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Abstract
Group algebras of symmetric groups and their Hecke algebras are in Schur-Weyl duality
with classical and quantised Schur algebras, respectively. Two homological dimensions, the
dominant dimension and the global dimension, of the indecomposable summands (blocks) of
these Schur algebras S(n, r) and Sq(n, r)with n ≥ r are determined explicitly, using a result
on derived invariance in Fang, Hu and Koenig (J Reine Angew Math 770:59–85, 2021).
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1 Introduction

Schur algebras have been fundamental objects in representation theory since its early days. In
1901, Schur proved in his thesis what in modern terms is called an equivalence of categories,
between the polynomial representations of the general linear group GLn(k) over an infinite
field k of characteristic zero, and representations of symmetric groups �r where r varies
and the relevant partitions do not have more than n parts. The polynomial representations of
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a fixed degree r are exactly the representations of the (classical) Schur algebra S(n, r). In
1927, Schur proved, in any characteristic, a double centraliser property—now called Schur-
Weyl duality—between the Schur algebra S(n, r) for n ≥ r and the group algebra k�r . (See
Green’s book [18] for a perfect account.) Later on, Friedlander and Suslin showed that strict
polynomial functors also coincide with the representations of S(n, r) [17].

While classical Schur algebras are crucial in the representation theory of general linear
groups (over infinite fields) in describing characteristic, their quantised versions, the quan-
tised (or q-) Schur algebras introduced by Dipper and James [5], are important tools for
representation theory of finite general linear groups in non-describing characteristic. These
algebras are in Schur-Weyl duality with the Hecke algebras of symmetric groups and also
interesting in their generic form. Beilinson, Lusztig and MacPherson used a projective limit
of quantised Schur algebras, which they showed to contain a quantised enveloping algebra
of type A as a subalgebra.

Representations of quantised Schur algebras form highest weight categories. In particular,
these algebras have finite global dimension, that is, cohomology vanishes from a certain
degree on. The global dimensions of Sq(n, r) with n ≥ r have been determined by Totaro
[30] (classical case) andDonkin [6] (quantised case). Schur-Weyl duality gives a fundamental
connection between classical or quantised general linear groups and symmetric groups or
Hecke algebras. The strength of this connection is measured by the dominant dimension of
the Schur algebra; this has been determined in [13,16] where the relevance of the dominant
dimension in this context is made precise.

These results are, however, not the end of the story. Like group algebras of finite groups,
Schur algebras are hardly ever indecomposable as algebras. Usually they decompose into a
direct sum of indecomposable summands called blocks. For these blocks much less is known
than for the Schur algebras themselves, and the traditional methods could not be extended
to the blocks. For instance, the formulae for dominant dimension and global dimension of
Schur algebras Sq(n, r) with n ≥ r just give lower and upper bounds, respectively, for these
two dimensions for blocks. The aim of this article is to give precise formulae. To prove these
formulae new methods are needed. These come from the derived equivalences constructed
by Chuang and Rouquier [3] and from our previous work [11] showing that in particular
situations derived equivalences—very much unlike in general situations—do preserve the
two homological dimensions we want to compute. As a consequence we can reduce the
problem to very special blocks (with trivial core) and solve it there combinatorially, using
the results for the full Schur algebras.

To state the main result, some notation is needed: Let k be a field of characteristic p ≥ 0,
and q a non-zero element in k. The quantised Schur algebra Sq(n, r) (n ≥ r ) is isomorphic
to the endomorphism algebra of the direct sum of all the permutation modules Mλ over
the associated Hecke algebra Hq(r) of the symmetric group �r , where λ ranges over all
compositions of r into at most n parts.

If q is not a root of unity, or q = 1 when p = 0, then Sq(n, r) is semisimple, and all blocks
have dominant dimension infinity and global dimension zero. Assume now that Sq(n, r) is
not semisimple. Then q is a root of unity and there is a smallest positive integer � such that
1 + q + · · · + q�−1 = 0. The classical Schur algebra is the case q = 1. Then the quantum
characteristic � coincides with the characteristic p.

