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Abstract
Geochemical processes in subsurface reservoirs affected by microbial activity change the material properties of porous
media. This is a complex biogeochemical process in subsurface reservoirs that currently contains strong conceptual
uncertainty. This means, several modeling approaches describing the biogeochemical process are plausible and modelers
face the uncertainty of choosing the most appropriate one. The considered models differ in the underlying hypotheses about
the process structure. Once observation data become available, a rigorous Bayesian model selection accompanied by a
Bayesian model justifiability analysis could be employed to choose the most appropriate model, i.e. the one that describes the
underlying physical processes best in the light of the available data. However, biogeochemical modeling is computationally
very demanding because it conceptualizes different phases, biomass dynamics, geochemistry, precipitation and dissolution
in porous media. Therefore, the Bayesian framework cannot be based directly on the full computational models as this would
require too many expensive model evaluations. To circumvent this problem, we suggest to perform both Bayesian model
selection and justifiability analysis after constructing surrogates for the competing biogeochemical models. Here, we will
use the arbitrary polynomial chaos expansion. Considering that surrogate representations are only approximations of the
analyzed original models, we account for the approximation error in the Bayesian analysis by introducing novel correction
factors for the resulting model weights. Thereby, we extend the Bayesian model justifiability analysis and assess model
similarities for computationally expensive models. We demonstrate the method on a representative scenario for microbially
induced calcite precipitation in a porous medium. Our extension of the justifiability analysis provides a suitable approach
for the comparison of computationally demanding models and gives an insight on the necessary amount of data for a reliable
model performance.

Keywords Microbially induced calcite precipitation · Bayesian model selection · Bayesian model justifiability analysis ·
Arbitrary polynomial chaos expansion · Surrogate-based model selection and comparison · Surrogate-based Bayesian
model justifiability analysis

1 Introduction

1.1 Biogeochemical processes in subsurface porous
media

Biogeochemical processes in porous media are geochemi-
cal processes affected by the activity of microbes [37]. They
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profoundly impact ecosystems as they occur ubiquitously
in the subsurface. This makes them interesting for appli-
cations in engineering. Some examples of biogeochemical
processes that engineers tried to manipulate are: enhanced
recovery of resources as in microbially enhanced oil recov-
ery (e.g. [4, 29, 39]), blocking of preferential flow paths by
the accumulation of biomass or minerals precipitated as a
result of the microbial metabolism (e.g. [8, 73]), bioreme-
diation of aquifers or soils by microbial decomposition of
organic pollutants (e.g. [20, 40, 45]) or in situ sequestra-
tion of inorganic contaminants (metals, radionuclides) by
biotically managed precipitation [19].
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However, it is challenging to describe these biogeochem-
ical processes in full detail, because many subprocesses
interact in a complex manner [70]. Accordingly, it is not
easy to control them as desired. A good understanding of
these processes is necessary when aiming to control them in
order to predict or even regulate the outcome. Thus, model-
ing is a crucial tool to predict the response of systems under
certain conditions [30]. Corresponding models are an essen-
tial tool in investigating the coupled transport of fluids and
reactive substances through porous media and the resulting
chemical reactions in the pores [38, 71, 86].

Several transport models dealing with the biogeochem-
ical process of microbially induced calcite precipitation
(MICP) have been discussed in works by e.g. [5, 15, 25, 26,
46, 83]. This induced calcite precipitation provides a practi-
cal technical application. By accumulating the precipitated
calcite, the porosity and permeability of a porous medium
can be reduced (e.g. [13, 14, 42, 58, 72]). Additionally,
MICP can be used to reduce erosion or increase soil stabil-
ity (e.g. [17, 56, 80, 87]). MICP has been proven to reduce
permeability and enhance mechanical strength even at large,
field-relevant scales (e.g. [33, 41, 46, 56, 59]). There are
several reviews about the understanding of bio-improved
soils (e.g. [44, 74, 76]).

Biogeochemical models are useful, for example, to
design, monitor, and evaluate such applications, e.g. to
mitigate leakages from a geological gas reservoir into
above aquifers in advance (e.g. [12, 13, 35, 41, 46]). Our
limited knowledge about the interaction of the processes
that govern biogeochemical systems leads to several
modeling approaches that differ, e.g., in their level of
detail. The uncertainty of choosing between these modeling
alternatives is considered here as conceptual uncertainty.

1.2 Conceptual uncertainty

When modeling an environmental process, we have to
make assumptions and simplifications because, usually,
the real process is too complex to be represented in full
detail. Consequently, one has to deal with various types
of uncertainty. Besides input and parameter uncertainty,
conceptual uncertainty (uncertainty of model choice) has
to be taken into account. If we chose a single model and
did not consider possible alternatives, we might strongly
underestimate the overall prediction uncertainty because
the space of potential models is not sufficiently covered
[16, 61, 63].

Many studies have identified conceptual uncertainty as a
key source of uncertainty in modeling (e.g [10, 16, 18, 22,
48, 61–64, 69, 75]). These studies suggest to treat modeling
concepts with different levels of detail and different
assumptions as competing hypotheses. By using statistical
techniques such as Bayesian model selection (BMS), we can

evaluate which model is the most appropriate representation
of the system [60, 79].

However, two challenges persist. First, it is important
to note that there is no existing method which allows
to quantify conceptual uncertainty on an absolute level
[24, 47]. Second, biogeochemical modeling, discussed
briefly in Section 1.1, is computationally very demanding
since it conceptualizes different processes in subsurface
porous media. Thus, a direct application of the rigorous
probabilistic machinery is not feasible due to a necessity of a
high number of model evaluations. In this study, we address
the second challenge.

1.3 Surrogate representation of the underlying
physical models

In order to assure feasibility of the probabilistic BMS
framework, we will construct computationally cheaper
surrogate models for each version of the biogeochemical
model. The purpose of a surrogate model is to replicate
the behavior of the underlying physical model from a
limited set of runs. For constructing a surrogate the
original model should be evaluated by using those sets
of modeling parameters out of various possibilities that
cover the parametric space as well as possible. Considering
very high computational cost of biogeochemical models,
whereby one model evaluation requires days, we need to
select an approach that will capture the main features of
the underlying physical models after a very small number
of model evaluations. Following a recent benchmark
comparison study by [34], we construct the surrogate model
using the arbitrary polynomial chaos expansion technique
(aPC) introduced in [52], which is suitable for our purpose.

In short, the data-driven aPC approach can be seen
as a machine learning tool that approximates the model
output by its dependence on model parameters via
multivariate polynomials. The data-driven feature of aPC
offers complete flexibility in the choice and representation
of probability distributions. It requires no approximation
of a density function, which usually caused additional
uncertainties [51]. Based on the original polynomial chaos
expansion introduced by [82], the aPC constructs surrogate
models with the help of an orthonormal polynomial basis.
Such a reduction of a full biogeochemical model into
a surrogate model offers the path to perform a rigorous
stochastic analysis at strongly reduced computational cost.

1.4 Two-stage Bayesianmodel selection procedure

Bayesian model selection (BMS) (e.g. [60, 79]) has been
used in many fields of research to support the choice
between competing models (e.g. [9, 11, 28, 43, 57, 68,
81]). It ranks models based on their suitability to represent
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the available measurement data. To be more specific, BMS
employs the Bayesian model evidence (BME) as the score
indicating the quality of the model against the available data.

