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Abstract
Statistical solutions have recently been introduced as an alternative solution frame-
work for hyperbolic systems of conservation laws. In this work, we derive a novel a 
posteriori error estimate in the Wasserstein distance between dissipative statistical 
solutions and numerical approximations obtained from the Runge-Kutta Discontinu-
ous Galerkin method in one spatial dimension, which rely on so-called regularized 
empirical measures. The error estimator can be split into deterministic parts which 
correspond to spatio-temporal approximation errors and a stochastic part which 
reflects the stochastic error. We provide numerical experiments which examine the 
scaling properties of the residuals and verify their splitting.

Keywords Hyperbolic conservation laws · Statistical solutions · A posteriori error 
estimates · Discontinuous Galerkin method
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1 Introduction

Analysis and numerics of hyperbolic conservation laws have seen a significant shift 
of paradigms in the last decade. The investigation and approximation of entropy 
weak solutions was state of the art for a long time. This has changed due to two 
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reasons. Firstly, analytical insights [5, 9] revealed that weak entropic solutions to 
the Euler equations in several space dimensions are not unique. Secondly, numerical 
experiments [14, 23] have shown that in simulations of e.g. the Kelvin-Helmholtz 
instability, numerical solutions do not converge under mesh refinement. In con-
trast, when families of simulations with slightly varying initial data are considered, 
averaged quantities like mean, variance and also higher moments are observed to 
converge under mesh refinement. This has led to several weaker (more statistics 
inspired) notions of solutions being proposed. We would like to mention dissipa-
tive measure valued solutions [13] and statistical solutions [17]. Considering meas-
ure valued solutions has a long history in hyperbolic conservation laws and can be 
traced back to the works of DiPerna [12] considering Young measures. Statistical 
solutions are time-parametrized probability measures on spaces of integrable func-
tions and have been introduced recently for scalar problems in [15] and for systems 
in [17]. We would like to mention that in the context of the incompressible Navier-
Stokes equations and turbulence, statistical solutions have a long history going back 
to the seminal work of Foias et al. see [19] and references therein.

The precise definition of statistical solutions is based on an equivalence theorem 
[17, Theorem 2.8] that relates probability measures on spaces of integrable functions 
and correlation measures on the state space. Correlation measures are measures that 
determine joint probability distributions of some unknown quantity at any finite col-
lection of spatial points. In this sense, statistical solutions contain more informa-
tion than e.g. dissipative measure valued solutions and, indeed, for scalar problems 
uniqueness of entropy dissipative statistical solutions can be proven. This proof is 
similar to the classical proof of uniqueness of entropy weak solutions for scalar 
problems. In contrast, for systems in multiple space dimensions the non-uniqueness 
of entropy weak solutions immediately implies non-uniqueness of dissipative meas-
ure valued solutions and statistical solutions. Still, all these concepts satisfy weak-
strong uniqueness principles, i.e., as long as a Lipschitz continuous solution exists in 
any of these classes it is the unique solution in any of these classes. The (technical) 
basis for obtaining weak-strong uniqueness results is the relative entropy framework 
of Dafermos and DiPerna [8], which can be extended to dissipative statistical solu-
tions as in [17].

Convergence of numerical schemes for nonlinear systems of hyperbolic conser-
vation laws is widely open (except when the solution is smooth). Exceptions are 
the one dimensional situation, where convergence of the Glimm scheme is well 
known [22] and is, indeed, used for constructing the standard Riemann semigroup 
[4]. For multi-dimensional problems, there is recent progress showing convergence 
of numerical schemes towards dissipative measure valued solutions [13] with more 
information on the convergence in case the limit is an entropy weak solution. It 
seems impossible to say anything about convergence rates in this setting due to the 
multiplicity of entropy weak solutions.

The work at hand tries to complement the a priori analysis from [17] with a reli-
able a posteriori error estimator, i.e., we propose a computable upper bound for 
the numerical approximation error of statistical solutions. This extends results for 
entropy weak solutions of deterministic and random systems of hyperbolic conser-
vation laws [10, 20, 21, 30] towards statistical solutions. One appealing feature of 
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our error estimator is that it can be decomposed into different parts corresponding to 
space-time and stochastic errors. Our analysis relies on the relative entropy frame-
work of Dafermos and DiPerna [8] extended to statistical solutions and, as such, it 
requires one of the (approximate) solutions that are to be compared to be Lipschitz 
continuous. Thus, we need to introduce a suitable reconstruction of the numerical 
solution, see [29] for the general idea, and our estimator is not convergent under 
mesh refinement once shocks have formed in the exact solution. We would like to 
mention that there are also other frameworks for providing a posteriori error analysis 
for hyperbolic systems, namely superconvergence, e.g., [1], dual weighted residuals, 
e.g., [24] and Bressan’s L1 stability framework, e.g., [27, 28] for one-dimensional 
systems.

The structure of this work is as follows: Sect. 2 reviews the notion of (dissipative) 
statistical solutions of hyperbolic conservation laws from [17]. Section  3 is con-
cerned with the numerical approximation of dissipative statistical solutions using 
empirical measures. Moreover, we recall a reconstruction procedure which allows 
us to define the so-called regularized empirical measure. In Sect. 4, we present our 
main a posteriori error estimate between a dissipative statistical solution and its 
numerical approximation using the regularized empirical measure. We explain in 
Sect. 5 that our a posterirori error analysis directly extends to statistical solutions to 
general systems that take values in some compact subset of the state space. Finally, 
Sect. 6 provides some numerical experiments examining and verifying the conver-
gence and splitting of the error estimators.

2  Preliminaries and notations

We consider the following one-dimensional system of m ∈ ℕ nonlinear conservation 
laws:

Here, u(t, x) ∈ U ⊂ ℝm is the vector of conserved quantities, U is an open and con-
vex set that is called state space, f ∈ C2(U;ℝm) is the flux function, D ⊂ ℝ is the 
spatial domain and T ∈ ℝ+ . We restrict ourselves to the case where D = (0, 1) with 
periodic boundary conditions. The system (1) is called hyperbolic if for any u ∈ U 
the flux Jacobian D f (u) has m real eigenvalues and admits a basis of eigenvectors. 
We assume that (1) is equipped with an entropy/entropy flux pair (�, q) , where the 
strictly convex function � ∈ C2(U;ℝ) and q ∈ C2(U;ℝ) satisfy D q = D �D f .

Most literature on numerical schemes for hyperbolic conservation laws focuses 
on computing numerical approximations of entropy weak solutions of (1). In con-
trast, we are interested in computing statistical solutions. We recall the definition 
of statistical solutions in Sect. 2.1. It is worthwhile to note that statistical solutions 
were only defined for systems for which U = ℝm in [17]. We restrict our analysis to 
this setting in Sects. 2.1 and 4. In Sect. 5, we discuss some issues concerning how to 
define statistical solutions to general systems.

(1)
{

𝜕tu(t, x) + 𝜕xf (u(t, x)) = 0, (t, x) ∈ (0, T) × D,

u(0, x) = ū(x), x ∈ D.
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2.1  Statistical solutions

In this section, we provide a brief overview of the notions needed to define statistical 
solutions for (1), following the exposition in [17], referring to [17, Sect. 2] for more 
background, details and proofs.

Let us introduce some notation: For any topological space X let B(X) denote 
the Borel �-algebra on X and M(X) denotes the set of signed Radon measures on 
(X,B(X)) . In addition, P(X) denotes the set of probability measures on (X,B(X)) , 
i.e., all non-negative � ∈ M(X) satisfying �(X) = 1. We consider U = ℝm and 
choose p ∈ [1,∞) minimal, such that

holds for some constant C > 0 . The following classical theorem states the duality 
between L1(Dk;C0(U

k)) and L∞(Dk;M(Uk)).