The blocks of Sq(n, r) are parameterised by (τ, w), where w ≤ r/� is a non-negative
integer, called the �-weight, and τ is an �-core partition of size r − w�. The corresponding
block of Sq(n, r) is denoted by Bτ,w . When a block Bτ,w of Sq(n, r) is not simple (that is,
w �= 0), then Sq(n, r) is not semisimple and � is a positive number at least two.
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Dominant and global... 465

The following main result gives explicit formulae for the dominant and the global dimen-
sion of each block Bτ,w .

Theorem 1.1 Let B be a block of Sq(n, r) for n ≥ r .

(a) When B is simple, that is, it has weight w = 0, then B has infinite dominant dimension
and global dimension zero.

(b) When B is not simple, then B = Bτ,w with �-weight w > 0 and �-core τ . Then:

1. The dominant dimension of Bτ,w satisfies

domdimBτ,w = 2(� − 1).

2. The global dimension of Bτ,w is

gldimBτ,w = 2(�w − αp(w))

where αp(w) is the sum of the digits in the p-adic expansion of w for p > 0 and
αp(w) = w for p = 0.

In the classical case,whenq = 1 and p > 0, a non-simple blockBτ,w has global dimension
2(pw − αp(w)) and dominant dimension 2(p − 1).

Apart from the case of simple blocks, the dominant dimension of a block does not depend
on itsweight or core. Its global dimension does not depend on the core either. It does, however,
verymuch depend onw, and using the derived equivalence classification of blocks [3], global
dimension unexpectedly turns out to be a complete derived invariant of blocks:

Corollary 1.2 Let B and B′ be blocks of Schur algebras Sq(n, r) for n ≥ r and Sq(n′, r ′) for
n′ ≥ r ′ respectively. Then B and B′ are derived equivalent if and only if they have the same
global dimension.

For the Schur algebras themselves, this is not true; for instance when p = 2, S(4, 4) and
S(5, 5) have the same global dimension. They are, however, not derived equivalent, since
they have different numbers of simple modules.

This article is about classical and quantised Schur algebras S(n, r) with n ≥ r and the
term Schur algebra always refers to these Schur algebras unless stated otherwise.

Determining the global or dominant dimension of Schur algebras S(n, r) with n < r still
is an open problem, and even less is known about these dimensions of the blocks. This article
does not contribute to these problems. Results determining the global or dominant dimension
of some classes of Schur algebras S(n, r) with n < r can be found in the articles [24,27,28]
for global dimension and extension groups and [10] for dominant dimension.

2 Algebras, homological dimensions and dualities

This Section is devoted to collecting all necessary ingredients involved in Theorem 1.1 and
its proof. Throughout this paper, all algebras are finite dimensional algebras over a fixed field
k.

2.1 Dominant dimension and global dimension

Dominant dimensionwas introduced byNakayama in his study of complete homology theory
[26] and received a systematical study later on by Tachikawa, Morita, Yamagata and many
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others, see [25,32] and the references therein. Recent progress is partly motivated by [22],
with the main focus on exploring the roles of dominant dimension in various contexts [10,
13,16,22], different characterisations [12,14,15] and the invariance under certain types of
equivalences of categories [2,11].

Definition 2.1 Let A be an algebra, and let

0 → A → I 0 → I 1 → I 2 → · · ·
be a minimal injective resolution of the left regular A-module. The dominant dimension of
A, denoted by domdim A, is the largest number d ≥ 0 (or d = ∞) such that I t is projective
for all t < d (or for all t).

The opposite algebra Aop has the same dominant dimension as A [32], and semisimple
algebras have dominant dimension infinity. If domdim A ≥ 1, then the injective hull of
A is a faithful projective-injective left A-module; if domdim A ≥ 2, then each faithful
projective-injective left A-module satisfies the double centraliser property: A ∼= EndB(P)

where B = EndA(P)op [32].
The following characterisation of dominant dimension due to Müller is fundamental.

