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Abstract: The Integrated Multisatellite Retrievals for GPM (IMERG) is designed to derive precip-
itation by merging data from all the passive microwave (PMW) and infrared (IR) sensors. While
the input source errors originating from the PMW and IR sensors are important, their structure,
characteristics, and algorithm improvement remain unclear. Our study utilized a four-component
error decomposition (4CED) method and a systematic and random error decomposition method
to evaluate the detectability of IMERG dataset and identify the precipitation errors based on the
multi-sensors. The 30 min data from 30 precipitation stations in the Tunxi Watershed were used to
evaluate the IMERG data from 2018 to 2020. The input source includes five types of PMW sensors
and IR instruments. The results show that the sample ratio for IR (Morph, IR + Morph, and IR only)
is much higher than that for PMW (AMSR2, SSMIS, GMI, MHS, and ATMS), with a ratio of 72.8% for
IR sources and a ratio of 27.2% for PMW sources. The high false ratio of the IR sensor leads to poor
detectability performance of the false alarm ratio (FAR, 0.5854), critical success index (CSI, 0.3014),
and Brier score (BS, 0.1126). As for the 4CED, Morph and Morph + IR have a large magnitude of high
total bias (TB), hit overestimate bias (HOB), hit underestimate bias (HUB), false bias (FB), and miss
bias (MB), which is related to the prediction ability and sample size. In addition, systematic error is
the prominent component for AMSR2, SSMIS, GMI, and Morph + IR, indicating some inherent error
(retrieval algorithm) that needs to be removed. These findings can support improving the retrieval
algorithm and reducing errors in the IMERG dataset.

Keywords: multi-satellite remote sensing precipitation; IMERG; multiple satellite sensors; 4CED;
systematic error; random error; Tunxi Watershed

1. Introduction

Precipitation is an essential hydro-meteorological variable that plays a vital role in
the water and energy cycles of the terrestrial ecosystem [1]. Accurate precipitation data
with high spatiotemporal resolution are crucial for flood, drought, and water resource
management [2,3]. However, obtaining such precipitation data has been a longstanding
challenge because of its strong spatiotemporal heterogeneity.

There are three mainstream methods to measure precipitation: rain gauge measure-
ment, radar observation, and satellite retrieval. Each of these methods has different advan-
tages and disadvantages due to the inability to achieve high spatiotemporal resolution and
precision. Rain gauge measurement is a traditional and direct method to obtain relatively
reliable and high-precision precipitation with a high temporal resolution at a specific point,
while it cannot completely cover an area and capture spatial variability [4]. For radar
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observation, its spatial and temporal resolution is superior to other sensors, but there are
several drawbacks, such as non-precipitation radar echoes, radar artifacts, beam blockage,
range degradation and earth curvature, non-uniform beam filling, and bright banding.
Satellite retrieval has high temporal resolution and global spatial coverage, particularly in
remote regions where gauge or radar observation is sparse or nonexistent [5,6].

Satellite precipitation estimates derive from several sensor observations based on
different platforms [7–9]. Sensor types mainly include infrared (IR) and passive microwave
(PMW) sensors. Although IR has a high spatiotemporal resolution, it lacks a physical rela-
tionship with rain rates, which is an indirect estimate resulting in the insufficient accuracy of
instantaneous precipitation rate [10–12]. The PMW can provide more direct precipitation es-
timates by using a direct physical connection with hydrometeor profiles, while it has sparse
time–space sampling [13,14]. Combining the advantages of IR and PMW, several satellite
precipitation products (SPPs) have been developed, including the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) [15],
Climate Prediction Center Morphing Technique (CMORPH) [16], Global Satellite Mapping
of Precipitation (GSMaP) [17], Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis (TMPA) [9], and Global Precipitation Measurement (GPM). The Inte-
grated Multisatellite Retrievals for GPM (IMERG) was developed to merge precipitation
estimates from passive microwave (PMW), microwave-calibrated infrared (IR) satellite
estimates, additional satellite estimates, and precipitation gauge data. First, the PMW data
from low-Earth-orbit (leo) platforms, including GPM Microwave Imager (GMI), Advanced
Microwave Scanning Radiometer (AMSR), Special Sensor Microwave Imager/Sounder (SS-
MIS), Special Sensor Microwave Imager (SSMI), Microwave Humidity Sounder (MHS), and
Advanced Technology Microwave Sounder (ATMS), were morphed by using as many leo-
satellites as possible. Then, the IR data from geosynchronous-Earth-orbit (geo) platforms
were augmented to compensate for the limited PMW sampling.

