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Abstract
Phase fieldmodels for fracture are energy-based and employ a continuous field variable, the phase field, to indicate cracks. The
width of the transition zone of this field variable between damaged and intact regions is controlled by a regularization parameter.
Narrow transition zones are required for a good approximation of the fracture energy which involves steep gradients of the
phase field. This demands a high mesh density in finite element simulations if 4-node elements with standard bilinear shape
functions are used. In order to improve the quality of the results with coarser meshes, exponential shape functions derived from
the analytic solution of the 1Dmodel are introduced for the discretization of the phase field variable. Compared to the bilinear
shape functions these special shape functions allow for a better approximation of the fracture field. Unfortunately, lower-order
Gauss-Legendre quadrature schemes, which are sufficiently accurate for the integration of bilinear shape functions, are not
sufficient for an accurate integration of the exponential shape functions. Therefore in this work, the numerical accuracy of
higher-order Gauss-Legendre formulas and a double exponential formula for numerical integration is analyzed.

Keywords Fracture · Phase field · Exponential shape functions · Finite elements · Exponential shape functions · Numerical
integration

1 Introduction

From an engineering stand point, the prediction of struc-
tural failures is a challenging task, due to the complexity
of the phenomena that influence the process on different
scales. One promising approach is the phase field method,
in which a continuous approximation of cracks simplifies
the mathematical treatment of numerical fracture analysis,
[1,2]. The research topic of fracture phase field models has
been expanded for dynamic [3–5] and ductile [6–8] fracture
to name a few research directions. The present work is essen-
tially based on [9]. Themodel in [9] describes the integrity of
a continuum by an order parameter, which is implemented as
an 1D degree of freedom. Two values of the parameter can be
associated with a physical interpretation, 1 as intact and 0 as
broken. The surface of cracks is represented by the volume
integral of the transition zone between 0 and 1 with a contin-
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uous course and high gradients. Though cracks are sharp in
reality, this approximation can be sufficient for relatively nar-
row transition zones. The width of cracks can be controlled
by a regularization parameter ε. The smaller the value of ε,
the higher the gradients of the phase field become. In a finite
element model with standard linear shape functions, a high
mesh density is required to approximate these high gradients.
This increases the computing time.

There are many approaches for the implementation of
fine spatial resolutions in the context of a phase field model
for fractures such as mesh adaptivity [10] and hp-FEM
[11]. The technique, discussed in this paper, is based on
the work presented by Kuhn and Müller, [12]. They imple-
mented exponential shape functions for the phase field with
a behaviour similar to the analytical solution of a crack for
the 1D problem. In test cases, finite elements with a lin-
early interpolated displacement field and an exponentially
interpolated fracture field have proven to be very efficient
and can approximate thin cracks with a coarse discretiza-
tion rather accurately. Unfortunately, the lower effort in the
discretization requires other expenses like e.g. a more exten-
sive numerical integration. On the one hand the standard
linear finite elements are relatively inexpensivewith regard to
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numerical integration, because of the low number of quadra-
ture points, which are required for an appropriate integration.
On the other hand the exponential elements approximate
fractures more accurate with far less elements, but need an
adjusted integration scheme. This adjustment is analyzed in
the present study.

While in general the majority of a fractured body remains
undamaged, i.e. shows a constant phase field value of 1, the
regions with high gradients are usually concentrated in a
limited part of the specimen. Therefore adaptive refinement
techniques are of special interest. Some example for adap-
tive refinement in fracture phase field simulations can be
found in [11,13], but unlike the h- or hp-refinement, which
is presented in [11,13], the proposed approach is of a dif-
ferent character. In this work, the adaptive routine will be
used to reduce unnecessary integration effort for shape func-
tions that are able to approximate extreme steep gradients.
In order for the method to remain computationally efficient,
the quadrature method will be chosen in dependence of the
local gradient of the phase field.