The BME-based ranking follows the principle of
parsimony [67] or rather “Occam’s razor”, which tells us to
“choose the simplest one between competing hypotheses”
[31], i.e. the simplest model that can still fit the data. This
results in finding the optimal trade-off between goodness-
of-fit and simplicity. The work by [68] uses BME to find
a justifiable level of complexity (i.e. variability of the
model) for modeling a certain quantity of interest. Please
note that the term “model complexity” is not uniquely
defined [2, 23]. In the current study, we use complexity
in the sense of “number of processes explicitly included”,
which is the most commonly accepted in the geoscientific
community [2].

Following the framework introduced by [68], we will
adopt a two-stage approach for model testing. In the first
stage, the classical BMS procedure is used, in which models
are tested against measurement data. This procedure is
complemented by the second stage, the so-called Bayesian
model justifiability analysis. Here, competing models are
tested against each other based on a “synthetic truth”
instead of measurement data. Based on this analysis, one
can diagnose similarities between competing models and
identify a suitable model that is “affordable” when only a
realistic amount of measurement data is available. A joint
interpretation of both stages provides insights that help
find the most appropriate model, representing the observed
system best under acceptable computational cost.

In the current study, we consider several models
describing biogeochemical processes in subsurface porous
media. They contain various assumptions helping to
simplify the modeling procedure. As these models are
computationally expensive, we cannot directly apply the
two-stage Bayesian model selection as introduced by [68].
Instead, we base this analysis on surrogate models.

1.5 Goals and structure

The overall aim of this study is to set up a rigorous rank-
ing of biogeochemical computationally expensive models
introducing the surrogate-based two-stage Bayesian model
selection procedure. We extend the Bayesian model justi-
fiability analysis introduced by [68]. Our novel correction
factor allows the use of surrogate models, making this
analysis suitable for computationally demanding models.

Section 2 introduces necessary details on Bayesian
updating of the aPC expansion and extends the Bayesian
model selection of computationally demanding models to
the Bayesian model justifiability analysis introducing novel
correction factors. Section 3 introduces the biogeochemical

process of microbially induced calcite precipitation (MICP)
and the corresponding model set. Section 4 performs
Bayesian model selection among MICP models and
assesses their similarity using the novel surrogate-based
justifiability analysis. Section 5 summarizes the results and
gives an outlook for further investigation.

2 Bayesian assessment of computationally
demandingmodels

2.1 Arbitrary polynomial chaos expansion

We will consider computationally demanding models, for
which a straightforward application of the Bayesian model
selection procedure is infeasible. Therefore, we will con-
struct so-called surrogate models with negligible computa-
tional cost to replicate the behavior of the original physical
models via the polynomial chaos expansion (PCE). The goal
of PCE techniques is to construct a so-called response sur-
face, where the modeling parameters are mapped to the
model output, capturing the main features of the underlying
physical model. This response surface is constructed with
the help of an orthonormal polynomial basis, which is cre-
ated by the Gram-Schmidt orthogonalization process [66].
Originally, it was only possible to employ this method for
models with normally distributed model parameters [85].
With a generalized form, called generalized polynomial
chaos (gPC) [84], the number of possible distributions for
the model parameters was increased, but still limited [52].
The problem with some models is that for many model
parameters the exact distribution is not known or no unique
form of the distributions can be determined. Therefore, the
gPC for arbitrary distributions was generalized to arbitrary
polynomial chaos expansion (aPC), covering a wider range
of distributions in [52]. The distributions can be discrete,
continuous or discretized, they do not have to follow a
certain form and can be available analytically as density
function or simply as a set of samples. In this study, we use
aPC to keep the proposed framework general so that it can
be used for different parameter distributions. In what fol-
lows, we present the core idea for the construction of these
aPC-based surrogate models.

Let ω = (ω1, ..., ωNp) represent the Np-dimensional
vector of model parameters with corresponding parameter
space Ω = Ω1 × ... × ΩNp . All parameters in ω are
assumed to be independent in their prior distribution [52].
Let the model responses be given in the form of M =
f (x, t; ω), where f can be some differential equation, a
coupled system of differential equations or just a simple
function. Moreover, the model parameters can depend on
a certain point in space x = (x1, x2, x3) and time t . The
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model response M can be approximated with a spectral
projection of responses onto orthogonal polynomial bases
as follows:

M(x, t; ω) ≈ M̃(x, t; ω) =
D∑

s=1

cs(x, t) · Ψs(ω), (1)

with the corresponding surrogate model M̃(x, t; ω) and
polynomials Ψs(ω) of the multivariate orthogonal polyno-
mial basis. These polynomials are constructed according to
[51]. There are D polynomials needed for the expansion,
whereby D is the number of expansion coefficients depen-
dent on the number of model parameters Np and the chosen
maximum polynomial degree d: D = (Np + d)!/(Np!d!).
The coefficients cs(x, t) depend on space and time since the
original model output depends on space and time.

To compute the coefficients cs(x, t) of the polynomial
chaos expansion in Eq. 1, we employ a non-intrusive
stochastic collocation method [52]. The non-intrusiveness
of this method implies that the model M can be considered
as a black box, so that there is no need of modifying
the governing equations of the original model at hand.
Alternatively, an intrusive method such as the stochastic
Galerkin method could also be used. However, as it is an
intrusive method, it is necessary to modify the governing
equations in the model, which can be complex [51]. Using
the stochastic collocation method, a finite number of model
evaluations D is sufficient to determine the coefficients.
The coefficients can be computed using D evaluations of
the original model M on D so-called collocation points{
ω

(i)
1 , ..., ω(i)

Np

}
, i = 1, ..., D. We solve the resulting system

of equations with the help of the pseudoinverse:
⎡

⎣
Ψ1

(
ω(1)

)
... ΨD

(
ω(1)

)

... ... ...
Ψ1

(
ω(D)

)
... ΨD

(
ω(D)

)

⎤

⎦ ·
[

c1(x, t)
...

cD(x, t)

]
=

⎡

⎣
M

(
x, t; ω(1)

)

...
M

(
x, t; ω(D)

)

⎤

⎦ (2)

or

Ψ (ω) · c(x, t) = M(x, t; ω). (3)

The D × D matrix Ψ contains the basis polynomials,
evaluated on different collocation points. The vector c of
size D × 1 contains the expansion coefficients. The outputs
of the model M on the different collocation points are
represented by vector M of size D × 1. If one aims to
compute the surrogate model of M for different points
in time, it is sufficient to compute the matrix Ψ once
for a fixed amount of parameters and collocation points
and an expansion degree d, since the matrix is space and
time independent, unlike both of the vectors c and M .
Accordingly, the coefficients are computed based on the
model output using the collocation points for different
points in space and time separately (Matlab code available
in [49]).

The solution of the system of Eq. 3 is obviously depen-

dent on the choice of the collocation points
{
ω

(i)
1 , ..., ω(i)

Np

}
,

i = 1, ..., D. According to [77] the optimal collocation
points are the roots of the univariate polynomials used for
the construction of the multivariate polynomial basis of
degree d + 1 [52].

