lus12b| (concerning some
small primes p) rely on explicit computer calculations!

(b) As we will describe below, knowing the cuspidal character sheaves on the Levi
complements of the parabolic subgroups of G and inducing them to G gives rise to a
parametrisation of G, which is rather analogous to Harish-Chandra theory for finite
groups of Lie type. On the other hand, [LuCS5, Thm. 23.1] contains a further main part
(which we have not included in the formulation of the above theorem) that together with
the results of [Lus12b| provides another classification of G it consists of a parametrisation
of the sets Gy for £ € . (To) in terms of families of the group W'y,. We will discuss
this in Section [3.3]in the case where G has a connected centre. If G is equipped with
a Frobenius map F': G — G, F naturally acts on G (see below) and, assuming
that Z(G) is connected, the F-stable character sheaves on G are described via a scheme
analogous to that in Theorem for Irr(GF). In this case, given (\,n) € A(G, F)
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and .Z = M (&,,,) € 7 (To) (3.1.3.1)), the F-stable character sheaves inside Gy are
parametrised in terms of the group W', = W ,,, subject to properties analogous to
those for the set £, via Theorem @ We will be particularly concerned with the
unipotent character sheaves Gm =G %, (see Definition .

3.1.15. Following |Lus84b| 3.1] (see also [LuCS1} 3.11]), we define a partition of G
into finitely many locally closed, smooth irreducible subvarieties which are stable by
conjugation. Given an element g € G, let us write ¢ = gsgu = gugs for its Jordan
decomposition (with gs € G semisimple, g, € G unipotent). We say that g € G is
isolated in G [Lus84b, 2.6] if C&(gs) is not contained in a Levi subgroup of a proper
parabolic subgroup of G. This condition is clearly invariant under G-conjugacy, so it
makes sense to say that a conjugacy class of G is isolated if one (any) of its elements is
isolated in G.

Let L C G be a Levi complement of some parabolic subgroup of G, and let ¥ C L
be the preimage of an isolated conjugacy class of L/ Z(L)° under the canonical map
L— L/z(L)O. We set

Yieg :={g € X[ Cgl(gs) CL}

and

Yoy = U ereg:C_l.
zeG

Then Yy, x) is a locally closed, smooth irreducible subvariety of G of dimension
dimY’(L,E) = ‘RG‘ - ’RL‘ + dim X

(where Rg, Ry denote the sets of roots of G, L, respectively). Now G acts by simultaneous
conjugation on the set of all pairs (L, >) as above, and there are only finitely many
equivalence classes for this action. Clearly, Y(g, ) only depends on the class of (L,%). As
described in [Lus84b, 3.1], given g € G, it is easy to find a pair (L, X) as above such that
g € YL x)- Indeed, we may take

L:=Ha(g) :==Cg(Z(Ca(gs))°),

which is the smallest closed subgroup of G that contains Cg(gs) and is the Levi comple-

ment of some parabolic subgroup of G. We then have g € L, and we choose
Y :=Z(L)° - (L-conjugacy class of g).

This shows that there is a finite set of pairs (L;,%;) (1 < ¢ < m, some m € N) which
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3. Character sheaves

gives rise to the desired partition
m
G = Lﬂ Y, =)
i=1

Since the sets Y(1,, ;) do not depend on the G-conjugacy class of (L;,¥;), we may even
require that for all i € {1,...,m}, L; is the standard Levi subgroup of some standard
parabolic subgroup of G with respect to Ty C By, see

Definition 3.1.16 ([Lus84b, 2.4, 2.5]). (a) Let G be a semisimple algebraic group over
k. For any parabolic subgroup P C G, let us set P := P/RU(P)v and let 7p: P — P be
the canonical map. Furthermore, for € P, we write 2F for the P-conjugacy class of
x. Now let € C G be a conjugacy class, and let & be an irreducible local system on ¢
which is G-equivariant for the conjugation action of G on €. The pair (%, &) is called
a cuspidal pair for G (and & is called a cuspidal local system on €) if, for any proper
parabolic subgroup P C G, the following condition is satisfied:

For any x € P, we have H? (ng(x) NE, 5’) =0 where d=dim% — dim (mﬁ> .

(Here, Hg(ﬂﬁl(x)ﬂ‘f, &) is the dth cohomology group with compact support of ng(x)ﬂcf,

with coefficients in & \ﬂ—1(x)%¢ rather than in the constant local system Q, as considered
P

in 221
(b) Let G be a connected reductive group over k. Consider the semisimple groups

Gy = G/Z(G)° and Gger 1= |G, GJ, as well as the canonical maps
Tss: G = Ggs, Tger: G — G/Gder and 7 := (Tger, Tss): G — G/Gder X Gegg.

Let € be a conjugacy class of Gg, and let ¥ := 7 1(¢) € G. Assume that & is a
G-equivariant irreducible local system on ¥ (for the conjugation action of G). The pair
(X, &) is called a cuspidal pair for G (and & is called a cuspidal local system on %) if
there exists some cuspidal local system & on ¢ (that is, (¢, &) is a cuspidal pair for
Ggs as defined in (a)) and a tame local system & € . (G/Gder) such that

& X (ng) (L KE,

where 7|y: ¥ — G'/(;,de]r X € is the restriction of .

Proposition 3.1.17 (Lusztig [LuCS1], 3.12], [Lus84b| §2]). Let £ = \*(&,,.,) € % (To)
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be as in and let A € G NG°. Consider the action of G x Z(G)° on G defined by
(GXZ(G))xG =G, ((z,2),9)— 2"zgz™t. (3.1.17.1)

(a) There exists a unique (G x Z(G)°)-orbit ¥ C G and a unique (G X Z(G)°)-

equivariant irreducible local system & on X (up to isomorphism) such that

A2 IC(E, &)[dim X]7C.

(b) The pair (X,&) in (a) is a cuspidal pair for G.

(c) Let ¥ be as in (a). Then X is the preimage of an isolated conjugacy class of
G/z(G)O under the canonical map G — G/z((;)o. Furthermore, for any g € X3,
the group C&(g)/z((;)o is unipotent.

Proof. See [LuCS1, 3.12]. O

Remark 3.1.18. (a) As a converse to Proposition [3.1.17] given any cuspidal pair (3, &)
for G, the complex
IC(%, &)[dim X)#C € .#/G

is a cuspidal character sheaf on G. Indeed, by [LuCS2, (7.1.4)], IC(X, &)[dim £]# is
an irreducible cuspidal perverse sheaf on G, so it remains to refer to Theorem (a).
The cuspidal pairs for G thus parametrise the cuspidal character sheaves on G.

(b) Let us set H := G x Z(G)° and consider the action of H on G. Let
3 C G be an H-orbit, and let us fix a representative g € 3 for this orbit. Then, as noted
in the isomorphism classes of H-equivariant irreducible local systems on X are in
natural correspondence with the irreducible characters of Ag(g). In this way, any cuspidal
pair (¥, &) for G and, hence, any cuspidal character sheaf A = IC(Z, &)[dim X]#€ on G,
may concisely be described by a pair (g,s) where g € ¥ and ¢ € Irr(Ap(g)) parametrises

the local system & on 3. It will sometimes be convenient to write this as
A < (g:9)-

Example 3.1.19. Let us assume that G is a simple group, so that Z(G)° = {1}. Thus,
the cuspidal pairs for G are of the form (%, &) where ¥ C G is an isolated conjugacy
class of G. As mentioned in Remark the classification of the cuspidal pairs for
G has been established by Lusztig [Lus84b|. We briefly indicate how the cuspidal pairs
for G of type Eg in good characteristic (that is, p > 7) can be explicitly extracted from
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3. Character sheaves

the results of [Lus84b|. So let € C G be an isolated conjugacy class, and let us choose
some g € ¢ with Jordan decomposition g = su = us (s semisimple, u unipotent). Let
& be (the isomorphism class of) a G-equivariant irreducible local system on €. Thus,

the pair (¢,&) may be described by (g,s) where ¢ € Irr(Ag(g)). Now we note that
Ca(su) = Cog(s)(u), so

Aa(g) = Coa@W/cg, () = Aca(s)(®)-

Let us denote by &7 the (unipotent) conjugacy class of u in Cg(s) and by & the
irreducible local system on &) described by ¢ (viewed as an irreducible character of
Acg(s)(w)). By [Lus84b, (2.10.1)], we have

(¢,&) is a cuspidal pair for G <= (01,8)) is a cuspidal pair for Cg(s).

Now [Lus84b, 15.6] provides the isogeny types of all the Ca(s) where s is the semisimple
part of an element in a conjugacy class ¥ C G which affords a cuspidal local system &.
The cuspidal pairs (€7, &1) for Ca(s) for which €7 C G is a unipotent class can then be
read off from [Lus84b, §10, §14, §15], and this gives all the cuspidal pairs (%, &) for G.

Example 3.1.20. Let n > 1, and let G be a simple algebraic group over k of type A,.

(i) Assume first that |Z(G)| < n+ 1. (If the characteristic p of k does not divide n+ 1,
this is equivalent to requiring that G is not isomorphic to the simply connected

group SLy+1(k).) Then there are no cuspidal character sheaves on G.

(ii) Now let us assume that |Z(G)| = n+1. (In particular, G is isomorphic to SLy4+1(k).)
Then there are precisely (n+ 1) - ¢(n + 1) isomorphism classes of cuspidal character

sheaves on G. (Here, ¢ is the Euler function.)

Proof. (a) Let us first consider the group Gs. := SL,+1(k), that is, the simply connected
group of type A,. By [Lus84b, 10.3, 2.10] and [LuCS4, 18.5], the cuspidal character
sheaves on Gy are given as follows: First, if p divides n + 1 (so that we are in case (i) of
the example), there are no cuspidal character sheaves on Gg.. Now assume that p does
not divide n + 1, so we are in case (ii) of the example. Let O¢s be the regular unipotent
class of Ggc, and let us fix an element ug € O¢s. Then the elements of ch are precisely

the complexes of the form

Ap) = IC(2 (G )uni, &°)[dim Oeg]# G
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3.1. Definition and some properties

where z € Z(Gg) = Cp4q and &° is a Gge-equivariant irreducible local system on z0yeg

corresponding to a faithful linear character ¢ of
Ag..(zu0) = Ag,.(u0) = Z(Gse) = Crpa
(see |[DM20, 12.2.3, 12.2.7] for the middle isomorphism). In particular, we have
(G&l = (n+1) - d(n+1),

which proves (ii).
(b) Now let G be any group of type A, and let us consider its simply connected
covering

m: Gge — G,

see recall that ker 7 is finite and contained in Z(Gyg.). Assume that there exists a
cuspidal character sheaf A on G. By [LuCS4, (17.16.3)] (see also |[Lus84b, 2.10]), A is a
direct summand of m,m*A € G, and 7*A € PGy, is a direct sum of cuspidal character
sheaves on Gg. with trivial action of ker 7. In particular, ch # &, so p cannot divide
n+ 1 in view of (a); thus, |Z(Gg.)| = n + 1. Now let us fix one of the simple summands
Ag € G2, of T A. By (a), we have Ag = Az ) for some z € Z(Gyc) and some faithful
linear character ¢ € Irr(Ag,. (zup)). On the other hand, kerm C Z(Gy.) = Ag..(zup),
and ker 7 acts trivially on Ay, so it also acts trivially on the local system &° corresponding
to . Hence, ker m C ker¢ = {1}, so 7 is a bijective group homomorphism. We conclude
that |Z(G)| = |Z(Gsc)| = n + 1, which proves (i). O

3.1.21. Let L C G be a Levi complement of some parabolic subgroup of G. Following
[Lus84b, 3.2] (see also [LuCS2|, 8.1] or [TT20, 7.3]), we briefly mention a method of
‘inducing’ cuspidal pairs for L to G by utilising the concept of intersection cohomology
complexes, which turns out to coincide with the induction of the corresponding cuspidal
character sheaves from L to G. So let X C L be the preimage of an isolated conjugacy
class in L/z(L)O under the natural projection map L — L/z(L)O. We consider the

diagram
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3. Character sheaves

where
Y:Y(L 5) (see|3.1.15),
Y = 2) € G x G |27 gz € Treg},
f/:{g,xL EGXG/L‘.Z‘ L9z € Yieg ),
and

a(g,z) =27 gz,
B(g,x) = (g,2L),
v(g,7L) =g

Assume now that & is a local system on X which is isomorphic to a direct sum of
irreducible local systems &; on ¥ such that each (X, &;) is a cuspidal pair for L. (In
particular, each &; is L-equivariant for the conjugation action of L on X, hence so is
&.) Then the local system «*& on Y is known to be isomorphic to f*& for a uniquely

determined local system & on Y (up to isomorphism), so we can define
Ki 5, :==1C(Y,7.&)[dim Y]#C

The complex Kﬁz is a semisimple perverse sheaf on G. If we assume in addition that &
is irreducible (so that (X, &) itself is a cuspidal pair for L), then by [Lus84b| 4.5], there
is a canonical isomorphism

K{ 5 = indfip(A), (3.1.21.1)

where
Ag =1C(Z, &)[dim XL e Le,

and where P C G is any parabolic subgroup having L as a Levi complement. In
particular, 1) implies that 1ndLCP(A0) is independent of the chosen P, so we may
(and will) write indL (Ap) instead of 1ndLgP(Ag) from now on, without referring to P at
all. Let us also mention that, by [LuCS1, 4.3], the support of any simple direct summand
of ind¥ (4g) is Y.

3.1.22. Let L be the standard Levi subgroup of some standard parabolic subgroup of
G with respect to Ty C By (see , so Tgo CL=L;and By C P =P for some
J C S, where S C W are the simple reflections determined by Ty C Bg. Assume that
Ag € L°, and let .Z € .%(Ty) be such that Ay € L. Let (2,&) be the corresponding
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3.2. [Fy-rational structure and characteristic functions

cuspidal pair for L, so that
Ag 2 IC(Z, &)[dim B)#L.

By [LuCS1, 4.8], any simple direct summand of the semisimple perverse sheaf ind& (Ay) is
in Gg. Conversely, if A € G, there exists a standard Levi subgroup L of some standard
parabolic subgroup of G, and a cuspidal character sheaf Ag € ﬁo, such that A is a
(simple) direct summand of ind& (Ay), see [LuCS1} 4.4]. This provides a classification of
G in terms of ‘Harish-Chandra series’, cf. (see also below).

3.2. [ -rational structure and characteristic functions

Let us fix the following conventions (extending the ones introduced in [3.1.4), which

remain in force until the end of this chapter:

From now on, we always assume that the connected reductive group
G over k = F, is defined over F, (where ¢ is a power of p), with
corresponding Frobenius map F': G — G. In case there is no ambiguity
about F, we will also assume that both the maximal torus Ty and the
Borel subgroup By O Ty of G (see are F-stable, unless stated

otherwise.

An orthonormal basis for the class functions

3.2.1. The constructions outlined in [3.1.1] and B.1.2 allow the definition of a Frobenius
action on the character sheaves on G, as follows: For A € .# G, the inverse image F™*A
under the Frobenius endomorphism is also in .#ZG, see ([3.1.1.2)). Assume that F*A is
isomorphic to A (such an A will be called F'-stable), and let us choose an isomorphism
p: F*A =5 A. In the case where A is G-equivariant for the conjugation action of G
on itself, the associated characteristic function x4 ,: G — Qy is in CF(GT), see
If, in addition, A is a simple object of .#ZG, then ¢ (and, hence, x4,) is unique up
to multiplication with a non-zero scalar in Q. (Here, multiplication of ¢ with the
scalar & € @Z refers to the isomorphism £¢: F*A = A which induces the Q-linear
map £p;q: %Iﬁ(g)(A) — %i(A) for any i € Z, g € G, with the notation of |3.1.2]) In

particular, all of the above applies to F-stable character sheaves on G. We denote by

Gl''={4eG|FA= A}
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the set of F-stable character sheaves in G. Let A € G , and let L be the standard
Levi subgroup of some standard parabolic subgroup (with respect to Tg C By), (X,&) a
cuspidal pair for L, such that A is a direct summand of Kﬁz; we have supp A = ?(L,E)

(see3.1.21} [3.1.22)).
We set Y := Y{y, ) and d := dimY". By [LuCS5, 25.1], an isomorphism @4 : F*A = A

can be chosen in such a way that the following holds:

For any n € N and any y € Y satisfying F"(y) = v,

the eigenvalues of (p4)" - %_d(A) — %_d(A) are (%)

of the form g™ 4™ G=9/2 times a root of unity in Q.

In particular, determines @4 up to multiplication with a root of unity. Sometimes,
for A € GF it will be convenient to just write x4 for a characteristic function associated
to the character sheaf A, without referring to a specific isomorphism ¢ 4: F*A = A.
Whenever we do this, we tacitly assume that x4 = xa,,, for a chosen isomorphism
@a: F*A = A which satisfies ().

The following is one of the main results of [LuCS5|, which we can now state without

any restriction on the characteristic in view of the remarks in [Lus12bj 3.10].

Theorem 3.2.2 (Lusztig [LuCS5, §25], [Lus12bl 3.10]). For any A € GF', assume that
wa: F*A = A is chosen as in . Then the following hold.

(a) The values of the characteristic functions xa,,, are cyclotomic integers;

(b) {xap, | A€ G} is an orthonormal basis of (CF(GF),< , >GF>

On the computation of characteristic functions

Lusztig also provides a strategy which in principle allows the computation of the charac-
teristic functions x4 for A € GF. We will describe this here, following [LuCS2, §8, §10]
and [LuCS5, §24].

3.2.3. Let L C G be a Levi complement of some parabolic subgroup of G, and let (3, &)

be a cuspidal pair for L. Thus, we obtain the semisimple perverse sheaf
K :=Kiy € /G,

see 3.1.21L We assume that F*K = K and choose an isomorphism ¢: F*K = K.
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Consider the endomorphism algebra
o = MI{E = End 4c(K).
For any A € .# G which is a summand of K, we set
V4 = Hom 4q (A, K),
a finite-dimensional Q-vector space which becomes a left .27-module via the action
A xVa—Vy, (9,v)—dow.

By a general argument concerning locally finite Q,-linear abelian categories (see, e.g.,
[TT20, Appendix AJ; cf. [2.3.5)), one shows that & is a finite-dimensional semisimple
Qy-algebra, and that A — V4 defines a bijection between the set of isomorphism classes
of simple direct summands of K and the set of isomorphism classes of irreducible left
o/-modules. Note that, since F*K = K, F*A is (isomorphic to) a simple direct summand
of K as well, so Vg« 4 is also an irreducible left «/-module. Thus, if v: A — K is in Vjy,
the inverse image functor F* of the Frobenius endomorphism gives rise to a morphism

F*(v): F*A — F*K, and we get an isomorphism of Q,-vector spaces
0: V4= Vpea, v poF*(v).

For any A as above which is F-stable, let us fix an isomorphism ¢ : F*A = A. This

gives rise to an isomorphism of .o/-modules
Visa = Va, v vogo;‘l.
Composing this isomorphism with ¢ thus yields an isomorphism of Q,-vector spaces
oA Va—=Va, v o) opyt =poF*(v)opy,’ (3.2.3.1)
There is a natural isomorphism

@ (A® Vy) 5K
(A|K)/=~

(where the index (AlK) /~ means that the sum is taken over a set of representatives for

the isomorphism classes of the simple constituents A of K, thus tensoring with Vy is
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needed to take care of the multiplicity of A in K). Passing to stalks of the cohomology

sheaves, we obtain isomorphisms

(A%/N(%ff(fl) ® Va) = A (K) (3.2.3.2)

for any g € G, © € Z. The latter can be described explicitly, as follows: Given v € Vy,
denote by v;, the induced map 7 (A) — H#(K). Let a € ] (A), v € V4, then
a ® v corresponds to v;4(a) under . For any g € G and i € Z, p: F*K = K
induces a Qy-linear bijective map ¢; 4: c%”}(g)(K ) = %’?;(K ) (see . Similarly, if
F*A is isomorphic to A, any isomorphism ¢ 4: F*A = A induces a Q-linear bijective
map (pA)ig: c%”lﬁ(g)(A) = A(A). If g € GF, it immediately follows from the above
definitions that the Qy-linear bijective map (¢4)ig®0a € GL(H;(A) @ Va) corresponds
to ;4 under the identification . If, on the other hand, F* A is not isomorphic to
A, then ¢ maps the image of %i(A) ® Va4 in %”;(K ) onto a summand corresponding to

a component of K which is not isomorphic to A. We thus obtain

Trace(psg, 7, (K)) = > Trace((0a)ig, 7 (A)) - Trace(oa, Va).

(A|K) /=~
F*A~A

Taking the alternating sum over ¢ € Z on either side, it follows that

XK,p = E Trace(oa, Va) - XApa- (3.2.3.3)
(A|K)/~
F*A~A

3.2.4. We keep the setting and notation of The algebra &/ may also be interpreted
as the endomorphism algebra of the local system ~,& used to define K in (see
[Lus84b, 4.1]), which allows a description of the structure of <7, see |[Lus84b| 3.4, 3.5]
and also [LuCS2, 10.2]. Let

N =My ={n€ Ng(L) [ nEn~' =% and Int(n)"& = &},

where
1

Int(n): G - G, z—nzn .
We have L C .4, and L is normal in .#", so we obtain a finite group

W = WLéjE = ‘/V/L
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It can be shown that we have a decomposition

o = P A,
weW

where each 47, is a one-dimensional Q,-vector space and, under the multiplication of <7
we have &, - oy, = @y, for any w,w’ € # . The unit element of &7 is contained in 7.
Choosing a basis element 9, € 47, for each w € # (and taking ¥ := 1,/), we can write

D - Doy = Mw, w') - Dy for w,w’ € # and suitable A(w,w') € Q, .

Thus, &7 is isomorphic to the group algebra of # twisted by a 2-cocycle. For w € # and
a simple direct summand A of K which is F-stable, the construction for the definition of
o4 may of course also be applied with ¢ replaced by ¥, 0 p: F*K = K (while keeping

¢4 unchanged), so we get isomorphisms
o4 Va—=Va, v dyopoF*(v)oypy! (forwe #).
The discussion in [3.2.3] yields that

Trace((y, 0 @)i,g,%fj(K)) = > Trace((goA)Z-,g,ffj(A)) - Trace(c'%, Va),
(A|K)/~

F*A~A
valid for any w € #, i € Z and g € G¥. Taking the sum over all w € # and using certain
orthogonality relations for the algebra .7 [LuCS2, 10.3], we obtain, for any F-stable
A which is isomorphic to a simple direct summand of K and any chosen isomorphism
pa: F*A S A:

1

Trace((¢a)ig, #, (A)) = 7|

Z Trace((dy, o cp)i,g,,%”gi(K)) - Trace((d}) ™1, Va).
weW

Taking the alternating sum over all i € Z we get, for any A, p4 as above,
1 _
Xdia = T > Trace((0%) ™, Va) - XK 0. 0p- (3.2.4.1)

weW
3.2.5. As Lusztig shows in [LuCS2, 10.5], formula (3.2.4.1]) can be applied to any A € GF,
for a suitable K. Namely, if A € GF , the discussion in [3.1.22 first of all shows that A
is isomorphic to an irreducible direct summand of ind§ (Ay), where L is the (standard)

Levi subgroup of some (standard) parabolic subgroup of G, and Aj € L°isa cuspidal
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character sheaf on L. By Proposition [3.1.17], we have
Ap 2 1C(T, &)[dim D)7

for some cuspidal pair (X, &) for L. Setting K := Kﬁz, there is a canonical isomorphism
K 2 ind€(Ap) (see(3.1.21)), so A is isomorphic to a simple direct summand of K. By
a standard application of the Lang—Steinberg Theorem [2.1.14] (see [LuCS2, 10.5]), one

proves the existence of some g; € G such that
F(giLgi ') = giLgy ', F(a1%g7 ") = ¢13g; ", F*(Int(g;')*€) = Int(gy 1) &

Then
* DS —1\x* . -1
Int(g; )" (Ag) = 1C(g1%g; ', Int(g; ')*&) [dim ] #g1Lg,

is an F-stable cuspidal character sheaf on g;Lg; ! and inducing it to G gives a complex
which is isomorphic to K. Thus, we may assume that L, X, &, Ag and K are all F-stable
(although L will in general no longer be the standard Levi subgroup of some standard
parabolic subgroup of G). Let us choose an isomorphism ¢g: F*& = & of local systems
over Y. Since all the varieties Y, Y, ¥ and morphisms «, £, ~ used to define K = Kf’z in
are defined over [, (with respect to the obvious Frobenius morphisms induced by
F), po: F*& = & gives rise to an isomorphism ¢: F*K = K in .# G |[LuCS2, (8.1.3)].
On the other hand, ¢q also induces an isomorphism ,: F*Ay — Ay over .# G, hence
an isomorphism
indf (p4,): F* (indf (Ag)) = indf (Ao).

By [LuCS2, (8.2.4)], ind¥(p4,) corresponds to ¢: F*K = K under the canonical
isomorphism K = indE(Ao). Thus, we are in the setting of so in principle
the computation of the characteristic functions of F-stable character sheaves on G is
reduced to that of the characteristic functions of induced complexes K from F-stable
cuspidal character sheaves on various regular subgroups of G (see Definition .

3.2.6. Let A€ GF and let p4: F*A =5 A be any isomorphism. As described in
there is a regular subgroup L C G and an F-stable cuspidal pair (X, &) for L such that
A is a direct summand of K = Kfz € /G, and a chosen isomorphism @g: F*& = &
naturally determines an isomorphism ¢: F*K = K. Then the formula holds
with these A, K and ¢, for a chosen basis ¥, € <7, (w € # = WL‘%) of & = %fz (with
the notation of . Let w € #', and let us fix a representative n € Jl/I“gE of
w. In order to be able to describe the characteristic function x 9,0, more precisely,

we slightly modify the complex K, so that the isomorphism ¥, 0 p: F*K =% K can be
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3.2. [Fy-rational structure and characteristic functions

replaced by one which is naturally induced from the underlying local system &, following
[LuCS2, 10.6]. By the Lang—Steinberg Theorem [2.1.14} there exists some z € G such
that 2~ 'F(2) =n~!. We set

L, :=2Lz"Y, ¥, :=2%2z"" and &1 :=Int(z71)*&,
so that (3,-1,&,-1) is a cuspidal pair for L,,-1. Note that we still have
F(wal) = Lw71, F(wal) = wal and F*(éawfl) = éawfl.

Now consider the complex
&1
K,-1:= KLw—ha—l

(see|3.1.21)), so that
Ky 2indf | ((Ao)y-1),

with
(Ag)y—1 :=IC(Xy-1, &1 [dim Ew—l]#LwJ.

Lusztig defines an isomorphism (¢g),-1: F*&,-1 — &,-1 in terms of @g: F*& = &
and 9, in such a way that, if we denote by ,,-1: F*K,-1 — K,-1 the isomorphism
induced by (¢0),,-1, we have

Trace((¢y, o gp)iyg,jfgiK) = Trace((pw-1)i,g; %in—l) for any g € G¥', i € Z.

Hence, becomes

XAgpq = % S Trace((0%) ™ Va) - Xk, 1o, 1 (3.2.6.1)

weW
3.2.7. Before explaining how the computation of the characteristic functions y Ky, 14,1
(forwe W = WL‘% and K,-1, ¢,,-1 as in can be approached, we will show how
(3:2.6.1) can be reformulated using Lusztig induction (see Definition [2.2.28)), at least
for groups with a connected centre. We thus place ourselves in the setting of [3.2.6] and
assume in addition that the centre Z(G) of G is connected. So for any w € #/, there is
a canonical isomorphism
Ky-1 = indf _ ((Ao)y-1),
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3. Character sheaves

and under this identification, the isomorphism ¢,,-1: F*K, -1 — K, -1 corresponds to
indf; s F*(indf, ((Ao)y-1)) = indE , ((Ao)y-1)
110 Lw_1 (p(AO)w—l . 1n Lw—l 0)w—1 1mn Lw—l 0)w—1

where @(40) 1 F*((A0)y-1) =5 (Ap)y-1 is the isomorphism induced by (pg),-1, see
0.2, 0l
Thanks to the results of Lusztig [Lus90] and Shoji [Sho96, §4], it is known that under

the above circumstances, the following hold:

(i) Lusztig induction is independent of the chosen parabolic subgroup P of G which
has L,-1 as Levi complement, so we may just choose any such P and write
R¢  =RE

w

*17F(UP)'

(ii)) We have XK, 1,p,-1 = Rl(ifl (X(Ao)w—h‘f’(Ao)w_l)'

(The assumption that p is ‘almost good’ in |[Sho96, Thm. 4.2] can be dropped since
the results of [Sho95a], [Sho95b| used in the proof are now known to hold in complete

generality, due to |[Lus12b|.) Hence, (3.2.6.1)) becomes

1 ws—
XApa = % Z Trace((o%) 1 Va) -RS’M_I (X(Ao)w_l,ga(AO)w_l). (3.2.7.1)

As discussed in such a formula holds for any 4 € GF (with an appropriately chosen
K depending on A) and any isomorphism ¢4: F*A = A. (Recall from that the
definition of %, w € ¥, takes the choice of ¢4 into account.) Hence, the characteristic
function of any given F-stable character sheaf can be expressed as a linear combination
of various RS (x4,), with L C G a regular subgroup and Ay € (L°)F an F-stable
cuspidal character sheaf on L, such that the different L/ Z(L)° (for L occurring in the
decomposition) are isomorphic to each other. In particular, in view of Theorem we
have

CF(GT) = (R€(x4,) | L C G regular and Ag € (L°)F) (3.2.7.2)

Q-
This also allows us to characterise the F'-stable cuspidal character sheaves (GO)F among

the F-stable character sheaves on G in terms of Lusztig induction, which highlights the
analogy to the Harish-Chandra theory for characters (cf. [2.2.6). Namely, we have

(G)F ={A e G| (x4, RE(f))gr = 0 for any L C G regular, f € CF(L)}.

Indeed, let A € (GO)F, and let L C G be a proper regular subgroup of G, f € CF(LF),
Applying (3.2.7.2)) to L (note that L also has a connected centre, see [DM20, 11.2.1]), we
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3.2. [Fy-rational structure and characteristic functions

can write f as a linear combination of certain RII\‘/[(X Ap), where any M C L is a regular
subgroup and Ag € (MO)F . By the transitivity of Lusztig induction (see Remark ,
we are thus reduced to showing that (xa, R$i(X4,))qr = 0 for any such M, Ay. By
what we have said above, R$;(x4,) is a characteristic function of the induced complex
ind$;(Ag), which by is a linear combination of characteristic functions of the
character sheaves on G which appear as simple summands of ind$;(Ap). But these are
certainly not cuspidal (since M C G), so they are all orthogonal to x4 by Theorem
Conversely, let A € G be non-cuspidal. Then by the above discussion, x4 is a linear
combination of certain R (y4,) (with L C G a regular subgroup, Ay € (L°)F), such
that for every L which appears, L/ Z(L)° has the same type. It follows that L # G for
each such L (since A is not cuspidal, see again Theorem . As (xa,xa)gr = 1,
writing x4 as a linear combination of the RE(X 4,) above yields that at least one of the

(x4, RE(x4,))qr must be non-zero, as claimed.

Corollary 3.2.8. Let Z(G) be connected. Let A € GF, and let L C G be a regular
subgroup, (X,8) an F-stable cuspidal pair for L, such that A is isomorphic to a direct
summand of K = Kﬁﬁ’z € MG (see . Assume that 3 does not contain any unipotent

elements. Then we have

uni

Proof. We set Ag := IC(Z, &)[dim X]#¥, an F-stable cuspidal character sheaf on L (see
Remark [3.1.18). From the discussion in [3.2.6| and [3.2.7] (and with the notation there),

it follows that x4 is a linear combination of various RE’ . (X( Ao)

_,), where w runs
w

through # = WL‘”(?E. Thus, in order to prove the corollary, it is sufficient to show that

any such RE'  (X(4,),_,) vanishes on all unipotent elements of G*. Recall that
(Ao)wil =1C (iw*1 ) ébwfl) [dlm Zw*l] #Lw_l )

and the F-stable triple (L,-1,%,-1,&,-1) is obtained from (L, X, &) by simultaneous
conjugation (‘twisting with w~!") with an element of G. In particular, the quadruple
(Ly-1,2,-1,8,-1, K,,-1) meets the assumptions of the corollary, so without loss of

generality it suffices to prove that RE (x4,) vanishes on all unipotent elements of GF.
Let u € GE ;. By Remark [2.2.29(d) (and the Q,-linearity of RY), we have

uni-

(REGean) () = gy 3 (0.7 (F(UR) a0

leL¥

uni

Since G is clean (see Theorem [3.1.13(b)), x4, vanishes on all elements outside of X' so
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3. Character sheaves

we have x4,|,r = 0 by our assumption on 3. We deduce that
(RE (xa0)) (w) =0 for all u € G,

as desired. O

Definition 3.2.9 ([LuCS2, 8.3]). Let L C G be a regular subgroup. Consider an F-stable
unipotent class & of L and set ¥ = Z(L)°¢ C L. Let .Z be an L-equivariant local system
on ¢ which is isomorphic to F*.%, and let o: F*.# = .Z be an isomorphism. Let & be
an L-equivariant F-stable local system on ¥ such that .# = &|g, and let g: F*& = &
be an isomorphism which extends the isomorphism . (One may take (&, ¢g) as the
inverse image of (%, 1) under the canonical map ¥ — ¢.) We assume that & is a direct
sum of irreducible local systems &; on ¥ such that each (X, ;) is a cuspidal pair for L.
Let K = Kﬁz be as in and let ¢: F*K = K be the isomorphism induced by ¢,
as described in The function

G AP =
QL o7 Guni = Qo u > Xkp(u),

is called a generalised Green function. (It is justified to omit & and ¢y from the notation
since it can be shown [LuCS2, (8.3.2)] that for any u € GL;, xk,,(u) is independent of
the choice of (&, o) extending (.F,1o).)

3.2.10. Let L C G be a regular subgroup, and let ¥ C L be the preimage of an isolated
conjugacy class of L / Z(L)° under the canonical map L — L / Z(L)°- We assume that
F(X) = ¥ and that there exists a G-equivariant F-stable irreducible local system & on
¥ such that (3, &) is a cuspidal pair for L. Let us fix an isomorphism ¢g: F*& = &.
As discussed in o naturally induces an isomorphism ¢: F*K = K, where
K = KI’{E € #G. Consider an element g € G¥', and let ¢ = gsgu = guygs be its Jordan
decomposition (gs € GF semisimple, g, € GF unipotent). We denote by ¢ C L the
set of semisimple parts of the Jordan decompositions of the elements in 3. Assume that
there exists some € G¥' for which 7 1gsz € Y, and let us fix such an z € G, Then
gs € zLz ™!, and so the group L, := zLz~! N C&(gs) is a regular subgroup of C& (gs).
Let
Oy ={v € C&(gs)ui | gsv € xEx_l}.

Since g5, € GI" and F(X) = ¥, we see that 0, is F-stable. Let .%, be the inverse image
of & under the morphism
Oy — %, v—z g (3.2.10.1)
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3.2. [Fy-rational structure and characteristic functions

Since this map commutes with F, a choice of an isomorphism ¢g: F*& = & induces an
isomorphism
Yy F* Ty = Fy

of local systems on &,. Then O, is a unipotent conjugacy class of L, as follows from
[LuCS2, 7.10, 7.11] applied to the cuspidal pair (zXz !, Int(z~1)*&) for the connected
reductive group zLz~!. Furthermore, let &, be the inverse image of Int(z~!)*& under
the map

Z(zLz™Y)°.0, — 23z, zw e zgo.

By [LuCS2, 7.11(a)], (Z(zLx~1)°.0,, &) is a cuspidal pair for zLz~!. Now we note that
the map (3.2.10.1) may be written as the composition

Op — Z(aLz™)°.0, = zXa71 = 3,

where the second map is the one just defined and the third map is given by conjugation
with z=!. Thus, .%, is the restriction of &, to 0,. Hence, for any z € G such that

2 gsx € By, we obtain a generalised Green function
C&(gs) F =
QLiﬁx:yxywx: Ca(gs)uni — Qf’
see Definition [3.2.9

Theorem 3.2.11 (Lusztig [LuCS2, Thm. 8.5]). Assume that we are in the setting of
. In particular, K = Kﬁz € . #G is defined with respect to a reqular subgroup L
of G and an F-stable cuspidal pair (2,&) for L, and an isomorphism pg: F*& = &
is chosen, which thus induces an isomorphism p: F*K = K. Let g € G with Jordan
decomposition g = gsgu = gugs, and let Ly, O, F, and 1, be defined with respect to this
g, for any x € G such that x7 gz € Sg. Then

LY 08, (g2)
Xrglo) = ) (g P [O7 QLS 5 4. (gu)- (3.2.11.1)
zeGF
x*lixezss
Proof. See [LuCS2, §8]. O

According to [3.2.3H3.2.6] [3.2.9H3.2.11], the computation of the characteristic functions

of F-stable character sheaves on a connected reductive group which is defined over F,

is thus in principle reduced to the computation of generalised Green functions of such

groups.
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Remark 3.2.12. Let us consider the special case where L = T C G is an F-stable
maximal torus. For any . € .%(T)F with the canonical isomorphism ¢q: F*.¢ = &,
let § := x.¢ € Irr(TF) (see. Let K = K:ET € MG, and let p: F*K = K be the
isomorphism induced by ¢g. We then have

XK = (1) TRE(0),

see [Sho95a), 2.3]. If the centre of G is connected (or alternatively, if ¢ is large enough),
this is a special case of an even stronger result concerning any regular subgroup L C G,
see |[Lus90] and [Sho96, §4], which we have referred to already in above.

3.2.13. In order to tackle the problem of computing the generalised Green functions which
appear in Theorem we are reduced to considering the complexes K = Kﬁz e MG
for which L C G is a regular subgroup and (3, &) is an F-stable cuspidal pair for L,
where ¥ is the preimage of a unipotent isolated conjugacy class of L/ Z(L)° under the
canonical map L — L/Z(L)O. In [LuCS5| §24], Lusztig provides an algorithm for the
computation of these generalised Green functions. Let us describe this now, following
[LuCS5, §24] (which relies on the results of [Lus84b]); see also the overview given in
[ShoO6b), 1.1-1.3].

Let L be a Levi complement of some parabolic subgroup of G (we do not yet assume
that L is F-stable), 0 a unipotent class of L and &y an L-equivariant local system on
O (for the conjugation action of L) such that (Z(L)°.0p,1X &) is a cuspidal pair for
L. (Here, 1 X & is the inverse image of & under the projection map Z(L)°.0y — 0.
Moreover, & is always assumed to be taken up to isomorphism in this set-up.) Then G

naturally acts on the set of such triples (L, 0p, &) by conjugation, via
I(L, 00, &) := (gLg ", gOug~ ', Int(g")* &)  for g € G.

We denote by [(L, 0y, )] the G-conjugacy class of the triple (L, &y, &y) and by Mg the
set of G-conjugacy classes of all triples (L, 0p, &) as above. For j = [(L, 0y, &)] € Mg,

let us consider the semisimple perverse sheaf

- 1RE
K) — KL,Z(OL)O'ﬁO E %G

Setting Yj := Y1, zw)°.0) (see[3.1.15)), we have supp K; = Y. Recall from that K;

is decomposed as

Kj = @ (A ® VA)?
(AlK;)/~
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3.2. [Fy-rational structure and characteristic functions

where V4 = Hom 4G (A, Kj). As we have also stated in the assignment A — Vy
gives rise to a bijection between the isomorphism classes of simple constituents of K;
and the isomorphism classes of irreducible left %4-modules up to isomorphism, where
o/ = End 4c(Kj). In the particular case at hand, Lusztig shows in [Lus84b, Thm. 9.2]
that <7 is isomorphic to the group algebra of

#, = Wa (L) = Na(L)/1,,

that is, in the setting of we have 4" = Ng(L), and the basis elements 0, (w € %)
of the algebra 7 can be chosen in such a way that the 2-cocycle involved is trivial.
In fact, there is a canonical choice for the basis elements ¥,,, w € #j (subject to the
condition [Lus84b, 9.2(d)]), which we shall fix from now on, so we obtain a canonical

isomorphism
Q[#) = o, determined by w — ¥, for all w € #;. (3.2.13.1)

Thus, we can write

K~ P 40V,
peler(#)

where A, is the simple direct summand of Kj (up to isomorphism) which corresponds to
¢ € Irr(#) via the isomorphism (3.2.13.1)), and V; = Hom 4G (44, K;).

Now we define Ng to be the set of all pairs (&, &), where € is a unipotent conjugacy
class of G and & is an irreducible local system on & (up to isomorphism) which is G-
equivariant for the conjugation action of G. The restriction of the complex Kj to Gp; is a
direct sum of intersection cohomology complexes IC(@, &)[dim Z(L)° + dim ¢]#Guwi | for
suitable (&, &) € Ng. More precisely, for any ¢ € Irr(%#5), there is a unique (€, &) € Ng
such that

Aglaus ZIC(0, &)[dim Z(L)° + dim @]# Cuni, (3.2.13.2)

and the isomorphism class of A4 is uniquely determined by this property among the
simple perverse sheaves which are constituents of Kj |[LuCS5} 24.1]. So for each j € Mg,

the above procedure gives rise to an injective map
Irr(#;) — Ng.

Conversely, given any (0, &) € Ng, there exists a unique j € Mg such that (0, &) is
in the image of the corresponding map Irr(%;) — Ng just defined. Thus, we have an
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associated surjective map

7: Ng — Mg,

and for any j = [(L, 0y, &)] € Mg, the elements in 771(j) C Ng are parametrised by
the irreducible characters of #; = Wg(L). Hence, we obtain a bijection

[ mWe@)= i () =N, (3.2.13.3)

[(L,00,60)]eMa ieEMea

which is called the generalised Springer correspondence. 1f i = (0,&) € Ng and if
¢ € Irr(#,(;)) corresponds to i under (3.2.13.3), we will also set A; := Ay. If we only
consider the element [(To, {1},Q,)] € Mg, the map (3.2.13.3) restricts to an injection

Irr(W) — Ng, (3.2.13.4)

which is called the (ordinary) Springer correspondence. Up to tensoring with the sign
representation of W, the map coincides with the one originally considered by
Springer in [Spr76] (which is only defined for p large enough; see [Lus81] for arbitrary p).
The generalised Springer correspondence as above has been defined by Lusztig [Lus84b,
and the problem of determining it can be reduced to considering simple algebraic groups
G of simply connected type, thus can be approached by means of a case-by-case analysis.
This has been carried out explicitly in all cases, due to the work of Lusztig |[Lus84b],
Lusztig-Spaltenstein |[LS85], Spaltenstein [Spa85| (see also the references there for earlier
results concerning the ordinary Springer correspondence), Lusztig |[Lus19|, and was finally
concluded by the author in [Het22b], see Theorem below. The generalised Springer

correspondence is electronically available in CHEVIE [MiChv]|.

3.2.14. Following |[LuCS5, 24.2], let us now bring the F,-rational structure of G into the
picture. We keep the setting and notation of If L C G is a regular subgroup, the
Frobenius map F': G — G induces an automorphism of the finite group Wg (L), hence
also a bijection of the set Irr(Wg (L)), as in (2.2.7.2)). Here, we denote the set of fixed

points under this action by
Irr(Wa (L))" C Ir(Wg(L)).
Furthermore, F' gives rise to an action on Ng via

Ng = Ng, (0,8)— (FY0),F*&).
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We set
NE ={(0,6)eNg | F1(0)= 0 and F*& = &).

Similarly, we get an action on Mg via
Mg = Ma, (L, 60, &)] = [(F~H(L), F~'(60), F*&)).
(This is clearly well-defined.) We set
ME = {[(L, 6o, &)] € Mg | [(L, 0o, &)] = [(F~ (L), F~'(00), F*&)]}

and refer to the elements of M as the F-stable elements of Mg. Let [(L, 0y, &)] € ME.
The classification [Lus84b, §10-§15] of cuspidal pairs which involve a unipotent class
shows that we can choose the representative (L, 0y, &p) in such a way that L is the

standard Levi subgroup of a standard parabolic subgroup P of G and that
F(P):Pv F(L):Lv F(ﬁO):ﬁOa F*goggo

(see also [Tayl4, 6.2]). This property uniquely determines the triple (L, 0p, &); by a
slight abuse of notation, we will in this case sometimes write (L, 0, &) € Mé instead
of [(L, 0o, &)] € ME.

3.2.15. With the notation of [3.2.14] let us assume that i = (£,&) is in N&, and
let j = [(L, 00, &0)] € Mg be such that A; is a (simple) constituent of Kj, that is,
we have j = 7(i). Then F*A; is a simple constituent of F*Kj, which is the complex

associated to [(F~Y(L), F~1(0y), F*&)] € Mg, so F* A; certainly corresponds to some

pair (0',&") € Ng via (3.2.13.2)). Thus,

(F*A) |G, = IC(07, &) [dim Z(F~1(L))° + dim ¢"]#G

uni

On the other hand, the complex A; satisfies the condition (3.2.13.2)) with respect to the
pair (0, &). Applying F* on both sides and using the F-invariance of (€, &) yields that

(F*A)|gy, = 1C(0,&)[dim Z(L)° + dim &]#Guni,

uni

so we must have 0’ = ¢ and & = &. We conclude that F*A; = A;. The discussion
in [3.2.13| then shows that [(L, 0y, &)] = [(F~Y(L), F~1(00), F*&)], that is, we have
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i=7(@) € Mé, so the map 7: Ng — Mg restricts to a map
m N& - ME.

Let i= (0,8) e N& and j = 7(i) = [(L, 0o, &)] € ME be as above, where we assume
that the triple (L, 0y, &p) is such that L is the standard Levi subgroup of some standard
parabolic subgroup P of G, and both L and P are F-stable (see . Let us choose
an isomorphism g : F*& — & of local systems over ¢ such that g induces a map
of finite order at the stalk of & at any element of &f. Such a choice gives rise to an
isomorphism 1 X F*& — 1X & of local systems over Z(L)°0p, and as described in
this determines an isomorphism ¢;: F*K; = Kj. Any choice of an isomorphism
pa,: F*A; =5 A; allows us to define a bijective linear map

oA Va, = Va, v @joF*(v)o gozil, (3.2.15.1)
see . Consider the automorphism
Y G, e o FH(0) o g,
of the algebra . Since F* defines a functor #G — # G (see (3.1.1.2))), we get
g4, (Vov)=1(¥) ooa(v) forany Ve, veVy,. (3.2.15.2)

Now #; = Wa(L) is a Coxeter group by [Lus84b, Thm. 9.2], and from the definition of
its Coxeter generators in loc. cit. and our assumption that F(P) = P, it follows that the

automorphism Fj: % = #; induced by F is an automorphism of Coxeter groups. Then,
as remarked in [LuCS2| 10.9], under the canonical isomorphism (3.2.13.1]), we have

Y 0V = Dy and  45(Vyy) = Vo1

1) for all w,w' € #;.

Using this and (3.2.15.2)), we see that
ﬂﬂ‘l(w) ov=o04,(0yo ng,l(v)) for all w € %, v € Vy,.

Hence, as described in 04, determines an extension of the #j-module V4, to an
irreducible module for the semidirect product 7/](F]_1) = W x <Fj_1>. Now for any
irreducible module of % which can be extended to V/j(Fj_l), Lusztig singles out one

particular extension to V/j(Fj_l), called the preferred extension, see [LuCS4, 17.2]. Since
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multiplying ¢4, with a scalar 3 € @Z changes o4, to 37!

- 04,, there is a unique choice
for the isomorphism pg4,: F*A; = A; such that the map o4, defined with respect to
Y4, in determines the preferred extension of Vy, to 7/](15‘]_1) Thus, the choice
of po: F*& =5 & gives rise to a distinguished isomorphism ¢ A FPA; = A;. This
discussion also shows that, for i € Ng and j € ./\/lé as above, the character of the
Q¢[#]-module Vy, is in Irr(”//j)F’. The generalised Springer correspondence

therefore induces a bijection

1T Irr(Wa (L)5 = NVE. (3.2.15.3)
i=[(L,60,60) e ME

Let j = [(L, 0o, &)] € ME and ¢ € Irr(V/j)Fi, and assume that i = (0,&) is the
corresponding element of ./\/g . As before, we fix an isomorphism ¢g: F*& — & which

induces a map of finite order at the stalk of &y at any element of ﬁ’g . Let pa,: F*A; 54

be the isomorphism determined by (g as described above. We set

a; := —dim 0 — dim Z(L)°,
bi := dimsupp A; = dim Yy, z(1,y°.0)>
d; := %(ai + bl)

(In view of |Spa82, 11.2.8], a; + b; is even, so that d; € Ng.) Thus, by (3.2.13.2)), we have

Ai’G = IC(E, g)[—ai]#Gu“i .

uni

Since the intersection cohomology complex involved extends the local system & on & to
0, we deduce that
& if a = aj,

H(Ai)lo =
0 ifa#a.

We may thus define an isomorphism v;: F*& = & by the requirement that g%
coincides with the isomorphism F*5#% (4;)|gs — #%(A;)|s induced by ¢4,. It is proven
in [LuCS5, (24.2.4)] that for any g € 6, the induced map 1 4: &, — &, on the stalk of

& at g is of finite order. Now consider the two functions

Xi: G = Q and Yi: Gh — Qy,
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defined as follows: For g € GE . let

uni’
Xi(9) = (=1)%q" "X 404, (9)

and
Trace(vi 4, &,) if g € OF,
Yi(g) :=
0 if g¢ OF.
Both X; and Y; are invariant under the conjugation action of G on GZ ..

Theorem 3.2.16 (Lusztig [LuCSb, §24]). In the setting of |3.2.15| the following hold.

(a) The functions Yi, i € Né, form a basis of the vector space consisting of all functions
F

GE . — Q which are invariant under the conjugation action of G¥ on GE ..

uni

(b) There is a system of equations

Xi: Z pi/,i}/i’a iENFv

: r
VeNE

for some uniquely determined py ; € Z. These py; are explicitly known and can be

obtained by means of an algorithm which entirely relies on combinatorial data.

Proof. See [LuCS5| §24]. Note that the restrictions [LuCS5, (23.0.1)] on the characteristic
p of k can be removed, due to the remarks in [Lus12b} 3.10]. O

Corollary 3.2.17. In the setting of Theorem the following hold.

(i) We have pi; = 1 for all i € N&.

(i) If ' = (0',&") #i=(0,8), then py; # 0 implies that ' # € and ' C 0.
(iii) If T(i") # 7(i), we have py; = 0.

Proof. This is an immediate consequence of (the proof of) Theorem [3.2.16 so we again
refer to [LuCS5, §24] (and [Lus12b]). O

Remark 3.2.18. Hence, if we define a total order < on N§ in such a way that for
i=(0,8),i=(0,86)eNE, we have

i" <i whenever ¢’ C 0

(note that the latter defines a partial order on the set of unipotent classes of G), the

matrix (pi’,i)i',ie NE has upper unitriangular shape. Lusztig’s algorithm to compute the
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3.2. [Fy-rational structure and characteristic functions

py i is provided in [LuCS5| 24.4]. This algorithm is implemented in CHEVIE [MiChv| and

is accessible via the functions UnipotentClasses and ICCTable.

3.2.19. This completes our description of Lusztig’s strategy to compute the characteristic
functions of F-stable character sheaves on G in principle, so let us briefly recap it here.

Let A € GF. From the discussion in we see that A is isomorphic to a simple
direct summand of the complex K = Kfiz for a suitable regular subgroup L C G
and an F-stable cuspidal pair (X, &) for L. Thus, formula (3.2.4.1) shows that x4 is a
linear combination of characteristic functions of K. The values of these characteristic
functions at a given ¢ = gsgu = gugs € GT can then be expressed as linear combinations
of generalised Green functions via Theorem Recall that the latter are defined

as the restrictions to Cg(gs)%,

uni Of characteristic functions of complexes associated to

elements j € ./\/lgé (90)° Hence, in view of the discussion in (see, in particular,
formula ) applied to Cg(gs) and to the specific induced complexes Kj considered
in these functions on C&(gs)E; are given as linear combinations of the
functions Xj, i € J\/'F&(gs), whose computation is reduced to that of the Y;, i € NF&(gs)’
thanks to Theorem [3.2.16]

However, we do not want to hide the fact that there are still several issues to be
overcome if one seeks to find an explicit formula for the values of the characteristic
functions of F-stable character sheaves in general, for instance the following:

(a) While it is easy to compute the functions Y; above up to scalar multiples, exactly
pinpointing these scalars is a non-trivial task since it is difficult to describe the isomor-
phisms ¢4, (and thus the ;) concretely. The latter has been accomplished for classical
groups (in any characteristic) by Shoji [ShoO6b], [Sho07], [Sho22]; as far as exceptional
groups are concerned, this problem is not yet solved in complete generality.

(b) We also recall that, for an arbitrary A € GF', the requirement in on
oa: F*A = A determines ¢4 only up to multiplication with a root of unity, so one
needs to find a way to uniquely specify such an isomorphism in the first place. As before,
let L C G be a regular subgroup, and let (3, &) be the F-stable cuspidal pair for L such

that A is a constituent of the complex
K = K{ 5, % indf (4y) € 4G,

where Ay = IC(Z, &)[dim X]#L € (L°)F. Let po: F*& = & be an isomorphism. As de-
scribed in o naturally induces isomorphisms 4, : F*Ag — Ag and p: F*K = K.
Now, in general, as mentioned in (and using the notation there), the endomorphism
algebra of K is isomorphic to the group algebra of “//Léjz twisted by a 2-cocycle. Let us
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make the following assumption on the given triple (L, X, &):

EndﬁG(Kﬁz) = Qy[We(L)). ()

(Thus, we require that the 2-cocycle involved is trivial and that the stabiliser of (X, &) in
We(L) = Na(L) /1, is the full group W (L). This is satisfied in many important special
cases, e.g., whenever 2 = Z(L)°.0, for a unipotent conjugacy class 0y C L and & = 1X&)
where &y is a local system on O, see ) Then we can perform the analogous
argument as in to see that (once ¢ is fixed) choosing an explicit isomorphism
@wa: F*A = A can be achieved by singling out an extension of the Q,[Wg (L)]-module
Va = Hom_4q(A, K) to (Wg(L))(yg") (with the notation of where ~1, denotes
the map induced by F on Wg(L)). For instance, we can take the preferred extension
[LuCS4} 17.2]. So if @ is satisfied for a given (L, X, &), we only need to make a choice
for po: F*& = & in order to obtain specific isomorphisms p4: F*A = A, for any
A € GF which is a constituent of Kfz In |3.2.20| and |3.2.21| below, we will discuss how

one can make a concrete choice for ¢y (at least in the case where the local system & is

one-dimensional).

