
Verifikation softwareintensiver
Fahrwerksysteme

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Dominik Hellhake
geboren in Balve, Deutschland

Hauptberichter: Prof. Dr. Stefan Wagner

Mitberichter: Prof. Dr. Andy Zaidman

Tag der mündlichen Prüfung: 03. März 2023

Institut für Software Engineering

2023

Zusammenfassung

Kontext: Die zunehmende Signifikanz von softwarebasierten Funktionen
in modernen Fahrzeugen ist der Auslöser vieler Veränderungen im auto-
mobilen Entwicklungsprozess. In der Vergangenheit bestand ein Fahrzeug
aus mehreren Electronic Control Units (ECUs), welche jeweils individuelle
und voneinander unabhängige Softwarefunktionen ausführten. Demge-
genüber bilden heute mehrere ECUs funktional kohärente Subsysteme,
welche übergreifende und vernetzte Softwarefunktionen wie zum Beispiel
Fahrerassistenzfunktionen und automatisierte Fahrfunktionen implemen-
tieren. Dieser Trend hin zu einem hochvernetzten Softwaresystem sorgt in
der Entwicklung moderner Fahrzeuge für einen hohen Bedarf an geeigneten
Architekturmodellen und Entwurfsmethoden. Aufgrund der Entwicklung
von ECUs durch verschiedene Entwicklungsdienstleister werden zusätzlich
systematische Integrationstestmethoden benötigt, um das korrekte Interak-
tionsverhalten jeder individueller ECU im Laufe der Fahrzeugentwicklung zu
verifizieren. Hierfür stellt Kopplung eine weit verbreitete Messgröße dar, um
in komponentenbasierten Softwaresystemen Qualitätseigenschaften wie die
Verständlichkeit, Wiederverwendbarkeit, Modifizierbarkeit und Testbarkeit
widerzuspiegeln.

Problembeschreibung: Während Kopplung eine geeignete Messgröße
für die Qualität eines Softwaredesigns darstellt, existieren nur wenig wis-

3

senschaftliche Beiträge über den Mehrwert von Kopplung für den Integra-
tionstestprozess des aus dem Design resultierenden Systems. Existierende
Arbeiten über das Thema Integrationstest beschreiben die schrittweise Inte-
gration von White-Box Softwarekomponenten unter Verwendung von Eigen-
schaften und Messgrößen, welche aus der Implementierung abgeleitet wur-
den. Diese Abhängigkeit vom Quellcode und der Softwarestruktur sorgt
jedoch dafür, dass diese Methoden nicht auf die Entwicklung von Fahrzeugen
übertragen werden können, da Fahrzeugsysteme zu einem großen Anteil
aus Black-Box Software bestehen. Folglich existieren auch keine Methoden
zur Messung der Testabdeckung oder zur Priorisierung der durchzuführen-
den Tests. In der Praxis sorgt dies dafür, dass lediglich erfahrungsbasierte
Ansätze angewendet werden, bei denen signifikante Anteile des Interak-
tionsverhaltens im Laufe der Fahrzeugentwicklung ungetestet bleiben.
Ziele: Um Lösungen für dieses Problem zu finden, soll diese Arbeit sys-

tematische und empirisch evaluierte Testmethoden ausarbeiten, welche
für die Integrationstests während der Fahrzeugentwicklung angewendet
werden können. Dabei wollen wir in erster Linie auch einen Einblick in
das Potential bieten, welche Messgrößen Kopplung für die Verwendung zur
Testfall-Priorisierung bietet. Das Ziel dieser Arbeit ist es, eine Empfehlung
für das systematische Integrationstesten von Fahrzeugsystemen zu geben,
welches auf dem Interaktionsverhalten einzelner ECUs basiert.

Methoden: Um diese Ziele zu erreichen, analysieren wir im ersten Schritt
dieser Arbeit den Stand der Technik, so wie er gegenwärtig bei BMW
für das Integrationstesten der Fahrwerkssysteme angewendet wird. Dem
gegenüber analysieren wir den Stand derWissenschaft hinsichtlich existieren-
der Testmethoden, welche auf die Problemstellung der Integration von
Fahrzeugsystemen übertragen werden können. Basierend auf diesem Set
an wissenschaftlich evaluierten Methoden leiten wir anschließend konkrete
Vorgehensweisen für die Messung der Testabdeckung und der Testfall-
Priorisierung ab. Im Rahmen dieser Arbeit werden beide Vorgehensweisen
empirisch evaluiert basierend auf Test- und Fehlerdaten aus einem Fahrzeu-
gentwicklungsprojekt.
Beiträge: Zusammengefasst enthält diese Arbeit zwei Beiträge, welche

4

wir zu einem zentralen Beitrag zusammenführen. Der erste Bereich besteht
aus einer Methode zur Messung der Testabdeckung basierend auf dem
inter-komponenten Datenfluss von Black-Box-Komponenten. Die Defini-
tion eines Datenfluss-Klassifikationsschemas ermöglicht es, Daten über die
Verwendung von Datenflüssen in existierenden Testfällen sowie in Fehlern
zu sammeln, welche in den verschiedenen Testphasen gefunden wurden.
Der zweite Beitrag dieser Arbeit stellt eine Korrelationsstudie zwischen ver-
schiedenen Messmethoden für Coupling und der Fehlerverteilung in einem
Fahrwerkssystem dar. Dabei evaluieren wir die Coupling-Werte von indi-
viduellen Software-Interfaces sowie die der Komponenten, welche diese
implementieren. Zusammengefasst spiegelt diese Studie das Potential wider,
das solche Coupling-Messmethoden für die Verwendbarkeit zur Testprior-
isierung haben. Die Erkenntnisse aus diesen Beiträgen werden in unserem
Hauptbeitrag zu einer Coupling-basierten Teststrategie für Systemintegra-
tionstests zusammengeführt.
Fazit: Der Beitrag dieser Arbeit verbindet zum ersten Mal den Stand der

Technik zur Systemintegration von verteilten Black-Box-Softwaresystemen
mit dem Stand der Wissenschaft über systematische Ansätze zur Integration
von Softwaresystemen. Das Messen der Testabdeckung basierend auf dem
Datenfluss ist hierfür eine effektive Methode, da der Datenfluss in einem
System das Interaktionsverhalten der einzelnen Komponenten widerspiegelt.
Zusätzlich kann das mögliche Interaktionsverhalten aller Komponenten des
Systems aus dessen Architektur-Spezifikationen abgeleitet werden. Aus den
Studien über die Korrelation von Coupling zur Fehlerverteilung geht außer-
dem eine moderate Abhängigkeit hervor. Aufgrund dessen ist die Selektion
von Testfällen basierend auf die im Testfall erprobten Komponenteninterak-
tionen und dessen Coupling ein sinnvolles Vorgehen für die Praxis. Jedoch
ist die moderate Korrelation auch ein Indiz dafür, dass zusätzliche Aspekte
bei der Auswahl von Testfällen für Integrationstests zu berücksichtigen sind.

5

Abstract

Context: The growing significance of software-based functionality in a mod-
ern vehicle is at the root of changes in the automotive industry. In the past,
a vehicle consisted of multiple electronic control units (ECU), each of it
executing software functions dedicated to an isolated vehicle function. In a
modern vehicle, however, multiple ECUs form coherent subsystems providing
higher-order software-based functions like driving assistance or automated
driving. For the development of modern vehicles, this transition to a highly
interconnected software system caused a high demand for good architec-
tural models and design practices. In addition, because the development
of most of the electronic control units is outsourced to different companies,
systematic integration testing techniques are required in order to verify the
correctness of interactions between multiple ECUs. For component-based
software systems, coupling is the degree of interdependence of individual
components and a widely adopted indicator for quality attributes of a soft-
ware architecture reflecting the understandability, reusability, modifiability
as well as testability.
Problem Statement: However, while coupling provides a valuable mea-

sure to track the quality of a software architecture during development, very
little scientific research has been conducted studying the potential contribu-
tion of coupling measures to the integration testing process of the resulting

7

system. In general, most existing work describing integration testing tech-
niques focuses on the step-wise integration of white box components based
on their implementation. This makes the contributions to this scientific field
unavailable for the integration testing of a modern vehicle, which mostly
contains black-box or off-the-shelf components for which details about their
implementations are not available. Furthermore, there are no applicable
approaches to measure test coverage or prioritizing test cases during inte-
gration testing of black-box components defined in literature. In practice,
this often results in a predominantly experience based integration testing
plan with a significant amount of component interaction related faults being
found during system testing or in the field.
Objectives: To address this, the aim of this research is to provide em-

pirically evaluated techniques to support the integration testing process.
In particular, we want to provide insight into the usefulness of coupling
measures for the prioritization of test cases as well as a test coverage mea-
surement approach based on component-interaction identified in the systems
architecture. Overall, we aim to provide recommendations for systematically
testing the integration of distributed software system containing black-box
components.
Methods: To archive this goal, we first analyzed the industry state of

the practice exercised at BMW during the integration testing of the Chassis
Control System. We then analyzed the academic state of the art and identified
existing techniques applicable to the problem faced at BMW. Based on these
findings, we then identified the research gap and designed new approaches
for the measurement of test coverage and test case prioritization. Both
approaches are empirically evaluated based on real-world test data and
software architecture of a project conducted at BMW.
Contributions: We provide contributions in two different areas, which

we combine to form the central contribution of this work. First, we provide
an approach for test coverage analysis applicable for black-box integration
testing based on inter-component data-flow. By introducing and evaluating a
data-flow classification scheme for test cases and failures, we enable data to
be collected about the usage of data-flow in existing test cases and failures

8

found during integration testing as well as failures not discovered by the
integration testing phase. In addition, we demonstrate how such data is
used to measure test coverage of existing test cases and how test gaps can
be identified.

Second, we provide a correlation study of several coupling measures as de-
fined in literature to the failure distribution of a real world system showcasing
their effectiveness of reflecting the fault-proneness of individual component
interactions. We applied these measures to the interface- and component
level architecture of the studied system to demonstrate the usefulness of
interface coupling for integration testing compared to component coupling.
Combining these two contributions, we provide the central contribution pro-
vided in this dissertation, namely the conceptualization of a Coupling-based
Test Strategy for Black-Box System Integration Testing.

Conclusion: With our contributions, we are the first to combine the
current industry state of practice for integration testing of distributed systems
containing black-box components as well as the scientific state of measuring
component and interface coupling to form a systematic methodology for
integration testing. Data-Flow based test coverage measurement is applicable
for black box integration testing, as it effectively reflects the set of tested
ECU interactions in contrast to the overall set of ECU interactions. However,
coupling-based test case prioritization has shown low to moderate correlation
to failure distribution depending on the selected coupling measure. This
indicates that additional aspects besides coupling have to be taken into
account when selecting test cases for execution during black-box integration
testing. In summary, practitioners in the automotive industry can use our
proposed approach for coupling-based testing for black-box integration to
complement the existing experience-based test-planning.

9

Acknowledgments

Conducting research in industry has its own challenges and pitfalls. There-
fore, my genuine gratitude goes out to all people from both company and
university who have supported me during the course of this work.

In particular I want to thank my PhD advisor Prof. Dr. Stefan Wagner. He
greatly supported my understanding on how to conduct empirical research
in a correct way which had a direct influence onto the research design
and structure of the studies presented in this work. In addition, Stefan
helped me by identifying the relevant research questions included in the
practical problems I faced at the beginning of my PhD in the department for
developing chassis control system at BMW. Even though I was an external
PhD student in his group, he fostered collaborations with his other students
and made sure I was well connected to the world of research in the best
possible way.
I am also grateful for the support of Dr. Céline Laurent-Winter, who

had already been the advisor of my Master’s thesis, for encouraging me to
undertake a PhD and giving me the opportunity to do so at BMW. I also
want to thank her for our productive discussions at the beginning of my PhD.

Lastly I want to thank all my fellow colleagues who undertake a PhD in
parallel to me. In particular I want to thank Justus Bogner, Kai Mindermann
and Tobias Schmid who are also part of the research group at the Institute

11

of Software Engineering at University of Stuttgart.

12

Contents

1 Introduction 17
1.1 Motivation . 18
1.2 Problem . 19
1.3 Research Objective . 20
1.4 Contribution . 22
1.5 Pre-Published . 24
1.6 Thesis Structure . 26

2 Theoretical and Technical Background 27
2.1 Model Driven Development . 29
2.2 System Integration Testing . 32
2.3 Description of the Studied System 38
2.4 Existing Coupling Measures . 40

2.4.1 Data Flow Analysis . 41
2.4.2 Dependency Analysis . 42
2.4.3 Information Entropy . 43

3 Data Flow based Test Coverage 49
3.1 Related Work . 50
3.2 Research Design . 56

13

3.3 Data Flow Classification Scheme 58
3.4 Data Flow Similarity . 62
3.5 Coverage Criteria . 63
3.6 Evaluation . 65

3.6.1 Data-Flow Coverage . 68
3.6.2 Test Gap Identification 69

3.7 Conclusion . 74
3.8 Threats to Validity . 76

4 Test Case Selection and Prioritization 77
4.1 Related Work . 79
4.2 Research Design . 82
4.3 Selection of Coupling Measures 86
4.4 Data Collection for System Graph Abstraction 92
4.5 Failure Distribution . 99
4.6 Evaluation . 101
4.7 Conclusion . 104
4.8 Threats to Validity . 106

4.8.1 Conclusion Validity . 106
4.8.2 Internal Validity . 106
4.8.3 Construct Validity . 108
4.8.4 External Validity . 109

5 Coupling based System Integration Testing 111
5.1 Software and Hardware Architecture Model 112
5.2 Test Data Classification Model 115
5.3 Coupling based System Integration Testing Process 118

6 Discussion and Conclusion 123
6.1 Summary of Contributions . 124
6.2 Discussion and Limitations . 126
6.3 Future Work . 129
6.4 Conclusion . 132

14 Contents

Bibliography 135

List of Figures 147

List of Tables 149

Contents 15

Ch
ap

te
r 1

Introduction

The development of component-based software systems is a commonly used
and widely adopted development approach which supports the design of
reusable software components as well as their integration into existing
software systems [XLKR00]. In literature, a large set of metrics exist to
measure and control the quality of component based systems. Commonly
evaluated internal software design properties are size, complexity, coupling
and cohesion [BMB96]. In this section we provide a brief summary of the
research field addressed in this thesis. For this, we derive problems faced in
the industry. We subsequently formulate our research objective and guiding
research questions to address these problems. Lastly, we outline the structure
of this thesis.

17

1.1 Motivation

Early software-based solutions in a car were local in their functionality and
strictly isolated from each other. Independent functions like the engine
control were used to run on single dedicated Electronic Control Units (ECUs)
and just a few kilobytes in size. However, over the past decades the amount
of software in cars grew exponentially and caused various changes in the
design and development of modern vehicles. The most significant change
is the vehicles transition from including few individual and unconnected
software functions to highly distributed software-based systems implement-
ing functions distributed over several ECUs connected by bus systems as the
underlying communication infrastructure. This trend in the development of a
vehicle’s modular software design has been enabled by suppliers which take
care of a significant part of the development effort. As ECUs and their under-
lying software were developed by these suppliers, the automotive industry
still follows the traditional concept of having parts of a vehicle produced by a
chain of suppliers while being only responsible for their assembly. However,
this idea stems from a purely hardware related point of view. With software
becoming the most significant force of innovation in the automotive indus-
try, the responsibility of a cars manufacturer evolved from the assembly of
hardware parts during production to the integration of distributed software
based functions during development.

Since individual ECUs in a modern vehicle are often developed by indepen-
dent teams often located at different companies, it is very important to verify
the correctness of their composed functionality once they are integrated
into a complete system. This verification is referred to as system integration
testing and is a prerequisite for the final system-level testing at the end of
the vehicles series development phase. In general, multiple basic approaches
exist for integration testing of a component-based system like incremental,
top down, bottom up or big bang [NT08]. All these approaches assume that
individual components have already been tested separately in a controlled
environment. Integration testing therefore focuses on the verification of com-
ponent interplay behavior to reveal failures caused by erroneous interface

18 1 | Introduction

implementations or design flaws introduced at the system level. In addition,
a test strategy used for integration testing prescribes how to prioritize test
case selection to achieve the goals of integration testing in an efficient way
with limited time and resources when trying to accomplish full test coverage
at component interaction level.

In the automotive industry, integration testing is split into multiple stages
as a modern vehicle consists of over 200 interconnected electronic control
units each of it executing a component based software system on its own.
After software integration testing and testing of each ECU individually is
done by the supplier, multiple ECUs are put together to form a coherent
subsystem of the vehicle during system integration testing. The goal of this
step is to verify all potential interactions between multiple ECUs during
execution of a higher-order functionality. To accomplish such a coverage
of component interactions, each of the identified component interactions
should be considered for explicit verification. However, this is not feasible for
large systems due to the potential combinatorial complexity of functional
dependencies, which can lead to substantial testing efforts.

1.2 Problem

In literature, there are very few formally or empirically validated approaches
available for the systematic testing of component interactions in a component-
based system [SCK10]. Such approaches become even more important when
the software of most ECUse are considered to be black-box, due to the fact
that development has been done by external teams. In this context, code-
based approaches for identifying failure-prone component interactions are
not applicable. Therefore, system integration testing has to be performed
solely on interface- and black-box behavior specifications of each ECU. Be-
cause those interface specifications are available early in the development
process of a vehicle, we propose an approach based on coupling measures
to identify failure-prone component interactions.
In today’s state of the practice of system integration testing of an auto-

1.2 | Problem 19

motive system, test design, implementation and selection of test cases is
commonly done based on experience from past series development projects.
For this, test data is analyzed regarding groups of similar or reoccurring
defects which are then used to guide the implementation of new test cases
and the planning of their execution during the different test phases. For
the integration testing of an automotive system, such experience based test
strategies have proven effective due to the high reuse of ECUs and software
among different vehicle models and vehicle generations as well as the high
similarity in a vehicle’s system and software architecture. However, due to
the growing number of newly added software based functions to modern
vehicles, the change in system design and architecture over time is becoming
significant. This increasing development progress between two consecutive
generations of vehicles causes the experience from past projects to be not
fully applicable anymore.

In summary, the state of the art of system integration testing done in the
automotive industry does not include systematic approaches for test coverage
measurement or test case selection and prioritization. In academia, there is
a sound understanding of such holistic strategies for integration testing on
software level. However, due to the fact that these strategies are built-up on
the availability of code and software architecture documentation they are
not directly applicable for the problem of system integration testing faced in
the automotive industry.

1.3 Research Objective

We formulate our overarching research objective to address the described
problems in the following way:

Provide a systematic approach for system integration testing of automotive
subsystems including methods and techniques which allow the finding of

component interaction related faults early in development.

20 1 | Introduction

To define a systematic testing technique for system integration testing, we
derive two major research topics for this thesis. First, a coverage measure
for component interaction which is considered directly on component level
and in addition on interface level while a component implements multiple
interfaces. Second to that, an approach for test case selection and prioritiza-
tion based on a measure of fault-proneness of component interactions. In
the following section, these two research directions are presented alongside
their research questions.

• RQ1: How effective is inter-component based data-flow classification
in capturing the system’s dynamic behavior relevant for test coverage
analysis and test gap identification?

Because the goal of system integration testing is to prescribe how to
verify the interplay effects of each component in order to assure that every
component has consistent assumptions about the semantics and frequency of
shared information [Int11], a coverage measure should identify all potential
component interactions based on the system’s design. Furthermore it should
identify which component interactions are verified by a certain test case
to consequently provide an overview of tested and untested component
interactions.

• RQ2: Which coupling measures applicable to the black-box compo-
nent structure of a modular system are useful to guide the test case
prioritization for integration testing?

• RQ3: Which coupling measures applicable to the black-box interface
structure of a modular system are useful to guide the test case prioriti-
zation for integration testing?

A test case selection and prioritization technique however should be based
on a sound measure for fault-proneness which utilizes the characteristics
of component interactions to derive the potential of holding a fault dur-
ing development. By answering the research questions RQ2 and RQ3, we
provide the proposition that measures for coupling applicable for black-box

1.3 | Research Objective 21

components can provide a valuable basis for test case prioritization during
system integration testing. We test this hypothesis in an automotive case
study, namely if ECUs with strong coupling or with high interface complexity
have an increased probability of containing faults typically found during
system integration testing. This proposition stems from the assumption, that
due to cognitive overloading, not all information of a software component’s
context is considered during its development or evolution.