Although significant progress has been made in satellite remote sensing of precipi-
tation, the retrieval algorithm, data source, and error correction can introduce inevitable
errors. Therefore, identifying and analyzing error input sources will benefit the retrieval
algorithm and error correction of satellite precipitation estimates [18,19]. In general, the
rain detection capability, hit biases, and the systematic and random errors are important
metrics in evaluating the satellite precipitation data. For the rain detection capability, the
probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) are
always used. For the error decomposition, Tian et al. [20] proposed a new method to de-
compose the total bias (TB) into three independent components, namely hit bias (HB), false
bias (FB), and miss bias (MB). It can overcome the underestimation of the TB because of the
cancelation between the positive FB and the negative MB. Among the three components,
the positive/negative sign of HB is uncertain, depending on the satellite estimate and the
gauge observation. Furthermore, Chaudhary and Dhanya [21] and Zhang, et al. [22] put
forward the 4CED method to decompose TB into four independent components, and the
HB is decomposed into the hit overestimate (positive) and hit underestimate (negative) bias.
For the rainfall correctly detected by satellite, the error can be characterized by systematic
and random error based on the additive or multiplicative model [23–25]. The systematic
error comes from the remote sensing measurement or retrieval algorithm characteristics,
while the random error arises from sensor sampling and design. However, the above stud-
ies mainly focus on the dataset evaluation of the integrated satellite precipitation products
without distinguishing the difference among different input sources. There is still a lack
of research about SPPs evaluation at sensor scale [6,13,26–29]. Consequently, the sample
frequency and error components originating from multi-sensors can be quantified and
evaluated independently at the sensor level.

“Floods in the south, droughts in the north” are the typical features of East China
for the East Asian monsoon [30]. The Tunxi Watershed, located in the southeastern China
humid zone, has frequent intense and uneven spatiotemporal rainfall distribution. Its rapid
response to hydrological processes can easily lead to natural disasters. Several hydrolog-
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ical models were used to explore the runoff mechanism and improve the flood accuracy
and forecast ability [31–33]. The low density gauge data were used as the input of the
hydrological model. The gauge data are spatial discontinuous and cannot capture the
variability of precipitation. According to the existing research and the recent Intergovern-
mental Panel on Climate Change (IPCC) report 2020, climate change and change-induced
hydro-meteorological extremes will continue and become more intense and severe in the
future [34–36]. The Xin’anjiang Nested Experimental Watershed was implemented in 2017
in Tunxi Watershed to strengthen the observation of the water cycle [37]. Tunxi Watershed
is among the best regions in southeast China because dense and well-maintained gauges
are available. Nevertheless, conventional rain gauges cannot fully capture the spatial distri-
bution of rainfall. To some extent, the satellite estimate can compensate for the drawback
of gauge observation. However, the satellite estimate’s data quality is still questionable
and needs to be comprehensively evaluated for its indirect observation. To this end, the
IMERG data originating from PMW and IR sensors contributing to the combined estimates
were segregated and assessed independently, including sample frequency, detectability,
and error structure. Therefore, the objectives of this study are: (1) to evaluate the effect of
different sensor sources with rainfall gauge data over a typical humid hill area in southern
China; (2) to identify and track precipitation errors by the 4CED method and the system-
atic and random error decomposition method; and (3) to provide insights for improving
satellite estimates.