For example, under the assumptions that the centre Z(G) is connected, G / Z(G)is a
simple algebraic group and p is a good prime for G, explicitly computable formulae for
the values of characteristic functions at unipotent elements of G¥ have been found by

Taylor [Tay1l4] (where in particular problems (a) and (b) above needed to be dealt with).

Parametrisation of F'-stable local systems on conjugacy classes and
normalisation of characteristic functions

We conclude this section by providing some tools and remarks which will help us in
making explicit choices for certain isomorphisms F*A = A (where A is an F-stable

character sheaf on G).

3.2.20. Let H be a connected algebraic group over k = Fp, defined over F, (¢ a power
of p), and let F': H — H be the corresponding Frobenius map. Let X be a non-empty

algebraic variety over k, and let us assume that there is a transitive action
Hx X — X, (h,z)— hux.

We also assume that X is defined over F,, with corresponding Frobenius morphism
F’: X — X, such that the following conditions are satisfied (cf. [Gec03a, §4.3]):

e We have F'(h.x) = F(h).F'(x) forall h e H, z € X.
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3.2. [Fy-rational structure and characteristic functions

o The stabiliser C(z) of any x € X is a closed subgroup of H.

We thus get an action of HY on X¥ ' by restriction of the action of H on X.

(a) The following is well known (see [BCCISS, E-1.2.7]) and in fact does not even
require any geometric properties of X (see [Gec03a, §4.3]): First of all, the set X' of
F'-fixed points in X is non-empty, so we may fix an element o € X and consider the
finite group

An(wo) = Cu(@0)/ce, ()

Clearly, F' leaves both Cu(xo) and Cg(xo) invariant, so we obtain an induced auto-
morphism v: Ag(xg) = Am(rp). Just as in [2.1.17 the v-conjugacy classes of Ag (o)
are defined to be the orbits of the action

An(z0) X An(zo) = An(zo), (a,a’) — aad'y(a)™".

The 7-conjugacy classes of Ag(zg) correspond to the H-orbits contained in X% .
Specifically, if a € Ag(xg) and h € H is such that h='F(h) € Cu(zg) is sent to a under
the canonical map Cr (o) — Ap(zo), we have (29)q := h.zo € X', Note that, for a
given a € Ap(xo), (20)q is not uniquely determined by this procedure, but its orbit under
the action of H is. More precisely, associating the y-conjugacy class of a in Ay ()
with the H¥-orbit of (xg), defines a bijection between the set of y-conjugacy classes of
Ag (o) and the set of H-orbits in X"

(b) Now let & be an H-equivariant irreducible local system on X such that (F')*& = &.
Recall from that &, carries in a natural way the structure of an irreducible Az (zo)-
module. Following [Lus04, 19.7], the bijection & — &, between the isomorphism classes
of H-equivariant irreducible local systems on X and the isomorphism classes of the
irreducible Agp(xp)-modules restricts to a bijection between the isomorphism classes
of H-equivariant F”-stable irreducible local systems on X and the isomorphism classes
of those irreducible Ag(xg)-modules which can be extended to (Am(zo))(y) (with the
notation of . For & as above, let us choose an isomorphism ¢: (F')*& = &. Thus,
for any z € X*", ¢ induces a linear map ¢, : &, — &, and we obtain an Hf -invariant

characteristic function
X&p: X" 5Q, o Trace(py, &x).

Let us denote by Og: Am(xg) — GL(&%,) the representation of the Agp(zg)-module &, .
Taking E := ¢z, in the setting of gives rise to an extension of O¢ to (Au(zo))(7),
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and we have

X&.0((20)a) = Trace(pg, 0 Os(a), &y,) for any a € Am(zo).

Thus, if ¢g: Am(xo) — Qp is the character of ©¢, and if we denote by Sz its y-extension
defined with respect to E := ¢, as in[2.2.7, we have

X&,0((20)a) =Sg(a) for any a € Ap(zo).

3.2.21. Let .Z = \*(&,,,) € #(To) (see [3.1.3), and let A € GE, N G°. Consider the
action

(GXZ(G))xG =G, ((x,2),9) — 2"zgz L

By Proposition [3.1.17|(a), there exists a unique (G x Z(G)°)-orbit ¥ C G and a unique
(G x Z(G)°)-equivariant irreducible local system & on ¥ (up to isomorphism) such that

A= IC(T, &)[dim X]#C.

Since F*A = A, it follows from the uniqueness of (3, &) that F(¥) = ¥ and F*& = &.
Let us set H := G x Z(G)° and X := 3. By a slight abuse of notation, we shall just
write F': H — H and F': X — X for the maps F' x F|zg)° and F|x, respectively. Then
one easily checks that the requirements in [3.2.20] are met. Let d = dim ¥. For g € ¥ and

1 € Z, we have
, &y ifi=—d,

H(A) =

0 ifi#—d.

We make the following assumption:

The local system & is one-dimensional.

Hence, by the description in an isomorphism @4: F*A = A can be chosen in

such a way that, (in particular) for any g € X¥, the induced map (p4)_q4: & — &, is

(dim G—d)

given by multiplication with ¢ /2 times a root of unity. We choose an element

go € X" and consider its H -orbit inside ¥, and we require that (04)—a4,: &g — &

(dim G—d)/2.

is given by scalar multiplication with ¢ Note that this uniquely determines

the isomorphism ¢ 4: F*A =5 A. For g € ¥, we then have

Xagpa(9) = Y _(=1)" Trace((0a)ig, 4 (A)) = (=1) " Trace((¢4)-dg, &).
1€Z
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Let us now consider the finite group Ag(go) = Cu(90)/ Cg(go) and the automorphism
v: Au(go) = Anu(go) induced by F, as in Since & is one-dimensional, the Ayy(go)-
module &, affords a linear character ¢ = ¢¢: Amu(go) — Q, . Applying the discussion
in (b) with ¢ = (pa)_dls: F*& = &, and denoting by ¢: Am(go) — Q, the
y-extension of ¢ with respect to (pa)_d,g,: Ego —* &9, We oObtain

Xap4((90)a) = (=1)%(a) = (=1)%c(a)g'™F=D/? " for any a € Am(go)-

By Theorem [3.1.13] we also know that A’E\E = 0, so we have

(—=1)%(a)g mE=D/2 if g ~gr (go)a for some a € Am(go),

XA, pa (9 ) = ) P

0 if g ¢ .
Hence, we see that for an F-stable cuspidal character sheaf A = IC(X, &)[dim X]#& on
G as above, choosing an isomorphism ¢ 4: F*A = A admissible for Theorem is
equivalent to singling out an Hf -orbit inside X', and the characteristic function y Apa
is then completely determined by the choice of the H-orbit of a representative gy € %
along with the character ¢ € Irr(Ap(go)) corresponding to the isomorphism class of the

local system & on X (as in [3.2.20)).

3.2.22. In the setting of it thus remains to consider the problem of choosing an
HY -orbit contained in 3" (or a representative go of such an orbit). We would like to
find some go with certain ‘good’ properties, which should ideally lead to a distinguished
H% -orbit inside 2. In order to shed some light on what such properties could be in
this context, we first focus on a natural condition on unipotent conjugacy classes of
a connected reductive group in good characteristic and then try to formulate similar
requirements for the general case (at least under the assumption that G is a simple
group).

(a) Recall ([Car85, Chap. 5], see also [2.1.11)(d)) that the classification of the unipotent
conjugacy classes of connected reductive groups is reduced to considering simple groups,
so let us assume here that G is a simple algebraic group over k = F,, defined over
F, C k (¢ a power of p), with corresponding Frobenius map F': G — G. We assume in
addition that the characteristic p is good for G. Let v € G . and let %, be the variety
consisting of all Borel subgroups of G which contain u. Then F' naturally acts on the
set of irreducible components of 4,. Following [Sho87al 5.1] (see [Sho83|, [BS84]), we
say that u is split unipotent if said action is the trivial one; this notion only depends on

the GF'-conjugacy class of u, so we will then also say that the G¥-conjugacy class of u
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is a split unipotent class. Now consider any F-stable unipotent conjugacy class & C G.
Except when G is of type Eg, ¢ = —1 (mod 3) and & = Dg(a3) C G, it is known (due to
results of Shoji [Sho82|, [Sho83] and Beynon—Spaltenstein [BS84]) that there is exactly
one split unipotent class contained in ¢¥. (In the case excluded above, no such class

exists inside 01".) If ug € GE; is split unipotent, we have:
F acts trivially on Ag(uo). ()

So by [3.2.20(a), the GF-conjugacy classes inside ¢F are parametrised by the conjugacy
classes of Ag(ug). Moreover, we note that any split unipotent element ug € GZ_; has the

following property:
For any n € N which is prime to p,ug is conjugate to u? in G¥". ()

Indeed, let & C G be the (F-stable) unipotent class containing ug. Then we also have
ug € O (see |Lus09, 2.5]; in fact, this result even holds in bad characteristic and for
arbitrary connected reductive groups). Let p" (r € Ny) be the order of ug, and let

n',m € 7 be such that nn’ = mp" 4+ 1. Then uf™ = ug, so we get
%uo g %ug g %ugnl == t@uo'

Thus, we have %, = Byz, so ug is split unipotent as well; since ug € OF ug and up
must be G'-conjugate. In particular, any split unipotent element of G is G'-conjugate
to its inverse.

(b) Let us return to the situation in for simplicity still assuming that G is
simple, so that X is an F-stable conjugacy class of G (since Z(G)° = {1} in this case).
We also assume that ¥ = X~!. Thus, if ¥ happens to be a unipotent conjugacy class
and if p is a good prime for G, a natural choice for the representative gg is gg := ug with
up € BF split unipotent. If, on the other hand, ¥ is a non-unipotent class of G (or if the
characteristic is bad for G), we would also like to specify a ‘good’ G¥'-conjugacy class
inside ¥ by formulating suitable conditions which characterise such a class. In view of
the brief discussion concerning split unipotent elements in (a), one obvious requirement
that we could impose on a representative go of such a G-conjugacy class is that it
satisfies the analogue to (or at least that go, gg Lare GF -conjugate). However, note
that such a Gf-class may not even exist inside X, or if it exists, it may not be uniquely
determined by this property. Another requirement on a ‘good’ representative gy € ¥ is
motivated by @: Recall from Proposition (c) that the connected centraliser of any
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element of the conjugacy class ¥ above is a unipotent group. Thus, for any g € X', a
theorem of Rosenlicht (see [Gec03al, 4.2.4]) states that |C&(g)F| = ¢¢ with d = dim C&(g).
By a slight abuse of notation, let F': Ag(g) — Ag(g) be the automorphism induced by
F. A simple application of the Lang—Steinberg Theorem shows that we have a
canonical isomorphism

Ac(g)" = Cal9)" /g, (g)F.

SO
1Ac(9)le® = [Ac(9)F ¢ = [Calg)”],

with equality if and only if F' acts trivially on Ag(g). Since we know that this holds in
the case where ¥ is a unipotent class and ¢ € £F" is a split unipotent element, a natural
requirement on a ‘good’ representative g € 3 would be that its centraliser order is
maximal among the elements of ©f' (or that F' acts trivially on Ag(go), if such gg exists).
But again, this condition does in general not uniquely specify the Gf'-class inside 2.
(c) As we shall see when dealing with the various examples of simple groups of
exceptional type in Chapter ] there are several situations where the methods above are
not sufficient to uniquely specify a Gf-class inside a given 2. As has been observed by
Geck [Gec21], the condition () below turns out to be very useful for those matters; it is

formulated under the following assumptions:
(i) G is simple and simply connected.
(ii) The (F-stable) conjugacy class ¥ C G consists of regular elements.

So let G, ¥ be such that (i) and (ii) are satisfied. Let us consider the Weyl group
W = Ne (TO)/T0 of G with respect to Tg and denote by o: W = W the automorphism
induced by F. Viewing W as a Coxeter group (as in , assume that there exists a
Coxeter element w, of W such that o(w.) = w.. By |Gec21}, 4.7], the set ¥ N Bow.By
is (non-empty and) a single Bg-orbit for the conjugation action of Bg. Thus, the set
N BOF chg is non-empty as well, so we may pick go € 2 in such a way that the
following holds:

The G!'-conjugacy class Cy C B of gy satisfies Cy N B w.BY # . Q)

Now in general, @ still does not always determine the G-conjugacy class of gg
completely, but it will be restrictive enough for our purposes. (In order to uniquely
specify the G-class of gy, one may choose a representative . € N(;(TO)F of w. and

then require that the G'-class of go has a non-empty intersection with U, U}, see
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|Gec21), 4.8].) As far as the simple groups of type G, F4 or Eg are concerned, the G*'-class
of go is in fact uniquely determined by @ Indeed, the fundamental groups of the
Cartan matrices of these G are trivial (see [2.1.7), so we necessarily have Z(G) = {1}.
By [Gec21} 4.9], this implies that

(X N Bow.Bo)" = Co N B w B,

where Cy C ¥ is a single Gf'-conjugacy class.

3.2.23 Lusztig’s map. Condition @ in (c) can be adapted to non-regular
unipotent classes of G in a suitable way (at least if G is assumed to be simple of
exceptional type), as follows. Let Z = (X, R,Y, RV) be the root datum of G with respect
to Ty, 7 = rank G, and let IT = {ay,...,a,;} C R be the set of simple roots determined
by By 2 Ty (as described in . Let 0: W = W be the automorphism induced by
F. Viewing W as a subgroup of Aut(X) (see [2.1.4) and denoting by s; := w,, € W
(1 < i < r) the reflection corresponding to the simple root a; € II, W is a Coxeter group
with Coxeter generators S = {s1,s2,...,5,}. Let us denote by W /. the set of conjugacy
classes of W and by Guni/~ the set of unipotent conjugacy classes of G. For C € W/,
let Cnin € C' be the subset consisting of the elements of minimal length in C' with respect

to the length function of (W, S). In [Luslla, 4.5], Lusztig defines a surjective map
d: W/ = Gui/n, Cw— Oc.

If G is simple of exceptional type, it follows from [Lusllal 0.4] and [Lusl2a, 4.8] (see also
[MiChv, §6]) that ® has the following property, which in turn uniquely determines ®:

Let C € W/N and w € Cpin. Then 060 N BowBg # &, and if

_ (*)
0 € Guni/N is such that & N BowBg # &, we have O0¢c C 0.

(Note that the formulation of is equivalent to the one in [Lus12a, 4.8], see the remarks
in |Gecl1} §3]; thus, by the argument in [Lusllay 0.2], is independent of the choice of
w € Cpin.) For our purposes, whenever we deal with simple groups of exceptional type,
it will be convenient to take as the definition of ®. For example, the trivial class of
W is sent to the trivial class of G; the class of W containing the Coxeter elements is sent
to the regular unipotent class of G. The map ® can be explicitly obtained using CHEVIE,
see [MiChv, §6]. If w € W7 is an element of minimal length in its conjugacy class
Cw € W/, with the associated (F-stable) unipotent class Oc, = ®(Cy,) € Guni/~, we
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may thus formulate the following requirement on a ‘good’ representative ug € ﬁgw:
The G-conjugacy class Oy C OF. of ug satisfies Oy N Bf wB{ # 2. (@)

In the special case where w = w. € W7 is a Coxeter element of W, @ just becomes
(©) in[3.2.29(c) with ¥ = Oeq. Note that, for any w € W7 such that w is of minimal
length in its conjugacy class C, € W/ ~, there always exists some ug € ﬁgw such that
(@) is satisfied (see [Gecll) 3.5(a)]). As it turns out, the condition (¥) does in many

cases determine the G'-conjugacy class of uy uniquely.

In several instances below, we will apply the following lemma to obtain a representative
ug such that the condition @ in [3.2.23| is satisfied. Recall that, for any o € R,

U : Ga — G is the homomorphism whose image is the root subgroup U, (see|2.1.4).

Lemma 3.2.24. In the setting and with the notation of [3.2.23], let w € W be an element
of length e € Ng in (W, S), and let w = s;, - si, - ...+ 8;, be a reduced expression for w
(where 1 < iq,49,...,0c <1). Let t1,ta,...,te € kX, and let

U0 = Uuwg(asy) (P1) * Uwn(aig) (F2) * - - U (o) (Fe) € Do,

Then, denoting by wy € Ng(To) a representative of the longest element wy of (W, S),
we have
wouptiy ' € (U_a, U_q,, -+ U_q, ) N BowBy.

In particular, this holds for ug = u,wo(ail)(l)u,wo(ah)(l) S Uy (g, (1)

Proof. This is mainly a collection of well-known facts about root systems and basic
structural properties of groups with a BN-pair, see, e.g., [Stel6] or [Car85, Chap. 2]. The
longest element wy € W is characterised by the property wo(R") = R, so ug is indeed an
element of Uy. For o € R, we have onawgl = Uyy(a); 50 wOU—wo(aij)(tj)wal € U,aij

for 1 < j < e (since w3 = 1). Now
U—Otij - L{Sz‘j} - P{Sij} =ByU B()Sz'jB()

(see [Car85, §2.6]). As U—aij C onowgl C woBowO_l, we have U—ai]. NBy = {1}, so
u')gu,wo(ai,)(tj)wo_l € Bosi;Bo. Since w = s;, - i, - ...+ 8;, is a reduced expression for w,
J

we know that
B03i1B0 . BQSZ'QBO L B()SieB() = BowBo
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(see, e.g., [Gec03a, 1.6.3]). It follows that
wOUOw()_l = (woufwo(ail)(tl)wal) Tt (woufwo(aie)(te)wal) € BowBo. O

3.2.25 Relation between characteristic functions. We place ourselves in the setting
of and adopt the notation from there. Let us consider a pair i = (¢, &) € N&, and
let j = 7(i) = [(L, O, &)] € ME, so that A; € GF is a simple direct summand of Kj. As
in[3:2.15 we assume that L is F-stable and the standard Levi subgroup of some F-stable
standard parabolic subgroup of G. It should be noted that the choice of the isomorphism
pa,: F*A; = A in does not satisfy the condition in Since we will need
it in a number of places throughout this thesis, let us describe the relation between the
isomorphism ¢4, and an isomorphism F*4; = 4; as in (up to multiplication
with a root of unity).

Recall that, in order to define 4, as in @I, we have to choose an isomorphism
©wo: F*& = & of local systems on ¢y which induces a map of finite order at the stalk of
& at any element of 0}, Such an isomorphism then naturally determines an isomorphism
@i K = Kj, and @4, : F*A; =5 A; is uniquely defined by the requirement that the

bijective linear map
oA Va, = Va, v g0 F*(v) oy,

determines the preferred extension of V4, to a W;(Fj_l)—module. In particular, o4, is a
map of finite order.

On the other hand, let B 4, : F™* A; =5 A; be an isomorphism which satisfies the condition
in (We use the bar here only to have a distinction from the isomorphism ¢4,.)
We set Yo := Z(L)°.0p, Y := Y, 5, (so that supp A; = Y) and d := dimY. So we

obtain a corresponding bijective linear map
Ta: Va, = Va, v o F*(v) o@Zil.
We know that there exists some scalar 3; € @ZX such that
Pa, =3 PA and, hence, T4, = 31_1 SO,

Now let us pick any element y € E(}; NYF. In view of (3.2.3.2), we may identify
,%Z_d(Ai)@JVA.‘ with a subspace of i@_d(Kj), and as mentioned in the endomorphism

(Pa)—dy ®Ta, € End(e%’;/_d(Ai) ® V4,) corresponds to (¢j)—q, under this identification.
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From our assumption on ¢g and the definition of the complex Kj, it follows that (¢;)_q

iy’ %‘d(Ai) — %‘d(Ai) are of

times a root of unity, we deduce that the eigenvalues of 4, must
(dim G—d)

is a map of finite order. Since the eigenvalues of (Py4,)

the form ¢(dimG~—d)/2

be of the form ¢~ /2 times a root of unity. Thus,

(dim G—d)/2 (dim G—d)/2  ,—1

q "0A =q 3 04

g@mG=d)/2 tieq o

is a map of finite order, as is 04,. Hence, the scalar 3; is equal to
root of unity. In other words, if p4,: F*A; = A; is defined as in [3.2.15} then

@Ai — q(dimG—dimsuppAi)/Q QA F*Al o~ Ai

satisfies the requirement in so it is a valid choice for Theorem With this

P4, it is also clear that

XAz, = ¢(dim G—dimsupp 4)/2 XAypa - (3.2.25.1)
By the definition of Xj, we thus get
XA;,@Ai ’GF — (_1)aiq(dimG—dim ﬁ—dimZ(L)o)/QX"' (32252)

uni

Remark 3.2.26. As soon as a choice for the isomorphism ¢g: F*& — & is made,
the procedure in [3.2.25 uniquely determines the isomorphisms p4,: F*4; = A; and
Pa A = A;. While both ¢4, and 4, depend upon the choice of ¢y, the interrelation

between 4, and B4, does not, so it makes sense to refer to (3.2.25.1)) and (3.2.25.2)) even

without having specified q.

3.3. Lusztig’s Conjecture and Shoji’s Theorem

By Theorem the set of (suitably normalised) characteristic functions of F-stable
character sheaves (up to isomorphism) on a connected reductive group G over k = F,,
with Frobenius map F: G — G is an orthonormal basis of the space of class functions
of G¥'. Lusztig conjectured that this basis coincides with the one consisting of almost
characters, after a suitable normalisation of the characteristic functions and with an
appropriate generalisation of the definition of almost characters if the centre of G is
not connected. In this section, we will formulate Lusztig’s Conjecture (see and
state Shoji’s Theorem , which proves Lusztig’s Conjecture in the case where Z(G)

is connected. Note that this is a big step towards the determination of the generic
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3. Character sheaves

character tables of finite groups of Lie type, as the characteristic functions of F-stable
character sheaves can be computed in principle, although their explicit computation is
still a difficult problem (see [3.2.19).

Recall our standing assumptions formulated in the beginning of Section So G is a
connected reductive group over k = Fp, defined over F, (where ¢ is a power of p), with
corresponding Frobenius map F': G — G; furthermore, T is a maximally split torus of
G, and By C G is an F-stable Borel subgroup which contains Tg. Let Z = (X, R,Y, RY)
be the root datum of G with respect to Ty (so that X = X(Ty) and Y = Y (Ty)),
W = NG(TO)/TO be the Weyl group of G with respect to To and 0: W = W be the
automorphism induced by F. Let (G*,Tj, Bj, F’) be the dual quadruple associated
to (G, Ty, By, F), and let W* = NG*(TS)/TS (see Example . Unless explicitly
stated otherwise, we make in addition the following assumption, which remains in force

until the end of this chapter:

The centre Z(G) of G is connected.

We begin by stating a central result of [LuCS5] (see Theorem below), which provides
a classification of the character sheaves on G in terms of tame local systems .2 € .7 (Ty)
and of families of the group W’y; here we will only formulate this result for those G
which have a connected centre, although Lusztig proves it for any connected reductive

group G over k in a more general framework.

3.3.1. Let (\,n) € X x (N\pN), and let .Z = A\ (&,,,) € -#(To) be the associated
tame local system, see Recall the definition of W'y, in and the one of W ,

in[2.2.16] As already remarked in we have
Wy ={weW|w\-)enX}.

Since we assume Z(G) to be connected, it follows from [GM20, 2.4.14] (see the proof of
[DM20, 11.2.1]) that W', = W ,,. This also shows that the group W ¢ and its root
system R ¢ defined in [LuCS1, 2.3] coincide with W', = W ,, and the root system R
as described in respectively. For any local system . = A\*(&,,,) € % (Ty) as
above, we may thus apply the machinery of to W = Wy ,, (with roots R) , and
simple reflections S} ,,, see . In particular, we have a pairing

{ , }: %(WA,n) X %(W/\,n) — @8
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3.3. Lusztig’s Conjecture and Shoji’s Theorem

and an embedding
hr(Wypn) = X(Wan), ¢+ 74

Now recall the definition of K:Z for w € W), in For ¢ € Irr(W) ,,), we set (see
[LuCS3, 14.10])

1 . .
RY = > ow ) (- IHI(K),
| Am’ weWj i€Z

an element of the subgroup of the Grothendieck group of .# G spanned by the character
sheaves. We denote by (: ) the symmetric Q,-bilinear pairing on this subgroup such that

for any two character sheaves A, A’ on G, we have

o1 a=a
(A: A" =
0 if Az A.

Theorem 3.3.2 (Lusztig [LuCS5, Thm. 23.1], [Lus12b]). Let G be a connected reductive
group over k and assume that Z(G) is connected. Let £ = N*(&,,,) € % (Ty), where
(A\,n) € X x (N\ pN). Then, with the notation of there is a bijection

A

Gg:):f(W)\m), A'—)JZA,
such that for any A € Gy and any ¢ € Irr(Wy ), we have
(A: Rf) =éa{za, x4}

(Recall from [3.1.1.1) that é4 = (—1)dimG-dimsupp A )

Remark 3.3.3. Our framework in this section is based on the standing assumption that
the centre of G is connected. The formulation of Theorem [3:3.2] can be generalised so that
it holds for any connected reductive group G over k, see [LuCS5, Thm. 23.1] (and the
remarks in [Lus12b, 3.10]), but the necessary broadening of the setting becomes slightly
more technical. Since we will only be concerned with the case where Z(G) = Z(G)°, we
merely refer to [LuCS5, §23] at this point. Also note that, regardless of the assumption
on the centre of G, Theorem is still only a part of [LuCS5, Thm. 23.1], the other
part is Theorem [3.1.13] Thus, just as for Theorem [3.1.13] while the main portion of
the proof of Theorem is contained in |[LuCS4] and [LuCS5, §22, §23], it is only
concluded in [Lus12b|, where some small primes are considered which were previously
excluded in the formulation of [LuCS5, Thm. 23.1], see [LuCS5, (23.0.1)].
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3. Character sheaves

3.3.4. Recall that we have fixed an isomorphism 7: Zy)/7 = k* in (1.1.0.5). As
discussed in [2.2.26] there is an isomorphism

5® * ~ *
X @z L) /7, —5 Y (T}) @7 k* = T},
where the last map is given by (2.1.3.2)) (applied to the torus Tj) and §: X = Y (T})
is the isomorphism (2.1.21.1)) used to describe the duality between (G, T¢, Bg, F') and
(G*, Tj,Bg, F'). Combined with the discussion in we thus obtain a (non-canonical)
isomorphism

S (To) = T, (3.3.4.1)

Specifically, for s € T§, if (A\,n) € X x (N\ pN) is such that s =ty , (see , then
with the notation of 3.1.3] £ = A*(&,,,,,) € -#(To) is the local system corresponding to
s under (3.3.4.1). The isomorphism W = W*, w — w* (see (2.1.21.2))) and the action
of W* on T (i.e., applied to the dual groups) give rise to an action

W x Tj— Tp,  (w,s) = w*s(i) (3.3.4.2)

where w* € Ng=(T{) denotes a representative of w* € W*. For w € W and s = t) 5,
L = XN*(6na,) as above, we have w*s(u’)*)_l = tyan € T(, and this element corresponds
to the local system (w.\)*(&p,,) € #(To) under the isomorphism (3.3.4.1)). On the other
hand, (w.\)*(&,,,) is the image of (w,.Z’) under the action of W on .#(Ty) defined in
, so the isomorphism is compatible with the actions of W on .%(T))
and T(. Hence, in the setting of Definition we may set G, =G < provided s € T}
corresponds to . € .%(Ty) under (3.3.4.1). In view of Remark [3.1.7(a), we thus obtain
a partition
G- |y 6.

where T /W denotes a set of representatives for the W-orbits on T{j under ((3.3.4.2]).
We also recall from the discussion in [2.2.26] that T/ is at the same time a set of

representatives for the semisimple conjugacy classes of G*.

3.3.5. We now take the [Fy-rational structure on G into account. Recall that the Frobenius
endomorphism F': G — G gives rise to the inverse image functor F*: G — 2G. Since
F(Ty) = Ty, we may also view F™* as a functor ZTy — ZTy. Let £ = X\*(&,,,) € L (To)
be the tame local system associated to (A\,n) € X x (N\ pN). Then

2 = F* (N (&) = (Ao Flmg )" (Enin)
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3.3. Lusztig’s Conjecture and Shoji’s Theorem

so F*.Z arises from (Ao F|p,,n) € X x (N\ pN); in particular, F"* induces a bijection
S (To) = #(Tp). Now assume that A € Go. By definition, A is a constituent of
PHY(KZ) for some w € W'y, = W, ,, and some i € Z, so the inverse image F*A is a
constituent of F*(PH!(K;?)). It follows rather directly from the definition of K;Z and
the properties mentioned in [LuCS1} 1.7, 1.8] that we have
F (pHZ(Kw )) - pHZ(F Kw ) ="H" (KU;,;('LU))’

where o) ,: Wy, — W, is the automorphism defined in Lemma [2.2.17(b). We
conclude that F*A € Gp*g, SO

F*Ggy = Gpry for any Z e S (Ty).

Recall from Remark (a) that we have G @ = G F+o if and only if .Z and F*.Z are
in the same W-orbit in .%(Ty) under the action (3.1.4.2)). Thus, F*G g = Gy holds if
and only if there exists some w € W such that F*.¢ & (w™1)*%. Writing £ = \*(&p4,,)
as above, we see from the combinatorial description of .#(Ty) via and the
definition of the set 2, ,, in that

Frs 2w )Y = we L.
Hence, for .2 = X\*(&,,,) € - (Ty), we have
F*Gg = Gg <~ QF)\’H #* 2.

The discussion in shows that the W-orbits on .(T() with respect to the action
and the W-orbits on T{ with respect to the action (3.3.4.2) correspond to
one another under the isomorphism . On the other hand, as we have seen in
the W-orbits of T are in natural bijection with the semisimple classes of G*.
Moreover, for (A\,n) € X x (N\ pN), the G*-conjugacy class of ¢y, € T} is F’-stable
if and only if 2, ,, # @, and in this way the set A(G, F)/ ., parametrises the F’-stable
semisimple conjugacy classes of G*. Hence, associating to (\,n) € A(G, F') the W-orbit
of X*(&n,,) € 7 (Tp) induces a bijection

MG, F)/ L (2 e S (To))w | F*Gy = Gyl

where -¥(To)/yw denotes a set of representatives for the W-orbits on .#(Tg). In
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3. Character sheaves

particular, we have
Gl = 1+ Gl )
(An)EA(G,F)/~
In view of Theorem [3.3.2] we would like to have similar parametrisations of the sets
Gf*(éanym) for (\,n) € MG, F)/._. These are provided by the following result.

Proposition 3.3.6 (Shoji [Sho95a, §5]). (As before, we assume that Z(G) is connected.)
Let (\,n) € A(G,F), L = N(&n4,) and oy n: Wi, — Wy, be as in Lemma (b)

Then there is a bijection
GY 5 X(Wian oan), A Ta, (3.3.6.1)
such that for any A € Gf; and any ¢ € Irr(Wy )7, we have
(A:RY) =éa{ma, 24} (3.3.6.2)

Here, { , }: X(Win,0xn) X X(Wixn,0an) = Q denotes the pairing (2.2.12.1)) (with
W =Wy, andy=0x,).

Proof. See [Sho95al, §5]. O

Remark 3.3.7. Similarly to the parametrisation of the irreducible characters of G¥
(see Theorem and Remark [2.2.22b)), the bijection is in general not
uniquely determined by the condition . For the simple non-twisted groups with
a trivial centre (which we consider in Section , we will make an explicit choice
for the parametrisation of the F-stable unipotent character sheaves (é“n)F = é'f(;o
(corresponding to the pair (A\,n) = (0,1) € A(G, F), see below).

3.3.8 Lusztig’s Conjecture. In view of Theorem and Proposition the set
X(Wyn,0rn) (for (A\,n) € A(G, F)) thus parametrises both the irreducible characters
of GI in the series Exn and the character sheaves in (A}f\l(éamn). Already in 1984, (i.e.,
before he even defined the character sheaves), Lusztig conjectured in |Lus84al 13.7] the
existence of suitable F-invariant irreducible perverse sheaves on G whose characteristic
functions should coincide with the almost characters of G. This conjecture is formulated
in a more precise way in the introduction of [LuCS5|. However, note that at this point
there was not even a clear definition of what an ‘almost character of G should be in the
case where the centre of G is not connected. Such a definition was provided by Lusztig
only much later in |Lusl8|, but in general his conjecture is still open for these G; see

[3.3.13] below for some more details.
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On the other hand, we are now in a position to state the following theorem of Shoji,

which verifies Lusztig’s Conjecture under the assumption that G has a connected centre.

Theorem 3.3.9 (Shoji [Sho95a), 5.7], [Sho95bl 3.2, 4.1]). Let G be a connected reductive
group over k = Fp, defined over Fy (where q is a power of p), with corresponding Frobenius
map F: G — G, and assume that Z(G) is connected. Let A be an F-stable character
sheaf on G, and let (\,n) € A(G,F), £ = X\ (Eua,) € L(To) be such that A € GE;
thus, A is parametrised by T4 € ?(W,\’n, Oxn) under . Let pq: F*A =5 A be an
isomorphism. Then, for any x € X(Wy n, 0\ ) whose R-orbit corresponds to Ta under

2.2.12.9), there exists some scalar &, = &,(pa) € Q, such that
R, = gx XA+ (3391)

(Here, R, denotes the almost character associated to x, see (2.2.23.1).)

Remark 3.3.10. (a) The proof of Theorem is given in [Sho95a], [Sho95b]. In
fact, Shoji assumes that p is ‘almost good’, as Lusztig does in [LuCS5, (23.0.1)] —
however, since the relevant results of [LuCS5] (most notably [LuCS5, Thm. 23.1], see
Theorem and Theorem are now known to hold in complete generality,
thanks to [Lus12b|, we do not need to impose any restriction on p in the formulation of
Theorem

(b) In [Sho95a, §5], Shoji works with semisimple conjugacy classes in the dual group
G* instead of the set A(G, F'). Thus, in his setting, the parametrisation of the character
sheaves in @f for s € To/w (see is in terms of the group W} defined in
but we see from the discussion there that our set-up leads to exactly the same.

(c) We have written £, = £,(¢4) in Theorem in order to emphasise that the
scalar &, depends upon the choice of the isomorphism ¢ 4: F*A = A. However, when
trying to work out the scalar £, (p4) in the explicit examples later, we will usually choose
and fix a specific isomorphism ¢4 beforehand and then only write &,.

(d) The scalars £,(¢4) can be defined directly in terms of (A, ¢4), due to Lusztig
[LuCS3| §13, §14], [Lus86, §3], and this interpretation is an essential ingredient in the
proof of Theorem [3.3.9]in [Sho95a], [Sho95b]. In the case where A is a unipotent character
sheaf on a simple group G with a trivial centre and a non-twisted F,-rational structure,
we will describe this characterisation of {;(p4) in below.

3.3.11. The determination of the character table of G¥" can thus be reformulated to

solving the following two problems (see |[Lus92]):

(a) Compute the values of the characteristic functions of F-stable character sheaves.
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(b) For any x € X(W ) ,,,0),) (where (A\,n) € A(G, F)), determine the scalar &, in
E3o1).

We have explained in Section how (a) can be approached, at least in principle. From
now on we will mostly be concerned with (b). More precisely, instead of investigating
problem (b) ‘separately’ for each G, it can be replaced by inductive conditions. Let us
consider the following two tasks, formulated simultaneously for all connected reductive
groups G which are defined over F, (for one and the same ¢), with corresponding

Frobenius map F': G — G, and for which Z(G) is connected:

(bl) For any regular subgroup L C G and any x € Irr(L), find the explicit decom-
position of RE () into irreducible characters of GI* (where RE denotes Lusztig

induction, see Definition [2.2.28)).

(b2) For x € X(Wxn,0x5) (Where (A\,n) € A(G,F)) which in the setting of Shoji’s
Theorem [3.3.9] corresponds to an F-stable cuspidal character sheaf on G, specify

the scalar &, in (3.3.9.1)).

If (b1) and (b2) were dealt with for all G as above, and under the assumption that (a)
can be carried out explicitly, this would give rise to the character table of GI'. Indeed,
recall from that the characteristic function x4 of any A € G* can be written
as an explicit linear combination of class functions of the form RE (x4,), indexed by
regular subgroups L C G which are all conjugate to one another and F-stable cuspidal
character sheaves Ay € (ﬂO)F (such that for each occurring (L, Ag), A is isomorphic to
a simple summand of the complex obtained by inducing Ay to G). Note that, since
Z(G) = Z(G)°, we also have Z(L) = Z(L)° for any Levi complement L of a parabolic
subgroup of G, see [DM20} 11.2.1]. So in view of (b2) applied to all the (L, Ag) above, our
hypothesis allows us to replace x4, by an explicitly known multiple of the corresponding
almost character, thus by an explicit linear combination of Trr(Lf). So we obtain an
explicit linear combination of x4 in terms of various Rf (x), indexed by the same regular
subgroups L C G as before and y € Irr(L¥). Hence, the solution to (b1) would yield
the decomposition of any y4 (A € GF) into Irr(GF), that is, the desired base change
between the two bases {x4 | A € G} and Irr(GF) of CF(GF). It remains to refer to
hypothesis (a). (Of course, one would like to formulate a similar program for those G
with a non-connected centre, but recall that in general the equations of the form
are only conjectural in this case, see M)

As for (bl), the special case where L = T is an F-stable maximal torus of G is dealt
with by Theorem (and is even known if Z(G) is not connected, due to [Lus88]|). If
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3.3. Lusztig’s Conjecture and Shoji’s Theorem

L is not a maximal torus of G, the explicit decomposition of the RE () into Irr(GI") (for
x € Irr(L¥)) is not yet established in complete generality but is known in numerous cases,
especially as far as unipotent characters of L are concerned (see, e.g., Asai [Asa84a),
[Asa84b], [Asa84c], [Asa85] and Broué-Malle-Michel [BMM93], as well as Shoji [Sho85],
[Sho87b|, which includes the consideration of non-unipotent characters). We refer to
[GM20, §4.6] (and the further references there) for a detailed overview of the current
state of knowledge. Once these gaps are closed, the goal of determining the character
table of GI' will thus essentially be reduced to solving problem (b2), although we want
to emphasise that there are several difficulties involved in order to concretely work out
(a), one of them being the specification of the isomorphisms p4: F*A = A for A € GF
in general.

On the other hand, it would certainly be desirable to be able to formulate an inductive
condition for problem (b) itself. Such an approach is adopted by Lusztig [Lus86, §3],
if only for those A € GF whose support contains a unipotent element and under the
assumptions that p is good, ¢ satisfies certain congruence conditions, and that for any
regular subgroup L C G in question, F induces the identity map on Wg(L) = Na (L) /L
For any such A € GF let LC G be a regular subgroup such that A is a simple direct
summand of ind§ (Ag), where Ay € (L°)F. Then, using the concept of split unipotent
elements (see (a)), there is a canonical choice for an isomorphism p4,: F*Ag — Ay
(see , and ¢4, naturally determines an isomorphism ¢4: F*A = A, see
[Lus86, 3.2]. By [Lus86, 3.5], the determination of the scalars &, in the equations
with respect to those A € GF whose support contains a unipotent element is then reduced
to considering cuspidal character sheaves; cf. below, where we will follow
Lusztig’s approach to explain this reduction for the unipotent character sheaves on simple
groups with a trivial centre and a non-twisted [ -rational structure.

In any case, we see that for both of these strategies towards determining the character
table of G¥', a crucial part consists in solving problem (b2) above, and this is what we

will henceforth focus on (at least as far as unipotent character sheaves are concerned).

3.3.12. Counsider the pair (0,1) € A(G, F'), corresponding to the trivial local system
L= @g S y(To) Thus,
GGy CG

are the unipotent character sheaves on G, see Definition As already observed in

[2.2.24] and [3.1.4] we have

Wy =Wo1=21=W.

In particular, the element w; € 241 of minimal length is the identity element of W, and
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001 = 0: W = W is the map induced by F. So by Proposition m there is a bijection

N

(G"™)F =GY = X(W,0), A Ta, (3.3.12.1)
such that for any A € (G"™)F and any ¢ € Irr(W)?, we have
(A: R)®) = éa{Ta, x4}

As in [2.2.23] let us fix a set of representatives Xy(0,1) C X(W, o) for the R-orbits
in X(W, o). Thus, X((0,1) is in natural bijection with X(W, o), so we may label the
clements of (G")F in terms of X((0,1) and write

(G = {A, |z € X0(0,1)}.

In this setting and as far as unipotent character sheaves are concerned, the statement of
Shoji’s Theorem is as follows: For any x € X4(0,1) and any chosen isomorphism
oa,: F*A, = A, there exists some scalar &, = &,(pa,) € @EX such that

Ry =& - XAz, 04" (33122)

Let us require in addition that ¢4, : F*A, — A, is as in : By Theorem
we then have (X4,,p4, s XAu.04, ) gr = 1; since also (Ry, Ry)gr = 1, we get

|€2(pa,)| =1 whenever g4, : F*A, =5 A, is as in [3.2.1{(%). (3.3.12.3)

In what follows, we will consider various simple algebraic groups and try to determine the
scalars &, in (3.3.12.2) for z € X(0, 1), after having fixed isomorphisms w4, : F*A, = A,

which satisfy the condition in

3.3.13 Classical groups. (a) For any classical group G with a connected centre and with
a Frobenius map F': G — G such that (G, F') is non-twisted, the problem of determining
the scalars &, for x € X((0,1) in has been completely solved by Shoji, see
[Sho97, 6.2] and [Sho09, §6]. In fact, the latter even covers some non-unipotent character
sheaves, but not all of them; we refer to [Sho09, 6.3, 6.4] for the precise statement. As for
the unipotent character sheaves, note that the first thing to address when trying to solve
equations like is the specification of the isomorphisms @4, : F*A, = A, for
x € Xp(0,1). As is shown in [Sho97|, [Sho09], the problem of fixing these isomorphisms
and determining the scalars &, is reduced to considering cuspidal unipotent character

sheaves on simple groups of classical type. So let G be a simple algebraic group of
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classical type, and let A € G°n Gu; by Proposition |3.1.17, A is of the form
A 21C(€,&)[dim 6)*C,

where ¥ C G is an F-stable conjugacy class and & is an F-stable cuspidal local system
on ¢. The possibilities for (¢, &) can be extracted from [Lus84b| and [LuCS5, §22, §23];
see also [Sho97, 6.6], [Sho09, 3.1], or the appendix of [DLM14]. In particular, with our
assumptions on G and A, we see that & is always one-dimensional. Recall from that
choosing an isomorphism F*A = A is then equivalent to singling out a representative
go € € (or, rather, its GI'-conjugacy class). Hence, one is seeking to make a ‘good’
choice for (the G¥-conjugacy class of) go, see In the case where ¢ is a
unipotent class of G, the natural requirement on gq is that it is split unipotent — recall
the definition of this notion from (a) in good characteristic; for classical groups,
Shoji has introduced split unipotent elements in bad characteristic as well, see [ShoO6b],
[Sho07], [Sho22|. Now assume that % is not necessarily unipotent, and let go € €', with
Jordan decomposition gg = soug = upso (so € G semisimple, uy € Cg(so)’ unipotent);
one may thus require that wg is split unipotent in Cg(sg) = C&(so), so it remains to
specify so. This is discussed in detail in [Sho97, 6.6] and [Sho09, §3]; the isomorphism
F*A = A with respect to such a choice of gg is then defined as in

(b) For classical groups with disconnected centre and especially as far as non-unipotent
character sheaves are concerned, Theorem [3.3.9]is not applicable, and in fact one first
needs to think of an appropriate generalisation of the definition of almost characters (cf.
. This, and the determination of the scalars involved, is achieved in several cases
(but not in complete generality), due to results of Waldspurger [Wal04] (for Sps,(q),
and also for the disconnected orthogonal groups Oz, (q) with respect to an appropriate
generalisation of Lusztig’s Conjecture, in odd characteristic p and for ¢ large enough),
Bonnafé [Bon06| (for SL,(¢q) and SU,(q), with ¢ large enough) and Shoji [Sho06a| (for

SL,(q), with p large enough); see also the further references there.

3.4. Simple non-twisted groups with a trivial centre

Throughout this section, G denotes a simple algebraic group over the field k = F,, defined
over the finite subfield F, C k where ¢ is a power of p, with corresponding Frobenius
map F': G — G. Let us fix an F-stable Borel subgroup By C G as well as an F-stable
maximal torus Ty of G which is contained in By, so that W := Ny c(To) / T, is the Weyl
group of G with respect to Ty. Thus, F induces an automorphism o: W = W. In this
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3. Character sheaves

entire section, we make the following assumptions:

We have Z(G) = {1} and o = idw, so that (G, F') is non-twisted.

In particular, the results stated in Section (most notably Shoji’s Theorem can
be applied. Let Uy = R, (Bg) be the unipotent radical of By. Then By is the semidirect
product of Uy and T (with Uy being normal in By). Let Z = (X, R,Y, R") be the root
datum attached to G and Ty (so X = X(Ty) and Y = Y (Ty)), with underlying bilinear
pairing (, ): X XY — Z, see Let r = rank G, Il = {a,..., .} C R be the set of
simple roots determined by By 2 Ty (as described in[2.1.9), IIY = {a, ..., )/} C RY be
the corresponding set of simple co-roots and RT™ C R be the positive roots with respect to
II. Let € = ((ay;, a;/>)1<i7j<r be the associated Cartan matrix (see . For 1 <i<r,
let us set s; 1= wq,, With w,, being defined as in [2.1.2] Thus, viewing W as a subgroup
of Aut(X) (as in[2.1.4), W is a Coxeter group with Coxeter generators S = {s1,...,s,}
(see again [2.1.5).

Hence, if J C S is a non-empty subset whose elements form a connected subgraph
of the Dynkin diagram of G, L/} := Lj/ Z(Lj) is a simple group with a trivial centre
(see |[DM20| 2.3.4]) and with Weyl group W j; furthermore, F' naturally determines a
Frobenius map F’: L, — L/; (with respect to an F,-rational structure on L’;) which
induces the identity on Wy, so (L'}, F') also satisfies the assumptions that we imposed on
(G, F) above. At least as far as unipotent (almost) characters and unipotent character
sheaves on simple groups with a trivial centre and a non-twisted F,-rational structure
are concerned, this allows a reduction of the problem of determining the scalars &,
in to considering cuspidal unipotent character sheaves, see Corollary
below. As mentioned in said problem has been completely solved by Shoji [Sho97],
[Sho09] for all classical groups. In this thesis, we will thus consider the cuspidal unipotent

character sheaves on the simple groups of exceptional type; see Chapter [4] below.

Parametrisation of unipotent characters and unipotent character sheaves

3.4.1. Recall from 2.2.12] that we have natural identifications

X(W,idw) 2 X(W) and X(W,idw) 2 X(W) x R,

with X(W) defined as in In particular, in view of Theorem [3.3.2f and [3.3.12] we
have G = (G“n)F , that is, every unipotent character sheaf on G is automatically
F-stable. We may thus label the elements of G'™ in terms of X(W) and rewrite the
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3.4. Simple non-twisted groups with a trivial centre

bijection (3.3.12.1)) as
X(W) S G o A, (3.4.1.1)

such that
(A, : ijo) =ép {z, 24} forany x € X(W) and any ¢ € Irr(W). (3.4.1.2)
On the other hand, by Theorem (see Example , there is a bijection
Uch(GF) = X(W), p— 1z, (3.4.1.3)
such that
(0, Rg)qr = A(zp){zp, w4} for any p € Uch(G!) and any ¢ € Irr(W).  (3.4.1.4)

(Note that, since we assumed o = idw, the unique o-extension of ¢ to W(o) = W is ¢
itself, x4 is the image of ¢ under with W =W, and {, }: X(W)xX(W) — Qis
the pairing defined in M) In general, as mentioned in Remark and Remark
the bijections and are not uniquely determined by the conditions
(3.4.1.2)) and (3.4.1.4)), respectively. Our first aim in this section is to formulate additional

requirements which uniquely specify the bijections (3.4.1.1f) and (3.4.1.3)).

3.4.2. We want to describe the parametrisations of Uch(GF) and G™ in terms of
Harish-Chandra series (cf. [2.2.6{and [3.1.21} |3.1.22] respectively). To this end, we need

suitable parameter sets associated to various Coxeter groups. Their definition is mostly

due to Lusztig [Lusl5| §3], although we find it more convenient to use the scheme in
[Gecl8|, §4], which is very similar but avoids the ‘doubling’ of certain elements in the
sets defined below. Let W be the Weyl group of a root system, and let (W, S) be the
corresponding Coxeter system. Following [Gecl8, 4.4] (cf. [Luslb, 3.1]), we attach a
certain finite (possibly empty) set &3, to (W, S). If W = {1}, we set &y, := {(1,1)}.
Assume now that (W,S) is irreducible, and let n = |S|. Let us make the following

specification, to which we will refer in numerous places later.

We fix primitive roots of unity w,i, (5 € R of order 3,4, 5, respectively.

o (W,S) of type A, (n>1): &y, := 0.
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3. Character sheaves
o (W,9) of type B,, or C,, (n > 2):

o {{((—1)"/2,25)} if n =12+ 1 for some | € N,
GW =

%) otherwise.

(W, S) of type D, (n > 4):

o {{((_1)71/47221—1)} if n = 412 for some [ € N,
6W =

%) otherwise.

o (W, 8) of type Go: &%, == {(1,6),(—1,2), (w,3), (w?,3)}.

o (W.9) of type Fy: &Y, == {(1,8),(1,24), (-1,4), (1,4), (-1,4), (w, 3), («*,3)}.
o (W,S) of type Eg: &% := {(w,3), (w?,3)}.

« (W, S) of type Er: &% := {(i,2), (—,2)}.

o (W,9) of type Es:

&y = {(1,8),(1,120), (—=1,12), (i,4), (—i,4), (w, 6), (—w, 6), (w?, 6), (—w?, 6),
(CB: 5)7 (CE?’ 5)7 (Cgv 5)7 (Cg7 5)}

If W is reducible, let us write W = W7 x ... x W, where m > 2 and where each Wj is
the Weyl group of an irreducible root system, so that if S; C W; are the corresponding

simple reflections, (W}, S;) is an irreducible Coxeter system for 1 < j < m. We then set
Sy =6y, X ... x 6y, .
Next, we define
Sw = {(J,6,8) | J C 8, e (W), s € &5, |
where W := (J) C W and W9/ is the subgroup of W generated by the involutions
O 1= wbju{s}w@] = w@’wé’U{S} for s € S\ J.

(Recall from [2.1.20| that for any subset J' C S, we denote by wg " the longest element in
W) If (W, S) is irreducible or {1} and if J C S is such that &y, # @, then (W, J) is
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3.4. Simple non-twisted groups with a trivial centre

irreducible or {1}, and we have wy -J-wf = .J for all J C J' C S, so by [Lus76b, §3],
(WS/J, {os|s€S\ J}) is a Coxeter system as well. We identify &3, with a subset of
Gy via the embedding

Sw — 6w, s~ (5,1,s). (3.4.2.1)

(Note that W9/ = {1}.) At the other extreme, considering .J = @&, we have W%/2 = W
and Gy, = 63y = {(1,1)}, so we obtain an embedding

(W) < G, ¢ (2,0, (1,1)). (3.4.2.2)

There is one further notion which we shall need below (cf. [DM90, §4, §6]). Assume that
the Weyl group W is irreducible, and let F C Irr(W) be a family (see [2.2.8)). We say

that F is exceptional in either of the following cases:

o W is of type E7, and F is the (unique) family which contains the two irreducible

characters of degree 512;

o W is of type Es, and F is one of the two families which contain (two) irreducible

characters of degree 4096.

Any other family F C Irr(W) is called non-exceptional. Now let z € X(W), and let
F C Irr(W) be the family such that z = (g,7) € M(Gr). If F is exceptional and if x is
not in the image of the embedding F — M(Gr), we set

where i € R is the primitive 4th root of unity that we fixed above. (In fact, we always

have 7(1) = 1 in this case.) In any other case, we set

3.4.3. We will require some numerical invariants attached to unipotent characters of G’
and also to unipotent character sheaves on G; since this section is the only place where
we explicitly need to deal with them, we merely give a brief description here which fits
for the present situation.

(a) Let w € W. Following [DL76, §1] (see also [Gecl8|, 4.3]), we consider the variety

Xw = {QBO € G/BO ‘ g_lF(g) & BQ’U}B()}.

Clearly, G acts on X,, by left multiplication, so we obtain an induced G-module struc-

127



3. Character sheaves

ture on H(X,,) (see |[Car85, 7.1.3]). Using further properties of the f-adic cohomology
groups with compact support, one shows that the virtual character R,, € CF(GF) (see
Definition [2.2.3)) can also be written as

Ry: G5 Q) g~ Z(—l)i Trace(g, H:(Xy)),
1€Z

see |Car85, 7.2.3, 7.7.11]. (This is actually the original definition of R,, in [DL76, §1].)
By definition, any p € Uch(G!") appears as a constituent of R,, for some w € W, and
therefore of the character of the G¥-module Hi(X,,) for some w € W and some i € Z.
Now note that, due to our assumption on F in this section, we have F'(X,,) = X, and
so I induces a linear map on H!(X,) which commutes with the Gf-action. Hence,
if 4 € Qg is an eigenvalue of F on H(X,,), the generalised eigenspace Hg(Xw)u with
respect to (F,p) is a GI'-module. So for any p € Uch(G!), there exist w € W, i € Z
and p € Qy such that p is a constituent of the character of Hi(X,,) u- While the triple
(w, 4, 1) is not uniquely determined by this property, there is a root of unity A\, € R
such that = \,q"™/? for some m € Z, and )\, is independent of (w, i, 1) above (it only
depends on p and possibly the choice of a square root of ¢), see [Lus78| 3.9] and
[DMS85,, I11.2.3]. This root of unity A, € R is called the Frobenius eigenvalue of p.

(b) Let p € Uch(GF). One can attach to p its degree polynomial D,. Since we will
not need it explicitly here, we only refer to [Gecl8| 3.3] (see also [GM20, 2.3.25]) for
the definition of D,. This is a polynomial in Q[q] (where q is an indeterminate over
Q) whose evaluation at g gives the degree p(1) of p. Then we define n, € N to be the
smallest natural number such that n,D, € Z[q].

(c) Let g € GF, and let us write ¢ = 27! F(z) where z € G (see Theorem .
Then, clearly, we also have F(x)z~! € G, and assigning to the GF-conjugacy class of

7 F(x) the GF-conjugacy class of F(z)z~"! gives rise to a well-defined bijection
t: G' /LG

(where we denote by GrF/,\, the set of conjugacy classes of GI'), as in [Sho95a, 1.16].

Thus, we obtain the transposed map
1. CF(GF) 125 CF(GF), f foty,

which Shoji calls the ‘twisting operator’ on G Now let A € G™ = (G"™)¥ and let us
choose an isomorphism ¢ 4: F*A = A. Then by [Sho95a, 3.3] (see also |[Eft94]), there
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3.4. Simple non-twisted groups with a trivial centre

exists a root of unity Ay € R such that

f{ (XA7<PA) = /\AXA,QDA'

Clearly, A4 is independent of the choice of ¢ 4. Note that this definition of A4 coincides
with the one in [Lusl5| 3.6], see [Eft94].