1.4 Contribution

The central and unique contribution of this thesis is the conceptualization of
a Coupling based Test Methodology for Black-Box Integration Testing.
For this, we are the first to combine the current industry state of practice for
integration testing of distributed systems containing black-box components
as well as the scientific state of measuring component and interface coupling
to form a systematic methodology for integration testing. We show how a
coupling measurement of the system under test can be derived from the
specification documents commonly available in a vehicle series development
in a fully automatic way. In addition, we provide a definition of a generic
process model which describes which activities of the development process
of a modern vehicle is involved in the proposed coupling based system
integration testing approach. This main contribution is derived from our two
research directions described in the previous section and therefore combines
the following individual contributions.

By first introducing a data flow classification scheme for test cases and
failures, we utilize knowledge about the data flow induced into the system
during test execution to obtain the overall data flow based coverage of
an existing test suite and reveal untested data flow. Second, we analyze
the observed data flow during the occurrence of a failure to determine to
which ratio it is covered by the detecting test case. Finally, we evaluate
the usefulness of the identified data-flow based approach of measuring test
coverage for system integration testing by comparing the usage of data flow

22 1 | Introduction

of failure reports created by other testing activities (defect slip-through) to
the coverage of data flow of the existing test cases. By showing that traces
of failures which slipped by the integration test phase have significantly
lower similarity to the traces of executed test cases compared to the traces
of failures found during execution we demonstrated the effectiveness of data
flow coverage analysis for black-box integration testing. In addition to the
classification scheme, we introduced basic data flow based coverage crite-
ria specifically designed to measure the utilization of component interaction
based on data flow. Lastly, we demonstrated how the data flow classification
of existing test cases and failures slipped by the integration testing phase can
be used to identify potential test gaps in terms of unconsidered component
interactions.

In the conducted case study, we analyzed the relationship between pro-
posed coupling measures found in scientific literature and the failure dis-
tribution identified during the system integration testing of a real-world
automotive system. By investigating the correlation for each measure, we
provide insights about its usefulness for test case prioritization during the
system integration testing of black-box components. A strong correlation
between the occurrences of failures and design measures for software in-
terfaces would greatly contribute to the definition of a systematic method
for black-box integration testing. Additionally, our correlation analysis of
existing coupling measures provides valuable experiences in applying them
to a real-world system from the automotive domain. As part of a correlation
study, we applied various coupling measures as defined in literature for
software level coupling measurement to interface- and component level
architecture of a real world system. The failure distribution over interfaces
and components of the system has been collected based on the data-flow
involved during occurrence of the failure.

1.4 | Contribution 23

1.5 Pre-Published

The above mentioned contributions have been introduced into the scientific
discourse in the form of publications for each of the two research direction.
The following list consists of the publications that are created during the
course of this thesis and the presented studies.

a) D. Hellhake et al. “Towards using coupling measures to guide black-
box integration testing in component-based systems.” In: Software
Testing, Verification and Reliability 32.4 (Mar. 2022). url: https:
//doi.org/10.1002/stvr.1811

In this article, we analyze the relationship between different com-
ponent and interface coupling measures found in literature and the
distribution of failures found during integration testing of a automotive
system. The presented correlation study provides the empiciral basis
for the conceptualization of the test case prioritization approach in
chapter 4.

b) D. Hellhake, T. Schmid, and S. Wagner. “Using Data Flow-Based
Coverage Criteria for Black-Box Integration Testing of Distributed
Software Systems.” In: 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). Apr. 2019, pp. 420–429

In this article, we introduce a data-flow based observation scheme
which captures the interplay behavior of involved ECUs during test
execution and failure occurrences. In addition, we introduce a data
flow-based coverage criterion designed for black box integration. The
classification scheme as well as the coverage criteria is used in sec-
tion 3 to formalize a test coverage approach applicable for black-box
integration testing.

c) D. Hellhake and S. Wagner. Kommunikationsfluss-orientiertes Testen von
Softwarefunktionen im Steuergeräteverbund. Tech. rep. 7. FACHKON-
FERENZ AUTOTEST, 2018. url: https://fkfs-veranstaltungen.
de/fileadmin/4_AutoTest/pdf/AutoTest_2018/

24 1 | Introduction

https://doi.org/10.1002/stvr.1811
https://doi.org/10.1002/stvr.1811
https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/
https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/

In this article, we analyze common types of failures found during sys-
tem integration testing or system level testing. In addition, we provide
a discussion on the applicability of data-flow to such failure types. In
section 3 the applicability of data-flow classification to common faults
found during system integration testing provides the basis to define
the limitations of the presented approach.

d) M. Golagha et al. “Aletheia: A Failure Diagnosis Toolchain.” In: 2018
IEEE/ACM 40th International Conference on Software Engineering: Com-
panion (ICSE-Companion). 2018, pp. 13–16

This article provides an automated approach for developers of ECU soft-
ware to reduce time required for fault localization of failures detected
during software composition and integration testing. The approach
has been evaluated in the context of the series development project
described in section 2.3 which is also used for the evaluation of the
approaches provided in this work.

1.5 | Pre-Published 25

1.6 Thesis Structure

The remainder of this thesis is structured in the following way alongside the
major research directions and contributions. First, chapter 2 provides the
theoretical background for the coupling measures studied in this work as
well as the state of the practice of developing and testing modern vehicles. In
chapter 3, our main contribution in the research direction of data flow based
test coverage measurement is provided including the definition of the data
flow based classification scheme, coverage criteria and their evaluation in a
study containing real world test and failure data. In chapter 4, our second
major contribution in the direction of coupling based test case prioritization
are presented. The insights derived from our studies in the conclusion of
chapter 3 and 4 are then combined to form our contribution to the practice
of system integration testing presented in chapter 5. Lastly, Chapter 6 briefly
summarizes our work, broadly discusses its implications and limitations, and
finally closes with an outlook on promising future research directions. The
outline of this thesis is also shown in figure 1.1.

Figure 1.1: Thesis outline and structure

26 1 | Introduction

Ch
ap

te
r 2

Theoretical and Technical
Background

As discussed in the previous section, much work exists defining coupling
and complexity metrics for component based software systems. However,
most of these definitions are based on a white-box or gray-box perspective
onto the structure of the system under test. In automotive industry, these
architectural views are in most cases not available which makes most of the
defined metrics not directly applicable.
In this chapter, we first present the architectural view commonly used

in the automotive industry in section 2.1. These architectural views are
widely used in this work. They provide the basis for identifying data-flow in
section 3 and consequently the individual existing component interactions.
In addition, they are also used in section 4 to calculate component and
interface coupling. We then present the state of the practice of system
integration testing as a continuation of the development process in order
to highlight activities relevant for the context of this thesis. These process
descriptions provide the baseline for the conceptualization of a coupling

27

based integration testing process in section 5. Followed by that, we introduce
in section 2.3 the real-world system which provides the context for all data
collected and studied during the course of this work. Finally, we present
the theoretical foundation for the set of metrics selected for the study in
section 4. In section 2.4.1 a data flow based approach of measuring coupling
is presented. In section 2.4.2, a dependency analysis based approach of
measuring coupling is presented which also works for non-data-flow based
coupling types. Lastly, an information theory based approach for measuring
coupling is presented in section 2.4.3.

28 2 | Theoretical and Technical Background

2.1 Model Driven Development

A modern car resembles a distributed software system implementing many
software-based functions. These functions are structured into different
functional domains of a vehicle, ranging from clusters of classical driving
functions up to super-ordinate functions regarding driving assistance and
automated driving. A major challenge for the development of modern cars is
that these functions are highly dependent on each other. In particular, many
functions for driving assistance or automated driving are highly sensitive
to the operational state of classical driving functions like brake or steering
control. To identify and control these functional dependencies and feature
interactions early in development, different structural views on the archi-
tecture of cars are used. An overview of the different levels of architectural
models established in the automotive industry for the development of cars is
provided by [Bro03] and shown in figure 2.1.
The usage of the presented architectural views is organized alongside

the V-Model, which is widely adopted in the automotive industry. One of
the main design activities relevant for the architectural views discussed in
this section is the System Architecture Design which aims to describe the
vehicle as a composition of hardware and software components. In addition
to that, the activities for Hardware Design as well as Software Design focus
onto the specification of individual components contained in the hardware-
and software architecture. In figure 2.2, the activities of the V-Model are
highlighted which are relevant for the architectural views described in this
sections and studied in this thesis.

On the highest level, the software based functions are derived from func-
tional and non-functional requirements. The main purpose of this hierarchy
is to describe the software-based functionality implemented in the car to
the user which, according to Broy, not only contains the driver but also
maintenance and production staff and other individuals potentially inter-
acting with the car [Bro03]. This level of architectural view provides an
Usage point of view by focusing onto the human-machine interface and is
structured in a hierarchical manner. Higher level functions are brought down

2.1 | Model Driven Development 29

Figure 2.1: Architectural Views on Automotive Systems [Bro03]

into interconnected sub-functions.
Based on the functional hierarchy, the system design is derived in its logical

architecture. At this level, the car is already decomposed into a distributed
system of interacting components and sub-functions. One of the main goals
of this architectural level is to describe the observable behavior on a software-
structure level based on feature and function interaction while keeping each
component and sub-function as independent from its implementation as
possible. In recent work, service-oriented architectural concepts are used at
this architectural level to decompose the functional hierarchy into services
[GKJ16], [BFL08], [WZM11].
At the cluster level, functional components of the logical architecture are

grouped to form coherent functional clusters. The main goal of this clustering
is to provide an intermediate step between the implementation (indepen-

30 2 | Theoretical and Technical Background

dent from the hardware design level and the partitioning of functionality
onto different ECUs) and the highly implementation-dependent software
and hardware architecture. The high-level software architecture is directly
derived from the cluster-level view and its logical components. Furthermore,
the software architecture describes the structuring of the operating system
including the required hardware drivers and communication stacks as well
as the scheduling of tasks.

In contrast to the software architecture, the decomposition of a vehicle in a
set of ECUs, sensors and actuators are described by the hardware architecture.
In addition, the interaction of hardware components is specified by the
hardware architecture in terms of the bus systems used for interconnecting
each hardware component as well as gateways used for communication. The
hardware architecture plays an important role in the development of cars, as
most hardware components specified within the hardware architecture are
developed by suppliers. Thus, a large portion of the development of hardware
and software is outsourced. As a consequence, the requirements specification
used for the outsourced development of a certain hardware component is a
composition of the logical architecture describing the software functionality
as well as the hardware architecture describing the communication and
other hardware related requirements.
The outsourced development of most vehicle ECUs plus their software-

based functionalities has an additional impact on the test process. As already
stated, a test strategy used to verify the software-based functions of a vehi-
cle puts emphasis on integration testing to ensure that the set of features
developed by different teams located in different companies do interact as
specified. However, due to the size of modern vehicles containing hundreds
of ECUs, sensors and actuators implementing several hundred features, a
well founded test selection and prioritization approach is required which is
one of the main subjects of study in this thesis.

2.1 | Model Driven Development 31

Figure 2.2: System- and Software Design relevant Activities of V-Model

2.2 System Integration Testing

In order to provide the foundation for the introduction of a Coupling based
System Integration Testing process in section 5 we present existing work re-
garding system integration testing as practiced in the automotive industry. In
theory, a test strategy used for integration testing prescribes how to verify the
interplay effects and functional dependencies among multiple components
and which test cases to prioritize to efficiently assure that every compo-
nent satisfies the correct semantics of shared information [Int11][Int13]. In
[NT08], Naik provides a general overview of the different aspects of System
Integration Testing. However, in this section we revisit the state of the prac-
tice for integration testing of an automotive subsystem and provide related
work for each covered aspect of the integration testing process.

In the automotive industry, integration testing is split into multiple stages
as a modern vehicle consists of over 200 interconnected electronic control
units each of it executing a component based software system on its own.
After software unit testing and software integration testing, each ECU is
tested individually using stand-alone ECU test benches as part of the software
and hardware integration testing. The next intermediate step of integration

32 2 | Theoretical and Technical Background

towards final vehicle testing involves multiple ECUs which are put together
to form a coherent subsystem of the vehicle [SBH15]. The set of ECUs
is assembled according to functional domains which are derived from the
system architecture definition as described in section 2.1. In automotive
industry, this step is called system integration testing and its goal is to
verify the interactions of multiple ECUs during execution of a higher-order
functionality.

In [HSS+13], Heidrich et. al. provide a classification model for hardware-
in-the-loop (HiL) test benches commonly used for testing of such automotive
subsystems starting from single stand-alone ECU test benches and ranging
up to the complete integrated vehicle. The proposed model captures the
Object Level, Integration Level and the Connection Level of a HiL test bench.
The first Object Level describes the system under test which can either be
an ECU, a certain Hardware Unit or the complete vehicle. The second Inte-
gration Level describes the degree of integration being subject of the testing.
This can range from a single object to multiple functionally dependent or
independent objects. The third Connection Level however describes the
degree of interconnection of the HiL test bench ranging from a monolithic
unit executing all test cases to a distributed HiL system where tests are
executed from multiple units which are either remotely or directly connected
to each other. In context of the architectural models described in section 2.1,
these three aspects of a test-bench describe to which degree the individual
parts of the vehicle can be tested on a certain test-bench. Consequently the
Object Level describes which part of the architecture is covered by the test
bench while the Integration Level captures which part of the architecture is
present by its target implementation and which parts are simulated using
mock-ups and abstracted behavior models. In figure 2.3, the classification
model is shown. The HiL test benches typically used for system integration
testing of automotive subsystems are highlighted within the classification
model. These types of test benches are commonly used to conduct the test
approach presented in this work.

In [NT08], Naik and Tripathy provide an overview of generic integration
testing techniques commonly used also in non-automotive software related

2.2 | System Integration Testing 33

Figure 2.3: Topological classification of HIL test platforms commonly used
in automotive industry [HSS+13]

integration testing. These are namely Incremental, Top Down/Bottom
Up, Sandwich and Big bang integration testing and describe the step-wise
integration of components until the desired composition of components is
achieved. In the context of system integration testing of a vehicles subsystem,
such step-wise integration approaches are applied as well. During the early
stages of a vehicles series development project, the software for some ECUs
contained in the subsystem under test become available later in time than
others. In order to start system integration testing in such early states of
development, abstract behavior models are used to stub ECUs for which no
software is available or which don’t fulfill the software maturity required for
integration testing. Due to the fact that the ECUs contained in an automotive
subsystem are arranged in a non-hierarchical system structure, the step-
wise replacement of behavior models with the target ECU and its software
functionality is done in an incrementalmanner during the different phases of
development. Recent work exists covering the use of continuous integration

34 2 | Theoretical and Technical Background

testing techniques for the development of vehicles. In a work presented by
Boyang et. al.[DAM+21], a test framework is provided which describes a
continuous integration testing approach ranging from SIL based tests up to
the target ECU as the system under test. However, such approaches aremostly
considered for HiL test benches which only cover a single ECU due to the fact
that ECUs and their software are often developed by individual suppliers.
Including multiple ECUs in an integration testing approach therefore comes
which the challenge of introducing a common integration testing framework
for multiple suppliers.

As described in section 2.1, each ECU represents a component-based soft-
ware system containing hundreds of software modules. In general, testing
of an ECU involves software unit, software composition, software integra-
tion and isolated ECU testing [Int11]. The motivation for integrating ECUs
which are mostly developed and tested by different supplier companies into
a subsystem of the vehicle is to assure a stable subsystem in a controlled
environment. Consequently this assures that the subsystem can safely be
tested in its actual environment during vehicle testing which is important for
safety relevant software based functions like the steering and braking func-
tions implemented by the chassis control system. In practice, test cases used
for system integration testing of an automotive subsystem can be grouped
according to the scope of testing or the subject of verification. The following
scopes of testing are commonly used for system integration testing in the
automotive industry:

• Interface Integrity An important part of system integration testing is
the verification of outgoing and incoming message formats in order
to find interface errors. For this, internal communication between
two ECUs contained in the subsystem under test is considered as well
as external communication to systems not contained in the subsys-
tem under test. In order to verify external communication, the test
bench simulates the external system using an environmental behavior
model which contains a set of stubs for each ECU not contained in
the subsystem under test. In detail, communication is checked for the

2.2 | System Integration Testing 35

number and order of parameters, their size and data type as well as
their representation/semantic.

• End-to-End Protection In automotive software, which implements
the AUTOSAR standard for software design, safety critical communica-
tion is typically equipped with end-to-end communication protection
mechanisms [AUTa]. Beside others, these mechanisms include alive-
counters which are used to signal the correct functioning of the sending
unit to all receivers as well as cyclic redundancy check used for message-
level integrity. In addition, modern vehicles include a message-level
encryption protecting the inter-ECU communication against manipula-
tion. The correct functioning of these mechanisms is verified during
system integration testing by simulating errors and checking for the
correct detection in the right amount of time.

• Function Verification Software based functions which heavily rely on
ECU interactions are included in system integration testing to ensure
their correct functioning prior to vehicle testing. The selection of
functions for the verification during system integration testing is done
based on experience from past test phases.

• System Endurance An automotive subsystem is expected to stay up for
longer periods of time without showing issues. Important endurance
tests performed during system integration include continuous star-
tup/shutdown testing as the order to which ECUs are shutting down
is specified based on dependencies and timing constraints. In addition
there are also vehicle level test scenarios executed continuously over a
longer period of time like driving maneuvers.

36 2 | Theoretical and Technical Background

An additional aspect of integration testing are the methods used for test
design and implementation. During system integration testing of an auto-
motive system, test design, implementation and selection is commonly done
based on experience from past series development projects. For this, test
data is analyzed regarding groups of similar or reoccurring defects which are
then used to guide the implementation of new test cases and the planning of
their execution during the different test phases. For the integration testing
of an automotive system, such experience based test strategies have proven
effective due to the high reuse of ECUs and software among different vehicle
models and vehicle generations as well as their high similarity in system and
software architecture. However, due to the growing number of newly added
software based functions to modern vehicles, the change in system design
and architecture as well as its implementation between two consecutive
generations is becoming significant. This increasing development progress
causes the experience from past projects to be not fully applicable anymore.
In [SN13], Sobotka and Novák also addresses the need for test design

and implementation which directly aims at the failure prone aspects of
the system under test. In addition, they state that the commonly used
method for test design and implementation is labor intensive and error
prone due to the required manual steps. Caused by the fact that most
automotive subsystems are distributed reactive real-time systems, Sobotka
proposes the introduction of a formal specification of the system under test
covering the systems architecture and the interaction behavior of individual
components. Furthermore, such formalism should also cover aspects like
time dependencies between different components, multiple time domains
and parallelism as these are the main aspects of the target environment of
automotive subsystems. Based on formal descriptions of the system under
test, Sobotka and Novák then demonstrates the introduction of automated
test-case generations based on an interlinked tool chain.
The need for a formal specification of component interaction related be-

havior is also pointed out by Shashank et al.in a systematic literature survey
of integration testing [SCK10]. In their work, Shashank et al.categorized ex-
isting work about integration testing according to the used testing technique.

2.2 | System Integration Testing 37

They found that most existing work focuses on formal models like UML based
models, Contract based Testing or Component Testing Model which goal is to
specify component interaction. Furthermore, Shashank et al.pointed out
that in the absence of a formal approach, scenario based testing techniques
are discussed like State Machine based Testing or Feedback-Random Testing.
In addition to the applied testing technique, Shashank et. al.also grouped
the existing work according to the addressed key challenges. They found
that similar to the challenges addressed in this work, most existing work
about integration testing of component based systems is limited to issues
like Lack of Source code as well as Difficulty in identifying the dependencies.

In summary, much work exist studying the problems faced in the practice
of integrating and testing automotive systems. However, there is a need for
formal specifications of the aspects relevant specifically for system integration
testing of black-box components. The work presented in this chapter in
combination to the architectural models described in section 2.1 serves as
the theoretical context to study aspects relevant for system integration testing
in section 4 as well as the formalization of a systematic system integration
testing process in section 5.