2. Study Area and Data
2.1. Study Area

Tunxi Watershed is located in Huangshan City, southeastern China. It is situated
between 29.47◦N–30.09◦N and 117.65◦E–118.47◦E, and the total area is 2674 km2 (Figure 1).
It is located in the transitional zone between the Jianghuai plain and the East China
mountains and has typical north–south interlacing geographical features. The watershed
is located in the subtropical monsoon humid climate zone, characterized by hot and
humid summers and cool to mild winters [38–40]. The average annual precipitation
is about 1800 mm, concentrated in May–September. It has the obvious characteristics
of high precipitation and temperature in summer. The average annual temperature is
approximately 17 ◦C. The dominant vegetation types in this region are evergreen broadleaf
forest, evergreen needle-leaf trees, and bamboo [37,41,42]. The terrain in the middle of
the basin is relatively flat, and the topographic conditions at the edges are complex. The
elevation has an apparent spatial heterogeneity with the highest altitude of 1257 m and the
lowest altitude of 123 m. The complex terrain, high intensity, and uneven spatiotemporal
precipitation can easily lead to flash floods.

2.2. Data
2.2.1. Rain Gauge Data

Precipitation data covering 2018–2020 from 30 precipitation gauges in the Tunxi Wa-
tershed were selected as the reference data for evaluating the performance of the IMERG
datasets. Precipitation was sampled every 5 min using tipping-bucket rain gauges with
a 0.5 mm resolution. The 5 min precipitation was temporally aggregated to 30 min pre-
cipitation. The 30 precipitation gauges are evenly distributed across the Tunxi Watershed
with a density of 0.011 set/km2. The precipitation data were provided by the Xin’anjiang
Nested Experimental Watershed (http://hydro-lab.hhu.edu.cn/, accessed on 1 February
2023) [37].

http://hydro-lab.hhu.edu.cn/
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Figure 1. Location of the Tunxi Watershed and the distribution of rain gauges.

2.2.2. IMERG Dataset

The Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm fuses informa-
tion from several satellite-based microwave and infrared precipitation estimates. The
IMERG system is run three times, namely, early (~4 h), late (~14 h), and final (~3.5 months)
runs (hereafter IMERG-E, IMERG-L, and IMERG-F). IMERG-F includes additional satellite
data and was merged with monthly gauge information. Several data fields are included in
each IMERG dataset showing how the estimates were computed to provide data quality
information The HQprecipitation fields represent the merged microwave-only precipitation
estimate and can identify the microwave satellite source from the HQprecipSource fields.
IRprecipitation is IR-only precipitation estimate and can identify the weight of IR-only
precipitation relative to the morphed merged microwave-only precipitation by IRkalman-
FilterWeight. The IRkalmanFilterWeight values range from 0 to 100, where 0 is morph only,
100 is entirely based on IR, and anything in between is IR + morph. The IMERG-F precipi-
tationUncal fields are recorded in the original multi-satellite-only half-hourly data. The
IMERG-F precipitationcal fields are recorded precipitation data after gauge correction [43].

Global Precipitation Measurement Mission Integrated Multi-satellite Final Run V6B
(hereafter, IMERG-F V6B) [43,44], which has been released as the latest version, is used to
perform the data quality analysis. The IMERG-F V6B precipitationUncal dataset without
monthly gauge adjustment is compared against the rain gauge. The IMERG-F precipitatio-
nUncal provides precipitation data with 30 min and 0.1 × 0.1 degree resolutions at global
scale. We chose an overlapping time span from 2018 to 2020 as our study period. The
bilinear interpolation method was used to downscale coarser satellite precipitation data to
a fine spatial resolution (1 km). The input source includes five types of passive microwave
(PMW) instruments (Table 1) and infrared (IR) observations.
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Table 1. Input sources of passive microwave sensors for IMERG precipitation during 2018–2020.