3.4.4. With the notation of [3.4.2] and [3.4.3] we can now describe the parametrisation
of Uch(GT") via the set Gy, following Lusztig [Lus15, §3] (see also [Gec18, §4]). Let
us first focus on the cuspidal unipotent characters of G¥'. Similarly to the notation
Irr(GF)° C Irr(GF), we set

Uch(GF)° := Irr(GF)° N Uch(GT).
The definition of the set G35 is designed as to give rise to a bijection
Uch(GF)" = &%y, p = (M, 7). (3.4.4.1)

In fact, this as well as all other results in [Lus15, §3] hold whenever G/ Z(G) is simple
or {1} (which is slightly more general than our assumption on G in this section, as it
includes the case where G is a torus, for example), and we will use this below as far as
subgroups of G corresponding to connected subgraphs of the Dynkin diagram of G are
concerned.

Now let p € Uch(GF). By |[Lus78, 3.25] (cf. 2.2.6)), there exist a (o-stable) subset
J C S and a cuspidal unipotent character py € Uch(L%)® such that (p, REJ(,OO»GF #0.
In general, this merely determines (L, pp) up to conjugation with an element of W,
but in the present situation it follows from the case-by-case analysis in |[Lus78, 3.25]
that (Lj, pg) is the only element in its W-conjugacy class, so p uniquely determines
the pair (Lj, pp). This also shows that the stabiliser W (J, pg) of pg in NG(LJ)F/L§
under the action is the full group Na (Ly)F / L§ . One can thus extract from the
discussion in [Lus84al, 8.5] that W(.J, pg) = Na (L )" /LY can be canonically identified
with the Coxeter group W97 defined above. Hence, in view of (and again
depending on our choice of a square root of p), the irreducible characters of wo/J
parametrise the irreducible characters of G which appear as constituents of REJ (po)-
(The corresponding specialisation of the generic Iwahori—-Hecke algebra associated to
W5/7 can be read off from the last column of the table in [Lus78, p. 35], due to the
remarks in [Lus84a) 8.2].) Using the notation of (2.3.10.1)), we thus have p = pole] for
some € € Irr(W*/7). Now W is the Weyl group of Ly, and LJ/z(LJ) is simple or {1}
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(this is also part of the discussion in [Lus78, 3.25]), so we can apply (3.4.4.1) to (Lj, W)

as well. Hence, the assignment p — (J, €, (Ayy,7p,)) gives a bijection
Uch(GF) & 6w.

In particular, identifying &3 € Gw via (3.4.2.1)), the restriction of this bijection to
Uch(GF)° yields the bijection (3.4.4.1)).

By collecting several results of [Lus84a), we can now make a definite choice for the
bijection (3.4.1.3)). (This is a special case of [DM90, 6.4], where no assumptions on o and

the centre of G are made.)

Proposition 3.4.5 (cf. [DM90, 6.4]). There is a bijection
Uch(GF) = X(W), pw ),

which satisfies the following conditions:

(i) Property (3.4.1.4]) holds;
(it) Ny = ;\x,, for all p € Uch(GF) (with 5\% as defined in ;

(iii) vy = wpy) for any ¢ € Irr(W) (where [¢] € Uch(GF) is as in see also
Remark [2.3.10]).

Moreover, the bijection Uch(GT) = X(W) above is uniquely determined by (i), (i), (iii).
Proof. As noted in (see Example [2.2.24)), there exists a bijection
Uch(GF) = X(W), p zp,

which satisfies (i). By |[Lus84a, 11.2], this bijection can in fact be chosen so that (ii) holds
as well. (The exceptions mentioned in loc. cit. are taken care of by the slight modification
of the definition of A, compared to [Lus84a, 11.1], as in [DM90, p. 135].) Next, by
[Lus84a, 12.6], we have x4 = x4 for all ¢ € Irr(W) which do not lie in an exceptional
family. So it remains to consider the cases where ¢ € Irr(W) is a character of degree
512 (if W is of type E7) or of degree 4096 (if W is of type Eg). We first have to show
that x4 and x4 are actually in the same MM(Gx): If W is of type E7, there are exactly
two ¢ € Irr(W) of degree 512, and they lie in the same family F. Since we already
know that x4 = x4 for any other ¢' € Trr(W), we necessarily have x4, 24) € M(GF)
for both ¢ € Irr(W) of degree 512. If W is of type Eg, there are two families in Irr(W)
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3.4. Simple non-twisted groups with a trivial centre

which contain characters of degree 4096. Comparing the tables in [Lus84al p. 105, p. 368]
(specifically the ‘a-function’, as defined in [Lus84a, (4.1.1)]), we see that x4 and x|y
are in the same M (Gr) in this case as well. So let us consider any ¢ € Irr(W) which
is of degree 512 (in type E7) or of degree 4096 (in type Eg). Thus, ¢ lies in a family
F C Irr(W) consisting of two characters with the same degree, Gr = Cj is the cyclic
group of order 2, and the image of the embedding F — M(S2) is {(1,1),(1,¢)} (where e
denotes the non-trivial character of Cy). We see from the explicit case-by-case description
in |Lus80] (or also once again from the tables in the appendix of [Lus84a|) that the other
two elements of M(S,) parametrise unipotent characters of G which are not in the
principal Harish-Chandra series, so [¢] € Uch(G*") must correspond to one of the labels
(1,1), (1,). Hence, considering the two p € Uch(G!") parametrised by the above two
in our bijection Uch(GF) = X(W), we may (if necessary) just switch the assignment

pr=Tp € {(17 1)7 (176)} - m(g}—)

in order to achieve x4 = 4] — note that this does not violate condition (i), as we see
from an inspection of the 2 x 4 submatrix corresponding to F x 9MM(Gr) of the Fourier
block T r; it is also clear that (ii) remains true since Ay = 1 for all of the ¢ considered
above. This proves the existence of a bijection as in the proposition.

To show the uniqueness, we first recall that any p € Uch(GF ) appears as a constituent
of the almost character Ry for some ¢ € Irr(W), so the family F C Irr(W) for which
OM(Gr) contains x, is certainly independent of a chosen bijection Uch(G¥) = X(W)
which satisfies (i). Then [DM90, 6.3] shows that for any non-exceptional family F for
which Gr is neither &3 nor &4, the map

M(Gr) — X(W) = Uch(G)

is uniquely determined by condition (i) already. In particular, this covers all classical
groups. As far as exceptional families F are concerned, the uniqueness with respect to
the principal series unipotent characters is contained in the proof of the existence part
above, in view of condition (iii), while the characters corresponding to the other two
elements of MM(Gr) have different Frobenius eigenvalues, so they are distinguished by (ii).
Finally, if M(Gr) is &3 or &4, the uniqueness of the parametrisation with respect to
labels of M(Gr) is easily verified using (i) and (ii), see also the proof of [DM90, 6.4]. O

Remark 3.4.6. As mentioned in the proof of Proposition if G is of classical type,
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the bijection
Uch(GF) = X(W), p zp,

is already uniquely determined by . In the case of an exceptional group G, the
unique bijection which satisfies conditions (i), (ii) and (iii) in Proposition can be
read off from the tables in the appendix of |[Lus84a] (assuming that the choice of all the
primitive roots of unity involved in loc. cit. is the same as the one in , and we will

often just refer to these tables in what follows.

3.4.7. Now we turn to the unipotent character sheaves on G. Let us denote by
Go,un — Go N Gun
the set of cuspidal unipotent character sheaves. By [Lusl5| 3.7], there is a bijection
Sy = GO, (3.4.7.1)

(Again, such a bijection exists whenever G/ Z(G) is simple or {1}.) Comparing our
definition of the sets Gy, with Lusztig’s [Lusl5, 3.1}, we see that if A € G*" corresponds
to s € 6%y under (3.4.7.1), the first component of s is equal to A4 (as defined in[3.4.3{c)).
However, we also see that if W is of type F4 or Eg, there are (in either of these cases)
two cuspidal character sheaves A € Goun for which Ay = 1, so the definition of A4 alone
is not quite sufficient to determine the bijection . In |Lusl5, §3], this issue is
resolved by considering the multiplicities of a given A € GO in PH(K:2) (i € Z) for a
suitably defined w € W. We will implicitly use this in Corollary below by referring
to a consequence [Lusl5, 3.10] of Lusztig’s explicit choice for the bijection — for
now we just refer to |[Lusl5, 3.7].

Now let A € G"™. So there exist J C S and A € IAG’UH such that A is a simple direct
summand of ind& ' (Ao) (see. In particular, Gyy , is non-empty, so as noted in
LJ/z(LJ) must be simple or {1}. Let (X, &) be the cuspidal pair for L; corresponding
to Ap (via Proposition , and recall the definition of ”//Lé; »in We claim that

e 5 =2 W

Indeed, this is clear if J = 5, so we can assume that J C S. In view of the discussion in
proving our assertion is then equivalent to showing that WL&J,E is isomorphic to the
stabiliser W(.J, pg) of some (any) pg € Uch(L5)°. This follows from a general argument
if [L5™| =1, see |[Sho95al (5.16.1)]. (Note that this includes the case where J = &, as
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the unique cuspidal unipotent character sheaf on Ly = T is .%[dim Ty].) Since J C S
and (W, J) is irreducible or {1}, we can apply (3.4.7.1)) to (Ly, W), and we see from
the possibilities for the set &5y that ILS"™| > 1 can only happen when LJ/z(LJ) is
simple of type Eg or E7. Then it is shown in [Sho95bl 4.2] that in either of these cases,
we have WLé; » = W(J, po) for both of the cuspidal unipotent characters py € Uch(L%)

which verifies our claim. So by [Sho95al 5.9], there is an algebra isomorphism

o
Y

End 4 (indf (Ag)) = QW] (3.4.7.2)

Hence, among the simple direct summands of indﬁ](Ao) up to isomorphism, A is para-
metrised by some e € Irr(W9/7). Let s 4, € 63, be the element corresponding to Ag
under (again applied to (L, W)). Then the assignment (J,€,54,) — A gives
a well-defined bijection

Sw = G™.

In particular, identifying Gy, € Gw via (3.4.2.1)), the restriction of this bijection to Gy
yields the bijection ([3.4.7.1]).

Corollary 3.4.8. Let Uch(G!) = X(W), p > x,, be the unique bijection specified
through Proposition [3.4.5, Let Uch(GF) = Gw be the bijection defined in and let
Sw = G be the bijection defined in 3.4.7. Then there exists a unique bijection

X(W) S G

which satisfies the condition (3.4.1.2) and makes the following diagram commutative
(where Irr(W) — X(W) is the embedding (2.2.8.4) and Irt(W) — Sw is the embedding
(13.4.2.2), with W =W in both cases).

Proof. Let ¢ € Irr(W). From we see that the triple (&, ¢, (1,1)) € Gw corresponds

to the unipotent principal series character [¢] (see Remark [2.3.10), which by
condition (iii) in Proposition is parametrised by x4 € X(W). Thus, the left triangle

of the diagram in the corollary is commutative, so it is clear that there is a unique
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bijection X(W) = G which makes the full diagram commutative. Now let A € G,
and let p € Uch(G*") be the corresponding unipotent character under

Uch(GF) & 6w = G,
Recall the definitions of R‘f ° and the pairing (:) in By [Lus15| 3.10], we have

(p, Ru)gr = D (—1) 4G (A PHI(KD)).

€L
Hence, we get
W lGZ
1 —

weW

So in order to show that holds for the bijection X(W) = G™ we are reduced
to proving that A(z,) = é4 whenever A € G"™ corresponds to p € Uch(GT) as above.
Let (Ly,¢e,8) € ©Gw be the triple which parametrises A (and p). Thus, A is a simple
direct summand of ind& " (Ao), where Ay € LO M Let (3, &) be the cuspidal pair for Ly
corresponding to Ay (via Proposition , so ¥ = %.Z(Ly) for some conjugacy class
% of L (note that Z(L;) = Z(L,)° here). By [3.1.15] we have

dimsupp A = dim Yy, ») = [Rag| — |RL,| + dim X
=dim G — dimL; + dim % + dim Z(L),

S0
dim G — dimsupp A = dimL; — dim % — dim Z(L).

Let us fix any element x € 4. Then we get
dim G — dimsupp A = dim Cy,, () — dim Z(L)

and, hence,
Eq= (_1)dimG—dimSuppA — (_1)dimCLJ(z)—dimZ(LJ).
By [Spa82, I1.2.8], we have

dim Cy,, (z) = rank Ly 4 2 dim &LV,
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where %57 denotes the variety of Borel subgroups of L; which contain . We get

£y = (_1)rankLJ7dimZ(LJ) _ (_1>rank(LJ/Z(LJ)) _ (_1)|J|.

From applied to (L, W), we know that &3y must be non-empty. Now let us
go through the definition of the sets Gy, for irreducible Weyl groups W: We see that the
only case where Gj}; is non-empty and the rank of W is odd occurs when W is of type
E;. Hence, we have é4 = —1 if and only if (W, J) is of type E7. The same holds for
A(z,), see [Lus84a, 4.14]. The corollary is proved. O

Remark 3.4.9. From now on, whenever dealing with a simple group G with trivial
centre and a non-twisted [Fy-rational structure, we always assume that the bijections
Uch(GF) = (W) and X(W) = G™ are chosen according to Corollary In view
of Remark the parametrisation of G"™ in terms of X(W) can thus directly be
read off from the tables provided in the appendix of [Lus84a] as well. It will often be

convenient to also label the unipotent characters in terms of X(W), that is, we write
Uch(GF) = {p, |z € X(W)} and G"™ ={A, |z e X(W)}.

Example 3.4.10. (a) Consider an irreducible character ¢ € Irr(W) and the associated
element x4 € X(W) as well as the corresponding character sheaf A, € G"™. Thus,
Az, is parametrised by the triple (&, ¢, (1,1)) € &w under the bijection Sw o~y Gun
defined in Note that the unique (cuspidal) unipotent character sheaf on Ty is
Ay = Z[dim Tp]. Thus, among the (isomorphism classes of) simple direct summands of
ind%O(Ao), Ay, is parametrised by ¢ under the isomorphism (with J = @). On
the other hand, since £p[dim Ty] = IC(Ty, %)[dim Ty], we know from that

- 1G ~ 174
ind, (Ao) = K3/ mys

and KT'ZOT is denoted by K;j with j = (To, {1}, %) € ME 1nm 2 14] Hence, using
the notation there, we have A;, = Ay, that is, A, is the character sheaf parametrised by
the element of N (which in fact lies in NV&) which is the image of ¢ under the ordinary
Springer correspondence .

(b) More generally, assume that A € G'™ is parametrised by some i = (0, &) € N§ in
the setting of Let ] = [(L, 0o, 60)] € ME and € € Trr(Wg (L))" be such that i
corresponds to € under . As noted in we may assume that L = Ly is the
standard Levi subgroup of the standard parabolic subgroup P ; of G (for some J C S). By
the groups #; = Wg (L) and W5/7 are isomorphic, so the respective constructions
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in (3.2.13 show that A corresponds to (J,¢,54) € Gw (for a certain 54 € Sy )

under the parametrisation of G"™ in terms of Gw. In view of the commutativity of the
diagram in Corollary we can thus read off the corresponding element of X(W) by
comparing the parametrisations of Uch(G¥") in terms of Gw, X(W), respectively (see
the appendix of [Lus84a] and |Car85, §13.8]).

3.4.11. Below, it will be convenient to tacitly identify Q, with C (via (1.1.0.1])) and
just use the terms such as ‘complex conjugation’ or ‘real numbers’ for elements of Q, in
the obvious way. Given a character p of G¥', recall that the contragredient character is
defined by

p: G" = Qg p(g™") = pl9).

Clearly, if p € Uch(GF"), we have p € Uch(G¥) as well. For later use we show that the
Frobenius eigenvalues associated to unipotent characters satisfy

Az =X, =X, forall p € Uch(GF) (3.4.11.1)
(which is already contained in [DMS85| II1.3.4], see also |[GMO3|, 4.3]). More precisely,
we provide some references here which allow us to quickly determine p for a given
p € Uch(G!). Let us begin by considering those p € Uch(GY) for which A, € {£1}.
Then, unless p is one of the two characters of degree 512 in case G is of type E7, or p is
one of the four characters of degree 4096 in case G is of type Eg, we have p(g) € Q for
all g € G¥', see [Lus02, 1.8]. Now assume that p is one of the six characters excluded
above. Then p(g) € Q(\/q) € R by |Gec03b}, 5.6]. This shows that

p=p whenever \, € {£1}, (3.4.11.2)

so in particular A; = Xp = )\;1 holds for those p. For instance, this already covers all
non-twisted classical groups, see [Lus02, 1.12]. We may thus assume from now on that G
is of exceptional type and p € Uch(GT) is such that A, # £1. The character field

Q(p) =Q(p(9) | g € GT)

is provided by [Gec03b| 5.6, see Table 1]. Note that p = p if and only if Q(p) C R.
By inspection of the character degrees (printed in the appendix of [Lus84a] and also
in [Car85, §13.9]), we see that, except for the four cuspidal unipotent characters Eg[(!]
(1 <i<4) in type Eg (where (5 € R is the 5th primitive root of unity that we fixed in
, there are never more than two unipotent characters which have the same degree.
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3.4. Simple non-twisted groups with a trivial centre

Hence, unless p € {Es[¢i] | 1 < i < 4}, the character field Q(p) of p uniquely determines

the contragredient character p, and one verifies that A\ = A\, = )\;1. Thus, in order to
complete the proof of (3.4.11.1)), it only remains to deal with the four characters Eg[(}],
1< i <4 (when G is of type Eg). To this end, let us consider the inversion map

inv: G 5 G, ¢g— gL

Clearly, inv induces a bijection on the set of conjugacy classes of G, which we again
denote by inv, so we may compose it with ¢; (see ¢)) in order to obtain the map
defined in [DMS85| 1.7.2(i)]. By |Gec03b, 5.3] (see |[DMS85, II1.2.3]), we have

[@] oinvot) = Z (0, Rg)gr - Ap-p for any ¢ € Irr(W). (3.4.11.3)
p€UCch(GF)

Let us consider the character ¢ := 4480, € Irr(W). (Thus, ¢ lies in the unique family
Fie € Irr(W) consisting of 17 characters, so [M(Gr,,)| = 39.) Then

(P, Riaaso,)) gr = A@p){2p, Taas0, } = {zp, 24480, } € Q forall p € Uch(GF)

(where the last equality follows from the fact that A(x) = 1 for all z € M(Gr,,) and
{7, 24480, } = 0 if 2 ¢ M(GF,4)). We have Ayyg0,) = 1, so [4480,] is real-valued in view of
(3-4.11.2). Hence, the left side of (3.4.11.3)) with ¢ = 4480, is invariant under complex

conjugation, so we get

Z {xp, 334480_1,}/\;2 -p= Z {.%'p, L4480, }Xp - p. (3.4.11.4)
peUch(GF) p€Uch(GF)

Let us set

U' = Uch(G") \ {Es[¢f] | 1 <i < 4},

By the above discussion, we have A\ = Xp for all p € U’, and p — p defines a bijection on
{Es[¢t] | 1 < < 4}, hence also on U’. One checks that {z,, z4480,} = {@5, 4480, } for all

p U, so we get

Z {xp, $4480y})\p p= Z {a:p, x4480y})\p -p = Z {a;p, 24480, }Xp - p. (3.4.11.5)
peU’ peU’ peU’

On the other hand, the Es[¢!] are named by their Frobenius eigenvalues, so
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Furthermore, we have {ng[cg]vl’moy} = % for all ¢ € {1,2,3,4}. Hence, subtracting

(13.4.11.5)) from (3.4.11.4)), we deduce that

4 4
%ZQ) Es[¢il =3 ¢ Es|Ci].
=1 =1
Since the Cg (1 < i < 4) are pairwise different, the only possibility is that Eg[¢}] = Es[¢s g

for 1 <14 < 4. Thus, (3.4.11.1) is proved.

Some reductions

3.4.12. For z € X(W), let us for now pick any isomorphism ¢,: F*A, = A, as in
. Lusztig has shown how one can attach a scalar (, € Q, of absolute value
1 to (Ag,ps); we will sketch this only very briefly here and refer to |[LuCS3, §13]
and [Lus86, 3.5] for more detaﬂs, see also [Gec21, 3.5]. By the definition of G"™
(or, rather, by Remark [3.1.7(c)), there exist w € W and i € Z such that A, is a
constituent of PH* (Ffo); in partlcular we have PH'(K,, ) # {0}. Let us fix any
such w, i, and let V, := Homgqg(A,,PH(K,")). There is a natural isomorphism
Vi F*(PH' (Ffo)) = PH? (F"fo) (Writing w instead of w is justified here since all of
the above is independent of the choice of the representative w € Ng(TO)F of w in our

situation.) Consider the Q,-linear map
Uy Vo= Ve, v Yo F*(v)o w;l.

By [LuCS3} 13.10], all the eigenvalues of ¥, are equal to (s - qi=dmG)/2 and we have
|Cz| = 1; in fact, ¢, lies in R with our assumption on the isomorphism .. This definition

of ¢ = (2(z) does not depend on w, i (and w), only on Az, ¢, and the choice of /g
that we made in (|1.1.0.2). On the other hand, let us consider the characteristic function

Xz i= XAwipe: GT — Q. (3.4.12.1)

As noted in [2.2.11] we have {z,y} € R for all z,y € X(W), so the definition (2.2.24.3) of

the unipotent almost character R, € CF(GT) reads

Z A(yNy, x}py

yeX(W)
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3.4. Simple non-twisted groups with a trivial centre

By (3.3.12.2)) and (3.3.12.3), we have

Ry =bxs forae X(W), where &, = 6,(p) €00, |6 =1 (34.122)
Using |[LuCS3, 14.14] (and [Lus86, 3.6(a)]), one finds that
R, = (-1)4mCGz, ¢y, for z € X(W), (3.4.12.3)
see |Gec19, §3]. Thus, we have
£ = (—1)4mGe, ¢, for z € X(W). (3.4.12.4)

In particular, as (, € R, we also get §; € R. Now let m € N. Then F": G — G is
a Frobenius map which provides G with an F;m-rational structure, and F"" certainly
induces the identity map on W (since F' does, by our standing assumption in this section),
so the above discussion may as well be applied to (G, F™) instead of (G, F'). We can

thus write

Uch(G"™) = {p{™ | = € X(W)}

(still assuming that the corresponding bijection Uch(GF™) = X(W) is the one defined
through Proposition [3.4.5)). Furthermore, for x € X(W), denote by RI™ € CF(GF™)

the corresponding unipotent almost character, that is,

Ri™ = 3" Ay zpl™.
yeX(W)

In order to define the corresponding characteristic function on G, we need to specify
an isomorphism (F™)*A, — A,. This is done in |Gec19, 3.3]. Namely, ¢,: F*A, = A,

naturally induces isomorphisms
(F*)Z(Qox) (F*)H_lAq; = (F*)iAx, for0<i<m—1.

Setting
Be = gy o F*(pz) 0.0 (F)" Hpy): (F)" Ay & Ay,
and composing @&m) with the canonical isomorphism (F"™)*A, = (F*)™A,, we thus
obtain an isomorphism
P (F™) Ay & Ay
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Since , satisfies the requirement in with respect to F', it follows from this
construction that apg;m) satisfies the requirement in with respect to F. Let

X =x, e G Q
be the associated characteristic function, and let ng) € Q, be defined by

R(m) _ (_1)dim GéAx chm)x(m) )

x T

Note that R,(UI) = R,, Xg(cl) = Xz, and so Cg(cl) = (- We can now formulate the following

result due to Geck [Gecl9)|.

Proposition 3.4.13 (Geck [Gecl9, 3.4]). In the setting of [3.4.12 we have
¢ =¢m for all x € X(W), m € N.

Proof. See |Gecl9, §3]. The proof is based on considering the linear map ¥,: V, — V
defined in [3.4.12] and comparing it with the linear maps \Ifgcm): Vy — V. defined with
respect to (gogm), F™) instead of (g, F), for any m € N and any = € X(W). It is shown

in [Gecl9, 3.7] that v = U for any m € N, so we must have Q;](Em) =" O

Remark 3.4.14. We place ourselves in the setting of

(a) Let us assume that A, € GO s a cuspidal unipotent character sheaf on G,
corresponding to the (F-stable) cuspidal pair (X,&) for G. We also assume that &
is one-dimensional and that there exists some gg € % such that F acts trivially
on Ag(go). Of course, we then have gy € Y™ and F™ acts trivially on Aac(90)

for any m € N. Let d = dim¥, and let (gog«m))id 5’ G0 = &g be the linear map

induced by gpg(gm): (F™)*A, = A,. We have (go(xm))_d o= ((px)Td g forany m € N (see
[Sho95a;, 1.1]). Let ¢,: F*A, = A, be the isomorphism corresponding to the choice of
go € ¥ that is, the linear map (V) —d,go : Ego — &g, is given by scalar multiplication

with ¢(dmG=d)/2 Thep (@gj’”))i dgo = ()™ d.o is given by scalar multiplication with

(q(dimG*d)/Q)m = (qm)(dimG*d)/z. Thus, with respect to the Fym-rational structure on
G defined by F™, the isomorphism gog;m): (F™)*A, = A, corresponds to the choice of
go € ™ for any m € N.

(b) Proposition thus reduces the problem of determining the scalars ¢, (and,
hence, &) for 2 € X(W) to the base case p = ¢, for any simple G with trivial centre such
that (G, F) is non-twisted. This reduction is especially advantageous as far as bad primes

p for G are concerned, as in these cases many properties of the algebraic group G related
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3.4. Simple non-twisted groups with a trivial centre

to its geometric origin tend to be quite different compared to the cases where p is good.
On the other hand, since the mere size of G(F),) is comparatively small for very small
primes p, one might hope that there is enough information available for the character
values of G(IF,) by other means, possibly from an abstract group-theoretic nature, e.g.,
using a computer algebra system such as GAP [GAP4] and CHEVIE [GHLMP)], [MiChv]|,
or consulting the Cambridge ATLAS [CCNPW]|. For example, Geck used such methods
in [Gecl9| for the groups F4(q) and Eg(q) where ¢ is a power of the prime p = 2.

3.4.15. From now on, we will mostly be concerned with the problem of determining
the scalars &, in (3.4.12.2)) (or equivalently, the ¢, in ), or provide appropriate
references in the cases where they are already known. But recall that, for x € X(W), an
isomorphism ¢, : F*A, = A, as in is only defined up to multiplication with a
root of unity, so the first task is to explain how one can go about fixing such ¢,. Let
us start with elements of the form x = x4 for ¢ € Irr(W); this is discussed in detail in
[Sho95a, §1, §2]. By Corollary Ay, is parametrised by the triple (2, ¢, (1,1)), so Ay,
is isomorphic to a simple constituent of ind%O(Ag) where Ay = Zp[dim Ty] is the unique
(cuspidal) unipotent character sheaf on T¢. The cuspidal pair for T corresponding to Ay is

thus (To, %), and the neutral element 1 of G serves as a distinguished element of Ty (see

3.1.3). Following [3.2.21} we fix the isomorphism @ 4,: F*Ag = Ag in such a way that the

(dimG-r)/2 (recau

induced map (¢ay)—r1: (L)1 = (L)1 is scalar multiplication with ¢
that r = rank G = dim T). The endomorphism algebra of the complex Kﬁ}TO e MG
is isomorphic to the group algebra Q,[W] of W, so the discussion in (b) shows
how (pa,)—r: F* % = £ determines an isomorphism ¢, ot P Ag, = A, o+ The scalar
& 6 = & ¢(g0x ¢) € Q; which relates the almost character R, o = Ry with the characteristic

function x4 is explicitly known thanks to the results of Lusztig [Lus90| and Shoji,

z Py
see [Sho95al, 2.18]: We have

R¢ = (_1)dimT0XAx¢,cpz¢a

that is, &, = (=1)%™T0 and ¢, = 1.

3.4.16. Continuing the discussion in let us now assume that = € X(W) is not in
the image of the embedding Irr(W) — X(W). We want to describe how both specifying
the isomorphism o, : F*A, — A, and determining the scalar £, (and ;) are reduced to
considering cuspidal unipotent character sheaves, under the acceptance that one has to
simultaneously deal with all simple groups with a trivial centre and with a non-twisted
F,-rational structure (for one and the same ¢), cf.

Solet J C S and Ay € IAJ?,’un be such that A, is isomorphic to a simple direct
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summand of indEJ (Ap) (see . By our assumption on (G, F') in this section, L; has
a connected centre [DM20, 11.2.1], and the restriction of F' to L; defines a non-twisted
F,-rational structure on L;. Moreover, by our assumption on z, we have J # @, so
that L', := L/ Z(Lj) # {1} is necessarily a simple group (see again ; we also have
Z(L';)) = {1}. Let n: Ly — L/, be the canonical map, and let F': L', — L/; be the
Frobenius map on L/, induced by F, so that F' om = 7o F|y,,; F' defines a non-twisted
F4-rational structure on L’;. Thus, everything in this section can also be applied to
(L’;, F') instead of (G, F).

The shifted inverse image functor 7*[dim Z(L,)]: 2L/, — 2L induces a bijection
between the (cuspidal) unipotent character sheaves on L/, and the (cuspidal) unipotent
character sheaves on Ly (see [LuCS4, 17.10] and [Lus84b, 2.10]). Let A} € (L/,)°"™ be
such that 7*(Af{)[dim Z(Ly)] = Ao. As noted in { is automatically F-stable. Let
(X, &") be the (F'-stable) cuspidal pair for L, such that A} = IC(X/, &)[dim X/]|#Ls. We
then have Ay = IC(Z, &)[dim X]#L7 where ¥ = 77 1(X) and & = (n|g)*&”. Here, ¥ is a
conjugacy class of L/, and X is of the form % - Z(L) for a conjugacy class € of L such
that 7(¢) = X'

Let us for now fix any element g} € ¥/, and let gy € € be such that 7(go) = gj; we also
set d :=dim¥ and d := dim ¥ = d' + dim Z(Ly). As described in the choice of
go uniquely determines an isomorphism ¢ 4, : F"* Aj = Aj, by requiring that the induced
map () _a g, é"g’(,) = é"g’(,) is given by scalar multiplication with ¢(dmL;=d)/2 et
A, = m*[dim Z(LJ)](QOAG) : F*Ag = Ap; then both ¢, and @ 4, satisfy the requirement
in Now consider the complex K = KfJ,z € #G. We have K = inde (Ap), and
the endomorphism algebra End,_,q(K) is isomorphic to the group algebra Q,[W*/7], see

(3.4.7.2). The discussion in [3.2.19(b) thus shows that ¢g := (pa,)_a: F*& = & not only

determines an isomorphism ¢: F*K = K, but also an isomorphism ¢,: F*A, = A,.
Hence, the choice of g € ¥ (or, equivalently, the one of an isomorphism F'* A = Al)
completely determines the isomorphisms ¢, : F*A4, = A, for any x € X(W) such that
A, is a simple direct summand of ind& " (Ao); see for comments on how one
can make a ‘good’ choice for g € ¥'F".

As for the scalars £, we can formulate the following result, which is implicitly contained
in Lusztig’s and Shoji’s work, see |[LuCS3, §13, §14], [Lus86|, [Sho95a], [Sho95b|; for

classical groups, it is also explicitly stated in [Sho09, 6.3].

Corollary 3.4.17 (cf. [Sho09, §6]). Let x € X(W) \ Irr(W), with associated @ # J C S
and Al € (L))°"™ in the setting of . Let o F™ A = A{, be any isomorphism
as in m (cf.13.2.21) and p,: F*A, = A, be the isomorphism determined by ©ars
as explained in le Let Rj, € CF(L{}W) be the almost character corresponding to Aj
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and &) = §olpay) € Qy be such that R}y = §oXay.p,, - Then we have
0

sz’(‘Pm) = (_1)dimZ(LJ)§67

that is,
R, = (_1)dimZ(LJ)§6 X Ap -

Proof. As explained in we can apply the discussion in to (L'}, F') as well.
Thus, if {§ = Cay(pay) € Q; denotes the scalar attached to (Aj, pa;), we just need to
compare ([3.4.12.4) applied to (G, F') and (L'}, F"), respectively. The advantage of arguing
with (; = ((¢z) and ¢ (instead of directly using & = & (p,) and &) is that their
definition immediately gives ¢, = (). (More precisely, it is shown in [Lus86, 3.5] that we
have ¢z = Ca,(4,), With ¢4, as defined in[3.4.16} the fact that (a,(pa,) = ¢} follows from
the compatibility properties of 7*[dim Z(L )] mentioned in [LuCS4, 17.10].) So we only
need to compare (—1)4mGeg, = (—1)dimsupp s with (—l)dimLfIéAé = (—1)dimsupp Ay

By 3.1.175] and [3.1.21] we have

dimsupp A; = dimY(g,, ») =dim¥  (mod 2).

On the other hand, the support of Aj is (the closure of) X', which has dimension

dim¥ — dimZ(Ly) (see|3.4.16). So we get

gz _ (71)dimsupprCx _ (71)dimZ(LJ)(71)dimsuppA6<(l) _ (71)dimZ(LJ)§6' 0]

The main methods

In view of Corollary and as far as simple groups with a trivial centre and a non-
twisted F,-rational structure are concerned, we are thus reduced to considering cuspidal
unipotent character sheaves when seeking to determine the scalars &, (z € X(W)) in
. Recall from that this problem has been completely solved by Shoji for
all classical groups. Hence, we will look at the cuspidal unipotent character sheaves on
the various simple groups of exceptional type in what follows (see Chapter 4| below). In
the remainder of this chapter, we present the main methods that we will use in order
to get our hands on the scalars &, in for those z € X(W) which parametrise

cuspidal unipotent character sheaves A, € Goun,

3.4.18. Let us consider an F-stable cuspidal unipotent character sheaf

A =1C(%, &)[dim €)#C e Gom,
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where ¥ C G is an F-stable conjugacy class and & is an F-stable cuspidal local system
on €. As in|3.2.21] we assume that & is one-dimensional. (This is always the case when
G is a simple group of exceptional type, see Chapter 4| below.) Thus, the first step

consists in finding a ‘good’ representative gg € € see |3.2.22] [3.2.23] It turns out that
in many cases it is possible to choose go € €% in such a way that (in particular) the

following condition holds:
go is conjugate to gal in GT' ()

So let us assume that gg € € satisfies . By [3.2.21} g9 determines an isomorphism
oa: F*A = A. Let x4 € X(W) be such that A = A, ,. As in|3.4.12) we write

59014 = fl‘A (@A)a C.’I?A = CxA (@A)a Xzg = XA,pa-
We immediately get
€x, € {£1} (and thus (;, € {£1} as well).

Indeed, as noted in [3.4.12] the unipotent almost character R, is not only a class function
of G but at the same time an R-linear combination of characters of GF'. So, using ,

we deduce that

oaXoa(90) = Ruy(90) = Ray(95") = Rauy(90) = Euy Xaa (90),

where the last equality holds due to the fact that x;,(g0) € R, see again [3.2.21] So we

have &, , = ¢, , and, since |&,,| = 1, we conclude that &, € {£1}, as claimed.

3.4.19. We keep the setting of In particular,
A =I1C(%, &)[dim ¢]7C

is an F-stable cuspidal unipotent character sheaf on G, the local system & is one-
dimensional, and we assume that we have found a ‘good’ representative gy € €* which is
G!-conjugate to 9o ! In order to have a uniform notation, we will continue to write y4 N
for the characteristic function of A as in (3.4.12.1)), but with ¢,,: F*A = A explicitly
defined with respect to the choice of gy. (For any other xz € X(W), let us for now just
choose any ¢,: F*A, = A, as in , and let the further notation be as in )
We set
X°(W) := {z € X(W) | 4, € G}
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and
X'(W) :=X(W)\ (X°(W) UTIrr(W)).

We also recall that {z,y} € R for all z,y € X(W). Let us briefly describe the two main
methods that we use in this thesis to obtain information on the sign &, € {£1}.
(1) For p € Uch(GF), we have

Ay p= Y {zpa} R,

zeX(W)
= Z {$p7x¢}R¢ + Z {xpafx}g:cxgc + Z {-prr}ngx'
¢elrr(W) €X' (W) rEX° (W)

Recall from that the values of the Ry (for ¢ € Irr(W)) at unipotent elements of
G! are known in most cases (the exceptions occurring only when G is of type Eg and
p € {2,3,5}). But even for non-unipotent elements g € GI', the values Ry(g) can be
computed in many cases; see [Gec21) §2, §3] for more details. So let us assume that we
are able to compute the values Rg(go) for all ¢ € Irr(W); as described in the
computation of x;(go) is easy for all x € X°(W). Note that all those Rg(go) and x.(go)
are rational numbers. One idea to obtain information on the sign £, , is then to choose
p € Uch(GY) in such a way that

{z,, 24} #0 while {z,,2} xz(g0) =0 for all z € X'(W).

Recall that it is sometimes possible to deduce that x;(go) = 0 for certain fixed elements
go € G, especially in the case where gg is unipotent, see Corollaryor Theorem
If we manage to find such a p, we then get an equation for p(gg) in which the only
unknowns are the signs £, € {£1} corresponding to the cuspidal unipotent character
sheaves A, which are supported by (the closure of) &, one of them being A by construction.
(It may be the only one which appears.) We know from basic character theory of finite
groups that p(go) is an algebraic integer, and if all the conditions mentioned above are
satisfied, we know at the same time that it is a rational number, so it must be a rational
integer. In several instances, this information is already sufficient to determine the sign
€x4; see |Gecl9, 6.6], [Gec21], and also the arguments in and Proposition m
below.

(2) Another approach is as follows, using the Hecke algebra associated to the permuta-
tion module of G with respect to Bg ; see Section Recall the definition of m(g,w)

(for any g € G, w € W) in In view of (2.2.24.4]) and (3.4.12.2)), we may express
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this in terms of characteristic functions of character sheaves: We have

m(g7w): Z Cx(w)Rm(g): Z Cm(w)gach(g) (3'4'19'1>

T€X(W) z€X(W)

where

cx(w) = Z {zg, x} Trace(Ty, Vy).
o€lrr(W)

(We have used that A(z4) = +1 for any ¢ € Irr(W).) We thus get

m(g,w) = Z Cx¢( )+ Z w)Exxz(g) + Z w)EaXz(9)-

¢elrr(W) zeX!( ) zeXo( W)
Recall (2.2.11} [2.3.9) that the numbers ¢, (w) are explicitly known and electronically

accessible through Michel’s CHEVIE [MiChv| (for all z € X(W) and w € W). On the
other hand, by ([2.3.9.2]), we have

0, N BEwB{| - [Cer (9)]

(3.4.19.2)
B

m(g,w) =

The idea is to evaluate this at (possibly various) suitable w € W and g € €F, in
particular at g = go, to obtain information on the sign £, ,. This works especially well
if ¢z (w)Rz(g) = 0 for ‘many’ of the x € X(W) \ {za}. If x € X(W) is of the form
x = x4 for some irreducible character ¢ € Irr(W), we might also be able to compute
R.(g) = Ry(g), as mentioned in (1) above. In general, it appears to be very difficult to
explicitly compute the cardinalities |0, N BEwBE| on the right side of , but
already knowing that this is certainly a non-negative number will turn out to solve the
cases appearing in type Eg with p = 3 (see Section and several of the cases occurring
in type Eg with p =5 (see Section . However, there are also many instances where
more knowledge on both the set Oy, N BEwBE and on the values of almost characters
R, with x € ¥'(W) is required; an example is E7 in characteristic p = 2 (see Section ,
but also numerous cases in type Eg (see again Section . To this end, we will explain
how one can compute the almost characters at unipotent elements up to certain roots of
unity in below.

As a matter of fact, the method (2) above combined with the discussion in
will enable us to directly obtain explicit values of unipotent almost characters R, (where
x € ¥'(W)) at unipotent elements for groups of type Eg and E; which were previously

not known.
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3.4. Simple non-twisted groups with a trivial centre

Remark 3.4.20. Note that the definition of m(g,w) only involves unipotent
principal series characters of GF'. An expression for m(g, w) in terms of characteristic
functions of unipotent character sheaves as in (3.4.19.1)) can thus also directly be obtained
from [LuCS3|, 14.14] (see also [Lus86, 3.6]) using the definition of the scalars (, (z € X(W))
n [3:4:12] without reference to unipotent almost characters and Shoji’s Theorem [3.3.9]

3.4.21. In several places below, we will need detailed information on the values of the
unipotent almost characters R, (z € X(W)) at unipotent elements, so let us explain how
one can go about computing those R;|gr up to some unknown roots of unity. In view of
, this is (up to multiplication \;:;‘ilth roots of unity) equivalent to computing the
functions Xﬂ?’Gfm for x € X(W). Recall from that A, is a simple direct summand
of some Kflz € # G where L C G is a regular subgroup and (X, 4}) is an F-stable
cuspidal pair for L. By Corollary we know that in the case where ¥ does not
contain any unipotent elements, we have x,|gr = 0. So we are reduced to considering
those x € X(W) for which A, is a direct surr‘ll;rlland of some Kflz as above, and with
¥ C L being the preimage of a unipotent conjugacy class of L / Z(L)° under the canonical
map L — L/ Z(L)°- We may then assume that L = L is the standard Levi subgroup of
the standard parabolic subgroup P; C G for some J C S. Hence, we are in the setting of
the generalised Springer correspondence (see m m that is, we have A, = A; for
some i = (0,8) € NE, and j := 7(i) = (L, 0o, &) € ME is such that ¥ = Z(L;)°.0p
and & = 1 X &. By[3.1.21} we have

K= K{! ¢ =2 indf (4g) where Ay =IC(T,&)[dim X#17 € L.

The parametrisation of the isomorphism classes of the simple direct summands of Kj
in terms of the irreducible characters of the group % = Wg(Ly) (see m ) thus
corresponds to the parametrisation of the isomorphism classes of the simple direct
summands of indg (Ag) in terms of Irr(W*/) via the isomorphism Wg(Ly) = W9/ in
- In particular, given j = (L, 0p, &) € ME, as soon as one A; with i € 771(j) is in
G we know that every A; with i € 771(j) is in G In this case, the task of matching
the i € 771(j) with the x € X(W) so that A; & A, is exactly the task of determining the
generalised Springer correspondence with respect to the block 771(j) C Ng , and this is
now established in complete generality (see the remarks in [3.2.13). So if z € X(W) is
such that there exists some i € N& for which A, = A;, it will often be convenient to say

that x corresponds to i under the generalised Springer correspondence.

3.4.22. Let z € X(W) and i = (0,&) € NE correspond to each other under the
generalised Springer correspondence, and let 7(i) = (L, 0y, &) (with J C S). In the
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3. Character sheaves

case where J = S, A, = A is a cuspidal (unipotent) character sheaf on G, and we
refer to for the computation of the characteristic function x,. Let us now assume
that J = &, so that 7(i) = (To,{1},1), and i is in the image of the ordinary Springer
correspondence Irr(W) < Ng , see . Recall (2.2.5) that in this situation,

the computation of Ry|gr is almost completely known, and it is explained in detail

uni

in |Gec20a, §2, §3] and |Gec20b, §2, §3] (cf. [ShoO6b, 1.1-1.3]), so let us describe
this here only briefly. First of all, we make the following assumption on a given pair
' = (0",&") € N& (or, rather, on the unipotent class ' C G):

There exists an element uf, € 0'F such that F acts trivially on Ag (u}). (&)

(This will be satisfied in every case that we are concerned with later.) If, under the
ordinary Springer correspondence, ¢', ¢ € Irr(W) are mapped to i’ = (0',&"),i=(0,&),

respectively, we set
Pe. =Dy (see Theorem [3.2.16) and dy := 3(dim G — dim & — dim Ty).

Furthermore, if ufy € 0'" is as in (#) and ¢’ € Irr(Ag (uf))) parametrises the local system
& on 0, the function Yy = Yy: GE, — Qy (see [3.2.15) is given by

Yo ((uh)a) = 06" (a) for a € Ag(up), where 6y € {£1}

(and Yy (u) = 0 if u € GE; \ 0'F). We have

uni

Rylgr = Y. a"py oYy,
¢’ €lrr(W)

so in order to compute Ry|gr , the only task is to determine the signs d for ¢’ € Irr(W),

and we recall from [2:2.5 that this has been accomplished in almost all cases.

3.4.23. Let x € X(W), i= (0,&) € N& and 7(i) = (L, 0o, &) be as in (so that
Az = A;), but we no longer require J C S to be the empty set. Let (J,€,5) € Sw (where
€€ Irr(WS/ J ), 5 € G J) be the triple corresponding to x via Corollary Let us fix
an isomorphism @g: F*&y — & which induces a map of finite order at the stalk of & at
any element of &f"; we then define the isomorphisms @4, : F*A; = A, §4 0 F* A4 = A

as in 3.2.25(and set ;. := P4, Xa = XAu,pa- Let & = Ea(pz) be asin (3.4.12.2)), so that

Rx|GF = 5xXa:|GF = (_1)aiq(dimG7dim ﬁfdirnZ(LJ))/2£in' (3‘4'23'1)
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3.4. Simple non-twisted groups with a trivial centre

Now recall from that a; = dim supp A; (mod 2), so the definition of {, = (,(¢5) in
shows that (—1)%¢, = (,. Moreover, with the same argument as in |[Lus86, 3.5] (cf.
the proof of Corollary [3.4.17)), we see that the root of unity ¢, is independent of which of
the above z, i we choose, as long as they give rise to the triple 7(i) = (L, 0y, ). We
may thus set ((J,s) := (, and obtain

Rm’GF = q(dim G—dim ﬁ_dimZ(L‘I))/2C<J’ 5)Xi' (34232)

(If &%, = {s} is a singleton, we will usually just write ¢; := ((J,5).) As for the
computation of the function X;: GL . — Qj, we recall from Theorem and Corol-
lary that it is given by an explicitly known linear combination of the functions
Yy, i = (0',8") € N&, and the coefficients at these Y; can be obtained via CHEVIE.
Up to multiplication with a root of unity, the functions Y;: GE . — Q, are given as
follows, see [ShoO6b, 1.3]: For simplicity, we assume that there exists uj € ¢'F' such
that F acts trivially on Ag(ug). Then there exists a root of unity 7y € R such that, if

¢" € Irr(Ag(u)) parametrises the local system &’ on &”, we have

Yilgr = wYd where YP: 0" = Qy  (uf)a — <'(a).

F

uni

unipotent class ¢’ of G, we see from Corollary that R,;(u) can only be non-zero
if ¢! C 0. The determination of the roots of unity ((J,s) and 7y is open in general
(cf. B.2.19(a)), but knowing a value R, (u) up to these roots of unity already provides
powerful information, and combining this with the method described in [3.4.19)2), we will

manage to specify the signs appearing in [3.4.18| and also determine some actual character

In particular, if 2 and i = (0,&) are as above and if u € Gy ; is an element of the

values at unipotent elements which were previously not known.

Remark 3.4.24. To summarise the discussion in B.4.2TH3.4.23t If we are interested in
the values of the unipotent almost characters R, (for z € X(W)) at unipotent elements
of G, we are reduced to considering those = which correspond to some i € Né under
i)

the generalised Springer correspondence (as any other R, is identically zero on Gy,;).

If u € GL; lies in the unipotent class ¢’ C G and if z <+ i = (€, &) as above, we have
R;(u) = 0 unless &' C @, so with respect to values at elements of &'F' we only have to
consider such R, for which x corresponds to pairs involving unipotent classes which are
‘bigger’ than &”. The values of these R;|sr can then be determined up to some roots
of unity; in the case where z corresponds to some ¢ € Irr(W), the values of Ry|zr are

described up to some signs, and these signs are in fact known in almost all cases.
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4. Simple groups of exceptional type

As explained in Section (specifically due to [3.4.15{and Corollary [3.4.17)), with regard
to determining the scalars &, in (3.4.12.2)) for simple groups G with a trivial centre and

with a non-twisted [Fy-rational structure defined by a Frobenius map F': G — G, it
remains to consider this task for the cuspidal unipotent character sheaves on exceptional
groups G, that is, the groups of type Eg, E7, Eg, F4 and Go. In this chapter, we thus go
through these groups G one by one and try to solve the following problem, or provide

appropriate references in the cases where its solution is already known:

For any x € X(W) such that A, € G, specify an isomorphism

~ (*)
oz F*Ap — A, and determine the scalar £, = &, (¢;) in (3.4.12.2)).

(Here, W denotes the Weyl group of the group G in question.)

In fact, recall from that a simple exceptional group G can only have a non-trivial
centre when it is of type Eg with p # 3 or of type E7 with p # 2; in both of these cases,
G is then necessarily of simply connected type, and Geck [Gec21| has solved for these
groups as well, with an obvious generalisation of Shoji’s Theorem [3.3.9 with respect to
the unipotent character sheaves on G. Therefore, as far as the problem is concerned,
we can actually drop the assumption on Z(G). As for the choice of an isomorphism
¢r: F*Ay = Ay in (), recall from that if ¥ C G is the (F-stable) conjugacy
class whose closure supports A, this is equivalent to singling out a G¥'-conjugacy class
contained in €. We always aim to make a ‘good’ choice for such a G¥'-conjugacy class
with respect to the guidelines described in

In Section we consider the simple groups of type Eg over k = Fp. Apart from the
non-twisted groups Eg(q), we also have to deal with the twisted groups 2Eg(q) here, so we
need to slightly expand the setting of Section (see . If p # 3, Geck solved
in [Gec21, §5], and we provide a detailed summary of these results in The
case where p = 3 was solved by the author in [Het19]; we give the complete exposition
and proof of in All of this holds both for the non-twisted groups Eg(q)
and for the twisted groups 2Eg(¢) (and, as mentioned above, regardless of the isogeny

type of Eg). At least for the non-twisted groups Eg(¢) (and also for the twisted groups
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4. Simple groups of exceptional type

2EG(q) when p > 3), we are then in a position to conclude the computation of unipotent
characters at unipotent elements (4.1.23H4.1.27)), which was previously not completely
known when p < 3.

In Section we look at groups of type E7 over k =TF,. If p # 2, Geck solved in
|Gec21,, §6]; we give a detailed summary of his results in The case where p = 2
has been solved by the author in |[Het22a], and we present the full proof in

We also complete the computation of unipotent characters at unipotent elements for the

groups E7(q) where ¢ is any power of any prime p (see |4.2.13|and |4.2.16H4.2.28]), which

was previously only known for p > 5. Especially in the case where p = 2, this requires
much more elaborate arguments than before.

We continue in Section with the groups of type Gs. The solution to is rather
easy here since the generic character tables of Go(p™) (n € N) are completely known,
due to Chang—Ree [CR74] for p > 5, Enomoto [Eno76| for p = 3, and Enomoto—Yamada
[EY86] for p = 2. But we still put some emphasis on making ‘good’ choices for the
isomorphisms ¢, : F*A, = A, in , in accordance with the guidelines in 3.2.23
cf. Remark .35

In Section we report on the solution to for groups of type F4, which has been
accomplished by Marcelo-Shinoda [MS95| and Geck ([Gecl9, §5], [Gec21], §7]). We thus
summarise their results and partly sketch the methods used in the proofs.

Hence, the solution to is then complete for all exceptional groups other than those
of type Eg, which we consider in Section For these groups, we are rather far away
from having a full answer to , but we can solve several different cases. There are 13
cuspidal character sheaves on the group G of type Eg, and all of them are unipotent.
Here, we will only focus on those cuspidal (unipotent) character sheaves whose support
is contained in the unipotent variety; their number depends on the characteristic p of k

and is given by the following table:

Characteristic #{A € G° | supp A C Gy}

p=T 1
p=>5 5
p=3 3
p=2 5

There is always one cuspidal character sheaf on G, denoted by Ay below, which satisfies
supp A1 C Gypi and allows a uniform description regardless of the characteristic. If p > 7,

we obtain the solution to (%)) with respect to Aj; if p < 5, we get congruence relations
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4.1. Groups of type Eg

which yield the desired result as soon as the Green functions for groups of type Eg in bad
characteristic (cf. are known, see Proposition As for the other cuspidal
character sheaves occurring in the above table, we obtain the solution with respect to
the four cuspidal character sheaves in characteristic p = 5 (Proposition , the two
cuspidal character sheaves in characteristic p = 3 (Proposition and two of the four
cuspidal character sheaves in characteristic p = 2 (Proposition . Our arguments
are mostly based on applying the strategy described in (2), in combination with the
explicit knowledge of the generalised Springer correspondence to evaluate the unipotent
almost characters at relevant unipotent elements up to certain roots of unity as described
in In particular, for the groups Eg(3™) (n € N), this provides an application
of the author’s result in [Het22b]| (see Theorem below) completing the determination
of the generalised Springer correspondence. As a by-product, we also obtain the values

of some almost characters R, at certain unipotent elements where z € X(W) \ Irr(W),

see Corollary and Corollary

4.1. Groups of type Eg

In this section, we assume that G is the simple adjoint group of type Eg over k = Fp,
defined over F, where ¢ is a power of p, with Frobenius map F': G — G. We fix an F-
stable Borel subgroup Bg C G and an F'-stable maximal torus To C Bg. Thus, we get the
associated Weyl group W = Na (To) /T, and denote by o: W s W the automorphism
induced by F. Let Z = (X, R,Y, RY) be the root datum attached to G and T (where
X = X(Ty) and Y =Y (Ty)), with underlying bilinear pairing (, ): X x Y — Z. Let
R C R be the positive roots determined by Bg 2 Ty, and let IT = {a1,...,a5} € RT be

the corresponding simple roots, IIY = {ay, ..., o} be the corresponding simple co-roots.
We choose the order of ag,...,ag in such a way that the Dynkin diagram of G is as
follows:

aq asg Q4 Qs 73

Es
Qs

Let € = (o, O‘w)lgz’,g‘@ be the associated Cartan matrix. Furthermore, let Uy = Ry (Bo)

be the unipotent radical of By; then By is the semidirect product of Uy and T (with
Uy being normal in By). As described in [2.1.19) F' induces a p-isogeny of root data

p: X =X, A= XoF|g,,
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4. Simple groups of exceptional type

as well as a bijection R — R, a + af, so that p(al) = ga for all a € R (since F: G — G
is a Frobenius map with respect to an Fy-rational structure on G). The assignment
a — a restricts to a graph automorphism of the Dynkin diagram, so there are two
possible cases: Either a + of is the identity (then G is the non-twisted group Eg(q),
and o = idw), or else it is a map of order 2 (then G¥ is the twisted group 2Eg(q), and
o: W = W is the inner automorphism given by conjugation with the longest element
wo of W). We identify W with a subgroup of Aut(X) (via[2.1.4)), and for 1 < i < 6,
we set s; := Wq,, with w,, being defined as in Thus, W is a Coxeter group with
Coxeter generators S = {s1,...,s¢}, which are arranged in the Coxeter diagram with
the analogous numbering as in the Dynkin diagram of G printed above (see . We
use the notation of Lusztig [Lus84al 4.11] for the irreducible characters of W, which is
essentially due to Frame [Frab1], with one small difference: Given an irreducible character
dp (respectively, d;) of W in [Fra51], we write d), = d,, ® 1, (respectively, di, = dy ® 1),

where 1;, is the sign character of W.