Theorem  2.1 ([2], p. 211) For any k ∈ ℕ the dual space of 
H

k
0
(D,U) ∶= L1(Dk;C0(U

k)) is Hk∗
0
(D,U) ∶= L∞(Dk;M(Uk)) , i.e., the space of 

bounded, weak*-measurable maps from Dk to M(Uk) under the duality pairing

Definition 2.2 (Correlation measures [15, Def 2.5]) A p-summable correlation 
measure is a family � = (�1, �2,…) with �k ∈ H

k∗
0
(D;U) satisfying for all k ∈ ℕ the 

following properties: 

a. �k is a Young measure from Dk to Uk.
b. Symmetry: If � is a permutation of {1,… , k} , i.e., for x = (x1,… , xk) , we have 

�(x) ∶= (x�(1),… , x�(k)) and if f ∈ C0(U
k) then ⟨�k

�(x)
, f (�(�))⟩ = ⟨�k

x
, f (�)⟩ for a.e. 

x ∈ Dk.
c. Consistency: If f ∈ Cb(U

k) is of the form f (�1,… , �k) = g(�1,… , �k−1) for some 
g ∈ C0(U

k−1) then ⟨�k
x1,…,xk

, f ⟩ = ⟨�k−1
x1,…,xk−1

, g⟩ for a.e. x = (x1,… , xk) ∈ Dk.
d. Lp-integrability: ∫

Dk⟨𝜈1x , �𝜉�p⟩ dx < ∞.
e. Diagonal continuity: limr↘0 ∫D 1

�Br(x1)� ∫Br(x1)
⟨�2

x1,x2
, ��1 − �2�p⟩ dx2dx1 = 0.

Let Lp(D;U) denote the set of all p-summable correlation measures.
Theorem 2.3 (Main theorem on correlation measures [15, Thm. 2.7]) For every cor-
relation measure � ∈ L

p(D;U) there exists a unique probability measure 
� ∈ P(Lp(D;U)) whose p-th moment is finite, i.e., ∫

Lp
‖u‖p

Lp(D;U)
d𝜇(u) < ∞ and such 

that � is dual to � , i.e.,

Conversely, for every � ∈ P(Lp(D;U)) with finite p-th moment there is a � ∈ L
p(D;U) 

that is dual to �.

|f (u)|, |�(u)|, |q(u)| ⩽ C(1 + |u|p), ∀u ∈ U

⟨�k, g⟩Hk ∶= ∫Dk

⟨�k
x
, g(x)⟩ dx ∶= ∫Dk ∫U

k

g(x)(�) d�k
x
(�) dx.

∫Dk

⟨�k
x
, g(x)⟩ dx = ∫Lp ∫Dk

g(x, u(x))dxd�(u) ∀g ∈ H
k
0
(D,U), ∀k ∈ ℕ.
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To take into account the time-dependence in (1) the authors of [17] sug-
gest to consider time parametrized probability measures. For T ∈ (0,∞] con-
sider time parametrized measures � ∶ [0, T) → P(Lp(D;U)) . Note that such a 
� does not contain any information about correlation between function val-
ues at different times. We denote � evaluated at time t by �t . Let us define 
H

k∗
0
([0, T),D;U) ∶= L∞([0, T) × Dk;M(Uk)) and notice that it was shown in [17] 

that it is meaningful to evaluate an element �k ∈ H
k∗
0
([0, T),D;U) at almost every 

t ∈ [0, T).

Definition 2.4 A time-dependent correlation measure � is a collection 
� = (�1, �2,…) of maps �k ∈ H

k∗
0
([0, T),D;U) such that 

a. (�1
t
, �2

t
,…) ∈ L

p(D;U) for a.e. t ∈ [0, T).

b. Lp integrability: 

c. Diagonal continuity

We denote the space of all time-dependent p-summable correlation measures by 
L
p([0, T),D;U).
A time-dependent analogue of Theorem 2.3 holds true:

Theorem  2.5 For every time-dependent correlation measure � ∈ L
p([0, T),D;U) 

there is a unique (up to subsets of [0, T) of Lebesgue measure zero) map 
� ∶ [0, T) → P(Lp(D;U)) such that

a. the mapping

is measurable for all g ∈ H
k
0
(D;U).

b. � is Lp-bounded, i.e.,

ess sup
t∈[0,T) ∫D

⟨𝜈1
t,x
, �𝜉�p⟩ dx < ∞.

lim
r↘0 ∫

T �

0 ∫D

1

�Br(x1)� ∫Br(x1)

⟨�2
t,x1,x2

, ��1 − �2�p⟩ dx2dx1 dt = 0 ∀T � ∈ (0, T).

t ↦ ∫Lp ∫Dk

g(x, u(x)) dxd�t(u)

ess supt∈[0,T) ∫Lp
‖u‖p

Lp(D;U)
d𝜇t(u) < ∞.
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c. Duality, i.e. � is dual to � , 

Conversely, for every � ∶ [0, T) → P(Lp(D;U)) satisfying (a) and (b) there is a 
unique correlation measure � ∈ L

p([0, T),D;U) such that (c) holds.
Definition 2.6 (Bounded support) We say some �̄� ∈ P(Lp(D;U)) has bounded sup-
port, provided there exists C > 0 so that

Definition 2.7 (Statistical solution) Let �̄� ∈ P(Lp(D;U)) have bounded sup-
port. A statistical solution of (1) with initial data �̄� is a time-dependent map 
� ∶ [0, T) → P(Lp(D;U)) such that each �t has bounded support and such that the 
corresponding correlation measures �k

t
 satisfy

in the sense of distributions, for every k ∈ ℕ.

Lemma 2.8 Let �̄� ∈ P(Lp(D;U)) have bounded support. Then, every statistical solu-
tion � ∶ [0, T) → P(Lp(D;U)) to (1) with initial data �̄� satisfies

for any � ∈ C∞([0, T) × D;ℝm) , where �t denotes � at time t.

Proof This is a special case of [17, Equation 3.7] for M = 1 .   ◻

In order to show uniqueness (for scalar problems) and weak-strong uniqueness 
the authors of [15] and [17] require a comparison principle that compares statistical 
solutions to convex combinations of Dirac measures. Therefore, the entropy condi-
tion for statistical solutions has two parts. The first imposes stability under convex 
decompositions and the second is reminiscent of the standard entropy condition for 
deterministic problems. To state the first condition, we need the following notation: 
For � ∈ P(Lp(D;U)) , K ∈ ℕ , � ∈ ℝK with �i ⩾ 0 and 

∑K

i=1
�i = 1 we set

∫Dk

⟨�k
t,x
, g(x)⟩ dx = ∫Lp ∫Dk

g(x, u(x))dxd�t(u) for a.e. t ∈ [0, T),

∀g ∈ H
k
0
(D,U), ∀k ∈ ℕ.

‖u‖Lp(D;U) ⩽ C for �̄� − a.e. u ∈ Lp(D;U).

(2)𝜕t⟨𝜈kt,x, 𝜉1 ⊗⋯⊗ 𝜉k⟩ +
k�

i=1

𝜕xi⟨𝜈kt,x1,…,xk
, 𝜉1 ⊗⋯⊗ f (𝜉i)⊗⋯⊗ 𝜉k⟩ = 0

(3)
∫

T

0 ∫Lp(D;U) ∫D

u(x)𝜕t ⋅ 𝜙(t, x) + f (u(x)) ⋅ 𝜕x𝜙(t, x)dxd𝜇t(u)dt

+ ∫Lp(D;U) ∫D

ū(x) ⋅ 𝜙(0, x)dxd�̄�(ū) = 0,

(4)Λ(�,�) ∶=

{
(�1,… ,�K) ∈ (P(Lp(D;U)))K ∶

K∑
i=1

�i�i = �

}
.
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The elements of Λ(�,�) are strongly connected to transport plans that play a major 
role in defining the Wasserstein distance, see Remark 3.5 for details. Now, we are in 
position to state the selection criterion for statistical solutions.

Definition 2.9 (Dissipative statistical solution) A statistical solution of (1) is called a 
dissipative statistical solution if 

1. for every choice of coefficients �i ⩾ 0 , satisfying 
∑K

i=1
�i = 1 and for every 

(�̄�1,… , �̄�K) ∈ Λ(𝛼, �̄�) , there exists a function t ↦ (�1,t,… ,�K,t) ∈ Λ(�,�t) , such 
that each �i ∶ [0, T) → P(Lp(D;U)) is a statistical solution of (1) with initial meas-
ure �̄�i.

2. it satisfies 

 for any � ∈ C∞
c
([0, T);ℝ+).