2 Phase fieldmodeling of brittle fracture

The regularized phase fieldmodel for brittle fracture includes
two energy densities, the surface energy density ψ s and the
elastic energy density ψe. Both depend quadratically on the
fracture field s, introduced as an order parameter of the mate-
rial integrity. The surface energy also depends on the gradient
(∇s). The material behaviour is described by the linear elas-
ticity tensor C and the cracking resistance Gc as well as
parameters η and ε. The equation of the total energy den-
sity is

ψ(εεε, s) = 1

2
(s2 + η)εεε : [Cεεε]

︸ ︷︷ ︸

ψe(εεε,s)

+Gc

(

(1 − s)2

4ε
+ ε|∇s|2

)

︸ ︷︷ ︸

ψs(s)

. (1)

As primary fields in the domain Ω we consider the
displacements uuu, which affect the energy density via the lin-
earized strain tensor εεε = 1

2 (∇uuu + ∇Tuuu), and the phase field
variable s. The boundary conditions on the boundary are ∂Ωt

set for the loads (σσσn = t ∗) and an ∂Ωu for the displacements
(u = u ∗). The geometrically important parameter for a suf-
ficient approximation of cracks is ε. It controls the width of
the continuous representation of cracks, see Fig. 1.

In essence, the energy densityψ is based on Griffith’s the-
ory of fracture, which states that the energy that is consumed
by an increase of the crack surface must be balanced by the
released elastic energy during crack growth. In addition, the
elastic energy density contains the parameter η for numerical
stabilization to ensure a minimal stiffness in case of a total
rupture. The first field equation that is included in the model
is the balance of momentum

Fig. 1 Approximation of a crack by an phase field variable s

div σ = 0. (2)

Due to the limitation to stationary problems andneglecting
body forces, the divergence of the Cauchy stress tensor σ is
zero.

In order to describe the rate of the fracture field consistent
with Griffiths theory of fracture, an evolution equation of
Ginzburg and Landau type

ṡ = −M
δψ

δs
= −M

[

sεεε[Cεεε] − Gc

(

2ε ∇s + 1 − s

2ε

)]

(3)

is used, see e.g. [14].
Hereby, the symbol “δ” denotes the variational derivative

in this equation. This means, that the rate ṡ requires the varia-
tional derivative of the total energy density. Another quantity
is the mobility parameter M , which controls the rate of the
phase field and the dissipation in the process zone [14]. For
the quasistatic analysis of Griffith-like fracture problems the
value M has to be sufficiently large, see [12].

At last, an irreversibility condition needs be implemented.
There are two major approaches to prevent crack healing in
phase field models that are extensively used in the litera-
ture. On the one hand, a Dirichlet boundary condition can be
imposed once s reaches 0, or on the other hand, a negative
sign of the phase field time derivate ṡ < 0 can be enforced. In
the following work we apply a Dirichlet boundary condition,
see e.g. [14] for details.

3 Exponential shape functions

The approximation of cracks with a phase field model
requires narrow transition zones, in order to represent a
fractured elastic body accurately. Due to the high gradients
arising at crack surfaces, a fine discretization is necessary for
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Fig. 2 Analytical 1D solution of a stationary crack

a sufficient approximation of these gradients and the surface
energy. This leads to a higher computational effort.

In order to approximate cracks without a very fine dis-
cretization, Kuhn and Müller [12] introduced exponential
shape functions to approximate the phase field variable. The
choice of the exponential functions as shape functions for the
fracture phase field is motivated by the analytical solution for
a fractured 1D bar, see Fig. 2.

The 1D linear and exponential shape functions are defined
as functions of the natural coordinate ξ ∈ [−1, 1], see Fig. 3
. They are defined as

N lin
1 (ξ) = 1

2
(1 − ξ),

N lin
2 (ξ) = 1

2
(1 + ξ) and

N exp
1 (ξ, δ) = 1 − exp (−δ(1 + ξ)/4) − 1

exp (−δ/2) − 1
,

N exp
2 (ξ, δ) = 0+exp (−δ(1 + ξ)/4) − 1

exp (−δ/2) − 1
.

The exponential shape functions are parametrized by δ =
h/ε in order to capture the typical 1D solution accurately. In
the following, δ keeps the notation as the coefficient for the
exponential shape function and shouldn’t be confused with
the variational symbol. The applicability of 1D exponential
shape functions is verified by an approximation of the ana-
lytical solution of a stationary crack displayed in Fig. 2. The
analytical solution is derived from the ψ S of Eq. (3) with the
boundary conditions s′(±1) = 0 and s(0) = 0 in the domain
x ∈ [−1, 1]. Due to the stationary approximation of a crack
the displacement field becomes irrelevant.