Parametrisations of unipotent characters and unipotent character sheaves in
type Eg

4.1.1. Since o is an inner automorphism of W, we always have Irr(W)? = Irr(W), and
we can henceforth drop the superscript o. As we have stated in if 0 = idw, there
is a canonical bijection between the sets X(W, o) and X(W). But even in the case where
o is not the identity, the sets X(W, o) and X(W) can be identified for groups of type Eg,

see [Lus84a, 4.19]. Hence, the embedding (2.2.12.6)) is just the embedding (2.2.8.4):
Irr(W) = X(W), ¢ — x4. (4.1.1.1)

Let us describe the set X(W) and the families of Irr(W). We have |X(W)| = 30,
| Irr(W)| = 25, and Irr(W) is partitioned into 17 families: 14 of them consist of a single

character; the characters which form these one-element families are
1p, 6p, 20,, 64,, 60,, 81,, 24, 1;, 6;, 20;, 64;,, 60;,, 81;, 24;.
Then there are two families consisting of 3 characters, namely,
F3 ={30p,15,,15,} and Fi5= {30;, 15;, 15;}.

We have Gr, = Gr,, = Co, so that |M(Gx,)| = |M(Gr,;)| = 4. In order to conform with
the notation that Lusztig uses in [Lus84al 4.3], we denote the elements of M(Gx,) and

154



4.1. Groups of type Eg

m(g]ﬁs) by
(171)7 (175)a (9231)7 (92a5)a

where gs is the non-trivial element and ¢ is the non-trivial irreducible character of Cs.

Finally, there is one family consisting of 5 characters, namely,
F7 = {805,205, 605, 105,905} C Irr(W).
We have Gr, = G3; as in [Lus84a, 4.3], we denote the 8 elements of M(Gr,) C X(W) by

(171)7 (1,8), (9271)7 (g3a1>7 (1,7’), (.9275)7 (93,&))7 (937w2)a

with the following conventions: For ¢ = 2,3, g; € &3 is an i-cycle; the irreducible
characters of Cg, (1) = &3 are named 1,¢,r (trivial, sign, reflection), the irreducible
characters of Cg. (92) = C5 are denoted by 1,e as above, and the irreducible characters
of Cgy._(g93) = (g93) = C3 are denoted by their values at g3, where w € R is a fixed
primitive 3rd root of unity which, in the case where o = idw, we assume to be the same
as the one in For each of the three non-trivial families F C Irr(W), the embedding
F — M(Gr) is obtained by matching the elements of F with the first |F| elements of
M(Gr) in the respective orders as listed above; it can also be read off from Table

below. This gives the embedding (4.1.1.1)).

4.1.2. We want to describe the parametrisations of unipotent characters and unipotent
character sheaves in terms of X(W). Let ¢ < 2 be the order of o € Aut(W). Instead
of working with the infinite set X(W, o) in the set-up of it suffices to consider a
finite subset of X(W, o) which can be identified with X(W) x R, where R, C R denotes
the group of all cth roots of unity in Q,. With these identifications, the pairing

restricts to a pairing
{, }: X(W) x (X(W) x Re) = Qp, {z,(y,0)} = a" Ha,y} (4.1.2.1)

for any =,y € X(W), a € R., where {x,y} is defined as in The action of all roots
of unity R on X(W, o) induces (by restriction) an action of R. on X(W) x R, given by
multiplication on the second factor, and the embedding ([2.2.12.5|) gives rise (again by

restriction) to an embedding
Irr(W(0)) = X(W) x R, (4.1.2.2)

such that a o-extension of ¢ € Irr(W) is mapped to (z4,a) for some a € R.. For
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¢ € Irr(W), let b: W — Qq be the preferred o-extension of ¢, as defined in [LuCS4, 17.2].
Then ¢ is mapped to (g, 1) under (4.1.2.2)), see [Lus84a, 4.19]. In view of Example [2.2.24

we have

1 ~
Ry= == > &(w)Ry, (4.1.2.3)
| ’ weW
and there is a bijection
Uch(GF) & X(W), prr zp, (4.1.2.4)
such that
(p, R¢3>GF = A(x,){zp, 74} for any p € Uch(GF), ¢ € Irr(W). (4.1.2.5)

Now the entries {z,y} (z,y € X(W)) of the Fourier matrix with respect to the Weyl
group of type Eg are all in Q, hence so are the values of the pairing (4.1.2.1f) as ¢ < 2.
So for any (z,a) € X(W) x R, the unipotent almost character R, .y (see (2.2.24.3))) is
given by

Ruay= Y, Az (z,0)}-p. (4.1.2.6)
pEUCh(GTF)
In particular, in case ¢ = 2, we have R(, _1) = —R(;,1) for z € X(W). In any case, we

have Ry = R(;, 1) for any ¢ € Irr(W). In the setting of [2.2.23] we take
X0(0,1) :={(z,1) |z € X(W)} CX(W) x R, — X(W,0)

as a set of representatives for the R-orbits inside X(W, o), so that we can (and will)
identify the sets X¢(0,1) and X(W). Thus,

{R;| ¢ € (W)} C {R. | = € X(W)}.

By (2.2.24.4), we have

p=A(z,) Z {z,,2} Ry for p € Uch(GF). (4.1.2.7)
zeX(W)

On the other hand, since X(W, o) = X(W), we have G™ = (G")¥ by Theorem m
and [3.3.12] So there is a bijection

E(W) 5 G = (G™F 2 A, (4.1.2.8)
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such that
(Ag - Rfo) =ép {2z, x4} forany x € X(W), ¢ € Irr(W). (4.1.2.9)

4.1.3. We keep the setting and notation of By the proof of [LuCS4}, 20.3(a)] (see
also [Sho95b, 4.6]), there are exactly two cuspidal unipotent character sheaves Aj, Az on
G (for any p); with the notation of they are parametrised by

z1 = (g3,w) € M(Gr,) and x9:= (g3,w?) € M(Gr,)

under (4.1.2.8)). Now the bijection is not quite uniquely determined by the
condition , but we see from an inspection of the Fourier matrix that the only
ambiguity arises as far as the two cuspidal unipotent character sheaves are concerned. To
fix this, note that (c) also applies to the case where o # idw, and in fact the root
of unity A € R associated to A € G" only depends on A and not on the Fy-structure
on G, see [Sho95a, 3.3]. So we first consider the non-twisted case o = idw and specify
the bijection via Corollary In particular, this implies that A4, = 5\5,31.
fori=1,2, so Ad,, =W, A4, = w?. We then just impose the same condition for the
twisted case o # idw, and this uniquely determines the bijection (4.1.2.8). We number

the cuspidal unipotent character sheaves Ai, Ao above in such a way that
A1 = Aatl and AQ = AmQ.

For z € X(W), let us for now choose any isomorphism ¢,: F*A4, = A, as in 3.2.1{[).
(For the cuspidal unipotent character sheaves A; and Ay we will make an explicit choice

below, depending on the characteristic p of k.) We denote by

Xz = XAz, pz - GF — @E

the corresponding characteristic function. Thus, by (3.3.12.2) and (3.3.12.3]), we have

Ry = EuXo for € X(W), where &, = &.(¢,) € Q), |€&] = 1. (4.1.3.1)

Similarly to the parametrisation of the unipotent character sheaves, the bijection
which satisfies will be uniquely determined as soon as we impose the additional
requirement that A,, = w, Ay, =w?. (Cf. condition (ii) in Proposition here we
denote by p, € Uch(GF) the character corresponding to = € X(W); the fact that the

two cuspidal unipotent characters in the twisted case also have Frobenius eigenvalues w
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4. Simple groups of exceptional type

and w? follows from |[Lus76bl (7.3)] and its proof.) So let us fix the bijection (4.1.2.4]) in
this way. Then, with the notation in the appendix of [Lus84a] or in |[Car85, pp. 480-481],
we have, for i = 1, 2:

E[w!] if o = idw,
Px; = )
2Eg[w’] if o # idw .

4.1.4. Let us describe the Harish-Chandra series of unipotent characters for groups of
type Eg. We first assume that o = idw; thus, the parametrisations of Uch(GF') and Gun
that we fixed in are the ones given by Corollary In view of the results of
[Lus78, pp. 31-37] (see also the appendix of [Lus84al), the 30 unipotent characters of
G* = Eg(q) fall into the following Harish-Chandra series.

(a) There are 25 unipotent characters in the principal series, i.e., the irreducible
constituents of Indgg(lBg); these are parametrised by the irreducible characters
0

(b) Let J = {so,s3, 54,55} C 5, so that the group LJ/z(LJ)O is simple of type Dy. We
have &y, = {(-1,2)} (so L§ has a unique cuspidal unipotent character, pg, say),
and the relative Weyl group Wg(Ly) is isomorphic to W (Ag) = &3. As before,
we denote the three irreducible characters of this group by 1, e, r (trivial, sign,
reflection); accordingly, we denote the three irreducible constituents of REJ (po) by
Dy4[1], Dy4le], D4[r], respectively.

(c) For J = S, the set Gy, = &3y consists of the two elements (w,3), (w?,3)

parametrising the two cuspidal unipotent characters Eglw], Eg[w?], respectively.

4.1.5. We now assume that o # idw is the automorphism of W given by conjugation
with the longest element wy € W. The 30 unipotent characters of G = ?Eg(q) fall into
the following Harish-Chandra series (see again |[Lus78| pp. 31-37]).

(a) There are 25 unipotent characters in the principal series. These irreducible con-

stituents of Indg';.T (1B§) are parametrised by the irreducible characters of W¢.
0

(b) Let J = {s1,s53,54,55,5¢}. There are two unipotent characters appearing as
irreducible constituents of RE’J (po), where pg is the unique cuspidal unipotent
character of L§ ; note that F' induces a non-split F;-rational structure on L, / Z(Lj)°
which thus gives rise to the twisted group 2As(g). The irreducible constituents of
REJ (po) are parametrised by the irreducible characters +1 of the relative Weyl
group Wg(Ly) = Cy; accordingly, we denote these two unipotent characters by
2A5[1] and 2As[—1].
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4.1. Groups of type Eg

(¢) Finally, there are three cuspidal unipotent characters 2Eg[1], ?Eg[w] and 2Eg[w?]

(despite the fact that there are only two cuspidal character sheaves on G).

Recall (2.1.20)) that in (a), W7 is a Weyl group of type F; with Coxeter generators
Se = {s2, 84, 5355, S156 }; the simple roots of W induced from the ones in W are ao,
ay, 3(as+ as), 3(a1 + ag) (see [Car72, 13.3.3]). Thus, ap and a4 are long roots, while

(a3 + as), 3(a1 + ag) are short roots; we may picture this as follows (see [GH22, §4]):

a3tas  aitas
9 %) (67} 2 2
Es aq as Qg as ag s F4 ———eo——= o —o

a2

The character table of W (F4) has been determined by Kondo [Kon65|, who denotes the

Coxeter generators by 7o, 7, a, d such that the associated Coxeter diagram is

TO T 4 a d
Fy e—e—@—0o

(The o appearing in 70 is not to be confused with our automorphism o € Aut(W) here.)
But note that there are two possible ways of matching ss, s4, $355, s15¢ with 7o, 7, a, d.
Following |[GH22, §4], we identify

So &> TO, S44>T, 83854>a, Si1S¢<d,

so that 7o, 7 correspond to reflections in the long roots aso, a4, and a,d to reflections
in the short roots 3(ag + as), (a1 + ag). With this identification, we then denote by
d; the jth irreducible character of degree d in Kondo’s character table [Kon65] when
referring to elements of Irr(W?). (This is the same notation and convention that Lusztig

uses in [Lus84a].)

4.1.6. The discussion in |4.1.3| uniquely specifies a bijection
Uch(Eg(g)) = X(W) = Uch(®Es(q)). (4.1.6.1)

Let us explicitly describe this bijection, following Lusztig [Lus80, 1.10, 1.14-1.16] (but
with the conventions in which match with the ones in [Lus84a]). For z € X(W),
let p, € Uch(Eg(q)) and pl, € Uch(?Eg(g)) be the associated unipotent characters under
(4.1.6.1)). Then the degree of p!, is obtained from the one of p, by replacing ¢ by —¢ and,

if necessary, changing the sign to make the resulting number positive. As observed in
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4. Simple groups of exceptional type

for i = 1,2 and z; = (g3,w’) € M(Gr,), we have p,, = Eglw’] and pl,, = *Eglw’].
The remaining 28 unipotent characters are uniquely determined by their degree. The
bijection is thus given by Table in this table, the names of the unipotent
characters are as in since each of the 14 lines on the left represents a family
consisting of just one element, there is no need to provide the label in X(W); any of the
other three blocks is dedicated to a non-trivial family F, and the column on the right

gives the labels in 9(Gr) (with the notation of [4.1.1)).

Es(q) “Es(q)

[1p]  [14]

G (21 Eo(a) *Eola) X(W)

0] £42] 30,] [2s]  (1,1) Es(q) 2Es(q) X(W)
[64,]  *As[1] [15,]  [91] (1,¢) 80 Bl (L)
[60,]  [45] 15 [1a]  (g2,1) 20 (2] (Le)
[81,]  [92] Dy[1]  [84] (92,¢) [604] [41] (g2,1)
[245]  [83] [105]  [64] (93,1
(1] [14] Es(q) 2E¢(q) X(W) [905]  [62] (L,7)
[6,] 2] B0 [2¢]  (1,1) Dy [r] £161] (92.¢€)
20,]  [4] 1) (9 () EG{“’% 2?{“2] Eg?”“’l)
64]  2Ag[—1] 15 (s (o21) R
[60;] [44] Dale]  [82] (92,¢)

[81,]  [93]

24,]  [84]

Table 4.1.: The bijection Uch(Eg(g)) = X(W) =5 Uch(?Eg(q)) described in

Type Eg in characteristic p # 3

In this subsection (that is, here and in below), we assume that p # 3.
In this case, the scalars &, in for the two z € X(W) parametrising cuspidal
(unipotent) character sheaves have been determined by Geck [Gec21) §5]. To describe his
results, we consider the simple, simply connected group Gy of type Eg and the canonical
map 7: Ggc — G. By [GM20, 1.5.9] (see [Ste68, 9.16]), there exists a unique isogeny
F: Gg — Gy such that For = 7o F, and F is a Frobenius map which provides G
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4.1. Groups of type Eg

with an Fg-rational structure.

4.1.7. There are exactly two cuspidal unipotent character sheaves on Gg, and they are
given by
A :=7"(41) and Ay :=1*(Ay), (4.1.7.1)

where A7, Asg € GO are as in In particular, both Ay and A, are F-stable. Let
€ ch be a semisimple element such that Cq,_($) has a root system of type Ag X Ag X Ag,
and let @ € CGSC(§)F be a regular unipotent element in Cq_, (5). Denote by ¥ C Gy the
(F-stable) conjugacy class containing the element § := 5i = 5. (Up to Gg.-conjugacy,
g is uniquely determined by the above conditions; we refer to [Gec21, 5.1, 5.2] for a
more detailed description of 3.) For h € Cq..(§), we denote by & the image of h in
Ag..(§) = CGu (g)/C&SC (§)- Let 1 # z € Z(Gyc) be one of the two non-trivial elements
of the centre of Ggc. It is shown in |Gec21), 5.2] that § = § and that

Ac..(9) = (3) x (z) = C3 x C.

The action of F' on Ag,,(§) depends on the congruence of ¢ modulo 3. Namely, we have

F(z) = { El %f g=1 (mod 3),

z if ¢g=2 (mod 3),
Ao (3 — {<§> f #) if ¢g=1 (mod 3),
() if ¢g=2 (mod 3).

But in any case, we see that SF splits into an odd number (either 9 or 3) of ch—conjugacy
classes. Hence, there must be at least one Gi—class inside F which is stable under
taking inverses. Let us choose such a Gi—conjugacy class, and let gg be a representative
for this class; thus, gg is Gi—conjugate to ggl. Now let X := W(i), a conjugacy class of
G. Having fixed g € ip, we set go := m(jo) € B, so that gy is GF'-conjugate to go_l.
Furthermore, let gg = S0t = Sy and gg = sgug = ugsg be the Jordan decompositions
of go and go, respectively. By the proof of [LuCS4], 20.4] (see also [Sho95b| 4.6]), there
exists a certain a € Ag(go) such that

Ac(g0) = (go) x (a) = C3 x Cs.

Fori=1,2,let ¢; € Irr(Ag(go)) be the linear character of Ag(go) such that ¢;(a) =1 and
6i(gy) = w' (with w € R the primitive 3rd root of unity that we fixed in 4.1.1)), and let &
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4. Simple groups of exceptional type

be a one-dimensional G-equivariant irreducible local system on ¥ whose isomorphism
class corresponds to ¢; (via|3.2.20). Then

A 2 IC(E,&)[dim X)#C  and Ay 2 IC(T, &)[dim X]#C.

It is shown in [Gec21} 5.2] that Z(Ge)E = %, so 7 1(2) = £, and it follows from (.1.7.1)
that B B
A 2 1IC (i, Tr*é"l) [dim 3] #Cse and Ay 2 1C (ENJ, 7r*c5"2) [dim E]#GSC.

The map 7: Ggc — G canonically induces a map 7: Ag..(go) — Ac(g0), and the
isomorphism classes of the (one-dimensional, Gg.-equivariant) irreducible local systems

é?i = m*&; on ) correspond to the linear characters
G =g omeIrr(Ag.(9)), i=1,2.

For i = 1,2, let pg4,: F*A; = A; be the isomorphisms corresponding to go € »F (via
3.2.21)). Applying 7* on either side and using some standard properties of the inverse

image functor, we thus obtain induced isomorphisms

Pi, = T (pa,): F*A; = A;, i=1,2.

It is clear from the above construction that ¢ 4, is the isomorphism corresponding to the
choice of gg € SF via We will from now on fix the choice of gy, go and, hence, of
the isomorphisms ¢ 4,, ¢ A, as just described. Furthermore, for ¢ = 1,2, when writing ¢,
Xaz; OF &z, = &z, (s, ), this is meant to be as inbut with respect to the isomorphisms
Yz, := P4, that we just defined. The above discussion shows that we have the following
identity concerning the characteristic functions:

Xfii,mi = XAji,pa, © 7T|G£-C = Xz, © 7T|G§c fori=1,2. (4.1.7.2)

4.1.8. As remarked in |Gec2l, 5.4], at least with respect to the unipotent almost
characters and character sheaves, Shoji’s Theorem [3.3.9| can also be formulated for the
simply connected group Gg. of type Eg in a natural way, as follows: Recall from [3.3.8
that, in general, almost characters are only defined provided the underlying connected
reductive group has a connected centre, and extending this concept to the non-connected
centre case appears to be a delicate problem (cf. [Lusl18|). However, as far as unipotent

almost characters are concerned, there is a natural definition: By [DL76| 7.10] (see also
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4.1. Groups of type Eg

[GM20, 2.3.15]), we have a bijection
Uch(GF) = Uch(GL), prs por|gsr. (4.1.8.1)

Hence, in the definition of a unipotent almost character with respect to G, we may just
replace any p € Uch(GF) by pon|gs € Uch(GE) and set

RGse .= Z A(zp){x,, x} - (p o W\GF> € CF(GSC) for v € X(W),
peUch(GTF)

that is,
RGs = RG o mlgr for x € X(W).

(Here, in order to avoid any confusion, we write R € CF(GT) instead of R, for the
unipotent almost character defined in with respect to the adjoint group G.) Thus,

composing either side of (4.1.3.1)) with 7|57 and using (4.1.7.2), we obtain

Rgsc =& Xa GSC for i = 1,2, where ngc =Xi (4.1.8.2)

PA;
We briefly sketch the idea of [Gec21, §5] to determine the scalars &, in , illustrated
for the non-twisted simply connected group Gf; = (Eg)sc(q). First of all, since gg € »F
is chosen so that condition in holds, we know that &;, € {£1} for i = 1,2,
and a similar computation shows that &, = &;,. (In fact, the necessary computation is
entirely analogous to the one that we will carry out in detail in below, as the only

property of ug which we will exploit there is that it is G¥'-conjugate to Uy 1.) So we have
RS;SC =& xg© fori=1,2, where § :=&;; =&, € {+1}.

Consider the cuspidal unipotent character Eglw]Gs € Uch(GfC). Applying Lusztig’s

non-abelian Fourier transform, one gets
GSC — 1 GSC GSC GSC G'SC GSC GSC
Eolw]™ = 3(Rsty — Roor + Ragr — Rigr + €(2Xa — Xaw™))-

The Rg’“ (¢ € Irr(W)) have their values in Q, and we see from [3.2.21f that x$*(go) = ¢*
for i = 1,2. Thus, Eg[w]%(jo) is an algebraic integer (being the value of a character)
and at the same time a rational number, so it must be a rational integer. Hence, as soon

as the value
Rgi (g0) — R (90) + Rage (50) — Ri5<(90) € Q
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4. Simple groups of exceptional type

is computed, we have
Ee[w] %= (o) = 1 (known value in Q + ¢¢°) € Z. (4.1.8.3)

Since 3 does not divide g, it is clear that this condition will then uniquely specify the
sign £ € {£1}. Now the computation of the unipotent uniform almost characters chf“
for ¢ € Irr(W) is equivalent to that of the virtual Deligne-Lusztig characters RSSC for
w € W, which in turn is reduced to the computation of Green functions of groups smaller
than Gg. in view of the character formula . The technical problem of explicitly
evaluating all the ingredients in this formula is worked out in |Gec21} §2, §3]. Once this
is accomplished, one finds that £ = £,;, = &, = +1. The twisted group 2E4(q) is treated
in a completely analogous way, by considering the cuspidal unipotent character 2Eg [w],

and one also obtains £ = &;, = &, = +1. To summarise:

Proposition 4.1.9 (Geck [Gec21, 5.5]). As in (and with the further notation there),
let go € SF be an element which is Gi—conjugate to go ', so that go = m(go) € XF is
GF-conjugate to gal. Fori=1,2, let @,: F*A; = A; be the isomorphism corresponding
to the G¥'-conjugacy class of go, and let &, := &, (ps;) € @Z be defined by .
Then

5.’61 = 51‘2 = 17

that is, the characteristic function x,, = x Aipa, - G — Qy coincides with the unipotent
almost character Ry, fori = 1,2, both for the non-twisted group G = Eg(q) and for the
twisted group GF' = 2E6(q), where q is any power of any prime p = 3. The analogous
statement holds for the simply connected group Gge (using go to define the characteristic
Junctions xzr=: Gf; — Qy fori=1,2).

4.1.10. Following |Gec21| p. 27|, for groups of type Eg in characteristic p # 3, we can
now give the values of the cuspidal unipotent characters at elements of »F L 2F As
in Proposition m let us fix an element gy € SF which is Gi—conjugate to gy ! In
Table the different elements of Ag,.(Jo) appearing in the top line represent different
F-conjugacy classes of Ag..(Jo), which in turn correspond to different Gi—conjugacy
classes inside S (respectively, different G¥'-conjugacy classes inside X', via (a).
So if multiple elements appear in the top line of a column (which happens for the case
g = 1 (mod 3)), this means that the cuspidal unipotent characters listed in a given
line take the same value on any of the corresponding ch-conjugacy classes inside S
(respectively, on any of the corresponding G¥'-conjugacy classes inside ). In the

case where ¢ = 1 (mod 3), F acts trivially on Ag_ (do), so the F-conjugacy classes of
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4.1. Groups of type Eg

Ag..(§o) = C3 x Cs are just singletons, and SF , 2F split into 9 different conjugacy

classes of GL, GY'| respectively. If, on the other hand, ¢ = 2 (mod 3), there are 3

sc?
different F-conjugacy classes in Ag,_(§o) (consisting of 3 elements each), represented
by the elements 1, 3¢, gg, and, correspondingly, ', ©F split into 3 different conjugacy
classes of GL., G| respectively. Finally note that Table covers both the adjoint

group and the simply connected group of type Eg, in view of (4.1.8.1)).

=2 =2_ =2_

o
l
|

g=1(mod3) 1,z z 50, 50%Z, 80% 50, 80%, 8022
Eslw], *Bslw]  3(¢*—1) (-1 +wi® 3¢ —1)+w’
Eslw?], ’Eslw?] 5(¢*—1) §(* 1)+’ 3(¢* - 1) +wg?
g =2 (mod 3) 1 So E(?

(@ +1) 3@+ +wi 3@ +1)+u?
Eo[w?], *Eslw?] 2(®+1) 3P+ 1) +w?® 2P +1)+wed

m

(=]
£
[N}

m

D
£
= =

w

Table 4.2.: Values of cuspidal unipotent characters on »F ,SF in type Eg, p # 3

Remark 4.1.11. (a) Note that the only assumption which is made on the ch—conjugacy
class of gg € SF in Proposition is that it is stable under taking inverses. In the case
where ¢ = 2 (mod 3), this requirement in fact uniquely determines the Gi—conjugacy
class of gg inside »F (as well as the G¥-conjugacy class of go = 7(go) inside X', as we
see at once by looking at Table since the values of the cuspidal unipotent characters
on the conjugacy classes parametrised by 3o, ?g are non-real. On the other hand, if ¢ =1
(mod 3), there are 3 such Gi—classes inside ©F , parametrised by 1,%,z? with respect to
a chosen gg. (But, in view of how the proposition is stated, normalising the characteristic
functions x;, via another gy which is Gi—conjugate to gy L also leads to &, = 1 for
i=1,2.)
(b) Now let us compare this with [3.2.22(c): We set

By =7 '(Bo), T =7 '(To), W* := N (T§) /se.

Thus, Bf® C Gy is an F-stable Borel subgroup, and T5¢ is an F-stable maximal torus of
Gsc contained in B{® (see [Bor91}, 11.14]); furthermore, W*¢ is the Weyl group of G*¢
with respect to T¢°. So both W and W*¢ are Coxeter groups in a natural way (see [2.1.5)).
The map 7: Gy — G induces an isomorphism W3¢ =s W, which by construction is

~

compatible with the automorphisms o: W = W, 5: W5 = W*¢ induced by F, F,
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respectively. We set

We := $15653555254 € W,

a Coxeter element of W which satisfies o(w.) = w. (regardless of whether o = idw or
o0 # idw). Thus, the corresponding element wi® € W*¢ is a Coxeter element of W5,
and we have &(wi®) = wi°. Regardless of the congruence of ¢ modulo 3, we conclude
from |Gec21} 4.9, 4.10] that a Gsﬁc—conjugacy class contained in S is stable under taking
inverses if and only if it has a non-empty intersection with (B(S)C)F wEC(B‘BC)F . So the
admissible representatives gy € SF for Proposition are exactly those which satisfy
the condition (9)) in[3.2.22(c) (with respect to the simply connected group Gec).

Type Eg in characteristic p = 3

In this subsection (that is, here and in below), we assume that p = 3,
so that G is the simple adjoint group of type Eg over k = F3. This prime requires a
distinct treatment from the others: First of all, as we shall see below, the two cuspidal
unipotent character sheaves (most notably their support) look quite different. But even
if we could get a rationality condition such as (for a suitable gg in the support
of the cuspidal character sheaves), this would not provide any information on the sign
&, since if the right side of is an integer for £ = +1, it will certainly also be
an integer for £ = —1 (and vice versa). We thus need to find another argument. Note
that, since p = 3, we do not really have to distinguish between the simply connected
group Gy and the adjoint group G = G,q of type Eg. Indeed, consider the canonical
isogeny m: Ggc — G (see ; its kernel is contained in Z(Ggc), which by
is isomorphic to Hom(A(€),k*). But for groups of type Eg, the fundamental group
A(Q) is isomorphic to Z/37, so the only homomorphism A(€) — k> is the trivial one.
Thus, Z(Gg) = {1}, so m: Ggc =& G = G,gq is bijective and restricts to an isomorphism
on the level of finite groups ch = GF (see [GM20, 1.5.12]) where F: Gy — Gy is
the endomorphism commuting with 7 and induced by F'; F' is a Frobenius map for an

F-rational structure on Gegc.

The following (4.1.12H4.1.19) is based on [Het19).

4.1.12. By [LuCS4, 20.3], the two cuspidal unipotent character sheaves A;, A2 on G
are supported by the unipotent variety Gun; of G, that is, the closure of the regular

unipotent class Ores C G (see[2.1.11)). So by Proposition [3.1.17] (see also |3.2.21)), there

exist G-equivariant F-stable irreducible local systems &7, & on O such that

A; 2 1C(G i, &) [dim Oreg|*CG for i = 1,2.
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4.1. Groups of type Eg

Let u € ﬁfgg. The group Ag(u) = CG(U)/C&(U) is cyclic of order 3 and generated by
the image @ of u in Ag(u) (see, e.g., [Miz77, §6] and [DM20| 12.2.3, 12.2.7]). Thus,
the automorphism of Ag(u) induced by F is the identity, and the elements of Ag(u)
correspond to the G¥-conjugacy classes contained in ﬁf;g. In particular, there are three
such classes, so it is clear that (at least) one of them is stable under taking inverses.
Here we can make an explicit choice: For 1 < ¢ < 6, let us denote by u; := u,, the
homomorphism G, — G whose image is the root subgroup U,, C Uy (see . We

then set

e {ul(l)~u2(1)-U3(1)-U4(1)~U5(1)-u6(1) if o = idw, 112

u(1) - ue(1) - u(1) - us(1) - up(1) - ug(1) if o # idw .

Thus, we have ug € UJ' N OF, in either case (see [DM20, 12.2.2]).

reg
Lemma 4.1.13. The element ug € ﬁfgg defined in (4.1.12.1) is conjugate to ual in G

Proof. Taking

we have

tugt ™! = {U1(_1) ~up(=1) - ug(—1) - ua(=1) - us(=1) - ug(=1) if o = idw,
ur(—=1) - ug(=1) - uz(=1) -us(=1) - uz(=1) - ua(-1) if o #idw .

To get ual, we thus need to find a G¥-conjugate of tugt~" in which the u;(—1) appear in
reversed order compared to the expression for tugt~!. This can be achieved by mimicking
a proof for the well-known fact that any two Coxeter elements in a given Coxeter group
are conjugate (see, e.g., [Casl7, §1], to which we will refer in some more detail in the
proof of Lemma below). Specifically, setting

Y ug(—1)us(—1Dug(—1)us(—1)us(—1)ug(—1)u1 (1) if o = idw,
ug(—1)ug(1)u (1) if o # idw,
we have (vt)ug(vt) ™! = ug! and v € U}, so vt € Bf € GF. O

4.1.14. As noted in [4.1.12] the group Ag(ugp) is cyclic of order 3 and generated by
g, and F induces the identity map on Ag(ug). So in view of [3.2.20] there are (up
to isomorphism) three G-equivariant irreducible local systems on Oq, each of which

is one-dimensional and F-stable. By [Sho95bl 4.6], the isomorphism classes of the &;
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4. Simple groups of exceptional type

(i = 1,2) correspond to the two non-trivial linear characters of Ag(ug). For i = 1,2, we
denote by ¢; € Irr(Ag(up)) the character which describes the local system &;. Since we
required A; = A, in[£.1.3] it follows that

(W) =w and () = w?

Now that we have fixed the choice of ug, we also obtain uniquely defined isomorphisms
oa,: F*A; = A; for i = 1,2, as described in We thus also fix ¢, := ¢4, and
assume that y,, and &, = &, (ps,) are defined with respect to these choices of ¢,
in the setting of [f.1.3] for ¢ = 1,2. By Theorem [3.1.13] the characteristic functions

Xa1s Xao : GT — @ are identically zero on GF'\ ﬁfgg. Their values on ﬁfgg are given

by the following table, where the G -classes inside €¢f are described by giving the

reg

corresponding element of Ag(ug) in the top line of each column.

7 2
1 U ug

Xor @ w@ W

Xoo @ WP wg?

In particular, we see that X,, = Xz,. We want to prove the analogue to Proposition m
for p = 3 with respect to the element ug defined in , so we have to show that
the scalars &;,, &, are both equal to 1 (see Proposition below). We start with the
following lemma; we may instead just directly refer to |[Lus84b, §15] (which is what we
will typically do later on), but since this is the first instance of this kind of argument,
let us give a detailed proof (or, rather, detailed references) to indicate what the typical

arguments look like in this context.

Lemma 4.1.15. Let L C G be a Levi complement of some parabolic subgroup of G.
Assume that L is neither a torus nor the full group G, and denote by Lgs := L/Z(L)O the
corresponding semisimple algebraic group. Then, unless Ly is simple of type Dy, there

are no cuspidal character sheaves on L.

Proof. Assume that L C G is neither a torus nor the full group G and that L° is
non-empty. From the reduction arguments in [Lus84b, 2.10], we deduce that LS, must
be non-empty as well. Since Z(G) = Z(G)°, we also have Z(L) = Z(L)° [DM20, 11.2.1]
and, hence, Z(Lgs) = {1}. Thus, the adjoint quotient (see [2.1.7))

(WLss)ad: Lss — (Lss)ad
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4.1. Groups of type Eg

is in fact a bijective isogeny of algebraic groups. It follows that the inverse image functor
(TLe )iq: Z((Lss)aa) — PLgs defines a bijection between the isomorphism classes of
cuspidal character sheaves on (Lgs)aq and those on Ly (see, e.g., [Tayl4, 3.9]), so we may
assume without loss of generality that L is of adjoint type. Let L, ... Ll (r € N) be

the simple (adjoint) factors of Lg. Thus, the product map defines an isomorphism

~

1 T
L x ... x L{, — Lg.

In view of [LuCS4, 17.11], the cuspidal character sheaves on Ll x ... x L, are of the
form A} X ... X A} where A} is a cuspidal character sheaf on Li, for 1 < i < 7. By
Example there are no cuspidal character sheaves for adjoint groups of type A,
(n € N), so we know that none of the L, can be of type A,,. Furthermore, by the proof
of [LuCS4, 19.3], there are no cuspidal character sheaves for the adjoint simple group of
type Ds either. The only remaining possibility is that » = 1 and Lgs is simple of type Dy,

so the lemma is proved. O

Proposition 4.1.16. Let x € X(W) \ {z1, 22} be an element which is not in the image
of the map Irr(W) — X(W) in (4.1.1.1). Then the characteristic function x, of the

character sheaf A, satisfies

X;L-’GF — 0.

uni

Proof. (a) Let x € X(W) and consider the corresponding unipotent character sheaf
A, € G, By there exist a regular subgroup L C G and an F-stable cuspidal pair
(2, &) for L such that A, is isomorphic to a direct summand of K = Kfiz € A G. Let

Ap :=IC(Z, &)[dim X)#L € Lo

be the corresponding F-stable cuspidal unipotent character sheaf on L. Then, according

t013.2.6| and |3.2.7| (and using the notation there), y, is a linear combination of various
RE

w—1 (X(AO),LU—I)’ we WLg,E'

Let us first assume that L is a torus. Then (Ap),,—1 is of the form (%p),,-1[rank G]
(where (Zp),—1 = Qy is the trivial local system on T,,-1), and its characteristic function
is (up to scalar multiplication) just the trivial character of TX_, (see . Thus, Y,
is in fact a linear combination of the virtual Deligne-Lusztig characters R,, = R%w (1),
w € W. The number of different R,, equals the number of the o-conjugacy classes in
W, which by [GKP00, 7.3] is equal to |Trr(W)?| = |Irr(W)|. But the R, (¢ € Irr(W))
already constitute |Irr(W)| many pairwise orthogonal class functions which are linear

combinations of the R,,, so we must have x = x4 for some ¢ € Irr(W).
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4. Simple groups of exceptional type

On the other hand, L = G holds precisely when A, is cuspidal, that is, if and only if
x € {x1, 22}

(b) Now assume that x € X(W) satisfies the requirements in the proposition. In view of
Lemma and by what we have shown in (a), the character sheaf A, is a constituent
of Kf,z € # G where L C G is a regular subgroup such that Lgg is simple of type Dy,
and (X, &) is an F-stable cuspidal pair for L. We want to apply Corollary SO we
are reduced to showing that > does not contain any unipotent elements.

Let m: L — Lgs be the canonical map. By [LuCS4, 17.10] and [Lus84b, 2.10], the

(shifted) inverse image functor
7 [dim Z(L)]: ZL¢ — ZL

defines a bijection L™ & Lo, Since Z(Lgs) = {1} and since p # 2, Ly is necessarily
the adjoint group PSOg(k) of type D4. By the proof of [LuCS4, 19.3], all the (four)
cuspidal character sheaves on this group have the same support, namely, the closure of
the conjugacy class ¥ C Lgs of sju; where s; € Lg is a semisimple element such that
Ct..(s1) has a root system of type A; x A x A; x Ay, and u; is a regular unipotent
element in Cf_(s1). So we must have ¥ = 771(%), and there exists some x € ¥ such
that 7(x) = sju;. Let @ = su = us be the Jordan decomposition of z (with s € L
semisimple, v € L unipotent). Then 7(s)m(u) = w(u)7(s) is the Jordan decomposition of
m(x) = sju1, so w(s) = s and w(u) = uy.

Let y € ¥ be an arbitrary element. Then 7(y) = 7(g)m(z)m(g)~! for some g € L,
so there exists z € Z(L) such that ¢g-lyg = vz = (2s)u. Here, zs is semisimple, u is
unipotent, and zs commutes with u, so (zs)u = u(zs) is the Jordan decomposition of
g 'yg. By the condition on Ct..(s1), we certainly have s1 # 1, so s ¢ Z(L). This implies
that zs # 1, so ¢”'yg and y are non-unipotent elements. We have thus shown that
YN Ly = @, as desired. O

4.1.17. For x € X(W), let us from now on denote by p, € Uch(G!") the corresponding
unipotent character under the bijection (4.1.2.4) that we fixed inm Then the unipotent

almost characters R,,, I;, are written as

Ry, = Z {xﬂxl}A(x)px = %pml B %p@ + Z {x’xl}px
zeX(W) z€X(W)\{z1,z2}

and

Roy= Y {z.22}A@)pe = §puy — 500+ D, {z,22}pa
T€X(W) z€X(W)\{z1,22}
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4.1. Groups of type Eg

By |Gec03b, 5.6, see Table 1], we have Q(p;) = Q for any z € X(W) \ {x1, 22},
while Q(pz,) contains non-real numbers for i = 1,2. We deduce that p, = p, for all
r € X(W)\ {21, 22}, and p,, = pay, Pyy = Par- (CE but recall that we excluded
the twisted groups there; we see however that this is completely analogous as far as
2E¢(q) is concerned.) Also note that {z,z1} = {z, 2o} for any z € X(W) \ {z1,22}. We
thus get

Ry, = Ry,

Evaluating at the element ug € Ug N ﬁfzg defined in (4.1.12.1)) and using Lemma |4.1.13

we obtain

Ry, (uo) = Ry, (U51) = Ry, (uo) = Ra, (uo).

Hence, we see that

§x1q3 = 5121 Xz (UO) = Rx1 (UO) = sz (UO) = §$2X$2 (UO) = 59&2‘]37

and this also equals Ry, (uo) = &,,¢°. We deduce that &, = &, = ,, and then
oy = &uy € {£1}, since |&,,| = 1. Now let p € Uch(GF). By ([£.1.2.7), we have

Ax)-p= Y fapa}-Reo

z€X(W)

In view of Proposition [4.1.16|and (4.1.3.1)), we get

Ay plar = S {npao}Rylar, +5Z{mp,93z}sz|GF (4117.1)
o€lrr(W)

where & 1= &, =&, € {£1}.
Lemma 4.1.18. For ¢ € Irr(W) and any u € OF,, we have

reg’

Rq;<u>=<¢,1w>w={0 o1
7 W-

Proof. If 0 = idw, we have

R¢() Ry(u Z¢

wEW

Z<Z>

1
| wEW

where the last equality holds since R, (u) = 1 for any w € W [DL76, 9.16]. On the other
hand, if o # idw, the preferred extension of ¢ is defined by the requirement that o acts
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4. Simple groups of exceptional type

in the same way as the longest element wy of W, see [LuCS4, 17.2(b)]. (Thus, in the
setting of if © is a representation of W affording the character ¢, we can take
E := ©(wp).) We obtain

R 2 )Ry fz;v 2 6w

wEW wEW

(again using [DL76| 9.16] and the fact that w — wwg defines a bijection W — W). So

for any o, we have

Z d(w) = (¢, lw)w

wEW

which proves the lemma. ]

Proposition 4.1.19 (see [Het19)). Let ug € U§ N OE, be as defined in (£.1.12.1)). For
i =1,2, let p,,: F*A; = A; be the isomorphism corresponding to the GI'-conjugacy
class of ug in OL,, and let &, := &, (pe,) € Q, be defined by (.1.31). Then

511 = g:m =1,

that is, the characteristic function Xo; = XA, 4., | GY — Qy coincides with the unipotent
almost character Ry, for i = 1,2, both for the non-twisted group G = Eg(q) and for the
twisted group G = 2E6( ), where q is any power of the prime p = 3.

Proof. We already know from [4.1.17that { = &, = &, € {£1}. By Lemma {4.1.18 and
since Xz, (u0) = X, (u0) = ¢* (see4.1.14)), the evaluation of (4.1.17.1)) at ug gives

2
A(zy)p(uo) = {zp, 21 } +£¢* Y {zp,2i}  for any p € Uch(GF). (4.1.19.1)
i=1
To determine £, we consider the Hecke algebra H, , of G! with respect to the BN-pair
(B, Na(To)"), see [2.3.1, Here, we have Siay, = S = {s1,82,...,56} (in particular,
(Widw _ S4) = (W, S) is a Coxeter system of type Eg), and the parameters of Hidw q
are given by g5, = ¢ for 1 < ¢ < 6. In the case where o # idw, recall from [4.1.5] that
W7 is a Weyl group of type F4 with Coxeter generators S, = {32,54,5335,8186}, the

parameters of H, , are given by

Gso = 4sy = 4, (szss = (s;sg — q2

(see [Lus78, Table II (p. 35)], [Lus76b, (7.7)] or [Lus84a, 8.2]). By (and using the

172



4.1. Groups of type Eg

notation there), we have

[0y NBiwB{ | - |Car(g)]
B ’

m(g,w) =Y [¢l(g) Trace(Ty, Vy) =
¢elrr(W7)

valid for any ¢ € G and w € W?. We evaluate this equation with g = uo and with

W = W := $15653858284 € W7,

a Coxeter element of W:

(a)

Let us first consider the non-twisted case where G = Eg(q), so o = idw. As noted
in the bijection (4.1.2.4]) that we fixed there coincides with the one provided
by Proposition so we have x4 = 7, for any ¢ € Irr(W). Hence, except for

the sign &, we can compute (4.1.19.1)) for any p = [¢], ¢ € Irr(W). Thus, the sum
2 et (we) @] (uo) Trace(Ty, Vy) evaluates to

Tr(Tw, Vi,) + 2643 (Tx(Tw, Vao,) + Tr(Tow, Vao,) — Tr(Tw, Vio,) — Tr(Tw, Vo, ))-

Choosing w = w, and using CHEVIE to get the character values of the Hecke algebra
Hidw,q> We obtain
0 < m(up,we) = (26 +1) - ¢°,

which would be false if £ = —1, so we must have £ = +1.

Now assume that we are in the twisted case G = 2Eg(q) (i.e., o # idw). Given an
irreducible character ¢ € Irr(W?), the label of X(W) parametrising the unipotent
character [¢] is obtained from Table We get

m(ul)v wC) = TI"(TwC, V11) + %§q3(Tr(Twc’ ‘/121) - Tl"(Twc, Vﬁl) - Tl"(Twc, ‘/62))
= (26+1)-¢°,

and this is non-negative; thus, £ = +1. O

Remark 4.1.20. Recall from that the conjugacy class of W containing the
Coxeter elements is sent to the regular unipotent class 0.s C G under Lusztig’s map.
The characterisation in of this map indicates why the argument in the proof of
Proposition works exactly when evaluating m(ug, w) with a Coxeter element w of
W. More generally, given a unipotent class ¢ in a simple algebraic group G with Weyl

group W and an element u € O(F,), the standard choice for w € W to evaluate m(u, w)
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4. Simple groups of exceptional type

in order to obtain information on character values at u is such that the conjugacy class

of win W is sent to & under Lusztig’s map, as we shall see in numerous places below.

Example 4.1.21. The previous discussion immediately yields the explicit values of any
unipotent character at any regular unipotent element for G € {Eg(q), %Eg(q)} where ¢
is a power of p = 3. Indeed, Proposition and Lemma show that

Rx|ﬁ£g =0 wunless z € {lw,z1,2z2}.

The trivial character 1w of W gives rise to the one-element family consisting of the trivial
character 1gr of G¥', and of course we have 1gr(u) = 1 for any u € ﬁ’r"gg. So we only need
to consider the 8 unipotent characters parametrised by elements x € M(Gr,) C X(W),
and we only have to look up the Fourier coefficients {x,z1} and {z, x5}, as well as the
values of R, = X, for i = 1,2 given in [£.1.14] The values of the unipotent characters
parametrised by elements of M(Gr,) C X(W) are thus given in Table where we
denote the G'-conjugacy classes contained in ﬁfgg by giving the corresponding elements
of Ag(up) = (tp) = C3 in the top line.

Es(q) *Es(q) 1 U ag
80,  2Egll] 248 13 1
205]  [124] 24 -1 —1q3
[605]  [44] 0 0 0

[105]  [64] -3¢ 1 1
905]  [62] -3¢ UM 1
Dy[r]  [161] 0 0 0
Eolw] 2Eslw] 1 3Pw—o?) 1P’ -w)
Eslw? 2Eslw?] 18 12w -w) $P(2w—w?)

Table 4.3.: Values of unipotent characters on ﬁfgg in type Eg, p =3

Remark 4.1.22. Table shows that the only G¥'-conjugacy class inside ﬁfgg on
which the cuspidal unipotent characters of groups of type Eg in characteristic 3 take
real values is the one which contains ug. Hence, the G¥-conjugacy class O,, of ug is
the unique G¥-class inside ﬁf;g which is stable under taking inverses. (The element
<u0)501 is G¥-conjugate to (Uﬁ)ag~> On the other hand, let us recall that, since p = 3,
the canonical isogeny 7: Gg. — G is bijective, so we may as well have considered the

simply connected group of type Eg instead of the adjoint group. In particular, we may
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4.1. Groups of type Eg

assume that G and X := O}, satisfy conditions (i) and (ii) in [3.2.22c), so let us adopt
the notation from there, except that we explicitly set w. := s15653555254 € W (as in
the proof of Proposition 4.1.19)). Since G has a trivial centre, [Gec21, 4.10] shows that

Oo NBEweB{ = (Oreg N BoweBo)" # &

where Oy C ﬁf;g is a (unipotent) G¥'-conjugacy class, and we have Oy = Oy 1 So we
must have O,, = Op. Thus, our chosen representative ug satisfies the condition @ in

3.2.22(c), and its GF'-class is uniquely determined by this property.

Values of unipotent characters at unipotent elements for E;(¢)

As in the beginning of this section, let p be any prime and G be the simple adjoint
group of type Eg over k = Fp. Let us assume here that F': G — G is a Frobenius map
providing G with a split F,-rational structure for some power ¢ of p, so that G =Eg(q)
is non-twisted. The further notation is as in the beginning of this section. Our goal is to
explicitly determine the values of the unipotent characters of Eg(g) at unipotent elements.
(Note that, for this purpose, the assumption that G is adjoint is not restrictive.) Recall
from that this task is equivalent to the one of determining the unipotent

almost characters at unipotent elements.

4.1.23. Recall the decomposition of Uch(G') into Harish-Chandra series as described
in Thus, 25 of the 30 almost characters R, (z € X(W)) are of the form R,
with ¢ € Irr(W). As mentioned in the values of these 25 almost characters at
unipotent elements are known in all characteristics. They are explicitly computed and
printed by Malle [Mal93] (for p = 2), Porsch [Por93| (for p = 3); see Beynon—Spaltenstein
[BS84] for good primes p > 5, for which we also refer to Liibeck’s electronic library |Liib].
Considering the elements z; € X(W) (i = 1,2) which parametrise the cuspidal unipotent
characters (cuspidal unipotent character sheaves), we know the values of the in|ani

from the previous results of this section:

o If p # 3, the support of the A, is given by (the closure of) a non-unipotent class
F

uni-*

of G, so the x4, (and, hence, the R;,) are identically 0 on G

o If p =3, the values of the R, are obtained from Proposition 4.1.19| (as Rz, (g) =0
for any g € G\ ﬁr]:g).

It remains to consider the three elements x € X(W) corresponding to the ones of Gw
described in (b) The associated unipotent character sheaves A, € G"™ are thus
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4. Simple groups of exceptional type

the simple direct summands of the complex K€J72 € #G where J = {s9,53,84,85} C 5,
and where the (unique) cuspidal pair (X, &) for Ly is given as follows (see [Lus84b, 15.1]
and the proof of [LuCS4} 19.3]):

o If p # 2, we have ¥ = Z(L;).%4 where ¥ C Ly is a conjugacy class containing
elements of the form g = gsgu = gugs such that Ct_ (gs) has a root system of type
A; x A; x A1 x A;. In particular, we have gs ¢ Z(Ly), so ¥ does not contain
any unipotent elements. It follows from Corollary that x4, (and, hence, R,)

I, for any of the three z € X(W) corresponding to the

elements of Gw described in b).

vanishes identically on G

o If p=2, we have ¥ = Z(L;).0y where 0y C L is the regular unipotent class.
Summarising:

e If p > 5, the computation of the values of unipotent characters at unipotent
elements is reduced to that of the Green functions (or, equivalently, the Ry|qr
for ¢ € Irr(W)), as Ry|gr = 0 for any z € X(W) \ Irr(W). This is completely

known, and it suffices to consult [Liib].

o If p =3, we have to consider 27 almost characters R;|qr (z € X(W)): 25 of them
are of the form Ry|gr , and their values are providecf nl;y [Por93]; the other two
x e X(W) parametrisu:cuspidal unipotent character sheaves, so the values of the
associated Rgﬁ|G‘1;ni are obtained from Proposition

o If p =2, we have to consider 28 almost characters R;|qr (x € X(W)): 25 of them
are of the form Ry|gr , and their values are provided by [Mal93]; the other three
z € X(W) correspond to the elements of Gw as described in [4.1.4[b), and the

values of those R;|gr are not yet known.

4.1.24. In view of the discussion in [£.1.23] it remains to consider the case where p = 2
and to compute the values of R;|gr for the three x € X(W) corresponding to the
elements of Gw as described in mlal))

Solet p =2, J ={s2,53,84,85} C S, and let x € X(W) correspond to one of the three
elements (J, ¢, (—1,2)) € SGw where ¢ € Irr(Wg(Ly)); in this case, we will also write
Rp,[4) := Re. In view of @ and Remark @, any such z corresponds to some
i € N under the generalised Springer correspondence, and we have 7(i) = (L, 0y, &)
where 0y C Ly is the regular unipotent class (and up to isomorphism, & is uniquely
determined by L; and &). These three i € N& are thus in the image of the embedding

Irr(Wg (Ly)) — NE. (4.1.24.1)
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4.1. Groups of type Eg

Recall that we denote the irreducible characters of Wg(Ly) = W (A2) =63 by 1, ¢, r
(trivial, sign, reflection). Then, following Spaltenstein [Spa85| (and using his notation for
the unipotent classes of G, except that we write 0, = Eg), the embedding is
given by

1= (Oreg,—1), 1 (D5,—1), e+ (Dy,—1). (4.1.24.2)

(Here, for each & € {O¢g,D5,D4}, we have Ag(u) = C; for any u € 0, and we write
—1 for the non-trivial local system on €¢.) Let us fix any isomorphism ¢q: F*& — &
which induces a map of finite order at the stalk of & at any element of &f. Let
i = (0,-1) € NE be one of the three pairs considered above, and let x € X(W) be
such that A, = A;; we define the isomorphisms ¢4, : F™*A; = A Pa A = A as in
and set Y 1= P4, Xe = XA,,p,- In the setting of let us put ¢ := (y; we

then have

Rular = g\dim G—dim 0—dim Z(L,)) /2 x.

uni
and

Xi = P(0regi—-1)1Y (Oreg—1) T P(D5,~1),iY(D5,~1) + P(D4,—1),iY(Dar—1)-

In particular, X (and, hence, Ry|gr ) vanishes outside of &%, UDEUDJ". The coefficients

py i can be obtained, for example, via the function ICCTable in CHEVIE [MiChv|. This

gives the following;:

(i) For u € OF

regs We have

Rp,1)(w) = ¢*CX(6,0,-1) (1) = ¢°CY{(6,0,—1) (1),
Rp,p(u) = Q4CX(D5,71)(U) =0,
Rp,((v) = ¢*¢X(py,—1)(w) =0

(ii) For u € Df’, we have

Rp,1)(w) = ¢*CX (6, 1) (1) = ¢°CY{py,—1)(u),
Rp, (1) = ¢*¢X(ps,—1) (1) = ¢*¢Y(ps,—1) (u),
Rp,o(u) = ¢*¢X(py,—1)(w) = 0.
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(iii) For u € DY, we have

Rp,)(v) = ¢*CX (6,0, 1) (1) = ¢°CY{p,,—1)(1),
Rp,r(u) =q CX(Ds,—l)(u) (¢ + a®)¢Y(p,,—1)(u),
Rp, (1) = ¢*CXp, —1)(u) = ¢*CY(p, —1)(u).