Proposition 2.2 (Müller [25]) Let A be an algebra and n ≥ 2 be a natural number. Then
domdim A ≥ n if and only if there exists an idempotent e in A such that eA is a faithful
projective and injective right A-module, HomeAe(eA, eA) ∼= A and ExtieAe(eA, eA) = 0
for 1 ≤ i ≤ n − 2.

Global dimension is one of the most important homological dimensions, intended to
measure the homological complexity of algebras.

Definition 2.3 The global dimension of an algebra A, denoted by gldim A, is the supremum
of the projective dimensions of finitely generated left A-modules.

Semisimple algebras have global dimension zero. If 0 < gldim A < ∞, then gldim A
equals the maximal number t such that I t �= 0 in a minimal injective resolution of A; this
implies domdim A ≤ gldim A and in particular finiteness of domdim A.

2.2 Hecke algebras and Schur algebras

Let k be a field of characteristic p ≥ 0, and q a non-zero element in k. For a natural number
r , let �r be the symmetric group on r letters and let Hq(r) be the associated Hecke algebra
over k which is given by the generators {T1, . . . , Tr−1} and relations, see [6,23]

(Ti + 1)(Ti − q) = 0, (1 ≤ i ≤ r − 1);
Ti Tj = Tj Ti , (|i − j | > 1);
Ti Ti+1Ti = Ti+1Ti Ti+1, (1 ≤ i ≤ r − 2).

For a natural number n, let �(n, r) be the set of sequences λ = (λ1, . . . , λn) of non-negative
integers with λ1 + · · · + λn = r , and let �+(n, r) be the subset of �(n, r) consisting of
weakly decreasing sequences.

For λ ∈ �(n, r), the parabolic Hecke algebra associated with λ is the k-subalgebra
Hq(�λ)ofHq(r), generated by T1, . . . , Tλ1−1, Tλ1+1, . . . , Tλ1+λ2+1, . . . , Tλ1+λ2+λ3+1, . . . ,

Tr−1. It is isomorphic to the algebra Hq(λ1) ⊗k · · · ⊗k Hq(λn).
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Dominant and global... 467

Let k be the trivial Hq(�λ)-module where all Ti ’s in Hq(�λ) act as the scalar q . Let

Mλ = Hq(r) ⊗Hq (�λ) k, Sq(n, r) = EndHq (r)

( ⊕
λ∈�(n,r)

Mλ

)
.

The left Hq(r)-module Mλ is called a permutation module, and Sq(n, r) is called the quan-
tised Schur algebra. There is an isomorphism Mμ ∼= Mν for μ, ν ∈ �(n, r), if ν is obtained
from μ by permuting its entries (see [6, 4.4 (1) (i)]).

Recall now some basic facts about representations of Sq(n, r) from [5,6], which we only
formulate in the case n ≥ r , although some results extend to the case n < r .
Youngmodules.For eachλ ∈ �+(n, r), the permutationmoduleMλ admits a decomposition
into indecomposable direct summands, as

Mλ ∼=
⊕

μ∈�+(n,r)

(Yμ)⊕Kλ,μ

The indecomposable summands Yμ are called Young modules. The multiplicities Kλ,μ’s
satisfy: Kλ,λ = 1 and Kλ,μ �= 0 unless μ � λ, i.e., μ1 + · · · + μs ≥ λ1 + · · · + λs for all
s ≥ 1.
Blocks. An algebra decomposes uniquely into a direct sum of algebra direct summands,
called blocks. The blocks of the quantised Schur algebra Sq(n, r) with n ≥ r are labelled
by pairs (τ, w), which are defined as follows: Let � be the least natural number, if existing,
such that 1 + q + · · · + q�−1 = 0 in k, and set � = ∞ otherwise; � is always at least two
as q �= 0. When p = 0 and q = 1, then � = ∞; when p �= 0 and q = 1, then � = p.
For each λ ∈ �+(n, r), there is a uniquely determined pair (τ, w) where w ≥ 0 is called
the �-weight and τ ∈ �+(n, r − �w) is called the �-core of λ, see Chapter 2 of [31] for the
precise definitions.