This selection criterion implies weak-(dissipative)-strong uniqueness, i.e., as long 
as some initial value problem admits a statistical solution supported on finitely many 
classical solutions, then this is the only dissipative statistical solution (on that time 
interval), [17, Lemma 3.3]. That result is a major ingredient in the proof of our main 
result Theorem 4.2 and it is indeed the special case of Theorem 4.2 for Rst

k
≡ 0. Both 

results are extensions of the classical relative entropy stability framework going 
back to seminal works of Dafermos and DiPerna. The attentive reader will note that 
on the technical level there are some differences between [17, Lemma 3.3] and The-
orem 4.2. This is due to the following consideration: If L2 stability results are to be 
inferred from the relative entropy framework, upper and lower bounds on the Hes-
sian of the entropy and an upper bound on the Hessian of the flux F are needed. To 
this end, Fjordholm et.al. restrict their attention to systems for which such bounds 
exist globally, while we impose conditions (8), (9) and discuss situations in which 
they are satisfied (including the setting of [17, Lemma 3.3]), see Remark 4.3.

3  Numerical approximation of statistical solutions

This section is concerned with the description of the numerical approximation 
of statistical solutions. Following [16, 17] the stochastic discretization relies on a 
Monte-Carlo, resp. collocation approach. Once samples are picked the problem at 
each sample is deterministic and we approximate it using the Runge–Kutta Discon-
tinuous Galerkin method which we outline briefly. Moreover, we introduce a Lip-
schitz continuous reconstruction of the numerical solutions which is needed for our 
a posteriori error estimate in Theorem 4.2. Let us start with the deterministic space 
and time discretization.

T

∫
0

∫
Lp(D;U)

∫
D

𝜂(u(x))𝜕t𝜙(t) dxd𝜇t(u)dt + ∫
Lp(D;U)

∫
D

𝜂(ū(x))𝜙(0) dxd�̄�(ū) ⩾ 0,
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3.1  Space and time discretization: Runge–Kutta discontinuous Galerkin method

We briefly describe the space and time discretization of (1), using the Runge–Kutta 
Discontinuous Galerkin (RKDG) method from [6]. Let T ∶= {Il}

Ns−1

l=0
 , Il ∶= (xl, xl+1) 

be a quasi-uniform triangulation of D . We set hl ∶= (xl+1 − xl) , hmax ∶= max
l

hl , 
hmin ∶= min

l
hl for the spatial mesh and the (spatial) piecewise polynomial DG 

spaces for p ∈ ℕ0 are defined as

Here ℙp denotes the space of polynomials of degree at most p and LV
p

h
 denotes the L2

-projection into the DG space Vp

h
 . After spatial discretization of (1) we obtain the 

following semi-discrete scheme for the discrete solution uh ∈ C1([0, T);V
p

h
):

where Lh ∶ V
p

h
→ V

p

h
 is defined by

Here, F ∶ ℝm ×ℝm → ℝm denotes a consistent, conservative and locally Lipschitz-
continuous numerical flux, �h(x

±) ∶= lim
s↘0

�h(x ± s) are spatial traces and 
[[�h ]] l ∶= (�h(x

−
l
) − �h(x

+
l
)) are jumps.

The initial-value problem (DG) is advanced in time by a R-th order strong sta-
bility preserving Runge–Kutta (SSP-RK) method [26, 32]. To this end, we let 
0 = t0 < t1 < … < tNt

= T  be a (non-equidistant) temporal decomposition of [0, 
T]. We define Δtn ∶= (tn+1 − tn) , Δt ∶= max

n
Δtn . To ensure stability, the explicit 

time-stepping scheme has to obey the CFL-type condition

where �max is an upper bound for absolute values of eigenvalues of the flux Jacobian 
D f  and C ∈ (0, 1] . Furthermore, we let Πh ∶ ℝm → ℝm be the TVBM minmod slope 
limiter from [7]. The complete S-stage time-marching algorithm for given n-th time-
iterate un

h
∶= uh(tn, ⋅) ∈ V

p

h
 can then be written as follows.

V
p

h
∶= {v ∶ D → ℝm | v ∣I ∈ ℙp(I,ℝ

m), for all I ∈ T}.

(DG)

⎧
⎪⎨⎪⎩

Ns−1∑
l=0

xl+1∫
xl

𝜕tuh ⋅ 𝜓h dx =
Ns−1∑
l=0

xl+1∫
xl

Lh(uh) ⋅ 𝜓h dx, ∀𝜓h ∈ V
p

h
,

uh(t = 0) = LV
p

h
ū,

Ns−1∑
l=0

xl+1

∫
xl

Lh(vh) ⋅ �h dx =

Ns−1∑
l=0

xl+1

∫
xl

f (vh) ⋅ �x�h dx

−

Ns−1∑
l=0

F(vh(x
−
l
), vh(x

+
l
)) ⋅ [[�h ]] l, ∀vh,�h ∈ V

p

h
.

Δt ⩽ C
hmin

�max(2p + 1)
,
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Note that the initial condition uh(t = 0) is also limited by Πh . The parameters 
�sl satisfy the conditions �sl ⩾ 0 , 

∑s−1

l=0
�sl = 1 , and if �sl ≠ 0 , then �sl ≠ 0 for all 

s = 1,… , S , l = 0,… , s.

3.2  Reconstruction of numerical solution

Our main a posteriori error estimate Theorem 4.2 is based on the relative entropy 
method of Dafermos and DiPerna [8] and its extension to statistical solutions 
as described in the recent work [17]. The a posteriori error estimate requires 
that the approximating solutions are at least Lipschitz-continuous in space and 
time. To ensure this property, we reconstruct the numerical solution {un

h
}
Nt

n=0
 to a 

Lipschitz-continuous function in space and time. We do not elaborate upon this 
reconstruction procedure, to keep notation short and simple, but refer to [10, 21, 
30]. The reconstruction process provides a computable space-time reconstruction 
ust ∈ W1

∞
((0, T);V

p+1

h
∩ C0(D)) , which allows us to define the following residual.

Definition 3.1 (Space-time residual) We call the function Rst ∈ L2((0, T) × D;ℝm) , 
defined by

the space-time residual for ust.

We would like to stress that the mentioned reconstruction procedure does not 
only render ust Lipschitz-continuous, but it is also specifically designed to ensure 
that the residual, defined in (5), has the same decay properties as the error of the 
RKDG numerical scheme as h tends to zero, cf. [10].

3.3  Computing the empirical measure

Following [16, 17], we approximate the statistical solution of (1) using empir-
ical measures. In this work, we allow for arbitrary sample points and weights. 
The sample points can either be obtained by randomly sampling the initial meas-
ure (Monte-Carlo), or by using roots of corresponding orthogonal polynomials. 
In this article we focus on the Monte-Carlo sampling. Let us assume that the 
sampling points are indexed by the set K = {1,… ,K} , K ∈ ℕ and let us denote 

(5)R
st ∶= �tu

st + �xf (u
st),
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the corresponding weights by {wk}k∈K , i.e., for Monte-Carlo sampling we have 
wk =

1

K
 , for all k ∈ K . We use the following Monte-Carlo type algorithm from 

[17] to compute the empirical measure.

Definition 3.2 (Empirical measure) Let {uh,k(t)}k∈K be a sequence of approximate 
solutions of (1) with initial data ūk , at time t ∈ (0, T) . We define the empirical meas-
ure at time t ∈ (0, T) via

For the a posteriori error estimate in Theorem 4.2, we need to consider a regu-
larized measure, which we define using the reconstructed numerical solution ust 
obtained from the reconstruction procedure described in Sect. 3.2.

Definition 3.3 [Regularized empirical measure] Let {ust
k
(t)}k∈K be a sequence of 

reconstructed numerical approximations at time t ∈ (0, T) . We define the regularized 
empirical measure as follows

Common metrics for computing distances between probability measures on 
Banach spaces are the Wasserstein-distances. In Theorem 4.2, we bound the error 
between the dissipative statistical solution of (1) and the discrete regularized 
measure in the 2-Wasserstein distance.