4.1.25. We keep the setting and notation of [4.1.24] and apply [3.4.19(2): For any w € W

and any u € GF ., we have

F, RF|.
m(u, w) = 0.0 By w|]]?3>%|| Cer(u) = Z cx(w)Ry(u), (4.1.25.1)
0 EX(W)

where

cx(w) = Z {zg, x} Trace(Ty, Vy).
p€lrr(W)

We want to evaluate (4.1.25.1)) to compute R;|gr for the three x € X(W) considered
in |4.1.24] As already observed there, it suffices to look at elements u € &£, UDE UDY,

reg

and we have Ag(u) = Cy for any such u; more precisely, the group Ag(u) is generated
by @, see [LS12, Table 17.4]. In particular, for any u € 0%, UDE UDE, F acts trivially

reg
on Ag( ), so each of ﬁf:g, DL, DI splits into two G*'-conjugacy classes. As usual, for
1 <7 <6, let us denote by u; := uq, the homomorphism G, — G whose image is the

root subgroup U,, € Uy (see[2.1.4). Following Mizuno [Miz77|, we set

3(1) - ug(1) - us(1) - ug(1) € UL N oL

reg’

x90 = ui(l) - uz(l) -
T16 1= u6(1) . U5(1) . U4(1) . U3(1) . UQ(].) € UO N DF,
T14 = UQ(l) . U3(1) . 4(1) . U5(1) S Ug N Df

g

I

(Note that we do not have to refer to any convention for the choice of certain signs in a
Chevalley basis in the Lie algebra underlying G since k is of characteristic 2.) We now
apply Lemma Note that —w(II) = I, so —wyp induces a graph automorphism of
the Dynkin diagram of Eg. This automorphism is the unique non-trivial one (see, e.g.,
[Bou68, Chap. VI]). We set

wop = S+ S2 - S5+ S4 - S3- 81 € W (a Coxeter element of W),
Wi = 8153845552 € W,

W14 = So - S5 - S4 - S3 € W.
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Using CHEVIE (see [MiChv, §6]), one verifies that these are reduced expressions for the
wj (j € {20,16,14}), each w; is of minimal length in its conjugacy class C; € W, and
Cj; is sent to the unipotent conjugacy class of G containing x; under Lusztig’s map (see

3.2.23)). Let wo € Ng(To)" € Ng(To) be a representative for the longest element wq of
(W, S). By Lemma [3.2.24] we have

woz gt € (Bow;Bo)" = Biw,Bf for j € {20,16,14},

where the last equality follows from the uniqueness of expressions in the sharp form of
the Bruhat decomposition [Car85, 2.5.14]. We have shown that O,, N B{w;B{ # & for
J € 420,16, 14}, so x29, x16, T14 satisfy condition @ in |3.2.23| and are thus our choices

for ‘good’ representatives in ﬁf;g, D5F , DI, respectively.

4.1.26. We keep the notation of We can now compute the values of the
almost characters Rp, 1), Rp,[;) and Rp,[] at unipotent elements.
(i) For u € 0%

reg and w € W, we have

m(“? w) = Clw (w)le (u) + CD4[1] (w)RD4[1} (u)

Taking w = wyy = s¢s255545351 and using CHEVIE [MiChv], we get c1y, (w20) = ¢° and
cp,[1)(w20) = q*. Thus, [4.1.24]i) gives

m(u, wa) = ¢°(1+ (Y(g,,,-1)(u)) forue OFL,.

Since (Y(g,,,,~1)(#) € R is a root of unity and m(u,wso) is (in particular) a real number,
we must have (Y(g,., —1)(u) € {£1}. As Oy, N Bl waoBE # @, we obtain

0 <14 (Y40, —1)(x20) With (Y4, —1)(220) € {£1},

which is only true if (Y4, —1)(z20) = +1. Now consider the other G!-conjugacy class
inside ¢F, for which Mizuno [Miz77, p. 554] gives the representative

reg’
a5 7= ur(1) - un(1) - ua(1) - wa(1) - us(1) - us(1) - Uastagras () € Uy N Oy,

where 1 € F, is a fixed element such that the polynomial x + x + 7 is irreducible in
F,[x] (with x an indeterminate over [F;). Since Ag(z20) = Co, the discussion in [3.4.23
shows that Y(4,., —1)(745) = —Y(4,.,—1)(T20), so we have (Y4, —1)(z45) = —1. Thus,
4.1.24((1) gives

Rp,n(z20) =q¢> and  Rp,pj(zas5) = —¢°.
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4. Simple groups of exceptional type

(ii) For u € D and w € W, we have

m(u7 w) = Clw (w)le (u) + Coe,1 (w)que,l (u) + Co20,2 (w>R¢20,2 (u)
+ cp, 110,11 (W) + o, Bpy ) (w)-

We take w = wig = $1 - 83 84 - S5 - S2. Using the known values of the Green functions
[Mal93] and [4.1.24(ii) (and CHEVIE for the coefficients c,(w1s)), we get, for any u € DL

m(u,wi) = ¢° + (¢° = ¢)a+ (¢° — 4V + (¢* - *C + (6* = ) - 4"¢) Vi, -1y (w)
=q(1+ CY(Dy,—1)(u)).

It follows that (Y(p, —1)(u) € {£1}. Since Og,4 N Bl wigBE # @, we can argue exactly
as in (i) to deduce that {Y(p, _1)(z16) = +1. For the other G¥-class inside Df’, we may
take the representative (see [Miz77, p. 554])

a3 7= ug(1) - us(1) - ua(1) - uz(1) - uz(1) - Uagtastas (n) € UG N DL,

with € Fy as in the definition of z45. We thus have Y(p, _1)(743) = —Y(p;,—1)(216), 50
CY(ps,—1)(743) = —1. In view of [4.1.24{(ii), we obtain

and

4

Rp,1)(716) = ¢
q and

Rp, i (716) =

(iii) For v € DI and w € W, we have

m(u, w) = Z

¢€lrr(W)

cp(w) Ry (u) +

Rp,y(743) = —¢°,
Rp,)(z43) = —¢*.

Z cx(w)Ry(u).

2€X(W)\Irr (W)

Taking w = w14 = s2 - 85 - 84 - $3 and using the values of the Green functions in [Mal93],

we get

Z co(wia) Ry(u) = ¢*° +2¢° +2¢® + ¢"  for any u € D} .

o€lrr(W)

Furthermore, we have cp,[1j(w14) = cp,[¢)(w14) = ¢* and cp, [ (wia) = 2¢2, so in view of

4.1.24(iii), we get

> ca(wia)Ro(u) = ¢*(¢° +2(¢" + ¢°) + ¢*)(Y{p,,—1)(u) for u € DJ.

2€X(W)\Irr (W)
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4.1. Groups of type Eg

We thus have
m(u, wis) = (14 Yp, —1)(u)(¢" + 2¢° + 2¢* + q") foru e DY,

Since Oy, N BEw1sB{ # @, we can once again argue exactly as in (i) to see that
¢Yp,,—1)(714) = +1. For the other Gl -class inside DY, we may take the representative
(see |Miz77, p. 554])

a1 = uz(1) - uz(1) - ua(1) - us(1) - tastastas (1) € Uy N DY,

with 7 € F, as in the definitions of z45, 743. So we have (Y(p, _1)(741) = —1. It follows
from [4.1.24{(iii) that
RD4[7’] <$14) - q7 + q6 and RD4M (.’E41) = —q7 — q67

RD4[E} (.%'14) = q8 and RD4[€] (x41) =—q".

Since R, vanishes on GI .\ (ﬁfgg UD{ uDF) for any z € X(W) \ Irr(W), Table
contains all the necessary values of these almost characters at unipotent elements. Thus,
together with the results of Malle [Mal93|, this yields the values of all unipotent (almost)

characters at unipotent elements for the groups Eg(2"), n € N.

G-conjugacy class: Dy Ds Oreg
GP-class (Mizuno [Miz77]): T4 T4l Ti6 T43 T20 T4
GF-class (Malle [Mal93]): U1 Uiy U3 U4 U26 U7
Rp, 1] b —q° ¢ ¢ ¢ -
Rp,[¢g] ¢ —¢® 0O 0 0 0
Rp, +d —d-¢ ¢ - 0 0
Reg 0 0 0 0 0 0
Reg w2 0 0 0 0 0

Table 4.4.: Values of R;|gr for z € X(W)\ Irr(W), where G = Eg(q), ¢ a power of 2

Remark 4.1.27. In view of the discussion in this completes the determination of
the unipotent characters at unipotent elements for the groups G = Eg(q) where q is
any power of any prime p. In the case of Eg(2") (n € N), we have printed these values in
the appendix, see Table If p > 2, the description in [4.1.23] easily transfers to the
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4. Simple groups of exceptional type

twisted groups 2Eg (¢), so one can explicitly obtain the value of any unipotent character
at any unipotent element — as far as the prime p = 2 is concerned, this problem is not
yet solved for the groups 2E6(2”), but it should be possible to argue similarly as in the

case of the non-twisted groups Eg(2").

4.2. Groups of type E;

In this section, we consider the simple adjoint group G of type E7 over k = F,. Assume
that G is defined over F, C k, where ¢ is a power of p, and that F': G — G is the
corresponding Frobenius map. We fix an F-stable Borel subgroup By C G and an
F-stable maximal torus Tg C By. Let Z = (X, R,Y, RY) be the root datum attached
to G and Ty (where X = X(Ty) and Y = Y (Ty)), with underlying bilinear pairing
(,): X xY = Z. Let Rt C R be the positive roots determined by By 2 Ty, and let
II={ay,...,a7} € RT be the corresponding simple roots, [TV = {ay,..., a7} be the
corresponding simple co-roots. We choose the order of ay, ..., a7 in such a way that the
Dynkin diagram of G is as follows:

aq a3 Qg Qs Qg am

E7
Q2

Let € = ({aj, ) ))1<i j<7 be the associated Cartan matrix, and let W = NG(TO)/T0 be
the Weyl group of G (with respect to Ty). As usual, we identify W with a subgroup of
Aut(X) (via[2.1.4), and for 1 <i < 7, we set s; := wa,, with w,, being defined as in[2.1.2]
Thus, W is a Coxeter group with Coxeter generators S = {s1,...,s7}, arranged in the
Coxeter diagram with the analogous numbering as in the Dynkin diagram of G printed
above (see[2.1.5). We use the notation of |[Lus84al 4.12] for the irreducible characters of
W, which coincides with the one in [GP00, Table C.5 (p. 414)]. Let Uy = R, (By) be the
unipotent radical of Bg. As described in F induces a p-isogeny of root data

e: X =X, A= Ao F|p,,

and a bijection R — R, a + af, so that ¢(al) = ga for all @ € R (since F: G — G
is a Frobenius map with respect to an Fy-rational structure on G). The assignment
a — o restricts to a graph automorphism of the Dynkin diagram, and since the only
such automorphism in type E7 is the identity, we must have o = af for all a € R, so G
is necessarily the non-twisted group E7(q) and o = idw. Hence, we are in the setting of
Section and adopt the further notation from there.
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4.2. Groups of type E;

4.2.1. Consider the embedding
Irr(W) = X(W), ¢ x4

(see[2.2.8)). We have |X(W)| = 76 and |Irr(W)| = 60. The irreducible characters Irr(W)
are partitioned into 35 families, as follows: There are 24 families consisting of a single
character, 8 families consisting of 3 characters (the associated sets (G ) have 4 elements
each), 2 families consisting of 5 characters (the associated sets M(Gr) have 8 elements
each), and then there is the exceptional family (see consisting of 2 characters (the
associated set M(Gr) has 4 elements). As usual when dealing with simple non-twisted

groups with a trivial centre, we fix the bijections
Uch(GF) = X(W), p ), (4.2.1.1)

and
(W) S G 2 A, (4.2.1.2)

through Corollary As in Remark we will then often write p, € Uch(GF) for
the unipotent character corresponding to z € X(W) under (4.2.1.1].

By the proof of [LuCS4, 20.3(c)] (see also [Sho95b, 4.6]), there are exactly two
cuspidal unipotent character sheaves Aj, Ay on G (for any p), and both of them are
F-stable. They are parametrised by the following elements of X(W) under : Let
Fi1 = {512/,,512,} C Irr(W) be the exceptional family, so that Gr,, = S92 = Cy. We
denote the non-trivial element of G5 = C5 by g2 and the non-trivial irreducible character

of this group by ¢ (thus conforming with the notation of [Lus84al 4.3]). So we have

M(Gr,) = {(1,1),(1,8), (92, 1), (92,€)}-
Then the two cuspidal unipotent character sheaves on G are labelled by
x1 = (92,1) € M(Gr,,) and =z = (g2,¢) € M(Gx,).
We number the Aq, As € G°un ahove in such a way that
A =4, and Ay=A4,,.

Let us fix a square root i of —1 in @, (which we always assume to be the same as the

one in , and let |/q € Q be the square root of ¢ that we fixed through (1.1.0.2)).
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4. Simple groups of exceptional type

Then, with the notation in the appendix of [Lus84a] or in [Car85| pp. 480-481], we have

Pz1 = E7 [1\/5] and Pzy = E7[—i\/§]~

For z € X(W), let us for now pick any isomorphism ¢, : F*A, = A, as in[3.2.1{(). Just
as we did for groups of type Eg, we will later make an explicit choice as far as the two
cuspidal unipotent character sheaves A; = A,, and A = A,, are concerned, depending
on the characteristic p of k. In the case where p = 3, there is one further element of
X (W) (which will be denoted by x¢, see below) for which we want to make an
explicit choice for the isomorphism ¢, : F*A;, — A, but since our argumentation up
to that point will not depend on such a concrete choice, we do not have to specify this

right here. So we obtain the corresponding characteristic functions
Xo 1= XAgpp Gl - Qp for z € X(W).

By (3.4.12.2), we have
Ry = &xxa for € X(W), where & = &,(p2) € Q,, 6] = 1. (4.2.1.3)

4.2.2. We fix a primitive 3rd root of unity w € Rg3, which we always assume to be the
same as the one in The set Gy, is non-empty for the following subsets J C S:
J=0,J=/{s2,83,84,85}, J = {s1,82,...,8¢} and J = S. In view of |Lus78, p. 36], the

76 elements of Gw fall into Harish-Chandra series as follows.

(a) The set J = & gives rise to the 60 elements in the principal series, that is, the
elements in the image of the embedding Irr(W) — Gw, ¢ — (&, ¢, (1,1)).

(b) Let J = {so,s3,54,55} C S, so that the group LJ/z(LJ) is simple of type Djy.
We have &3y, = {(—1,2)}, and the relative Weyl group Wg(L,) = W5/ s
isomorphic to W (B3). So there are 10 elements in Gw of the form (J,¢, (—1,2)),
e € Irr(W5/7),

(c) Let J ={s1,...,86} C S, so that the group LJ/z(LJ) is simple of type Eg. We
have &3y, = {(w,3), (w?,3)}, and the relative Weyl group Wg(Ly) = W9/ is iso-
morphic to W (A1) & Cy. This leads to the 4 elements (J, £1, (w, 3)), (J, £1, (w?, 3))
of GW

d) For J = 5, the set 6%, = 63 consists of the two elements (i,2), (—i, 2) paramet-
W, w
rising the two cuspidal unipotent characters of G’ (and the two cuspidal unipotent

character sheaves on G).
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4.2. Groups of type E;

Type E; in characteristic p # 2

In this subsection (that is, here and in below), we assume that p # 2. The
scalars &;,, &z, in (4.2.1.3)) (corresponding to the two cuspidal unipotent character sheaves
on G) have been determined by Geck, see |Gec21}, §6]. To describe his results, we consider
(similarly to the case Eg with p # 3) the simple, simply connected group Gg. of type E7
and the canonical map m: Ggc — G. By [GM20| 1.5.9] (see [Ste68] 9.16]), there exists a
unique isogeny F': Gge — Gec such that Fom = wo F, and F is a Frobenius map which

provides Gy with an F,-rational structure.

4.2.3. There are exactly two cuspidal unipotent character sheaves on Gg, given by
A :=7"(41) and Ay :=1*(Ay), (4.2.3.1)

where Ay, Ao are the two cuspidal unipotent character sheaves on G = G,q considered in
In particular, both Ay and A, are F-stable. Let § € ch be a semisimple element
such that Cg,.(S) has a root system of type Ag x Az x Aq, and let u € Cg,. (E)F be a
regular unipotent element in Cg,.(3). Let & C Gy be the (F-stable) conjugacy class
containing the element g := §4 = u5. (These conditions determine § up to Ggc-conjugacy;
see [Gec21, 6.1] for a more detailed description of .) As usual, given h € Cg,.(§), we
denote by h the image of h in Ag, (§) = CGu (g)/casc (§)- Let 1 # z € Z(Gyc) be the

unique non-trivial element of the centre of Gg.. We have § = § and

Ag..(9) = (5) x (2) = Cy x Ca.

E
sC)
centraliser order 8¢°. Hence, in contrast to the case Eg with p # 3 (see , we do
not know at this point whether any of the Gi—classes inside 37 is actually stable under
taking inverses. Let B¢ := 7~ 1(By), Ti¢ := 7 (To) be the Borel subgroup and the
maximal torus of Gg. corresponding to By, Ty, respectively (see [Bor91, 11.14]), and let
wse .= Na..(TF) / TS be the Weyl group of Gy, with respect to T{°. Let w® € W*°

be a Coxeter element of W*¢. Following [Gec21, 6.4], we fix a representative gy € SF

Thus, F acts trivially on Ag..(§), so SF splits into 8 conjugacy classes of G., each with

whose ch—conjugacy class has a non-empty intersection with (B%C)F wiC(B%C)F . In fact,
due to the results of [Gec21, §4], there are two such Gi—classes C,C’ inside »F , but
the relevant implications for us turn out to be independent of the exact choice of one
of them. (As noted in (c), we could uniquely specify one of these two classes,

C say, by ~choosing a representative w3 € Ng,. (T{)" of w® and then requiring that
C N (Ui (U # @ where U := Ry (Bf).) In order to fix the notation, we
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4. Simple groups of exceptional type

assume from now on that go € C; then C’ is parametrised by the element z € Ag,,(Jo)-
Let us set ¥ := ﬂ(i) and go := 7(go) € BF. Let §o = 300 = @030, go = SoUo = Upsg be
the respective Jordan decompositions of gg, go. By [Sho95bl 4.6] there exists a certain
a € Ag(go) such that

Ac(g0) = (go) % (a) = Cy x Ca.

For j = 1,2, we denote by ¢; the linear (irreducible) character of Ag(go) which takes the
value %71 at g, and 1 at a (where i is as in we use j instead of ¢ here in order to
avoid any notational confusion with the complex unit i). Let &; be the one-dimensional
G-equivariant irreducible local system on ¥ described by ¢; (see . Then

A 2 IC(T, &)[dim X)#C  and Ay 2 IC(T, &)[dim X]#C.

By [Gec21, 6.1], we have Z(G)E = %, so 7 1(2) = %, and it follows from ([#.2.3.1) that
A 2 1IC (E, Tr*é"l) [dim 3] #Cse and Ay 2 IC (E, 7r*c5"2) [dim E]#GSC.

The rest is entirely analogous to [£.1.77 The map 7: Gsc — G canonically induces a
map 7: Aa.. (9o) — Ac(go), and the (one-dimensional, Gg.-equivariant) irreducible local

systems @?5] = 7" on 3 are described by the linear characters
§ji=gjom € Irr(Ag..(90)), Jj=1,2.

For j = 1,2, let pq,: F*4; = Aj be the isomorphisms corresponding to gg € L (via
3.2.21)). We obtain induced isomorphisms

P, = ™ (pa;): F*A; = A, j=1,2.

The ¢ A, are the isomorphisms corresponding to the choice of gy € SF via[3.2.21] We

will henceforth fix the choice of go, go, and thus the one of the isomorphisms @ 4;, ¢ A
just described. Furthermore, for j = 1,2, when writing .., Xz, or &, = &, (¢z;), this
is meant to be as in but with respect to the isomorphisms ¢, ; := ¢4, just defined.
The characteristic functions satisfy the following identity:

Jv‘PAJ

4.2.4. Similarly to we can apply Shoji’s Theorem for the simply connected

group Gg. of type E7 with regard to the unipotent character sheaves in a natural way.

186



4.2. Groups of type E;

Thus, with the analogous notation as in [f.1.8| we have
RG> = RG o Tlgr for x € X(W),

and, using (4.2.3.2):

Rgsc =& Xz fori=1,2, where X, :=x (4.2.4.1)

PA,;
The values of the characteristic functions x;’* (i = 1,2) are easily computed (see
and printed in |Gec21), p. 31]: First, we know from Theorem that ngc vanishes
at any element of GZ. \ SF ; the following table gives the values of these characteristic
functions at elements of %7 , where the ch—conjugacy classes inside 327 are described by
the corresponding elements of Ag,.(go) given at the top of each column, and where z, i,
\/q are as before; we also set qr = \/67.

1,z 39,8Z 50,5% 55 ,8) %
XS g =g g i
XS ¢ =g i iq"/?

Recall that the ch—classes parametrised by 1,7z are denoted by C, C’, respectively. In view
of [Gec21} 4.10(a)], we have gy ' € C'UC’. Using this and the fact that the characteristic
functions XESC, XS;C take the same value at any element of C'U(C’, a similar computation
as the one for groups of type Eg in characteristic p # 3 shows that &, = &, € {£1}. It
is then finally shown in |[Gec21), 6.5] that we have in fact &, = &, = +1, by considering
the Hecke algebra associated to Gi and its BN-pair ((B%C)ﬁ , Na.. (T(S)C)F ) and explicitly
evaluating the right side of the formula .

Proposition 4.2.5 (Geck [Gec21, 6.5]). Let G = E7(q) where q is any power of any
prime p # 2. As in (and with the notation there), let go € SF be an element whose
Gi—conjugacy class has a non-empty intersection with (B%C)Fwﬁc(B%C)F, where W is a
Coxeter element of W*. Let go = 7(go) € ¥, Fori=1,2, let p,,: F*A; = A; be the
isomorphism corresponding to the G -conjugacy class of go, and let &, = &, (¢z,) € @ZX
be defined by . Then

Cor = &ap = 1,

that is, the characteristic function Xz, = X4, ,¢,, * G! — Qg coincides with the unipotent
almost character R, for i =1,2. The analogous statement holds for the simply connected

group G (using go to define the characteristic functions x> : Gf; — Qy fori=1,2).

187
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Remark 4.2.6. Recall from that the only assumption which is made on the ch-
conjugacy class of gy € SF in Proposition is that it has a non-empty intersection
with (B[S)C)F we (B%C)F , and there are two Gf;—classes inside =7 with this property. So
here the proof is solely based on the fact that condition @ in (c) is satisfied.
In view of |Gec21, p. 33], the values of the four unipotent characters parametrised by
M(Gr,,) (where Fi; = {512/,512,} C Irr(W) is the exceptional family) are given by
Table (with the same conventions as in .

=2 =2_ = =_ =-1 =-1
1,z sy,8Z 30,5% 8y ,5 2

[512!] qr 4" 0 0
[512,] -7 g 0 0
E7[i,/q] 0 0 —ig'/ iq"?
E-[-i/q) 0 0 iq"? —ig"?

Table 4.5.: Values of unipotent characters in the exceptional family at elements of »F
(respectively, £F) in type E7, p # 2

Type E; in characteristic p = 2

In this subsection (that is, here and in below), we assume that p = 2, so
G is the simple adjoint group of type E7 over k = Fy. Somewhat similarly to the case
of Eg with p = 3, the prime p = 2 for groups of type E7 behaves distinctly from all the
others, as the two cuspidal unipotent character sheaves look quite different. Note that,
since p = 2, we do not really have to distinguish between the simply connected group
Gy and the adjoint group G = G,q of type E7. Indeed, consider the canonical isogeny
m: Gge = G (see ; we have ker 7 C Z(Gg.) = Hom(A(€), k). Since A(€) = Z/97,
the only homomorphism A(€) — k* is the trivial one, and we deduce that Z(Gs.) = {1}.
Thus, 7: Gg. & G = G,q is bijective and gives rise to an isomorphism on the level of
finite groups Gf; = GF (see |[GM20, 1.5.12]) where F: Gy — Gg is the endomorphism
commuting with 7 and induced by F; F is a Frobenius map for an [F -rational structure

on Ggc.

The discussion in 4.2.14] below is due to |[Het22a].

4.2.7. By [LuCS4} 20.3, 20.5], the support of the two cuspidal unipotent character
sheaves A, A on G is the unipotent variety Guni = ﬁreg C G. By Proposition
(see|3.2.21]), there are G-equivariant F-stable irreducible local systems &7, &5 on Oyeg
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4.2. Groups of type E;

such that
A; 2 1C(Gyni, &) [dim O] ¥E for j = 1,2.

Let u € ﬁ’f;g. The group Ag(u) = CG(U)/C&(U) is cyclic of order 4 and generated by
the image w of u in Ag(u) (see, e.g., [Miz80, Lm. 10] and [DM20, 12.2.3, 12.2.7]). Hence,
the automorphism of Ag(u) induced by F is the identity, and the G¥-conjugacy classes

contained in ﬁfgg are parametrised by the elements of Ag(u); so there are four different

G!-conjugacy classes inside ﬁ;’gg.

G, — G whose image is the root subgroup U,, C Uy (see [2.1.4). We set

For 1 <1 <7, let u; := uq, be the homomorphism

y1 = (1) - ug(1) - ug(1) - ug(1) - us(1) - ue(l) - ur(1) € UF N OL,. (4.2.7.1)

(Mizuno [Miz80] defines y; in a slightly different way, but it is Gf-conjugate to our

chosen representative, as the following lemma shows.)

Lemma 4.2.8. Consider the element y; € Ul N ﬁf;g defined in (4.2.7.1). For any
permutation o of {1,2,...,7}, there exists an element v € Ug such that

vy U_l = ug(l)(l) : ug(g)(l) e ug(7)(l).
In particular, y1 is conjugate to yfl in UY C G,

Proof. Let us first consider the Weyl group W of G, viewed as the irreducible finite
Coxeter group of type E7 with simple reflections S = {s1, s2,...,s7}. It is well known
that any two Coxeter elements of (W, S) are conjugate in W, that is, for any permutation
oof {1,2,...,7}, there exists some w € W such that

W‘(Sl'SQ'...'S7)"UJ_1:Sg(l)'SQ(Q)'...'SQ(7).

More precisely, |Cas17, §1] provides an algorithm to compute such an element w, which
is only based on the facts that an element s; (1 < ¢ < 7) in the first (respectively, last)
position of a given Coxeter word can be shifted to the last (respectively, first) position by
means of conjugation with s;, and that s;, s; (1 <4,j <7, i # j) commute if and only
if they are not linked in the Coxeter diagram of (W, S). But the analogous statements
hold for the u;(1), 1 <4 < 7. (Note that u;(1) = u;(—1) since k has characteristic 2.) So
we can just mimic the proof of [Cas17, 1.4] to obtain an element v € U§ (a product of
certain u;(1), 1 <14 < 7) such that

1

vy v = Uy (1) ) (1) o upry (1.
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4. Simple groups of exceptional type

In particular, since y; ' = uz(1) - ug(1) - ... - ui(1), y1 is conjugate to y; ' in UJ C GF.
Specifically, setting

v = w7 (1)ug(1)ur(Dus(1)ue(1)ur(1)ug(1)ug(1)us(1)ue(1)ur(1)ug(1)ui (1) € UL,

we have vy;v™ ! = yfl. O

4.2.9. In the setting of let us take u : =y € ﬁ’fgg. Thus, Ag(y1) is a cyclic group
of order 4 generated by 7, and F' induces the identity map on Ag(y1). So by
there are (up to isomorphism) four G-equivariant irreducible local systems on G,cq, and
each of them is one-dimensional and F-stable. For j = 1,2, let ¢; € Irr(Ag(y1)) be the
faithful irreducible (linear) characters of Ag(y1) with <1(7;) = i, «(y,) = —i, where
i € Ry is the primitive 4th root of unity fixed in (and assumed to be the same
as in . Then for j = 1,2, ¢; corresponds to the isomorphism class of the local
system & on Opeg (via , see, e.g., [Spa85l p. 337]. The fixed choice of y; uniquely
defines isomorphisms @4, : F*A; = A; for j = 1,2, as described in We will
henceforth always assume that in the setting of Xz; and &z, 1= &§u; (pz;) are defined
with respect to ¢z, := pa; for j =1,2. By Theorem @ the characteristic functions
Xz, Xz, Vanish at any element of G\ ﬁf:g. The values of xz,, Xz, at elements of ﬁf;g
are given by the following table where, as usual, we denote the Gf'-conjugacy classes
inside ﬁfzg by the corresponding elements of Ag(y;) and where ¢”/? := Va 7 with Va

being the square root of ¢ that we fixed in ((1.1.0.2)).

17 vt yp

Xo ¢ ¢ —¢' —ig'”
Xes G —ig ¢ iq”

In particular, we see that X,, = Xu,-

4.2.10. Having described the characteristic functions x,, Xz,, let us now consider the
almost characters R, R;,, as well as the scalars &;,, &, defined through (4.2.1.3]). We

have

Roy= Y Az, 0e}A@)pe = —3pu + 500+ Y. A{zzi}ps,
TEX(W) z€X(W)\{z1,22}

Roy= Y w0} A@)pe = —3puy + 50m + Y. {z22}p0
zeX(W) z€X(W)\{z1,22}
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4.2. Groups of type E7

(Note that A(x;) = A(z2) = —1, see [Lus84a, 4.14].) Now, labelling the elements
of X(W) in terms of unipotent characters as in (4.2.1.1)), we see from [3.4.11| and an

inspection of the Fourier matrix that we have {z,,z1}A(z,) = {25, 22} A(z5) € R for
any p € Uch(GF"). So we get

Ro= Y {zpe}A@)p= Y {op22}A@)p= Ru,
p€Uch(GT) peUch(GF)

where the last equality follows from the fact that p +— 5 defines a bijection on Uch(GF").
Using Lemma [4.2.8] we deduce that

Ry (Y1) = Ray (y1) = Ray (11)-

We thus obtain

€$1q7/2 - §$1X$1 (yl) = Rwl (yl) - sz (yl) = §$2X$2 (yl) = §$2q7/27

which also equals Ry, (y1) = &,,¢/*. So we have &, = &, =&, € {£1} (since |&,| = 1).

Let us set
£ =&, =&, € {£1}. (4.2.10.1)

4.2.11. In order to determine the sign £ € {1} in (4.2.10.1)), we will use the method
described in [3.4.19(2). With the notation there we have, for any g € G and any w € W:

[0y NBiwB( | - |Car(g)]

2 =m(g,w) = Z cx(w)Ry(g), (4.2.11.1)
|B0 | zeX(W)
where
cx(w) = Z {zg, 2} Trace(Ty, Vy).
¢elrr(W)
We want to evaluate (4.2.11.1) with g = u € €%, (and a suitable w € W) to get hold of

the sign £. For this purpose, we only need to consider such x € X(W) which correspond to
some pair i € Ng of the form (Oeg, &) under the generalised Springer correspondence, as
Rxlﬁrp;g = 0 for any other x € X(W); see Remark [3.4.24] As already noted in there
are four isomorphism classes of (F-stable) G-equivariant irreducible local systems on Oeg,
and they are naturally parametrised by the irreducible characters of Ag(y1) = (7;) = C4;

accordingly, we denote any such local system on &, by the value of the corresponding
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4. Simple groups of exceptional type

character of Ag(y1) at 7;. We thus have to consider the four pairs
(ﬁreg7 1)7 (ﬁrega _1)7 (ﬁregv i)7 (ﬁrega _i) € Ng

Let xp € X(W) be the element corresponding to (D4, 1, (—1,2)) € Gw under Corol-
lary where Dy := {s9, 3, 54, 55} C S, and where 1 denotes the trivial character of
Wa(Lp,) = W9/P1 22 W (B3). By the results of Spaltenstein [Spa85, p. 331] (and in view
of the discussion in , the generalised Springer correspondence with respect to the
above four elements of N§ is then given by the following table.

Local system on O 1 —1 i —i

xr € %(W) ~ 6w Iw x9 < (D4, 1, (—1,2)) xr1 X2

We have Riy, = lgr and R;; = {x., for j = 1,2. As for the almost character Ry,
we follow to compute its restriction to ﬁrlgg (up to multiplication with a scalar).
Let iy := (Oreg, —1). We have 7(ig) = (Lp,, 00, &) € ME where (0, &) is uniquely
determined by Lp,, and where &y C Lp, is the regular unipotent class. Let us fix an
isomorphism g: F*& — & which induces a map of finite order at the stalk of & at
any element of ﬁf;g. Let ¢ Ay F*Ay, = Ay, @ Ay F*A;, = A, be the isomorphisms

defined as in [3.2.25] and let ¢, := Pag, s Xao "= XAugag- As discussed in we get

R$0|G5ni = qggDlei() where CD4 €R.

We have Xio|ﬁ£g =Y, (see Corollary [3.2.17]), and there exists a root of unity v, € R
such that

Yio((yl)glﬂ') = Y, (—1) for 0 < j < 3.
We thus have
Rxo<(y1)ylj> = ¢*Cp, o (—1)7 for 0 < j < 3.

Since R, is an R-linear combination of unipotent characters, Lemma [£.2.8 shows that
q2 : CD4’Yi0 = Rxo (yl) = RZ’U (91_1) == Rxo (yl) - q2 . <D4ryioa
so we get (p,7, € RNR, that is, we have (p,vi, € {£1}.
As an analogue to Proposition [£:2.5] we obtain the following result.

Proposition 4.2.12 (see [Het22a]). Let G = E7(q) where q is any power of the prime
p=2. Let y1 € UL N OL, be as defined in (£.2.7.1). Fori=1,2, let p,,: F*A; = A;

reg
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4.2. Groups of type E7

be the isomorphism corresponding to the G -conjugacy class of yi in OF,, and let

reg’
€o; = &u; (02,) €Q be defined by E213). Then
€$1 = 51‘2 = 17

that is, the characteristic function Xz, = X4, ,¢,, * G! — Qy coincides with the unipotent

almost character Ry, for i =1,2.

Proof. We set

We := 818983848586 57 €W,

a Coxeter element of W. Thus, the conjugacy class of w. in W is sent to Oe; under
Lusztig’s map (see |3.2.23)). With the notation of 4.2.11] let us now evaluate (4.2.11.1))
with g = y; and w = w.. Using CHEVIE [MiChv], we get c1, (we) = ¢7, ¢z (we) = ¢° and

Cay (wc) = Cgq (wc) = q7/2, so we have

|0y, NBEweB{| - [Car (11)]
By |

= Y c(wo)Ru(yr) = 4" (1 + Coi + 26), (4.2.12.1)
z€X(W)

where &, (p,7i, € {£1}. We want to apply Lemma Recall that the longest element
wo of W (with respect to the length function on W determined by IT = {ay,..., a7} C RT)
is characterised by the property wo(R") = —R™, so —wo(II) = II, and —w defines a
graph automorphism of the Dynkin diagram of G. But the only such automorphism is the
identity, so —wg(;) = a; for 1 <i < 7. Let us choose a representative wy € Ng(To)”
of wg € W (cf. [2.1.20). Tt follows from Lemma that woylwo—l € Oy, N Bow:By.
Since F'(wo) = wp and F(y;1) = y1, the uniqueness of expressions in the sharp form of
the Bruhat decomposition [Car85, 2.5.14] implies that woy1tg ' € O,y NBEw BY'. Thus,
the left side of is strictly positive, so £ # —1, and we must have £ = +1. 0O

Corollary 4.2.13. Let xg € X(W) be as in{d.2.11 and y; be as in (4.2.7.1). The values of

R,, at elements of ﬁfgg are given by the following table, where we denote the G -classes

inside ﬁfgg by giving the corresponding elements of Ag(y1) in the top line of each column.

]

Ll V)

v

)
N

Ry, ¢ —-¢ ¢ -¢

Proof. We have seen in that

R, ((yl)glﬂ) = CI2CD4%O(—1)j for 0 < j <3,
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4. Simple groups of exceptional type

where (p,v, € {£1}, so we only have to show that (p,7, = +1. To see this, let us

take j = 2 above and set ] := (yl)@f € ﬁfgg. We evaluate (4.2.11.1)) with g = | and
w = we = $152---s7 € W. By Proposition [£.2.12] and in view of the values of the

characteristic functions x, and xg, given in the almost characters R,, and R,,

both take the value —¢'/? at Y], so we obtain

0, NBiweB{| - [Car (y1)]
IB{|

=m(yp,we) = ¢ (1+ (o, — 2) = ¢ (CpyYip — 1)-

Hence, the sign (p,7i, cannot be —1, so it must be +1. O

Remark 4.2.14. As described in |3.2.21} the isomorphisms ¢, : F*A; = A; (i = 1,2)
are determined by choosing one of the four G¥-conjugacy classes inside ﬁf;g. Now

that we know the values of R,,, R;, and R;, at any regular unipotent element, we can

explicitly compute m(u,w.) for any u € ﬁf;g (where w. = s189 - - s7, as before). We get

4q7 if j =0,
m((yl)yljawc): o
0 ifje{1,2,3}.

Thus, among the Gf-conjugacy classes contained in ﬁrlzg, the class of y; is the unique one
whose elements satisfy the condition @ in (c), and we declare the Gf'-conjugacy
class of y; as the good class among the G'-classes inside ﬁfgg.

But note that, in contrast to the case of Eg with p = 3, there is another G¥-conjugacy
class inside ﬁfgg which is stable under taking inverses (namely, the one parametrised by

72 € Ag(y1)), so this criterion alone does not specify the G'-class of y;.

Example 4.2.15. We can now give the values of the unipotent characters in the family

{[512,], [5124), E[i\/q], Ez[-iy/q]} € Uch(GF)

at the regular unipotent elements. For u € ﬁf;g, we have

[512¢](u) = —[5124](u) = %(Rm (w) + Ray(w));
Erliy/3)(u) = —Er[—iy@)(w) = — 1 (Re, () — Ray(w).

The values of R,, and R,, are obtained from Proposition 4.2.12| (and 4.2.9)), so it is easy

to compute the values of the four unipotent characters above at elements of ﬁf:g. They

are given in Table where, as usual, we denote the G¥'-conjugacy classes contained in
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4.2. Groups of type E;

0L, by writing the corresponding element of Ag(y1) = (7;) = C4 in the top line of each

reg

column.
1 % U b
[512!] g? 0 —q” 0
5124] —¢” 0 d” 0
E7[i\/q] 0 —i¢g”” 0 iq?

E7[-iy/q) 0 i 0 —ig"”

Table 4.6.: Values of unipotent characters in the exceptional family for E7(q) at regular
unipotent elements, where ¢ is a power of p = 2

Values of unipotent characters at unipotent elements for E;(¢)

Let us come back to the situation in the beginning of this section, where p is any prime
(and G is the simple adjoint group of type E7 over k = F,, defined over F,, ¢ = p", with
Frobenius map F': G — G). Similarly as for groups of type Eg, we consider the task of
explicitly computing the values of the unipotent (almost) characters of G = E7(q) at

unipotent elements.

4.2.16. Recall the decomposition of Uch(G*") into Harish-Chandra series described in
In particular, we see that 60 of the 76 almost characters R, (z € X(W)) are of
the form Ry with ¢ € Irr(W). Computing their values at unipotent elements of Gl is
equivalent to determining the Green functions of G, and this has been established in
type E7 in all characteristics, see Considering the two z € X(W) which correspond
to the elements of &% in m(d) parametrising cuspidal unipotent characters (cuspidal
unipotent character sheaves), we know the values of Rz|Gfm from the previous results of

this section:

o If p # 2, the support of A, is given by (the closure of) a non-unipotent class of G,
so x4, (and, hence, R,) is identically 0 on GI ..

o If p =2, the values of R, are obtained from Proposition [4.2.12| (as R,(g) = 0 for
any g € GF'\ ﬁrfgg).

The 14 remaining z € X(W) give rise to unipotent character sheaves A, € G"™ which

are simple constituents of a complex Kﬁ,,z € # G, with J as in (b) or c), and
with (X, &) a cuspidal pair for Ly: If J = {so, s3, 84, S5}, there is a unique such cuspidal

pair for Ly; if J = {s1, s2,..., 56}, there are two such cuspidal pairs, but the ¥ involved
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4. Simple groups of exceptional type

is the same for both pairs. In this way, any of these 14 elements z € X(W) uniquely
determines J, which in turn uniquely determines ¥ C L, and with the same argument
as in we see that Rx’GuFm = 0 if ¥ does not contain any unipotent elements; this
happens for J = {s2, $3, 4, 85} whenever p # 2, and for J = {s1, s2,...,S6} whenever

p # 3. Summarising:

e If p > 5, we only need to consider the 60 unipotent uniform almost characters
Ry|gr for ¢ € Irr(W). Their values can be obtained via Liibeck’s electronic
library [Liib].

o If p = 3, the values of the 60 almost characters Ry (¢ € Irr(W)) at unipotent
elements have been determined by Geck in |Gec20b]. In addition, there are four
x € X(W) for which R;|gr is non-zero, associated to J = {s1,52,...,56} as in

4.2.2(c); their values are not yet known.

o Ifp =2, we have to consider 72 almost characters R;|gr : The Rg|qr (¢ € Irr(W))
are known, again due to |Gec20b]. The two = € %%Y{V) paramegl:ising cuspidal
unipotent character sheaves give rise to non-zero functions Ry|gr , whose values are
obtained from Proposition Finally, there are 10 addition;rluelements of X(W)
for which Ry|gr is non-zero; they arise from the subset J = {s2, 53,54, 55} C S as
in [4.2.2(b), and their values are not yet known.

The case where p =3

4.2.17. Let p = 3, J = {s1,82,...,86}, and let w € R3 be the primitive 3rd root of

unity that we fixed in . In order to compute the four non-zero RE‘Gfm for
x € X(W) \ Irr(W) corresponding to (J, £1, (w, 3)), (J, 1, (w?,3)) € Gw, we need to
consider the corresponding four i € /\/’5 under the generalised Springer correspondence
(see Remark [3.4.24)). By the results of [Lus84b] (see also [Spa85]), these i are

(ﬁregaw)7 (EG,OJ), (ﬁregaw2)7 (E67W2)7

where Ag(u) = () = C3 for any u € Oy U Eg, so we denote the local systems by the

values of the corresponding characters of Ag(u) at @, as usual. We then have
T((Oreg,w)) = 7((Eg,w)) = (L, O0,w),  T((Oreg,w?)) = 7((Eg,w?)) = (L, G, w°),

where 0 C Ly is the regular unipotent class, and where Ay, (u) = (u) = C5 for u € 0.
Identifying X(W) with Gw (see Corollary , the correspondence x < i for the above
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4.2. Groups of type E7

x,1 is then given by

(J,1, (w,3)) <> (Oreg,w), (J,—1,(w,3)) <> (Eg,w),
(J,1, (w2 3)) < (ﬁreg,wQ), (J,—1,(w? 3)) & (Eg,w?).

Let us denote the almost characters R, with x corresponding to
(J,l,(w,?))), (Ja_lv(wa3))v (']717("‘-)273))7 (J7_1a(w273))>

by
Regwa)y  Begw-1)  Reg21s  Regw?,—15

respectively.

4.2.18. We keep the setting of Let us fix isomorphisms ¢f : F*(w) = w and
<p5“2 : F*(w?) = w? which induce maps of finite order at the stalks of w, w? at any element
of ﬁg . If x is one of the four elements considered in and z < i € V&, we define
the isomorphisms p4,: F*A; = A, Pac A = A as in and set @, = P4,
Xe = XAgypo- We now apply [3.4.23)and use the notation there; setting ¢(w) := ¢(J, (w,3))
and ¢((w?) := ¢(J, (w?,3)), we thus obtain

Regwajlar, = ¢*C(w)X(p,py) and Reglo—jlar, = ¢°C(w) X (£ w)-
Using CHEVIE [MiChv] (see Remark [3.2.18)]), we get
X(breg) = YO + 0V Eow) a0d X(gg) = Viggw),

so we have

REg[w,I] ’ani = q3<(w)yv(ﬁreg,w) + qsg(w)Y(Eg,w) and

o (4.2.18.1)
Reglw—1)lar . = € C(w)Y(Egw)-
Similarly, replacing w by w?, we obtain
Regpzler = @)Y 6,02 + °CW%)Y(gg w2 and
(4.2.18.2)

Fo= q6C(w2)YV(E6,w2)'

uni

Using |3.4.11 and arguing as in 4.2.10, we see that we have Rgy, 1) = Rggu2,1) and

Regjw,—1) = Reglw2,—1)- Thus, applying ‘complex conjugation’ to the equations (4.2.18.1)),

REg[w2,71]|G
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4. Simple groups of exceptional type

we obtain

RE w? | F.:q3' (w)'Yﬁre,w +q5'<(w)'YEw and
ol AIG s (Greg ) (Box0) (4.2.18.3)

REg[w2,—1]|GF = q6 ' (w) ’ }/(E67(4))'

uni

Hence, we must have

(W) Viggw) = S Viegwry and (@) Vigrpw = (@A) Vipen)  (4218.4)

We also see that Rggp, 1)lgr and Rgg21lgr . vanish outside of ﬁ’r};g U EL, while

REG[M,—I]‘ani and REG[W27_1]’G5ni vanish outside of Ef. Since Ag(u) = (u) = Cj for
u € ﬁ’fgg UEL, both ﬁr};g and E[’ split into three GF-conjugacy classes, so both of ﬁf;g
and Ef contain (at least) one G-class which is stable under taking inverses. Let us
fix representatives y; € ﬁfgg and y2; € Ef which are G'-conjugate to their respective
inverses. (As it will turn out, y; and yo; are in fact uniquely determined by this require-
ment up to GF-conjugacy, see Remark below, but we do not know that at this

point.)

4.2.19. In the setting and with the notation of 4.2.18, we now apply [3.4.19(2), as in
4.1.250 So for any w € W and any u € GF ., we have

uni’

_ 0w BEwBE| - [Cgr ()

m(u, w) BF = Z czx(w)Ry(u), (4.2.19.1)
| 0 | zeX(W)
where
c(w)= > {xg x} Trace(Ty, V).
¢€lrr(W)
We define
w12281'82-83-S4~S5‘86'87€W and w212281'82'83-S4~S5‘86€W.

These are reduced expressions for wi, woy, and w1, wey are of minimal length in their
conjugacy classes in W; furthermore, under Lusztig’s map (see , the class of wy is
sent to Oreg, and the class of woq is sent to Eg.

(i) For u € OF

reg> We get

m(u, w1) = 1y (W1) + Ceglw,1)(W1) Reg 1) (W) + cgglw2 1) (w1) Rgg w2 1) (w)-

Using CHEVIE [MiChv], we see that ciy, (w1) = ¢ and cggp,17(w1) = Ceglw? 1) (w1) = q*.
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In view of (4.2.18.1)) and (4.2.18.3]), we thus obtain

m(u,w1) = (14 ()Y {0y (0) + C@) - Vg (@) for u € Oy,

Since we have chosen y; € ﬁf;g so that it is Gf'-conjugate to yl_l (see 4.2.18|) and since

Rgg[w,17 is an R-linear combination of unipotent characters, we have

Ry (1) = Reglo) (1) = Regln (1) € R,

so (4.2.18.1)) implies that {(w)Y(ﬁregM (y1) € R. The latter being at the same time a root
of unity, we must have ((w)Y(g,., ) (¥1) € {£1}. We get

0< m(y,wi) =q" (1+ 20(W)Y(Gre,0) (1)),

and it follows that ((w)Y{g,.,w)(¥1) = +1. So we have

Regfon) (1) = Regle (1) = ¢ (4.2.19.2)

Now recall from @ that Y(g,., ) and Y4, »2) are up to scalar multiplication deter-
mined by the linear characters of Ag(y1) = (7;) which take the respective values w and
w? at 7;. Using ([4.2.19.2)), we can thus give the values of Reglw,1) and Rggp2,1) at all
elements of ﬁrlgg; see Table where the G -classes inside ﬁf;g are described by giving

the corresponding element of Ag(y1) = (7;) = C3 in the top line of each column.

1 it P
Regwy) ¢ wq

Reguey @@ W wq

y
3 W23
3

Table 4.7.: Values of Rgy,, 1) and Rggp,2 1) on ﬁrig for E7(q), ¢ a power of 3
(ii) For u € EL, we have

m(u, wa1) = Ciy (wa1) + C¢7,1(w21)R¢7,1(u) + Chor o (w21)R¢27,2 (u) + Coo1,3 (w21)R¢21,3 (u)
+ CEgw,1] (w21)RE6[w,1] (u) + CEglw,—1] (le)REg[w,fl} (u)

+ CEglw2,1) (wa1) Reg w2 17 (1) + cegluz,—1) (wa1) Reg w2, —1) (1)

Using the known values of the Ry(u) for ¢ € Irr(W) (see [Gec20b]) and (4.2.18.1),
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(4.2.18.3)), this evaluates to

m(u,w) = (¢° + ¢°) (14 (@) Yiggw) (1) + (@) - Viggw) (u))  for any u € EF,

Arguing exactly as in (i) (just with y2; instead of y1), we see that

5

Regw1)(¥21) = Reg2a)(y21) = ¢°  and  Regp -1 (y21) = Regpez, 1 (y21) = ¢

This yields all the non-zero values of R, +1), REg[w2,+1] at elements of EL; they are
given by Table (with the analogous conventions as in (i), with respect to yo; instead
of y1). Thus, Tables and contain all the non-zero values of the four unipotent

almost characters R, +1), REgw2,+1) at elements of GE..

1 U U5
Regwy) ¢ wg® WP
Reguzy @ @@ wg®
Regiw—1)  4° wg®  w?¢f
Rege—1) ¢° w?¢® wgf

Table 4.8.: Values of Rgg[, +1) and Rgg,2 41) on Ef for E7(q), q a power of 3

Remark 4.2.20. This completes the determination of the values of unipotent characters
at unipotent elements for groups of type E7 in characteristic p = 3. Note that the only
assumption which we made on the representatives y; € ﬁ’é’g and yo1 € EL is that they
are GI -conjugate to their respective inverses. Since any almost character is an R-linear
combination of unipotent characters, we see from Tables and that both ﬁfzg and

EL contain a unique G¥'-class which is stable under taking inverses: the one containing

Y1, Y21, respectively. Furthermore, we have

3¢" ifi=0,
m((yl)yliawl) =
0 ifie{1,2},

and

3(¢® +¢°) ifi=0,
m((y21)g517w21) =
0 if i € {1,2}.

Thus, the GT'-class of 31 (respectively, y21) is the unique one inside ﬁ’r};g (respectively,

EL) which has a non-empty intersection with B{'wiB{' (respectively, Bfwa1BE), so 1
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and yo1 satisfy the condition @ in|3.2.23

The case where p = 2

4.2.21. We now assume that p = 2. In view of [£.2.16] we thus have to consider the subset
J = {s2,53,54,55} C S and the 10 unipotent almost characters R;|gr for z € X(W)
corresponding to an element of Gw as in [4.2.2(b). Our argumentati(;;l will be similar
(although more elaborate) as in the case of Eg with p = 2 discussed in

If x € X(W) corresponds to one of the 10 elements (J,¢,(—1,2)) € Gw where
€ € Im(Wa(Ly)), we write Rp,|q := R;. The character sheaves A, € G™ associated
to these x € X(W) are the simple constituents of the complex thz € MG where
Y = Z(Ly).0y, with 0y C L the regular unipotent class and & = 11X & the unique
cuspidal local system on ¥. Hence, each of the x € X(W) above corresponds to some
i€ ./\/'(l?r under the generalised Springer correspondence (see Remark [3.4.24); we have
7(i) = (Ly, Op, &) € ME, and i is in the image of the embedding

Irr(Wg(Ly)) — NE. (4.2.21.1)

Following Spaltenstein [Spa85] (and using his notation for the irreducible characters of
Wg(Ly) = W(B3) and for the unipotent classes of G, except that we write &g C G for
the regular unipotent class, as usual), the embedding (4.2.21.1)) is given by

(3,0) = (Oreg, —1),  (0,3) = (Er(a1), 1), (2,1)+ (Ez(az),—1), (1,2) (Es,—1)
(21,0) — (Dg, —1), (0,21) = (Dg(a1),—1), (12,1) — (Ds+As, —1)
(1,12) = (D5, —1), (12,0) — (Dy+A;,—1), (0,1%) — (Dyg,—1).

We already know that any of the R;|gr above vanishes outside of the 10 unipotent

classes ¢ occurring in (€, —1) in this list (see|3.4.23] Corollary |3.2.17)).

4.2.22. (We still assume that p = 2.) For any u € ﬁfgg, we have Ag(u) = () = C4, so
F acts trivially on this group, and ﬁf;g is the union of four Gf-classes. Given any of
the other 9 (F-stable) unipotent classes ¢ C G appearing in and any v € 0 we
have Ag(u) & Cs, so F again acts trivially on this group, and & is the union of two
G''-conjugacy classes. We use Mizuno’s notation [Miz80| for the representatives for the
unipotent classes of G¥', with one exception: In order to be consistent with we
still define y; as in ; since we will only need properties of y; up to G¥-conjugacy,

this does not make any relevant difference in view of Lemma Thus, representatives
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4. Simple groups of exceptional type

for the GF-conjugacy classes inside the above ¢F" are given as follows.

Oreg: Y1, Y7, Y8, Y9;  E7(a1): yio,y12;  Er(a2): w13, 9155 Ee: yo1,922;  De: 28, Y30
De(a1): ya1,ya3; Ds+A1: ysg,ya0;  Ds: ys2,ys3:  Da+Ar: yrr,yre;  Da: yss, yse-

We would like to single out a representative y; in each of these classes, following [3.2.23
So if & C G is a unipotent class as above and if C' C W is a conjugacy class of W
which is sent to & under Lusztig’s map, we want to choose y; € & F in such a way that
its G''-conjugacy class Oy, C0O I has a non-empty intersection with B wB{ for some
(any) w € C of minimal length among the elements of C. For now we declare any such
y; €0 F to be good. (It will turn out later that there is a unique good y; in each or
above, see Remark below. Recall that we have already shown this for y; € &%

reg’
see Remark [4.2.14])

Lemma 4.2.23. In the setting and with the notation of [4.2.22), the representatives

Y1, Yo, Y13, Y21, Y28, Y41, Y38, Y52, Y17, Y85

are good.

Proof. If a € R* is of the form a = v, + iy + ...+, with 1 <iyp <ip < ... < iy < 7,
it will be convenient to write w;,4, 4, := ua(1) € Uy C Up. The strategy for the proof
is as follows. Given any y; as in the lemma, we construct an element g; € GT such
that gjngj_1 = Ui, Uiy * - u;, where 1 < iq,..., 0, <7 (with m and i1, ...,4,, depending
and use CHEVIE to verify that this is a reduced
expression for w;, w; is of minimal length in its conjugacy class Cy,;, and Lusztig’s map
sends Cy, to the unipotent class of G which contains y;. (Recall that Lusztig’s
map can be obtained via CHEVIE as well, using the code provided in [MiChv, §6].) It
remains to refer to Lemma to deduce that O, N BY ijg # &, thus proving that

y; is good. Whenever we write g; and w; below, we also mean that all of the above

on j). We then set w; 1= s;, 84, - - 5;

m

properties are satisfied, without explicitly mentioning it.
We have done this for the element
Y1 = uiusuzususuguy € O,

reg

in the proof of Proposition In this case, the expression for y; already has the

desired form, so we can just take g1 := 1 and w; := S$1528354858657 € W. Next, we
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4.2. Groups of type E;

consider the element

F
Y10 = ULUU4LU4USUEUT = U ULUUU4UUsUeUT € E7(ar)”.