Hence, the resulting surrogate model represents the orig-
inal model at the collocation points exactly while some
“polynomial interpolation” is applied between them or
rather an extrapolation outside of the range of the colloca-
tion points [43].

2.2 Bayesian updating of the aPC-based surrogate
representation

The procedure described in Section 2.1 can be seen as
an initial step, whereby the surrogate representation of the
original model makes use of the prior distribution of the
modeling parameters and omits the available measurement
data. Therefore, the constructed surrogate model M̃ could
be imprecise and may not necessarily cover well the region
of the parameter space where the measurement data are
relevant (i.e. posterior). Using a higher expansion degree to
improve the surrogate model globally would increase the
computational time excessively.

Therefore, to overcome this issue, we employ an itera-
tive Bayesian updating process of the aPC representation
(BaPC) that improves the accuracy of the surrogate by incor-
porating new collocation points at approximate locations of
the maximum a posteriori parameter set [53]. The idea is
to evaluate the surrogate model M̃ on a high number of
parameter realizations, obtained from their prior distribu-
tion, to weigh the points by their posterior probability. As
the parameter realization with the highest posterior proba-
bility is assumed to be in the parameter region of interest,
the surrogate model should be refined there. According
to the BaPC strategy, we will evaluate the original model
M(x, t; ω) on the suggested new collocation point ω cor-
responding to the maximum a posteriori parameter set and
recalculate the expansion coefficients c(x, t) by solving
Eq. 3. The increasing number of collocation points leads to
an overdetermined system of equations for the determina-
tion of the coefficients which can be solved as described in
Appendix A. In this way, we iteratively update the aPC rep-
resentation in Eq. 1 by incorporating the points where the
probability to capture the measurement data is higher. This
process is repeated until the surrogate model captures the
measurement data sufficiently well, although the number of
iterations should be limited to keep the computational cost
manageable (Matlab code available in [50]).

The suggested BaPC framework has shown promis-
ing results for computationally demanding models (e.g.
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[6, 43, 54]) and further details are shown in [53]. Alterna-
tively, other Bayesian strategies can be found in [55].

2.3 Approximation quality of aPC-based surrogate
models

To assess the quality of a constructed surrogate model dur-
ing the iterative Bayesian updating of an aPC expansion, we
will estimate the approximation error in equation (1). Since
the stochastic collocation belongs to the family of regression
methods, only calculating the error at the collocation points
would lead to biased results. Yet, computing the validation
error via so-called testing parameter sets to assess the accu-
racy of the model, trained on the training collocation points,
is computationally infeasible.

To remedy this problem, one can use the leave-one-out
cross validation (LOOCV) as described in [7] instead. The
collocation points are divided P times into two subsets,
assuming that the set of collocation points is of size
P ≥ D + 1: for the calculation of the coefficients the
collocation points are omitted one after the other. After
the coefficients have been determined with the help of the
remaining collocation points, the resulting surrogate model
is evaluated on the omitted collocation point. Then, the
difference to M , evaluated on this point, is computed [7].
This is done for all collocation points and finally the mean
value over all quadratic errors is taken:

errLOOCV = 1

P
·

P∑

i=1

(
M

(
ω(i)

)
− M̃\ω(i)

(
ω(i)

))2
, (4)

where P is the current number of collocation points,
M

(
ω(i)

)
is the model evaluated on the omitted collocation

point ω(i) and M̃\ω(i)

(
ω(i)

)
is the surrogate model

constructed without the collocation point ω(i) evaluated on
the collocation point ω(i).

2.4 Bayesianmodel selection

Bayesian Model Selection allows to rank Nm different
models Mk (k = 1, ..., Nm) with corresponding parameter
spaces Ωk , based on their probability to be the data-
generating process (e.g. [24, 60, 79]). For this ranking,
prior model weights P (Mk) are updated to posterior model
weights P(Mk|y0) using Bayes’ theorem:

P(Mk|y0) = p(y0|Mk)P (Mk)
∑Nm

i=1 p(y0|Mi)P (Mi)
, (5)

with y0 being the vector of measurements and the models’
prior probability P(Mk). The prior probability P(Mk) is
a subjective estimation of the investigator or the modeler
about which model is an exact representation of the data-
generating process, without actually knowing the data

yet [60]. Uniformly distributed priors P(Mk) = 1
Nm

with Nm competing models are a common choice. The
term p(y0|Mk) is the so-called Bayesian Model Evidence
(BME). The BME value is also known as marginal
likelihood, because it can be calculated by averaging
(marginalizing) over the parameter space Ωk of each model
[32, 67]. The marginalization makes BME independent of
the parameter choice and hence it is a characteristic of only
the model Mk . Accordingly, BME is defined as

p(y0|Mk) =
∫

Ωk

p(y0|Mk, ω) p(ω|Mk) dω, (6)

where p(ω|Mk) is the model-specific prior distribution of
the model parameter vector ω ∈ Ωk = Ω1 × ... × ΩNp .
The likelihood function p(y0|Mk, ω) quantifies how well
the predictions yk of model Mk fit the measurement data y0
and includes assumptions on the measurement error [60].
Here, we will choose a Gaussian likelihood function with
zero mean:

p(y0|Mk, ω) = (2π)−Ns/2|R|−1/2

· exp

(
−1

2
(y0 − yk(ω))T R−1(y0 − yk(ω))

)
, (7)

where R is the covariance matrix of the measurement error
ε of size Ns × Ns (with data set size Ns), and yk(ω) is the
prediction made by model Mk with the model parameter
vector ω.

For most applications, there is no analytical solution
of Eq. 6 and the corresponding integral can be estimated
using a brute-force Monte Carlo approach, which yields
an unbiased approximation. To perform the Monte Carlo
integration, we create a sample set of NMC realizations
of the modeling parameter vector ω based on its prior
distribution p(ω|Mk). With the corresponding likelihood
functions Eq. 7, we will obtain the following numerical
approximation of the BME value:

p(y0|Mk) ≈ 1

NMC

NMC∑

i=1

p(y0|Mk, ωi ), (8)

where ωi is the i-th parameter realization for model Mk .

2.5 aPC-based Bayesianmodel selection

Remarking that the surrogate representation M̃k is only
an approximation of the original model Mk , we expect
that surrogate-based BME values could be misleading
for the Bayesian model selection procedure. Therefore,
conclusions drawn from BME values based on surrogates
are only valid to the degree of the approximation quality of
the surrogate model. Such falsified values can be avoided
by adapting the calculation of the BME value, as proposed
in [43]. We will consider that the prediction of the surrogate
model M̃k contains an approximation error Ek . We consider

1903Comput Geosci (2021) 25:1899–1917



it to be independent of the measurement error ε (because Ek

and ε have no interaction), so that Mk = M̃k+Ek . Therefore
p(y0|M̃k + Ek, ω) = p(y0|M̃k, ω) · p(Mk|M̃k, ω) and the
BME value in Eq. 6 can be rewritten as:

p(y0|Mk)=
∫

Ωk

p(y0|M̃k, ω) p(Mk|M̃k, ω) p(ω|Mk) dω,

(9)

where p(Mk|M̃k, ω) is the likelihood function that indicates
how well the original model prediction based on the
model parameter realization ω matches the corresponding
surrogate model prediction:

p(Mk |M̃k, ω) = (2π)−Ns/2|S|−1/2 (10)

· exp

(
−1

2
(yk(ω)−ỹk(ω))T S−1(yk(ω)−ỹk(ω))

)
,

with the predictions yk of the original model Mk and ỹk

of the surrogate model M̃k and the covariance matrix S of
approximation errors.