Sensor Type Sensor Satellite Date Span Data Period

Imager

GMI GPM April 2014–February 2024 January 2018–December 2020
AMSR2 GCOMW1 July 2012–May 2022 January 2018–December 2020

SSMIS
DMSP-F16 November 2005–February 2019 January 2018–February 2019
DMSP-F17 March 2008–December 2020 January 2018–December 2020
DMSP-F18 March 2010–March 2020 January 2018–March 2020

Sounder
MHS

NOAA-18 May 2005–October 2018 January 2018–October 2020
NOAA-19 February 2009–April 2020 January 2018–April 2020
MetOp-A December 2006–August 2022 January 2018–December 2020
MetOp-B April 2013–August 2023 January 2018–December 2020

ATMS
NOAA-20 November 2017–August 2024 January 2018–December 2020

SNPP December 2011–December 2019 January 2018–December 2019

3. Methodology
3.1. Evaluation of Detection Capability

The detection capability of IMERG was evaluated against gauge observation using a
point-to-pixel method. Several statistical indexes were adopted to evaluate the performance
of IMERG [25,27,45–47]. The threshold to distinguish rain/no rain events was set to 0.5 mm
based on the resolution of the rain gauge. Hit events (H) represent the precipitation events
detected by IMERG and gauge. False events (F) represent the precipitation events detected
by IMERG but not observed by the gauge. Miss events (M) represent the precipitation
events not detected by IMERG but observed by the gauge. Nonevents events (N) represent
the precipitation events not detected by both IMERG and gauge. The probability of
detection (POD), false alarm ratio (FAR), and critical success index (CSI) were used to
evaluate the precipitation detection capability (Table 2). The Brier score (BS) is a function to
measure the accuracy of probabilistic predictions [48]. A model with good performance has
a score of 0, while the worst has a score of 1. All these statistical indexes can calculate the
occurrence and nonoccurrence of precipitation events between IMERG and precipitation
gauge data.

Table 2. The statistical metrics used to evaluate the detection capacity of IMERG.

Statistical Index Formula Perfect Value

Hit ratio (HR) HR = H/T -
False ratio (FR) FR = F/T 0
Miss ratio (MR) MR = M/T 0

Nonevent ratio (NR) NR = N/T -
Probability of detection (POD) POD = H/(H + M) 1

False alarm ratio (FAR) FAR = F/(F + N) 0
Critical success index (CSI) CSI = F/(F + N + M) 1

Brier score (BS) BS = E[(PS − PG)2] 0
Note: Ps is the probability of precipitation (0/1) from satellite (IMERG); PG is the precipitation (0/1) from
gauge observation.

3.2. Four-Component Error Decomposition Method

In order to better quantify and trace the error sources of IMERG, based on the detection
capability and estimation capacity, the total bias (TB) can be decomposed into several
independent error components. Here, we used the 4CED to perform the IMERG data
quality analysis. The traditional error decomposition method (hereafter called the three-
component error decomposition method, 3CED) proposed by Tian et al. [20] decomposes
the TB into three components, namely, hit bias (HB), false bias (FB), and miss bias (MB)
(Table 3). Among the three independent error components, FB is always positive, and MB
is always negative, while HB can be either positive or negative. Furthermore, the HB is
further decomposed into the hit overestimate bias (HOB), hit underestimate bias (HUB),
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and true hit (bias = 0). Therefore, the 4CED includes HOB, HUB, FB, and MB [21,22]. The
detailed mathematical formulas are listed in Table 3. HOB and FB are always positive
among the four error components, while HUB and MB are always negative. Therefore,
the TB can be decomposed into the overestimate bias (OB) and the underestimate bias
(UB) using the two-component error decomposition method (2CED). OB is calculated as
the sum of HOB and FB, and UB is calculated as the sum of HUB and MB. Moreover, the
relationships between TN, OB, UB, HOB, HUB, FB, and MB is TB = OB + UB = (HOB + FB)
+ (HUB + MB) = HB + FB + MB (Figure 2).