(The second equality follows from Chevalley’s commutator relations [Che55]; note that
we do not need to worry about the coefficients since 1 = —1 in k.) Accordingly, we set

g10 := 1 and wyg := $15453525452558657 € W. Similarly, we have
F
Y13 = UIUQUZU4UARUS6UGT = U UUAURUsULUsUsUTUsUT € E7(a2)”,

and we set gi13 := 1, w13 1= 5153545255545655575657 € W. As for the remaining y;,
j € {21,28,41,38,52,77,85}, we actually need to construct a non-trivial g; € G¥". Let
us first print Mizuno’s definitions [Miz80| for these y;:

F
Y21 = UIUU4U45Us6UGT € Eg ,
_ DF
Y28 = UIU234U345U245UcUT € Vg ,
F
Y41 = UIU34U245U3456U2456U7 € Deg(ar)”,
F
Y38 = U1U234U345U245U456Us67 € (Ds+A1)",
F
Y52 = U U234U345U456Us67 € D5,
F
Y77 = U1 U23445U23456U34567U24567 € (Da+A1)",

F
Yss = U1U23445U23456U34567 € D4 .

(Note that we do not have to refer to any convention for the choice of certain signs in a

Chevalley basis in the Lie algebra underlying G since k has characteristic 2.) Now let
Wi = Ug, (Dt_q, (Dua,(1) € G for 1 <i < 7.

We have wjuq (1)w; ! = Ug,(a)(1) for any o € R* and 1 <@ < 7 (again using the fact that
1 = —11in k; see [Stel6, Chap. 3]). The principal idea consists in conjugating a given y;
with a suitable product of the w; to obtain an expression of the form wu;, u;, - - - u;,, where
1< 91,...,4m < 7. Let us execute this procedure in some detail for y2;. We start by

conjugating with wg. Since

se(a1) = a1, selag) =asz, se(az+ ou) = as + ay,

se(oa + o) =as+as+as, selas +as) =as, se(as+ a7) = ar,

we get wgyglwgl = uiusuoqugs6usuy, and we have reduced the sum of the heights of the
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4. Simple groups of exceptional type

roots appearing as indices of the u’s. Continuing in this fashion, one possibility to arrive
at an element of the desired form wu; w;, - - - u; is illustrated by the following picture,

where the w; on the left is the element that we conjugate with in the given step:

UTU3U24U45U56U6T

We  ~ UTU3U4U456U5UT
Wwqg 7 ULTU4U2US6U45UT
W5  ~ UTU345U2UsULUT
w3 v UI3U45UUEU3LUT
Wqg 7 UL34USU24UEU3UT
w2 7 U1234U5U4UEU3UT
W1 v U234UsU4LUCUTIIUT
w3 v U4U5U34UCUTUT
Wq M UU45UIUCUIUT
Ws  ~ UU4U3USEUIUT
We  ~  UU4U3USUIUET

wr ~r o UUAU3US U UG

So we set go1 = WrlgWsWaWsW] Wal wswswiwg, Wal ‘= S25845385518¢ and verify that the
conditions mentioned in the beginning of the proof are met. The argument regarding
the other y; is similar to that for ys1, although partly more tedious. So let us just give
it via the following table, where the vector appearing in the second column describes
the product of the w;. (For the representative y41, we need to conjugate with ugg in
the end.) The last column gives the element w; in the form w; = s;,s4, - - - s,,,, so that
gjngj_1 = Uj, Ui, - - - U;,, and that y;, g;, w; meet all the conditions stated in the beginning

of this proof.
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4.2. Groups of type E7

yi 9, €GP w;

yar  (7,6,5,4,3,1,2,4,3,5,4,6) 525453855156

yos  (1,3,4,5,6,7,2,4,3,5,4,1,6,5,2,3) 565785535452

ya1  u24-(2,1,3,4,5,6,7,2,4,5,3,1,4,6,5,3,4,7,6,4,2) 8657525482535485
yss (6,5,4,3,7,6,5,4,1,3,2,4,5,3,4,2,6,1,3,4,5,4,7,5) 535451575582

yso  (1,3,4,5,2,7,6,4,3,5,4,2,7,3,4,1,2,5,3,6) 8554565352

yrr (6,7,5,6,1,3,4,5,2,4,6,5,3,4,2,1,3,4,5,6,4,3,2,4,6,7,4,5,6,7)  S455525357

yss (6,5,1,4,3,4,1,2,7,6,5,4,3,1,2,4,6,7,5,1,6,4,1,3,6,5,7,6) 54528385

(The content of this table may be verified with CHEVIE [MiChv|, using the function
UnipotentGroup.) O

4.2.24. Let us now come back to the situation in [£.2.2I] We fix an isomorphism
©o: F*& = & which induces a map of finite order at the stalk of & at any element
of OF. Let x € X(W) be one of the elements corresponding to (J, ¢, (—1,2)) € Gw
where J = {s2, 83, 84,55} and € € Irr(Wg(Ly)), and let i := (¢, —1) € N& be such that
A; = A,. Thus, & C G is one of the 10 unipotent classes considered in We define
the isomorphisms @4 : F*A; = A, Pa, A = A as in and set p; = Py,
Xz = XA,,p.- Applying the discussion in and setting ( := (s there, we get

Rx’GF — q(dim G—dim 0—dim Z(LJ))/ZCXi' (42241)

uni

For any x € X(W) as above and any unipotent class ¢’ C G considered in [4.2.22 we
use Theorem |3.2.16{and Remark |3.2.18 to obtain the coefficient of Y{g/ _1) in C‘le]GF .

uni

These coefficients are given in Table |4__§|, where ¢’ is given in the top line of the column,
and where the left column gives the irreducible character € of Wg (L) = W(B3) with the
notation of Spaltenstein [Spa85]; furthermore, ®,, (n € N) denotes the nth cyclotomic

polynomial evaluated at q.

4.2.25. We keep the setting of (and . We have already computed the
values of Rp,(30) at regular unipotent elements in Corollary and Table
shows that the other Rp,[q vanish at regular unipotent elements. As for the remaining 9
unipotent classes ¢ C G considered in[4.2.22] we are reduced to determining the functions
Yio,—1): 0F — Q, (see again Table ; note that the values of these functions are
roots of unity. To achieve this, we once more apply the method described in (2):
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4. Simple groups of exceptional type

Ores  E7(a1) Ez(az) Es D¢ Dg(ar) Ds+A;  Ds  Da+Ag D4
3,00 ¢ 0 ¢ ¢ ¢ ¢ 7 ¢ ¢
(0,3) 0 q> 0 ¢ 0 q 0 q° 0 gt
(2,1) 0 0 ¢ ¢ P 0 q° Py PPy P3P
(L,2) 0 0 0 ¢ 0 qr qr 2q" " ¢"0P30
(21,0) 0 0 0 0 ¢ 0 q’ q’ g0, g0,
(0,21) 0 0 0 0 0 q® 0 q® 0 gD,
(12,1) 0 0 0 0 O 0 q® q® g, ¢ P3Pg
(1,12) 0 0 0O 0 0 0 0 & 72 20,
(13,0) 0 0 0o 0 0 0 0 0 g e
0,13) 0 0 0O 0 0 0 0 0 0 ¢

Table 4.9.: Coefficients of Y, _1) in ("' Rp,qlqr  for GF =E;(¢q), g=2"

For any w € W and any u € G . we have

_ [0unBfuwB{| - |Car (u)]

i) B

= Y ca(w)Ry(u), (4.2.25.1)

zeX(W)

where

cx(w) = Z {zg, x} Trace(Ty, Vy).
p€lrr(W)

We will evaluate (4.2.25.1)) with the elements w1, w13, wa1, Waog, W1, W3g, W2, W77, WSs5
of W defined in the proof of Lemma and, given such a w;, with u € &% where € is
the image of the conjugacy class of w; in W under Lusztig’s map . We will thus
also need the explicit values of Ry|sr for certain ¢ € Irr(W). So let us fix any of the 9
unipotent classes & C G above. Then the only pair of the form (&, &) € N§ which is
in the image of the ordinary Springer correspondence Irr(W) < N& is (€, 1). In this
situation, as explained in [Gec20b, 2.7], the values of Ry|sr (for any ¢ € Irr(W)) are

directly obtained from the ordinary Springer correspondence and Lusztig’s algorithm (see
Theorem [3.2.16, Remark (3.2.18)), using the CHEVIE [MiChv] functions UnipotentClasses
and ICCTable. Specifically, we have

7. (E7(a1),1), 274 — (Ez(az),1), 21}, — (Eg, 1), 35, — (Dg, 1), 210, +— (Dg(a1), 1),
168, — (D5+A1,1), 189, — (D5,1), 844+ (Ds+A1,1), 105, 5 (Dy,1)

under (3.2.13.4). The Ry|sr that we need below are given in Table in the appendix.
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4.2. Groups of type E7

Proposition 4.2.26. Let 0 € {E;(a1),E7(a2), Es, Dg, Dg(a1), Ds+A1, D5, Dy+A1, Dy}
Let y; € OF be the good representative, and let Y € OF be the other representative (see

4.2.22) (4.2.23|). Then, in the setting of [4.2.24) we have
Yio—1y(y;)) =1 and (Yip_1)(y;) = -1

Proof. We keep the setting and notation of Let us first note that the assertion on
y; implies the one on y;. Indeed, for any & and y; € & F as in the proposition, we have
Ag(y;) = Cq, so it follows from the discussion in that Yip _1)(y;1) = Yo —1)(y;)-

It therefore suffices to consider the elements y; in Lemma [£.2.23] We will evaluate
m(y;,w;) for j € {10,13,21,28,41,38,52,77,85}. Let us explain this in detail with
respect to wip € W and y19 € E7(a1)f". For x € X(W), we see from Theorem and
Corollary that R, (y10) can only be non-zero if A, = A; for i = (€0,&) € N& with
Ez(a1) C O, so we only have to consider the four pairs i = (Oreg, 1) and (E7(ay),+1)
(since the two cuspidal character sheaves A, corresponding to the pairs (Oeq, i) are

identically zero outside of Oeg). We have
Ri,(y10) =1 and Ry (y10) =¢
(see Table in the appendix). Furthermore, Table shows that
Rp,(3,0)(W10) =0 and  Rp,(03)%10) = ¢*CY(Es(ar),—1) (Y10)-
So we get
m(y10, wio) = c1, (wio) + 7 (W10)q + p,[(0,3) (W10) 4> CY(Er (ar),—1) (Y10)-
Using CHEVIE, we see that ¢, (wig) = ¢°, ey (wio) = 0 and cp,((0,3)) = q%, so we obtain
m(y10,w10) = (1 + CY(Eq(ar),—1)(H10)) -

On the other hand, we have

’Oylo N nglOBg| ) |OGF (y10)|
B |

m(y10, wio) =
so the root of unity (Y{(g,(4,),—1)(%10) can only be £1. Since Oy, N B wgBY # o by

Lemma [4.2.23) we must have (Y(g,(4,),—1)(y10) = +1. Evaluating the other m(y;,w;) is
similar, but there are more R,(y;) which can possibly be non-zero; we thus also need to
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4. Simple groups of exceptional type

compute more c,(w;). The necessary information to get the R, (y;) (depending on the
unknown Y/ _1)(y;), where & is such that y; € &) can be obtained from Table and
Table As before, the ¢, (w;) are computed using CHEVIE; for the sake of completeness
we have included their required values in the appendix, see Table So we just give
the results for the remaining m(y;,w;) below, where 94 := (Y45 _1)(v;)-

m(y13, w13) = (1 + Vg (ay)) - q",

m(yz1,wa1) = (1+ Yg) - ¢*(q + 1),

m(yas, wag) = (1 +Up,) - ¢° (g + 1),

m(yar, wa) = (1 + Ipg(ay)) - ¢ (g + 1),

m(yss, w3s) = (1+Ipy1a,) - ¢ (g +1),

m(ys2, ws2) = (1+9p,) - ¢'°(q* +2¢ + 1),

m(yrr, wrr) = (1+9p,4a,) - ¢ (¢" +2¢° +2¢° + 2¢ + 1),

m(yss, wss) = (1 +9p,) - ¢"°(¢° + 3¢ + 5¢" + 7¢° + 8¢° + 8¢* + 7¢° + 5¢* + 3¢ + 1).

In each case, we conclude that 1+9J4 > 0, which forces the root of unity ¥4 = (Y{s _1)(y;)
to be +1. O

Remark 4.2.27. For ¢ C G and y;,y; € O0F as in Proposition we can of course
also compute m(y;, w;) instead of m(y;,w;) in the proof of the proposition; we just have
to replace (Y(g _1)(y;) = 1 by (Y{g _1)(yjr) = —1. This shows that the G'-conjugacy
class of y; does in fact have an empty intersection with Bo w; B!, so the G-conjugacy
class of y; is indeed the unique one in & F consisting of good elements in the sense of
4.2.22)

4.2.28. We are now in a position to explicitly compute the values of the 10 unipotent
almost characters Rp,[q at unipotent elements for the groups G = E;(q) with ¢ = 2",
where J = {s2, 53, 54,55} C S and € € Irr(Wg(Ly)). Indeed, recall that these functions
have non-zero values only at elements of one of the 10 classes considered in [£.2.22] Their
values at elements of these classes are given as follows. If & = 0, we can refer to
Corollary (as RD4[E}|ﬁ£g = 0 whenever € # (3,0)). If & C G is one of the other
9 unipotent classes above and y; € € Fis the good representative (see Lemma ,
the values Rp,(¢(y;) are given by Table while one has to multiply the entries of this
table by —1 in order to obtain Rp,q(y;)-

Combined with (see also the overview given in , this completes the

determination of the unipotent characters at unipotent elements for the groups G = E7(q)
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4.3. Groups of type Gg

where ¢ is any power of any prime p.

4.3. Groups of type G,

In this section, we assume that G is the simple group of type Gg over k = F,, defined
over F, (where ¢ is a power of p), with corresponding Frobenius map F': G — G. We
fix an F-stable Borel subgroup By C G and an F-stable maximal torus Tg C Bg. Let
Z = (X,R,Y,RY) be the root datum attached to G and T (where X = X(Ty) and
Y = Y (Ty)), with underlying bilinear pairing (, }): X x Y — Z. Let R C R be the
positive roots determined by By 2 Ty, and let II = {a1, a2} C R be the corresponding
simple roots, IV = {aY, ay } be the corresponding simple co-roots. We choose the order
of a1, g in such a way that the Dynkin diagram of G is as follows:

aq a9
Gy =10

(Thus, aq is the short simple root, s is the long simple root. This differs from the
convention in |[Lus84aj 4.8], but we want to conform with the notation in [CR74], [Eno76|,
[EY86] and [His90] since these will be our references for the conjugacy classes and
character tables for groups of type Gz.) Let € = ((o;, O‘iv>)1<z',j<2 be the corresponding
Cartan matrix and W = NG(TO)/T0 be the Weyl group of G with respect to Ty. As in
[His90, p. 96], we adopt the names for the irreducible characters from |Car85, p. 412].
Furthermore, let Uy = Ry (Bg) be the unipotent radical of By, so that By is the semidirect
product of Uy and T (with Uy being normal in By). As described in F induces
a p-isogeny of root data

p: X =X, A= AoF|r,,

as well as a bijection R — R, a + af, so that p(af) = ga for all a € R (since F: G — G
is a Frobenius map with respect to an Fg-rational structure on G). The assignment
a +— al restricts to a graph automorphism of the Dynkin diagram, which is necessarily
the identity since the Dynkin diagram does not have any non-trivial graph automorphisms
(and again due to our assumption that F is a Frobenius map). Hence, G* is the non-
twisted group Gs(q) and o = idw. We are thus in the setting of Section and adopt

the further notation from there.

4.3.1. We have |X(W)| = 10 and |Irr(W)| = 6. The set Irr(W) is partitioned into three

families. Two of these families consist of a single character; the third family /7 consists
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4. Simple groups of exceptional type

of four characters, and we have |M(Gr,)| = 8. We fix the bijections
Uch(GF) = X(W), pr zp, (4.3.1.1)

and
X(W) S G 2 A, (4.3.1.2)

according to Corollary As usual, we will often write p, € Uch(G*") for the unipotent
character corresponding to z € X(W) under (4.3.1.1).

There are exactly four cuspidal character sheaves Ay, As, Az, A4 in G, and all of them
are in G0, see [LuCS4) 20.6] for p > 5 (that is, p is good for G), and [Sho95a, 7.6]
for p < 3; as noted in the A; (1 < i < 4) are thus automatically F-stable. Let
F1 = {21, ¢2.2, 81 3,973} € Irr(W) be the unique family with four elements, so that
Gr, = 63. In view of [LuCS4, 20.6] and [Sho95a), §7], all the elements z; € X(W) for
which A, is a cuspidal (unipotent) character sheaf (1 < i < 4) are in M(Gr,) = M(S3).
We have

I = (176)7 T2 = (9275)7 xr3 = (g37w)7 Ty = (9370/2),

where for j = 2,3, g; denotes a j-cycle in &3, ¢ is the sign character of &3 or its restriction
to Ce4(g2), w € R3 is a fixed primitive 3rd root of unity which we assume to be the same
as the one in and the irreducible characters of Cg,(g3) = (g3) are denoted by their
values at g3. We number the A, As, A3, Ay € G in such a way that

Ai=A, forl1<i<A (4.3.1.3)

The description of the (F-stable) cuspidal pairs (X, &) corresponding to these four A;
(see depends on whether p =2, p =3 or p > 5. It is provided by Shoji in
[Sho95al, §6, §7], where the root of unity A4, € R associated to A4; (see[3.4.3|(c)) is also
determined. From Corollary it follows in particular that Aa, = A, for 1 <i < 4.
We have

Since these values are pairwise different, it is easy to compare our numbering of the
A; with Shoji’s: It coincides in the case where p > 5 (see [Sho95a, 6.8]) but not for
p =2 or p=3. (We prefer to have the uniform notation A; = A;,, 1 < i < 4, in any
characteristic.)

On the other hand, denoting the cuspidal unipotent characters as in |[Car85, p. 478],
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4.3. Groups of type Gg

we have

Pz = G2[1]7 Pzy = GQ[_l]a Pzz = GQ[WL Pzy = GQ[w2]'

Then the almost characters R,,, 1 < i < 4, are given by

Ryy = §([d2,1] + 2[¢ 5] + Go[1] — 3[d2 2] — 3Go[—1] + 2[¢f 5] + 2Go[w] + 2Go[w?]),
Rq, = 5 ([¢21] — Ga[1] — [p2,2] + Go[—1]),

Ray = 5 ([¢2,1] — [¢) 3] + Ga[1] — [¢] 5] + 2Ga[w] — Ga[w?]),

Ry, = §([d21] = [¢1 3] + Ga[1] — [¢7 5] — Galw] + 2Ga[w?]).

The generic character tables of Go(p™) (n € N) are completely known, due to the work of
Chang—Ree |[CR74] for p > 5, Enomoto [Eno76] for p = 3, and Enomoto—Yamada [EY86]
for p = 2. The character tables of Gy(p™) for p > 5 are not explicitly printed in [CR74]
but in [His90, Appendix B], so we will henceforth use the latter as our reference for the
case where p > 5.

Hence, in order to evaluate the almost characters R,, (1 < i < 4) at a given element of
G!', we merely need to match the names of the unipotent characters in terms of Harish-
Chandra series with the ones chosen in the above references. The relevant information to
this end can be obtained almost entirely by just looking at the degrees of the irreducible
characters. In fact, the only ambiguity arises from two pairs of unipotent characters,
namely, {[¢] 3], [¢] 3]} and {Ga[w], Go[w?]}. (The characters in either of these sets have
the same degree.) Now note that [¢] 3], [¢] 3] appear with the same multiplicity in any of
the Ry, (1 < i< 4), so the computation of these almost characters does not even require
a distinction between [¢] 5] and [¢] 5]. Furthermore, it turns out that the characters
Go|w], Go[w?] take the same value at any element of G that we will consider below, so
distinguishing them will once again not be necessary for our purposes.

For any = € X(W), let ¢,: F*A, = A, be an isomorphism as in . (We will
make an explicit choice for the cuspidal character sheaves below, depending on p.) We

denote by
Xz = XAz, 0z - GF — @E

the corresponding characteristic function. We thus have
Ry = Euxe for € X(W), where &, = &.(02) € Q,, |&] =1, (4.3.1.4)

see ([3.4.12.2). So for any of the four (F-stable) cuspidal pairs (X, &) for G (corresponding

to one of the four cuspidal character sheaves A;), our main task in this section is to single
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4. Simple groups of exceptional type

out a ‘good’ GF'-conjugacy class inside X" (cf. [3.2.22] [3.2.23)), which thus specifies the
choice of ¢;,. Once this is accomplished, the determination of the scalar &, = &;,(¢q;)

immediately follows from evaluating the almost character R, at an element of the above

GF'-conjugacy class inside ©F.

Type G, in characteristic p > 5

4.3.2. Let us assume that p > 5, that is, p is a good prime for G. The description of
the cuspidal (unipotent) character sheaves on G in terms of the corresponding cuspidal
pairs for G (see Proposition Remark is provided by [Sho95a, §6] and (the
proof of) [LuCS4, 20.6]. It is given by the following list, where we use the notation of
Remark and the convention that ‘s’ always denotes a semisimple element of G and

‘u’ a unipotent element of G. The names for the unipotent classes of G are as in [Car85].

(a) Ay < (u,<) where u is an element of the class Ga(a1); we have Ag(u) = &3, and ¢

is the sign character of Gs.

(b) A2 <+ (su,s) where Cg(s) has a root system of type A; x Aj, and u is regular
unipotent in Cg(s); we have Ag(su) = (su)y = (5) = Cy (where su = 5 is the
image in Ag(su) of su, s, respectively), and ¢ is the non-trivial linear character of
Ag(su).

(c) A; <> (su,<;), i = 3,4, where Cg(s) has a root system of type Ag, and u is regular
unipotent in Cg(s); we have Ag(su) = (su) = (5) = Cs, and ¢3, ¢4 are the linear
characters of Ag(su) which satisfy ¢3(57) = w, ¢1(57) = w? (with w € R3 as in
131).

(a) The character sheaf Ay is supported by the closure of the (F-stable) unipotent
class Ga(a1) € G. By (a), there is a natural choice for a Gf'-conjugacy class inside
Ga(a1)", the one consisting of split elements. If we fix such a split element ug € Ga(ay)¥,
we know that F acts trivially on Ag(ug) = &3. In particular, Go(a1)¥ splits into three
G'-classes. Furthermore, since A is a cuspidal character sheaf and the algebraic group
C& (up) is of dimension 4, we see from the discussion in that

|Ca(u0)"| = |Ac (uo)lq" = 6¢".

The G-class of ug inside Go(a1)? is uniquely determined by this property according to
[His90, Appendix A.4], and a representative for this Gf-class is denoted by uz in loc.
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4.3. Groups of type Gg

cit., so let us also write ug instead of ug from now on. We obtain

2 . _
—q¢* if ¢g=-1 (mod 3),
Ry, (us) = 9 .
¢ if ¢g=+1 (mod 3).

As described in |3.2.21} let ¢, : F*A; = A; be the isomorphism corresponding to the
choice of uz. Then the characteristic function x, := X A1,z G! — Qy is given by

5(a)q2 if g ~qr (us), for some a € Ag(us),
Xz (g) = ) P
0 if g ¢ Ga(ar)",

where ¢ is the sign character of Ag(u3) = &3. Evaluating R,, and x,, at uz, we conclude
that
-1 if ¢g=-1 (mod 3),
§ay (90&?1) = {

+1 if g=+1 (mod 3).

(b) The character sheaf Ay is supported by the closure of the (F-stable) conjugacy
class ¥ C G containing elements of the form su = us, where s € G is a semisimple
element such that Cg(s) has a root system of type A; x Ay, and where u is a regular
unipotent element of Cg(s). Let su = us € €*. Since Ag(su) = Cy is generated by the
image of su, I acts trivially on Ag(su), so €* splits into two G''-conjugacy classes;

moreover, as u is regular unipotent in Cg(s), we have
dim Cg(su) = dim Cgg 5)(u) = rank Cg(s) = rank G = 2,
so the argument in [3.2.22|(b) shows that
Ca(su)’| = |Ac(su)l - |Cg (su)"| = 2¢°.

By inspection of the tables in |[His90, pp. 147, 159], we see that there are only two
GF'-classes whose elements have this centraliser order, so we conclude that these must
be precisely the two G¥'-classes into which €F splits. The Gf-class of s is uniquely
determined by the property that Cc(s) has a root system of type A; x A, so we only
need to specify u. We take

Up = uaz(l)u2&1+a2(1) € U(I;7

so that with the notation in [His90, p. 142], k3 3 = sup = ugs is a representative for our
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4. Simple groups of exceptional type

chosen Gf'-class inside €7'. Let (g,: F*Ay = Ay be the corresponding isomorphism;

the associated characteristic function Xz, := X4,.0,, : G — Qy satisfies

Xas(K2,3) = q.

On the other hand, evaluating R, at ka3 gives

RJ)Q (k2,3) =4dq,

so we conclude that &;,(¢z,) = +1, independently of the congruence of ¢ modulo 3.

(c) Finally, consider the cuspidal character sheaves As, A4, supported by the closure of
the (F-stable) conjugacy class € containing elements of the form su = us, where s € G
is a semisimple element such that Cg(s) has a root system of type Ay, and where u is a
regular unipotent element of Cg(s). Let su = us € €. Since Ag(su) = Cs is generated
by the image of su, we know that F acts trivially on Ag(su), so €% splits into three
GP-conjugacy classes; the same argument as in (b) yields that C&(su) is a (unipotent)

algebraic group of dimension 2 and
Ca(su)| = [Aa(su)| - [C&(su)"| = 3¢>.

The tables in [His90, pp. 147, 159] show that there are exactly three Gf'-conjugacy
classes whose elements have centraliser order 3¢, so these three classes must be the ones
into which €% splits. Following [His90, p. 142], exactly one of these classes is stable
under taking inverses; a representative for said G¥'-class is denoted by k32 in loc. cit.
(Thus, k32 is GF-conjugate to k’g_%) Let g, : F*A; = A; (i = 3,4) be the isomorphisms
corresponding to the choice of k3 2; the characteristic functions xz, := x4, ., : G- Q
thus satisfy
Xa; (k32) =q fori=3,4.

Evaluating the R,, (i = 3,4) at k32 gives
Ry, (k32) =¢q fori=34,

and we conclude that &, (vz,) = &z, (pz,) = +1, independently of the congruence of g

modulo 3.
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Type G, in characteristic p = 3

4.3.3. Let us assume that p = 3. By [Sho95a, 7.2], the description of the character
sheaves A; (1 < i < 4) in terms of the corresponding cuspidal pairs for G is as follows
(with the same conventions as in [4.3.2)):

(a) A1 <> (u,<) where u is an element of the class Ga(a1); we have Ag(u) = Cq, and ¢

is the non-trivial linear character of Ag(u).

(b) Ay < (su,s) where Cg(s) has a root system of type A; x Ay, and u is regular
unipotent in Cg(s); we have Ag(su) = (su)y = (5) = Cy (where su = § is the
image in Ag(su) of su, s, respectively), and ¢ is the non-trivial linear character of
Ag(su).

(¢) A; + (u,s;), i = 3,4, where u is a regular unipotent element in G; we have
Ag(u) = (@) = C3, and 3, <4 are the linear characters of Ag(u) which satisfy
3(7) = w, (7)) = w? (with w € R3 as in 4.3.1)).

(a) The character sheaf A; is supported by the closure of the (F-stable) unipotent
class Ga(a1) € G. For u € Ga(ay)¥, we have Ag(u) = Oy, so F induces the identity map
on this group, and Ga(a;)? splits into two G¥'-conjugacy classes. By the argument in
3.2.22(b), Ca(u)° is a unipotent algebraic group (of dimension 4), and we have

Ca(u)"] = [Ac(u)| - |C&(u)"| = 24*.

There are exactly two G¥'-conjugacy classes whose elements have this centraliser order
(see [Eno76, Table VII-1]), so we know that these must be the two classes into which
Ga(ay)* splits. We pick

Uo = Ua1+a2(1)u3a1+a2(*1) € GZ(al)F

(an element of the G¥'-class denoted by ‘A4;” in [Eno76]). Let o, : F*A; = A; be
the isomorphism corresponding to this choice of ug, so that the characteristic function

Xa1 *= X A1, ° G — Q satisfies

Xz1 (UO) = q2'

On the other hand, we have
Rxl (UO) = q2a

and we conclude that &;, (¢z,) = +1.
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(b) The character sheaf Ay is supported by the closure of the (F-stable) conjugacy
class ¥ C G containing elements of the form su = us, where s € G is a semisimple
element such that Cg(s) has a root system of type A; x Aj, and where u is a regular
unipotent element of Cg(s). Let su = us € €*. By checking the centraliser orders in
[Eno76, Table VII-1], we see that this determines the G¥-conjugacy class of s uniquely;
moreover, since Ag(su) = (5u) = Cy, I acts trivially on this group, so € splits into

two Gf'-conjugacy classes. As u is regular unipotent in Cq(s), we have
dim Cg(su) = dim Cgg () (u) = rank Cg(s) = rank G = 2,

so the argument in |3.2.22(b) shows that
[Ca(su)"| = [Ag(su)lg® = 2¢°.

There are exactly two G''-classes whose elements have this centraliser order (denoted by
‘By’ and ‘Bj’ in [Eno76]). We set

UO 1= Uy g (1) U3y +an (—1) € Ug and  sp:=ay(—1)ay(—1) € Tg,

so that gg := soup = ugsyg € € is a representative for the class ‘B’ in [Eno76).
Let ¢g,: F*Ay = As be the isomorphism corresponding to the choice of gg, and let
Xz = XAz, puy G — Q;. We obtain

Ry, (90) = ¢ = Xa2(90);

so we have &, (pz,) = +1.
(c) The character sheaves Az, A4 are supported by ﬁreg = Gyni- We fix the represen-
tative
— F F
o 1= Uq, (1) - uay (1) € Uy N O,

reg-

(The G¥-class of ug is named ‘Az’ in [Eno76]; it is the unique one inside ﬁfgg which
is stable under taking inverses.) Let ., : F*A; = A; (i = 3,4) be the corresponding
isomorphisms. Then the characteristic functions xz, = Xx4,,, G - Q (i = 3,4)
satisfy

Xas (0) = Xay (U0) = g

On the other hand, we have

ng (UO) = RZ‘4 (UO) =4q,
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4.3. Groups of type Gg

so we get &4 ((sz) = &y () = +1.

Type G, in characteristic p = 2

4.3.4. Let us assume that p = 2. By [Sho95a, 7.2], the description of the character
sheaves A; (1 <7< 4) in terms of the corresponding cuspidal pairs for G is as follows
(with the same conventions as in [4.3.2]):

(a) A1 <> (u,<) where u is an element of the class Ga(ap); we have Ag(u) = &3, and ¢

is the sign character of Gs.

(b) As > (u,<) where u is a regular unipotent element in G; we have Ag(u) = (u) = Cy
(where w denotes the image of u in Ag(u)), and ¢ is the non-trivial linear character
of Ag(u).

(c) Ai > (su,s;), ¢ = 3,4, where Cg(s) has a root system of type Ag, and wu is regular
unipotent in Cg(s); we have Ag(su) = (su) = (5) = Cs, and ¢3, ¢4 are the linear
characters of Ag(su) which satisfy ¢3(57) = w, ¢4(3u) = w? (with w € R3 as in
1.3.1).

(a) The character sheaf A; is supported by the closure of the (F-stable) unipotent

class Ga(a1). For u € Ga(a1)¥, we have
632 Ag(u) 2 Ac(u)” = Ca(w)" /e, (u)F.
Here, C&(u) is a unipotent group of dimension 4, so
ICa(w)] = [Ae(w)"| - |C&(w)"] < [Aa(u)| - |C&(w)"| = 6¢".

From [EY86, Table IV-1], we see that there is a unique G*-conjugacy class whose
elements have centraliser order 6¢* (named ‘A3;’ in loc. cit.). As in [EY86], we take
— F F
UQ = Uay+as (1) - U2a;+ax (1) € Uy N Ga(ar)

as a representative for this class, and let ¢, : F*A; = Aj be the corresponding iso-

morphism. The characteristic function xz, := x4,,¢,, GI' — Qy satisfies

X, (10) = ¢°.

On the other hand, we have
Ry, (uo) = (=1)"¢%,
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4. Simple groups of exceptional type

where n € N is such that ¢ = p”. We conclude that &;, (pz,) = (—=1)™.
(b) The character sheaf As is supported by the unipotent variety Gy = ﬁreg C G.
We fix the representative
Ug = Ua, (1) - Uay (1) € OF

reg"

(The G¥'-class of ug is named ‘As;” in [EYS86].) Let ¢, : F*As = As be the corresponding
isomorphism. Then the characteristic function Xz, := XA4s,¢,, : G! — Qy is given by

q if g ~gr ug,
— . F - F .
Xz2(9) =4 —q ifge Oreg 18 nOt G -conjugate to uo,
0 ifg¢ ﬁfgg.

On the other hand, we have
Rmz <u0) =q,

80 &ay (Pay) = +1.

(c) The character sheaves As, A4 are supported by the closure of the (F-stable)
conjugacy class ¥ C G containing elements of the form su = us, where s € G is
semisimple such that Cg(s) has a root system of type Ag, and where v is a regular

unipotent element of Cg(s). For su = us € €F, we have
Cs = Ag(su) 2 Ag(su)" = Calsu)" /cg, (su)F-
Here, C¢ (su) = Cg 5) (u) is a unipotent group of dimension 2, so
Ca(su)| = [Aa(su)"] - | (su)”| < |[Aa(su)| - [C&(su)"| = 3¢*.

There are three G'-conjugacy classes whose elements have centraliser order 3¢, so these
must be exactly the three Gf-classes into which € splits. Only one of these three
classes is stable under taking inverses, and we fix a representative gy = sgug = ugsg of
this Gf-class. (In [EYS86], s is denoted by ‘h(w,w,w)’, ug by ‘yo’, and the G'-class
of go is named ‘B(0)") For i = 3,4, let ¢, := @a,: F*A; = A; be the isomorphism
corresponding to the choice of gy € €', and let x,, := x Aipa,- From the tables in [EY86],

we see that

Re4(90) = Rz, (90) = ¢ = Xa3(90) = Xaa(90)-

We thus have &g, (0rs) = &y (@) = +1.

Remark 4.3.5. For any prime p and any (F-stable, unipotent) cuspidal character sheaf
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A =1C(%, &)[dim X]#C on G (where (X, &) is an F-stable cuspidal pair for G), we have
aimed to choose the representative gg € £ in accordance with the guidelines in
3.2.23} First of all, for any F-stable cuspidal pair (3, &) for G, it was possible to find a
representative go € £ which is G¥-conjugate to 9o ! and we have always chosen such
a go. Together with the requirement for the centraliser order |Cgr(go)| to be maximal
among the elements of £, this uniquely specifies the G¥-class of gy inside 3" in each
of the cases [1.3.2)a),(c), [4.3.3|c) and [.3.4(a),(c). (In particular, the representative us in
4.3.2((a) is split unipotent.)

As for the remaining cases, we see that except for (a), > is always a conjugacy class
consisting of regular elements of G. So we know from c) that the G-class of g
inside ¥ will be uniquely determined by the requirement @ The fact that our chosen
representatives in [£.3.2(b), [£.3.3((b) and [4.3.4b) satisfy this condition can (for instance)
be deduced from evaluating with g = gg and w = w, as this is non-zero if and
only if Og4, has a non-empty intersection with Bl w.B{', in view of .

Finally, let us consider the case a). Here, the applicable conditions in
are not sufficient to single out a ‘good’ G¥'-class contained in &% (where & = Ga(ay)).
However, using CHEVIE [MiChv §6], we find the (unique) conjugacy class of W which
is mapped to ¢ under Lusztig’s map (see [3.2.23)). Choosing an element w of minimal
length in this conjugacy class and evaluating with this w and with elements of
OF then shows that the GF'-class of our chosen ug is characterised by the property that

Oy, has a non-empty intersection with Bf wB{ (see (V') in [3.2.23).

4.4. Groups of type F,

In this section, let G be the simple group of type Fy4 over k = F,, defined over F,
(where ¢ is a power of p), with corresponding Frobenius map F': G — G. We fix a
maximally split torus Ty C G and an F-stable Borel subgroup By of G which contains
Ty. Let Z = (X, R, Y, RY) be the root datum attached to G and Ty (so X = X(Tp) and
Y =Y (Ty)), with bilinear pairing (, ): X x Y — Z. Let Rt C R be the positive roots
determined by By 2 Ty, and let II = {a1,...,a4} € R' be the corresponding simple
roots, IV = {ay, ..., @y} be the corresponding simple co-roots. We choose the order of

Qi,...,aq in such a way that the Dynkin diagram of G is as follows:

(65} a9 Qs Y
F4 o eo——9o o

Let € = ({aj,))1<i j<a be the associated Cartan matrix and W = NG(TO)/T0 be the
Weyl group of G with respect to To. We identify W with a subgroup of Aut(X) (via
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2.1.4) and write s; 1= wq, (With w,, as defined in[2.1.2)) for 1 < i < 4; so W is a Coxeter
group with Coxeter generators S = {s1, 2, $3, 84}. In order to be able to refer to Kondo’s
character table [Kon65| (cf. , we identify

§1 4 TO, ST, S3&ra, S44d,

that is, 70,7 correspond to reflections in the long simple roots a1, a9, and a,d to
reflections in the short simple roots as, as. We then denote by d; the irreducible
character of W corresponding to the jth irreducible character of degree d in Kondo’s
character table [Kon65| with the above identification. (This is the same notation and
convention that Lusztig uses in |[Lus84aj, 4.10].) Furthermore, let Uy = Ry (By) be the
unipotent radical of By, so that By = Uy x Ty. As described in [2.1.19] F induces a
p-isogeny of root data
e: X =X, A= Ao F|g,,

as well as a bijection R — R, a + af, so that p(al) = ga for all a € R (since F: G — G
is a Frobenius map with respect to an [Fg-rational structure on G). The assignment
a +— al restricts to a graph automorphism of the Dynkin diagram, which is necessarily
the identity since the Dynkin diagram does not have any non-trivial graph automorphisms
(and again due to our assumption that F is a Frobenius map). Hence, G' is the non-
twisted group F4(q) and o = idw. We are thus in the setting of Section and adopt

the further notation from there.

4.4.1. By [Lus78, 3.31] and [Lus80, 1.9], we have |X(W)| = 37, | Irr(W)| = 25, and the
set Irr(W) is partitioned into 11 families, as follows: There are 8 families consisting of a
single character, 2 families consisting of 3 characters (the associated sets M (Gr) have 4
elements each), and then there is one family consisting of 11 characters (the associated
set M(Gr) has 21 elements). We fix the bijections

Uch(GF) = X(W), pr zp, (4.4.1.1)

and
(W) S G 2 A, (4.4.1.2)

according to Corollary For x € X(W), we will often write p, € Uch(G") for the
corresponding unipotent character under (4.4.1.1)). There are exactly seven cuspidal
character sheaves A;, A, ..., A7 in G, and all of them are in G"™, see [Sho95a, §6, §7].
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In particular, they are all F-stable (see|3.4.1)). Let
Fa:={121,92,93, 12, 13,41,43, 44, 61, 62,161 } C Irr (W)

be the unique family with 11 elements, so that Gr, = &4. By [Sho95a, §6], all the
x € X(W) which parametrise cuspidal (unipotent) character sheaves on G under (4.4.1.2))
are in M(Gr,), and they are given by

T = (17)‘3>7 T2 = (9278)7 €T3 = (géag)u

Ty = (937‘0)7 Ty5 = (g3aw2)a Te = (9471)7 xT7 = (947 _1)

Here and throughout this section, w and i are assumed to be the same primitive roots
of unity of order 3 and 4 as in and the notation for the labels in MM (S,) is as in
[Lus84al, 4.3]: Thus, 1 denotes the trivial element of &y; for 2 < j < 4, g; is a j-cycle in
S4; furthermore, gh € &4 is the product of two 2-cycles with disjoint support. We shall
keep these elements fixed from now on. The irreducible characters of their centralisers
are then named as follows: First, A* denotes the sign character of &, = Cg,(1). If
g € {g3,94}, we have Cg,(g9) = (g), and we identify the irreducible characters of this
group with their values at g. Next, we have Cg,(g2) = (g2) X (1) where 7 € &4 is the
transposition whose support is disjoint to the one of go; then ¢ is the restriction of A3 to
Cs,(g2). Finally, the group Cs,(g5) is isomorphic to Dg (the dihedral group of order 8),
and ¢ is the restriction of A* to Cs, (g4). (This is sufficient to describe the seven pairs
above; we refer to |[Lus84a, 4.3] for the notation regarding the other elements in M(S,).)

As usual, it will be convenient to order the Ay, Ao, ..., A7 € G in such a way that
A=A, for 1<i<7, (4.4.1.3)

even though this is different from the numberings chosen in [Sho95a, §6, §7], [Gec21, §7].
The (F-stable) cuspidal pairs (X, &) corresponding to these seven A; (see
depend on whether p =2, p =3 or p > 5. They are provided by Shoji [Sho95al §6, §7].
The root of unity A4, attached to 4; (see [3.4.3{c)) is also determined in loc. cit., but
note that the property A4, = 5\11 (see Corollary [3.4.8) alone is not quite sufficient to
distinguish the A;. Indeed, we have

S0 Az; = Ag,. It is argued in |[Gec21) §7] to which cuspidal pairs the two character sheaves

Aq, As correspond, and our description of the results in loc. cit. below will of course take
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this into account.
On the other hand, using the notation of [Lus80| 1.9] (see also [Lus84a, p. 372]) for

the cuspidal unipotent characters, we have

Pz = Ffll[l]v Pzy = F4[_1]7 Pzz = Ffl[lL

Pzy = F4[W]7 Pzs = F4[W2]v Pzg = F4[i]’ Pz7 = F4[_i]'

For any x € X(W), let ,: F*A, = A, be an isomorphism as in . (We will

make an explicit choice for the cuspidal character sheaves below, depending on p.) Let
- eld o)
Xz ‘= XAz, 0z G" — Qé
be the corresponding characteristic function. So by (3.4.12.2)), we have
Ry = Exxe for z € X(W), where & = &(p2) € Q,, |&] = 1. (4.4.1.4)

For 1 < @ < 7, the scalars &, € @; in (4.4.1.4) (based on an explicit choice for the
isomorphisms ¢, ) have been determined in all characteristics, due to the work of Marcelo
and Shinoda [MS95] (for those A; whose support consists of unipotent elements) and
Geck (see [Gecl9, §5] for p = 2 and |Gec21, §7] for all the remaining cases). The purpose
of this section is to describe these results (summarised in Proposition below) and
partly sketch the methods used in the proofs.

4.4.2. Let us describe the partition of the 37 elements of Gw into Harish-Chandra series,
following [Lus78, 3.31] (and [Lus80, 1.9]). The set &3y, is non-empty for the following
subsets J C S: J =0, J = {s2,s3} and J = S.

(a) The set J = & gives rise to the 25 elements in the principal series, that is, the
elements in the image of the embedding Irr(W) — Gw, ¢ — (&, ¢, (1,1)).

(b) Let J = {s2,s3} C S, so that the group LJ/z(LJ) is simple of type Bs. We have
Sw, = {(~1,2)}, and the relative Weyl group Wg (L) = W5/ is isomorphic to
W (B2). So there are 5 elements in Sw of the form (J, ¢, (—1,2)), € € Irr(Wg(Ly)).

(c) For J =5, the set Gy , = 6%y consists of the elements (1,8), (1,24), (—1,4), (i,4),
(—i,4), (w,3), (w?,3) parametrising the seven cuspidal unipotent characters of G¥

(and the seven cuspidal unipotent character sheaves on G).
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Type F, in characteristic p > 5

In this subsection (i.e., in below), we assume that p > 5, that is, p is a good

prime for G.

4.4.3. The conjugacy classes of F4(q) have been determined by Shoji [Sho74]. There is
one cuspidal character sheaf whose support is contained in the unipotent variety Gyupi,
and the corresponding scalar in is determined by Marcelo and Shinoda |[MS95].
The remaining six cuspidal character sheaves are dealt with by Geck [Gec21, §7]. (In
fact, the unipotently supported character sheaf is considered there as well.)

Following [Gec21, 7.5], let us consider the F-stable unipotent conjugacy class ¢y C G
which is named F4(a3) in [Car85]. We have dim Cg(u) = 12 and Ag(u) = &4 for any
u € Op. A representative for the split unipotent G¥'-conjugacy class inside &} (see
[3.2.22|(a)) is denoted by x14 in [Sho74, Table 5]. We shall write ug for this element, that

is,
Up = “a1+a2(1)Ua2+2a3(1)ua2+2a3+2a4(*1)ua1+a2+2a3+2a4(*1) € Ug N ﬁ({

(with the structure constants N, g for o, f € R as in [Sho74]). Thus, F' induces the
identity on Ag(up) = &y, and ug is conjugate to ug' in GF. It follows that &} is the
union of 5 conjugacy classes of GI" (parametrised by the conjugacy classes of G4, or by

the partitions of 4). Representatives for these G -classes are denoted by x14, ..., x5 in
[Sho74]. We have

Ag(a14)" = 6y (cycle type (1111)),
Ac(z15)" = Dg (cycle type (22)),
Ag(z16)F =2 Cy x Oy (cycle type (211)),
Ag(z17)" = Cy (cycle type (4)),
Ag(z18)" = C5 (cycle type (31)).

The relevance of the conjugacy class 0y C G is that for any of the seven cuspidal pairs
(3, &) for G, the unipotent parts in the Jordan decompositions of the elements of ¥ are
in 0p. By [Sho95a, (6.2.4)] (and [Gec21] §7]), the correspondence between the cuspidal
(unipotent) character sheaves on G and the cuspidal pairs for G is described by the
following list, using the notation of Remark as well as the convention that ‘s’ is
always a semisimple element of G and ‘v’ is always a unipotent element of G. The names

for the unipotent classes of G are as in |Car85].
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4. Simple groups of exceptional type

(a) A1 + (u,<) where u € 0p and ¢ is the sign character of Ag(u) = &4.

(b) Ag <> (su,s) where Cg(s) has a root system of type C3 x A and u € Cg(s) N Op;
the group Ag(su) is of the form (5u) x (a) = (5) x (a) = Cy x Cy (where sSu =3 is
the image in Ag(su) of su, s, respectively, and a is another element of Ag(su) of

order 2), and ¢ is the linear character which satisfies ¢(su) = —1, ¢(a) = 1.

(¢) A3« (su,s) where Cg(s) has a root system of type By and u € Cg(s) N Op; we
have Ag(su) = Dg (the dihedral group of order 8), and ¢ is the sign character of
Ds.

(d) A; & (su,q) for i = 4,5, where Cg(s) has a root system of type Ay x Ao,
and where u € Cg(s) N Oy is a regular unipotent element in Cg(s); we have
Ag(su) = (su) = ( ) =2 Cs, and ¢4, ¢5 are the linear characters of Ag(su) which
satisfy ¢, (37) = w, ¢5(3U) = w?.

(e) A; < (su,g;) for i = 6,7, where Cg(s) has a root system of type Az x Aj,
and where u € Cg(s) N O) is a regular unipotent element in Cg(s); we have
Ag(su) = (51) = (5) =
satisfy ¢(su) =i, ¢7(su) = —i.

= (4, and ¢, ¢7 are the linear characters of Ag(su) which

4.4.4. Following [Gec21}, §7], for each of the cases (a)—(e) in we now describe the
choice of a ‘good’ G¥'-conjugacy class inside the given class of G and sketch how the
corresponding scalars &, (1 <i<7) in are determined in loc. cit. As is also
noted there, the determination of the scalar &, yields the values of all the unipotent
characters at unipotent elements of GF'.
(a) We have
Ar = Ay 2 IC(6, 6)[dim 6] #C,

where & is the F-stable cuspidal local system on ¢ described by the sign character A3
of Ag(u) = &4 (via[3.2.20(b)). Of course we choose the split unipotent element

Uy = Ua, +as (1) Uag+20s (1) Uag+205+204 (— 1)Uy +an+205+2a4(—1) € Ug N ﬁ{

and its G-conjugacy class inside ﬁ’{ to define the isomorphism ¢, : F*A; = A; via
3.2.21 (as in [Gec21, 7.8], see also [MS95, p. 309]). The associated characteristic function
Xa1 7= XArgs, : G! — Qy is given by

"N3(a) if g ~gr (ug)s for some a € &,
Xz (g) = . P
0 ifgé¢ oy .
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4.4. Groups of type F4

By |Gec21, 7.8], the scalar &, = &z, (ps,) in can be determined using the method
described in (1) Indeed, since ug is G'-conjugate to ug ', we know that &,, € {1}
(see . In order to fix the sign, one can consider the unipotent character p,, = F4i]
and write it as a linear combination of almost characters: With the notation of
we have x,(ug) = 0 for any z1 # = € X°(W) and {x¢,2} = 0 for any x € X'(W), but
{z¢, 1} # 0. Since the values of the Green functions for groups of type F4 are known,

one can compute Ry(ug) for any ¢ € Irr(W) and obtains
Falil(uo) = —1¢"(e,d® — 1) € Z.

Since ¢ is odd, we have

q4(£x1q2 - 1) = 5361 -1 (mOd 4)7

50 &, = +1. As noted in |Gec21], the scalar &;, could also be determined by making use
of Kawanaka’s results on generalised Gelfand—Graev representations [Kaw86, §4] and the
fact that these are known to hold for any power g of a good prime p for G, due to Taylor
[Tay16).

(b) Consider the character sheaf Az = A, ).
such that Cg(s) has a root system of type Cs x Aj. (By the results of [Sho74], this
condition uniquely determines the G¥'-conjugacy class of s.) There is a natural isogeny
B: Spg(k) x SLa(k) — Ca(s), and j is defined over F,. Let u € Cg(s)f; be in the

uni

Let s € G be a semisimple element

image under 8 of the unipotent class of Spg(k) x SLa(k) whose elements have Jordan
type (4,2) x (2), and denote by ¢ the (F-stable) G-conjugacy class of g := su = us.
Then

dimCg(g) =6, |Ca(9)|=4¢® and € =9%"".

Moreover, F acts trivially on Ag(g), and there exists some 1 # a € Ag(g) such that
Ac(g) = (g) x (a) = Ca x (.

Hence, the set €7 splits into four G¥-classes. We have {(¢')? | ¢ € €} = 0p. It is
shown in |Gec21} 7.11] that one can choose an element gy € € F with the property that
g8 = up € 0}, and this condition uniquely determines the G¥-conjugacy class of gg. In
order to have a consistent notation, we also write ag instead of a from now on, so that

Ac(g0) = (gg) X (ap). Let & be the local system on € parametrised by the irreducible
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4. Simple groups of exceptional type

character of Ag(go) which takes the value —1 at g, and +1 at ag. Then
Ay 2 1C(F, &)[dim €]7C.

Let pg,: F*Ay =5 As be the isomorphism corresponding to the GP'-class of go, and
let Xuy 1= XAs,pu, G — @, be the associated characteristic function. Recall from
Theorem that x., is identically zero outside of €. Hence, y, is completely
described by the following table, where a G¥-conjugacy class inside ¢’* is named by the

corresponding element of Ag(go) in the top line.

1 a0 9o goao

The determination of the scalar &, = &;,(pq,) is rather subtle: As a first step, applying
the results in [Gec21), §3] to compute the Ry (¢ € Irr(W)), Geck evaluates the character
pz, = Fa[—1] at the elements of € and deduces ¢,, € {£1} from the fact that Fy[—1] is
rational-valued. Then, in order to fix the sign, he exploits certain congruence relations
to compare suitable character values at elements of ¢ and 0" (recall that we have
Oy = {9? | g € €}), using the known values of unipotent characters at elements of & .
With the choice of g as above, one obtains &;, = +1; we refer to |Gec21), 7.11] for the
details. Let us just note that gy is G¥-conjugate to 9o 1. Indeed, since g8 = up, we have
962 = ual, which is Gf-conjugate to ug; so both go,ga1 € €¥ have the property that
their squares are G¥-conjugate to ug, so they must be G¥-conjugate as mentioned above.

(c) Consider the character sheaf Az = Ay ).
such that Cg(s) has a root system of type By. (The G¥'-class of s is uniquely determined

Let s € G be a semisimple element

by this property.) There is a natural isogeny 5: Cg(s) — SOg(k), defined over F,. Let
u € Cg(s)E . be such that the (unipotent) element B(u) € SOg(k) has Jordan type
(5,3,1), and let € be the (F-stable) conjugacy class of G which contains the element
su = us. For g € €F, the group Ag(g) is isomorphic to Dg, so € splits into five
GP'-conjugacy classes. There exists an element gy € € for which F acts trivially on
Ac(go) (which is equivalent to Cg(go)f" being of order 8¢®), but there are in fact two
GP-classes inside €¥ whose elements have this property — as the value of the scalar
Exs = Eus(0zy) turns out to be the same regardless of which of these two classes one
chooses to define ¢,,: F*A3 = Az, we just pick out a representative gy from one of
them. Denoting by & the local system on % described by the sign character sgn of
Ag(go0) = Dg, we have
A3 2 1C(E, &)[dim €]7C.
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4.4. Groups of type F4

Let ¢z, : F*A3 = Az be the isomorphism corresponding to the choice of gy, and let
Xzs 1= XAs,pug ° G* — Qy be the associated characteristic function. Then

q*sgn(a) if g ~gr (go)s for some a € Dg,
Xxg(g) = . P
0 ifgg €.

It is easy to see that R,, = R,,, so one can argue exactly as in[3.4.18| to get &, € {+1}.
Using the results of [Gec21} §3] to compute the uniform almost characters Ry (¢ € Irr(W))
and, as in (a), considering the unipotent character p,, = F4[i] (but this time evaluating

it at the element gg), Geck concludes that
Falil(g0) = 3¢*(1 — &4,0%) € L.
Since q is odd, we have
(1 —&¢®) =1 &, (mod 4),

which only holds for &, = +1. See [Gec21}, 7.10] for the details.
(d) The character sheaves Ag = Ay, ) and Az = Ay, 2

of the (F-stable) conjugacy class € C G containing elements of the form su = us

are supported by the closure

where s € GI" is semisimple such that Cg(s) has a root system of type Az x Ay and
u € Ca(s)f N OF is a regular unipotent element of Cg(s). We have ¥ = ¢ ~!. Since
Ag(su) = (3u) = Cs, it is clear that F acts trivially on Ag(su), so € splits into three
G!-conjugacy classes. There is a unique G¥-class inside ¥ which is stable under taking
inverses, and we choose a representative gy = soup = ugsg € € of this class (so that gy,
ggl are conjugate by an element of GF'). For i = 1,2, let & be the local system on %
whose isomorphism class corresponds to the irreducible character of Ag(go) which takes

the value w’ at g,. Then
Ay 2 IC(F,&)[dimE)#*C  and A5 = IC(F, &)[dim €]7C.