2.3 Description of the Studied System

As alreadymentioned in section 2.1 the overall set of software based functions
implemented by a car is structured in functional hierarchies and software
clusters. To further support the development of a car, this structure is
carried over through all level of architectural views discussed to this point.
For the studies presented in this work, we focus onto the chassis control
subsystem of a vehicle which is the result of grouping components within the
hardware architecture according to the functional domain of chassis control
functions. The chassis control subsystem mainly implements distributed
software functions for electronic stability control, adaptive damping control
and rear-wheel steering.
In order to introduce and describe the chassis control system studied in

38 2 | Theoretical and Technical Background

Figure 2.4: Illustration of ECUs used in Chassis Control Subsystem.

this thesis, there are two architectural views provided. First, the hardware
architecture which describes the structure of the chassis control system
in terms of ECUs, sensors and actuators. An overview of the hardware
architecture is shown in figure 2.4 alongside a short description of each
component in table 2.1. For simplicity reasons, it is assumed that the inter-
ECU communication takes place on a single physical communication bus.
Because the chassis control system is a subsystem of a vehicle, there is
additional communication between chassis control related ECUs and other
ECUs of the vehicle. In the context of this work, dependencies of one chassis
control related ECU to the rest of the vehicle are taken into account as
coupling to the environment which will play a major role in measuring the
coupling of components and interfaces in section 4.4.
As each ECU represents a component-based software system in its own

right, the second architectural level relevant to describe the studied system
is the logical architecture. As described in section 2.1 the logical architecture
provides the specification of observable interaction behavior implemented by
different software component partitioned on different ecus. The list of ECU
interactions in terms of data flow specified as part of interface specifications
is provided in table 4.4. The set of ECUs contained in the chassis control
system combined with the amount of interfaces implemented by each ECU
will later in this thesis be used to locate failures found during its development
in section 3.

2.3 | Description of the Studied System 39

Table 2.1: ECUs contained in the case system

ECU Description

HSR Rear-Wheel Steering Controller
VDP Vertical Dynamic Controller
emARS_ha Anti-Roll System Controller (rear axle)
emARS_va Anti-Roll System Controller (front axle)
GSD Limited-Slip Differential Controller
LMV Longitudinal Torque Distribution Controller
DSC Brake Control System
EPS Electronic Power Steering Controller

2.4 Existing Coupling Measures

Coupling includes many aspects which need to be taken into account when
defining a measurement. In [RNS20], Rizwan provides a theoretical eval-
uation of the aspects relevant in existing coupling measures as they are
defined in literature. However, in this section we focus on coupling measures
applicable for distributed component based software system containing black
box software as these are typically present in the development of modern
vehicles. Therefore, this section provides the theoretical foundation of the
coupling measures which have been considered for the study provided in
section 4. However, the selection of measures is provided in section 4.3.
In section 2.4.1, we introduce basic data flow based coupling measures

which mainly cover the amount of shared data communicated between two
coupled components. We then introduce a dependency based measurement
of coupling which covers the amount of coupling pairs existing for a certain
component of the system in section 2.4.2. Finally, we introduce information
theory based measurement of coupling which aims to combine both the
amount of data included in a coupling as well as the amount of coupling
present for a certain component.

40 2 | Theoretical and Technical Background

2.4.1 Data Flow Analysis

Data flow analysis is a common approach for identifying dependencies in a
structured software design [UY93] [IS06]. When utilizing a system’s inner
connectivity in terms of data flow, coupling analysis results in a directed
graph in which each edge represents a sender-receiver relation for a certain
piece of information communicated between two software modules.

Abdellatief[AMS+18] defines Interface Coupling (IC) within the context
of data flow analysis in equation 2.1 as the number of out-flowing data (OF)
over all operations (p) of an interface multiplied by the number of receiving
components n. This definition captures the effect of afferent coupling which
exists for any module in the system under test if its functions are used by
other modules. Abdellatief further assumes that a large number of afferently
coupled components result in more required context-related information
to test and maintain a software module. This assumption also serves as
one of the key aspects of our proposition for fault-proneness caused by
coupling in the research design of the study provided in section 4.2. At the
component level, Component Coupling (CC) is defined as the sum of all
interface coupling factors of all interfaces implemented by that component,
i.e. CC =
∑n

i=1 ICi. Similarly the component-based system coupling CBSC
is defined as the sum of all component coupling factors for each component
contained in the system, i.e. CBSC =

∑n
i=1 CCi .

IC = n ∗
p
∑

i=1

OFi (2.1)

In [HK81] and [KH81], Henry and Kafura provide a brief discussion of
information flow based module complexity. Similarly, Kumari provides an
empirical and theoretical analysis of information flow based complexity
[KU11]. The measure introduced in his work is shown in equation 2.2.
Similar definitions are provided by Lakshmi [NH07] and Kharb [KS08].
In contrast to coupling measures like IC , CC and CBSC , information flow
measures focus on a component’s inner dependencies among input and

2.4 | Existing Coupling Measures 41

output parameters as an additional aspect. A module with a high value for
information flow measurement indicates that it is strongly connected to its
environment thus indicating a high coupling.

I I F = (Fan− in ∗ Fan− out)2 (2.2)

The Interface Information Flow (I I F) as discussed by Lakshmi [NH07]
and Kharb [KS08] is calculated based on the squared product of the number
of data flowing into the component (Fan − in) and the number of data
flowing out of the component (Fan− out). In this definition, multiplying
the number of in-flows and out-flows represents all possible combinations of
functional dependencies between input and output parameters. Squaring
that number represents the assumption that complexity may not scale with
the number of parameters in a linear way. For component and system
level complexity, the interface information flow I I F values are accumulated
to the Component Information Flow C I F =

∑n
i=1 I I Fi and further to the

component-based software information flow CBSI F =
∑n

i=1 I I Fi, which is
similar to the definition of coupling.

2.4.2 Dependency Analysis

While data flow analysis is designed to measure coupling based on data
shared between multiple software modules, dependency analysis measures
are designed to be applicable to any type of dependency discussed in section
4.3. In [Li03],[SGK09], [GB08] and[SKB11], an approach to manage de-
pendencies in a component-based system using a matrix model is proposed
which suggests that any dependency graph of a component-based system can
be represented as a dependency matrix. In such a matrix, each component
is represented by a column and a row. If a component ci is dependent on
another component c j the value at the position i j within the matrix equals
to 1 as defined in equation 2.4. This matrix representation of component
interdependencies can be applied to both directed and undirected depen-

42 2 | Theoretical and Technical Background

dencies. Given such a matrix representation of the system, Li defines the
Dependency Coefficient (DC) for a particular component as the sum of its
row and column values as shown in equation 2.5. Because all values per
row and column are added up, in- and outgoing dependencies are weighted
equally. The dependency coefficient of a component captures its coupling to
the rest of the system, as it scales with the number of dependent components.
However, besides being applicable for directed and undirected dependencies,
the dependency coefficient differs further from IC and CC because it does
not scale with multiple dependencies between the same two components.

DM =











d11 d12 ... d1n

d21 d22 ... d2n

...

dn1 dn2 ... dnn











(2.3)

di j =

(

1 if ci → c j

0, otherwise
(2.4)

DC(Ck) =
n
∑

j=1

[dk j] +
n
∑

j=1

[d jk]− 2[dkk] (2.5)

2.4.3 Information Entropy

In contrast to counting components, connections and interface compositions,
Allen and Anan studied an approach to measure coupling in component-
based systems based on information theory [AK99][All02][AKC01][ASR09].
According to Allen, a software system can be represented as a graph in
different ways to highlight different aspects of its design[All02]. Common
examples of such design abstractions for object-oriented designs are given in
a framework proposed by Briand et. al., which is used to measure coupling

2.4 | Existing Coupling Measures 43

Figure 2.5: Undirected graph abstraction of an example system [All02]

and cohesion based on class inheritance, method invocation or class-attribute
references[BDW99][BDW97]. In [All02], Allen states that a more sophis-
ticated measurement than just the count of features of an artifact will be
more useful in determining coupling and cohesion.
In his work, Allen provides an example of a modular system which is

shown in figure 2.5 in a graphical representation as well as in a table listing
nodes and edges. The system contains 14 nodes, which are partitioned
into four modules and connected by 17 edges. To apply information theory
based measures, an additional unpartitioned node is added to the graph,
which represents the system’s potential dependency to its environment. In
the system’s node × ed ges table, each node is represented as a row while
edges are represented as columns. Each cell therefore indicates if the node
is an endpoint of that edge. As a consequence, all cells of a row form a
binary-pattern depicting the design decisions of the node’s coupling to the
rest of the system. Pl(i) represents the probability mass function based on
the proportion of distinct row patterns.

44 2 | Theoretical and Technical Background

Table 2.2: Working graph abstractions [All02]

Symbol Name Definition

S System Graph abstraction of the software
system

S# Edges-only graph Edges in S and end points
Si Node subgraph Nodes in S# and edges incident to

node i
MS Modular system graph S partitioned into modules
mk module k Nodes in a module and their inci-

dent edges
MS∗ Intermodule edges graph Nodes in S and intermodule edges
MS◦ Intramodule edges graph Nodes in S and intramodule edges

Given the graphical and tabular representation of a system graph S, Allen
introduces a set of operations to create working copies of the system graph.
A subset of the definitions used in this work are listed in table 2.2. An
intermodule edge graph MS∗ contains all nodes and modules of S but only
edges with endpoints in different modules. An intramodule edge graph MS◦

complementary contains all nodes and modules of S, but only edges with
endpoints in the same module. The intermodule edge graph of the example
system S is shown in figure 2.6. An edges-only graph S# and node subgraph
Si are generated as described in table 2.2.
In information theory, coupling and complexity are measured based on

the entropy of the distribution of row patterns H(S) [Gra07]. Applied to the
original system graph, the entropy depicts the average information per node
which can be multiplied by the number of nodes in the system to get the
overall amount of information Size(S). To measure the size of a system, it is
important to exclude the information added by dependencies to the system’s
environment, which is denoted in the definition of Size(S) as − log pl(0). In
addition to the system-level size measure, size can also be calculated for
a module as well as for a node of the system. While module size can be
calculated as defined in table 2.3, the size of a node requires the calculation

2.4 | Existing Coupling Measures 45

Figure 2.6: Intermodule edge graph MS∗ [All02]

of the node’s subgraph Si, which contains all nodes and modules of the
system, but only edges which are connected to the node i. The size of a node
subgraph provides the amount of information the node contributes to the
system. Understanding the usefulness of the size measure in information
theory becomes easier if it is calculated based on the system’s data flow graph
as described in section 2.4.1. Entropy within the system H(S) represents the
average amount of data shared by a module, while the system’s size Size(S)
represents the overall amount of data shared between all modules of the
system.
Furthermore, the system’s complexity is defined as the excess entropy of

the sum of information of each node in relation to the overall information
of the system, which can be equal or greater:

∑n
i=0 H(Si) >= H(S#). This

phenomenon is extended to the calculation of complexity for a given system
graph S as shown in table 2.3. According to Allen, excess entropy represents

46 2 | Theoretical and Technical Background

Table 2.3: System- and Module-level measures [All02]

Entropy based coupling measures

1 H(S) =
∑ns

i=1 pl(− log pl)
2 Size(S) = (n+ 1)H(S)− (− log pl(0))
3 Size(ml |S) =

∑

i∈mk
(− log pl(i))

4 Complex i t y(S) =
∑n

i=1 Size(Si)− Size(S#)
5 Complex i t y(mk|S) =

∑

i∈mk
Size(Si)− Size(mk|S#)

6 Coupling(MS) = Complex i t y(MS∗)

the average information in relationships, which indicates the strength of
coupling for each node.
Coupling of a system graph is calculated based on the complexity of the

intermodule relationships and therefore based on the amount of information
represented by edges with nodes in different modules. To calculate coupling,
the complexity calculation is applied to the system’s intermodule edge graph.
Due to the fact that the system graph used in this approach is undirected,
the coupling measure is not affected by the direction of relationships, which
is different to other coupling measures discussed in this work.
The results of the presented measures of size, complexity and coupling

for the example system graph provided by Allen are listed in table 2.4. Even
though the goal of Allen’s work is to contribute to the design phase of a
system by providing a comprehensive software quality model, we believe
that such a model can be used to predict failure prone component interaction
based on the assumption in chapter 1.3 that due to cognitive overloading,
not all information of a software component’s context is considered during
its development or evolution.
In summary, the information theory approach of measuring coupling in

a component based system is built up around information entropy and the
amount of information added to the interconnected system by individual
modules. This approach has been selected for the studies provided in sec-
tion 4 due to the fact that it is directly applicable to the architectural views
commonly used in the automotive industry and described in section 2.1.

2.4 | Existing Coupling Measures 47

Table 2.4: Resulting measures for example graph [All02]

Scope Size Complexity Coupling

S 53.7 bits 170.1 bits 50.2 bits
m1|S 3.9 bits 15.8 bits 12.9 bits
m2|S 11.7 bits 38.0 bits 12.6 bits
m3|S 19.5 bits 62.6 bits 17.0 bits
m4|S 18.5 bits 53.8 bits 7.7 bits

This applicability is mainly caused by the fact that the definition of a node
and module is independent from the programming paradigm used in de-
velopment of the studied system. As a consequence, coupling based on
information entropy can be calculated for the functional architecture or
hardware architecture in addition to just the software architecture.

48 2 | Theoretical and Technical Background

Ch
ap

te
r 3

Data Flow based Test
Coverage

The first contribution chapter comprises our studies in the field of measuring
test coverage during integration testing of black-box components using data
flow based behavior observation. We introduce a data flow classification
scheme which allows the identification of data flow usage within existing
test cases and failure reports in section 3.3. Knowing which data flow in a
system plays a dedicated role in the execution of test cases or the occurrence
of a failure at run-time enables us to determine the data flow coverage of
any given test set which represents the foundation of the coupling based
system integration testing process proposed in section 5. Given the data
flow classification, we further discus a concept of identifying degrees of
similarity in the usage of data flow when comparing different test cases and
failures in section 3.4. Comparing the usage of data flow in a test case to the
usage in failures allows us to evaluate the usefulness of data flow based test
coverage measurement in section 3.6. In order to complete the definition of a
data flow based test coverage measurement approach for system integration

49

testing we also define data flow based coverage criteria in section 3.5. Lastly,
we evaluated the suggested approach in a real world development project
and provided a step-by-step example of the test gap identification using the
introduced classification scheme and coverage criteria in section 3.6. The
work presented in this chapter extends the following publications and puts
them into the perspective of this work:

D. Hellhake, T. Schmid, and S. Wagner. “Using Data Flow-Based Coverage
Criteria for Black-Box Integration Testing of Distributed Software Systems.”
In: 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). Apr. 2019, pp. 420–429

D. Hellhake and S. Wagner. Kommunikationsfluss-orientiertes Testen von
Softwarefunktionen im Steuergeräteverbund. Tech. rep. 7. FACHKONFERENZ
AUTOTEST, 2018. url: https://fkfs-veranstaltungen.de/fileadmin/
4_AutoTest/pdf/AutoTest_2018/

3.1 Related Work

The topic of integration testing of component-based software systems has
already been studied in previous work [SCK10][Spi95] and more recently
in [KE]. However, most of the related work proposes design-based meth-
ods which rely on software architecture descriptions and structured design
diagrams. As this work is heavily inspired by code-based methods like inter-
procedural data-flow testing [FW88][HS91][MCT08] and their extension to
coupling-based methods [MS12] this section provides a recap of the topics
closely related to this work in order to support the identification of the
research gap in section 3.2. The provided work can be grouped according
to the identification of component interactions either based on the systems
design or based on the systems dynamic behavior.
In [AO00] and [WCO03] the interaction of components of a software

system is described using UML collaboration diagrams. The authors present
an approach for automatically generating test input data based on these UML
collaboration diagrams to check interaction-related behavior for potential

50 3 | Data Flow based Test Coverage

https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/
https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/

Figure 3.1: Quality Model for Observation schemes [ZH01]

verification during integration testing. These diagrams are created based on
the high-level design notations of the system. Even though the approach is
presented using an object-oriented software system, describing the composed
behavior of multiple components using interaction sequences is very similar
to the black-box integration problem subject of this study. The paper also
clarifies the advantage of using high-level design notations of the system
under test as they are available in early stages of a development project
which supports test implementation and planning.

In a work provided by Zhu et. al., an observation theory for component-
based software development is formalized and applied to white-box integra-
tion testing[ZH01]. The observation theory introduces the set of observable
behaviors of a software system and an observation scheme which associates
a certain test suite to a collection of phenomena which are observed by
executing the test suite on the software system. Zhu et. al. further provide a
brief definition of properties which have to be satisfied for any well-defined
observation scheme. In particular, these properties and the relation among
each other shown in figure 3.1 do form a quality model for observation
schemes in terms of its fault detection abilities. The contributions provided
by Zhu et. al. did heavily inspire the definition of the data flow based classi-
fication scheme in section 3.3. Furthermore, the definition of a phenomenon
alongside different phases of the system’s dynamic behavior are directly
derived from the presented observation theory.

3.1 | Related Work 51

An approach for learning the behavior model of a component for integra-
tion testing is provided by Elsafi et. al.[EJA14] who also identified the lack of
available formal methods for performing integration testing of components
for which the source code is not available. In their work, Elsafi et. al.refine
the approach of actively learning the behavioral structure of components
which has been introduced by Shahbaz and Groß [SG14]. In its essence
the proposed approach records a component’s behavior in terms of a set of
output parameters generated by the component based on a given set of input
parameters. These transitions are captured in an observation table during
execution of the components either during isolated component tests or as
part of the integrated system. Based on a complete or partially complete
observation table a Mealy machine is defined formally which consists of an
observed component-state, the set of executed input and output parameter
and the functions any observed input has on the component-state as well
as the generated output. These approximated behavior models can then
be used for integration testing to identify equivalence classes for the input
parameters of each component in the system. In the context of this thesis,
the presented approach is applicable for the reduction of the overall test
space spanned by the data flow based component interaction. However,
the applicability and effectiveness in reducing the test space needs to be
evaluated in an additional study as it is out of scope for this thesis.

Lee et. al. made a comparison of failure symptoms, such as stack traces and
symptom strings, as a strategy for identifying recurrences of failures[LIM94].
A stack trace being the history of procedure calls at the time the failure
occurred represents the chronological sequence of data flowwhile a symptom
string identifies the location at which the failure has been detected. The
symptoms of failures are generalized into data and code-oriented symptoms.
The theory of the work provided by Lee is very similar to the observation
theory discussed by Zhu and He as the occurrence of a failure is an instance
of a phenomenon observable for the system’s dynamic behavior. Lee further
discusses cluster of failure symptoms as shown in figure 3.2 which are
defined along the similarity of the symptoms of multiple failures. For this he
provides a definition of complete matching, partially matching and weighted

52 3 | Data Flow based Test Coverage

Figure 3.2: Failure symptoms and symptom cluster [LIM94]

matching in order to identify the strength of similarity of the symptoms of
two failures when compared to each other. This definition inspired the data
flow similarity definition provided in section 3.4 and is used for evaluation
of the data flow based approach of test coverage analysis in this chapter.
Jin et. al. formalized a coupling measure which classifies the impact a

certain data flow has upon interacting components[JO96][JO98]. Similar
to the proposition provided in section 4.2, Jin et. al. states that faults
typically occur at highly coupled components during integration testing.
Based on that he adopts the definition of modularity along the term cohesion
and coupling made by [YC79] to define a coupling model applicable for
integration testing. In its essence, coupling is classified into three categories
of inter-component data flow which do form an unordered aggregation of
the twelve types of coupling defined by Offutt et al. [OHK93][Pag01]. To
identify data flow in a given program, Jin uses the basic definition of data
flow analysis from White [Whi87]. By analysing the programs control flow
graph for definitions of variables and their usage in an either non-local way
or as part of a inter-component method-invocation the overall space of data
flow based component interactions is identified. Given the typification of

3.1 | Related Work 53

inter-component data flow and its identification based on the control flow
graph of the system under test, Lee provides the following basic coverage
criteria which are similar to generic data flow based path- and decision
coverage analysis.