In comparison to the linear shape functions, the expo-
nential functions can describe the diffuse 1D crack surface
more efficiently, see Fig. 4. The graph displays the numerical
solutions for a stationary one dimensional phase field with
a crack at x = 0, defined by the Dirichlet boundary condi-
tion s(0) = 0 for different choices of shape functions. The
displacement field is zero and can therefore be neglected.

In order to obtain the exponential shape functions for the
analysis of two- or three-dimensional problems, the 1D shape
functions can simply be composed, by tensor products as
described in [10] for Lagrange elements. Thereby, the lin-
ear combination of these 1D shape functions are combined
for different spatial coordinates and the consideration of the
allocation of the 1D nodal shape function to the 2D or 3D
node in dependence of the adjoining edges. In this regard,
the exponential shape functions need particular attention,
because the element edge lengths in the shape functions need
to be consistent, see e.g. [12]. The advantage of the exponen-
tial elements is the good approximation of steep gradients
even for low mesh densities. Unfortunately there are some
drawbacks. The major problem is that elements have to be
“oriented” properly. Due to the unsymmetry of the expo-
nential shape functions, the fracture field s would also be
incorrectly unsymmetrical if the shape functions are not ori-
ented properly. This deficiency canbe resolvedby an adaptive
reorientation of the local coordinates according to the nodal
values of s if necessary, see e.g. [12]. As an example this
simple technique is indicated in Fig. 4. The orientation of
the elements in the spatial domain x < 0 is illustrated by the
orientation of the triangles (normal orientation: �, reversed
orientation: �).

3.1 Finite element discretization

In order to employ the finite element method to numerically
solve a phase field fracture problem, we have to derive the
weak forms of (2) and (3). The approximation of actual and
virtual fields of the displacement and crack state is done
via C0 continuous shape functions, which were introduced
before. Further details are given in [14]. The global system
can be described in form of a residual R by the equation

R = F − P(d, ḋ) = 0,

with the external and internal forces F andP. The variables are
the degrees of freedom d (nodal displacement u and fracture
field s) and their time derivatives ḋ. The spatial discretization
is performed by standard quadrilateral elements with bilin-
ear shape functions for the displacement field. However, the
phase field is approximated with special shape functions of
exponential characteristic. Time discretization by the back-
ward Euler scheme yields a non-linear system for which an
incremental solutions is used by a Newton-Raphson method.
It uses the linearized system

0 = R −
(

K + 1

Δt
D

)

︸ ︷︷ ︸

S

Δd. (4)
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Fig. 3 a Linear and b
exponential shape functions
(δ = 10) for an 1D element with
two nodes

(a) (b)

Fig. 4 Fracture field s for an 1D
body with a stationary crack at
x = 0

The system matrix S contains the stiffness matrix K as well
as the damping matrix D multiplied by a time increment Δt
and the inverted mobility constant M . On the element level
the stiffness matrix

K I J ,e =
∫

Ωe

⎡

⎣

[Bδu
I ]T (s2 + η)C BuJ [Bδu

I ]T 2 s C εh N
s
J

N δs
I 2 s (C εh)

T BuJ 2Gc ε[Bδs
I ]T BsJ + N δs

I

(

εTh C ε + Gc

2ε

)

Ns
J

⎤

⎦ dV , (5)

the damping matrix

DI J ,e =
∫

Ωe

[

0 0

0 N δs
I

1

M
Ns
J

]

dV . (6)

and the nodal residual

RI ,e =
∫

Ωe

⎡

⎣

[Bδu
I ]T σσσ

N δs
I

ṡ

M
− 2G c ε[Bδs

I ]T∇s + N δs
I

(

s εTh C ε + G c

2ε
(s − 1)

)

⎤

⎦ dV

(7)

are computed.Whereby the indices I ,J stem from the contri-
butions of the different element nodes. The following passage
is concerned with the adaptive numerical integration of these

terms. Whereby the focus lies on the accurate integration of
the shape functions NI and their derivatives BI that are used
for the approximation of the phase field s.