For i = 4,5, let ¢, : F*A; = A; be the isomorphisms corresponding to the choice of g,
and let Xz, == X4,,,, | G! — Q, be the associated characteristic functions. Then, for
g € €F, the values of x.,, Xz are given by the following table, where we describe the

GF'-classes inside ¥ by giving the corresponding elements of Ag(go) in the top line.
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4. Simple groups of exceptional type

Xzy 4 wq w q

Xas @@ wl¢d wg?

Since go is G'-conjugate to go_l, it follows from that &;,, &, € {1}, and a similar
argument shows that we have in fact &, = &, (by comparing the almost characters R,
and R,.). Expressing the unipotent character p,, = F4[w] as a linear combination of
almost characters, one checks that the assumptions in (1) are met. By evaluating
the uniform almost characters Ry (¢ € Irr(W)) at go, Geck shows that

Falwl(90) = 5(~1 +&ud”) € Z.
Since 3 does not divide g, we have
—1+&,0°=—-1+¢&, (mod3),

so &z, cannot be —1. One thus obtains &;, = &;, = +1. For the details, see |Gec21, 7.6].
(e) The character sheaves Ag = Ay, i

of the (F-stable) conjugacy class ¥ C G containing elements of the form su = us

and A7 = A(,, ;) are supported by the closure

where s € G is semisimple such that Cg(s) has a root system of type Az x A; and
u € Ca(s)f' N OF is a regular unipotent element of Cg(s). We have ¥ = ¢! and
Ag(su) = (3u) = Cy, so F acts trivially on Ag(su). Thus, €7 splits into four G'-classes.

Consider the Coxeter element
We := 815983584 € W.

By [Gec21, 4.9, 4.10], there exists a unique G¥-conjugacy class Co C ¢ such that
Co N BYw.BY # @, which in particular implies that C;' = Cp. So let us choose a
representative gg € Cy. Let &1 be the local system on € described by the irreducible
character of Ag(go) which takes the value i at g, and let & be the local system on ¢
described by the irreducible character of Ag(gp) which takes the value —i at g,. Then

Ag 2 IC(%,&)[dim6)7*C  and Ay 2 IC(F, &)[dim €]7C.

For i = 6,7, let ., : F*A; = A; be the isomorphisms corresponding to the G'-class of go;
the values of the associated characteristic functions Xz, := X4,,¢,, : GF — Q at elements

of € are given by the following table where, as usual, we denote the G¥'-conjugacy
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4.4. Groups of type F4

classes inside " by the corresponding elements of Ag(go).

1 g 9 9
Xos @© 1¢¢ —¢* —ig?

Xzr ¢° —i¢° —q iq

Since gg is GF-conjugate to go_l, one deduces &, = &, € {£1} as in (d), using the
almost characters R,,, R,, instead of R,,, R,,. Fixing the sign is then achieved in a
way similar to the case of E7 with p # 2 (cf. , by considering the Hecke algebra of
GT with respect to the BN-pair (B, Ng(To)") and explicitly evaluating the right side
of the formula (3.4.19.2)). One finds that &5 = &, = +1. We refer to [Gec21, 7.7] for the
details.

Type F, in characteristic p = 3

4.4.5. Let us assume that p = 3. The conjugacy classes of F4(¢) have been determined
by Shoji [Sho74], and the description is very similar to the case where p > 5. The only
difference appears as far as regular unipotent elements of G are concerned, as the set ﬁfgg
of F-stable regular unipotent elements splits into three G'-classes if p = 3 (while it forms
a single G'-conjugacy class in case p > 5). There are three cuspidal character sheaves
whose support is contained in Gyp; (namely, Aj, Ay and As), and the corresponding
scalars &;,, &y, and &, in have been determined by Marcelo and Shinoda [MS95].
As mentioned in |Gec21], 7.12], the remaining four cuspidal character sheaves As, A3, Ag
and A7 can be handled in a way completely analogous to the good characteristic case
and in particular give rise to the same scalars &;,, &zq, &ns and &, in (4.4.1.4); in fact,
this also holds for A and &,,.

The support of the remaining two cuspidal character sheaves A4 and As is the unipotent
variety Guni- (Recall that this is not the case if p > 5.) By |Sho95a, 7.2], A4 and Ajs are
described as follows (with the same conventions as in :

(d) A; <> (u,6), i = 4,5, where u € Oreg; we have Ag(u) = () = C3, and <, g5 are

the linear characters of Ag(u) which satisfy ¢4 (%) = w, ¢5(7) = w?.

Let us set
U = Uay (1)Uay (1) tas (1)ua, (1) € Ug n ok

reg"

(Note that the same choice is made in [MS95| p. 309].) Since Ag(uo) is generated by
uy and F(ug) = ug, F acts trivially on Ag(ug), so ﬁf;g splits into three G''-conjugacy

classes. For j = 1,2, let &; be the G-equivariant F-stable irreducible local system on
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4. Simple groups of exceptional type

Oreg described by the irreducible character of Ag(ug) which takes the value W at .
Then

Ay ZIC(Gyni, 61)[dim Oreg]#E and Az =2 IC(Gryni, &) [dim Geg) .

For i = 4,5, let ¢, : F*A; = A; be the isomorphism corresponding to the G'-conjugacy

class of ug € OF

reg> and let xa, = x4, 4., G — Q be the associated characteristic

function. Then, denoting the G¥-classes inside ﬁ’fgg by the corresponding elements of

Ag(up), the values of x4,, xz; are given by the following table.

2

Xos @@ wl? wg?

By [MS95, 4.2], we have &,, = &, = +1. This can also be obtained with an argument
similar to the one in the proof of Proposition [.1.19]

Type F4 in characteristic p = 2

4.4.6. Let us assume that p = 2. The conjugacy classes of F4(g) have been determined by
Shinoda [Shi74]. The support of five of the seven cuspidal character sheaves is contained
in the unipotent variety Guni, and the scalars &, in for those character sheaves
are determined by Marcelo and Shinoda [MS95]. As far as the remaining two cuspidal
character sheaves A; are concerned, the scalars £, have been determined by Geck, see
[Gec19, §5]. This is achieved by first looking at the base case p = ¢ = 2, using the
known character table of F4(2) (which is contained in the GAP library [Bre22|), and then
extending the result to arbitrary powers ¢ of p = 2 by applying Proposition It
should be noted that this involves some relatively deep computational arguments, as it is
not always easy to identify a conjugacy class in [Shi74] with the corresponding one in
the GAP table, see [Gecl9, 5.2]. However, once this is accomplished, the values of the
almost characters R, with respect to p = ¢ = 2 at the chosen elements in [Gecl9, §5]
can be computed, and one immediately obtains the scalars &;; in by applying
Proposition for any i € {1,2,...,7}. Asin (and with the same conventions),
we first give a list describing the cuspidal (unipotent) character sheaves on G in terms of

the corresponding cuspidal pairs for G, following Shoji [Sho95a, 7.2].

(a) A1 ¢ (u,<) where u € Fy(as); we have Ag(u) = G3, and ¢ is the sign character of
Ss.
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(b) Az ¢ (u,s) where u € Fy4(a1); we have Ag(u) = (u) = Cy, and ¢ is the non-trivial

linear character of Ag(u).

(c) A3 <> (u,s) where u € Fy(az); we have Ag(u) = Dg (the dihedral group of order
8), and ¢ is the sign character of Dg.

(d) A; + (su,;) for i = 4,5, where Cg(s) has a root system of type Ay X Ag, and w is
a regular unipotent element of Cg(s); we have Ag(su) = (5u) = (5) = C3, and «,

g5 are the linear characters of Ag(su) which satisfy ¢4(51) = w, ¢5(30) = w?.

(e) A; <> (u,¢;) for i = 6,7, where u € Oyeg is a regular unipotent element of G; we
have Ag(u) = (u) = C4, and ¢, g7 are the linear characters of Ag(u) which satisfy
() =1, ¢7(u) = —i.

We now look at the cuspidal (unipotent) character sheaves described in (a)—(e) more
closely, following [Gecl19, §5].

(a) The (F-stable) unipotent conjugacy class F4(a3) C G is uniquely determined by
the property that dim Cq(u) = 12 for any u € F4(a3). Let ug € F4(a3)f be the element
denoted by x17 in [Shi74], that is,

U0 = Uay +ag+as (1)Ua+2a2+20a5 (1) Uas+as (1) Uas+205+2a4 (1) € Ug N F4(a3)F‘

(Note that the same choice is made in [MS95} p. 308].) Then |Cq(ug)’| = 6¢'2, and the
G'-conjugacy class of ug is uniquely determined by this property. Thus, the elements
u € Fy(az)? for which F acts trivially on Ag(u) are precisely the elements of the G¥'-class
of ug; in particular, ug must be G¥'-conjugate to Uy ! The GF-conjugacy classes inside
Fi(a3)! are therefore parametrised by the elements of Ag(ug), and Fy(a3)” splits into
three G'-classes. Let us denote by & the G-equivariant F-stable irreducible local system
on F4(a3) whose isomorphism class corresponds to the sign character ¢ of Ag(ugp) = S3.
We have

Al = A(1,>\3) = IC(F4(G3), éa)[dlm F4(a3)]#G.

Let ¢z, : F*A; = A; be the isomorphism corresponding to the Gf'-conjugacy class of ug,
and let g, = X A1,z G — Qy be the associated characteristic function. For g € GF,

we have

0 lf g ¢ F4(G3>F.

It is shown in [MS95, 4.1] that &, = &, (pz,) = 1.

¢bc(a) if g ~gr (ug)y for some a € &3,
Xz (g) =
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(b) The (F-stable) unipotent conjugacy class F4(a;) € G is uniquely determined by
the property that dim Cg(u) = 6 for any u € F4(a1). Let ug € F4(a1)? be the element
denoted by x99 in [Shi74], that is,

Uo = ua2+2a3+2a4(1)ua1(1>u6¥2(1)ua3(1) € U(}; N F4(a1)F'

(The same choice is made in [MS95, p. 308].) Since F acts trivially on Ag(ug) = (wp) = Co,
we have |Cg (up)!'| = 2¢° and F4(a1)* splits into two G'-conjugacy classes. Let & be the
(G-equivariant, F-stable) irreducible local system on F4(aq) described by the non-trivial
linear character of Ag(up). We have

Ay = Ay, ) 2 IC(F4(ar), &)[dim Fy(ar)]#E.

Let ¢, F*As = Ay be the isomorphism corresponding to the G¥-conjugacy class of
ug € F4(ar)?'. Then the characteristic function y, := x Az - G! — Qy is given by

¢ if g € F4(a1)" and g is GF-conjugate to uy,

Xz2(9) = { —¢® if g € F4(a1)¥ and g is not GF-conjugate to ug,
0 lfg §é F4(a1)F.

By [MS95} 4.1], we have &, = &z, (¢z,) = 1.

(c) The (F-stable) unipotent conjugacy class F4(az) C G is uniquely determined by
the property that dim Cg(u) = 8 for any u € F4(az). Let up € F4(az)’ be the element
denoted by x94 in [Shi74], that is,

ug = ualJraz(1)ua2+2a3(1)ua4(1)uas+a4(1) € U(I; N F4(a2)F'
(The same choice is made in [MS95, p. 308].) Thus, |Cq(uo)?| = 8¢%, and F acts
trivially on Ag(ug) & Dsg, so F4(a)¥ splits into five GF-conjugacy classes. Let & be
the (G-equivariant, F-stable) irreducible local system on F4(a2) described by the sign
character sgn of Ag(ug) = Dg. Then

As = Ay, o) 2 IC(F4(az), &)[dim Fy(ag)]#C.

/
99,

Let ., : F*A3 = Ajs be the isomorphism corresponding to the GF'-conjugacy class of
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ug € Fy(ag)¥. The characteristic function y,, := X As,pay | GF = Q is given by

q*sgn(a) if g ~gr (uo)a for some a € Ds,
Xas(9) = F
0 if g §é F4(CL2) .

By [MS95, 4.1], we have &;,(pz,) = 1.

(d) Let € C G be the (F-stable) conjugacy class containing elements of the form
su = us where s € G¥ is semisimple such that Cg(s) has a root system of type Ay x Ag
and u € Cg(s)¥ is a regular unipotent element of Cg(s). Arguing as in |[Gecl9, 5.2], one
finds that there is an element gy = soug = ugsg € € where so has the same property as
s above (which uniquely determines the G¥'-conjugacy class of sg), and where

Uy = U, +as+as (1) Uay +2a2+2a5 (1) Uagtas (1) Uas+205+2a4 (1) € UOF n CG(S)F
is as in (a). With this choice, go is G'-conjugate to gal, and the Gf-class of gq is
uniquely characterised by the above properties (when ¢ = p = 2, it is the one named 120
in the GAP character table). Since Ag(g0) = (go) = Cs, F' acts trivially on Ag(go) and
€T splits into three G'-conjugacy classes. For i = 1,2, let & be the (G-equivariant,
F-stable) irreducible local system on % whose isomorphism class corresponds to the
irreducible character of Ag(go) which takes the value w® at g,. Then

Ay = Ay ) ZIC(F,6)[dim C]*E and A5 = A,

g3.w) —

sw2) 2 IC(Z, &)[dim €]#C.

For i = 4,5, let ¢, : F*A; = A; be the isomorphisms corresponding to the G'-conjugacy
class of gg € €F, and let Xz = XAipu, G! — @, be the associated characteristic
functions. The values of X,,, Xz; at elements of ¥ are given by the following table,
where we describe the Gf-conjugacy classes inside € by giving the corresponding

element of Ag(go) at the top of each column.

Xos ¢F Wit wg?

By [Gecl9, 5.4], we have &;,(vz,) = &zs (0as) = 1.

(e) Consider the regular unipotent class Oreg C G, and let us fix the representative

Up = ua1(1)uaz(l)ua3(1)ua4(1) € U(I; N ﬁF

reg*
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(In [Shi74], up is denoted by w31. The same choice is made in [MS95, p. 308].) Since
Ag(ug) = (ug) = Cy, ﬁf;g splits into four G¥-conjugacy classes. Let & be the G-
equivariant F-stable irreducible local system on &g described by the irreducible character
of Ag(up) which takes the value i at Wy, and let & be the (G-equivariant, F-stable)
irreducible local system on O} described by the irreducible character of Ag(ug) which
takes the value —i at wy. We have
Ag = A(gy i) = IC(Guni, 61)[dim ﬁreg]#Gv A7 = A(gs,—i) = 1C(Guni, &2)[dim ﬁreg]#c‘

For i = 6,7, let ¢, : F'*A; = A; be the isomorphisms corresponding to the G'-conjugacy
class of ug, and let ., : G — @, be the associated characteristic functions. The values
of Xugs Xa, at elements of ﬁfzg are given by the following table where, as usual, we name

the G¥-conjugacy classes inside ﬁfgg by the corresponding element of Ag(ug).

By [MS95} 4.1], we have &, () = Ear (o) = 1.

Assuming again that p is arbitrary, the results of Marcelo-Shinoda [MS95] and Geck
[Gec19], [Gec21] on groups of type F4 described in this section are thus summarised by

the following proposition.

Proposition 4.4.7 (Marcelo-Shinoda [MS95, §4], Geck |Gecl9, §5], [Gec21}, §7]). Let G
be the simple group of type F4, and let F': G — G be a Frobenius map which defines a
(non-twisted) F4-rational structure on G, where q is any power of any prime p. With
the choices for the isomorphisms g, : F*A; = A; in [4.4.4, 4.4.5, 4.4.6| for p > 5, p = 3,
p =2, respectively, let &, == &, (ps,) € Q) be defined by for 1 <i< 7. Then

we have

&, =1 for 1<i<7,

that is, the characteristic function x, = XA, - G — Qy coincides with the unipotent

almost character Ry, for 1 <@ < 7.

Remark 4.4.8. The problem of determining the values of unipotent characters at
unipotent elements for the groups F4(q) (where ¢ is any power of any prime p) has been
solved by Marcelo and Shinoda in [MS95]. Except when p = 2, this follows from the
knowledge of the Green functions for groups of type F4 (see [2.2.5)) combined with the
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4.5. Groups of type Eg

knowledge of the scalars £, in for those cuspidal character sheaves A; whose
support is contained in the unipotent variety. In the case where p = 2, one additionally
needs to compute the five ‘intermediate’ unipotent almost characters R, at unipotent
elements, where z € X(W) corresponds to an element of Sw as in [1.4.2(b).

Hence, together with our results in Section and Section (and since the full
character tables for groups of type Gg are known anyway ), the above problem is completely
solved for the groups Ga(q), Fa(q), Es(q), E7(q).

4.5. Groups of type Eg

In this section, we denote by G the simple group of type Eg over k = F,. We assume
that G is defined over F, C k (where ¢ is a power of p) and that F': G — G is the
corresponding Frobenius map. Let us fix a maximally split torus To C G and an F-stable
Borel subgroup By C G which contains Ty. Let Z = (X, R,Y, R") be the root datum
attached to G and Ty (so X = X(Tp) and Y = Y (Ty)), with underlying bilinear pairing
(,): XxY — Z. Furthermore, let Rt C R be the positive roots determined by By 2 T\,
and let II = {ay,...,as} C R' be the corresponding simple roots, IIV = {ay,...,af}
be the corresponding simple co-roots. We choose the order of aq,...,as in such a way

that the Dynkin diagram of G is as follows:

aq a3 Yy (075 (67 (0744 ag

Es
Qs

Let € = ({aj,a)))1<ij<s be the associated Cartan matrix. As usual, we denote by
Uy = Ry(Bo) the unipotent radical of By. For 1 < i < 8, let u; := uq, be the
homomorphism G, — G whose image is the root subgroup U,, C Uy (see . Let
W = NG(TO)/TO be the Weyl group of G with respect to Ty. Identifying W with a
subgroup of Aut(X) (via and setting s; = wq, for 1 < i < 8 (see2.1.2), W is
thus a Coxeter group with Coxeter generators S = {si,..., ss}, arranged in the Coxeter
diagram with the analogous numbering as in the Dynkin diagram of G printed above
(see[2.1.5]). We use the notation of Lusztig [Lus84a) 4.13] for the irreducible characters of
W (which is based on Frame’s in [Fra70]); see also [GP00, Table C.6 (pp. 415-416)]. By

2.1.19] F' induces a p-isogeny of root data

o: X =X, A= Ao F|p,,
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4. Simple groups of exceptional type

and a bijection R — R, a + af, so that p(al) = ga for all @ € R (since F': G — G is a
Frobenius map with respect to an Fy-rational structure on G). The assignment a — af
gives rise (by restriction) to a graph automorphism of the Dynkin diagram, and since the
only such automorphism in type Eg is the identity, we must have a = af for all & € R, so
G is necessarily the non-twisted group Eg(q) and ¢ = idw. We are thus in the setting

of Section [3.4] and adopt the further notation from there.

4.5.1. By the results of [Lus79] (see also the appendix of [Lus84a|), we have |X(W)| = 166,
| Irr(W)| = 112, and the irreducible characters Irr(W) fall into the following 46 families:
There are 23 families consisting of a single character, 16 families consisting of 3 characters
(the associated sets M(Gr) have 4 elements each), 4 families consisting of 5 characters
(the associated sets 9M(Gr) have 8 elements each), the 2 exceptional families (see |3.4.2)
consisting of 2 characters (the associated sets M (Gr) have 4 elements each) and, finally,
one family consisting of 17 characters (the associated set M(Gr) has 39 elements). As

usual, let us fix the bijections
Uch(GF) = X(W), pr zp, (4.5.1.1)

and
(W) S G 2 A, (4.5.1.2)

through Corollary [3.4.8, We will then also write p, € Uch(G!) for the unipotent
character parametrised by = € X(W) under . There are exactly 13 cuspidal
character sheaves A, As, ..., A3 in G, and all of them lie in G, see [LuCS4, §21]
and [Sho95b| 4.7, 5.3]. In particular, they are all F-stable (see[3.4.1)). The elements of
X (W) which label cuspidal character sheaves under the parametrisation are
given as follows: They are all in the same IMM(Gr,,) where Fig C Irr(W) is the unique
family in W = W(Eg) which contains 17 irreducible characters. We have Gr,, = &5 and
1M (Gr,,)| = 39. Let us fix primitive roots of unity w, i, (5 € R of order 3,4, 5, respectively,
which we always assume to be the same as the ones in As in [Sho95b, 4.7], we set

T = (17)\4)7 xTo = (927 _8)7 xr3 = (937 —(.U), Ty = (937 _w2)7 Ty = (9471)7
Te = (947 _1)7 Ty = (957C5)> xrg = (957C§)7 xTg = (957C§)7

z10 = (95,C3), 211 = (g6, —w), 212 = (g6, —w?), w13 = (gh,€),

where the notation for the labels in 9¥(S5) is essentially the same as the one in [Lus84a,
4.3]: So 1 denotes the trivial element of &5; for 2 < j < 5, g; is a j-cycle in &5, and we
assume that go and g3 have disjoint supports, so that gg := g2g3 € &5 has order 6; finally,
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4.5. Groups of type Eg

g5 € G5 is the product of two 2-cycles with disjoint support. We keep these elements
fixed from now on. Then the irreducible characters of their centralisers are named as
follows: First, let A* be the sign character of &5 = Cg,(1). If g € {g4,95}, we have
Cs,(g9) = (9), and we identify the irreducible characters of this group with their values
at g. If g € {g3, 96}, we have Cs,(g) = (gs) = (g2) % (g3), and we denote the irreducible
characters of this group by their values at gg (i.e., by +1, +w, +w?). The centraliser of gy

can be canonically identified with (go) x &3, and we write the characters of this group as
+1:=(£1) X1, +e:=(+1)Ne, +r:=(+1)Xr,

where the first factor gives the value at g2, and where 1,¢,7 € Irr(&3) are the trivial, sign,
reflection characters, respectively. Finally, we have Cg,(g5) = Ds (the dihedral group of
order 8). Since of the 13 pairs above, 13 = (g}, ) is the only one whose first component
is g5, it will be sufficient for our purposes to say that ¢ is the unique non-trivial linear
character of Cg,(g5) which takes the value 1 at 4-cycles (and refer to [Lus84al 4.3] or
Appendix [B| for the notation regarding the other elements of M(Ss5)). We number the

cuspidal character sheaves A1, As, ..., A3 in such a way that

Aoy =1, Apy=—1, Ay =w, Mgy =w?, Ags =1, Mgy = —,

5\:E7 — <5a 5\x8 = C52a 5\x9 = Cga 5\110 = le» 5‘9011 = —Ww, 5\:E12 - _w27 5\113 - 1

We note that our numbering of the A; coincides with the one in [Sho95b, 4.7, 5.3], in any
characteristic. (This is not quite implied by the property Aa, = S\xi for 1 <i< 13, as

Az, = Azys = 1, but it can be deduced from the tables in [DLM14, Appendix C].) On the
other hand, using the notation of [Lus84al p. 370] for the cuspidal unipotent characters
of G¥', we have

Pz = Eg[l]v Pzy = E8[_1]7 Pzsz = ES[WL Pzy = ES[WQL Pzs = ES[iL
Pz = EB[_i]’ Pz = ES[C5]7 Pzg = E8[<52]7 Pzg = ES[C?]?
Pzi0 = ES[C?]’ Pz11 = ES[*U‘)L Pz12 = ES[*(‘;L Pziz = Eé[l]

For any z € X(W), let us for now fix an isomorphism ¢, : F*A, = A, as in (for

some of the cuspidal character sheaves, we will make an explicit choice later, but this
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4. Simple groups of exceptional type

depends on the characteristic p of k) and denote by
- . F 0
Xa = XAu,p0: GT — Qy
the associated characteristic function. So by (3.4.12.2)), we have
R, = &, for x € X(W), where & = &(p2) € Qy, || = 1. (4.5.1.3)

As in the previous sections, we aim to get hold of the scalars &, (after having chosen
specific isomorphisms ¢,) for x € {x1,z9,...,213}. However, this endeavour appears to
be considerably more difficult than for the other simple algebraic groups of exceptional
type. Especially regarding those cuspidal character sheaves whose support is the closure
of a non-unipotent conjugacy class of G, the tools used in this work do not seem to be
sufficient. One reason for this is the following: For example, recall that in the cases of Eg
with p = 3 and E; with p = 2, we exploited the formula for a suitable element
u € GE . in the support of a given cuspidal character sheaf A; to obtain information on
the unknown scalar &;,, but this heavily relied on the fact that we knew from the outset
that many of the characteristic functions x, (x € X(W)) vanish at u; see Corollary
or Remark These resources are only available for elements in GZ_; however. Hence,
for the cuspidal character sheaves with a non-unipotent support, a different method
seems to be necessary. One might try to find arguments along the lines of |[Gec21], but
at the very least the computations there will presumably be more elaborate. We hope to

treat this elsewhere.

4.5.2. Following [Lus79|, |Lus80, 1.12], let us explain how the 166 unipotent characters
of GF' (respectively, the 166 unipotent character sheaves on G) fall into Harish-Chandra
series by describing the set Gw (see Corollary . The set Gy, is non-empty
for the following subsets J C S: J = &, J = {s2,83,54,55}, J = {s1,82,...,86},
J={s1,82,...,s7}and J = S.

(a) The set J = @& gives rise to the 112 elements in the principal series, that is, the
elements in the image of the embedding Irr(W) — Gw, ¢ — (&, ¢, (1,1)).

(b) Let J = {s2,s3,84,55} C S, so that the group LJ/z(LJ) is simple of type Dy.
We have &y, = {(—1,2)}, and the relative Weyl group Wg(Ly) = W s
isomorphic to W (F4). So there are 25 elements in Gw of the form (J, ¢, (—1,2)),
e € Irr(Wg(Ly)).

(c) Let J ={s1,82,...,56} C S, so that the group LJ/z(LJ) is simple of type Eg. We
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4.5. Groups of type Eg

have 6%, = {(w,3), (w? 3)}, and the relative Weyl group Wg (L) = WS/ s
isomorphic to W (Gz). This leads to the 12 elements (J, €, (w,3)), (J, €, (w?,3)) of
Sw where € runs through the irreducible characters of Wg (Ly).

(d) Let J = {s1,s2,...,87} € S, so that the group LJ/Z(LJ) is simple of type
E7. In this case, we have 6%, = {(i,2),(—i,2)}, and the relative Weyl group
Wa(Ly) = W5// is isomorphic to W(A;) = C,. This leads to the 4 elements
(J,£1,(i,2)), (J,£1,(—1,2)) of Gw.

(e) For J = S, the set 6%, = &% consists of the 13 elements (1,8), (1,120),
(_17 12)7 (17 4)7 (_17 4)7 (wa 6)7 (_wa 6)7 (w2a 6)7 (_w2’ 6)) (<57 5)7 (Cgv 5)7 (Cg’a 5)7 (Céa 5)
parametrising the 13 cuspidal unipotent characters of G (and the 13 cuspidal

unipotent character sheaves on G).

If no confusion may arise, it will sometimes be convenient to use the following notation
below: We write J = Dy, J = Eg, J = E7, J = Eg if Jis asin (b), (c), (d), (e), respectively.
As observed in [GH22|, there are two different conventions in the existing literature on
finite groups of Lie type as far as the labelling of characters of Weyl groups of type F4
are concerned. (We have already encountered this when dealing with the twisted groups
of type Eg in[4.1.5]) A similar thing happens for Weyl groups of type Ga. Since W (Fy)
and W (Gz) occur as relative Weyl groups in (b) and (c) above, let us now specify our

conventions for these groups.

4.5.3. Let J = {s1,59,...,5¢} C S. Thus, the relative Weyl group Wg(L;) = W5/ is
of type Gs. Recall from that W5/7 is a Coxeter group with Coxeter generators

JU{s; JU{s; )
o; = Wy {sl}wéf = wbjwo bsid for i = 7,8,

so that the associated Coxeter diagram is

o7 ¢ 08
Gy o

We note that this is compatible with [Lus84b, Thm. 9.2(a)] in the sense that we have
a canonical isomorphism W9/7 = Wa(Ly) under which o; corresponds to the unique
non-trivial element of VL, (LJ)/LJ for i = 7,8. (The latter will be relevant when
referring to the generalised Springer correspondence in characteristic 3 below; see [Lus19]
and [Het22b] (Theorem [4.5.13), where the same convention as above is made.) With this

notation, we use the following names for the irreducible characters of W5/ 2 Wg (L),
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4. Simple groups of exceptional type

as in [Het22bl 4.6]: Let 1 be the trivial character and sgn the sign character; let €, ¢’ be

the two remaining irreducible characters of degree 1 such that

finally, let p be the character of the reflection representation and p’ be the other irreducible

character of degree 2.

4.5.4. Let J = {s, 53, 54,55} C S. Thus, the relative Weyl group Wg(L;) = W9/ is of
type F4. Denoting by

o; = wbju{si}wbj = wb]wgu{si} fori=1,6,7,8

the Coxeter generators of W57 (see|3.4.2)), the associated Coxeter diagram is as follows
(cf. [Lus76bl p. 154]):

oy 06 4, O7 08

0 — 00— 0
Again, this is compatible with [Lus84b, Thm. 9.2(a)] in the sense as explained in [4.5.3]
Asin and Section we want to be able to refer to Kondo’s character table [Kon65|
of the Weyl group of type F4. Recall that Kondo denotes the Coxeter generators by
70, T,a,d (with the corresponding nodes in the associated Coxeter diagram arranged
accordingly), but there are two possibilities to match these Coxeter generators with the
oi, 1 € {1,6,7,8}. In order to conform with the notation of Lusztig |Lus84al p. 361, 4.10],
we choose

o1 TO, 0T, O74ra, o0g<4>d.

Having fixed this convention, we will from now on denote by d; the jth irreducible
character of degree d in Kondo’s table when referring to Irr(WS//). On the other
hand, while Spaltenstein [Spa85| also refers to Kondo’s table for Irr(W*/7), he does
not explicitly provide a correspondence between his Coxeter generators of W/ and
Kondo’s 7o, 7, a, d; such a correspondence only implicitly follows from the references and
results of [Spa85]. As observed in |[GH22, §6, Summary B], it turns out that the tables in
[Spa85| with respect to Ly C G as above do in fact match with our conventions; see also
Remark [4.5.33 below.

4.5.5. As indicated in (see also the introduction to this chapter), we will only focus
on those cuspidal character sheaves on G whose support is given by the closure of a

unipotent conjugacy class of G. In good characteristic (that is, p > 7), there is only one
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4.5. Groups of type Eg

such character sheaf, namely, A; = A(; »4). In fact, the cuspidal pair corresponding to
this character sheaf (via Proposition can be described in a uniform way for all
characteristics (see [Sho95b, 4.7, 5.2]). So before splitting our consideration according to
whether p > 7, p =5, p =3 or p = 2 and giving the lists containing the correspondence
between the cuspidal (unipotent) character sheaves and the cuspidal pairs for G, let us
first look at the character sheaf A, without any restriction on p. The unipotent conjugacy
classes for groups of type Eg in bad characteristic have been classified by Mizuno [Miz80];
as noted in (d), the unipotent classes which appear in good characteristic permit
an analogous parametrisation in bad characteristic, so we may still use the notation of
[Car85, Chap. 5] for these classes, regardless of p.

Let us consider the (F-stable) unipotent conjugacy class Eg(a7) C G (in [Miz80], this
class is denoted by 2A4). For u € Eg(ay), we have Ag(u) = &5. Following Mizuno [Miz80,
Lm. 70] (see also [LS12, p. 361]), there exists an element 2117 € Eg(a7)f" such that

|Ca(z117)F| = 120¢*°  (so F acts trivially on Ag(z117) = S5),

and among the G¥-conjugacy classes inside Eg(a7)f, the class of z117 is uniquely de-
termined by this property. In particular, since Ca(z117) = CG(Z1_117)7 we conclude that
2117 must be GF-conjugate to zﬁ17. So in good characteristic, z117 is a split unipotent
element of Eg(a7)”’; but also if p < 5, the choice of 2117 meets the requirements for a
‘good’ representative in [3.2.22

Now let & be the F-stable cuspidal local system on Eg(ay) whose isomorphism class is

parametrised by the sign character of Ag(z117) & &5. We have
~ E . #G Avo,un
A = A(17)\4) = IC(ES(CW), g) [dlm Eg(a7)] e G>M,

Let ¢, : F*A; = Aj be the isomorphism corresponding to the choice of 2117 (see(3.2.21]),

and let Xz, = X A0, ° GT — Qy be the associated characteristic function; we then have

Xz, (2117) = ¢*°. From[3.4.18] we see that &;, € {&1}. As in[3.4.19| (and with the notation

there), we can write any unipotent character p € Uch(G') as a linear combination of

unipotent almost characters (or of characteristic functions of character sheaves):

A(‘TP) P = Z {xpv HT¢}R¢ + Z {xpv x}€$XI + Z {.%'p, w}gacX:c

pelrr(W) zEX (W) 2€X° (W)

By inspection of the Fourier matrix, we see that we can actually find several p € Uch(GF)
so that {z,,z1} # 0 and {z,,2} = 0 for all z € X'(W). For instance, we may take
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p := [420,] and obtain

[420,)(z117) = D {@a0,, To} Ro(2117) + {2420, 1} a1 Xar (2117)
¢€lr(W)

= Y Az, we}Ry(2117) + £, 0%
o€lrr(W)

On the other hand, taking p := Egli], we find that

Eslil(z117) = > {@ggis we}Ro(2117) — 10,0
pelrr(W)

We have
§x1q20 €Z and {x42,,74} € Q, Rg(z117) € Q for all ¢ € Irr(W),

so [420,](z117) € Q. But at the same time, we know that character values are algebraic
integers, so we deduce that [420,](2117) € Z. This shows, first of all, that

5- Z {x420y,:c¢}R¢(2117) =5 [420y](2117) — §x1q20 S Z.
¢elrr(W)

Now, if p # 5, we have ¢ =1 (mod 5). We thus obtain

51161 = fmlqm =-5- Z {$420y,$¢}R¢(Z117) (mod 5) ifp 7& D. (4.5.5.1)
o€lrr(W)

In the case where p = 5, we consider Eg[i] instead. Since ¢ is a power of 5, we certainly

have ¢?° = 1 (mod 4), so an argument entirely analogous to the one for [420,] yields that

bo, =6 =4 > {ag,wo}Re(2117) (mod 4)  if p=5. (4.5.5.2)
o€lrr(W)

Hence, for a given p (and ¢), the knowledge of the values Ry4(z117) for ¢ € Irr(W)

immediately gives rise to the sign &, € {£1} in (4.5.1.3), using either (4.5.5.1)) or
(4.5.5.2)) above. (But recall from that the Green functions are not yet completely

known for groups of type Eg in characteristic p < 5.)
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Type Eg in characteristic p > 7

In this subsection (i.e., in below), we assume that p > 7, that is, p is a good

prime for G.

4.5.6. By |[LuCS4, 21.2], [Sho95b| 4.7] and [DLM14, Appendix C], the following list

describes the correspondence between the 13 cuspidal (unipotent) character sheaves on

G and the cuspidal pairs for G; we use the notation of Remark [3.1.1§ and the convention

that ‘s’ is always a semisimple element of G and ‘u’ is always a unipotent element of G.

The names of the unipotent classes are as in |Car85, Chap. 5], but we also provide the

ones of [Miz80| in case they are different.

(a)

A1 < (u,s) where u is an element of the class Eg(ay) (named 2A4 in [Miz80]). We

have Ag(u) = S5 and, under this identification, ¢ corresponds to the sign character
of Ag(u).

Ay < (su,<) where Cg(s) has a root system of type A; x E7, and the class of
u in Cg(s) is of type OfL x Ez(as). (In [Miz80], the class Er(as) is denoted
by Dg(az)+A;.) We have Ag(su) = &3 x Cy and, under this identification, ¢
corresponds to the character € K (—1), with e denoting the sign character of &3

and —1 the non-trivial linear character of (.

A < (su,sj), j = 3,4, where Cg(s) has a root system of type Ag x Eg, and the
class of u in Cg(s) is of type ﬁrA(fg x Eg(asz). (In [Miz80], the class Eg(as3) is denoted
by As+A;.) We have Ag(su) = (su) = (3) = Cg, and 3, ¢4 are the linear characters

of Ag(su) which satisfy ¢3(57) = —w, ¢1(50) = —w?.

Aj & (su,s;), j = 5,6, where Cg(s) has a root system of type Az x Ds, and the class
of u in Cg(s) is of type O3 x (3,7) (where we write (3,7) for the unipotent class

with this Jordan type in groups of type D5). We have Ag(su) = (su) = (5) = Cy,
and ¢s, ¢ are the linear characters of Ag(su) which satisfy ¢5(su) = i, ¢(s5u) = —i.

Aj < (su,s;), 7 < j < 10, where Cg(s) has a root system of type Ay x Ay, and u
is a regular unipotent element of Cg(s). We have Ag(su) = (su) = (5) = C5, and
gj are the linear characters of Ag(su) which satisfy ¢;(5u) = Cg’*G for 7 < j < 10.

Aj < (su,s;), j = 11,12, where Cg(s) has a root system of type A; x Ay x As, and
u is a regular unipotent element of Cg(s). We have Ag(su) = (su) = (5) = C,
and <11, <12 are the linear characters of Ag(su) which satisfy ¢11(5u) = —w,

G12 (%) = —w?.
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(g) Aiz < (su,s) where Cg(s) has a root system of type Dg, and the conjugacy class
of u in Cg(s) corresponds to the (unipotent) class with Jordan type (1,3,5,7) in
groups of type Dg. We have Ag(su) = Dg (the dihedral group of order 8) and,

under this identification, ¢ corresponds to the sign character of Dg.

In particular (as already mentioned in [4.5.5)), A is the only cuspidal character sheaf on

G whose support contains unipotent elements.

Proposition 4.5.7. Assume that p > 7. As in let @z, 1 F* Ay = Ay be defined
with respect to the split unipotent element z117 € Eg(a7)™ (via [3.2.21]). Then we have

a1 (ay) = +1

in (4.5.1.3), that is, the characteristic function Xz, := XA; 00, G — Qy coincides with

the unipotent almost character R, .

Proof. We apply (4.5.5.1). The values of the Green functions for groups of type Eg in
good characteristic are known and available via Liibeck’s electronic library [Liib]. We

obtain

=5 Z {2420, 2o} Ry (2117) = ¢'°.
o€lrr(W)

Hence, by (4.5.5.1)), the sign &, € {£1} satisfies
& =¢'°=1 (mod 5),

which proves that &;, = +1. O

Type Eg in characteristic p =5
In this subsection (i.e., in 4.5.11| below), we assume that p = 5.

4.5.8. By [Sho95b| 5.1], the description of the cuspidal character sheaves in (a), (b),
(c), (d), (f) and (g) of for p > 7 transfers to this case in exactly the same way; the

remaining four cuspidal character sheaves are as follows (with the same conventions as in

4.5.6)):

(e) Aj < (u,s5), j =17,8,9,10, where u € Oreg is a regular unipotent element of G.
We have Ag(u) = () = Cs, and g; is the linear character of Ag(u) which satisfies
sj(@) = ¢ ° (for 7 < j < 10).
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We consider the case (e) and set
2 =g (1) - un(1) - us(1) - ug(1) - us(1) - ug(1) - uz(1) -us(l) € U§ N OL,.  (4.5.8.1)

(Mizuno [Miz80, Lm. 37] defines z; in a slightly different way, but it is Gf-conjugate
to our chosen representative regardless of which Chevalley basis in the Lie algebra

underlying G we choose, as one sees with an argument similar to that in Lemma

or Lemma [4.2.8])
Lemma 4.5.9. The element z; € U§ N ﬁf;g defined in ([£.5.8.1)) is G¥'-conjugate to 21—1'

Proof. This is similar to the proof of Lemma [4.1.13| (cf. also Lemma [4.2.8)). Indeed, taking
t ==y (~ayj(~1)af (~1)af(-1) € T,
we have
tzltfl = U1(—1) . UQ(—l) e u8(—1).

In order to reverse the order of the u;(—1) in this expression, we again mimic the proof of
[Cas17, 1.4] (using elements of U’ of the form u;(1) and u;(—1) = u;(1)~1). Specifically,
setting u; = u;(1) for 1 <7 < 8 and

1

-1 -1-1-1-1-1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

we have (ut)z)(ut)~' = 27 and u € UL, so ut € BY' € G| as desired. O

Proposition 4.5.10. Assume that p="5. For 7 < i< 10, let p,,: F*A; = A; be the

isomorphism corresponding to the G -conjugacy class of the element z, € ﬁrig defined in

(4.5.8.1) (via[3.2.21). Then the scalars &, = &z, (pz,) in (4.5.1.3)) are given by

5967 = fmg = 5:1:9 = fﬂclo =+1,

that is, the characteristic function Xz, := XA, 4., : GF — Qy coincides with the unipotent
almost character Ry, fori=17,8,9,10.

Proof. By [3.2.21] the values of the characteristic functions x,, (7 < ¢ < 10) at elements
of ﬁfgg are given by the following table where, as usual, we describe the G¥-classes inside

Ok, by giving the corresponding element of Ag(z1) = (z1) = C5 at the top of each

column.
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4. Simple groups of exceptional type

= =2 =3 =4
1 Z1 Z{ Z1 Z1

Xaor ¢4 Gat Gt Gt Gt
Xzs  @F Gdt Gt Gdt Gt
¢ Gat Gt Gdt Gt
¢ Gt Gdt Gdt G
Now let U’ := Uch(G™) \ {Es[¢5], Es[¢?], Es[¢2], Es[¢2]}. The unipotent almost characters
R,, are given by

Xzg
Xz10

4
Ry, = {wjre, @it B3]+ > {wp, @i} -p for 7<i < 10.
Jj=1 peU’

We have already seen in |3.4.11| that ESKg] = Eg[ng] for 1 < j < 4 and that p — p
restricts to a bijection on U’. Furthermore, for any p € U’ and any i € {1,2,3,4}, we
have {x,,2;} = {z5, ;}. We deduce that

4
R, = Z{xj%,xi} -Es[¢s 7] + Z {zp, 2} -p for 7<i<10.
j=1 peU’

By inspection of the values {z;4¢,2;}, we conclude that

Ry, = Ry, and Ry, = Ry,.

Evaluating the Ry, = &, Xz, (7 <i < 10) at z; thus shows that £, = &, and &, = &

since &, € {1} (see|3.4.18)), we get
oy = &a1p € {£1} and s = &ag € {£1}.

We evaluate (3.4.19.1]) with g € {(Zl)zj
1

obtain

O<j<4}. For 0 < j <4 and any w € W, we

(@)= Y a@R(()y)= Y a@ix(E)y),  (45.10.1)

where

cx(w) = Z A(zp){zg, x} Trace(Ty, Vy).
¢elrr(W)

Now we see from Remark [3.4.24] that for z € X(W), the characteristic function y, of A,
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4.5. Groups of type Eg

can only be non-zero at elements of ﬁfgg if x corresponds to some i € N§& of the form

i = (Oreg, &) under the generalised Springer correspondence. The isomorphism classes
of (G-equivariant, F-stable) irreducible local systems on O are parametrised by the
irreducible characters of Ag(z1) = (z1) = C5; for 0 < j < 4, let us denote by C5 the local
system on Oye, described by the linear character of A(;(zl) which takes the value (5 at
z1. Then, in view of [£.5.§(e), we have

A= IC(Gum, 5 )[dlm ﬁreg] for 7<1i<10.

So by (3.2.13.2]), A; corresponds to (ﬁreg, 5 ) for 7 < i < 10; regarding the trivial local
system on Oleg, the pair (Oreg, 1) corresponds to the trlple (To, {1},Q,) € ME and to
the trivial character of W = Wg(Ty). Hence, (4.5.10.1)) reads

m((21)2w) = 1y () Riyy (1) )+Zcx, 6o Xes (1))
= c1w (w +ZC"31 5:(:1(5 6)q4

(since Ry, is the trivial character of G"). Taking for w the Coxeter element
W= W :=8] 8953 548585657 58 EW,

we compute the ¢, (w.) using CHEVIE [MiChv| and get

m((z1)z,we) = ¢° +Z§xlc5 ' = P+ G+ )+ (G + )

= ¢° (1 + 264, Re((]) + 260, Re((57)),

where Re denotes the real part of a complex number. Now m((Zl)Ej , wc> is certainly
1

non-negative for any j € {0,1,2,3,4}. Setting j = 0, we get
0 <1+ 28, + 28,

which implies that at least one of &, &, must be +1. Assume, if possible, that they are
not both equal to +1, say &, = —1, £ = +1. Then, setting j = 1, we obtain

0 < 1—2Re((s) + 2Re(¢?) =1 — /5,
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4. Simple groups of exceptional type

a contradiction. The case &, = +1, &, = —1 is excluded similarly, setting j = 2. So we
must have &, = &, = +1. O]

Remark 4.5.11. The proof of Proposition shows that, for u € ﬁfgg, we have
R;(u) =0 unless x € {z1y,, 27, T3, Tg, T10}. Since Riy, = lgr and Ry, = Xa,, expressing
a unipotent character p € Uch(G') as a linear combination of unipotent almost characters
allows us to explicitly write down the values of p at the elements of ﬁf;g. For example,

for 1 < j <4, we get

ESK%](U) = {(957 Cg)7x1w} ’ le(u) + Z{(957 Cg)7xl} ’ Rxl(u)
=7

10
= Z{(95,Cg)7ﬂ?i} “ Xa; (U).
=7
The values of the Eg [Cg] (1 < j < 4) are given by Table where, as in the proof of
Proposition the G-classes inside ﬁf;g are named by the corresponding element
of Ag(z1) at the top of each column. In particular, we see that the Gf'-conjugacy class
of z;1 is the only one inside ﬁrfgg on which the above four cuspidal characters take real
values, so the G¥-class O,, of z; is in fact the unique one inside ﬁr{zg which is stable
under taking inverses (similarly to Remark but in contrast to Remark .
On the other hand (still in the setting of the proof of Proposition , knowing
that &, = +1 for 7 <4 < 10 yields that
8 i
m((zl)zg,wc) _ {5q lf] =0,
0 ifje{1,2,3,4}.
Hence, in view of ([3.4.19.2), we conclude that if u € ﬁrig is GI'-conjugate to (21)2{ for
some j € {1,2,3,4}, we must have O, N Bfw.Bf = @, while O, N Bfw.B{" # @ in
case u is Gf-conjugate to z;. Thus, the Gf-class of z; in OF satisfies condition @ in

reg

3.2.22(c) and is uniquely determined by this property among the G¥'-classes inside &%

reg-

Type Eg in characteristic p = 3

In this subsection (or, rather, in [4.5.14H4.5.23| below), we assume that p = 3.
Before starting with our investigation of the cuspidal character sheaves (with a unipotent
support), let us recall that up until very recently, there was one last indeterminacy in the

generalised Springer correspondence, which occurs for groups of type Eg in characteristic
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4.5. Groups of type Eg

1 Z1 z2
Es(Gs] +¢* 14*(5G+1) 2¢* (52 +1)
Esl(Z] L1q* Li*(5¢2+1) Lot(5¢G+1)
Es[C] 2¢* 2*(5C3+1) L4*(5¢+1)
Es[¢3] ¢ $4*(5¢3+1) $¢*(5¢2 +1)
zp zf

EslGs]  £¢"(5G +1)  £¢*(5¢3 +1)

EslC3] 24*(5¢E+1) £¢*(5¢3+1)

Es[¢Z] £4*(5¢+1) 2" (52 +1)

Eslcs] 2¢*(5¢E+1)  £¢*(5¢s + 1)

Table 4.10.: Values of Eg[¢Z] (1 < j < 4) on Ok for p=75
3 (see[3.2.13and also the global introduction). These last open cases have been settled
by the author in [Het22b|, so let us begin by stating this result.

4.5.12. Here (and only here), G may for now be assumed to be an arbitrary connected
reductive group over k = F,, where p is any prime. Recall from [3.2.13|that the generalised

Springer correspondence is the bijection

1T Ir(We(L) =2 H 77'() =MNe. (4.5.12.1)
[(L,00,60)]eMa iEMa

More precisely, 7: Ng — Mg is a surjective map, any j € Mg may be represented
as (Ly, 0y, &) for some J C S, and the elements in the associated fibre 771(j) C Ng
are naturally parametrised by the irreducible characters of the relative Weyl group
Wa(Ly) = W5/, Thus, arises from the bijections

II‘I’(W(;(LJ)) = T_l((LJ, Oy, 50)) where (LJ, 7 éa()) € Mg. (4.5.12.2)

These bijections have been determined explicitly by Lusztig [Lus84b|, Lusztig-Spaltenstein
[LS85], Spaltenstein |[Spa85| and again Lusztig |Lusl9], up to the following exception: In
the case where G is of type Eg, p = 3, J = Eg and (&), &) is any of the two cuspidal pairs
for Ly (which in particular implies that &y is the regular unipotent class of L), the results
of |Spa85|] do not allow the necessary distinction between the two non-linear irreducible
characters of Wg (L) (see(4.5.3) in (4.5.12.2]). Namely, we have Ay, (u) = (u) = Cs for

any u € 0y, so we denote the (G-equivariant) irreducible local systems on ¢ by the

249



4. Simple groups of exceptional type

values of the corresponding linear characters of Ag(u) at @w. With the notation of
Spaltenstein’s results imply that

{p,p'} < {(Es(as),w), (E7,w)} with respect to (Ly, Op,w) € Mg,
{p,p'} & {(Es(a3),w?), (E7,w?)} with respect to (Ly, 0y, w?) € Mg

under (4.5.12.2)). (In [Spa85), the class Eg(as) is denoted by Ez+A;.) Furthermore, we
have Ag(u) = Cg for u € Eg(as) and Ag(u) = C5 for u € E7, so we can again denote the
local systems on Eg(as) and E7 by the values of the corresponding irreducible characters
of Ag(u) at a (fixed) generator of Ag(u).

These last indeterminacies have been removed by the author in [Het22b|. The result is
given by the following theorem, which thus completes the determination of the generalised

Springer correspondence.

Theorem 4.5.13 (see [Het22b|). Let G be the simple algebraic group of type Es over Fs.
In the setting and with the notation of we have

p < (Es(az),w) and p' > (E7,w) with respect to (Lggy, Op,w) € Mg,
p < (Es(az),w?®) and p' < (Er,w?®) with respect to (Lg,, Op,w?) € Mg

under the bijection (4.5.12.2]).

Proof. This originated from the observation that formula provides strong
constraints on the relation between the character values of finite groups of Lie type
and the values of the characteristic functions associated to character sheaves (cf. also
Remarkbelow). The proof is a combination of the main methods used in this thesis,
based on computations which are very similar to the ones already executed numerous
times before, so let us only give the essential idea here and refer to [Het22b| for the
detailed argument. Let F': G — G be a Frobenius map and consider the Hecke algebra
associated to G and its BN-pair as in Section Assuming one of the four possibilities

for the bijections

{p, '} < {(Es(as),w), (Er,w)}, {p,p'} < {(Es(as),w?), (Er,w?)} (*)

and using |3.4.183.4.24] one can compute the numbers m(u,w) (for any w € W and
u € GE ) up to certain roots of unity. Specifically, the element

uni

W 1= §983545355545152535455565758 € W
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4.5. Groups of type Eg

is of minimal length in its conjugacy class C' C W, and C is sent to the unipotent class
E7+A; under Lusztig’s map (see ; for u € Ef', we thus have m(u,w) = 0. This
leads to an equation in which the only unknowns are the aforementioned roots of unity,
and one obtains a contradiction for three of the four possibilities for the bijections in ,
which yields the desired result. O

Let us return to the assumption that G is the simple group of type Eg over F3, with

the further notation as introduced in the beginning of this section.

4.5.14. By [Sho95b, 5.1] and [DLM14), Appendix C], the description of the cuspidal
character sheaves in (a), (b), (d), (e) and (g) of [4.5.6] for p > 7 transfers to this case in
exactly the same way; the remaining four cuspidal character sheaves are as follows (with
the same conventions as in .

(c) Aj + (su,s;), j = 3,4, where Cg(s) has a root system of type Ay x E7, and w is a
regular unipotent element of Cg(s). We have Ag(su) = (su) = Cs, and <3, ¢4 are

the linear characters of Ag(su) which satisfy ¢3(57) = w, ¢4(57) = w?.

(f) Aj <> (u,55), j = 11,12, where u is an element of the class Eg(a3) (named E7+A; in
[Miz80]). We have Ag(u) = (a) = Cs where a € Ag(u) is such that a? = w2, and

S11, S12 are the linear characters of Ag(u) which satisfy ¢11(a) = —w, s12(a) = —w?.

In (c), the fact that Cg(s) has a root system of type A; x E7 is noted in |[Lus22, §3]. As
for the case (f), it is claimed in [Sho95b, 5.1] that Ag(u) = Cg is generated by @, but
this cannot be true since the order of @ must be a power of p = 3. Instead, we can argue
as follows: We have Ag(u) = Cg by [Miz80, Lm. 40] (see also [LS12, Table 22.1.1}); since
u ¢ Cg(u) (see [LS12, Table 17.4]), (@) C Ag(u) is a subgroup of index 2. Hence, for a
fixed u € Eg(as3), there exists a generator a = a(u) of Ag(u) which satisfies a? = w2, and
we may denote the local systems on Eg(ag) by the values of the corresponding irreducible
characters of Ag(u) at a. (This is consistent with [Spa85, pp. 328, 337].)

Let us consider the case (f). Following Mizuno [Miz80, Lm. 40] (and using his structure

constants N, g for a, 8 € R), we set

221 1= Ua;+a3 (1) Uas+as (1 taz+as (1)tastas (1) Uas+astas (1) Uas+ag (1) ur (L)us(1).
We have 291 € UE N Eg(a3)f.

Lemma 4.5.15. The element za1 is G -conjugate to 22_11.
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4. Simple groups of exceptional type

Proof. If « € R™ is of the form a = o, + iy + ...+, with 1 <iy <ip < ... < <8,

we write w4, 4, ‘= Ua(1l) € Uy € Uy, and also w4, i, (—1) := uq(—1). So we have
221 = U13U24U34U45U345U56UTUS.