Definition 3.4 (r-Wasserstein distance) Let r ∈ [0,∞) , X be a separable Banach 
space and let �, � ∈ P(X) with finite r th moment, i.e., ∫

X

‖u‖r
X
d𝜇(u) < ∞ , 

∫
X

‖u‖r
X
d𝜌(u) < ∞ . The r-Wasserstein distance between � and � is defined as

where Π(𝜇, 𝜌) ⊂ P(X2) is the set of all transport plans from � to � , i.e., the set of 
measures � on X2 with marginals � and � , i.e.,

(6)�K,h
t

∶=
∑
k∈K

wk�uh,k(t).

(7)�̂�K
t
=
∑
k∈K

wk𝛿ust
k
(t).

Wr(�, �) ∶=

�
inf

�∈Π(�,�)∫
X2

‖u − v‖r
X
d�(u, v)

� 1

r

,
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for all measurable subsets A of X.

Remark 3.5 It is important to recall from [15, Lemma 4.2] that if � ∈ P(X) is 
K-atomic, i.e., � =

∑K

i=1
�i�ui for some u1,… , uK ∈ X and some �1,… , �K ⩾ 0 with ∑K

i=1
�i = 1, then there is a one-to-one correspondence between transport plans in 

Π(�, �) and elements of Λ(�,�) , which was defined in (4).

4  The a posteriori error estimate

In this section, we present the main a posteriori error estimate between dissipative 
statistical solutions and regularized numerical approximations. A main ingredient 
for the proof of Theorem  4.2 is the notion of relative entropy. Since the relative 
entropy framework is essentially an L2-framework and due to the quadratic bounds 
in (8), (9) it is natural to consider the case p = 2 . Therefore, for the remaining part 
of this paper we denote F ∶= L2(D;U).

Definition 4.1 (Relative entropy and relative flux) Let (�, q) be a strictly convex 
entropy/entropy flux pair of (1). We define the relative entropy �(⋅|⋅) ∶ U × U → ℝ , 
and relative flux f (⋅|⋅) ∶ U × U → ℝm via

for all u, v ∈ U.

We can now state the main result of this work which is an a posteriori error esti-
mate between dissipative statistical solutions and their numerical approximations 
using the regularized empirical measure.

Theorem 4.2 Let �t be a dissipative statistical solution of (1) as in Definition 2.9 
and let �̂�K

t
 be the regularized empirical measure from Definition 3.3. Assume that 

there exist constants A,B > 0 (independent of h, K) such that for all t ∈ [0, T)

fora.e.x ∈ D, for𝜇t − a.e.u ∈ F, for �̂�K
t
− a.e. v ∈ F  . Here Hv denotes the Hessian 

matrix w.r.t. v.

�(A × X) = �(A), �(X × A) = �(A),

�(u|v) ∶= �(u) − �(v) − D �(v)(u − v),

f (u|v) ∶= f (u) − f (v) − D f (v)(u − v),

(8)|u(x) − v(x)|2 + |f (u(x)|v(x))| ⩽ A�(u(x)|v(x)) ⩽ A2|u(x) − v(x)|2,

(9)|(u(x) − v(x))⊤Hv𝜂(v(x))(u(x) − v(x))| ⩽ B|u(x) − v(x)|2
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Then the distance between �t and �̂�K
t

 satisfies

for a.e. s ∈ (0, T) and L ∶= max
k∈K

‖�xustk ‖L∞((0,s)×D) . Here we denoted 
̂̄𝜇K ∶=

∑
k∈K wk𝛿ūst

k
.

Remark 4.3 There are several settings that guarantee validity of (8). Two of them are 

1. The global bounds of the Hessians of f  and � assumed in [17, Lemma 3.3].
2. Let C ⋐ U be a compact and convex set. Let us assume that �t and �̂�K

t
 are (for all 

t) supported on solutions having values in C only. Due to the regularity of f , � and 
the compactness of C , there exist constants 0 < C

f ,C
< ∞ and 0 < C𝜂,C < C𝜂,C < ∞ , 

such that 

 In this case, A, B from (8), (9) can be chosen as 

Remark 4.4 Let us briefly outline a fundamental difference between Theorem  4.2 
and [17, Thm 4.9]. The latter result is an a priori estimate that treats the empirical 
measure (created via Monte Carlo sampling) as a random variable and infers conver-
gence in the mean via the law of large numbers. Theorem 4.2 provides an a poste-
riori error estimate that can be evaluated once the numerical scheme has produced 
an approximate solution. This process involves sampling the initial data measure �̄� 
and the “quality” of these samples enters the error estimate via the term W2(�̄�, ̂̄𝜇

K).

Remark 4.5 Note that the error bound in Theorem 4.2 depends exponentially on the 
spatial Lipschitz constant of the regularized empirical measure. Thus, if the exact 
solution �t assigns positive measure to some set of discontinuous functions then the 
error estimator from Theorem 4.2 is expected to blow up under mesh refinement.

Proof We recall that the weights {wk}k∈K satisfy 
∑

k∈K wk = 1 . We further denote 
the vector of weights by w⃗ ∶= (w1,… ,wK) , and let 𝜇∗

= (𝜇
∗

1
,… ,𝜇

∗

K
) ∈ Λ(w⃗, �̄�) 

correspond to an optimal transport plan between �̄� and ̂̄𝜇K . Because �t is a dissipa-
tive statistical solution, there exists (𝜇∗

1,t
,… ,𝜇∗

K,t
) ∈ Λ(w⃗,𝜇t) , such that

W2(𝜇s, �̂�
K
s
)2 ⩽A

(∑
k∈K

wk

[ s

∫
0

∫
D

|Rst
k
|2 dxdt

]
+ AW2(�̄�, ̂̄𝜇

K)2
)
exp

(
sA3B(L + 1)

)
,

(10)
|u⊤Hvf (v)u| ⩽ C

f ,C
|u|2, C𝜂,C|u|2 ⩽ |u⊤Hv𝜂(v)u| ⩽ C𝜂,C|u|2, ∀u ∈ ℝm, v ∈ C.

(11)A = max{(1 + C
f ,C
)C−1

�,C
,C�,C}, B = C�,C.
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for every �k ∈ C∞
c
([0, T) × D;ℝm) , k ∈ K . Recalling that each function ust

k
 is a Lip-

schitz-continuous solution of the perturbed conservation law (5), considering its 
weak formulation yields

for every �k ∈ C∞
c
([0, T) × D;ℝm) . As (�∗

k,t
)k∈K are probability measures on F  , we 

obtain (after changing order of integration)

Subtracting (14) from (12) and using the Lipschitz-continuous test function 
�k(t, x) ∶= D �(ust

k
(t, x))�(t) , where � ∈ C∞

c
([0, T);ℝ+) yields

We compute the partial derivatives of D �(ust
k
(t, x))�(t) using product and chain rule

(12)

∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

(
u ⋅ 𝜕t𝜙k + f (u) ⋅ 𝜕x𝜙k

)
dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

ū ⋅ 𝜙k(0, ⋅) dxd�̄�
∗
k
(ū)

]
= 0,

(13)

T

∫
0

∫
D

(
ust
k
⋅ 𝜕t𝜙k + f (ust

k
) ⋅ 𝜕x𝜙k

)
dxdt + ∫

D

ūst
k
⋅ 𝜙k(0, ⋅) dx +

T

∫
0

∫
D

R
st
k
⋅ 𝜙k dxdt = 0,

(14)

0 =
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

(
ust
k
⋅ 𝜕t𝜙k + f (ust

k
) ⋅ 𝜕x𝜙k

)
dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

ūst
k
⋅ 𝜙k(0, ⋅) dxd�̄�

∗
k
(ū) +

T

∫
0

∫
F

∫
D

R
st
k
⋅ 𝜙k dxd𝜇

∗
k,t
(u)dt

]
.

(15)

0 =
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

(
(u − ust

k
) ⋅ 𝜕t(D 𝜂(ust

k
)𝜙) dxd𝜇∗

k,t
(u)dt

+

T

∫
0

∫
F

∫
D

(f (u) − f (ust
k
)) ⋅ 𝜕x(D 𝜂(ust

k
)𝜙) dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

(ū − ūst
k
) ⋅ D 𝜂(ūst

k
)𝜙(0) dxd�̄�∗

k
(ū) −

T

∫
0

∫
F

∫
D

R
st
k
⋅ D 𝜂(ust

k
)𝜙 dxd𝜇∗

k,t
(u)dt

]
.