Following the derivation in [43], we obtain the corrected
BME value for the original model, computed on the basis of
the reduced model:

p(y0|Mk)=p(y0|M̃k)·
∫

Ωk

p(Mk|M̃k, ω) p(ω|M̃k, y0) dω.

(11)

Equation 11 shows clearly how the BME value of the
original model (BMEOM) can be calculated from the BME
value of the surrogate model (BMESM):

BMEOM = BMESM · WeightSM, (12)

with

BMEOM = p(y0|Mk),

BMESM = p(y0|M̃k) and

WeightSM =
∫

Ωk

p(Mk|M̃k, ω) p(ω|M̃k, y0) dω, (13)

where the BMESM value can be computed as described in
the previous section, using the surrogate model M̃k instead
of the original model Mk .

The correction factor WeightSM requires an integration
over the whole parameter space Ωk and its computation
via Monte Carlo Integration is not feasible due to the high
computational cost of the original model. Therefore, the
correction factor can be estimated at those collocation points
ω∗ that were used to construct the surrogate model:

WeightSM ≈
P∑

i=1

p(Mk|M̃k, ω
∗
i ) p(ω∗

i |M̃k, y0), (14)

where P is the number of collocation points. Using only
the collocation points to calculate the correction factor leads
to the fact that BMESM · WeightSM is not equivalent to

BMEOM, but is merely an approximation. However, the
corrected BMESM is a better approximation of BMEOM than
BMESM without correction [43].

2.6 Bayesianmodel justifiability analysis

In order to complement the comparison of the models
against the measurement data, [68] suggested a so-called
Bayesian model justifiability analysis, in which the com-
peting models are tested against each other in a synthetic
setup omitting the measurement data. The justifiability
analysis can help to decide whether the apparently most
appropriate model from the conventional BMS analysis is
really the best model in the set or whether this model is only
optimal given the limited amount of available measurement
data [68]. Additionally, the justifiability analysis provides
insights about similarities among the tested models.

To perform the justifiability analysis, we will generate the
so-called model confusion matrix [68]. Confusion matrices
are typically used in the field of statistical classification (e.g.
[1]) to compare the actual and the predicted classification,
visualizing whether an object is misclassified (“confused”).
In that way, we can recognize whether a model is able to
distinguish its own predictions from the ones of its competi-
tors. To do so, we calculate the Bayesian model weights for
all models adopting (5).

However, instead of using the measurement data y0, each
of the competing models generates a finite series of prior
predictions that serve as realizations of the “synthetic truth”.
Thus, we generate NMC synthetic data sets of each model
based on samples of its prior parameter distributions. Then,
each synthetic data set is compared to the competing models
by first computing the likelihood function as described in
Eq. 7, for example of the single realization i of model
Mk based on the data set j of model Ml . The BME value
can be obtained by calculating the mean of all likelihoods
p(Ml,j |Mk) of model Mk given this single realization j of
model Ml . The resulting model confusion matrix has the
size Nm × Nm, for Nm competing models.

To execute both steps of model testing ((1) BMS testing
against measurements and (2) justifiability analysis testing
models against each other) simultaneously, we add the
measurement data to our model set, i.e. we add it as a new
row and column to the confusion matrix.

A schematic illustration of its construction is given in
Fig. 1, whereby the model confusion matrix is extended by
the standard BMS procedure (i.e. including measurements).

The blue box in Fig. 1 represents a standard BMS
procedure where the model Mk has been tested against
the measurement data. This entry can be obtained from
Eq. 6, using Monte Carlo Integration for p(y0|Mk) as in
Eq. 8. The green box in Fig. 1 reflects the likelihood of
a single realization of model Mk given a single realization
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Fig. 1 Schematic illustration of constructing the model confusion
matrix

of the reference model Ml , which currently serves as
synthetic truth. The orange box in Fig. 1 shows the average
likelihood (BME) of model Mk given a single realization
of the reference model Ml . This BME value is normalized
by the sum of the BME values of all models given a
single realization of the synthetic truth (red box), yielding
a posterior model weight p(Ml |Mk,j ) with the reference
model Mk . The bold boxes in Fig. 1 illustrate these averaged
posterior weights over all synthetic data sets of the reference
model Mk . The bold boxes of one column contain the
expected posterior weights (PW ) of all models given that
model Mk is true. One entry can be computed as follows:

PWlk = 1

NMC

NMC∑

j=1

p(Ml |Mk,j ) (15)

= 1

N2
MC

NMC∑

j=1

NMC∑

i=1

p(Ml,i |Mk,j ), (16)

whereby the averaged BME value

(
NMC∑
i=1

p(Ml,i |Mk,j )

)
in

Eq. 16 is not normalized for the sake of readability.
The resulting extended model confusion matrix consists

only of these entries, i.e. the bold boxes and therefore has
the size (Nm +1)× (Nm +1) for Nm competing models and
the measurement data.

The main diagonal entries reflect how good each model
identifies itself as the data-generating process, given a
certain data set size. The values of the diagonal entries

should be equal to 1.00 with an infinite data set size.
However, for finite data sets, models might “confuse”
their own predictions (misclassification) with the ones of
competing models due the two following reasons. (1) Two
models are actually highly similar. (2) One model has a
high goodness-of-fit to the reference data, but also a high
variability in its predictions. The BMS framework punishes
this high variability with a lower model weight. Thus, a
scenario of a less variable model, which fits the reference
data worse than the more variable one, might lead to similar
model weights. When more synthetic data is used, the more
variable model will receive a higher weight, as its variability
becomes more justifiable, while the weight of the less
variable model will decrease [23, 24].

The off-diagonal entries of the model confusion matrix
reflect the similarity between pairs of models. This can
be useful when comparing possible simplifications to a
detailed reference model [65]. With the aid of the model
confusion matrix it is possible to identify the model that
yields the most similar results to the reference model at
reduced computational cost.

2.7 aPC-based Bayesianmodel justifiability analysis

We will combine the methodologies from Sections 2.5 and
2.6 towards an aPC-based Bayesian model justifiability
analysis, where models are mutually tested against each
other. To do so, we will consider two models, model Mk

and model Ml . The comparison of two models implies that
one model, Ml in this case, is assumed to be the data-
generating process. Instead of computing the BME value
for the original models p(Ml |Mk), we have to calculate the
BME value p(M̃l |M̃k) of the surrogate models. Similar to
Section 2.5, we assume that each surrogate representation
of each analyzed model contains an approximation error:
Mk = M̃k + Ek and Ml = M̃l + El . Therefore, Eq. 11 can
be rewritten as:

p(Ml |Mk) = p(Ml |M̃k)

·
∫

Ωk

p(Mk|M̃k, ω) p(ω|M̃k, Ml) dω. (17)

In the next step, we focus on the term p(Ml |M̃k), consid-
ering Ml = M̃l + El leads us to

p(Ml |M̃k)=
∫

Ωk

p(M̃l |M̃k, ω) p(Ml |M̃l, ωk) p(ω|M̃k) dω.