3.2 Numerical integration

Asmentioned before, themodel is discretisedwith four-node
quadrilateral elements, see Fig. 5. For a calculation in the
natural coordinate system ξ − η, it is necessary to compute
the determinant of the Jacobian matrix

J =
⎡

⎢

⎣

dx

dξ

dx

dη
dy

dξ

dy

dη

⎤

⎥

⎦ ,

which converts the global x − y coordinate system to the
natural element ξ − η coordinate system. Since linear shape
functions are used for the approximation of the geometry
xh = ∑

N lin
I x I , the Jacobi matrix does not depend on the

choice of the approximation of the s-field.
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Fig. 5 2D isoparametric element

The general equation for the numerical integration of a 2D
integral in the parent space can be described by

∫

Ωe

f (x, y) dx dy =
∫

�
f (ξ, η) det(J−1) dξ dη

≈
nGP
∑

p=1

f (ξp, ηp) det(Jp
−1) wp. (8)

The square (�) represents unit square (ξ ∈ [−1, 1] and
η ∈ [−1, 1]) for the natural configuration. The function
f represents any arbitrary function of the coordinates ξ, η.
Thus, the integral is approximated by a sum, and f needs to
be evaluated only in the quadrature points. The function val-
ues are multiplied by weightswp and then summed up for all
nGP Gauss points. Likementioned before, the transformation
of the integration in different coordinate systems require the
Jacobianmatrix and in particular the inversematrix Jp

−1. The
quality of the numerical integration depends on the continuity
of the function the spatial position and number of the quadra-
ture points. Especially for higher order shape functions, the
integration error by an inappropriate quadrature scheme can
be crucial. This needs to be counteracted by a sufficient num-
ber of quadrature points or an adequate quadrature scheme.

3.3 Numerical integration with Gauss–Legendre
formulas

In standard finite element methods, the numerical integration
is performed by theGauss–Legendre rule, because of its opti-
mal accuracy for polynomial shape functions, see e.g. [10]. In
the case of rectangular Lagrange elements with a 1 : 1 ratio
of nodes to Gauss points the result of the numerical integra-
tion of Eqs. (5)–(7) becomes exact. By contrast, the result of
the quadrature with an phase field approximated with expo-
nential shape functions has always an analytical deviation.
This can be explained by the consideration of an exponential
functions as a power series

Table 1 Parameter for the fracture mode I

Model parameter Value

1. Lame constant λ 2.2 × 106

2. Lame constant μ 2.2 × 106

Regularization width ε 1.0 × 10−3

Stabilizing paramter η 1.0 × 10−5

Crack resistence Gc 1.0

Mobility factor M 1.0 × 109

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

Due to the infinite power series of exponential functions, the
Gauss integration would only be exact in case of an infinite
number of quadrature points.

An obvious approach to meet a sufficient accuracy for
the quadrature of exponential elements is the increase of the
number of Gauss points. Prior to that a marking strategy
is useful to select the elements that require an modifica-
tion of the quadrature. Those elements would possess e.g. a
threshold gradient of the phase field. In unmarked elements
the number of Gauss points solely depend on the sufficient
approximation of the displacement field and is fixed to the
standard quadrature scheme.

In the next step, the number of Gauss points for the
marked elements has to be determined. A key parameter of
the approximation of the phase field gradient is δ. It controls
the possible phase field gradient within an element, due to the
formulation of the exponential shape functions. The param-
eter δ is calculated by the ratio of the element edge length
hi and the regularization width ε. By relating the number of
quadrature points to the value of δ, the number of integration
would decrease with increasing mesh size h and decreasing
crack width ε.

For the consideration, we analyze a simple fracturemode I
setup. The 2D model is a square domain with an initial crack
with the half length of the specimen and positioned in the cen-
tre. In order to reduce the computational time, the model will
be bisected along its symmetry line,which also halves the ini-
tial crack. The model parameter are reported in Table 1. The
monitored value for this test case is the elastic energy during
crack propagation. In the simulation different discretization
normal to the crack face with 8 or 16 elements are used. The
number of elements along the crack path remains constant
for both cases. The number of Gauss points will be increased
from the standard 2× 2 up to 13× 13. The results show that
while the crack width is identical for both cases the element
size normal to the crack surface differs by factor 2, see Fig. 6.
Because of this difference, the required number of quadra-
ture points for the same precision varies. This relation will be
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Fig. 6 Elastic energy for crack
growth tests with different
element sizes and number of
Gauss points

used to derive an adaptive scheme for the number of Gauss
points.