Table 3. The statistical metrics used to quantify the performance of IMERG.

Statistical Index Formula Perfect Value

Total bias (TB) TB =
n
∑

i=1
(S − G)/

n
∑

i=1
G × 100% 0

Hit bias (HB) HB =
h
∑

i=1
(SH − GH)/

n
∑

i=1
G × 100% 0

False bias (FB) FB =
f

∑
i=1

(SF − GF)/
n
∑

i=1
G × 100% 0

Miss bias (MB) MB =
m
∑

i=1
(SM − GM)/

n
∑

i=1
G × 100% 0

Hit overestimate bias (HOB) HOB =
ho
∑

i=1
(SHO − GHO)/

n
∑

i=1
G × 100% 0

Hit underestimate bias (HUB) HUB =
hu
∑

i=1
(SHU − GHU)/

n
∑

i=1
G × 100% 0

Overestimate bias (OB) OB = HOB + FB 0
Underestimate bias (UB) UB = HUB + MB 0

Note: S and G represent the precipitation estimates from satellite (IMERG) and gauge, respectively. n is the
number of precipitation events. h, f, m, ho, and hu represent the number of hit, false, miss, hit overestimate and hit
underestimate precipitation events, respectively.

Figure 2. The relationships between 3CED, 4CED, and 2CED.

3.3. Systematic and Random Error Decomposition

IMERG data derived from the retrieval results of multiple satellite sensors has its
characteristics. Systematic error and random error decomposition can be used to perform
error tracing. Systematic errors can reflect the characteristics of sensors and precipitation
retrieval algorithms, while random errors are ubiquitous and unavoidable in observations.
The mean square error was decomposed into systematic and random components as
follows [4,24,49]:

n

∑
i=1

(S − G)2 =
n

∑
i=1

(
Ŝ − G

)2
+

n

∑
i=1

(
S − Ŝ

)2 (1)
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ES =

n
∑

i=1

(
Ŝ − G

)2

n
∑

i=1
(S − G)2

× 100% (2)

ER =

n
∑

i=1

(
S − Ŝ

)2

n
∑

i=1
(S − G)2

× 100% (3)

Ŝ = a × G + b (4)

where Ŝ represents the precipitation, which is calculated by the additive error model. ES
is the systematic error ratio, and EG is the random error ratio. a and b are the slope and
intercept of the additive error model, respectively.

4. Results
4.1. General Analysis

The precipitation derived from the IMERG product was extracted over the Tunxi
Watershed and compared with the gauge observations. The average annual precipitation at
points or grids for gauge observation and IMERG were 1874 and 1676 mm, respectively.
A preliminary comparison of IMERG with the reference data is shown in Figure 3. In
general, IMERG is more consistent with the reference for Tunxi Watershed, except for
a slight underestimation over mountain area. Figure 3a, the bias between the IMERG
and gauge observation shows that IMERG tends to slightly underestimate the precip-
itation (bias < −200 mm) in mountainous terrain areas. The precipitation detected by
IMERG at the elevation between 135 m and 369 m is close to the gauge measurements
(−200 mm < bias < 200 mm). Elevation significantly influenced the accuracy of IMERG,
and the accuracy of IMERG decreased with the increase of elevation. The relative bias is
within 20% at 93.33% of the gauges in the Tunxi Watershed (Figure 3b). The correlation
coefficient on the 30 min time scale ranges from 0.39 to 0.52 (Figure 3c), demonstrating
a relatively poor performance on the data consistency, which is consistent with previous
studies [13,46,50]. IMERG has closer annual precipitation with a poor correlation coefficient
on the 30 min time scale, indicating that the detectability performance may cause a larger
impact on the data quality on the 30 min time scale.