(16)�t(D �(ust
k
)�) = �tu

st
k
⋅ H�(ust

k
)� + �t�D �(ust

k
),

(17)�x(D �(ust
k
)�) = �xu

st
k
⋅ H�(ust

k
)�.
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Next, we multiply (5) by D �(ust
k
) . Upon using the chain rule for Lipschitz-continu-

ous functions and the relationship D q(ust
k
) = D �(ust

k
)D f (ust

k
) we derive the relation

Let us consider the weak form of (18) and integrate w.r.t. x, t and d�∗
k,t

 for k ∈ K . 
Upon changing the order of integration we have

for any � ∈ C∞
c
([0, T);ℝ+) . Since �∗

k,t
 is a dissipative statistical solution it satisfies

Hence, subtracting (19) from (20) and using the definition of the relative entropy 
from Definition 4.1 yields

After subtracting (15) from (21) and using (16), (17) we are led to

(18)D �(ust
k
) ⋅Rst

k
= �t�(u

st
k
) + �xq(u

st
k
).

(19)

0 =
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

𝜂(ust
k
)𝜕t𝜙 dxd𝜇∗

k,t
(u)dt

+

T

∫
0

∫
F

∫
D

R
st
k
⋅ D 𝜂(ust

k
) dxd𝜇∗

k,t
(u)dt + ∫

F

∫
D

𝜂(ūst
k
)𝜙(0) dxd�̄�∗

k
(ū)

]

(20)0 ⩽
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

𝜂(u)𝜕t𝜙 dxd𝜇∗
k,t
(u)dt + ∫

F

∫
D

𝜂(ū)𝜙(0) dxd�̄�∗
k
(ū)

]
.

(21)

0 ⩽
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

𝜂(u|ust
k
)𝜕t𝜙 dxd𝜇∗

k,t
(u)dt

+

T

∫
0

∫
F

∫
D

(
(u − ust

k
) ⋅ D 𝜂(ust

k
)𝜕t𝜙

)
dxd𝜇∗

k,t
(u)dt

−

T

∫
0

∫
F

∫
D

R
st
k
⋅ D 𝜂(ust

k
) dxd𝜇∗

k,t
(u)dt + ∫

F

∫
D

(
𝜂(ū) − 𝜂(ūst

k
)
)
𝜙(0) dxd�̄�∗

k
(ū)

]
.
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Rearranging (5) yields

Plugging (23) into (22) and after rearranging we have

where we have used D f ⋅ H� = H�D f . Up to now, the choice of �(t) was arbitrary. 
We fix s > 0 and 𝜖 > 0 and define � as follows

According to Theorem 2.5 (a) we have that the mapping

(22)

0 ⩽
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

𝜂(u|ust
k
)𝜕t𝜙 dxd𝜇∗

k,t
(u)dt

−

T

∫
0

∫
F

∫
D

(u − ust
k
) ⋅ H𝜂(ust

k
)𝜕tu

st
k
𝜙 dxd𝜇∗

k,t
(u)dt

−

T

∫
0

∫
F

∫
D

(
f (u) − f (ust

k
)
)
⋅ H𝜂(ust

k
)𝜕xu

st
k
𝜙 dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

𝜂(ū|ūst
k
)𝜙(0) dxd�̄�∗

k
(ū)

]
.

(23)�tu
st
k
= −D f (ust

k
)�xu

st
k
+R

st
k
.

(24)

0 ⩽
∑
k∈K

wk

[ T

∫
0

∫
F

∫
D

𝜂(u|ust
k
)𝜕t𝜙 dxd𝜇∗

k,t
(u)dt

−

T

∫
0

∫
F

∫
D

𝜕xu
st
k
⋅ H𝜂(ust

k
)f (u|ust

k
)𝜙 dxd𝜇∗

k,t
(u)dt

−

T

∫
0

∫
F

∫
D

(u − ust
k
) ⋅ H𝜂(ust

k
)Rst

k
𝜙 dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

𝜂(ū|ūst
k
)𝜙(0) dxd�̄�∗

k
(ū)

]
,

𝜙(𝜎) ∶=

⎧⎪⎨⎪⎩

1 ∶ 𝜎 < s,

1 −
𝜎−s

𝜖
∶ s < 𝜎 < s + 𝜖,

0 ∶ 𝜎 > s + 𝜖.

(25)t ↦ ∫
F

∫
D

�(u|ust
k
(t, ⋅)) dxd�∗

k,t
(u)
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is measurable for all k ∈ K . Moreover, due to the quadratic bound on the relative 
entropy, cf. (8), Lebesgue’s differentiation theorem states that a.e. t ∈ (0, T) is a 
Lebesgue point of (25). Thus, letting � → 0 we obtain

The left hand side of (26) is bounded from below using (8). The first term on the 
right hand is estimated using the L∞(D)-norm of the spatial derivative. We estimate 
the second term on the right hand side by Young’s inequality. Finally, we apply (8) 
and then (9) to both terms. The last term on the right hand side is estimated using 
(8). We, thus, end up with

Upon using Grönwall’s inequality we obtain

(26)

∑
k∈K

wk ∫
F

∫
D

𝜂(u|ust
k
(s, ⋅)) dxd𝜇∗

k,s
(u)

⩽
∑
k∈K

wk

[
−

s

∫
0

∫
F

∫
D

𝜕xu
st
k
⋅ H𝜂(ust

k
)f (u|ust

k
) dxd𝜇∗

k,t
(u)dt

−

s

∫
0

∫
F

∫
D

(u − ust
k
) ⋅ H𝜂(ust

k
)Rst

k
dxd𝜇∗

k,t
(u)dt

+ ∫
F

∫
D

𝜂(ū|ūst
k
) dxd�̄�∗

k
(ū)

]
.

�
k∈K

wk

�
A−1 ∫

F

∫
D

�u − ust
k
(s, ⋅)�2 dxd𝜇∗

k,s
(u)

�

⩽
�
k∈K

wk

� s

∫
0

�
A2B‖𝜕xustk (t, ⋅)‖L∞(D) + A2B

�
∫
F

∫
D

�u − ust
k
(t, ⋅)�2 dxd𝜇∗

k,t
(u)dt

+

s

∫
0

∫
F

∫
D

�Rst
k
�2 dxd𝜇∗

k,t
(u)dt + A∫

F

∫
D

�ū − ūst
k
�2 dxd�̄�∗

k
(ū)

�
.

�
k∈K

wk

�
∫
F

∫
D

�u − ust
k
(s, ⋅)�2 dxd𝜇∗

k,s
(u)

�

⩽
�
k∈K

wk

�
A
� s

∫
0

∫
F

∫
D

�Rst
k
�2 dxd𝜇∗

k,t
(u)dt + A∫

F

∫
D

�ū − ūst
k
�2 dxd�̄�∗

k
(ū)

�

× exp
� s

∫
0

A
�
A2B‖𝜕xustk (t, ⋅)‖L∞(D) + A2B

�
dt

�
.
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Using max
k∈K

‖�xustk ‖L∞((0,s)×D) =∶ L and recalling that (�∗

k
)k∈K corresponds to an opti-

mal transport plan and that (�∗
k,s
)k∈K corresponds to an admissible transport plan, we 

finally obtain

  ◻

To obtain an error estimate with separated bounds, i.e., bounds that quantify 
spatio-temporal and stochastic errors, respectively, we split the 2-Wasserstein error 
in initial data into a spatial and a stochastic part. Using the triangle inequality we 
obtain

The first term in (27) is a stochastic error, which is inferred from approximating the 
initial data by an empirical measure. On the other hand, the second term is essen-
tially a spatial approximation error. This can be seen from the following lemma.

Lemma 4.6 With the same notation as in Theorem 4.2, the following inequality 
holds.

Equality in (28) holds provided spatial discretization errors are smaller than dis-
tances between samples. A sufficient condition is:

Proof Recalling the definition of ̂̄𝜇K =
∑

k∈K wkū
st
k
 and defining the transport plan 

𝜋∗ ∶=
∑

k∈K wk(𝛿ūk ⊗ 𝛿ūst
k
) yields the assertion, because

If (29) holds, �∗ is an optimal transport plan.   ◻

Remark 4.7 In contrast to random conservation laws as considered in [30], the sto-
chastic part of the error estimator of Theorem 4.2 is solely given by the discretization 

W2(𝜇s, �̂�
K
s
)2 ⩽A

(∑
k∈K

wk

[ s

∫
0

∫
D

|Rst
k
|2 dxdt

]
+ AW2(�̄�, ̂̄𝜇

K)2
)

× exp
( s

∫
0

(
A3BL + A3B

)
dt
)
.