(18)

Multiplying and dividing the right-hand side of Eq. 18 by
p(M̃l |M̃k) and applying Bayes’ theorem yields

p(Ml |M̃k) = p(M̃l |M̃k)

·
∫

Ωk

p(Ml |M̃l, ω) p(ω|M̃k, M̃l) dω. (19)
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When inserting Eq. 19 into Eq. 17, we obtain

p(Ml |Mk) = p(M̃l |M̃k)

·
∫

Ωk

p(Ml |M̃l, ω)p(ω|M̃k, M̃l) dω

·
∫

Ωk

p(Mk|M̃k, ω) p(ω|M̃k, Ml) dω, (20)

or

BMEOMOM = BMESMSM · WeightSM1 · WeightSM2, (21)

with

BMEOMOM = p(Ml |Mk)

BMESMSM = p(M̃l |M̃k)

WeightSM1 =
∫

Ωk

p(Ml |M̃l, ω) p(ω|M̃k, M̃l) dω

WeightSM2 =
∫

Ωk

p(Mk|M̃k, ω) p(ω|M̃k, Ml) dω, (22)

whereby BMEOMOM corresponds to the BME value when
comparing two original models and BMESMSM to the BME
value when comparing two surrogate models. The value of
BMESMSM can be computed in the same way as proposed
in Eq. 6 via Monte Carlo integration in Eq. 8 with the
likelihood function defined in Eq. 7, using the prediction
of model Ml evaluated on a certain model parameter vector
ω instead of the measurement data y0. The collocation
points ω∗ can be employed again similarly to Section 2.5 to
compute the correction factors for both models:

WeightSM1 ≈
P∑

i=1

p(Ml |M̃l, ω
∗
i ) p(ω∗

i |M̃k, M̃l)

WeightSM2 ≈
P∑

i=1

p(Mk|M̃k, ω
∗
i ) p(ω∗

i |M̃k, Ml). (23)

Moreover, since the model confusion matrix in the
Bayesian model justifiability framework compares the
original models as well, we have to account for the
approximation of these models with the surrogates. As the
weights WeightSM1 and WeightSM2 are not dependent on a
single parameter realization, the overall posterior weights
of the model confusion matrix can be corrected in the same
way as the BME values. To this end, the posterior values
(PW ) of the model confusion matrix from Eq. 16 need to
be multiplied by the two correction factors WeightSM1 and
WeightSM2 from Eq. 23:

PWlk = 1

NMC

NMC∑

j=1

p(Ml |Mk,j ) (24)

= 1

NMC

NMC∑

j=1

p(M̃l |M̃k,j ) · WeightSM1 · WeightSM2,

where SM1 = M̃l and SM2 = M̃k .

3 Biogeochemical processes in porousmedia

3.1 Microbially induced calcite precipitation

Microbially induced calcite precipitation (MICP) is a typ-
ical biogeochemical process. When conceptualizing MICP
in porous media, various phases are involved: there are at
least three solid phases (biofilm, calcite and unreactive solid
material), water and possibly another fluid phase, e.g. gas.
Additionally, at least calcium, inorganic carbon, and urea
are considered as dissolved components in the water phase,
the complete list of components can be found in [25].

MICP is a reactive transport process consisting of three
main parts: (1) adhesion of biomass on surfaces, detachment
of the biomass from the biofilm as well as growth and decay
of the biomass, (2) urea hydrolysis that alters the geo-
chemistry and (3) precipitation and dissolution of calcite. A
visualization of the MICP process is shown in Fig. 2.

S. pasteurii are bacteria that are able to produce the
enzyme urease and to decompose urea into carbonic acid
and ammonia with the aid of urease. In aqueous solution,
the ammonia reacts with the contained H+ ions. As a result,
the pH value increases so that the carbonic acid decomposes
into H+ ions and carbonate ions, while the concentration of
dissolved carbonate increases. If calcium ions are provided,
it comes to a reaction with the carbonate ions and calcite
precipitates.

Shortly, all together this leads to the following MICP
reaction equation [25]:

CO(NH2)2 + 2H2O + Ca2+ Urease
��
2NH+

4 + CaCO3 ↓ . (R1)

3.2 Experimental setup

The analyzed MICP experiment is described in detail in
[25] (there, see experiment “D1”). It describes a sand-filled
column that is 61 cm high with a diameter of 2.54 cm.
In the beginning of the experiment, bacteria are injected at
the bottom of the column. Bacteria are allowed to attach

Fig. 2 Schematic view of relevant processes and phases during MICP
after [25]
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during an over-night no-flow period establishing a biofilm
throughout the column. Then, biofilm growth is promoted
by a 24 hour substrate injection. From there, two pore
volumes of 0.33 mol/l calcium and urea solution are injected
at 10 ml/min repeatedly every 24 hours. The no-flow period
after the injection allows the mineralization reactions to
take place. That period is followed by another injection
of substrate to revive the biofilm [25], before the next
injections of calcium and urea start over until a total number
of 30 cycles was reached. A schematic experiment setup is
shown in Fig. 3.

For this analysis, out of various predicted quantities we
pick only the model predictions of calcium and calcite
over space and time. The predictions of different models
are compared to measurement data as well as among each
other. In order to receive comparable results, only spatial
and temporal points where measurement data are avail-
able are used when comparing models among each other.
These data points differ for calcium and calcite. For the
calcite content, measurement data are only available at the
end of the experiment, which is after 3203460 seconds
(about 890 hours or 37 days). The calcium concentration

Fig. 3 Column experiment setup by [25] with measurement locations
for calcite content and calcium concentration with analyzed column D1

is measured at 35 different data points in time. Therefore,
calcium concentrations are measured after 6 “main points”
in time, the so-called pulses, namely after 151.35, 218.85,
290.85, 626.85, 698.85 and 866.85 hours. At these points,
the concentration is measured and additionally after half an
hour, one, two, three and four hours, except for pulse 22,
where no measurement is available after 3 hours, which
results in 35 temporal points. The exact times of measure-
ment after the first injection can be taken from Table 1.

There are eight measurement locations for the calcite
concentration, located at 3.81, 11.43, 19.05, 26.67, 34.29,
41.91, 49.53 and 57.15 cm distance from the bottom.
For the calcium concentration, there are only five spatial
measurement points located at 10.16, 20.32, 30.48, 39.37
and 49.53cm distance from the bottom. The measurement
locations in the models are evenly distributed at a respective
distance of half an inch (1.27 cm).

3.3 Conceptual models and related uncertainty

We analyze three models for MICP that describe biogeo-
chemical processes in porous media provided by [25, 26].
For detailed explanation of their equations and the used
numerical schemes, we refer to that original publication.
All models account for changes in porosity and permeabil-
ity and use the same discretization and solution strategy:
a fully implicit Euler scheme in time and fully-coupled-
vertex-centered finite volume (box) scheme [21] in space;
the system of equations is solved using the BiCGStab solver
[78] after linearization using the Newton–Raphson method.