• Parameter coupling: Refers to the data flow involved in direct inter-
component method invocation. Covers scalar data coupling, stamp data
coupling, scalar control coupling, scalar data/control coupling, stamp
data/control coupling and tramp coupling.

• Shared data coupling: Refers to indirect data flow involved in non-
local shared parameter. Covers non-local coupling and global coupling.

• External device coupling: Refers to the use of shared resources. Cov-
ers external coupling

• Call coupling: Requires a test set which covers all paths involving
inter-component method invocations.

• All-coupling-defs: Requires that for all definitions of shared variables
at least one path is covered including at least one shared data use.

• All-coupling-uses: Requires that for all definitions of shared variables
at least one path is covered to all shared data uses.

• All-coupling-path: Requires that for all definitions of shared variables
all paths are covered to all shared data uses.

An empirical evaluation of the theory of data flow based test coverage
is provided by Frankl et. al.[FI98]. Frankl et. al. presents the results of
an experiment comparing the effectiveness of an all-uses data flow, which
is equivalent to the all-coupling-path criterion, testing criterion to decision
coverage (branch testing) and random testing without any adequacy crite-
rion. Multiple large C programs were used all of which containing a fault
introduced during the development process. He found that for all programs,
test sets with a high level of data flow coverage were significantly more likely
to detect the fault than random test sets of the same size. Furthermore he
found that even for test sets with a high level of coverage, the likelihood

54 3 | Data Flow based Test Coverage

of detecting the fault was still limited. Even though this work does not
utilize code-based coverage measures, the coverage criteria presented in this
work are similar to the all-uses criteria. In addition, this work also utilizes
the measure of test effectiveness to decide whether using data flow-based
coverage criteria outweighs the costs.
A quality model for test criterion is given by Frankl et. al.[FW88] along-

side different applicability properties. The applicability property for a test
criterion requires that for every program there is a test set which fulfills the
criterion. The author states that some test criteria such as path coverage may
not satisfy the applicability property for programs which contain loops and
therefore potentially infinitely many paths. Furthermore, it is stated that for
many test criteria the existence of a test set which fulfills the criterion for a
given program is undecidable. However, the proposed data flow test ade-
quacy criterion satisfies the adequacy criterion by focusing only on definition
use associations which are executable. Furthermore, the distinction between
computational-use and predicate-use of defined variables puts emphasis on
the impact a certain variable has on the execution of a program.
In summary, the provided related work provides an empirically studied

foundation for the concepts of data flow classification as well as for data flow
based behavior observation. However, the discussed approaches for data
flow classification like the one proposed by Offutt et al.[OHK93][Pag01]
require a white box perspective onto the system under test in order to be fully
applicable. This is also true for the behavior observation model proposed by
Zhu et. al.[ZH01]. In this section, we therefore adopt the provided concepts
for behavior observation in white box software systems to define data flow
classification scheme in section 3.3 applicable for systems containing black
box components. To evaluate our proposed approach, we introduce the
concept of data flow similarity in section 3.4. Lastly, we provide a definition
of coverage criteria in section 3.5.

3.1 | Related Work 55

3.2 Research Design

During integration testing of a component based system with sufficient com-
plexity, not the entire domain of component interactions can exhaustively
be tested. To make integration testing a manageable process, testing must
be guided by the system’s design and therefore by the modularization and
composition of components. Many systematic approaches exist for testing
the interaction and interplay behavior of a component-based software sys-
tem. However, most of the mentioned approaches rely on the availability
of information about the implementation and code structure of each com-
ponent. Because an automotive software system consists mostly of ECUs
whose hardware and software development is outsourced, such information
are typically not available for the process of black-box system integration
testing.
In testing of large-scale software systems, testers can only observe and

verify certain aspects of the system’s dynamic behavior. In the previous
section we presented related work which is concerned with observation the-
ory in testing. However, an adoption of these white-box testing approaches
to integration testing of black box components is needed. This includes
the formalization of axioms for observability, repeatability, consistency and
completeness of an observation scheme as well as the behavior model of the
system and the definition of applicable coverage criteria.

In this study, we aim to close this gap of inter-component behavior obser-
vation in a distributed software system containing black-box components.
As a baseline for the research question we provide the proposition that data
flow is a significant indicator for component interactions in a component
based system containing black-box components. The hypotheses are derived
from the research question as provided below in accordance to Runeson and
Höst [RH08][RHRR12]. The overall structure of the case study design is
summarized in figure 3.3.

• RQ: How effective is inter-component based data-flow classification
in capturing the system’s dynamic behavior relevant for test coverage

56 3 | Data Flow based Test Coverage

Figure 3.3: Embedded case study design for the study of inter-component
base data-flow according to Runeson [RH08]

analysis and test gap identification?

By focusing on the goal of measuring test coverage and identifying poten-
tial test gaps, we further provide the proposition that aspects of the system’s
dynamic behavior relevant to describe the occurrence of a failure are also rel-
evant to describe the execution of a test case. When mapped to the concept
of data-flow based behavior observation, this means that inter-component
based data-flow addressed during the execution of a test case will also be
relevant for triggering and observing any failure found by that particular
test case. As a consequence, data-flow relevant in the occurrence of a failure
which has not been detected by executing a given set of test cases, is also
not relevant in describing the systems behavior during test execution. This
proposition stems from the assumption that in a distributed reactive real-
time system, each failure as a derivation from the expected behavior can be
triggered based on a defined precondition by applying a specific sequence of
component interaction. Given that proposition, we will answer the research
question in a two-step approach. Based on the definition of the data flow
classification scheme in section 3.3 and the concept of data-flow similarity
between test cases and failure reports, we first measure the similarity in data
flow relevant for test cases and failure reports detected and created during
their execution. In a second step we measure the similarity of test cases and

3.2 | Research Design 57

Table 3.1: Our two hypothesis pairs for measuring the effectiveness of data-
flow classification for test coverage analysis

Alternative hypothesis Null hypothesis

H1a There is a significant simi-
larity in data flow required
to describe the systems dy-
namic behavior during test
case execution and the oc-
currence of a failure found
by that particular test case.

H1n There is no similarity in
data flow required to de-
scribe the systems dynamic
behavior during test case
execution and the occur-
rence of a failure found by
that particular test case.

H2a There is a significant differ-
ence in data flow required
to describe the systems dy-
namic behavior during the
occurrence of failures and
existing test cases if the
failure have not been de-
tected by the test cases.

H2n There is no significant dif-
ference in data flow re-
quired to describe the sys-
tems dynamic behavior
during the occurrence of
failures and existing test
cases if the failure have not
been detected by the test
cases.

failure reports slipped by the test case execution. The hypotheses tested
in this study are derived from the research question and accepted or re-
jected based on the measured data-flow similarities as part of the evaluation
provided in section 3.6. The list of hypotheses is given in table 3.1.

3.3 Data Flow Classification Scheme

In order to provide evaluation data for the hypothesis provided in the previ-
ous section, we briefly introduce a classification scheme in this section which
allows for the identification of relevant data flow in real-world test cases and
failure data.

The overall inter-component communication of the chassis control system
studied in this work has been extracted according to the step-wise approach
described in section 5.1. It consists of 1343 distinct variables which form the

58 3 | Data Flow based Test Coverage

overall universe of observable information of the system. In order to describe
a sequence of component interactions as part of the systems dynamic behavior
in a semi-formal way, we define the term Phenomenon. A phenomenon
consists of as set of chronologically ordered references to shared data which
are required to describe a certain dynamic behavior. Such a description of
the systems behavior is, similar to the definition in [ZH01], partially ordered
by a binary relation x ≤ y which means that the shared data referenced in
phenomenon y subsumes the information referenced in x. Furthermore, the
summation of data flow referenced in a set of phenomena p1 + p2 + ...+ pn

can be expressed by
∑n

i=1 pi .
For this study, a phenomenon either represents a certain test case execution

or a failure occurrence recorded in a failure report. In case of a test case
execution, the phenomenon is referencing those shared data, which are
required to describe the systems behavior during test execution as well as
the expected behavior. The phenomenon of a failure occurrence, however,
contains those shared data which are required to describe the circumstances
under which the fault is triggered to surface as a failure as well as the shared
data required to observe the actual failure behavior as a derivation from the
expected and specified behavior.

To extract the set of shared data from existing test cases and defect data,
we introduce a data flow observation scheme which associates each test case
or failure report with its representative set of relevant data flow. Each of
these associations is further annotated according to the purpose for which
that shared data is referenced. The potential purposes for which shared data
can be used is designed in accordance to the general structure of a test case
specification [Int08][LHL18] and described as follows:

• Precondition: In order to execute a test case or to trigger a failure
to surface, the system under test has to be in a certain state. Such a
precondition is formulated as a set of predicates on shared data for test
cases and failure reports. Within commonly used test case specification
templates, the preconditions are often referred to as initial states of
the system under test. The use of shared data within these predicates

3.3 | Data Flow Classification Scheme 59

is captured by the observation scheme as a precondition-use.

• Stimulation: The test-input or trigger-sequence of a certain fault as a
set of shared data manipulated during the execution of a test case is
captured by the classification scheme as a stimulation-use.

• Verification: Shared data which is observed during the execution of
a test case in order to verify the correct behavior of the system, is
captured by the observation scheme as verification-use. For a failure oc-
currence, the set of verification-use references represents those shared
data on which the failure behavior of the system can be observed.

Applying the observation scheme to fully automated test cases results in
data flow profiles which represent an abstraction of the actual test scripts.
Therefore, the data flow profile of existing test cases can automatically be
generated. Steps required for applying the classification scheme to either
fully automated or manual test cases are provided in section 5.2. The profile
of an example test case is listed in table 3.2 showing the referenced shared
data and involved ECUs. In this test case, the freewheeling protection of the
electronic parking brake is verified.

Precondition: For the test case to execute, the vehicle has to be stationary
with the electronic parking brakes engaged. In addition, the neutral-gear
needs to be selected.
Stimulation: A vehicle speed greater zero is then stimulated during test

execution to simulate a freewheeling situation.
Verification: The expected behavior of the chassis control system ECUs

includes the setup of hydraulic brake pressure to stop the vehicle from
moving. After the vehicle has reached its stationary condition, refastening of
the electronic parking brake is commanded and a gear change from neutral
to parking is communicated to the gearbox controller.

The data flow sequence of this test covers the interaction between the
brake control system, the electronic parking brake and the gearbox controller.
The data flow coverage of this test case is represented as the sum of shared

60 3 | Data Flow based Test Coverage

Table 3.2: Exemplary Data-Flow Profile of a functional Test Case

Data Flow Usage Shared Data Involved ECU

Precondition V_VEHICLE Brake Control System
COND_PBRK Parking Brake
GEAR_SELECT Gear Box Controller

Stimulation V_VEHICLE Brake Control System
Verification V_VEHICLE Brake Control System

HYD_BRK_TRQ Brake Control System
V_VEHICLE Brake Control System
COND_PBRK Parking Brake
REQ_GEAR_SELECT Brake Control System

data referenced for the respective purpose of use w.r.t. the overall flow of
shared data.

In order to extract the data flow of a failure report, it has to be broken down
into the minimum necessary conditions required to reproduce its occurrence.
This is usually done when reproducing the failure occurrence during fault
localization analysis [WGL+16] based on traces which are a mandatory part
of the failure reports. Table 3.3 lists the data flow profile of an example
failure which could have been detected by executing the test case shown in
table 3.2. Due to an early state of maturity, the interaction between brake
control system and the gearbox controller has not been implemented yet.
This led to a missing gear change command after the vehicle had reached
its stationary condition. Because the failure depicted in table 3.3 can be
found by the test case depicted in table 3.2 these two data-flow profiles are
considered associated for the purpose of this study. Comparing the set of
data flow of the failure listed in table 3.3 and the data flow listed for the
example test case listed in table 3.2 results in a similarity which is further
detailed in section 3.4.

3.3 | Data Flow Classification Scheme 61

Table 3.3: Exemplary Data-Flow Profile of a Failure

Data Flow Usage Shared Data Involved ECU

Precondition V_VEHICLE Brake Control System
COND_PBRK Parking Brake

Stimulation V_VEHICLE Brake Control System
Verification REQ_GEAR_SELECT Brake Control System

3.4 Data Flow Similarity

When comparing phenomena of test cases to those created from failures,
similarities in terms of shared data referenced in both phenomena can be
observed. For this work, different types of similarities are introduced and
used for the evaluation of the suggested approach of measuring test coverage
based on the utilization of data flow provided in section 3.6.
The goal of introducing different types of similarities is to capture the

functional dependencies as well as the physical dependencies existing among
multiple component interactions and subsequently among multiple data flow.
An example of such a functional dependency between individual component
interactions can be provided based on the calculation of the vehicle speed
as a shared variable. The vehicle speed is mainly calculated based on the
wheel speed measured by sensors for each individual wheel. Therefore, a
test-case which manipulates the shared date containing the wheel speed
values subsequently stimulates the vehicle speed which may trigger a failure
as a subsequent effect. In addition, an example physical dependency can
also be named for the vehicle speed which, as a shared data, depends on the
longitudinal acceleration as any positive or negative acceleration results in
a change of the vehicle speed over time. To some degree, such subsequent
effects caused by functional or physical dependencies can be compared to the
number of subsequent method calls before the occurrence of a failure in code
coverage analysis. Within the definition of coupling provided in section 4.3,
such subsequent effects are instances of indirect coupling between two or
more components of the system using additional intermediate components.

62 3 | Data Flow based Test Coverage

A subsequent match is therefore identified in case a certain shared data is
referenced in the phenomenon of a failure but not in the phenomenon of
the associated test case if there is a dependency on any of the shared data
of the test case within the same purpose of use.
Match: A match represents a certain element of shared data to be ref-

erenced in the phenomenon of a failure as well as in the phenomenon of
a test case for a given purpose. The amount of matches can be identified
automatically.

Subsequent Match: Since in an automotive system, functional and physical
dependencies between multiple shared data exist, subsequent effects of a
test case execution can trigger a fault to surface as a failure. A subsequent
match represents a certain shared data referenced in the phenomenon of a
failure but not in the phenomenon of the associated test case. The data is
identified as subsequent if there is a dependency on any of the shared data of
the test case within the same executional step. Within this study, subsequent
matches have been identified manually during review of non-matching data
flow references. An automated identification of subsequent effects would
require knowledge of the software structure for each ECU in the subsystem
under test.

No Match: A certain element of shared data referenced in the phenomenon
of a failure but not referenced in the phenomenon of the test case is identified
as not matching if there is no reference to the same shared data and no
functional dependency on any of the referenced shared data in the profile of
the test case.

3.5 Coverage Criteria

The most widely used criteria include basic code-based coverage crite-
ria, such as statement and branch coverage [RUCH99], function coverage
[RUCH01][EMR02], block coverage [DRK04], modified condition/decision
coverage [JHS03][FCX12], method coverage [DRK04], and statically esti-
mated method coverage [ZZH+09][MHZ+12]. Due to the unavailability of

3.5 | Coverage Criteria 63

the code structure for the black-box integration testing process as subject
of this study, traditional data-flow testing criteria as listed in [SWM+17]
are not applicable. However, to address the question of when to stop testing
during system integration we introduce an coverage criterion specifically
designed to focus on data-flow in a distributed black-box software system.
The below defined criteria utilize the information about the purpose to
which a certain shared data is used in an existing test suite to measure if it
is adequately covered.

• Shared-Data-Use: A Shared-Data-Use occurs if, for a shared data d,
at least one test case exists which contains at least one reference to d
for any of the purposes defined in 3.3. This criterion can be used to
identify data flow which is completely untreated in a given test suite.

• Precondition-Data-Use: A Precondition-Data-Use occurs if for a shared
data d, at least one test case exists which contains a reference to d in
a precondition-predicate. This criterion can be used to analyze the
variance within the precondition of a group of coherent test scenarios.

• Stimulation-Data-Use: A Stimulation-Data-Use occurs if, for a shared
data d, at least one test case exists which contains a reference to d
for the purpose of a manipulation. A manipulation of shared data
represents an induced interaction of the respective sending ECU with
all its receiving ECUs. As the goal of integration testing is to verify
such component interactions, this criterion can be used assemble the
set of interactions induced into the system by a given test suite.

• Verification-Data-Use: A Verification-Data-Use use occurs if, for a
shared data d, at least one test case exists which contains a reference
to d for the purpose of behavior verification. Using this criterion,
untested data flow can be revealed.

These test adequacy criteria resemble the basic ones. Given the information
about the purpose of data flow-usage in test suites as defined in section 3.3
there are more criteria to be formalized. In a future study, information about

64 3 | Data Flow based Test Coverage

the type of certain shared data should be used to formalize adequacy criteria,
which address the combinatory within the usage of multiple shared data.

3.6 Evaluation

The goal of the evaluation is to show the effectiveness of data flow based
behavior classification in measuring test coverage and identifying potential
test gaps for black box system integration testing. In this study, the evaluation
is split into two parts as also introduced in section 3.1. First, we study if
the data flow used in test cases is also applied to the failures detected by
that test cases. This will address our first pair of hypothesis. In addition, we
study if data flow required to observe failures which have not been detected
by a set of test cases is also not be covered by any of the existing test cases
which cover our second pair of hypothesis. To investigate this, the approach
of measuring similarity between test cases and failures in terms of data-
flow observation is used as defined in section 3.4. To further highlight the
usefulness of data flow classification for the practice of system integration
testing in the automotive industry, we provide the step-wise identification
of potential test gaps based on the data flow similarities measured in this
study.
For the evaluation we studied test and defect data of a vehicle series

development project covering the system integration test phase of the chassis
control subsystem introduced in section 2.3. The data-flow classification of
test cases and failure reports was performed by a team of test specialists
also involved in analyzing failures found during testing of the chassis control
system. To reduce biases within the classification, it has been ensured
that the same team member does not classify test cases and its associated
failure reports. The overall number of classified test cases and failure reports
are listed in tables 3.4, 3.5 and 3.6 together with the data-flow coverage
measured in contrast to the overall data flow of the system under test. The
selection of test cases and failure reports is described as follows:
Test Cases: We randomly selected 90 test cases for data-flow classification.

3.6 | Evaluation 65

We ensured that each test case has found at least one fault which was fixed
successfully during the course of the project. In addition, for each ECU
contained in the chassis control subsystem the same amount of test cases
was used. The result of the data-flow classification of each test case is shown
in table 3.4.
Detected Failures: By ensuring that each test case has found at least one

fault, the amount of associated failures is assembled by the sum of failure
reports created by the selected test cases during execution. As described in
section 3.2, the set of associated failures represent the control group for this
study as each associated failure should yield a high similarity in terms of
its data flow phenomenon when compared to the test case by which it was
found.
Undetected Failures: According to the research design of this study

provided in section 3.2, faults that slipped by during the system integration-
testing phase are assumed to be the result of potential test gaps within the
existing test cases. Instead of being found by system integration testing
efforts, these faults are either found during system testing using prototype
vehicles or other consecutive testing activities. The amount of failure reports
detected by other testing activities but affecting component interaction
behavior relevant for system integration testing of the system under test are
selected randomly. For each ECU contained in the chassis control subsystem
the same amount of failure reports has been selected. As described in section
3.2, the set of undetected failures is used as the treatment group for this study
as each of the undetected failures should yield a significant low similarity
when comparing its data flow phenomenon to each phenomenon of the
selected test cases.
Comparing the amount of referenced shared data for each purpose to

the resulting data-flow coverage, reveals that shared data is referenced by
multiple test cases and failure reports. In addition, it can be seen that
phenomenon of failures (table 3.5 and 3.6) contain less references to shared
data than phenomenon of test cases (table 3.4). This can be explained based
on the process of fault localization performed after a failure has been detected
during which a failure is broken down to the malfunction of a single ECU

66 3 | Data Flow based Test Coverage

Table 3.4: Results of Shared-Data-Use Coverage of selected Test Cases

Name Precondition Stimulation Verification

Referenced Shared Data 435 282 359

Shared-Data-Use coverage
6,0 %

(81/1343)
5,6 %

(75/1343)
7,1 %

(95/1343)

Table 3.5: Results of Shared-Data-Use Coverage of Failures found by selected
Test Cases

Name Precondition Stimulation Verification

References to Shared Data 90 52 53

Shared-Data-Use coverage
2,4 %

(32/1343)
2,2 %

(29/1343)
2,8 %

(38/1343)

Table 3.6: Results of Shared-Data-Use Coverage of undetected Failures

Name Precondition Stimulation Verification

References to Shared Data 100 60 63

Data-Flow Coverage
2,5 %

(33/1343)
2,8 %

(37/1343)
3,6 %

(49/1343)

that causes the problem. Consequently, test cases used for system integration
testing have a focus onto the integrated system including interaction behavior
of all contained ECUs while failure reports are providing details about a
certain malfunction of a single ECU. It can therefore be assumed that the
data-flow required to describe a certain failure is a subset of the data flow
profile of the test case which leads to its finding. This is also demonstrated
when the referenced shared data for the verification in table 3.3 are compared
to the data-flow listed in table 3.2. Here, just one of the data flows checked
by the test case has led to the detection of a failure.