4.2. Detectability Performance

It is critical to analyze and trace the error contribution of IMERG and identify the
input source (sensor type) and its features. Figure 4 shows the sample ratio and four types
of precipitation events for all input sensor sources. Clearly, the sample ratio for IR (Morph,
IR + Morph, and IR only) sources is 72.8%, which is much higher than the sample ratio
for PMW (AMSR2, SSMIS, GMI, MHS, and ATMS) sources (27.2%). The precipitation
data from IR sensor accounts for a significant proportion in the IMERG data. It means the
precipitation data quality from the IR sources plays an important role in IMERG. Obviously,
PMW sources had low HR, FR, and high MR. On the other hand, IR has high HR, FR,
corresponding to a low MR. It indicates that IR sources overestimate rain rate occurrences
because of the high HR, FR, and low MR. In summary, it is worth noting that IR has a high
rate sample, and its detection capability contributed much error to IMERG.
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Figure 3. Spatial distribution of (a) bias and (b) relative bias of annual precipitation and (c) correlation
coefficient between ground stations and IMERG (point-to-pixel) on 30 min time scale. The point with
black circle means it has passed the significant test with the significance level of 0.05.

Figure 5 shows the results of POD, FAR, and CSI for each input source used in IMERG.
The POD values for Morph and Morph + IR are higher than 60%, while all the PMW
sources have values between 36.3% and 38.8%, with tiny differences. On the other hand,
for FAR, all the IR sources are higher than 50%, which is much higher than PWM sensors
(27.5–31.8%). It indicates that IR tends to estimate false rainfall events. The CSI for PMW
(32.5%) is higher than IR (30.1%), showing that PMW sensors have a good ability to detect
precipitation for all precipitation events.
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Figure 4. Hit, miss, false, and nonevent ratios for each input source in IMERG. The values at the right
indicate the sample ratio.

Figure 5. The POD, FAR, and CSI for each input source used in IMERG.

The BS was used to further analyze the IMERG precipitation detection and its accuracy.
Compared with the sounder passive microwave sensor, the imager passive microwave
sensor has a higher BS, indicating that the imager’s precipitation detection accuracy is
slightly lower (Figure 6). Among the individual data sources, GMI has the lowest BS,
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indicating the high rate of prediction accuracy and low proportion of misreported and
underreported precipitation events. It is worth noting that Morph + IR has the highest
BS and the lowest accuracy rate, mainly due to its high false positive rate. Since that
Morph + IR contributes the most to IMERG precipitation, improving its accuracy is crucial
for improving the overall accuracy of IMERG data. Based on the analysis in Figures 4–6, we
can conclude that the detection errors, including false events and miss events, are the main
error source of IMERG. Moreover, it is worth noting that GMI has the highest precision
among all the sensors. GMI instruments aboard the GPM Core Observatory are designed
to provide key information for sensing light and solid precipitation.

Figure 6. The Brier score for each input source used in IMERG.

4.3. Four-Component Error Decomposition Results

Figure 7 shows the total bias and the four error decomposed components for the eight
input sources of IMERG. Generally, the TB for all sensors is negative, which means all the
sensors underestimate precipitation. Morph has the biggest |TB| of 4.08%, Morph + IR has
the highest FB and |HUB|. For all the PMW sensors, |MB| is an important component
among the four components, which leads to negative TB. Bias is not only related to the
data quality but also to data quantity. IR only has a little effect on the quality of IMERG
data because of its small sample size, despite its poor detectability performance. Morph
and Morph + IR have a significant sample size and a considerable TB due to their poor
detectability performance, resulting in a large TB. Therefore, improving the detectability
and precision of the Morph and Morph + IR is essential to reduce the HOB, |HUB|, FB,
and |MB|. For the TB, the Morph + IR is smaller than Morph, while Morph + IR has larger
|HUB|, FB, and |MB|. The performance of Morph + IR is still questionable since the
magnitude of TB may be adjusted due to the cancellation of positive values (HOB and FB)
and negative values (HUB and MB).
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Figure 7. The total bias (TB), hit overestimate bias (HOB), hit underestimate bias (HUB), false bias
(FB), and miss bias (MB) components for each input source used in IMERG over the Tunxi Watershed.