3.4 Adaptive quadrature

Although exponential elements reduce the required mesh
density for the approximation of sharp cracks, they require
a more elaborate quadrature. In order to benefit from
the applied advanced discretization technique, an adaptive
quadrature shall be implemented. This necessitates a modi-
fication of the quadrature, which can be obtained in different
ways like the use of a different scheme, an increase of quadra-
ture points or a remeshing. The last approachwouldmake the
concept of the exponential shape functions obsolete . There-
fore we will focus on an adaptive choice of Gauss points and
a different quadrature scheme.

3.4.1 Localization for adaptivity

Before the discussion of an adaptive routine, a reasonable
preparation is covered. As the whole body has a nearly con-
stant intact phase field value, the regions of high gradients
are rather small. Therefore the adaptivity of the number of
Gauss points can be locally constrained in order to avoid a
waste of computational time for a more precise integration,
see Fig. 11. This is achieved by a straightforward condition

Ne
∏

I=1

sI < 0.5 (9)

which multiplies all Ne nodal values of the fracture field
within an element, whereby the value 0.5 has been proven
satisfactory. This condition is checked in every iteration. So,
while the default quadrature rule is a 2× 2 Gauss–Legendre
scheme, a different number of Gauss points is choosen for
elements fulfilling (9). The number of points is computed
by a nGP-function which depends on exponential element
coefficient δ (Fig. 7).

Fig. 7 Local adaptation of quadrature

Fig. 8 Test case: stationary crack (fracture field left, mesh right)

3.4.2 Order adaptivity of the numerical integration

Elementswhich fulfill the requirement for an adapted quadra-
ture should be checked for a higher order numerical integra-
tion. A scalable straightforward approach is the increase of
quadrature points. An ad-hoc criterion for the determination
of the value of nGP is the shape function parameter δ. In
general, this relation can be expressed by a function

nGP = f (δmax). (10)

The parameter δ contains the element edge lengths. In an
quadrilateral element, this leads to four different values. The
following routine chooses the number of quadrature points
for all dimensions to be equal. Thus, only one δ is used in the
element. The largest δ, δmax, is chosen as input variable for
f , because it is related to the highest gradient in the element.
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Fig. 9 Parameter analysis for a stationary crack over different element sizes and regularized length

(a) (b)

Fig. 10 Formulation of the choice of the number of Gauss points

Like in [12], the 2D exponential shape functions are eval-
uated in two test cases for a straight stationary crack.

The setup for the first stationary test is depicted in Fig. 8.
The body is discretized homogeneously with n× n elements
and contains a horizontal crack of length L . No mechanical
loading is considered.

In the second test case amechanical loading is considered.
In both cases, the symmetry of the problem is considered.
The applied load is a constant displacement along an edge
parallel to the initial crack, which increases linearly in time.
In contrast to the stationary case, themeshwill only be refined
in the direction perpendicular to the crack surface for the
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Fig. 11 Local adaptation of the number of quadrature points

convergence study. In the direction of the crack, the edge
length of the elements remains constant, like in [12].

The construction of a nGP-function requires data points.
For this purpose, the case with the stationary crack is utilized
in a parameter study. The parameters nondimensionalized
regularization length ε (=ε/2L), element edge length h (=
h/2L) and the number of Gauss points nGP are varied to
obtain the surface plots of Fig. 9. The plots show the relative
error of the surface energy, which is calculated by

∫

ψ sdΩ
︸ ︷︷ ︸

numerical approx.

−
∫

2 ε L Gc.

︸ ︷︷ ︸

analytical approx.

(11)

From the different subfigures of Fig. 9, the dependency of the
accuracyon the number ofGauss pointsnGP canbe identified,
thereby an ideal function f (δ) can be defined to limit the error
for a certain δ range.

The values h and ε are considered by the parameter δ = h
ε
.