3.6 | Evaluation 67

3.6.1 Data-Flow Coverage

H1a: There is a significant similarity in data-flow required to describe the
systems dynamic behavior during test case execution and failure occurrence
found by that particular test case.

We first evaluate if failures detected during test execution require the
same data flow to be observed as the test cases which have led to them
induces into the system. For this, we analyzed the similarity of the classified
phenomena for test cases and their associated failure findings as listed in
table 3.5. During the comparison, multiple associations between one test
case and many failures or one failure and many test cases are taken into
account. Those multiplicities occur if a failure is detected by multiple test
cases or one test case has found a failure which, turned out to be caused by
multiple faults triggered simultaneously. The absolute and relative amount
of matching, subsequent matching or non-matching references to shared
data are shown in table 3.4. It can be seen that the highest amount of
non-matching data-flow references occur for the verification usage of the
data-flow. Further, data flow referenced for the precondition and stimulation
usage are subject to subsequent effects. Over all purposes of shared data
usage, the majority of shared data usage could be identified as matches, the
corresponding hypotheses H1a can therefore be accepted.
A manual review of the comparison indicates that in almost all cases of

the non-matching data flow references, the failure was found by diagnosis
mechanisms of one or more neighboring ECUs involved in the test case
execution. Even though failures are assumed to be detectable by observing a
certain data flow, test cases often detect failures by checking the error entries
created by such diagnosis mechanisms implemented in each component.
Further, it has been found that the subsequent effects observed for the
precondition and stimulation uses are caused by functional dependencies as
described in section 3.4.
Beside findings directly related to the hypothesis pairs H1a and H1n, the

results show the importance of functional and physical dependencies for the

68 3 | Data Flow based Test Coverage

Precondition
5/238No Match

23/238Subsequent Match
210/238Match

Stimulation
1/116No Match

22/116Subsequent Match
93/116Match

Verification
18/98No Match

5/98Subsequent Match
75/98Match

0 20 40 60 80 100

Figure 3.4: Results of Test Case Similarity to detected Failures

proposed approach of data flow based test coverage. As part of this study,
these factors have been separated and controlled by classifying subsequent
data flow using the introduced classification scheme. However, in order for
this approach to be applicable for the practice of system integration testing,
further studies are required addressing the importance of dependencies
among individual data flow as defined for a system under test.

3.6.2 Test Gap Identification

As mentioned in section 3.2, the suggested classification scheme should help
reveal test gaps in terms of component interactions not considered in existing
test cases prior to test execution. To evaluate this, we analyzed the similarity
of failures which have not been detected during test execution to existing
test cases based on its data flow profiles. However, in contrast to comparing
failures directly associated to test cases (found-by-association) the comparison
of failures found by other test activities is not straight forward. In order
to compensate for the missing association between failures and test cases,
we first assigned for each failure the test case with the highest similarity to

3.6 | Evaluation 69

be the counterpart for the comparison. An additional consequence of the
missing causality between a test case and a failure is the fact that subsequent
effects cannot be identified and the comparison metric only contains the
amount of matching and non-matching data flow references.

Furthermore, the selection of the test case with the highest similarity for
a given failure may result in many test cases with equal similarity. In some
instances, multiple test cases show the same amount of matching data-flow
pairs but different data flow is referenced within the set of matching pairs.
In addition to that, some test cases could be identified which had the highest
similarity for multiple failures. Consequently, the comparison shown below
contains similar multiplicities as described in section 3.5.
The evaluation of the proposed approache’s effectiveness in identifying

test gaps is organized alongside the main hypothesis:

H2a: There is no significant similarity in data flow required to describe
the systems dynamic behavior during the occurrence of failures and existing
test cases if the failure have not been detected by the test cases.

Figure 3.5 show the comparison of undetected failures to test cases with
the highest amount of matching data flow. It shows a noticeably high amount
of non-matching data flow for the verification phase of 93%. Furthermore, a
high amount of non-matching data-flow also exist for the stimulation purpose.
Within the precondition predicates, a moderate amount of matching data
flow references is shown. The result of this comparison already points to
the potential testing gap. The exceptionally high amount of non-matching
data-flow references for the verification purpose reveals data flow which is
unconsidered for verifying the system’s behavior. In addition, the mismatches
revealed for the stimulation use lists data flow unused for stimulating the
system during test execution but actually triggered faults to surface as a
failure. For the precondition purpose, the majority of data flow is already
covered by the test cases. It can therefore be assumed that the correct data
flow is already considered as a potential influence on failure occurrences. In
summary there is a high amount of non-matching data flow shown in our

70 3 | Data Flow based Test Coverage

evaluation. Consequently, the hypothesis H2a can be accepted.

Precondition
554/1752No Match

1198/1752Match

Stimulation
632/975No Match

343/975Match

Verification
1454/1558No Match

104/1558Match

0 20 40 60 80 100

Figure 3.5: Results of Test Case Similarity to Undetected Failures

A more fine-grained perspective on potential test gaps can be extracted
when successively comparing failures to test cases with high similarity for
each purpose of data flow usage. Because the purpose of data-flow-usages
are abstractions of the chronological order of a test case execution or a
failure occurrence, the chronological order can be utilized to extract further
information about the location of test gaps in terms of unconsidered com-
ponent interactions. By first selecting test cases with the highest similarity
within the verification-use set of data flow, we focus on those test cases
with the highest potential of observing the failure. In our study, for 33 of
the 52 failures we could not identify any matching data-flow within the
existing test cases. Therefore, detecting those failures using the selected
test cases is not possible due to the fact that data flow which is required
to observe these failures is not considered for the behavior verification in
any of the existing test cases. For the remaining 19 failures, the similarity is
shown in figure 3.6. It shows a high amount of 91% of mismatches for the
stimulation purpose which is a strong indicator that the existing test cases
do not consider the right data flow for stimulation in order to trigger the
failure. For the precondition predicates, a medium amount of matching and
mismatching data-flow references is identified.

3.6 | Evaluation 71

Precondition
641/2805No Match

2164/2805Match

Stimulation
1806/1984No Match

178/1984Match

Verification
2018/2156No Match

138/2156Match

0 20 40 60 80 100

Figure 3.6: Results of Test Case Similarity to undetected Failures focusing
the Usage of Data Flow for verification purpose

By selecting test cases with the highest amount of matching data flow for
the stimulation purpose, we then focused on test cases which have the highest
potential of triggering the failure to surface. The test case selection revealed
that for 22 out of the 52 failures, no matching data flow is referenced for the
stimulation purpose. The similarity of the remaining 30 test cases is shown
in figure 3.7. It shows a high amount of mismatches for the precondition
and verification purpose. This comparison shows that test cases which could
trigger one of the failures do not perform a verification of the data flow
required to observe the failure. In addition, most of these test cases may not
establish the required precondition for the failures to surface.
For the last comparison, we focused on the highest similarity within the

precondition predicates. This results in test cases which satisfy the conditions
required for a failure to surface. The selection of test cases reveals that for
5 out of 52 failures, no matching data flow could be found in any of the
existing test cases. The similarity of the remaining 47 failures is shown
in figure 3.8. It shows a high amount of mismatches for the purposes of
stimulation and verification. This further indicates gaps in the usage of data
flow for triggering and verifying the system’s dynamic behavior. In addition,
the high amount of failures with matching preconditions indicate that the

72 3 | Data Flow based Test Coverage

Precondition
744/1038No Match

294/1038Match

Stimulation
152/912No Match

760/912Match

Verification
1006/1029No Match

23/1029Match

0 20 40 60 80 100

Figure 3.7: Results of Test Case Similarity to Undetected Failures Focusing
the Usage of Data Flow for Stimulation Purpose

existing test cases already targets the error-prone system state.

Precondition
175/381No Match

206/381Match

Stimulation
164/195No Match

31/195Match

Verification
13/253No Match

240/253Match

0 20 40 60 80 100

Figure 3.8: Results of Test Case Similarity to Undetected Failures Focusing
on the Usage of Data Flow within Precondition Predicates

RQ: How effective is inter-component based data-flow classification in
capturing the system’s dynamic behavior relevant for test coverage analysis
and test gap identification?

In summary, we analysed the data flow relevant for real world test cases

3.6 | Evaluation 73

and failure reports. We are able to show high similarities in the data flow
classified for test cases when compared to the data flow classified for failure
reports which have been detected during test case execution. This leads to
the acceptance of hypothesis H1a. Within the second part of the evaluation
we are able to show a significant amount of non-matching data flow when
comparing the data flow classified for test cases to data flow classified for
failures which are undetected during test case execution which leads to the
acceptance of the hypothesis H2a. Therefore, in the context of the research
question for studying the effectiveness of inter component based data-flow
classification in capturing the systems dynamic behavior relevant for test
coverage analysis and test gap identification we consider the presented
approach as effective. As part of the evaluation we are also able to showcase
the identification approach of potential test gaps for the practice of system
integration testing in the automotive industry.

3.7 Conclusion

We propose the usage of data-flow based test-coverage analysis for system
integration testing. The suggested approach aims at applying well-studied
code-based data-flow testing criteria and their extension to coupling-based
testing to the problem of black-box integration testing of distributed software
systems.
As a main contribution, we introduce a data-flow observation scheme

applicable for test cases and failure reports which captures the usage of data
flow for the phases for establishing preconditions, stimulating the system
under test or verifying the systems dynamic behavior. The usage of the data
flow of a test case is then put into perspective to the overall data flow within
the system under test to resemble an overall coverage.
We evaluated the usefulness of this data flow coverage based approach

using a series development project of a chassis control system introduced in
section 2.3 containing several ECUs. The chassis control system contains an
overall data flow of 1343 different shared data. We analyzed the approaches

74 3 | Data Flow based Test Coverage

ability to identify test gaps by taking 90 test cases from the system integration-
testing phase and comparing its coverage of data flow to the usage of data
flow in failures undetected during execution of these test cases. We found
major differences in the usage of data flow between undetected failures
and existing test cases. We therefore infer that the test gaps identified by
the data-flow based coverage analysis cause faults to slip by the integration
testing phase. We further analyzed if the data flow covered by existing test
cases is also used to observe failures found during test execution. We found
noticeable similarities within the usage of data flow between test cases and
its associated failure reports.

However, we found a major limitation for the approach of identifying test
gaps by measuring similarities of data-flow usage in test cases and failures
which slipped by the integration testing phase. Functional or physical depen-
dencies among individual shared data are not captured by simply measuring
similarities of test cases and failures. In this work, such dependencies are
treated as subsequent match during similarity analysis. Subsequent matches
are manually identified in case a certain shared data is used in a failure but
not in the associated test case within the same purpose of use.
As a second contribution, we proposed a set of basic data-flow based

coverage criterion. In summary, these criteria focus on the usage of every
shared data in within at least one test case (Shared-Data-Use) and further
the usage of every shared data in all of the defined purposes of the classifica-
tion scheme (Precondition-Data-Use, Stimulation-Data-Use and Verification-
Data-Use). However, satisfying these criterion for a system-under-test with
moderate complexity can become expensive in terms of time and resources
when testing a system with high complexity in terms of inter-connectivity.

Overall, we find that the suggested coverage criterion is helpful in identi-
fying untested data flow in a component based system containing black-box
components. We found that abstracting the system’s behavior to the usage
of data flow for a certain purpose makes the data-flow classification an easy
task with low additional effort for the process of test specification. However,
we believe that the coverage metrics of existing test suites represent an
overestimation in its ability to detect a fault. This is due to the fact that the

3.7 | Conclusion 75

usage of a certain element of shared data for a particular purpose does not
state that it is used in a meaningful way with a high chance of triggering
or detecting failures. The data flow-based coverage measure introduced in
this paper can therefore be compared to traditional code structure-based
data-flow analysis in software testing. It helps to identify areas not exercised
by a set of test cases or to identify redundant test cases.

3.8 Threats to Validity

Measures for design contamination have been implemented for the classifi-
cation of data flow usage in existing test cases and failure reports.

A major threat to the internal validity of the provided studies is caused by
the process of data collection and its potential of inducing a classification
bias. It was ensured that the team who performed the classification did not
know the association between a test case and the failure reports created
during execution of the test case. Furthermore, it was ensured that the
data-flow classification of a test case and its associated failure reports was
not done by the same team member. However, all team members knew about
the purpose of their work and had a deep understanding of the coverage
criteria being the subject of this study during classification.

The external validity is also affected by a limited generalizability of the pre-
sented results, mainly because this study has been conducted in a company
based on a single development project. In addition, the generalizability is
strongly limited due to the nature of the system under test. The chassis con-
trol system represents a distributed reactive real-time software system which
influences the design and implementation of test cases. Furthermore, the
absence of a caller-callee paradigm within such a system has to be taken into
account when applying the presented approach to more general distributed
software systems.

76 3 | Data Flow based Test Coverage

Ch
ap

te
r 4

Test Case Selection and
Prioritization

Generally, faults are not evenly distributed across the structural elements of
the system under test [She95]. In addition, applying the data flow based
test coverage approach introduced in the previous chapter to a system with
moderate complexity leads to the situation that not all data flow based
component interaction can be considered when testing in a time or resource
limited context like system integration testing done in the automotive indus-
try. However, we expect that the process of system integration testing can be
guided if the fault-prone component-interactions are identified successfully
prior to testing. This contribution chapter therefore presents our studies
in the area of component and interface coupling based test case selection
and prioritization. In section 4.1 we present related work to the field of test
case selection and prioritization. We then provide a brief description of the
research design used for this study in section 4.2. This is followed by the
selection of existing coupling measures described in section 4.3. After that,
the process of data collection for the component and interface coupling as

77

well as for the real world failure data in section 4.4 and 4.5. The evaluation
of the study is then provided in section 4.6. Lastly, the findings found in
this study are provided in section 4.7 while the threats to its validity are
introduced in section 4.8. The work presented in this chapter extends the
following paper and puts it into the perspective of this work.

D. Hellhake et al. “Towards using coupling measures to guide black-box
integration testing in component-based systems.” In: Software Testing, Ver-
ification and Reliability 32.4 (Mar. 2022). url: https://doi.org/10.
1002/stvr.1811

78 4 | Test Case Selection and Prioritization

https://doi.org/10.1002/stvr.1811
https://doi.org/10.1002/stvr.1811

4.1 Related Work

Related work exists for the topic of test case selection and prioritization
techniques for integration testing of component based software systems.
However, only few studies have addressed the potential benefits of utilizing
artifacts created during system design for the process and practice of inte-
gration testing in general. In addition, existing work in that area of research
mainly focuses on the automated generation of test cases out of the system’s
design and structure specification. In this section, we provide existing work
for the topic of test case selection and prioritization as well as for guiding
integration testing based on the system design.

In a work provided by Hao et al., a unified test case prioritization technique
is proposed which combines the principles of total and additional test case
prioritization strategies[HZZ+14][ZHZ+13]. Hao et. al. first states that
most existing research on test case prioritization focuses on the prioritization
itself and follows one of two overall strategies. The first strategy, a total
strategy, sorts test cases according to the number of elements that they
cover. The second, additional strategy on the other hand repeatedly selects
test cases that cover the maximal elements not yet covered by previously
prioritized test cases. Based on that, Hao et al. provide their definition of a
unified test case prioritization which he evaluates using 40 C and 28 Java
programs. Their results demonstrate that the fault detection probability of
their proposed technique in general reside between those using purely total
or additional. During the course of this chapter, we propose a coupling based
approach which is heavily inspired by the work done by Hao et. al..
Elbaum et.al. studied the trade-offs between fine granularity and coarse

granularity prioritization techniques [EMR02]. When performing test case
prioritization at a fine granularity, test cases will be selected based on code
coverage. An example for a coarser granularity would be a function level cov-
erage analysis at which test cases are selected based on the set of functions
examined during execution. Elbaum et. al. used 16 different approaches
across these granularities in their studies. In their results, Elbaum et. al.
shows that test case prioritization at both function-level and statement-level

4.1 | Related Work 79

showed similar rates of fault detection which makes test case prioritization
at a coarse level more cost effective. In addition to the level of granulari-
ties, Elbaum et. al. studied the effects of incorporating measures of fault
proneness onto the fault detection rate of test case prioritization techniques.
He found that measures of fault proneness can significantly improve the
effectiveness of test case prioritization. However, their results show that the
improvement was comparatively small and not consistent when compared to
other techniques which suggests that information about fault proneness may
not be intuitive and obvious. The work provided by Elbaum et. al. provides a
theoretical foundation for the studies provided in this chapter due to the fact
that similar goals are being set for the evaluation. In addition, showing that
the effectiveness of test case prioritization is invariant to the underlying level
of granularity encourages us in following the research direction provided in
section 4.2 for which we neither utilize the system’s code (fine grained) nor
the system’s functionalities (coarse grained).
Given the definition of coupling in section 4.3 and the available set of

applicable measures in section 2.4, the second part of this related work
section provides an overview of existing work regarding the utilization of
architectural measures for software testing. In [MDO+16], Mendes et al.
conducted a systematic mapping study to investigate existing approaches
to use information about the software architecture to improve the testing
activities. In their work, the authors included 27 studies ranging from the
improvement of software testing management in general to the automatic
generation of test cases based on software architecture specifications. They
found that most of the studies were published in the last 10 years, suggesting
that the research topic only emerged recently. In addition, Mendes et al.
point out that out of 27 included studies only two were conducted in industry,
which creates the impression that there is little to no adoption of the proposed
approaches.

Selby and Basili studied the ratio and strength of coupling and its relation
to the error-proneness of interacting components of the system [SB91].
For this, Selby and Basili used a real world software system including 77
subsystems implemented with 148.000 lines of code. Coupling is measured

80 4 | Test Case Selection and Prioritization

based on the number of data bindings between multiple routines similar to
the data-flow based coupling analysis described in section 2.4.1. They found
that routines with the lowest coupling ratio showed significantly less errors.
In addition, for those routines existing errors where less costly to fix. The
goal of Selby and Basili is similar to the goals set in this work. However, the
included measures for coupling, size and strength as well as the methodology
of data collection and analysis are not directly applicable for this work due to
the unavailability of the code of most components contained in the system.
Rizwan et. al. extended the Fan-In/Fan-Out based coupling measure as

also described in section 2.4.1 to a metric set called "Vovel metrics" [RNS21].
In Their work, he included aspects regarding the volume of coupling existent
between two or more coupled elements. The volume of coupling is defined
based on the size of each shared data element SizeO f (Mx) defined for a
method (Mx) which consists of the volume of the method’s parameters
v(Mp) and the volume of its return values v(Mr). However, the volume of a
parameter or return value is defined as the space in memory required to hold
that data. In addition to that, the level of coupling is taken into account as a
numerical representation of the generic coupling types defined by Yourdon
et. al. [YC79]. They provide an evaluation of their coupling measurement
approach based on multiple studies in which coupling is measured based on
the systems call-graph and correlated to the failure locations. The aspects
of coupling relevant for this work are described in section 4.3 and mainly
focus onto quantitative aspects of coupling as also covered by the basic
Fan-In/Fan-Out based coupling measurement. However, we do agree with
Rizwan et. al. that additional aspects of coupling need to be considered in
order to fully express the Impact coupling has onto the systems stability and
its development.