4.4. Systematic and Random Error Decomposition

The systematic and random error components of each sensor were estimated using
an additive error model performed over Tunxi Watershed from 2018 to 2020. Figure 8
displays each sensor’s systematic and random components of total error. Clearly, all the
PMW-sounder sensors exhibit a lower systematic error ratio (<27.94%), while PMW-imager
sensors exhibit less random error (<39.0%). Systematic error is the prominent component
for AMSR2, SSMIS, GMI, and Morph + IR. It should be noted that ATMS has the lowest
systematic error of 7.8%, showing that most of the systematic error is removed.

Figure 8. The systematic and random error for each input source used in IMERG.
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5. Discussion
5.1. Error Decomposition

There are close connections between 2CED, 3CED, and 4CED (Section 3.2). 2CED
and 3CED can be derived based on the 4CED. In Section 4.3, the 4CED has been used to
identify the IMERG data error for each sensor. In addition, the relationships and differences
between 2CED, 3CED, and 4CED are discussed.

Figure 9 depicts the three components of bias (HB, FB, and MB) for the eight in-
put sources of IMERG. Compared to 4CED, 3CED has the same FB and MB as 4CED.
Morph + IR has the biggest |HB| (9.26%) of all the sensors, followed by Morph (5.72%).
For Morph + IR, the |HB|, HOB, and |HUB| are 9.26%, 6.12%, and 15.38%, respectively.
The |HB|, HOB, and |HUB| for Morph are 5.723%, 8.10%, and 13.83%. Obviously, HB is
underrepresented due to the cancelation of the positive HOB and the negative HUB. 4CED
can describe the error component more comprehensively. For the PMW-sounder sensors,
the HB is always positive.

Figure 9. The total bias (TB), hit bias (HB), false bias (FB), and miss bias (MB) components for each
input source used in IMERG over the Tunxi watershed.

Based on the 4CED method, TB can be further divided into OB and UB. OB is the
sum of HOB and FB, while UB is the sum of HUB and MB. For all the sensors, |UB| is
bigger than OB, suggesting that |UB| is the dominant factor of the error source (Figure 10).
Additionally, Morph + IR has the biggest OB and |UB|, while the TB is smaller than Morph,
indicating a cancellation effect of the overestimate and underestimate bias.
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Figure 10. The total bias (TB), overestimate bias (OB), and underestimate bias (UB) components for
each input source used in IMERG over the Tunxi Watershed.

5.2. Error Source Analysis

The satellite precipitation estimate is retrieved from the PMW and IR sensors to meet
the spatial and temporal requirements. The sampling frequency and precision from PMW
and IR sensors are related to the accuracy of IMERG data. Figures 4–7 show the sample
ratio, detection ability, four-component error decomposition, and systematic and random
error for each input source. In summary, PMW sensors (AMSR2, SSMIS, GMI, MHS, and
ATMS) have the low sample ratio with high accuracy, while IR sensors (Morph, Morph + IR,
IR only) have the high sample ratio with low accuracy.

IMERG is designed to inter-calibrate, merge, and interpolate satellite microwave
precipitation estimates together with microwave-calibrated infrared (IR) satellite estimates.
The sample ratio for PMW sensors is 27.2%. To compensate for the limited available
sampling, microwave-calibrated IR satellite estimates are used when the PMW samples
are too sparse. Therefore, it is important to launch more leo-satellites to obtain more PMW
information for precipitation estimates.