Theorem 2.4 (James and Mathas [20]) The blocks of the quantised Schur algebra Sq(n, r)
with n ≥ r are in one-to-one correspondence with the pairs (τ, w) where w ≥ 0 and τ is an
�-core partition (that is, it has �-weight 0) of size n − w�.

Dominant dimension and global dimension. If � > r , the quantised Schur algebra Sq(n, r)
with n ≥ r is semisimple and hence has dominant dimension infinity and global dimension
zero. A lower bound for the dominant dimension of Sq(n, r) for n ≥ r and q = 1 was
obtained in [21], and was shown in [13] to be the exact formula; for general q , a lower bound
obtained implicitly in [7, Proposition 10.5] was also shown to be the exact formula [16]. The
global dimension of Sq(n, r) for n ≥ r was obtained first in [30] for q = 1, and in [6, p.126]
for general q . To state these formulae, recall some terminology on the (�, p)-expansions [6].

Fix a, b ∈ N ∪ {∞}, the (a, b)-adic expansion of a positive integer n is the expression

n = n0 + a(n1 + n2b + n3b
2 + · · · )

with ni ∈ Z for all i and 0 ≤ n0 < a, 0 ≤ n1, n2, . . . < b. The sum of all digits in
this expansion, namely n0 + n1 + n2 + · · · is denoted by da,b(n) ( [6, Section 4.8]). Then
d∞,b(n) = n, and d1,b is the sum of all digits in the b-adic expansion of n, which is denoted
by αb(n) in [30]. We also set, for simplicity,

da,0 = da,∞ = n0 + n1.
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Theorem 2.5 ([6,13,16,30]) The dominant dimension of Sq(n, r) for n ≥ r is given by

domdim Sq(n, r) =
{∞, � > r;
2(� − 1), � ≤ r .

The global dimension of Sq(n, r) for n ≥ r is given by

gldim Sq(n, r) = 2(r − d�,p(r)).

Remark 2.6 Theorem 2.5 directly implies the (known) equivalence of the following state-
ments, for n ≥ r : (1) gldim Sq(n, r) = 0; (2) � > r ; and (3) domdim Sq(n, r) = ∞.

2.3 Dualities

An anti-automorphism θ of a finite dimensional algebra A is said to preserve simples if
Homk(

θ S, k) ∼= S for every simple left module S. Here θ S is the right A-module with
A-action defined by m · a = θ(a)m.

The following lemma shows that the class of algebras admitting anti-automorphisms
preserving simples is closed under taking block algebras. This applies in particular to all
cellular algebras.

Lemma 2.7 Let A be a finite dimensional algebra. If A admits an anti-automorphism pre-
serving simples, then so do the block algebras of A.

Proof The anti-automorphism θ restricts to an anti-automorphism of the centre Z(A) of A:
za = az for all a implies θ(az) = θ(za) and hence θ(z)b = bθ(z) for all b = θ(a). Thus,
θ sends primitive central idempotents to primitive central idempotents. Multiplication by a
primitive central idempotent e fixes all simple modules S in the block eAe, since e is the
identity of this block. If θ(e) �= e then θ(e) is a summand of 1 − e, that is θ(e)e = 0, and
thus θ(e) annihilates the block eAe and in particular its module S, which is a contradiction
to Homk(

θ S, k) ∼= S. 
�
Corollary 2.8 Let A be a block of a quantised Schur algebra Sq(n, r) (for any n, r). Then A
admits an anti-automorphism preserving simples.

Proof Quantised Schur algebras do admit an anti-automorphism preserving simples, see
Section 4.1 in [6]. 
�

3 Proof of Theorem 1.1

The dominant and the global dimensions of the quantised Schur algebras Sq(n, r)with n ≥ r
are known (see Theorem 2.5). To get precise formulae for the blocks, we are going to use
that these blocks have been classified by Chuang and Rouquier, up to derived equivalence.

Theorem 3.1 (Chuang and Rouquier [3], Subsection 7.6) Let n ≥ r and m ≥ s. Two blocks
Bτ,w and Bτ ′,w′ of quantised Schur algebras Sq(n, r) and Sq(m, s) are derived equivalent if
they have the same �-weight, that is, w = w′.