In [SBS18], Singh et al. conducted an empirical study on different versions
of open source software to analyze the benefit of various object-oriented
metrics for the quality of the software. In particular, a technique of test
case prioritization based on the fault-proneness of the software modules
is presented, which is very similar to the approach presented in this work.
However, due to the fact that the presented test case prioritization technique

4.1 | Related Work 81

is designed to be applicable for object-oriented software systems, coupling
is defined and measured based on a dependency graph showing class level
coupling. In their results, Singh et al. show that object-oriented coupling
measures like Number of Children (NOC), Coupling between Objects (CBO)
or the Depth of Inheritance (DIT) do affect the software quality and can
therefore be used for test case selection and prioritization.

Richardson and Wolf introduced the Chemical Abstract Machine (CHAM)
model, which formally specifies software architecture based on intercon-
nected components, internal states and state-transformation rules to derive
a set of architecture-based testing criteria [RW97]. In [HSW19], similar test
criteria have been defined and evaluated against the fault distribution in a
real-world software system.
As demonstrated by Mendes et. al., most related work regarding the use

of information about the software architecture to improve software testing
activities directly addresses the generation of test cases based on architecture
specification [MDO+16]. However, very few works exist studying the use of
architecture specifications to measure test coverage or to provide guidance
for test case selection and prioritization, specifically for integration testing
activities. In addition, very few of the existing studies were conducted in
industry, leaving the empirical evaluation of the suggested approaches open.
In this work, we directly try to address these aspects.

4.2 Research Design

In [Xia00], Xia et. al. emphasizes the ambiguity of coupling as a concept
and the resulting challenge in deriving meaningful measures. They state
that the impact of coupling can be distinguished into two factors. First, it
can have an impact on the system, as changes to highly coupled components
may result in ripple effects and additional changes to other components.
Second, when designing or changing a modular system, coupling can have
an impact on the developers, as they need a complete understanding of the
component’s context in terms of its coupling to the rest of the system.

82 4 | Test Case Selection and Prioritization

Figure 4.1: Association of Coupling, Complexity and Fault-Proneness
[RNS20]

In this work, we study the effect of coupling mentioned by Xia et al. [Xia00]
as a potential source of faults introduced into the system and detected during
integration testing as depicted in figure 4.1. As discussed in Section 4.4,
this study focuses on inter-ECU coupling as component coupling within the
system as well as the coupling of individual interfaces implemented by these
components. The research questions as a baseline for the hypotheses are
derived in accordance to [RH08] and [RHRR12]. The overall structure of
the case study design is summarized in figure 4.2.

Figure 4.2: Embedded case study design for the study of component and
interface coupling according to Runeson [RH08]

• RQ2: Which coupling measures applicable to the black-box compo-
nent structure of a modular system are useful to guide the test case
prioritization for integration testing?

• RQ3: Which coupling measures applicable to the black-box interface
structure of a modular system are useful to guide the test case prioriti-
zation for integration testing?

4.2 | Research Design 83

We further provide the proposition that high coupling of a component or
interface increases the probability for this component to show fail behavior
during integration testing. For interfaces implemented by each component,
we propose the same relationship. These propositions stem from the assump-
tion that during changes to the design or implementation of a component
or interface, not all information of its context are considered due to cogni-
tive overload of the designers or developers. Given that potential impact
of coupling onto the failure-proneness of component interactions, we will
answer the research questions individually by using a two-step approach.
First, we define and test multiple hypotheses regarding the correlation of
each selected coupling measure to the failure-proneness for both component
and interface coupling. Out of the accepted set of hypotheses and coupling
measures which do show positive correlation to failure-proneness we answer
the research question based on the observed strength of correlation. The
hypotheses tested in this study are formulated for each coupling measure in-
troduced in section 4.3, both for component coupling and interface coupling.
The list of hypotheses is given in table 4.1.

84 4 | Test Case Selection and Prioritization

Table 4.1: Our five hypothesis pairs for the correlation between measure-
ments and failure-proneness at component level

Alternative hypothesis Null hypothesis

Hc1a The failure-proneness of
an ECU during system inte-
gration testing is positively
correlated to its Size(ml |S)
measure according to table
2.3.

Hc1n There is no positive corre-
lation between an ECU’s
failure-proneness and
its Size(ml |S) measure
according to table 2.3.

Hc2a The failure-proneness of
an ECU during system
integration testing is
positively correlated to
its Complex i t y(mk|S)
measure according to
table 2.3.

Hc2n There is no positive corre-
lation between an ECU’s
failure-proneness and
its Complex i t y(mk|S)
measure according to
table 2.3.

Hc3a The failure-proneness of
an ECU during system inte-
gration testing is positively
correlated to its CC mea-
sure according to section
2.4.1.

Hc3n There is no positive corre-
lation between an ECU’s
failure-proneness and its
Component Coupling (CC)
measure according to sec-
tion 2.4.1.

Hc4a The failure-proneness of
an ECU during system inte-
gration testing is positively
correlated to its C I F mea-
sure according to section
2.4.1.

Hc4n There is no positive corre-
lation between an ECU’s
failure-proneness and its
C I F measure according to
section 2.4.1.

Hc5a The failure-proneness of
an ECU during system inte-
gration testing is positively
correlated to its C DC(Ck)
measure according to sec-
tion 2.4.2.

Hc5n There is no positive corre-
lation between an ECU’s
failure-proneness and its
C DC(Ck) measure accord-
ing to section 2.4.2.

4.2 | Research Design 85

Table 4.2: Our four hypothesis pairs for the correlation between measure-
ments and failure-proneness at interface level

Alternative hypothesis Null hypothesis

Hi1a The failure-proneness of a
component interface dur-
ing system integration test-
ing is positively correlated
to its Size(ni |S) measure
according to table 2.3.

Hi1n There is no positive
correlation between a
component interface’s
failure-proneness and
its Size(ni |S) measure
according to table 2.3.

Hi2a The failure-proneness of a
component interface dur-
ing system integration test-
ing is positively correlated
to its IC measure accord-
ing to section 2.4.1.

Hi2n There is no positive cor-
relation between a com-
ponent interface’s failure-
proneness and its IC mea-
sure according to section
2.4.1.

Hi3a The failure-proneness of a
component interface dur-
ing system integration test-
ing is positively correlated
to its I I F measure accord-
ing to section 2.4.1.

Hi3n There is no positive cor-
relation between a com-
ponent interface’s failure-
proneness and its I I F mea-
sure according to section
2.4.1.

Hi4a The failure-proneness of a
component interface dur-
ing system integration test-
ing is positively correlated
to its I DC(Ik) measure ac-
cording to section 2.4.2.

Hi4n There is no positive cor-
relation between a com-
ponent interface’s failure-
proneness and its I DC(Ik)
measure according to sec-
tion 2.4.2.

4.3 Selection of Coupling Measures

Many studies proposed coupling and complexity metrics for component-
based software systems [AMgA13], but comparatively few works exist which
study the correlation of such measures to the fault-proneness of component
interactions typically verified during integration testing. In this section, we
provide a broad description of the term coupling alongside the set of aspects

86 4 | Test Case Selection and Prioritization

relevant for the selection of coupling measures. For each aspect of coupling,
related work is presented and the relevance for this thesis is pointed out in
detail.
Constantine and Yourdon [YC79] suggested that modularity of software

design can be measured with two qualitative properties: cohesion and
coupling. While cohesion focuses on the semantic relatedness of a software
module’s functionality, coupling describes the degree of interdependence
among multiple software modules. Based on these two concepts, a common
design goal for a software module is to increase its internal cohesion while
keeping its external coupling as low as possible. The terms software module
and software component are commonly used in literature to describe the basic
building blocks of structured software design. In this work, both terms are
used interchangeably. The aspect of coupling and cohesion as a measure for
software quality plays a roll in the study regarding the correlation of failure
occurrences to the degree of coupling of faulty components and interfaces.

One motivation for increasing cohesion while keeping coupling as low as
possible is provided by Martin [MO97], who introduced the term instability
as the probability that a module has to be changed in response to a previous
change of a coupled module. To determine the instability of a software mod-
ule, Martin distinguishes between efferent and afferent coupling. Efferent
coupling Ce exists for a module A if A depends on another module B in terms
of a use relation to one or more of its provided functionalities. Martin states
that a high degree of efferent coupling results in high module instability
because any change to one of the functions of module B used by module A
may cause subsequent changes in module A. Afferent coupling Ca on the
other hand exists for module A if its functions are used by other modules.
Consequently, Martin states that a high degree of afferent coupling leads to
high module stability due to the responsibility of the module to the rest of
the system. The quantification of a software modules instability is given by
the ratio between the number of efferent coupling to the overall number of
couplings: I = (Ce/(Ca + Ce)). The value of I can range from 0 expressing
high stability to 1 indicating low stability. The potential instability of highly
coupled elements of a software system is one theoretical aspect which sup-

4.3 | Selection of Coupling Measures 87

ports the proposition of fault-proneness caused by high coupling studied in
section 4.6.
Santos et al. [SRCF17] investigated the acceptance of this instability

measure in a literature review. They found that the instability measure-
ments stayed relatively constant during the development of the studied
systems. They concluded that, among the analyzed open source projects,
there would be little awareness of a software modules susceptibility to subse-
quent changes caused by module coupling. However, they further identified
a lack of methods to identify afferent and efferent couplings in an existing
software design.
In [AMS+18], Abdellatief discusses the generic component model de-

picted in figure 4.3 which is commonly used in coupling analysis. This model
emphasizes the separation between interfaces and their implementation. It
focuses on use relations between multiple components and their provided
interfaces. In addition, the directness of data-flow based coupling is shown.
With a direct data flow, the sending component communicates the data
directly to the receiving component while with an indirect data flow, the
sending component communicates the data to the receiver using at least one
intermediate component. The component model provided by Abdellatief
highlights the idea of considering coupling independently of the inner work-
ing of the coupled elements which is an important aspect for the black-box
nature of the studied system as described in section 2.3.

The identification of existing coupling in a given software design based on
interface specifications is further detailed by Gill [GG04], who provides an
interface characterization model. Within this model, an interface is described
based on its packaging information, a set of constraints, non-functional
properties and the interface signature. Furthermore, Gill introduces the
term interface complexity to describe a software module’s potential to be
reused and integrated in a different software design. To identify existing
dependencies of a software module, an interface signature provides the
set of potential endpoints of coupling in terms of operations, events and
properties.

Once dependencies among multiple software modules are identified, the

88 4 | Test Case Selection and Prioritization

Figure 4.3: Generic Information Flow Model for component-based Systems

system design can be analyzed based on either quantitative factors like the
distinct number of couplings per component, or by qualitative measures like
the type of coupling between multiple components. In [OHK93], Offutt et. al.
discusses principles for measuring different types of coupling, which can be
used to determine the strength of the dependency between two components.
For this purpose, Offutt et. al. adopted six generic types of coupling (see
table 4.3), which have been introduced by Myers [Mye77] and Page-Jones
[Pag01]. These types take multiple aspects of coupling into account like the
type of data passed between coupled modules (data and stamp coupling), the
type of communication (external and common coupling) and the degree of
dynamic interference (control and content coupling). In the study provided
in section 4, we focus onto quantitative factors of coupling due to the fact
that qualitative factors require deeper understanding of how data flow is
implemented which is typically only available in a white box system.
Besides adding more levels of coupling specific to modern programming

languages, Offutt et. al. also addresses the directness of coupling as an
additional aspect, which ranges from direct coupling between two modules
to various levels of indirect coupling in which two modules are coupled via

4.3 | Selection of Coupling Measures 89

Table 4.3: Generic coupling types [Mye77]

Type Description

Data Coupling Two modules are data coupled if they pass data
through scalar or array parameters.

Stamp Coupling Two modules are stamp coupled if they pass data
through a parameter that is a record.

Control Coupling Two modules are control coupled if one passes a
flag value that is used to control the internal logic
of the other.

External Coupling Two modules are external coupled if they commu-
nicate through an external medium such as a file.

Common Coupling Two modules are common coupled if they refer to
the same global data.

Content Coupling Two modules are content coupled if they access and
change each other’s internal data state or procedu-
ral state.

a chain of other modules in between[OHK93]. The directness of coupled
software modules is also depicted in figure 4.3 and discussed by Gui and
Scott [GS09], who extended the software abstraction model and complexity
metrics defined by Chen et. al. [CWZB11] with a measure for indirect
coupling. This measure has been selected for the studies in this work and a
detailed description of it is provided in section 2.4.2.
In [Xia00], Xia discusses the different aspects covered by the six generic

types of coupling discussed by Myers [Mye77] and the inconsistent usage of
the term coupling in software design literature. Xia argues that coupling is
often only considered between two modules, which would neglect frequent
cases in real-world software systems, e.g. modules connected to other mod-
ules and multiple modules connected to one module. To alleviate this, Xia
provides a brief definition for coupling given in equation 4.1, which relies on
a single data flow connecting multiple modules. In his definition, coupling is
measured as a composition of the shared data complexity C[d], the potential
impact on the dynamic behavior of coupled components PC[d] and the

90 4 | Test Case Selection and Prioritization

number of modules coupled to d, i.e. N[d]. Consequently, coupling of a
software module is defined as the sum over the module’s out-flowing data
MC(m) =
∑n

i=1 EC[di]. The definition of coupling as a composite measure
plays a major role in evaluating the results of the studied coupling measures
and its individual limitations in section 4.7.

EC[d] = C[d] ∗ PC[d] ∗ N[d] (4.1)

In addition to the discussion of the concept of coupling in software design,
several studies can be found about topics closely related to the topic of this
paper. In [Sal06], Salman analyzes structural metrics for component-based
system design based on counting of components, connectors and interface
compositions. One of the main contributions of his work is a basic set of
properties which a quality model for structured software design should
satisfy to be a valid measurement instrument. These properties are derived
from a brief discussion about complexity measures for software systems
provided by Weyuker [Wey88].
Besides using software module interfaces, much research focuses on uti-

lizing module implementations, i.e. code, to identify module coupling
[IYY+05]. In addition, Sellami et. al. provide a metric for complexity
in component based systems which is defined around the terms Interface,
Properties, Methods and Events [AAEW18]. However, these methods rely on
the internal control flow graph of the used software modules and therefore
do not work for off-the-shelf or black-box modules. Because the goal of this
work is to study the usefulness of coupling measures to guide black-box
integration testing, code-based approaches to identify dependencies within
a system design are not further considered.
In accordance to the definition of module coupling in equation 4.1, this

work studies different measures for the number of dependencies N[d]. The
presented related work showed that defining a sound measure for the data
complexity C[d] and the degree of impact on the dynamic behavior of a
coupled module PC[d] is sensitive to the programming paradigm, type of

4.3 | Selection of Coupling Measures 91

system and the availability of code. As the goal of this work is to study
coupling measures applicable for software systems containing black-box
modules, the identification of applicable measures for data complexity and
program control is left open for future work. Consequently, coupling among
multiple modules is considered of the same type and impact strength.
The coupling measures described in this work solely take quantitative

aspects into account. They have been selected out of existing literature and
are used in section 4 for correlation analysis with a failure distribution. In
section 2.4.1 and 2.4.2, conventional approaches are described to measure
coupling based on the counting of software modules or the number of data
flows. In section 2.4.3, an approach is described which measures coupling
based on the amount of entropy created in a system by a certain data flow.

4.4 Data Collection for System Graph Abstraction

For this study, we selected the information theory based approach as well
as the dependency analysis and data flow based approach of measuring
coupling to be potential indicators of fault-prone component interactions.
All of these approaches rely on a graph abstraction of the system. As Allen
et. al. [AKC01] state, multiple graph abstractions can be created for a given
system with each focusing on a different aspect of the system’s design. In
this section, we describe how the generic approaches are applied to the
architecture and design documentation of the chassis control system using
a fully automated proprietary tool-chain. For each step involved for the
data collection we provide detailed information about which limitations
and implications arise due to the nature of having black-box components
contained in the system under test.

As described in section 2.1, the architectural views onto the system under
test relevant for deriving a system graph abstraction are the a) hardware
architecture describing which ECUs exist and how they are wired together
using physical communication buses, b) the logical architecture describing
which software components exists and which data flow they provide and

92 4 | Test Case Selection and Prioritization

require based on the interfaces implemented and c) cluster architecture
describing which software components are grouped together to form func-
tionally coherent clusters and which cluster is partitioned onto which ECU
for execution.
Consequently, the component structure of the graph abstraction used in

this work is directly derived from the hardware architecture documents.
According to the hardware architecture of the chassis control system, the
graph abstraction of the chassis control system contains 10 modules listed
in table 4.4 and named accordingly.

In [AKC01] and [All02], Allen suggests that the graph abstraction used for
information theory based measurement of component coupling should model
the environment of the system by using an additional module containing a
single node. This node is disconnected from the system because coupling and
complexity caused by relationships between the system and its environment
are not relevant. The chassis control system represents a subsystem of the
vehicle. Therefore, chassis control related ECUs do implement data flow to
non-chassis control system related ECUs, which can be considered as part
of the environment. However, in the context of this work and in particular
the research question defined in the previous section, generalizing those
interactions to the system’s environment would diminish the understanding
of a component’s or software interface’s context which limits the applicability
of information theory based coupling measurement for the purpose of this
study. In order to compensate for that, the proposed design rule of having
a module and node included in the system graph abstraction representing
the coupling to the system’s environment is not followed for the context of
this work. Instead, the system graph contains additional modules for each
ECU that interacts with one ECU of the chassis control subsystem. However,
for those modules only the interactions to chassis control related ECUs are
considered and modelled.

Complementary to the derivation of the system graph’s modules from the
systems hardware architecture, the node structure is created using the logical
architecture. However, to fully model each node and the connecting edges
representing data flow, the cluster level architecture is further required which

4.4 | Data Collection for System Graph Abstraction 93

also identifies which software component defined in the logical architecture
corresponds to which ECU and which node corresponds to which component
in the graph abstraction.