An <Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz,
40 Cores> machine was used for the model evaluations.
The computational effort for the most detailed MICP model,
referred to as full complexity model, is extremely high with
a run time between 16 and 42 hours, depending on the
respective model parameter set. The exact cost is dependent
on the model parameter set chosen for the evaluation, since
the time stepping varies adaptively. Therefore, [25] suggest
two simplifications of the full complexity model MFC using
the following physical assumptions.

– initial biofilm model (MIB): The suspended biomass
is neglected and the biofilm is assumed to be already
established at the beginning of the experiment.

– simple chemistry model (MSC): The ureolysis rate is the
rate limiting reaction and precipitation of calcite occurs
immediately whenever urea is hydrolyzed as described
in the overall reaction (R1) [26].

As described in Section 3.2, the experiment starts with a
biomass injection and a growth period until the biofilm is
established. The initial biofilm model MIB omits this part
of the simulation under the assumption that a uniformly
distributed biofilm is already established in the beginning
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Table 1 Times in hours for
measurement of the calcium
concentration after pulse

pulse number
5 7 10 22 24 30

0 hours 151.35 218.85 290.85 626.85 698.85 866.85

0.5 hours 151.85 219.35 291.35 627.35 699.35 867.35

1 hour 152.35 219.85 291.85 627.85 699.85 867.85

2 hours 153.35 220.85 292.85 628.85 700.85 868.85

3 hours 154.35 221.85 293.85 - 701.85 869.85

4 hours 155.35 222.85 294.85 630.85 702.85 870.85

of the experiment and assuming further no reattachment of
biomass detached from the biofilm. As growth, decay and
detachment of biofilm are still considered, leading to non-
uniform biofilm along the flow path, the initial distribution
of biofilm has very limited impact on the simulation
results for the used injection strategy [27]. Additionally, the
number of necessary primary variables is reduced by one, as
suspended biomass does not need to be considered [26]. The
simple chemistry model MSC simplifies the precipitation
rate equation to be equal to the ureolysis rate equation.
The model makes the assumption that whenever urea put
into the system hydrolyzes, calcite immediately precipitates,
treating calcite precipitation as an equilibrium reaction and
ignoring the saturation state. Therefore, there is no need
for computing the precipitation rate and the associated
expensive-to-calculate saturation state and carbonate and
calcium activities. As the activities do not need to be
calculated, also the ammonia/ammonium produced during
ureolysis do not have any effects on the precipitation rate
and thus, the results. Consequently, the primary variable
accounting for ammonia/ammonium is removed, reducing
the number of primary variables by one [26]. The key
differences that are important for the model simplifications
are summarized in Table 2.

The computational time of the initial biofilm model MIB

still remains high and is only slightly lower than for the
full complexity model on the same computational cluster.
The strong assumptions in the simple chemistry model MSC

allow to obtain results of one model run after 40 minutes
using the same computational cluster. Apart from decreas-
ing the computational cost, model simplification reduces
parametric uncertainty. A too detailed (too complex) model
with many parameters and without enough calibration data
and therefore parametric uncertainty results in a high pre-
dictive variance (i.e. uncertainty) of the model.

Models should generally be “as simple as possible, as
complex as necessary” (principle of parsimony) [23] to
prevent overfitting (e.g. [3, 36]). The considered parameters
in the following were previously identified as sensitive
parameters of the MICP models and already used for
calibration in [25]:

– the coefficient for preferential attachment to biomass
ca,1,

[
s−1

]

– the coefficient for attachment to arbitrary surfaces ca,2,[
s−1

]

– the dry mass density of biofilm ρf,
[
kg/m3]

– the enzyme content of biomass kub,
[
kg/kg

]
.

As the initial biofilm model MIB assumes that there are
no attachment periods, it is only dependent on the model
parameters ρf and kub. The full complexity model MFC and
simple chemistry model MSC are both dependent on all four
model parameters. Following the physically possible range
of the considered uncertain parameters, we assume that all
of the model parameters are uniformly distributed in the
intervals shown in Table 3.

Table 2 Key differences of the investigated models

model full complexity MFC initial biofilm MIB simple chemistry MSC

simplifying assumption – pre-existing biofilm precipitation determined by ureolysis

simulated time 3203460 s 3109860 s 3203460 s

biomass transport and attachment yes no yes

sophisticated geochemistry yes yes no

kinetic precipitation rate yes yes no

number of primary variables 12 11 11

neglected component – suspended biomass ammonia/ammonium
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Table 3 Intervals for the model parameters

model parameter interval

ca,1
[
1 · 1010s−1, 1 · 10−7s−1

]

ca,2
[
1 · 1010s−1, 1 · 10−6s−1

]

ρf
[
1 kg/m3, 15 kg/m3]

kub
[
1 · 10−5 kg/kg, 5 · 10−4 kg/kg

]

3.4 Implementation details of the surrogatemodels

We construct two surrogate models (one for calcite, one
for calcium) for each of the three competing MICP models
described in Section 3.3 (resulting in a total of six different
surrogate models) using a d = 2 order aPC expansion
according to the prior distributions presented in Table 3.
For this purpose, the three original models will be evaluated
D = (Np + d)!/(Np!d!) times according to Section 2.1.
Since the D evaluations for the construction of the surrogate
models are independent, these model runs were parallelized.
Further, we refine each of the three surrogates using iterative
Bayesian updating of the aPC representation according to
Section 2.2. Here, we restrict the number of Bayesian
updates to ten due to the high computational demand and
previous experience (see e.g. [6]), so that Pend = D +
10 = (Np + d)!/(Np!d!) + 10. This results in Pend =
15 + 10 = 25 model evaluations for the simple chemistry
model MSC and the full complexity model MFC and Pend =
6 + 10 = 16 for the initial biofilm model MIB. During the
Bayesian updating, we consider the standard deviation of
measurement errors ε at each point in space (and time) equal
to 20% of the associated measurement value for both the
calcite content and the calcium concentration.

4 Bayesianmodel justifiability analysis
of Biogeochemical models in porousmedia

4.1 aPC-based representation of MICPmodels

Equation 4 provides errors of the surrogate models for every
point in space and time due to the structure of Eq. 1. As
every point in space and time has its own surrogate model,
there are 5 · 35 · 10 = 1750 LOOCV errors (5 spatial
and 35 temporal points that are used for the comparison,
10 updating steps) computed for calcium and 8 · 10 for
calcite (8 spatial points that are used for the comparison, 10
updating steps) in the analyzed set up. The LOOCV error
is computed after the primal construction of the surrogate
models and during the iterative Bayesian updating. In order
to visualize the errors, we will average the respective values
over space (and time) after every updating step. In order
to compare the LOOCV error of the surrogate models for

calcium and calcite, the relative errors must be considered,
since the two quantities of interest (calcite content [%] and
calcium concentration [mol/m3]) are in different orders of
magnitude. For this purpose, they were normalized to the
mean output value, as shown in Fig. 4.