This theorem can in fact be formulated as an equivalence. The ‘only if’ direction is implicit
in [3]:Aderived equivalence preserves the number of simplemodules and this impliesw = w′
(see Chapter 2 in [31] and Subsections 7.5 and 7.6 in [3].) The ’only if’ direction also is a
consequence of the proof of Theorem 1.1.
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In general, derived equivalences are far from preserving dominant dimension or global
dimension. Unexpectedly, however, there exists a particular situation where these homolog-
ical invariants are preserved.

Recall that an algebra A over k is k-split if EndA(S) ∼= k for all simple A-modules S.
Quantised Schur algebras (and in general all cellular algebras) are k-split, and thus so are
their blocks.

Theorem 3.2 (Fang et al. [11]) Let A and B be derived equivalent finite dimensional k-split
algebras. Assume that both A and B have anti-automorphisms that preserve simples. Then

(1) gldim A = gldim B;
(2) if A and B have non-zero dominant dimension, then domdim A = domdim B.

This theorem, applied to quantised Schur algebras, constitutes a main ingredient in the
proof of Theorem 1.1.

Corollary 3.3 For n ≥ r and m ≥ s, the two blocks Bτ,w of Sq(n, r) and Bτ ′,w′ of Sq(m, s)
have the same dominant and the same global dimension if w = w′.

Proof For n ≥ r and m ≥ s, the two blocks Bτ,w of Sq(n, r) and Bτ ′,w′ of Sq(m, s) are
derived equivalent if w = w′, by Theorem 3.1. Blocks of quantised Schur algebras with
n ≥ r have dominant dimension at least 2 by Schur-Weyl duality, and satisfy the condition in
Theorem 3.2, by Corollary 2.8. The corollary now is an immediate consequence of Theorem
3.2. 
�

The following lemma will be used for an induction argument in the proof of Theorem 1.1.

Lemma 3.4 Assume 2 ≤ � < ∞. Then the function g(s) = �s−d1,p(s) is strictly increasing,
i.e., g(s) < g(s + 1) for s ∈ N.

Proof Since g(s + 1) − g(s) = � − d1,p(s + 1) + d1,p(s) and � ≥ 2, it is enough to show
the inequality d1,p(s + 1) − d1,p(s) ≤ 1.

If p = 0 or p = ∞, then d1,p(s) = s for all s ∈ N and thus d1,p(s + 1) − d1,p(s) = 1.
If p /∈ {0,∞}, let s = s0 + s1 p + · · · be the p-adic expansion of s. Let a be maximal

such that s0 = · · · = sa−1 = p − 1. Then

d1,p(s + 1) − d1,p(s) = 1 +
∑
i≥a

si −
∑
i≥0

si =
{
1, a = 0;
1 − a(p − 1), a > 0.

Altogether, d1,p(s + 1) − d1,p(s) ≤ 1, as desired. 
�
Proof of Theorem 1.1 (Dominant dimension formula) By Theorem 2.4, for n ≥ �w, the alge-
bra Sq(n, �w) has a block B∅,w . Corollary 3.3 implies that domdimBτ,w = domdimB∅,w .
Thus it suffices to show

domdimB∅,w =
{
2(� − 1), w > 0;
∞, w = 0.

If w = 0, then B∅,w is simple and so has infinite dominant dimension. If w > 0, then the
quantised Schur algebra Sq(n, �w) is not semisimple and has dominant dimension 2(� − 1)
by Theorem 2.5. Thus B∅,w , as a block algebra of Sq(n, �w), has dominant dimension at
least 2(� − 1). To prove the dominant dimension formula, it remains to prove that

domdimB∅,w ≤ 2(� − 1).
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Let e be an idempotent in B∅,w such that eB∅,w is a minimal faithful right B∅,w-module.
Then bw = eB∅,we is a block of Hq(�w), since the blocks of Sq(�w, �w) and of Hq(�w)

are in one-to-one correspondence under the Schur functor (see [6, p. 39]); this also can be
seen as a consequence of Schur-Weyl duality. Moreover,

eB∅,w =
⊕

(Yμ)⊕aμ

as bw-modules. This sum runs over all μ ∈ �+(n, �w) with �-core ∅ and each aμ is positive
[6]. Choose ν = (�, 1, . . . , 1) and μ = (�w) in �+(n, �w). Then ν and μ both have �-core
∅. Now by the Eckmann-Shapiro Lemma