The structure of an ECU’s software is defined in the software architecture
specification. For the chassis control system, each ECU’s software implements
the AUTOSAR standard for software architecture. Within the AUTOSAR
standard [AUTb], a software component is defined as the central structural
element which encapsulates a certain functionality equivalent to the software
module in conventional modular software design. Communication and
interaction among multiple software components are specified using Port-
Prototypes, which are instances of Port-Interfaces. For this work, Port-
Interfaces are considered as conventional software interfaces, as their goal
is to specify the static structure of information exchange and to enable a
design-by-contract workflow [AUTa]. However, a detailed definition of the
structural elements relevant to replicate the study provided in this work
can be found in chapter 3.2 and 4.2 of the respective AUTOSAR Software
Component Template specification. A detailed list of the number of shared
data assigned as in-flow and out-flow and the total amount of software
interfaces is given in table 4.4.
The incoming and outgoing communication of all software components

provides the overall interaction behavior of components for this work. How-
ever, incoming and outgoing communication of a software component can
be categorized as intra- or inter-ECU interactions based on the partitioning
of each interconnected software component on different ECUs. Regard-
ing the data flow involved, intra-ECU communication describes data flow
between software components located on the same ECU while inter-ECU
communication describes data flow among software components distributed
over different ECUs using a physical communication bus according to the
hardware architecture specification.
In case the software architecture specification is available for each ECU

contained in a vehicle subsystem, a data flow graph can be assembled which
highlights all possible information flow within the system under test. How-
ever, this is often not possible in practice because the software development

94 4 | Test Case Selection and Prioritization

Table 4.4: Software Interface, Data Flow and Failure Count for the Case
System

Ecu Interfaces
Interfaces

having Out-Flow
Faulty

Interfaces In-Flow Out-Flow

ECU1 35 13 9 44 25
ECU2 8 1 1 20 1
ECU3 9 1 0 19 5
ECU4 11 2 0 18 10
ECU5 39 5 4 66 17
ECU6 78 24 9 18 10
ECU7 348 148 78 625 511
ECU8 170 56 30 237 198
ECU9 17 1 1 31 4
ECU10 30 4 0 52 8

Sum 745 255 132 1130 789

of most ECUs is outsourced based on a given black-box behavior specification.
This does make the software structure of an ECU as a set of interconnected
software components unavailable and consequently, the intra-ECU commu-
nication is hidden for the process of system integration testing done at the
vehicle manufacturer. Therefore, coupling analysis at software level is not
possible for a vehicle subsystem like the chassis control system studied in this
work. However, software interfaces involved in inter-ECU communication
are available as part of the ECU’s interface specification. With respect to Xia’s
data flow centric definition of coupling discussed in section 4.3, coupling
analysis can directly be performed based on the inter-ECU data flow for
ECUs at component level and software interfaces at interface level.
ECU and interface interactions are modelled using edges in information

theory as well as in dependency and data flow analysis. In this work, an
edge represents the flow of shared data between two software interfaces
implemented by different ECUs. Therefore, edges reflect sender-receiver
relations among software interfaces in an undirected way. To enable a
comparison of the information theory based approach and the dependency

4.4 | Data Collection for System Graph Abstraction 95

analysis and data flow approaches in section 2.4.2 and 2.4.3, an edge is
created for each variable shared between two software interfaces. However,
because information theory based complexity does not scale with multiple
edges connecting the same two nodes, multiple exchanges between two
software interfaces can also be represented by a single edge.
The system graph abstraction created for the information theory based

measurement of coupling contains 47 modules and 756 nodes, which are
connected using 3,512 edges resulting in a size of 7,790.98 bits and a
complexity value of 18,801.73 bits. As already mentioned, a complete
graph of the software’s inner structure is not available. Therefore, the graph
abstraction of the system automatically represents an intermodule edge graph
as described in section 2.4.3. Since it requires the module’s internal inter-
dependencies, the cohesion metric cannot be applied for both module- and
system-level. In table 4.5, the results for Size(ml |S) and Complex i t y(mk|S)
are listed for each ECU of the chassis control subsystem. The size of an ECU
hereby represents the amount of information added to the system while
its complexity represents the amount of information in relationships to the
ECU and the rest of the system. It is noticeable that the two modules with
the highest values for both size and complexity (ECU7 and ECU8) together
contribute over 50% of the system’s overall size and complexity.
In figure 4.4, the size of all software interfaces of the chassis control

systems is shown. The majority of interfaces form groups with equal size.
In information theory, the size of a node is calculated based on the node’s
subgraph Si, which only contains edges connected to that node. When
calculating Size(Si) of multiple node subgraphs of a given system, the result
solely depends on the entropy of the graph H(Si) because the number of
nodes n and the probability value of the environment pl(0) remain constant.
The entropy of a graph H(Si) is calculated based on the probability values
of the distinct row patterns. In case of a node subgraph, the number of
distinct row patterns is a direct result of the number of endpoints connected
to the node. Therefore, the size of a node mainly scales with the number of
endpoints connected to that node. This is also demonstrated in figure 4.5,
which shows the size and number of endpoints of each interface in a scatter

96 4 | Test Case Selection and Prioritization

Table 4.5: Results of Module Level Complexity Measures

Ecu Size(ml |S) Complex i t y(mk|S)

ECU7 3,553.61 9,802.35
ECU8 1,756.65 4,828.09
ECU6 810.69 1,570.60
ECU5 413.84 724.35
ECU1 353.19 532.87
ECU10 317.88 513.65
ECU9 180.27 237.56
ECU4 113.29 157.19
ECU3 94.96 157.31
ECU2 83.30 120.56

plot.
The component model created for the dependency analysis and data-flow

based measurement of coupling contains 47 components and 756 interfaces,
which form 3,512 dependencies among each other. In table 4.6, the Com-
ponent Information Flow C I F , Component Coupling CC and Dependency
Coefficient DC are shown. At system level, the Component Information Flow
C I F values for ECU 7 and ECU 8 and are noticeably high. This is caused by
the fact that these two ECUs do have the highest amount of shared data flow-
ing in and out. As described in section 2.4.2, the Dependency Coefficient DC
of a certain component represents the total number of distinct components
which are dependent on that component. The Component Coupling CC
of a component on the other hand only takes outgoing dependencies into
account. The Component Coupling value therefore represents the afferent
portion of the overall couplings captured by the dependency coefficient.

4.4 | Data Collection for System Graph Abstraction 97

Figure 4.4: Correlation of Size(Si) of interfaces to interface level failure
distribution

Figure 4.5: Proportion of endpoints to Size(Si) of interfaces

98 4 | Test Case Selection and Prioritization

Table 4.6: Results of Component Level Dependency and Data Flow Measures

Ecu CC C I F DC

ECU7 2,574 102,000,390,625 80
ECU8 797 2,202,049,476 51
ECU6 127 91,164,304 27
ECU5 70 1,258,884 23
ECU1 31 1,210,000 9
ECU10 22 173,056 8
ECU3 15 9,025 7
ECU4 10 32,400 6
ECU9 8 15,376 7
ECU2 3 400 6

4.5 Failure Distribution

For this study, we used test and fault data of a vehicle series development
project covering the system integration test phase of the chassis control
subsystem introduced in section 2.3.
In table 4.4, the number of failures detected during system integration

testing are shown per ECU. In addition, figure 4.6 illustrates the set of
external interfaces of each ECU similar to the system graph introduced in
section 4.3. Interfaces which have shown failure behavior during integration
testing are colored red. Edges indicating data flowing between nodes are
not visualized due to the high amount of inter-connectivity. Regarding
the selection of defects, all milestones and test-cycles of the vehicle series
development project have been taken into account.

To identify the data flow involved in a detected failure, we used a defect
classification scheme for black-box behavior observation, which is described
in section 3.3. By using the classification scheme, a failure is broken down
into the smallest number of conditions required to trigger its fault as observ-
able failure behavior.
Precondition: To trigger a fault to surface as a failure, the system under

test has to be in a certain state. Such a state is expressed based on data

4.5 | Failure Distribution 99

Figure 4.6: Illustration of the Defect Distribution of the Chassis Control
System

flowing among participating modules. The data flow is classified as a set of
predicates. In the context of this study, the data-flow required to describe
the precondition phase is not relevant. Stimulation: Given the required
precondition, a failure can be triggered by stimulating certain data flow in a
predefined way. This data flow is classified as stimulation-use. Verification:
Once a failure is triggered, the actual failure behavior of the system under
test can be observed on one or more data flows as a derivation from the
specified behavior. These data flows are classified as verification-use.
Because only software interfaces which include out-going interactions

can show failure behavior, the correlation study is only applied to those
interfaces, even if the set of measures described in section 2.4.2, 2.4.1 and
2.4.3 are applied to the complete set of software interfaces. In table 4.4, the

100 4 | Test Case Selection and Prioritization

number of software interfaces implemented by each ECU is listed together
with the amount of in- and out-flowing data. In comparison to that, the
amount of software interfaces which are involved in at least one failure
detected during system integration testing are listed as well.

4.6 Evaluation

To measure to which extent the failure-proneness of a certain component or
interface correlates to its coupling, we used Spearman as well as Pearson
correlation analysis. By conducting a Pearson correlation analysis, we are
able to identify if there is a linear relationship between failure-proneness and
coupling. For this, the amount of failures observed at a certain interface or
component has to be proportional to its coupling values. However, because
we do not expect a potential relationship between the number of detected
failures and the coupling values of an interface to be proportional we included
a Spearman rank-order correlation analysis as well. Based on the Spearman
correlation analysis, we are able to evaluate the monotonicity of a potential
correlation between coupling of an interface and its failure-proneness. Out
of general guidelines for interpreting the results of the Pearson correlation
analysis we consider the strength of the correlation as small for r-values up
to 0.3 while r-values up to 0.5 are considered as medium strength. r-Values
above 0.5 are considered as strongly associated. The same rule also applies
to the results of the Spearman correlation analysis.
Because multiple hypotheses are being tested in this study on a single

data set, the possibility of accepting a hypothesis that falsely appears signifi-
cant increases [BMD+09]. To control for this, we use a p-value adjustment
method introduced by Benjamini and Hochberg [BH95]. Alongside its defi-
nition, all tests in table 4.7, 4.8, 4.9, 4.10 have been ranked according to
its p-value in an ascending way. In addition, the critical value is calculated
based on the equation (Rank/mi) ∗Q i . By selecting a false discovery rate of
5% (Q i = 0.05), all tests with critical values lower than the false discovery
rate are considered as significant.

4.6 | Evaluation 101

RQ2: Which coupling measures applicable to the black-box component
structure of a modular system are useful to guide the test case prioritization
for system integration testing?

At the component level, we tested if Size(mk|S), Complex i t y(mk|S), Com-
ponent Coupling (CC), Component Information Flow (C I F) and Component
Dependency Coefficient (C DC) are correlated with the number of failures
related to a component. In table 4.7 and 4.8 the results of the correlation
analysis are shown for Pearson and Spearman correlation respectively. All
tests resulted in significant p-values and therefore, the corresponding hy-
potheses (Hc1a to Hc4a) listed in 4.1 can be accepted. However, due to the
high p-value, the test for C I F is considered as not significant and therefore
Hc5a is rejected. When comparing the Pearson correlation coefficient (rp) to
the Spearman correlation coefficient (rs) for the component level tests, both
show similar strength. The strongest correlation is tested for the Component
Dependency Coefficient (C DC) which indicates that 72.6% of the failures
found at a certain component of the system can potentially be explained by
its coupling.

RQ3: Which coupling measures applicable to the black-box interface struc-
ture of a modular system are useful to guide the test case prioritization for
system integration testing?

At the interface level, we tested if Size(ni |S), Interface Coupling (IC),
Interface Information Flow (I I F) and Interface Dependency Coefficient
(I DC) are correlated with the number of failures related to an interface.
Connecting failures found to the interfaces which are affected by that failure
is done based on the data flow relevant to describe the systems dynamic
behavior during occurence of the failure. This is described in more detail
in chapter 3.3. By accepting a false discovery rate of 5%, the result of
the Interface Information Flow (I I F) is considered to be not significant for
both Spearman and Pearson correlation, thus the hypotheses Hi1a, Hi2a and
Hi4a can be accepted while the hypothesis Hi3a is rejected. In table 4.9

102 4 | Test Case Selection and Prioritization

Table 4.7: Results of component level Pearson

Measure rp r2
p Pp Rankp

C DC 0.898 0.806 0.000425 1
Complex i t y(mk|S) 0.853 0.728 0.002 2
Size(mk|S) 0.846 0.716 0.002 2
CC 0.722 0.521 0.018 3
C I F 0.55 0.303 0.094 4

and 4.10, the results of the correlation analysis are shown for Pearson and
Spearman correlation respectively. When comparing the Pearson correlation
coefficient (rp) to the Spearman correlation coefficient (rs), the Pearson
correlation values are significantly higher over all tested measures. This
indicates that there is a stronger linear trend than the rank correlation. The
highest correlation is tested for the Interface Dependency Coefficient (I DC).
Its squared correlation coefficient r2

p indicates that 30% of the variation in
failures found at a certain interface during integration testing can potentially
be explained by its coupling to the rest of the system.
When comparing the correlations for interface coupling and component

coupling measures, we notice that the correlation of the coupling measures is
substantially stronger when applied at the component level. One potential ex-
planation for this is given by the proposition that ECUs implementing a highly
complex software also implement more complex interfaces on average. An
example is given when comparing the amount of interfaces implemented by
each ECU in table 4.4 to the overall complexity of each ECU shown in table 4.5.
According to that, the most complex ECU7 is implementing 348 interfaces
implementing an overall complexity of Complex i t y(mk|S)=9802.35 there-
fore holding an average complexity per interface of 28.4. In contrast to that,
ECU2 is implementing the least complexity of Complex i t y(mk|S)=120.56
while implementing 8 interfaces resulting in an average interface complexity
of 18.4. However, this proposition needs to be evaluated in a more systematic
way in a future work.

4.6 | Evaluation 103

Table 4.8: Results of component level Spearman correlation

Measure rs r2
s Ps Ranks

C DC 0.852 0.726 0.002 1
Complex i t y(mk|S) 0.853 0.728 0.002 1
Size(mk|S) 0.853 0.728 0.002 1
C I F 0.816 0.666 0.004 2
CC 0.779 0.607 0.008 3

Table 4.9: Results of interface level Pearson correlation

Measure rp r2
p Pp Rankp

I DC 0.548 0.300 1.99E-21 1
Size(ni |S) 0.476 0.227 7.84E-16
IC 0.367 0.135 1.50E-09 3
I I F 0.201 0.040 0.001 4

Table 4.10: Results of interface level Spearman correlation

Measure rs r2
s Ps Ranks

I DC 0.303 0.092 8.09E-07 1
Size(ni |S) 0.253 0.064 0.00004 2
IC 0.243 0.059 0.0009 3
I I F 0.043 0.002 0.497 4

4.7 Conclusion

The data flow based coupling measures tested in this study were generally
weakly correlated for interface coupling.

The interface and component dependency coefficient measure showed the
best performance for both interface and component coupling. According to
the definition given in equation 2.5, these measures could directly be applied
to the system design of the chassis control system. However, when using
the dependency coefficient as a coupling measure, some implications arise

104 4 | Test Case Selection and Prioritization

which may be counter-intuitive within the context of a real-world system.
Similar to the information theory measures, the dependency coefficient
mainly scales with the number of coupled components. The amount of
distinct messages shared between coupled interfaces or components is not
covered. In addition, the direction of coupling is not utilized and therefore,
a differentiation between afferent and efferent coupling is not taken into
account.

The information theory based measures also achieved good performance
in our test. For the Spearman analysis of the component-level correla-
tion, Size(mk|S) and Complex i t y(mk|S) achieved the strongest correlation.
Similar to the dependency coefficient, the measures for Size(mk|S) and
Complex i t y(mk|S) mainly reflect the number of coupled components or
interfaces. This is also demonstrated in figure 4.5. Unlike the dependency
coefficient measure which solely reflects the number of coupled components
or interfaces, the measures for Size(mk|S) and Complex i t y(mk|S) account
for redundancy and patterns in a system design [AK99].

However, these measures are designed around concepts which make their
application to a real-world system not an easy task. In Information Theory, an
additional node representing the system environment is added to the system
graph. When applied to a real-world system, this requires that coupling
to the system environment has to be generalized, which may lead to an
underestimation of the component or interface coupling. Furthermore, the
calculation of coupling based on the undirected representation of a system’s
inter-connectivity does not conform to Martin’s definition of component
instability [MO97] and may therefore not account for all notions of cou-
pling in a real-world system. Another concept of information theory based
coupling measurement is the fact that these measures do not scale with
multiple messages shared between components or interfaces. According to
the assumptions made in section 4.2 about cognitive overloading, we expect
the probability of introducing a fault during maintenance to increase even if
data flow is added to already coupled interfaces or components. However,
this expectation is not captured by any of the measures for component or
interface coupling used in this study.

4.7 | Conclusion 105

When combining the test results listed in table 4.7 and 4.8 with the ac-
cepted hypotheses in the context of the research questions, we do believe
that, out of the tested measures, the dependency coefficient and the informa-
tion theory based approach provides the best guidance for system integration
testing activities at both interface and ECU level.

4.8 Threats to Validity

There are several threats to validity drawn from the setup and context of
this study, which have been addressed as follows.

4.8.1 Conclusion Validity

The conclusion validity of this work is mainly affected by the statistical power
of the experiment. At first, data used for the experiments stem from only
one vehicle development project. In addition to that, the component level
correlation analysis lacks statistical power for both Pearson and Spearman
correlation. This is caused by the relative low number of ECUs contained
in the studied chassis contol subsystem. Due to the fact that the research
question is highly relevant for the automotive industry, repetition studies
are required to assure that the results provided in this work are reliable and
valid.

4.8.2 Internal Validity

A major threat to the validity of the provided experiments is the manual
data flow classification of failure-reports used for the correlation analysis.
As described in section 4.5, a classification scheme has been used which was
introduced and evaluated in a work prior to the presented study. Even though,
the classification scheme’s effectiveness of describing the relevant data flow
of a certain failure-report has been studied in a dedicated evaluation, manual
steps are required to apply the scheme to real world failures. To address the
reliability of the classification, it was ensured that the team who performed

106 4 | Test Case Selection and Prioritization

the failure classification did not know the association between the failure
reports and the test case which lead to its finding during execution. The
goal of this measure is to reduce the bias between the test scenario and
the failure classification. Furthermore, it was ensured that the data flow
classification of a test case and its associated failure reports was not done
by the same team member. However, all team members knew about the
purpose of their work and had a deep understanding of the coverage criteria
being the subject of this study during classification.
In addition to that, we selected all ECUs contained in the chassis control

subsystem of a vehicle, which are further connected to other ECUs contained
in different subsystems. The ECUs contained in the chassis control system
implement external software interfaces, which form dependencies based on
the inter-ECU data flow. The graph abstraction generated for this system
therefore only reflects inter-ECU communication. However, in the context of
the case study design, this may affect our hypothesis that strongly coupled
software interfaces are more prone to show failures during system integration
testing. An external software interface can also be coupled to other internal
software components, which we did not analyze in this study.
When applied to the chassis control system introduced in section 4.2,

measures for interface coupling and component coupling showed limited
applicability. The definition of interface coupling in equation 2.1 assumes
that all out-flowing data of an interface are consumed by interfaces coupled
to it. Because component coupling is defined as the sum of interface cou-
pling of each interface implemented by the component, this assumption is
further carried over to the component-level coupling measurement. For the
system studied in this work, only a subset of out-flow is used by a coupled
interface or component as in-flow in most cases. The definition for interface
and component coupling therefore leads to an overestimation of the actual
coupling, which may affect the correlation in this study.

For interface and component information flowmeasures, we found an even
stronger limitation in applicability. According to its definition in equation
2.2, information flow is measured as the squared product of the number
of in- and out-flowing data. However, some of the interfaces of the chassis

4.8 | Threats to Validity 107

control system either only contain out-flow (e.g. for requesting a status or
providing sensor-data) or in-flow (e.g. for diagnostic control routine). For
those interfaces, the measure for information flow automatically results in
a value of zero, which may be the reason why the information flow metric
shows the weakest correlation of all measures tested in this study, both for
interfaces and components.
The second threat affecting the internal validity is related to the failure

distribution analysis. For this, we used the test results from the system
integration testing phase performed during all milestones of the series de-
velopment of the chassis control system. Overall, 132 failures have been
detected, which we assigned to the respective software interfaces. Since
one fault may cause multiple failures, the fault distribution would have
provided a potentially more comprehensive base for this study. However,
due to the black-box nature of an automotive development project, infor-
mation about the fault which caused a certain failure is not available. In
addition, it is important to mention that the selected set of defects does not
only contain failed behavior in terms of a deviation from specified behavior
but also defects caused by incorrect or incomplete specification and other
types of defects [NT08]. Additionally, taking every milestone of the series
development project into account may also have affected the results of this
study. During early milestones, not all functionality is fully implemented,
which potentially can cause failed tests. In this study, this threat has been
mitigated by excluding failures detected by testing incomplete function-
alities. However, incomplete implementations can cause failures in fully
implemented functionalities in the form of subsequent effects, which cannot
be fully controlled in a real-world software development project.

4.8.3 Construct Validity

A threat to the validity of this paper’s experiments stems from the set of
selected coupling measures. Due to the fact that the AUTOSAR standard for
embedded software does not inhibit common software design paradigms like
object orientation or caller-callee related inter-component communication,

108 4 | Test Case Selection and Prioritization

the goal of the metric selection performed for this study is to select metrics
which are directly applicable to the software architecture concepts commonly
used in the automotive industry and described in section 2.1. This may lead
to the threat that the theory of coupling is not clear enough to be measured
by the selected coupling measures for the given system used in this study. In
Addition to that, the information theory based metrics provided in section
2.4.3 do lack statistical evidence that coupling is actually measure. However,
the impact of this threat is limited due to the superordinate goal of finding
correlations between the selected set of metrics and the software quality in
terms of reliability.

4.8.4 External Validity

The external validity is also affected by a limited generalizability of the pre-
sented results, mainly because this study has been conducted in a company
based on a single development project. But also the nature of the studied
chassis control system limits the generalizability of the presented results to
other non-automotive software systems. The AUTOSAR standard for em-
bedded software implemented by each ECU defines unique mechanisms for
interconnectivity of multiple software components, which greatly affects the
generalizability of this study to component-based software systems in gen-
eral. We mitigated this threat by providing broad insight into the derivation
of the system graph abstraction of the AUTOSAR-based software architec-
ture. We transformed the software and system architecture design into a
graph abstraction, which is then used for all coupling measures. The goal of
the graph abstraction is to abstract the automotive software specific design
paradigms and to provide a general basis to compare systems implementing
different architecture patterns or programming paradigms.