The relative mean LOOCV errors before the first update
are not considered in this figure to get a better visualization,
since this error is significantly higher than the ones after
the updates. First of all, the figure shows that the error for
calcite decreases more strongly than the error for calcium.
It is also remarkable that for all models the error for calcite
is in a similar order of magnitude. This means that all
surrogate models are of a comparable quality for the calcite
content. For calcium, the error of the simple chemistry
model MSC is significantly larger than the one for the other
two surrogate models. This can occur if one uses Bayesian
updating and wants to improve the models only in the
region of the measurement data. This means the surrogate
model is similar to the original one in the region of the
measurement data, but it deviates a lot from the original
model in other regions (not part of the measurement points).
This results in a higher overall LOOCV error. The larger
error of the surrogate model is compensated later by the
newly introduced correction factor in Section 2.5.

Furthermore, the relative mean LOOCV errors for calcite
are in a range of [2 · 10−5, 6 · 10−5] after the last update
and those for calcium are in a range of [4 · 10−3, 4 · 10−1].
Accordingly, the worst surrogate response for calcite is still
better than the best one for calcium. This indicates that the
surrogate models for the calcite content as a whole are better
with respect to the LOOCV error than those for the calcium
concentration.

4.2 aPC-based Bayesianmodel justifiability analysis
for MICPmodels

We will perform the aPC-based Bayesian model selection
incorporating the measurement data and aPC-based Bayesian
model justifiability analysis according to Sections 2.5 and
2.7 using the obtained surrogate representations of the
three analyzed MICP models from Section 4.1. Following
the justifiability analysis, we compute the model weights
as stated in Section 2.6 and adjust them with the novel
correction factors from Sections 2.5 and 2.7 in a second
stage. BME convergence was ensured by checking the
evolution of the averaged likelihood over an increasing
data set size. In order to justify the underlying physical
assumptions behind the MICP models, we will assess the
impact of the data set size onto BME values appearing in
the Bayesian model justifiability analysis. To do so, we
start with only one spatial data point, then we use half of
the available data set size and finally we include all of the
spatial data points for calcium and calcite. This results in the
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Fig. 4 Relative mean LOOCV
errors for calcite content and
calcium concentration with
increasing number of updates
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following data set sizes ND,spatial ∈ {1, 3, 5} for calcium
and ND,spatial ∈ {1, 4, 8} for calcite.

4.2.1 aPC-based BMS and Bayesian model justifiability
analysis

In a first stage, the conventional BMS analysis for measure-
ment data is performed with results illustrated in Fig. 5.

One can observe that the simple chemistry model MSC

obtains the highest model weight (normalized BME value)
for all data set sizes. A model wins the competition either
because of its low complexity or because of its goodness-
of-fit to the measurement data (or both) [68]. These two
aspects will be further investigated in a second stage, the
justifiability analysis.

Figure 6 shows the corresponding model confusion
matrices for both the calcite content and the calcium con-
centration predictions. Each entry corresponds to the weight
of one model, which is the probability that model Mk (rows)
is the data-generating process of the predictions made by
model Ml (columns) according to Bayes’ theorem.

The main-diagonal entries of the model confusion matri-
ces in Fig. 6 represent the models’ ability to identify their
own predictions. The higher the value of the main diagonal
entry in Fig. 6, the higher is the probability of the model to
identify itself as the data-generating process. The diagonal
values increase when a bigger data set size is used, agree-
ing well with the theory of the Bayesian model justifiability
analysis discussed in [68]. The diagonal weight of the sim-
plest model, the simple chemistry model MSC, is always the
highest, independent of the data set size, which shows that
the analysis identifies this model as data-generating, even if
the data set is large and the model makes strong assump-
tions. For both the calcium and the calcite, the diagonal
entries achieve the “absolute majority” of more than 0.50
in favor of justifiability (except for the initial biofilm model
MIB for calcite) when taking the full data set into account.
This means that the data set size is sufficient to justify the
modeling concepts behind the considered models.

But even for the full data set, the full complexity model
MFC obtains a high weight when the initial biofilm model
MIB generates the data and vice versa. It follows that the

Fig. 5 Model weights for the
prediction of calcite content and
calcium concentration over
increasing amount of used
spatial data points ND,spatial
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Fig. 6 Model confusion matrices for calcite content [%] and calcium concentration [mol/m3] of the three models and the measurement data (MD)
over increasing amount of used spatial data points ND,spatial

initial biofilm model MIB and the full complexity model MFC

confuse their predictions and are not confident in identifying
their own predictions (the initial biofilm model MIB for calcite
is not even able to identify itself). However, only for the
simple chemistry model MSC the weight is 1.00 and there-
fore its “level of detail” is perfectly supported with the full
data set. The measurement data (MD) obtain a model weight
of 1.00 for the full data set too, since it is clearly able to
identify itself with the full data set. The weights for the
models with the measurement data as the data-generating
process are strikingly low. In statistical terms, this means
that all models are clearly rejected by the full data set.
This fits with the conclusions drawn in [25], that there is at
least one relevant process not yet implemented in “sufficient
detail”, which is necessary for better results.

4.2.2 Howmuch data do we need?

The matrices on the left in Fig. 6 show that considering only
one spatial data point is not sufficient, since the diagonal
entries for calcite and calcium are all less than 0.50 except
for the measurement data for the calcium concentration.
This means that there is no “absolute majority” in favor of
justifiability for any model and even the measurement data
of the calcite content are not able to identify itself (which

is obvious since there is clearly a variance between the
measurements at different spatial data points). The matrices
also show that the simplest model MSC obtains the highest
weight of all three models when the data set size is small
(principle of parsimony).

When using half of the data set, the simplest model MSC

and the most complex model MFC for calcium receive an
absolute majority with model weights of 0.63 and 0.52,
while the data set size does not suffice for self-identification
of the initial biofilm model MIB. The weight of MIB on the
diagonal entry increases with an increasing data set size,
but it never gains a weight greater than 0.5. In contrast,
the weight for MIB for the calcium concentration reaches
the absolute majority, which means that the data set size
is sufficient for self-identification and the physical model
assumptions leading to simplifications are justifiable.

Let us now have a closer look on the main-diagonal
entries of the model confusion matrix (“self-identification
weights”) over an increasing data set size in Fig. 7.

It shows, that for the simplest model MSC and clearly for
the measurement data, perfect justification (model weight of
1.00) is achieved very quickly. For the initial biofilm model
MIB and the full complexity model MFC, a larger data set
size is required to justify their complexity. Since the weights
for the more complex models do not stagnate at some point,
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Fig. 7 Average model weights
for the data-generating process
of the two quantities of interest
(calcite content and calcium
concentration) of the three
models and the measurement
data (MD) over increasing
amount of used spatial data
points ND,spatial
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we do not expect that a much larger data set is required to
justify their complexity.

When comparing both quantities of interest for the
same data set size, the data-generating process for the
calcite content is always identified with less confidence (i.e.
obtains a lower weight) than for calcium.

4.2.3 How similar are the models?

Now we will assess the similarities between the different
models looking on the off-diagonal entries in Fig. 6. For
a single data point, we can clearly see that the models
“confuse” their predictions, as the off-diagonal weights are
relatively high. When the initial biofilm model MIB or the
full complexity model MFC are the data-generating process
for the calcite content, the weights for the other models
are even larger than the main-diagonal entry. For increasing
data set size, the dissimilarities between the models become
more significant, but only for the calcium concentration.
In contrast, the model confusion remains for the calcium
predictions, i.e. the current data set size does not yield a
clearer distinction between the models. However, using the
full data set, the model confusion decreases significantly,
only the similarity between the initial biofilm model MIB

and the full complexity model MFC remains clearly visible.
For both calcite and calcium, MIB and MFC are similar,
since they both have a relatively high weight, when the other
one generated the data. Having a look only at the calcite
content shows that even when the initial biofilm model MIB

is the data-generating process, the full complexity model
MFC obtains a higher weight, which means that the model
cannot be justified with this data set size [68].