The graphs are then approximated by a linear regression for
an error range of 2–10%, see Fig. 10a. It is our goal to derive
a function f (δ) that guarantees an error smaller than 5%.

The function is characterized by the intersection points of
the error curves of the different Gauss point numbers with an
error level, which is in our case 0.05. As shown in Fig. 10b,
the jumppoints× are reported. In the next step, the points are
used for the interpolated third order polynomial, see Fig. 10b.
The functional value are then rounded to provide integer val-
ues for nGP-function, see Fig. 10b.

Adistribution of the adaptive routine is depicted in Fig. 11.
The figure shows the adaptive adjustment of the number of
Gauss points nGP for an initial phase field s. Most of the
elements have 2 × 2 quadrature points, because of the large
intact area of the domain. Higher values for nGP can be seen
at the crack surface as intended. Because of a decreasing

Fig. 12 DE formula: quadrature points andweights for an 1D-reference
domain

mesh size towards the crack tip, the number of Gauss points
show the same trend. The elements in the second row on the
crack surface are coarser and therefore are integrated by 9×9
Gauss points. In practical terms, if an element fulfills (9), the
number of Gauss points is calculated by the integer value of
the function f .

3.4.3 Double exponential formula

An improvement of the numerical integration can also be
achieved by the use of a better quadrature scheme. The spe-
cial shape function inherits characteristics of exponential
functions like the infinite number of continuous derivatives.
Functions with this property are integrated more accurately
by theDouble Exponential (DE) formula, see [15]. It consists
of an infinite series of integration points and tends to dis-
tribute the major proportion of its quadrature points towards
the integration limits, see Fig. 12. Due to the infinite series,
a truncation is necessary. As a consequence a residual in
the sum of the weights appears, see Fig. 12 (=1.998). This
deviation leads to an error, because of the lower deployed
domain size. Thereby, the sum should be two for an interval
from −1 to 1. This problem can be corrected by a normal-
ization. Although the DE formulas is in general less precise
than quadrature scheme based on Gauss rule, it is more accu-
rate for certain types of functions. For instance, the accuracy
of the quadrature of functions which possess singularities
or infinite derivatives, like in our case, benefit from the DE
formula, see [15]. The equations for the general formula,
position and weights of the quadrature points are

I =
∫ 1

−1
f (x)dx =

+∞
∑

−∞
wk f (xk),

xk = tanh

(

1

2
π sinh(kc)

)

and
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Fig. 13 Parameter analysis for a stationary crack over different element sizes and regularization length

wk =
1

2
cπ cosh(kc)

cosh2
(

1

2
π sinh(kh)

) .

The parameter h is a step size, which is described in [16].
Because of the necessary centre point and the symmetry of
the GP positions, the amount of quadrature point is always
odd.

Similar to the Gauss–Legendre method, the DE formula is
also used in a parameter study to obtain the correlation of the
surface energy with the elements size h and crack width ε.
The results are displayed in Fig. 13. Unfortunately, different
non-monotonous behaviour of the error of the surface energy
can be identified. This could be derived from the exponential
quadrature rule, which is based on trigonometric functions.
Therefore, it is necessary to apply at least 13×13 quadrature
points to minimize the maximal error and achieve a robust
precision. The comparison in terms of accuracy shows an
advantage of the DE formula, but is only beneficial for cases

in which the Gauss integration with 12×12 doesn’t meet the
requirements.

4 Numerical results

The performance of the numerical integration is tested in a
2D simulation of a fracture mode I, which is introduced as
the second test case in Sect. 3.4.2. Thereby, the behaviour
of the elastic energy Ee = ∫

ψedΩ during the crack prop-
agation is observed. In order to study the convergence, the
number of elements normal to the crack surface is varied
from two to 100 elements. The important quantities are
the load factor and maximal elastic energy at which crack
propagation occurs. In Fig. 14 an overall comparison of the
different quadrature concepts is shown. Also included are the
results for standard linear elements. The different variants are
categorized by quadrature method and adaptive(adap)/non-
adaptive. Furthermore there are differences between the
number of quadrature points of the numerical integration
methods. TheDE formula uses always 13 points per direction
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Fig. 14 Elastic energy during a fracture mode I for different implementation