(27)W2(�̄�, ̂̄𝜇
K) ⩽ W2

(
�̄�,

∑
k∈K

wk𝛿ūk

)
+W2

(∑
k∈K

wk𝛿ūk ,
̂̄𝜇K
)
.

(28)W2

��
k∈K

wk𝛿ūk ,
̂̄𝜇K
�2

⩽
�
k∈K

wk‖ūk − ūst
k
‖2
F
.

(29)‖ūk − ūst
k
‖2
F
⩽

1

2
min
�≠k ‖ūk − ū

�
‖2
F

∀k ∈ K

W2

��
k∈K

wk𝛿ūk ,
̂̄𝜇K
�2

⩽ ∫
F

2

‖x − y‖2
L2(D)

d𝜋∗(x, y) =
�
k∈K

wk‖ūk − ūst
k
‖2
F
.
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error of the initial data, i.e., given by the second term in (27), which may be ampli-
fied due to nonlinear effects. However, there is no stochastic error source during the 
evolution of the numerical approximation.

5  Extension to general systems (with U ≠ ℝm)

Up to this point, we have stuck with the setting from [17] to stress that a posteriori 
error estimates can be obtained as long as the relative entropy framework from [17] 
is applicable. Having said this, it is fairly clear that this setting does not cover cer-
tain systems of practical interest, e.g. the Euler equations of fluid dynamics.

This raises the question how statistical solutions can be defined for more general 
systems. It seems to be sufficient to require �t to be a measure on some set of func-
tions F  so that u ∈ F  implies that u, f (u) and �(u) are integrable. In particular, such 
a definition ensures (fairly generically) that ∫

F
∫
D
f (u)dxd�(u) is well-defined, i.e. 

that E ∶ F → ℝm, u ↦ E(u) ∶= ∫
D
f (u)dx is measurable. For 

F = Lr
f
∶= {u ∈ Lr ∶ ∫

D
|f (u(x))| dx < ∞} for some r ∈ [1,∞] and F  being 

equipped with the Lr topology this can be seen as follows: For any M > 0 the func-
tional u ↦ EM(u) ∶= ∫

D
max{−M, min{M, f (u)}}dx is continuous and E is measura-

ble as pointwise limit of continuous functions. The same argument works for 
∫
F
∫
D
�(u)dxd�(u).

However, it is not clear to us, whether the a posteriori error estimate in Sect. 4 
can be extended to all such settings in which statistical solutions can be defined 
since it requires (8), (9). . One interesting, albeit somewhat restrictive, setting in 
which (8), (9) hold is the case that all measures under consideration are supported 
on some set of functions taking values in some compact subset of the state space. 
We will provide a definition of statistical solutions and an a posteriori error estimate 
in this setting.

Definition 5.1 (C-valued statistical solution) Let C ⋐ U be compact and convex. Let 
�̄� ∈ P(Lp(D;U)) be supported on Lp(D;C) . A C-valued statistical solution of (1) with 
initial data �̄� is a time-dependent map � ∶ [0, T) → P(Lp(D;U)) such that each �t is 
supported on Lp(D;C) for all t ∈ [0, T) and such that the corresponding correlation 
measures �k

t
 satisfy

in the sense of distributions, for every k ∈ ℕ

Remark 5.2 Note that duality implies that if � is supported on Lp(D;C) then the cor-
responding �k is supported on Ck (for all k ∈ ℕ).

Definition 5.3 (Dissipative C-valued statistical solution) A C-valued statistical solu-
tion of (1) is called a dissipative statistical solution provided the conditions from 

(30)𝜕t⟨𝜈kt,x, 𝜉1 ⊗⋯⊗ 𝜉k⟩ +
k�

i=1

𝜕xi⟨𝜈kt,x1,…,xk
, 𝜉1 ⊗⋯⊗ f (𝜉i)⊗⋯⊗ 𝜉k⟩ = 0
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Definition 2.9 hold with “statistical solution” being replaced by “ C-valued statistical 
solution”.

We immediately have the following theorem whose proof follows mutatis mutandis 
from the proof of Theorem 4.2

Theorem 5.4 Let �t be a C-valued dissipative statistical solution of (1) with initial 
data �̄� as in Definition 2.9 and let �̂�K

t
 be the regularized empirical measure as in 

Definition 3.3 and supported on functions with values in C . Then the difference 
between �t and �̂�K

t
 satisfies

for a.e. s ∈ (0, T) and L ∶= max
k∈K

‖�xustk ‖L∞((0,s)×D).

6  Numerical experiments

In this section we illustrate how to approximate the 2-Wasserstein distances that occur 
in Theorem  4.2. Moreover, we examine the scaling properties of the estimators in 
Theorem 4.2 by means of a smooth and a non-smooth solution of the one-dimensional 
compressible Euler equations.

6.1  Numerical approximation of Wasserstein distances

We illustrate how to approximate the 2-Wasserstein distance on the example of 
W2(�̄�,

∑
k∈K wk𝛿ūk) from (27). For the given initial measure �̄� ∈ P(L2(D)) we choose 

a probability space (Ω, �,ℙ) and a random field ū ∈ L2(Ω;L2(D)) , such that the law of 
ū with respect to ℙ coincides with �̄� . We approximate the initial measure �̄� using some 
empirical measure 

∑
m∈M wm𝛿ūm , for a second sample set M ∶= {1,… ,M} , where 

the number of samples M ≫ K is significantly larger than the number of samples of the 
numerical approximation. To distinguish between the two different sample sets K and 
M , we write {ūK

k
}k∈K , {ūM

m
}m∈M and {wK

k
}k∈K , {wM

m
}m∈M respectively. Finally, we 

collect the weights {wK

k
}k∈K in the vector w⃗K and {wM

m
}m∈M in the vector w⃗M.

Computing the optimal transport �∗ (and thus the 2-Wasserstein distance) between 
the two atomic measures can be formulated as the following linear program, cf. [31, 
(2.11)]

W2(𝜇s, �̂�
K
s
)2 ⩽A

(∑
k∈K

wk

[ s

∫
0

∫
D

|Rst
k
|2 dxdt

]
+ AW2(�̄�, ̂̄𝜇

K)2
)
exp

(
sA3B(L + 1)

)
,

(31)𝜋∗ = arg min

𝜋∈Π

�∑
k∈K wK

k
𝛿
ūK
k
,
∑

m∈M wM
m
𝛿
ūMm

�
K�
k=1

M�
m=1

𝜋k,mℂk,m,
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where Π
�∑

k∈K w
K

k
𝛿
ū
K

k

,
∑

m∈M w
M

m
𝛿
ūM
m

�
∶= {𝜋 ∈ ℝK×M

+
� 𝜋𝟙

M
=w⃗M

and 𝜋⊤�
K
= w⃗

K}  
denotes the set of transport plans and 𝟙n ∶= (1,… , 1)⊤ ∈ ℝn . Moreover, the entries 
of the cost matrix ℂ ∈ ℝK×M

+
 are computed as

The linear program is solved using the network simplex algorithm [3, 31], imple-
mented in the optimal transport library ot.emd [18] in python. The 2-Wasserstein 
distance is finally approximated by

where (32) can be computed with ot.emd2(w⃗K, w⃗M,ℂ).

6.2  Numerical experiment for a smooth solution

This section is devoted to the numerical study of the scaling properties of the individual 
terms in the a posteriori error estimate Theorem 4.2. In the following experiment we 
consider as instance of (1) the one-dimensional compressible Euler equations for the 
flow of an ideal gas, which are given by

where � describes the mass density, m the momentum and E the energy of the gas. 
The constitutive law for pressure p reads

with the adiabatic constant � = 1.4 . We construct a smooth exact solution of (33) by 
introducing an additional source term. The exact solution reads as follows

where � ∼ U(0, 1) is a uniformly distributed random variable. Moreover, the spatial 
domain is [0, 1]per and we compute the solution up to T = 0.2 . We sample the initial 
measure �̄� and the exact measure �T with 10000 samples.