4.2.4 Howwell do the models fit the data?

In a last step, we will analyze the goodness-of-fit of
the models to the measurement data. Figure 8 shows the

determination coefficient (R2) between the different model
outputs and the measurement data, averaged over all model
outputs evaluated on P different collocation points:

R2 = 1

P

P∑

i=1

⎛

⎜⎜⎜⎜⎝

Ns∑
j=1

(
y0,j − y0

)2

Ns∑
j=1

(
Mk,j

(
ω(i)

) − y0
)2

⎞

⎟⎟⎟⎟⎠
, (25)

with y0,j being the vector of measurements at position j

of total length Ns, its mean y0 and Mk,j

(
ω(i)

)
the model

output of model Mk at position j evaluated at collocation
point ω(i). The R2 values for different predictions of the
same model (different evaluations on different collocation
points) were averaged to obtain one representative value per
model. For both, calcite content and calcium concentration
predictions, the mean R2 is highest for the simple chemistry
model MSC. With regard to the BMS analysis it shows that
the small BMS weights of the initial biofilm model MIB and
the full complexity model MFC stem from a lower goodness-
of-fit and a higher complexity than the simple chemistry
model MSC. Remember that a more complex model needs a
significantly better goodness-of-fit to justify its complexity
[68] (and to achieve a similar weight as a simpler model).
Furthermore, it is interesting that the weight of the initial
biofilm model MIB is smaller than the one for the full
complexity model MFC for the same data set size, although
the full complexity model MFC is slightly more complex
while their goodness-of-fit is similar. Therefore, the high
computational effort of the initial biofilm model MIB is not
justified.

4.2.5 Results

Combining the insights from the Bayesian model justifia-
bility analysis and the goodness-of-fit analysis, we draw the
following conclusions about the initial biofilm model MIB
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Fig. 8 Mean R2 between the
different model outputs and the
measurement data
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and simple chemistry model MSC as simplifications of the
full complexity model MFC: The initial biofilm model MIB

achieves moderate BME values in the BMS analysis and
does not use its full potential according to the Bayesian
model justifiability analysis. Additionally, MIB provides
unsatisfactory goodness-of-fit to the measurement data and
cannot capture the underlying physical process reasonably
well. The simple chemistry model MSC for calcite and cal-
cium obtains the same weight of 1.00 in the BMS analysis
(Fig. 7) and Bayesian model justifiability for (Fig. 6) with
the full data set. Therefore, the simple chemistry model MSC

uses its full potential to represent the data and it captures the
response of the underlying physical system appropriately.

5 Summary and conclusions

Bayesian model selection (BMS) cannot only be used for
ranking models based on their goodness-of-fit to measure-
ment data and parsimony, but also to quantify similarities
among models. This work introduces the surrogate-based
Bayesian model justifiability analysis for analyzing micro-
bially induced calcite precipitation models in porous media.
The suggested framework offers a rigorous pathway to
address so-called conceptual uncertainty, i.e. which model
is best suited for describing the underlying physical system.
The justifiability analysis compares the models among each
other and the available measurement data.

Applying the justifiability analysis in addition to the
BMS analysis yields a better insight on why a model wins
the BMS ranking: either because it fits the measurement
data best or only because the data set size is too small to
identify a more complex model, that actually fits better. In
the latter case, the apparently best model is only best given
a too small data set size [68].

The BMS and justifiability analysis were performed
using surrogate models, which were built via an arbi-
trary polynomial chaos expansion (aPC) in order to assure
feasibility of the analyses for computationally demanding
biogeochemical models. The aPC accelerates the analysis,
which requires a large number of model evaluations, by
reducing the required number of evaluations of the orig-
inal model. We apply Bayesian iterative updating of the
surrogate models improving their accuracy while incorpo-
rating measurement data. In order to account for the error
that arises by comparing the surrogates instead of the orig-
inal models, correction factors for the calculated weights
were introduced. The correction factor proposed by [43],
correcting the comparison of a model and measurements,
was extended to a novel correction factor for a compar-
ison between two computationally demanding models. It
helps to perform a reliable surrogate-based Bayesian model
justifiability analysis.

Applying the introduced Bayesian model justifiability
analysis to three different models (simple chemistry model
MSC,initial biofilm model MIB and full complexity model
MFC), we compare the models to measurement data
and among each other. The comparison is based on the
predictions of calcite content and calcium concentration at
different data points in space and time. The justifiability
analysis has shown that the simple chemistry model MSC

and the full complexity model MFC for calcite and calcium
and the initial biofilm model MIB only for calcium
identify themselves best, compared to the other models,
when a certain data set size is used. The simple chemistry
model MSC even achieves perfect justification with a
weight of 1.00.

The analysis has also revealed that the data set size is
too small for justification of the initial biofilm model MIB

in terms of the calcium concentration, since its diagonal
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entries of the model confusion matrix are always smaller
than 0.5. Further, it shows that the initial biofilm model
MIB and the full complexity model MFC are similar in terms
of both quantities of interest (calcite content and calcium
concentration). Additionally, performing the conventional
BMS analysis reveals the simple chemistry model MSC as
the best model in the model set, because of its best trade-
off between goodness-of-fit to the measurement data and its
sufficiently small degree of complexity.

The proposed analysis provides an extension of the
very general justifiability analysis by [68] that makes it
applicable for computationally expensive models. It can be
concluded that the results for surrogate models followed the
intuitively assumed preference for the simplest model when
only limited amount of data is available. This makes the
method ideal for application cases where the same situation,
limited amount of measurement data and computationally
expensive models, appears. Although this method poses
an effective way of comparing computationally expensive
models their computational cost must not be disregarded.
With increasing computational cost the number of model
evaluations decreases for a given period of time, which
leads to a more imprecise surrogate model and therefore less
reliable results in the justifiability analysis.

Appendix A: Computational details
for the overdetermined system
of equations

The solution of the overdetermined system needs to be
approximated by minimizing the Euclidian norm (L2-norm)
of the residual:

min
c(x,t)

‖Ψ (ω) · c(x, t) − M(x, t; ω)‖2.

via a linear regression:

Ψ T (ω) · Ψ (ω) · c(x, t) = Ψ T (ω) · M(x, t; ω).

The new system is determined again and can be solved
with the help of the pseudoinverse:

c(x, t) =
(
Ψ T (ω) · Ψ (ω)

)−1 · Ψ T (ω) · M(x, t; ω)

c(x, t) = Ψ +(ω) · Ψ T (ω) · M(x, t; ω),

where Ψ +(ω) denotes the pseudoinverse.
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23. Höge, M., Wöhling, T., Nowak, W.: A primer for model selection:
The decisive role of model complexity. Water Resour. Res. 54(3),
1688–1715 (2018)
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