Ext2(�−1)−1
Hq (�w) (Mν, Yμ) ∼= Ext2(�−1)−1

Hq (�w) (Hq(�w) ⊗Hq (�ν) k, k) ∼= Ext2(�−1)−1
Hq (�ν) (k, k) �= 0,

since Yμ = Mμ = k. The non-vanishing of Ext2(�−1)−1
Hq (�ν) (k, k) follows by identifying�ν with

�� and using that domdim Sq(�, �) = 2(�−1), which has been shown in [9,Corollary 4.3] and
[16] for the quantised case and in [13,Theorem2.2] for the classical case. In [13] it is explained
how this relates to the cohomology of Hq(��). Alternatively, Ext2(�−1)−1(k, k) �= 0 can
be computed directly as follows: As explained in [8, Sect. 3.2], the weight one blocks of
Hecke algebras have been determined by Uno and shown by Jost to be Morita equivalent
to the principal block of Hq(�). The latter algebra is a Brauer tree algebra and its basic
algebra has been described by quiver and relations in [8, Sect. 3.2]. The trivial module k
satisfies
2(�−1)(k) = k and hence
2(�−1)−1(k) = 
−1k. As the algebra is indecomposable,
symmetric and not simple, Hom(
−1k, k) �= 0. Therefore, Ext2(�−1)−1(k, k) �= 0.

Hence, there exists an indecomposable direct summand Y λ of Mν such that

Ext2(�−1)−1
Hq (�w) (Y λ, Yμ) �= 0.

In particular, Y λ and Yμ belong to the same block of Hq(�w), i.e. λ also has �-core ∅. Now
both Y λ and Yμ are direct summands of eB∅,w , so

Ext2(�−1)−1
bw

(eB∅,w, eB∅,w) ⊇ Ext2(�−1)−1
Hq (�w) (Y λ, Yμ) �= 0

By Proposition 2.2, it follows that domdimB∅,w ≤ 2(� − 1).
(Global dimension formula) The formula in Theorem 1.1 means precisely that

gldimBτ,w = 2g(w)

where g(w) is defined in Lemma 3.4.
By Corollary 3.3, gldimBτ,w = gldimB∅,w . Hence it suffices to show that gldimB∅,w =

2g(w). We proceed by induction on w. If w = 0, the formula holds trivially since g(0) = 0
and B∅,w is simple, hence of global dimension zero. Assume the formula to hold for all
w′ < w. The global dimension of Sq(n, �w), which is 2g(w) (see Theorem 2.5), is the
maximum of the global dimensions of its blocks. By Theorem 2.4, Sq(n, �w) has a block
B∅,w and all other blocks have �-weights w′ < w, and therefore have global dimension
2g(w′) which is less than 2g(w) by Lemma 3.4. Hence gldimB∅,w = 2g(w) as desired.

Proof of Corollary 1.2 Global dimension is a derived invariant of blocks of quantised Schur
algebras by Corollary 3.3. Theorem 1.1 and Lemma 3.4 imply that blocks have different
global dimensions when they are not derived equivalent.
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Remarks

(1) In terms of Rouquier’s cover theory [29], the quantised Schur algebra Sq(n, r) is a quasi-
hereditary cover of the Hecke algebraHq(r) of covering degree (� − 1) by Theorem 2.5
and [13], that is, Sq(n, r) is an (�−1)-cover, but not an �-cover ofHq (r).Our result implies
a particular property of the cover; each block of Sq(n, r) is a quasi-hereditary cover of
the corresponding block of Hq(r), of the same dominant dimension. This property may
be formulated as saying that the covering is uniform of covering degree � − 1.