For the remaining part of this section we introduce the notations

ℂk,m = ‖ūK
k
− ūM

m
‖2
L2(D)

, for all k = 1,… ,K, m = 1,… ,M.

(32)W2

(∑
k∈K

wk𝛿ūk , �̄�
)2

≈ W2

(∑
k∈K

wK

k
𝛿ūK

k
,
∑
m∈M

wM

m
𝛿ūM

m

)2

.

(33)

�t� + �xm = 0,

�tm + �x

(
m2

�
+ p

)
= 0,

�tE + �x

(
(E + p)

m

�

)
= 0,

p = (� − 1)

(
E −

1

2

m2

�

)
,

(34)

⎛⎜⎜⎝

�(t, x,�)

m(t, x,�)

E(t, x,�)

⎞⎟⎟⎠
=

⎛
⎜⎜⎜⎝

2 + 0.2 ⋅ �(�) ⋅ cos(6�(x − t))�
2 + 0.2 ⋅ �(�) ⋅ cos(6�(x − t))

��
1 + 0.2 ⋅ �(�) ⋅ sin(6�(x − t))

�
�
2 + 0.2 ⋅ �(�) ⋅ cos(6�(x − t))

�2

⎞⎟⎟⎟⎠
,
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Moreover, when we refer to error, we mean the Wasserstein distance between exact 
and numerically computed density � at time t = T .

As numerical solver we use the RKDG Code Flexi [25]. The DG polynomial 
degrees will always be two and for the time-stepping we use a low storage SSP RK-
method of order three as in [26]. The time-reconstruction is also of order three. As 
numerical fluxes we choose the Lax-Wendroff numerical flux

Computing E det, E det
0
, E stoch

0
 requires computing integrals, we approximate them 

via Gauß-Legendre quadrature where we use seven points in each time-cell and ten 
points in every spatial cell.

6.2.1  Spatial refinement

In this section we examine the scaling properties of E det(T) and E det
0

 when we gradu-
ally increase the number of spatial cells. We start initially on a coarse mesh with 16 
elements, i.e., h = 1∕16 and upon each refinement we subdivide each spatial cell 
uniformly into two cells. To examine a possible influence of the stochastic resolution 
we consider a coarse and fine sampling with 100 and 1000 samples, respectively. 
Table 1 and Fig. 1a display the error estimator parts, E det , E stoch

0
 and E det

0
 from (35)-

(37) when we compute the numerical approximation with 100 samples and Table 2 
and Fig. 1b display the same quantities for 1000 samples. We observe that the con-
vergence of E det and E det

0
 does not depend on the stochastic resolution. Indeed, both 

quantities decay when we increase the number of spatial elements and they are uni-
form with respect to changes in the sample size. Moreover, E det

0
 exhibits the expected 

order of convergence which is six for a DG polynomial degree of two (note that we 
compute squared quantities). It can also be observed that E det converges with order 
five, which is due to a suboptimal rate of convergence on the first time-step. This 
issue has also been discussed in detail in [30, Remark 4.1]. Furthermore, we see that 
the numerical error remains almost constant upon mesh refinement, since it is domi-
nated by the stochastic resolution error, which is described by E stoch

0
 . Since E stoch

0
 

reflects the stochastic error it also remains constant upon spatial mesh refinement.

(35)E
det(s) ∶=

∑
k∈K

wk

[ s

∫
0

∫
D

|Rst
k
|2 dxdt

]
,

(36)E
det
0

∶=
�
k∈K

wk‖ūk − ūst
k
‖2
F
,

(37)E
stoch
0

∶= W2(�̄�,
∑
k∈K

wk𝛿ūk)
2.

(38)F(u, v) ∶= f (w(u, v)), w(u, v) ∶=
1

2

(
(u + v) +

Δt

h
(f (v) − f (u))

)
,



 J. Giesselmann et al.

1 3

23 Page 22 of 29

6.2.2  Stochastic refinement

In this section, we consider stochastic refinement, i.e., we increase the number of 
samples and keep the spatial resolution fixed. Similarly to the numerical example 
in the previous section we consider a very coarse spatial discretization with 8 ele-
ments (Table 3, Fig. 2a) and a fine spatial discretization with 256 elements (Table 4, 
Fig.  2b). We observe that E det and E det

0
 remain constant when we increase the 

(a) (b)

Fig. 1  Spatial refinement for 100 and 1000 samples. Numerical example from Sect. 6.2

Table 1  Spatial refinement for 
100 samples

Numerical example from Sect. 6.2

h-refinement, 100 samples

h Error E det
E
stoch

0
E
det

0

1/16 2.6610e-05 0.0012 2.3481e-05 5.2125e-07
1/32 6.6226e-05 2.5710e-05 6.6362e-05 7.8654e-09
1/64 5.3067e-05 1.1870e-06 5.3054e-05 1.6428e-10
1/128 1.2506e-05 3.4142e-08 1.2506e-05 2.1617e-12
1/256 3.8927e-05 1.5755e-09 3.8927e-05 4.0005e-14
1/512 1.1071e-05 5.2537e-11 1.1071e-05 5.6958e-16

Table 2  Spatial refinement for 
1000 samples

Numerical example from Sect. 6.2

h-refinement, 1000 samples

h Error E det
E
stoch

0
E
det

0

1/16 8.8879e-06 0.0013 3.1289e-06 5.4848e-07
1/32 7.4574e-06 3.0015e-05 7.4498e-06 9.1929e-09
1/64 3.8515e-06 9.7543e-07 3.8531e-06 1.3842e-10
1/128 1.5582e-06 3.6073e-08 1.5582e-06 2.2541e-12
1/256 1.4771e-06 1.3478e-09 1.4771e-06 3.5150e-14
1/512 3.9935e-06 4.9174e-11 3.9935e-06 5.4300e-16
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(a) (b)

Fig. 2  Stochastic refinement for 8 and 256 spatial cells. Numerical example from Sect. 6.2

Table 3  Stochastic refinement 
for 8 spatial cells

Numerical example from Sect. 6.2

Stochastic refinement, h = 1∕8

Samples Error E det
E
stoch

0
E
det

0

2 0.0017 0.3096 0.0014 2.3085e-05
4 0.0011 0.3464 0.0004 2.9522e-05
8 0.0014 0.3784 0.0002 3.5952e-05
16 0.0004 0.3131 0.0002 2.4098e-05
32 0.0014 0.3876 0.0001 3.7421e-05
64 0.0005 0.3345 5.3368e-05 2.7750e-05
128 0.0007 0.3509 2.2416e-05 3.0542e-05
256 0.0008 0.3577 5.2963e-06 3.1865e-05
512 0.0009 0.3692 1.1292e-05 3.3930e-05
1024 0.0007 0.3562 4.2294e-06 3.1578e-05
2048 0.0008 0.3616 1.1969e-06 3.2545e-05

Table 4  Stochastic refinement 
for 256 spatial cells

Numerical example from Sect. 6.2

Stochastic refinement, h = 1∕256

Samples Error E det
E
stoch

0
E
det

0

2 0.0004 3.6763e-05 0.0004 3.5764e-14
4 0.0024 1.3302e-05 0.0024 6.2086e-15
8 0.0002 3.7038e-05 0.0002 3.4537e-14
16 0.0002 3.7339e-05 0.0002 3.7582e-14
32 0.0001 3.2223e-05 0.0001 2.8239e-14
64 2.2881e-05 3.8634e-05 2.2881e-05 3.8232e-14
128 9.0158e-06 3.7754e-05 9.0157e-06 3.6971e-14
256 2.1062e-05 3.8056e-05 2.1062e-05 3.7567e-14
512 7.9671e-06 3.6037e-05 7.9671e-06 3.4011e-14
1024 1.9663e-06 3.7004e-05 1.9662e-06 3.5579e-14
2048 4.1378e-06 3.6733e-05 4.1378e-06 3.5074e-14
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number of samples. This is the correct behavior, since both residuals reflect spatio-
temporal errors. For the coarse spatial discretization we observe that the numerical 
error does not decrease when increasing the number of samples since the spatial 
discretization error, reflected by E det , dominates the numerical error. For the fine 
spatial discretization the numerical error is dominated by the stochastic resolution 
error and thus the error converges with the same order. We observe an experimental 
rate of convergence of one (resp. one half after taking the square root). Finally, we 
see that E stoch

0
 is independent of the spatial discretization because its convergence is 

not altered by the spatio-temporal resolution (Tables 5, 6, 7, 8).  