The frequent sampling and poor detection ability result in significant error in IMERG
data. Therefore, it is essential to improve the detectability of IR sensors. The indirect
relationship between IR brightness temperature and precipitation is used to calculate the
precipitation. For PERSIANN-CSS, the 60◦N-S latitude belt is divided into 24 sub-regions
to perform regional training and parallel processing [51]. Chen et al. [52] found that the
input source error of GPM-GSMaP is impacted by geographic and climatic factors. For
the improvement of IMERG, more sub-regions related to latitude, topography, climatic,
and other factors should be considered to get more accurate indirect relationship between
IR brightness temperature and precipitation. In addition, the three temperature levels
(220 K, 235 K, and 253 K) are used to extract cloud features at different altitudes. More
temperature levels can be divided to perform precipitation calculations at different altitudes
and regions. Recently, intelligent algorithms have demonstrated good predictive capability
in many fields [53–58]. The development of intelligent algorithms provides new insight
into precipitation prediction based on IR sensor.



Remote Sens. 2023, 15, 1710 14 of 17

5.3. Uncertainty of Gauge Observation

The evaluation of satellite precipitation estimates depends on surface gauge observa-
tions. When using rain gauge measurements as a benchmark, considering their density
is important [8]. In the Tunxi Watershed, there is a typical catchment of 0.55 km2, and
13 precipitation stations are evenly distributed in the typical catchment at different eleva-
tions, slopes, and aspects. The method of measuring precipitation in the typical catchment
is the same as in the Tunxi Watershed, using the same rain gauge and recording the data
every 5 min. The annual precipitationfor the 13 precipitation stations are 2214, 2172, 2303,
2206, 2180, 2231, 2126, 2137, 1882, 1685, 2268, 2157, and 2289 mm, respectively. The coeffi-
cient of variation (Cv) for annual precipitation is 0.0809, with the mean, maximum, and
minimum values of 2142, 2303, and 1685 mm, respectively. The observations show that the
precipitation has small spatial heterogeneity in the typical catchment. In addition, it has
been demonstrated by previous research that the spatial variability of precipitation across
the Tunxi Watershed follows simple scaling and increases as the drainage area increases,
leading to larger spatial heterogeneity [37]. The annual precipitation in the Tunxi watershed
is 1874 mm, and the corresponding Cv is 0.1122. The annual precipitation and Cv of typical
catchment and Tunxi Watershed are very close. Therefore, the rain gauge can capture the
spatial pattern of the Tunxi Watershed, indicating that the rain gauge density can reach the
requirement for the satellite evaluation.

6. Conclusions

In this study, the 4CED and systematic and random error decomposition are used to
quantify and trace the error characteristics of the eight input sources used in the IMERG
dataset. The evaluation of IMERG data includes detectability performance, 4CED, and
systematic and random errors. The primary conclusions are as follows.

(1) For detectability, the sample ratio for IR (Morph, IR + Morph, and IR only) is much
higher than for PMW (AMSR2, SSMIS, GMI, MHS, and ATMS). The IR sensor has a
high HR, FR, POD, and FAR, indicating that IR is sensitive to light precipitation events
and tends to predict a false signal for the satellite estimate. The poor performance of
CSI and BS for IR sensors is mainly due to the high false ratio.

(2) Based on the 4CED, the TB can be decomposed into HOB, HUB, FB, and MB. HOB
and FB are always positive among the four error components, while HUB and MB are
always negative. The magnitude of HOB and |HUB| is higher than |HB| because of
the unavoidable cancellation during the HB calculations process. Generally, the TB
for all sensors is negative, meaning that all the sensors underestimate precipitation.
Morph and Morph + IR have considerable bias related to the prediction ability and
the sample size. It is crucial to reduce the FR to improve the detectability of IR sensors
due to their high sample size.

(3) The systematic and random error components were assessed using the additive
error model. Systematic error is the prominent component for AMSR2, SSMIS,
GMI, and Morph + IR, indicating that the retrieval algorithm for these sensors needs
further improvement.
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