(2) When k has characteristic zero or bigger than the weight w, the dominant dimensions
of the blocks Bτ,w have been determined in [16] by using Chuang and Tan’s complete
description of the corresponding Rouquier blocks [4].

(3) All weight two blocks Bτ,2 of quantised Schur algebras Sq(n, r) are not only derived
equivalent, but also stably equivalent of Morita type, and hence have the same dominant
and global dimensions, as well as the same representation dimension. Indeed, by care-
fully examining the tilting complexes constructed by Chuang and Rouquier [3, Sect. 6],
the induced derived equivalences are seen to be almost ν-stable [19, Sect. 1], and hence
induce stable equivalences of Morita type. However, the derived equivalences between
blocks of arbitrary weight, constructed by Chuang and Rouquier [3] are not in general
almost ν-stable.
For instance, when char k = 2, the blocks B∅,3 and B(1),3 of Schur algebras are derived
equivalent. These two blocks correspond to each other under the reflection s0 of theWeyl
group of the affine Kac-Moody algebra ŝl2. We shall show that the derived equivalence
constructed in [3] is not almost ν-stable.

In the following diagram

B(2,1),1-mod
E

B∅,3-mod
E

F
B(1),3-mod

F
,

the functors E and F are induced by the functors Tr0 and Tr0, respectively, investigated
in [1].
The indecomposable projective modules over Bτ,w are written as P(λ), where λ runs
over partitions of |τ | + 2w with 2-core τ .
The tilting complex T • over B(1),3 constructed in [3, Sect. 6] has the following form

0 −→
⊕

λ

E (2)FP(λ) −→
⊕

λ

EP(λ) −→ 0,

where E (2)X⊕E (2)X ∼= E2X for allB(2,1),1-modules X . The terms of the tilting complex
can be calculated as follows. For each partition λ of 6 with empty 2-core, the projective
module P(λ) has a filtration by standard modules �(μ) with multiplicities given by the
corresponding column of the decomposition matrix of B∅,3. Applying the exact functor
E (respectively, F) to �(μ) results in a module with a filtration by standard modules
corresponding to partitions obtained by adding one 0-addable (respectively, removing one
0-removable) node, each with multiplicity 1, see Theorem A in [1]. In this way, one gets
the multiplicities of the standard modules in E (2)FP(λ) and EP(λ). The decomposition
matrix is lower uni-triangular and invertible.Writing themultiplicities as a column vector
and multiplying by the inverse of the decomposition matrix of B(1),3 from the left hand
side gives the multiplicities of P(μ) as a direct summand of E (2)FP(λ) and EP(λ),
where μ runs over partitions of 7 with 2-weight 3. The decomposition matrices can be
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found, for example, in the Appendix of [23]. Removing the common direct summands of
T 0 and T−1 reduces T • to a complex without contractible direct summands. The direct
summands of the complex are as follows.

0 −→ P(22, 13)2 −→ P(17) −→ 0

0 −→ P(22, 13) −→ 0 −→ 0

0 −→ P(22, 13) −→ P(3, 2, 12) −→ 0

0 −→ P(22, 13) ⊕ P(4, 2, 1)2 −→ P(3, 14) −→ 0

0 −→ P(4, 2, 1) −→ P(3, 22) −→ 0

0 −→ P(4, 2, 1) −→ 0 −→ 0

0 −→ P(4, 2, 1)2 −→ P(32, 1) −→ 0

0 −→ P(4, 2, 1) −→ P(5, 2) −→ 0

0 −→ P(4, 2, 1) −→ P(5, 12) −→ 0

0 −→ 0 −→ P(7) −→ 0

By the definition of almost ν-stable derived equivalences, indecomposable non-injective
projective modules can occur only in degree zero. However, both P(4, 2, 1) and P(5, 2)
are non-injective, andoccur in the degrees−1 and0, respectively. (Non-injectivity follows
from Section 4.3, (1), (4)(ii) and (9), in [6].) This shows that the derived equivalence is
not almost ν-stable.
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