Table 2 Total number of quadrature points for the different discretizations of Fig. 14

n Lin 2 × 2 GP Exp 5 × 5 GP Exp adapt GP Exp DE 13 × 13 QP Exp adapt DE 13 × 13 QP

2 900 2250 2450 5850 4800

16 5100 12, 750 6536 33, 150 9247

32 9900 24, 750 10, 924 64, 350 13, 995

100 30, 300 75, 750 32, 480 196, 950 36, 358

and in the adaptive form switches for elementswith lowphase
field gradient to a Gauss–Legendre integration with 2 × 2
GP. Furthermore, the nGP for the adaptive Gauss quadrature
is limited to 10 and starts with the standard 2 per direction
like for standard Lagrange elements.

In this setting the solution of the elements integrated with
the DE formula already converge for a extremely coarse
mesh. While in case of a static 5×5 Gauss points approach a
sufficient approximation of the elastic energy is only obtained
for at least 32 elements towards the fracture plane. The
improvement by an adaptive number of Gauss points reduce
the required mesh density by 50%. The difference between
the integration methods can partially be explained by the
lower amount of quadrature points for the adaptive routines,
but even with the same number the DE formula is more effi-
cient, see Fig. 14.

The total number quadrature points of the models are
reported in Table 2. For the adaptive cases the numbers of
the last load step are considered, because they are the largest
numbers during the simulation. While the adaptive integra-

tion with Gauss–Legendre method uses less points, it is also
less accurate. When it is used for fine meshes or wide cracks
it becomes more efficient due to the necessary high amount
of quadrature points of the DE formula, which is visible in
the Table 2 for n = 100.

5 Conclusion

This work presents a study of an adaptive numerical integra-
tion method for exponential finite elements in a phase field
fracture model. The focus is on an accurate computation of
the elastic and surface energy.

The accuracy increase of the numerical integration of
Lagrange elements is capped by the 1 : 1 ratio of nodes to
Gauss points and would not increase with a higher number
of points. The exponential elements on the other hand can be
characterized by an infinite Taylor series and would require
infinite quadrature points to obtain an exact integration. In
order to estimate the sufficient number of GP, the number
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of quadrature points is evaluated by the error of the surface
energy, which is an essential value for a good approximation
of the crack surface in a phase field model. Besides a sim-
ple adaptation of the amount of quadrature points, another
numerical integration method is tested, which is more effec-
tive for the integration of exponential functions, the DE
formula. Though it is less effective with smoothness, it has
an accuracy advantage for functions with C∞-smoothness.

A higher order quadrature with Gauss–Legendre method
or the DE formula is computationally expensive and also
always unnecessary, because of the required node density for
a certain crack path. The fracture field is mainly described by
two conditionswhereby cracks onlymake up a small percent-
age of the whole domain. This means that only a small area,
more precisely, the crack surfaces require additional quadra-
ture points. In order to make the integration more efficient an
adaptive routine is reasonable. So only in elements with large
enough phase field gradients the number of quadrature points
should be increased. In the undamaged domain the quadra-
ture method has to be only sufficient for the approximation
of the displacement field, which is fulfilled by a 2× 2 Gauss
quadrature. Based on a simulation of a stationary crack, the
error of the surface energy is evaluated and compared in terms
of accuracy between different numbers ofGauss points. Then
the routine was tested for a growing crack and the effective-
ness is observed.

In summary a function that adaptively determines the
number of Gauss points, as a function of the element size
and regularization length, is proposed. To further improve
the accuracy the DE formula can be used, but would require
a higher initial number of quadrature points and would only
make a difference for a very low mesh density.

But even if it’s possible to solve problems with extreme
coarse meshing, problems would arise in the sufficient pos-
sible sets of cracks. The phase field fracture simulation in
FEM relies on nodes on the approximated crack path. So the
limit of the lowest mesh density does not only depend on
the approximation of the phase field transition zones but also
on the shape of crack. Thus, the relevant range for element
sizes and crack width is still properly covered by the adaptive
control of nGP.

In future, an expansion of the adaptivity is required to
make use of the new shape functions in more general stud-
ies. In this context, the emphasis lies on the orientation of the
elements to describe the symmetrical cracks with unsymmet-
rical shape functions for 2D and 3D.
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