First, we want to conjugate with an element of U} in such a way that the order of
the u’s in this product will be reversed. To this end, we define a graph consisting of 8
nodes labelled by the roots appearing as indices of the u’s in the definition of z2;; an
edge between two different nodes «, 5 is drawn if and only if o + § € R, which happens
precisely when the elements of U, and Ug do not pairwise commute with each other.
This graph is pictured as follows:

[e%4 a5 + o

as O O j O a3 +aa

as+as O O O O as+astas
ap +a3 a2+ Qq

The idea consists in conjugating z91 by suitable u,, using only such roots o which appear
in the above graph, to reverse the order of the ug in the product for zo;. This will be
done step by step: We start by bringing the element in the first position of z91 to the last
position, then the initially second element to the second to last position, then the initially
third element to the third to last position, and so on. We thus begin by conjugating with

ul_gl to bring w13 to the last position. This gives
U24U34U45U345US6UTURUL3 -

Next, we want to bring us4 to the second to last position. To achieve this, we note that
we have

U24U34U45U345U56UTUIUTZ = U34U45U24U13U345U56UTUS-
So we conjugate with usssusgurus, getting
U345UsEUTUSUSLULA5U24U13 = U56UTUIUIL5 UA5 U4 U413

To get usg to its desired position, we move uyug to the right and conjugate with uyug to
obtain

U7TUSU56U345U45U34U24UL3-

It remains to switch the positions of u7, ug. This is achieved by moving ug to the right
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4.5. Groups of type Eg

and conjugating with ug, thus arriving at
UUTUSEU345U45U34U24U13 -
We have shown that
-1 _ N o -1 o yF
UZ21U — = USUTU56UA5U45U34U24UI3  Where U 1= uUgUurugUz4suseUrugliyz € Ug .

In order to obtain zy' = ug(—1)ur(—1)use(—1)uzss(—1)uss(—1)uza(—1)uga(—1)uz(—1),

we conjugate with the torus element
t:=ay(—1)ad(-1)ay(-1) € T}

Hence, we have
(tu)zzl(tu)fl = 22_11,
as desired. O

Lemma 4.5.16. Let
W91 = 8153815254595553545655565758 € W.

This is a reduced expression for wai, woi s of minimal length in its conjugacy class
Cuyy €W, and Cy,, is sent to Eg(ag) under Lusztig’s map (see [3.2.23|). Moreover, the

element z91 s GF—conjugate to an element of BOnglBg.

Proof. The statements concerning wo; and C,,,, are easily verified using CHEVIE [MiChv].
Let us consider the element z3; € Eg(a3)?". As in the proof of Lemma [4.5.15} if « € R
is of the form o = a4, + a4, + ... + o, with 1 <43 < ip < ... < 4 < 8, we write

Wiyig.in = Ua (1) and w4, 4, (—1) := uq(—1). So we have
221 = U13U4U34U45U345U56UTUS = U13U24U45U34U345U56UTUS -

(Note that ugqugs = ugsuss, as as + 2c4 + a5 ¢ R.) We first rewrite this by applying
Chevalley’s commutator relations; but we have to be careful with the structure constants
N g here since we are in odd characteristic. As mentioned above, we use Mizuno’s

[Miz80| choices for the N, g. In particular, we have

Nas-&-ou;,as = NO&47045 = NO‘57016 = Na27014 = Na3,a4 =+1, NOé3,Oé1 =—1
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4. Simple groups of exceptional type

(These are the only ones which we will need below, and they coincide with those underlying
the CHEVIE [MiChv| function UnipotentGroup, so this function can be used to verify

our computation below.) We deduce that
_ =1 -1 R | _ =1 -1 _ =1 -1
U24 = Ug Uy U2U4, U445 = Uy Uy U4U5, U345 = Ugy Uy U4U5, Us6 = Uy Ug U5UE,

so we obtain

-1, -1 —1 -1
291 = U13Uy Uy U2Uy U4U4UG  UsUGUTUS.

Now ujqu3s = ugqtty = U3U4u§1, S0 we get
_ -1, -1 -1 -1, —1 _ -1, -1 -1 -1 -1
221 = U13Ug Uy UUs  USUAUZ  Ug  USUGUTUY = U13Ug Uy  U2Ug  UULUG  UsUSUTUSUS
Conjugating with ugl thus gives
-1 -1 -1, -1 -1 -1
Uz 221U3 = Uz UI3Uy Uy U2U5 U3U4UG USUEUTUS-

We would like to simplify the expression ug Y13, but to achieve this, we need to replace
w13 by upz = uiz(—1). Hence, we conjugate with the torus element ¢ := oy (—1) € T to
get

-1 -1 -1, -1 —1 -1, -1 -1
t(us 221U3)t™ " = Us Ujg Uy UsUgUy UU, Uy UsUGUTUS.

Since Nggy,0, = —1, we have ufgl =wu3(—1) = u;z,uluglufl, so we obtain

-1 -1 -1, -1 —1 -1, -1 -1
t(usg z21u3)t™ " = ujus U] Uy ULULUZ UU, Ug UsUGUTUS

= uyus(—1)u (—1)ua(—1)uguous(—1)ugus(—1)ug(—1)usugurus.

It follows from Lemma |3.2.24| (combined with the sharp form of the Bruhat decomposition
[Car85, 2.5.14]) that the latter is G¥'-conjugate to an element of B wo1BY (note that

—wp(a) = a for any o € R). The lemma is proved. O

4.5.17. For i = 11,12, let ¢,,: F*A; = A; be the isomorphism corresponding to the

choice of z91 (via[3.2.21)), and let x,, := XAi gz, Taking u := 291 and a = a(z21) € Ag(z21)
such that a® = z2 in the description of (f) in[4.5.14] the discussion in [3.2.21| shows that

F" are given by the following table, where

the values of xz,, and xz,, at elements of Eg(as)
we describe the Gf-conjugacy classes contained in Eg(az)? by giving the corresponding

elements of Ag(z21) = (a) = Cp at the top of each column:
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4.5. Groups of type Eg

1 a a? a’ at a®
Xowt q7 —q7w q7w2 —q7 q7w —q7w2
Xew @ —qw? ¢w —¢" W —qw

The unipotent almost characters I;,,, R;,, are given by

Rayy = 3Es[—w] = Bs[-w’]+ > {z.zu}p.
CEE%(W)\{JHl,Ilg}

and

R$12 = %ES[_C‘)Q] - %EB[_W] + Z {x7$12}pw~
l‘ex(W)\{xll,zlg}

Using (3.4.11.1)) (in particular note that Eg[—w] = Eg[—w?]), we obtain

Rl‘n = Rl’12 .

Evaluating Ry, = &, Xa, (for i = 11,12) at 29, thus shows that £, , = &, and, since

€z, € {£1} (see[3.4.18), we get
§: =8 =&, € {il}'

4.5.18. In order to determine the sign £ € {£1} in|4.5.17, we apply the method described
in3.4.19(2). So for any w € W and any g € G, we have

12
m(g,w) = Z ce(w)Ra(g) + € Z Cz; (W)Xa;(9)- (4.5.18.1)
xEX(W)\{xll,xm} =11

We want to evaluate (£.5.18.1]) with w = wo; and g = u € Eg(a3)’, so we need a
detailed information on Ry[gy(q,)r for z € X(W). Recall from Remark that for
this purpose, we only have to consider those x € X(W) which correspond to a pair
of the form i = (0,&) € N& (under the generalised Springer correspondence) where
Es(az) € 0. So we only have to consider the generalised Springer correspondence as far
as the unipotent classes Eg(as), Eg(az2), Es(a1) and O,y are concerned.

Combining the results of [Spa85] with Theorem the part of the generalised
Springer correspondence which we need below is thus given by Table with the
conventions for W5/Es 22 11/ (Gy) as in and with the further notation as follows:
Any u which appears is assumed to be an element of the unipotent class on the left, and

then d,, is the dimension of the variety consisting of all Borel subgroups which contain w;

255
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furthermore, when writing x : ¢, x is the irreducible character of Ag(u) describing the
local system on the class of u, and ¢ denotes the irreducible character of Wg (L) = ws/

corresponding to (u, x).

Class of u d, Ag(u) W59 =W W5/Es W (Gy) WS/Es — {1}

w:l
ﬁreg 0 03 1:1, w2 -1
w:eE
Eg(al) 1 Cg 1: 82 w2 e
ES(CLQ) 2 {1} 1: 3535 -
1:112, w:p —w:1
Es(as) 3 Ce —1:28, w?ip —w?: 1

Table 4.11.: Part of the generalised Springer correspondence for Eg, p = 3

4.5.19. In view of the discussion in 4.5.18[and Table we need to consider Rylgg(q,)r
for 13 different 2 € X(W) in order to evaluate m(u,ws;) for u € Eg(az)t’. Let us first
look at the Ry|g,(q,)r for ¢ € Irr(W). Using CHEVIE [MiChv], we see that

ci12, (wa1) = cog, (wa1) = 0, (4.5.19.1)

so it remains to consider ¢ € {1;,8,35;}. We know that Ry, = lgr; for Rs,|g,(ay)F
and R3s, |gg(ag)F> We use the notation of [3.4.22/to get

Rs. ey (a)r = 4 Z Py 8. Yo' lEg(az)F
¢/ €lrr(W)

and

2
R35,les(as)" =@ D P50 Vel lEg(az)F-
¢'€lrr(W)

Table shows that the only Yy which take non-zero values at elements of Eg (a3)¥ are
the ones with ¢' € {112,,28,}. We have

YHQZ ((221)(12') = 51122 and Yggz ((221)ai) = 5281(*1)i fOI“ 0 < 7 < 5,

where 8112, 02, € {£1}. The coefficients py 4 above are pag, 8. = ¢, p2s, 35, = 0 and

256



4.5. Groups of type Eg

P112..8. = P112.,35, = 1, SO we get

Rs, ((221)(11-) = (—1)'¢%02s, + q6112. and Ras, ((221)ai) =q¢*0112. for 0<i < 5.

14

We have c1, (wa1) = ¢, cs.(wa1) = ¢'% and ¢35, (wa1) = —q'!, so we obtain

Z C¢(W21)R¢((Zgl)ai> = q14(1 + (—1)i5281) for 0 <7 <5. (4.5.19.2)
o€lrr(W)

4.5.20. Let J := {s1,82,...,56}. Thus, Table contains six i € /\/’g for which
T(i) € ./\/lé is either (L, 0p,w) or (L, Op,w?). (Here, Oy C Ly is the regular unipotent
class, and we have Ar,,(u) = (u) = C3 for u € 0p.) We identify X(W) and Sw via
Corollary [3.4.8 recall our conventions for W*/7 22 W (Gy) from Let us denote the

almost characters corresponding to the elements

(1.1, (,3)), (e, (w,3)), (J,p, (w,3)), (J.1,(w*3)), (e, (w2 3)), (J,p, (w?3)),

by

Reglw1]s  Beglws  BEslwg)  Besw?1)  Begwzegr  BEglw? ol

respectively. We have ¢, .,3))(W21) = €1, (2,3))(w21) = 0, so we only need to consider
the almost characters R 1], Reglw,e)s FEglw?,1) and Rggu2,q- Let us fix an isomorphism
¢o: F*(w) = w which induces a map of finite order at the stalk of w at any element
of 0}". For any of the two x € X(W) corresponding to (J, 1, (w,3)), (J, ¢, (w,3)) € Gw
and for the associated i € Ng under the generalised Springer correspondence, we define
the isomorphisms ¢4,: F*A; = Aj, Pa FrA = Aj as in and put ¢, = P4,
Xo = XApp,- Setting ((w) := ¢(J, (w,3)) in[3.4.23] we get

REg[w,l} |Gfni = QSC(W)X(ﬁreg,w) and RE@[UJ,EHGfm = q4§(w)X(Es(a1),w)'

In order to evaluate these functions at elements of Eg(a3)?’, we only need the respective
coefficients of Y(gg(a3)w) I X (Gyep,0) 3 X (Eg(ar)w)- These coefficients are known in view
of the results of [Het22b] (cf. Theorem [4.5.13)), and they can be extracted from there.

We obtain

2
X (Oreg.0) [Es(as)F = T Y(Es(as) ) [Es(an)r 80D X(Eg(a1)w)|Eg(as)F = 05
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4. Simple groups of exceptional type

so we have

Req 1] lEg(as)” = q5C(w)Y(Es(a3),w)\E8(a3)F and R dlEg(as)r = 0-
By [3.4.23] there exists a root of unity v = v(gg(as)w) € R such that
Y(Es(as)vw) ((221)ai) = ’Ywi for 0<7 <5,
so we get
Reglw) ((221)ai) = ¢*C(w)w' for 0<i<5. (4.5.20.1)

Taking ¢ = 0 and using Lemma [4.5.15| (and the fact that any unipotent almost character
is an R-linear combination of unipotent characters), we deduce that the root of unity

C(w)~ lies in R, so we have ((w)y € {£1}. From [3.4.11] and with an argument analogous
to the one in4.2.10, we see that Rgg,2 1) = REgw,1], SO We get

Regluz ((Z2l)ai) = Rggw,1] ((221)ai) = ¢°C(w)yw™" for 0<i<5.

We have c(j1,(w,3))(w21) = ¢(s,1,02,3))(w21) = q” and gy (w21) = Capy(w21) = ¢, 50 we

obtain

2 12
Z cz(w21)Re(u) = ¢° ZRE6[wi’1}(U) +&¢° Z Xz; (w) for u e Es(as)?.
z€X(W)\Irr (W) i=1 =11

Combining this with (4.5.19.2) and using the values of X4,,, Xa1, at elements of Eg(az)?
given in [4.5.17] we thus get, for 0 < i < 5:

m((221)ai,'LU21) =g (1 + (=1)%28, + C(w)y - (W 4+ w4+ & ((—w) + (—wQ)i))

In particular, we have

m(ze1,wa1) = q14(1 + 028, + 2¢(w)y + 25) (4.5.20.2)
and (since w + w? = —1)
m<(2’21)a, w21) = q14(1 — 028, — C(w)y + f)- (4.5.20.3)

Proposition 4.5.21. Assume that p = 3. Fori = 11,12, let @,,: F*A; = A; be the

isomorphism corresponding to the G -conjugacy class of the element zy; € Eg(as)”
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4.5. Groups of type Eg

defined in [4.5.14. Then the scalars &, = &g, (z,) in (4.5.1.3)) are given by
§$11 = §$12 = +17

that is, the characteristic function x., = XA, - GI — Qy coincides with the unipotent

almost character Ry, fori=11,12.

Proof. We already know that £ = &,,, = &;,, € {£1}. Assume, if possible, that £ = —1.

By (4.5.20.2) and since m(z21,w21) = 0, we then have ((w)y = +1. In turn, (4.5.20.3])
and the fact that m((z21)q, w21) = 0 imply that deg, = —1. Thus, (4.5.20.2)) reads

0,,. NBwy B - |C
0 =m(z21,wa1) = Oz 0w2|1]31§)|‘ | GF(Z21)“
0

But this contradicts the fact that O,,, N B w1 B # & (see Lemma [4.5.16). So we must
have £ = 41, as desired. O

Corollary 4.5.22. The values of Rgy[,, 1) and Rgg,2 1) at elements of Es(as)™ are given
by the following table, where we describe the G '-classes inside Eg(az)t by giving the
corresponding element of Ag(z21) = {(a) = Cg (with a € Ag(z21) such that a®> = z%,) at

the top of each column.

1 a a2 CL3 4 5

a a
Rejwr) ¢ w0 @ Pw Pu?
Regzn) ¢ W0 Pw ¢ P Qw

Proof. By Proposition we have £ = 41, so the discussion in shows that
m((z21)as wan ) = ¢ (L4 (<1, + ()7 (@' +w™) + (~w)' + (-w?)')
for 0 < ¢ < 5. Taking i = 3, we get
0< m((zm)as,wm) =q" (-1 — Oas, + QC(W)W),

with dog, € {1} and ((w)y € {1}, so we must have ((w)y = +1. It remains to refer
to (@5.20.1). N

Remark 4.5.23. Having shown that £ = ((w)y = +1 in the proofs of Proposition [4.5.21
and Corollary [£.5.22 we see that

0< m((221)a2, w21) = q14(1 + dog,, + 2(w? + w)) = ¢"* (028, — 1),
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4. Simple groups of exceptional type

so we must have dag, = +1. We can thus evaluate m((Zgl)ai,'LU21> for any 0 <7 < 5; we
get

6¢'* ifi =0,
m((zm)ai,wm) =
0 ifie{1,2,3,4,5}.

Thus, the G-class of 291 in Eg(ag)!" satisfies the condition @ in [3.2.23| and is uniquely
determined by this property among the G*'-classes inside Eg(a3)’. So we declare the

G''-conjugacy class of 291 as the good class among the G*'-classes contained in Eg(as3)”.

Type Eg in characteristic p = 2

In this subsection (i.e., in [4.5.24{44.5.33| below), we assume that p = 2.

4.5.24. By [Sho95b|, 5.1] and [DLM14, Appendix C], the description of the cuspidal
character sheaves in (a), (c) and (e) of for p > 7 transfers to this case in exactly the

same way; the remaining six cuspidal character sheaves are as follows (with the same
conventions as in [4.5.6)); see [Lus22, §3] for the case (f).

(b) Ag <> (u,<) where u is an element of the class Eg(b5) (named E7(a2)+A; in [Miz80]).
We have Ag(u) = &3 x Co and, under this identification, ¢ corresponds to the
character ¢ X (—1), with £ denoting the sign character of &3 and —1 the non-trivial

linear character of Cs.

(d) Aj < (u,s5), j = 5,6, where u € Eg(a1). We have Ag(u) = (u) = C4, and g5, S
are the linear characters of Ag(u) which satisfy ¢;(w) =i, ¢5(u) = —i.

(f) Aj « (su,s;), j = 11,12, where Cg(s) has a root system of type Ay x Eg, and u is
a regular unipotent element of Cg(s). We have Ag(su) = (su) = Cg, and 11, <12

are the linear characters of Ag(su) which satisfy ¢11(31) = —w, ¢12(31) = —w?.

(g) Ais < (u,<) where u is an element of the class Eg(as) (named Dg(a1) in [Miz80]).
We have Ag(u) = Dg (the dihedral group of order 8) and, under this identification,

¢ corresponds to the sign character of Dsg.

We consider the case (d). As usual, we first want to find a representative in Eg(ai)?

which is G¥'-conjugate to its inverse. Following Mizuno [Miz80, Lm. 38], we set

211 = up (1) - up(1) - tagtas (1) - Uagras (1) - us(1) - ug(L) - uz(1) - us(1) € Es(ar)”.

(Note that we do not have to refer to any convention for the choice of certain signs in a

Chevalley basis in the Lie algebra underlying G since k is of characteristic 2.)
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4.5. Groups of type Eg

Lemma 4.5.25. The element z11 is conjugate to zl_ll mn Ug C GF,

Proof. For o € R, let us write uq := uq(1). We also set u; := u;(1) for 1 <i < 8. So
211 = UL - U2 * Uag+ay " Uag+ay = U5 - U - UT - US.

Our strategy is the same as the one in the proof of Lemma that is, we want to
conjugate with an element of UOF in such a way that the order of the u’s in the above
product will be reversed. Thus, we define a graph consisting of 8 nodes labelled by the
roots appearing as indices of the u’s in the definition of z11; an edge between two different
nodes «, B is drawn if and only if o + 8 € R, which happens precisely when the elements

of U, and Ug do not pairwise commute with each other. This graph is pictured as

follows:
Qq O
Q2
as+oas O—O)
O—O——0O——0oas
as (0%4 (673
O as+ou

So we have to conjugate 211 by a product of suitable u,, using only such roots o which
appear in the above graph, to reverse the order of the ug in the product for z1;. (Note
that u, = u, ! for all a € R since 1 = —1 in k = F5.) We begin by conjugating with u;

to bring this element to the last position. This gives
U2 * Uao+ay * Uaz+ay U5 - U - UT - U~ UT.

Now we conjugate with us and use the fact that u; commutes with us, so that we can

switch the two of them afterwards. We get
Uag+ay * Uaztay * U5 U - UT - U * U2~ UT-

Next we see that ug,+q, commutes with both u; and wug, so conjugation with uq,1a,
yields

Uag+ay * U5 UG - UT - U * Uay+ay ~ U2 " UL

We conjugate with uq;4q, and get

Us - UG * UT - U * Uty * U2 " UL " Uag+ay-
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4. Simple groups of exceptional type

Here, a3+, neither commutes with w1 nor with us. But, since both u; and us commute
with any factor in the product except for uq;4q,, We can shift them to the beginning

and then conjugate with ujuo to obtain

Us - UG * UT * U8 * Uag+ay * Yag+ay ~ U2 - UTL-

(We have also used that ua,+a, and uagtq, commute with each other.) To get us to its
desired position, we first shift uguyug to the very end and then conjugate with ugurug.
This gives

Ue - U7 - UG - U5 * Uaz+ay * Uag+ay = U2 - UT.
Now we can shift urug to the very end and conjugate with u7ug to get
U7 - U8 - Up - U5 * Uaz+ay * Uag+ay = U2 - UT.
It remains to shift ug to the last position and conjugate with ug to get
Ug U7 * UG * U5 * Uag+ay * Yag+ay = U2 - UL,
which is equal to 21_11. We have shown that
-1 _ -1 h o UF
uz11u =211 where U = ugurugUeUrugUl U2Uasz+ay oo +ay U2U1 S 0>

as desired. ]

4.5.26. For i = 5,6, let ¢,,: F*A; = A; be the isomorphism corresponding to the choice

of z11 (via|3.2.21)), and let x,, := XAjp.,- Laking u := z11 in the description of (d) in
the non-zero values of ., and x., are given by the following table, where we
denote a G¥'-class inside Eg(a1)” by the corresponding element of Ag(z11) = Zn1) =2 Cy:

— —92 —
1 le le Z:?l
5 ;) 5 5

Xzs 4 lg- —q° —1q
5 5 5 5

Ry, = LEs[i] — 1Eg[—i] + > {x, 25} pa
z€X(W)\{z5,26}
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4.5. Groups of type Eg

and

Rxﬁ = %Eg[—l] — %Eg[l] + Z {l’,$6}px.
z€X(W)\{z5,26}

Using (3.4.11.1)) (in particular note that Eg[i] = Es[—i]), we deduce that

R, = Ry,

Evaluating R,, = &, Xa, (for i =5,6) at 211 thus gives £, = &u; since &y, & € {£1}
(see [3.4.18)), we have

€ =&y = &g € {£1}.
4.5.27. In order to determine the sign £ € {£+1} in we will argue similarly as in
4.5.18 With the notation in (2) we have, for any w € W and any g € G

6
m(g, w) = Z cx(w)Ry(g) + & Z Ca; (W)X, (9)- (4.5.27.1)
z€X(W)\{z5,26} i=5

We want to evaluate (4.5.27.1) with g = z1;. For € X(W), the almost character R,
(or the characteristic function y,) vanishes identically on Eg(a1)” unless z € X(W)
corresponds to some i € N of the form (€,&) with & € {Es(a1), Oreg} under the
generalised Springer correspondence (see Remark . We have Ag(u) = Cy for any
u € Eg(a1) U Opeg, so there are 8 pairs in N to consider. The generalised Springer
correspondence with respect to these i € /\/g is given in Table with the conventions
for W5/P1 = 1//(F,) as in and with the further notation as in Table

Class of u d, Ag(u) W  WSPi=w(F,) W& WSk =1}

ﬁreg 0 04 1 : LE —1 N 11 . —

Eg(al) 1 04 1: 8z —1: 21 -

Table 4.12.: Part of the generalised Springer correspondence for Eg, p = 2
4.5.28. We set
Wil 1= 81848953 -84°83-85-56°5783E W, (4.5.28.1)

a reduced expression for wq. Using CHEVIE [MiChv, §6], we see that the conjugacy
class of w1 in W is sent to Eg(aq) under Lusztig’s map (see|3.2.23)), wi; is of minimal
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4. Simple groups of exceptional type

length in its conjugacy class, and we have c,(wi1) = 0 for 4 of the 8 elements z € X(W)
corresponding to the pairs (£,i") (0 < r < 3) described above. The 4 elements z € X(W)
for which ¢, (wy1) is non-zero are x5, xg, the image of the trivial character of W under
the embedding Irr(W) < X(W) and one further element xy € X(W); the corresponding
pairs in Vg (in the same order) are (Es(a1),1), (Es(a1), —i), (Oreg, 1) and (Es(a1), —1).
We have

10

Cx5(wll) = Cx6(w11) = q57 Clw(wll) =q and Cxg (wll) = 6]7-

Recall that Ry, is the trivial character of G". Hence, we get

6

m(z11,w11) = 1y (W11) Ry (211) + €z (wW11) Rag (211) + € Z Ce; (W11) Xz, (211)
i=5

= qm(l +2¢) + q7Rgco(211)7

where § = & = & € {£1} (see[4.5.26). As for the element g € X(W) corresponding to
i := (Es(a1), —1) € N&, we have (i) = (L, O, &) € ME where J = Dy and (0y, &)
is uniquely determined by J (with &y C L the regular unipotent class). Let us fix an
isomorphism ¢g: F*& — & which induces a map of finite order at the stalk of & at
any element of &}, and let Pa, F*Ay, = A, Pay, F*Ai, = A, be as in We
set Prg = P4, and Xag = XA, .ps,- Lhe discussion in @ shows that we have

RmO’Eg(aﬂF = q3€D4XiO|E8(a1)F = q3<D4KO|E8(a1)F7
where (p, € R. We thus obtain
m(zn, ’wn) = q10(1 + 25 + CD4KO (ZH)). (4.5.28.2)

Since m(z11, w11) € R, the root of unity (p,Yi,(z11) must be £1.

Proposition 4.5.29. Assume that p = 2. For i = 5,6, let p,,: F*A; = A; be the

isomorphism corresponding to the G¥'-conjugacy class of the element z11 € Eg(ap)¥

defined in [4.5.24) Then the scalars &, = &g, (0z,) in (4.5.1.3)) are given by
5905 = g:ce =+1,

that is, the characteristic function Xo; = XA, 0., : G — Qy coincides with the unipotent

almost character R, fori=25,6.
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Proof. We already know from [4.5.26| that £ = &5 = &, € {£1}. By (3.4.19.2)) and the
discussion in we have

0., NBfwiB{| - |Car(211)]

BT = q"(1 426 + (b, Yo (211)), (4.5.29.1)
0

where wy; € W is as defined in , and where (p,Yj,(z11) € {£1}. Hence, in
order to show that ¢ = +1, it suffices to find an element in O,,, N Bfw;BE. Let
wg € W be the longest element with respect to the length function on W determined by
I ={o,...,as} € RT, and let wy € Ng(To)" be a representative of wy. Recall that
wp is characterised by the property wo(R"T) = —R*, so —w(IT) = II, and in this way
—wy defines a graph automorphism of the Dynkin diagram of G. Since the only such
automorphism is the identity, we have —wg(«;) = a; for 1 < i < 8. Using Chevalley’s

commutator relations [Che55|, we can write
Z11 = U] - Ugq - U2 - U3 - U4 * U3 - U5 * Up * U7 - US
(where u; = uq,(1) for 1 < ¢ < 8). Comparing this expression with
W11 = 815452535453 55" 5657 58,

we deduce from Lemma [3.2.24| that woznwgl € Bow11Bg. Since F(uwg) = wp and
F(z11) = 211, the uniqueness of expressions in the sharp form of the Bruhat decomposition
[Car85, 2.5.14] implies that woznwgl S ngllBg N O,,,, as desired. O

Corollary 4.5.30. Let xg € X(W) be as in [4.5.28| and z11 as in [4.5.24] The values of

F

R, at elements of Eg(a1)" are given by the following table, where we denote a GF-class

inside Eg(a1) by the corresponding element of Ag(z11) at the top of each column.

- =2 =3
]. Z]_]_ le le

R.,, ¢ —-¢ ¢ —-¢

Proof. Using the values of Ry; = xuz5; and Ryg = Xug at (211)25 € Es(a1)f for0<j <3
11
given in the discussion in shows that we have

m((211)51jl,w11) =" (1+7 + (=) + (o, Yy ((zll)zljl)) for 0 < j < 3.
Taking j = 2, we get

(g ) = (14 0.5 (G107

265



4. Simple groups of exceptional type

This forces the root of unity (p,Y;, ((211)5121) to be a real number, so it must be £1.

Since m((zn)glgl,wn) > 0, we deduce that (p,Yj, ((z11)2121> = +1. Recall from |3.4.23

that this determines all the values of (p,Y], at elements of Es(a1)”, and these values are

given by the following table:

1z zH ZY
oY, 1 -1 1 -1
The discussion in |4.5.28| thus yields the values of R[4, )r as stated. O

Remark 4.5.31. The proof of Corollary also shows that we have

4¢'0 if j =0,
m((211)z; 0 ) =
n 0 ifje{1,2,3}.

Thus, the G¥-class of 211 in Eg (al)F satisfies condition @ in and is uniquely
determined by this property among the G¥'-classes contained in Eg(a1)”. So we declare
the Gf'-conjugacy class of z11 as the good class among the G¥-classes inside Eg(a;)¥".

Example 4.5.32. Let us consider the two cuspidal unipotent characters p,, = Egli],
pzs = Es[—i]. As noted in if u € Eg(a)?’, there are only 8 elements z € X(W) for
which R, (u) can possibly be non-zero; of these 8 elements, only 2 parametrise unipotent
characters which are in the same family as Eg[+i], namely, x5 = (g4,1) and xg = (g4, —1).

So for u € Eg(a1)”, we get

Es[i](u) = 5(Rus(u) = Rag(w)) = 5(Xas (1) = Xag(uw))  and
Es[—i](u) = Es[i](u) = Es[i](u™").

Thus, the values of Eg[+i] at elements of Eg(a;)? are given by Table where the

GF-conjugacy classes inside Eg(ay)?

Ag(zll).

are described by the corresponding elements of

Table 4.13.: Values of Eg[+i] at Eg(a;)’ in characteristic p = 2
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Remark 4.5.33. Coming back to the discussion in 4.5.4Jon the labelling of the irreducible
characters of the relative Weyl group Wg(Ly) = W(Fy) (where J = {s9, 83,584,585} C .5),
let d,a, T, 70 be the Coxeter generators of this group as in [Kon65]. Following |[GH22,
2.1], we consider the involution +: Wg(L;) = Wg(Ly) defined by «(d) = 70, t(a) = T,
t(t) = a and ¢(70) = d. Thus, ¢ induces a permutation of Irr(Wg(Ly)), which we again
denote by ¢.

We have stated in (by referring to [GH22|) that our conventions turn out to
be compatible with Spaltenstein’s for L; C G. Let us check what would happen if we
assumed otherwise: The only place where this affects our argument for the proof of
Proposition occurs as far as the parametrisation of the character sheaf A(gy(4,),—1)
is concerned, as the corresponding irreducible character of Wg (L) would be 25 = ¢(2;)
instead of 21; let 2 # o be the element of X(W) which parametrises A(gg(q,),—1)- Then
we see that Cal, (w11) = 0. Under the above hypothesis, the right side of would
thus be equal to ¢'%(1 4 2¢) with & € {£1}; since the left side is certainly non-negative,

we must have ¢ = +1. Evaluating m(u,w11) with u € Eg(a1)¥’, we then obtain

6

6
0< m(ua wll) = Clw(wll)le (’U,) + Z Cx; (wll)Xxi(u) = q10 + q5 Z Xz; (u)
=5 1=5

Taking u := (211)32 , we have xq; <(Z11)5121) = Xug ((211)5121) = —¢° (see [4.5.26)), so we
0

get 0 < —¢'
Spaltenstein’s conventions in and thus for the statement in [GH22, §6, Summary B].

, a contradiction. This provides a consistency check for our claim concerning
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A. Finite Coxeter groups and generic
Iwahori—Hecke algebras

The purpose of this chapter is to fix our notation as far as finite Coxeter groups and
(generic) Iwahori-Hecke algebras are concerned, which are both omnipresent throughout
this thesis. All of the notions and results presented here are of course well known, and

most of them can be found in |[GP00], which will be our main reference.

A.1. Coxeter systems, Cartan matrices and Weyl groups

In this section, we collect some properties of Coxeter groups and their relation with
reflection groups associated to Cartan matrices, without giving any proofs. The content
of this entire section is taken from |GP00, Chap. 1], where more details and proofs (or

further references) are provided.

Definition A.1.1. Let S be a finite set, and let M = (my)ses be a symmetric matrix
with entries in NU {00} such that mss = 1 and mg > 1 for all s,¢t € S with s # t. We
define a group W (M) by the presentation

W(M) := (S| (st)™* =1 for all s,t € S such that mg < 00). (A.1.1.1)

(In particular, we have S C W (M), and any element of S has order 2 in W(M). More
generally, for any s,t € S such that mg < 0o, it can be shown that mg is in fact the
order of st.) A group W with a distinguished finite subset S C W of elements of order 2
is called a Cozxeter group (and (W, S) is called a Cozeter system) if W is isomorphic to
W (M) as above (where for any s,t € S, my is the order of st € W, with the convention
mg 1= o0 if st € W is an element of infinite order). We will then sometimes also refer to
S as a set of Coxeter generators of W. If the group W is finite, we call (W, S) a finite

Cozeter system and W a finite Coxeter group.

A.1.2. Let (W, S) be a Coxeter system. Thus, any w € W can be written as

WwW=81"-S2- ... Se withe &€ Nyand s1,...,s. € 5.
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The sequence (si,...,5¢) € S¢ is not uniquely determined by w. If e € Ny is minimal
with the property that there exist s1,...,s. € S such that w = s1-... - s, the latter
is referred to as a reduced expression for w (in terms of S), and e := l(w) is called the

length of w (with respect to S). This defines a length function
I: W —= Ny, wrl(w).

In particular, we have {(1y) =0 and I(s) =1 for any s € S.

A.1.3. Let (W, S) be a finite Coxeter system.

(a) Since W is finite, it certainly contains an element of maximal length with respect
to S. As it turns out, there is a unique element wy € W of maximal length, which is
thus called the longest element of W (with respect to S). The longest element wy € W is
characterised by the property that I(swg) < l(wp) for any s € S; furthermore, we have
wg = lyy.

(b) Let s1,s2,...,8 (r=|S]) be any fixed order of the elements of S. Then

We:=81°82+...- S €W

is called a Coxeter element of (W,S). The element w. depends on the chosen order
of s1,82,...,5,, but any two Coxeter elements of (W,S) are conjugate in W. For a

constructive proof of this well-known fact, we refer to [Cas17].

A.1.4. Let us assume that (W, S) is a finite Coxeter system. Associated to any such
(W, S) is its Cozeter diagram (or Coxeter graph), a graph whose vertices are labelled by
the elements of S and whose edges are given as follows: If s,t € .S are such that the order
mg of st is at least 3, we draw an edge between s and t; if mg > 4, we label this edge
with the number mg;. Thus, the Coxeter diagram of (W, S) is an undirected graph which
encodes precisely the information needed to describe the presentation of W in terms of
generators and relations, as in (A.1.1.1)).

In the case where W # {1}, the (finite) Coxeter system (W, S) (or the group W) is
called irreducible if its Coxeter graph is connected; otherwise, (W, .S) (or W) is called
reducible. (The trivial group W = {1} is neither irreducible nor reducible.) Clearly, any
finite Coxeter group W is isomorphic to the direct product of the irreducible Coxeter
groups corresponding to the connected components of the Coxeter graph of W. Hence,
the classification of finite Coxeter groups is reduced to that of the finite irreducible
Coxeter groups, that is, to the classification of connected Coxeter graphs. These are

given by Figure [A T where the numbers on the vertices describe a chosen labelling of the
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elements of S.

A, 12 3 n-1 n 1
n>1 *r————0— - ——0 Dn 3 4 n—1 n
B, 142 3  n-1l n a2 e
n>=?2

1 3 4 5 6 7 1 3 4 5 6 7 8
Er Es
2 2
1 2 3 1 2 3 4 1, 2
Hy o' e H e"e—e—a D20 omg

Figure A.1.: Connected Coxeter graphs

Definition A.1.5. Let S be a finite set, and let € = (cq)ses be a matrix with entries

in R. Then € is called a Cartan matriz if the following two conditions are satisfied:
(€1) For s,t € S with s # t, we have ¢ < 0; moreover, cg # 0 if and only if ¢;5 # 0.
(€2) For all s,t € S, we have css = 2 and cgcps = 4 cos?(m/my;) where mg € NU oo.

The Cartan matrix € is said to be of finite type if (in addition to (€1) and (€2)) the

following condition is satisfied:
(€fin) The matrix (—cos(m/mst))ses is positive-definite.

A Cartan matrix € = (cg)ses is called decomposable if there exist non-empty subsets
S1,52 of S and a partition S = S W S5 such that for any s € S1,t € So, we have
cst = 0 (and therefore also ¢;s = 0). So if we order the elements of S according to the
decomposition S = S; W Sy, € becomes a block diagonal matrix, with diagonal blocks
given by €1 = (co)stes; and € = (co)stes,. A Cartan matrix € = (cg)stcs is called

indecomposable if S # @ and if no partition of S as above exists.

A.1.6. Let € = (cst)stcs be a Cartan matrix, and let us consider a vector space V' over

R with basis {as | s € S}. Any s € S gives rise to a linear map

s: V=V, ar— ap—cgqas (for t € S; extended to V' by R-linearity),
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called a reflection (with root ), which is justified by the fact that we have s(as) = —as,

Trace(s) = |S| — 2 and s? = idy. So we obtain a group
W(€) := (5) € GL(V),
called the reflection group associated with €. The set
R(E) :={w(as) [w e W(€),s € S} € V\ {0}

is called the root system associated with €, and the elements of R(C) are called the roots
(associated with €). We clearly have II(€) := {as | s € S} C R(€). The elements of II(¢)
are referred to as the simple roots in R(€), and the number |S| is called the rank of W (€)
or of R(). We also note that R(¢) = —R(€). Finally, the set R(¢) is finite if and only
if W(€) is a finite group. So if W(€) is finite, the set R(¢) is indeed an abstract root
system (not necessarily reduced or crystallographic) in the R-vector space V, in the sense
of [Bou68, Chap. VI, §1, Déf. 1].

Now, it can be shown that, given any Cartan matrix €, the group W () is a Coxeter

group with presentation
W(€) = (S| (st)™t =1 for all s,t € S such that mg < co)

(where mg € NU {oco} are the numbers appearing in condition (€2) in Definition [A.1.5]).
Conversely, if W = W(M) is a Coxeter group as in (A.1.1.1)), the matrix

€ = (—2cos(m/mst))stes

is a Cartan matrix, and the associated reflection group W () is isomorphic to W. The
Cartan matrix € is indecomposable if and only if W (€) is irreducible. Furthermore, the

finite Coxeter groups are precisely the reflection groups associated to Cartan matrices of

finite type.

A.1.7. Let us assume that € is a Cartan matrix of finite type, so that the associated
reflection group W = W (€) is finite. It should be noted that, in general, there will be
several different Cartan matrices (of finite type) whose reflection group is isomorphic to
W, so it is desirable to specify a ‘standard’ Cartan matrix attached to W.

In accordance with the notions for abstract root systems, R(€) is called reduced if,
for any ¢ € R and any a € R(€) such that ca € R(C), we have ¢ € {£1}. This happens

precisely when cg = ¢t for all s,t € .S with mg odd. Let us consider the following two

272



A.1. Coxeter systems, Cartan matrices and Weyl groups

conditions for a Cartan matrix € of finite type, where s,t € S:

(Cred) Whenever mg, is odd, we have cg = ¢i5. (In this case, € is called reduced.)

(Cnor) Whenever mg > 4 is even, we have ¢y = —1 or ¢ = —1.

Given any finite Coxeter group W, there exists a unique Cartan matrix € of finite
type which satisfies (€red) and (€nor), and whose associated reflection group W () is
isomorphic to W. Associated to any such € is its Dynkin diagram ©(€), that is, a graph
which encodes precisely the information needed to determine € (under the assumption
that € satisfies (€1), (€2), (¢fin), (€red) and (€nor)); we will provide the definition of
Dynkin diagrams for an important subclass of Cartan matrices of finite type in
below and refer to [GP00, 1.3.7] for the general case.

A.1.8. There is another natural condition on a Cartan matrix €, namely:
(Cerys) We have cg € Z for all s, t € S.

If ¢ satisfies (€crys), we say that € (or the Dynkin diagram D (&) of €) is of crystallographic
type. (This is equivalent to R(€) being a crystallographic abstract root system.) In this
case, the corresponding reflection group W (¢€) is called a Weyl group. As this notation
suggests, not every finite Coxeter group is a Weyl group (and not every Cartan matrix
of finite type is of crystallographic type): Indeed, any (indecomposable) Cartan matrix
which gives rise to a reflection group whose Coxeter diagram is one of Hs, Hy, l2(5) or
la(m) with m > 7 does not satisfy (€crys); any such Cartan matrix is said to be of
non-crystallographic type.

In this thesis, we only have to deal with finite Weyl groups, thus with Cartan matrices
of both finite and crystallographic type, so it will be sufficient for our purposes to describe
the Dynkin diagrams of such Cartan matrices. So let us make the following assumption

on the Cartan matrices ¢ that we consider here:

¢ = (cst)s tes satisfies (€1), (€2), (€fin) and (Ccrys).

Then, first of all, we must have mg € {2,3,4,6} for all s,t € S with s # t. Since

CstCrs = 4cos?(m/my;), we obtain, for any s,t € S with s # ¢:

Mg =2 <= cgcs =0,
Mg =3 <= Cgcs = 1,
ms =4 < Cqcs = 2,
Mgt = 6 < CstCts = 3.
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We deduce that € automatically satisfies the conditions (€red) and (€nor).

The Dynkin diagram ©(€) of € is the directed graph whose vertices are in bijection
with the elements of S and whose edges are defined as follows: If s, € S with s # ¢,
the vertices labelled by s,t are joined by cgcys lines; moreover, if |cis| > 1 (so ¢y = —1
and cgcs > 1), an arrow pointing towards the vertex labelled by ¢ is added. Note that
D(C) encodes all the information needed to recover €. The Dynkin diagram ©(¢) is
closely related to the Coxeter diagram of the reflection group associated with €. If € is
indecomposable, () will get the same name as the Coxeter diagram of W (<) in most
cases; the main exception occurs as far as the Coxeter diagram of type B,, is concerned:
As it turns out, for one of the leaves of this graph, labelled by s; € S, say, and its
neighbour sy € S, we can have either cg 5, = —2 or 4,5, = —2; the two different Dynkin
diagrams thus obtained are named B,,, C,, respectively. Finally, it is common to write
Gy instead of I2(6).

For a general Cartan matrix € = (cg)stcg (of finite and crystallographic type, but not
necessarily indecomposable), let S = S1WSaW. . .WS, (e € Ny) be a decomposition into non-
empty subsets S; C S such that for any 1 < 14,5 < e with ¢ # j, we have cg = ¢4 = 0 for
all s € S, t € Sj, and such that each €; = (cst)stes, is an indecomposable Cartan matrix.
Thus, if we order the elements of S according to the decomposition S = S7WSoW... WS,
¢ is a block diagonal matrix, with diagonal blocks given by €; = (cst)stes,, 1 <@ <e.
Then the Dynkin diagrams ©(;),D(&3),...,D(,) are the connected components of
the Dynkin diagram ©(€). (In particular, €;,&,, ..., €, are uniquely determined by
¢ up to their order.) If ®; is the name of the Dynkin diagram ©(¢&;) as described
above (1 <i < e), we will name ©(€) by D1 x D3 X ... x D, and say that € is of type
D1 X Do X ...xD.. So the classification of Cartan matrices of finite and crystallographic
type is reduced to indecomposable ones; the corresponding list of connected Dynkin
diagrams is pictured in Figure The Dynkin diagrams named A,,, B,,, C,, and D,
are said to be of classical type, while Eg, E7, Eg, F4 and Gy are said to be of exceptional
type. The analogous notion is used for the corresponding Cartan matrices as well as for
the corresponding Weyl groups. Accordingly, if W is an irreducible Weyl group with

associated Cartan matrix of type
A'ru an Cn> D'ru EG) E77 E87 F47 G27
we will sometimes denote W by

W(An)a W(Bn)7 W(Cn)7 W(Dn)a W(E6)7 W(E7)7 W(ES)v W(F4)7 W(G2)7
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Figure A.2.: Connected Dynkin diagrams of crystallographic type

respectively.

A.2. Generic lwahori—Hecke algebras

Definition A.2.1. Let (IV,S) be a finite Coxeter system and M = (my)ses be the
associated matrix, as in Definition Following [GM20, 3.1.19] (see |GP0O0, §8.1]), let
us consider a set (vs | s € S) of indeterminates such that vy = v, whenever s,t € S are

conjugate in W, and let

2
s

Xs:=v; forses.

The generic Iwahori-Hecke algebra H(W,xs | s € S) over the ring A := Z[vEl | s € S]
is defined as the associative A-algebra (with identity) generated by elements Ty, s € S,

subject to the relations

(Ts —x5)(Ts +1)=0 for s € S,
T TiTs - =T, TT;,--- (ms terms on either side) for s,t € S.

A.2.2. Let (W, S) be a finite Coxeter system, and let H(W,x, | s € S) be the corres-
ponding generic Iwahori-Hecke algebra over A = Z[vi! | s € S] (where x, = v?2 for
s € S), as in Definition [A.2.1] Let w € W, and let w =s1 - s2-...- s, (s; € S, n € Ny)
be a reduced expression for w in terms of S. By [GP00, 4.4.3, 4.4.6], the element

T’w ;:Tsl-TSQ'...'TsnEH(W,XS‘SGS)
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does not depend upon the choice of the reduced expression for w, and the algebra
H(W,xs | s € 5) is free over A, with A-basis {T}, | w € W}. (In particular, since the
neutral element 1 of W is the empty product of elements in S, T} is the identity element
of H(W,xs | s € S).) Furthermore, the multiplication in H(W,xs | s € S) is uniquely
determined by the following equations, where w € W and s € S:

Tows it l(ws)=1l(w)+1,
Ty -Ts =
XsTys + (xs — )Ty, if l(ws) = l(w) — 1.

A.2.3. In the setting of let us assume that we are given a commutative ring R
with identity and a ring homomorphism (preserving the identity element) ¢: A — R.

Thus, ¢ naturally gives R the structure of a left A-module, and we may define
Hr(W,p(xs) | s € S):=H(W,xs | s € S)®a R.

Following |[GM20, 3.1.20], this is called the specialisation of H(W,xs | s € S) along .

The ring homomorphism ¢ induces an algebra homomorphism
H(W,xs | s €8) 2 H(W,x, | s €S) @a A 2% (W, p(x,) | s € 5),

which we will also denote by ¢. It is uniquely determined by the values ¢(v;), s € S. For
any ¢ as above, Hr(W, p(xs) | s € S) is called an Iwahori-Hecke algebra associated to
the Coxeter group W. Now assume that R = L := Q(v, | s € S) is the field of fractions
of A and that the following condition holds:

The algebra Hr (W, p(xs) | s € S) is split and semisimple. (M)

Then a fundamental result of Tits (Tits’ Deformation Theorem, see |[GP00, 7.4.6] or
[CR&T7, (68.17)]) yields a natural bijection between the irreducible characters:

Irr(H(W,xs | s € 9)) = Irr(H (W, ¢(x4) | s € 9)).

(Here, on the left side, Hp,(W,x, | s € S) = H(W,x,s | s € S)®a L is the specialisation of
H(W,xs | s € S) along the embedding A — L, that is, H1(W, x, | s € S) is obtained from
H(W, x5 | s € S) by extension of scalars to L. We now use the fact that Hy(W,xs | s € 5)
is a split algebra (see [GP00, 9.3.5 and 6.3.8]), so that [GP0O0, 7.4.6] is applicable.)

Example A.2.4. Let us consider the field extension K := Q(cos(27/mg) | s,t € S) of
Q. Then by |GPO00, 6.3.8], every x € Irr(W) can be realised over K, that is, there is an
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irreducible representation of K[W] which affords the character y. (In the special case
where W is the Weyl group attached to a finite group of Lie type, see Chapter [2] we have
in fact K = Q.) Let L := K(vs | s € S), and consider the homomorphism ¢;: A — L
defined by ¢1(vs) := 1 for all s € S. Hence, we also have ¢1(xs) =1 for all s € S, and
the multiplication rules for T, - T in [A:2.2] show that

01(Tw) - p1(Ts) = p1(Tys) forallw e W, s € S.

Thus, we have recovered the group algebra Hp (W, ¢1(xs) | s € S) = L[W]. This algebra
is certainly split (since K C L) and also semisimple, due to Maschke’s Theorem. Hence,
the condition () in is satisfied, and so we obtain a natural bijection

Ir(Hp(W,xs | s € 9)) = Irr(W), ¢+ ¢1.

A.3. A note on different conventions for Weyl groups of type F,
and G2

The character table of the Weyl group of type F4 has been determined by Kondo [Kon65].
However, as observed in [GH22| and as we have mentioned several times in the text
(cf. Section Remark [£.5.33)), there are different conventions for
the labelling of characters of (relative) Weyl groups of type Fj arising from reductive
groups in the existing literature. In order to have a uniform reference, we decided to
conform with Lusztig’s book [Lus84a] by always specifying the same conversion to Kondo’s
notation |[Kon65] as Lusztig. While Spaltenstein [Spa85| also uses the labels of [Kon65|
for irreducible characters of (relative) Weyl groups of type F4, he does not explicitly
provide a correspondence between his Coxeter generators and Kondo’s 7o, 7,a,d. As
noted in [GH22| (see also Remark , it implicitly follows from the references
and results of [Spa85| that Spaltenstein uses the same conversion scheme as Lusztig
does in [Lus84a], which thus also coincides with the one chosen in this text. In order to
be able to transfer this to the convention with respect to the root lengths that Carter
fixes in |[Car85| p. 414] and the arising identification of Carter’s labels for the irreducible
characters with Kondo’s printed in [Car85, p. 413], the reader should remember that
Kondo’s a and d are always declared to be reflections in long roots in Carter’s set-up —
in particular, regarding the simple algebraic groups of type F4 themselves, one would
have to reverse the arrow in the Dynkin diagram printed in the beginning of Section [4.4]

We refer to [GH22| for a much more detailed analysis of these different conventions.
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A similar thing happens for (relative) Weyl groups of type Gg, but here this is less
problematic since the description of the irreducible characters of these groups is explicitly

provided in all of the above-mentioned sources [Lus84al, [Car85|, [Spa85].
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In this concluding chapter, we collect some of the bigger tables which we did not want to
include in the main text to avoid unnecessary disturbance.

Table displays the full 39 x 39 block of the Fourier matrix in type Eg (see ,
which we could not find in printed form in the existing literature. Here, our notation for
the labels in 9 (S5) is similar to the one in [Lus84al 4.3] and extends the one introduced
in 453} So first of all, let us fix primitive roots of unity w,i,(s € R of order 3,4, 5,
respectively. As for the elements of G5, 1 € G5 is the neutral element; for 2 < j < 5,
g; is a j-cycle in &5, and we assume that g and g3 have disjoint supports, so that
g6 := g293 € S5 has order 6; finally, g} € S5 is the product of two 2-cycles with disjoint
support. Regarding the irreducible characters of the centralisers of G5 = Cg, (1), let 1
be the trivial character of Gs; let A! be the character of the reflection representation
of &5 and M € Irr(&5) be the jth exterior power of A! for j = 2,3,4 (so A* is the sign
character of &3); furthermore, let v € Irr(S5) be the irreducible character of degree 5
which takes the value +1 on reflections, and let v/ := v ® A\*. If g € {g4, 95}, we have
Cs,(9) = (9), and we denote the irreducible characters of this group by their values at
g. If g € {g3, 96}, we have Ces,(g9) = (96) = (92) % (g3), and we denote the irreducible
characters of this group by their values at gg (i.e., by +1, 4w, +w?). The centraliser of gy

can canonically be identified with (g2) x &3, and we write the characters of this group as
+1:=(£1) X1, +e:=(+1)Ne, +r:=(+1)Xr,

where the first factor gives the value at go, and where 1,¢e,7 € Irr(S3) are the trivial,
sign, reflection characters, respectively. Finally, we have Cg,(g5) = Dg (the dihedral
group of order 8). Let 1 be the trivial character of Cg,(g5) and r € Irr(Cg, (¢5)) be the
unique irreducible character of degree 2; let ¢’ be the character of degree 1 which takes
the value —1 on any transposition and on any 4-cycle in Cg, (g5); let €” be the character
of degree 1 which takes the value +1 on any transposition and —1 on any 4-cycle in
Ces,(g5); let e :=e' @ ¢€”.

Table [B.2] contains all the values of the unipotent characters at unipotent elements

for the groups Eg(q) where ¢ is a power of the prime p = 2, with Malle’s notation in
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[Mal93] for the representatives for the conjugacy classes of E¢(¢). In addition to the
Green functions computed by Malle [Mal93|, this requires the determination of the
unipotent almost characters Rp,[1), Rp,[s] and Rp,};) at unipotent elements, which we
have accomplished in see Table [£.4]

Tables [B-3] and [B:4] are needed for the determination of the values of unipotent

characters at unipotent elements for the groups E7(q) where ¢ is a power of the prime

p =2 sce [LZ2T 228
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E7(a1) Er(a2) Es Dg Deg(ar) Ds+A; Ds D4+A1 Dy
1o 1 1 1 1 1 1 1 1 1
7 q q ¢ gq q®4 q q®4 q®4 q®3Ps
274 0 q? ?® ¢ Py > Py ?(2¢> +1) q2<1>§ P P3P, Pg
213 0 0 @ 0 @ ' P4 PPy PP
56, 0 0 0 4 ek a Py P32 PP3P4P6
21, 0 0 0 0 q* 0 q* q* ¢ P3P
120, 0 0 0 0 q* q* ¢t ®y q44>?1 *(2¢* +¢* + 1)y
1057, 0 0 0 0 Q° q° 2¢° 2¢° Py P®*+¢>+2)dy
35y 0 0 0 q* q* q* q* gt P3P ¢4 P3P
189, 0 0 0 o0 q° q° q° o2 PP P3P, P
105, 0 0 0 0 0 0 0 q° q°
210, 0 0 0 o0 q° 0 q° ®(@+2) ¢%(®+2¢* +2¢°+2)
1684 0 0 0 0 0 ¢ ¢ 8 @2 P3P, D6
315/, 0 0 0 0 0 0 0 q"dy q" P3P
2807, 0 0 0 0 0 0 0 q Dy q"®?
357 0 0 0 0 0 0 0 0 q°
1897, 0 0 0 0 0 0 q7 q" Py qT P3P, D6
280y, 0 0 0 0 0 0 0 ¢y 3,
405, 0 0 0 0 0 0 0 q® B D3dg
189, 0 0 0 0 0 0 0 q® D3P
378/, 0 0 0 0 0 0 0 Oy P D3P
420, 0 0 0 0 0 0 0 g1 ¢O0D3Dg
336/, 0 0 0 0 0 0 0 0 Py
844 0 0 0 0 0 0 0 q*? 12
105, 0 0 0 0 0 0 0 0 q'®
Table B.4.: Values of certain Ry, ¢ € Irr(W), at the 9 unipotent classes considered in

4.2.25| for the groups G = E7(q) where ¢ = 2". These functions are constant
on a given 0% so it suffices to write & at the top of a column; ®,, (m € N)

is the mth cyclotomic polynomial evaluated at q.
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