6.3  Numerical experiment for a non‑smooth solution

In this numerical experiment we consider a spatially non-smooth exact solution 
given by

(39)

�(t, x,�) = 2 +

600∑
k=1

�(�) ⋅ cos(2�k(x − t))

5k2
, m(t, x,�) = E(t, x,�) = �(t, x,�),

Table 5  Spatial refinement for 
100 samples

Numerical example from Sect. 6.3

h-refinement, 100 samples

h Error E det
E
stoch

0
E
det

0

1/16 1.0046e-03 5.3974e-01 1.0776e-04 3.0333e-04
1/32 3.1775e-04 4.6198e-01 8.1488e-06 5.1291e-05
1/64 7.7589e-05 2.7323e-01 3.6387e-05 6.2962e-06
1/128 1.5776e-05 1.6943e-01 7.7810e-06 8.8946e-07
1/256 1.5549e-05 9.0180e-02 1.4144e-05 1.1215e-07
1/512 4.5574e-05 4.5733e-02 4.5356e-05 1.3946e-08

Table 6  Spatial refinement for 
1000 samples

Numerical example from Sect. 6.3

h-refinement, 100 samples

h Error E det
E
stoch

0
E
det

0

1/16 1.0338e-03 6.3285e-01 4.4275e-06 3.5692e-04
1/32 3.3777e-04 4.9430e-01 3.9742e-06 5.4882e-05
1/64 4.0502e-03 3.0849e-01 1.8892e-06 7.1184e-06
1/128 9.5235e-06 1.7166e-01 1.3788e-06 9.0221e-07
1/256 2.2359e-06 9.1058e-02 8.0784e-07 1.1350e-07
1/512 4.3406e-06 4.5935e-02 4.1240e-06 1.3992e-08
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where � ∼ U(0, 1) is a uniformly distributed random variable. The spatial domain is 
again [0, 1]per . We compute the solution up to T = 0.2 and sample the initial measure 
�̄� and the exact measure �T with 10000 samples.

6.3.1  Spatial refinement

Again we first examine the scaling properties of E det(T) and E det
0

 when we gradually 
increase the number of spatial cells. We start initially on a coarse mesh with 16 ele-
ments, i.e., h = 1∕16 . Strictly speaking the samples �̄�k are smooth but the meshes 

Table 7  Stochastic refinement 
for 8 spatial cells

Numerical example from Sect. 6.3

Stochastic refinement, h = 1∕8

Samples Error E det
E
stoch

0
E
det

0

2 2.4296e-03 2.1913e-01 9.6970e-04 9.6957e-04
4 1.9059e-03 3.6195e-01 2.5221e-04 2.0300e-03
8 2.0140e-03 5.3951e-01 4.5084e-04 3.4629e-03
16 1.6421e-03 3.4298e-01 1.0539e-04 1.9946e-03
32 1.7357e-03 3.3839e-01 1.2722e-04 1.9963e-03
64 1.5387e-03 4.2101e-01 3.7605e-05 2.5636e-03
128 1.5659e-03 4.0292e-01 4.1701e-05 2.3854e-03
256 1.5662e-03 4.0802e-01 8.0689e-06 2.4552e-03
512 1.5389e-03 4.0178e-01 5.2234e-06 2.4118e-03
1024 1.5331e-03 3.9535e-01 1.2003e-06 2.3499e-03
2048 1.5394e-03 3.8443e-01 1.3741e-06 2.2819e-03

Table 8  Stochastic refinement 
for 256 spatial cells

Numerical example from Sect. 6.3

Stochastic refinement, h = 1∕256

Samples Error E det
E
stoch

0
E
det

0

2 5.5747e-04 9.7655e-02 5.5579e-04 1.2184e-07
4 1.1150e-03 4.0349e-02 1.1150e-03 4.9749e-08
8 1.1873e-03 1.4541e-01 1.1837e-03 1.8119e-07
16 8.9368e-05 1.0356e-01 8.7486e-05 1.2932e-07
32 8.1722e-05 1.0194e-01 7.9884e-05 1.2709e-07
64 1.9237e-05 9.3937e-02 1.7726e-05 1.1724e-07
128 9.8315e-06 9.5595e-02 8.2528e-06 1.1903e-07
256 1.5538e-05 9.5881e-02 1.3931e-05 1.1960e-07
512 2.0009e-05 9.9828e-02 1.8289e-05 1.2455e-07
1024 1.5185e-05 9.4760e-02 1.3624e-05 1.1810e-07
2048 2.3780e-06 9.2924e-02 8.8819e-07 1.1580e-07
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under consideration are sufficiently coarse so that the numerics sees the k−2 decay 
of Fourier coefficients in �̄�k but the cut-off at k = 600 is not resolved. Thus, for the 
meshes under consideration, the decay of error is as if each sample {�̄�k}k∈K satisfies 
�̄�k ∈ Hs(D) for any s < 3

2
 but is not in H3∕2(D) . We expect the convergence of E det

0
 in 

terms of the mesh width h to be of order 3, resp. 3
2
 after taking the square root. This 

behavior can be indeed observed in Fig. 3. Similarly, the numerical error converges 
with the order 3

2
 , up to the point where it is dominated by the stochastic error. The 

deterministic residual E det exhibits a rate of convergence of 1, resp. 1
2
 after taking the 

square root, which has also been observed in [11].

6.3.2  Stochastic refinement

Finally, we consider stochastic refinement for two fixed spatial meshes. The setup of 
the meshes and number of stochastic samples is exactly the same as in the numerical 
experiment from Sect. 6.2.2. In Fig. 3 we observe a similar behavior of the residuals 
and the numerical error as in Sect. 6.2.2, that is, the stochastic residual E stoch

0
 con-

verges independently of the spatial resolution and on the coarse grid the numerical 
error does not converge due to the low spatial resolution. On the fine grid, however, 
it converges with the same order as the stochastic resolution error, which is one, 
resp. one-half after taking the square-root (Fig. 4).  

7  Conclusions

This work provides a first rigorous a posteriori error estimate for numerical approx-
imations of dissipative statistical solutions in one spatial dimension. Our numeri-
cal approximations rely on so-called regularized empirical measures, which ena-
ble us to use the relative entropy method of Dafermos and DiPerna [8] within the 
framework of dissipative statistical solutions introduced by the authors of [17]. We 
derived a splitting of the error estimator into a stochastic and a spatio-temporal part. 
In addition, we provided numerical examples verifying this splitting. Moreover, our 

(a) (b)

Fig. 3  Spatial refinement for 100 and 1000 samples. Numerical example from Sect. 6.3
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numerical results confirm that the quantities that occur in our a posteriori error esti-
mate decay with the expected order of convergence.

Further work should focus on a posteriori error control for multi-dimensional 
systems of hyperbolic conservation laws, especially the correct extension of the 
space-time reconstruction to two and three spatial dimensions. Moreover, based on 
the a posteriori error estimate it is possible to design reliable space-time-stochastic 
numerical schemes for the approximation of dissipative statistical solutions. For ran-
dom conservation laws and classical L2(Ω; L2(D))-estimates, the stochastic part of 
the error estimator is given by the discretization error in the initial data and an addi-
tional stochastic residual which occurs during the evolution, see for example [21, 
30]. For dissipative statistical solutions the stochastic part of the error estimator in 
the 2-Wasserstein distance is directly related to the stochastic discretization error of 
the initial data which may be amplified in time due to nonlinear effects. This result 
shows that stochastic adaptivity for dissipative statistical solutions becomes signifi-
cantly easier compared to random conservation laws since only stochastic discre-
tization errors of the initial data (and their proliferation) need to be controlled. The 
design of space-stochastic adaptive numerical schemes based on this observation 
will be the subject of further research.
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Fig. 4  Stochastic refinement for 8 and 256 spatial cells. Numerical example from Sect. 6.3
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