4.8 | Threats to Validity 109

Ch
ap

te
r 5

Coupling based System
Integration Testing

This contribution chapter presents our proposal for a Coupling based Sys-
tem Integration Testing process as it has been established in the company
at which the studies provided in this work have been conducted. During
the course of this chapter we combine the approach of data flow based
test coverage analysis presented in chapter 3 together with our proposed
approach for test case prioritization in chapter 4 to formulate a coupling
based integration testing process. For this, we first describe how the system
design specification and documentation can be used to derive the formal
specification of the system’s structure and component interaction behavior in
a fully automated way. In addition, we describe the manual steps required to
classify the component interactions exercised in existing test cases and the
component interactions required to describe the systems behavior during
failure occurrence. Lastly, we combine these practical method descriptions to
a generic process using an activity flow chart alongside a detailed description.
The work presented in this chapter is unique to this thesis.

111

5.1 Software and Hardware Architecture Model

As discussed in section 2.2, related work exists for system integration testing
which highlights the need for formal specification regarding the systems
structure as well as for the systems dynamic behavior. In this section, our
approach to address this need for formal specification is presented which a)
derives the relevant structural information about the system from its archi-
tecture documentation and b) extracts the component interaction related
information from the component communication specification. In order to
support our approach, the collection of both types of information is explained
alongside a combined entity relationship model which resembles a broader
abstraction of the architecture views introduced in section 2.1.
During development, a modern car as a highly distributed responsive

real-time system is specified using several architectural models. The most
relevant architectural model for the purpose of system integration testing is
the logical architecture representing the software’s component structure as
explained in more detail in section 4.4. In addition, the cluster architecture
is used as an intermediate step to identify groups of functionally coherent
software components which are then partitioned onto different ECUs using
the hardware architecture model. To derive information about the system’s
specified dynamic behavior, inter-component communication specification is
used which is part of the logical architecture for the software component based
communication. However, the inter-ECU level communication is specified as
part of the hardware architecture specification.
In figure 5.1, the entity relationship model for the hardware architec-

ture is shown which has also been used for the data collection phase of
the studies conducted during this work and presented in section 3 and 4.
The most crucial element of the hardware architecture is the ECU which
executes multiple software components. The first part describing an ECUs
interconnection to two or more other ECUs is given by the ECUInterfaces.
In practice, these interfaces are created for individual atomic functionali-
ties implemented by the ecu in order to group multiple shared data in a
coherent way. However, to fully capture the interconnection between two or

112 5 | Coupling based System Integration Testing

more ECUs, data flow is described using Protocol Data Units (PDU). PDUs
group multiple DataElements defined by the software architecture and are
either sent or received by an ECUInterface, which is classified as Provided
or Required. The last element captured by the hardware architecture model
is the communication Bus. This element is taken into account in order to
incorporate special cases like gateway-functionalities in which a single ECU
is connected to multiple communication buses in order to receive and for-
ward PDUs without providing the carried data-elements to the executed
software components. To support the understandability of the described
hardware architecture model, an example can be provided using the Inertial
Measurement Unit (IMU) which is a sensor type of ECU commonly found
in a vehicle. Such IMU typically implements multiple interfaces in order to
provide its different sensor-data (e.g. acceleration, angular rate, inclination)
on a certain communication bus by grouping individual data elements into
PDUs (e.g. values for X, Y and Z-axis).
The entity relationship model for the software architecture is shown in

figure 5.1 as well and is very similar to the hardware architecture model. Its
central structural element is the Software Component which is partitioned
onto at least one ECU. A software component implements multiple Software
Interfaces as the grouping element to describe software level data flow while
a software interface sends or receives data elements, which are denoted as
Provided or Required. In case of inter-ECU based data flow, data elements are
further assigned to PDUs which are then communicated on a communication
bus. To also support the understandability of the described software archi-
tecture model, the example of the IMU can be continued with the calculation
of the vehicles movement in space. A Software Component executed by a
certain ECU and implementing such a functionality would require sensor-
data like the measured acceleration or the angular rate as an input in order
to calculate the vehicles velocity or its position in space. These calculated
data elements are then provided on software level using a separate software
interface.
During the case studies presented in section 3 and 4, data-collection for

the hardware- and software architecture model has been performed using

5.1 | Software and Hardware Architecture Model 113

Figure 5.1: UML Class Diagram for Software- and Hardware Architecture

existing and machine-readable system description formats. The hardware
architecture definition of the studied system described in section 2.3 has
been extracted from the existing Field Bus Exchange Format (FIBEX). FIBEX
is an XML-based standardised format widely used in the automotive industry
to describe the network structure and data flow of a vehicle. In figure 5.2,
the data structure of the FIBEX format is shown. Beside the relevant ele-
ments, other aspects of a vehicle’s network like the communication timing or
the functional architecture are treated by the FIBEX standard as well. The
software architecture elements are extracted from the System Description
Specification which is a widely adopted XML-based format defined by the
AUTOSAR standard for software [AUTb]. However, the system description
is typically not available for off-the-shelf ECUs. As mentioned in section
2.1, such ECUs are considered as black-box and only inter-ECU based com-
munication has been taken into account for the studies provided in this
work.

In summary, given the presented data model for the software and hardware
structure of an automotive subsystem, the system’s overall structure can
directly be collected based on specification formats commonly available

114 5 | Coupling based System Integration Testing

Figure 5.2: FIBEX Class Diagram [Gro]

early in development. Once the data has been collected, a system graph
abstraction can be derived as described in section 2.4 and measures for
component coupling and interface coupling can be calculated as described
in section 3.6. The resulting coupling annotated system graph can then be
used for test coverage analysis and test selection and prioritization which is
explained in more detail in section 5.

5.2 Test Data Classification Model

One of the results of our study about data flow based test coverage mea-
surement shown in section 3 is the identification of the benefits of test data
classification with respect to the system design. Being able to identify which
elements of the system’s structure are exercised during test execution or
failure occurrence is a mandatory precondition for systematic test gap iden-

5.2 | Test Data Classification Model 115

tification in integration testing. In this section, our approach for performing
test data classification in practice is presented and explained alongside an
entity relationship model which shows the relevant elements in figure 5.3.
Furthermore, for each element a detailed description is provided on how it
has been used in the studies conducted in this work.
The central element for test design classification is a Phenomenon. As

discussed in section 3.3, the execution of a test case as well as the occurrence
of a failure can, from the viewpoint of the theory for observing a systems
dynamic behavior, be seen as a sequence of component interactions. On
the one hand, a test case exercises a certain scenario by executing a control
sequence and verifying the correct response behavior of the system given
a predefined starting point. On the other hand, the occurrence of a failure
describes the behavior of the system in a very similar way by highlighting
the required control sequence and starting point necessary to trigger the
failure which is then captured as a derivation of the expected system behavior.
Within the provided entity relationship model, this similarity is implemented
by using the Phenomenon element as a generalization for the FailureReport
and TestCase element.
The next crucial element for test design classification is the DataFlow as

the connecting element between a Phenomenon and the system software
design specification in case of a certain DataElement. Given the fact that the
overall universe of component interaction in a distributed component based
system containing black box components is defined by the inter component
related data flow, a phenomenon describes the systems dynamic behavior as
a sequence of inter-component data flow. Within such a phenomenon, each
data flow is assigned to one of the following three purposes: Precondition,
Stimulation and Verification. As introduced in section 3.3, the annotation for
Precondition is used to describe the required starting point for the system
while the Stimulation annotated data flow describes the control sequence
applied to the system. The Verification however is either used to verify the
correct behavior of the system as the result of applying the control sequence
or to describe the derivation from the expected behavior. In practice, these
annotations are used for test coverage analysis and in particular for test

116 5 | Coupling based System Integration Testing

gap identification. By comparing the data flow classified for failures not
found during integration testing to the existing test cases used for integration
testing missing test cases can be identified in a systematic way. If for example
data flow for the Verification-purpose is referenced by failures slipped-by the
integration testing phase which is not used by existing test cases, there is a
potential lack in state-space coverage of the systems precondition-states. In
addition, if data flow for the Stimulation is referenced by undetected failures
but not used in existing test cases, there is a potential lack of test scenarios
defined for the already considered precondition states of the system. And
finally, if data flow for the Verification-purpose is missing in existing test cases,
not the complete system’s behavior as a result of the applied control-sequence
is considered for verification.
The final element relevant for the studies provided in this work is the

TestExecution. In its essence, the test execution captures the history of test
data in a chronological way. However, in addition this element also serves as
the connecting element between an executed test case and the FailureReport
created based on a failed test result. In practice, this element is used to
perform the analysis described in section 3 and in particular the above
mentioned test gap identification. Due to the fact that a FailureReport does
not necessarily require a test execution as the context of its occurrence, test
reports created during other test activities then integration testing can be
considered as well. The test gap identification can therefore be performed
in a fully automated way by conduction the data flow similarity analysis
introduced in section 3.4 to failure reports with no root test case execution
and the overall existing test cases.

In practice, the data collection for the described elements is not a straight-
forward task. In practice, adding the activities for test data classification
to an existing test process has an impact on not only the process of system
integration testing. Beside classifying existing test cases for system integra-
tion testing and its failure findings, failures found during other test activities
need to be classified as well. In this work, data flow classification of test
cases and failure reports was performed by a team of test specialists also
involved in analyzing failures found during system integration testing. This

5.2 | Test Data Classification Model 117

Figure 5.3: Entity Relationship Model for Test Design Classification

ensures a time effective classification with minimal error rate due to the
fact that the team is familiar with the components contained in the system.
However, it also includes the risk for potential biases introduced into the
classification as described in section 3.6. However, based on the test data
classification done in section 3.6, we assume that including the activities
required for classifications into existing activities would result in an time
and cost effective way of data collection. For example, test case classification
can be included at the end of a test cases implementation while the classi-
fication of a failure report should be done after fault localization. In both
cases, the classification would be conducted in a situation where all relevant
information are at hand and the additional effort for the practice of system
integration would, in its essence, be an additional step of documentation.

5.3 Coupling based System Integration Testing Process

Our proposal for the steps required for the practice of system integration
testing in the automotive industry involves the development process of the

118 5 | Coupling based System Integration Testing

Figure 5.4: Collaborating activities of the V-Model involved in the proposed
approach of Coupling-based System Integration Testing

system architecture and design as well as the system integration testing. In the
context of the test data required for conducting data flow based test coverage
and test prioritization explained in the previous section, this section describes
the data collection in practice. In figure 5.4, the activities addressed for
coupling based system integration testing of the V-Model are highlighted as a
continuation of the V-Model based development process described in section
2.1. Within this section, these activities are explained in detail alongside a
activity flow diagram shown in figure 5.5.

The most important activity for Coupling based System Integration Testing
is the System Architecture Design as well as the Software Design due to the
fact that these provide a formal description of the system’s structure in terms
of interacting software and hardware components. In a first step, the Graph
Abstraction of the system under test has to be derived based on its System- and
Software Architecture specifications. These design specifications are typically
available at the beginning of the series development of a vehicle and can be
converted to a system graph in a straight forward way as described in section
4.4. Even though the graph abstraction used in the studies provided in this
work has been generated out of a database export as described in section 5.1

5.3 | Coupling based System Integration Testing Process 119

without manual steps involved, the system design tools where proprietary to
the company at which the studies have been conducted. This has an impact
on the necessary effort of generating the graph abstraction, as no existing
and publicly available tool chain can be used. Once the Graph Abstraction
has been generated for the system under test, the coupling measures are
used to measure inter-ecu coupling as well as the coupling of each interface
implemented by each ECU. As a result, individual coupling values for each
ecu as well as individual values for each external interface implemented by
these ECUs are added to the Graph Abstraction in order to create a Coupling
annotated System Graph Abstraction. This annotated graph abstraction is
then provided to the system integration testing process as its contained
coupling values are indicating the probability of each element of containing
faults according to the correlation measured in section 4.6.

The process of System Integration Testing starts with a Data Flow Analysis
of the already existing test cases, if any, in order to identify the data flow
already used and covered for a) describe the system’s state for a test cases
precondition, b) describe the stimulation applied to the system during exe-
cution and c) verification of the systems behavior. A brief description of how
component and interface interactions are identified in test cases is provided
in section 5.2. The data flow analysis of these existing test cases results in
the Data Flow annotated System Integration Test Suites which is then used
in combination with the Coupling annotated Graph Abstraction for coverage
analysis. If the existing test cases do not satisfy the coverage criteria, infor-
mation about uncovered data flow is used as input for the implementation of
additional test cases. As discussed in section 5.1 the overall space of observ-
able data flow based system behavior can become very large in a distributed
system with moderate complexity. Accomplishing a full test coverage is in
practice often not feasible. In order to implement additional test cases which
have a high chance of finding faults during execution a prioritization tech-
nique is required. For this, a coverage measure with high correlation to the
failure occurrence for the system under test is used according to the results
shown in section 4.7. As a result, component behavior which implements
high coupling is considered for verification in additional test cases. Once

120 5 | Coupling based System Integration Testing

the desired coverage is achieved, test planning and execution takes place
according to existing and widely used test planning techniques like testing
of newly added or implemented features.
In parallel to the activities of System Integration Testing, the Test Gap

Identification is conducted. The input required for these activities is a pre-
selected set of failures related to component interaction faults but found by
other testing activities then System Integration Testing. Such a set of failure
reports is a strong hint for potentially existing test gaps as described in section
3.6. As part of the activity for Data Flow Analysis, this set of failure reports is
classified according to the data flow required to describe the failure behavior.
The resulting data flow annotated failure reports are then used for a fully
automated comparison against the existing data flow annotated system
integration test cases in order to Identify uncovered Component-interaction
which are then used to further guide the specification and implementation
of additional test cases.
In summary, the described activities are repeated over the course of the

series development project for each test phase or milestone. Given the
identification of test gaps and the prioritization of test cases according to
error proneness identified using coupling measures, the set of test cases
considered for System Integration Testing evolves and improves over time.

5.3 | Coupling based System Integration Testing Process 121

Figure 5.5: Proposed activities for Coupling-based System Integration
Testing

122 5 | Coupling based System Integration Testing

Ch
ap

te
r 6

Discussion and Conclusion

This final chapter first summarizes the contributions of this thesis. For our
two main research areas of this thesis, we first discuss the implications
of these contributions from a holistic perspective and also provide their
limitations in detail. This discussion then leads to a section on possible
future research to address presented short-comings or to extend our work.
Lastly, we close with some words on the perceived importance of this research
field for the practice in the context of the automotive industry.

123

6.1 Summary of Contributions

In chapter 3 and 4 we presented our two main contribution in the area of test
coverage analysis for black-box integration testing as well as the selection
and prioritization of test case execution based on coupling measures used as
an indicator for failure proneness. A visual presentation of the contributions
provided in this work is shown in figure 6.1. Before discussing their impact
onto practice and research, we briefly summarize it here.

C1: We provide an approach for test coverage analysis for black-box
integration testing based on data flow.

By first introducing a data flow classification scheme for test cases and fail-
ures, we then collected the usage of individual shared data of test cases and
failures found during execution as well as failures slipped by the integration
testing phase of a real world series development project. By showing that
the failures which slipped by the integration test phase do have significantly
lower similarity to the executed test cases compared to the failures found
during execution we demonstrated the effectiveness of data flow coverage
analysis for black-box integration testing. Given that, we introduced basic
coverage criteria (C1.1) specifically designed to measure the utilization of

Figure 6.1: Contributions C0-C2 in relation to research process

124 6 | Discussion and Conclusion

component interaction based on data flow. Lastly, we demonstrated how
the data flow classification of existing test cases and failures slipped by the
integration testing phase can be used to identify potential test gaps in terms
of unconsidered component interactions (C1.2).

C2: We provide an empirical evaluation of the usefulness of several
coupling measures as defined in literature as an indicator for failure
prone component interaction.

Based on a brief presentation of different approaches of measuring cou-
pling we selected three approaches according to their applicability for com-
ponent based systems containing black box components: Information Theory
based Coupling, Dependency Analysis based Coupling and Data-Flow based
Coupling. As part of a correlation study (C2.1), we applied these measures
to the interface- and component level architecture of a real world system.
The failure distribution over interfaces and components of the system has
been collected based on the data-flow involved during occurrence of the
failure. The correlation showed that dependency based coupling measures
showed the best correlation while the information theory based measures
also showed good correlation. Based on that, we lastly defined how the
correlation of coupling to the occurrence of failures can be used to select
and prioritize test cases during system integration testing C2.2 based on the
strength of coupling of the component interactions covered by a certain test
case.

These two contributions lead to our central contribution provided in
this dissertation, namely the conceptualization of a Coupling based Test
Methodology for Black-Box Integration Testing (C0). For this, we are
the first to combine the current industry state of practice for integration
testing of distributed systems containing black-box components as well as
the scientific state of measuring component and interface coupling to form a
systematic methodology for integration testing. In chapter 5, we show how
a coupling measurement of the system under test can be derived from the
specification documents commonly available in a vehicle series development

6.1 | Summary of Contributions 125

in a fully automatic way C0.1. In addition, we provide a definition of a
generic process model C0.2 which describes which activities of the devel-
opment process of a modern vehicle is involved in the proposed coupling
based system integration testing approach. For the practice of integration
testing, we provide:

• a classification scheme to identify shared data used in existing test
cases designed for black-box integration testing as well as in failure
reports.

• a basic set of data-flow based coverage criteria for integration testing
of black-box components.

• an approach for identifying test gaps based on failures slipped-by the
system integration test phase

• an empirical correlation study of coupling measures defined in liter-
ature and applicable for black-box component integration testing to
real world failure data.

• an approach for coupling based test case prioritization for system
integration testing

• a generic process model for Coupling based System Integration Testing

Furthermore we assess the effort and limitations of these approaches
during its application to a real world development project alongside its
corresponding studies.

6.2 Discussion and Limitations

The presented design contributions (C0–C2) have several implications for
research and practice, but also significant limitations.

Our Data Flow Classification Scheme (C1.1) can in practice be used in
order to identify used data flow in existing test cases and failure data. In
our empirical evaluation of the classification scheme we showed that it is

126 6 | Discussion and Conclusion

directly applicable for test cases used for system integration testing as well
as for failure reports describing component interaction related derivations
from the expected system behavior. In addition, we also evaluated the
effectiveness of the classification scheme to capture the systems dynamic
behavior during test case execution or failure occurrence in the context of the
architectural and structural specification of the system under test. However,
the proposed classification scheme is affected by two major limitations.
First, when applying the classification scheme only the usage of data flow is
classified. Other aspects, e.g., the exact values applied to the data flow during
precondition, stimulation or verification phase of a test execution are not
considered. The second noteworthy limitation of the classification scheme is
the fact that it requires manual effort to be applied in practice. Even though
data flow addressed in a fully automated test case can be extracted out
of the formal test script, data flow required to describe the conditions and
stimulation required to trigger a failure to surface and which data flow to
check in order to observe the relevant failure behavior needs to be done in a
manual classification. However, at the company’s department performing
system integration testing of the chassis control system studied in this work
the classification scheme has been established in order to constantly track
which component interactions are considered during testing and which are
relevant in component interaction related failures.

The Data Flow based Coverage Criteria (C1.2) are heavily inspired by
code-based data flow coverage criteria defined in literature. The impact onto
the practical use of these criteria is therefore straight forward. However, the
coverage criteria as described in section 3.5 resemble the most basic ones
which only target coverage of the overall data flow defined for the system
under test for the different phases of a test case: Precondition, Verification
and Verification. Additional work and studies have to be conducted in order
to define more elaborate coverage criteria which provide practical use in
terms of test exit criteria. However, at the department for system integration
testing at which the studies provided in this work have been conducted these
coverage criteria are not considered for practical use. This is caused by the

6.2 | Discussion and Limitations 127

fact that test exit criteria are established during which the test coverage to
be achieved is mainly derived from a cost-benefit analysis.

Our approach for Test Gap Identification (C1.3) has been demonstrated
as applicable for the practice of system integration testing. By using the
approach, data flow base component interactions not considered in exist-
ing test cases for integration testing are identified. Furthermore, for each
uncovered data flow information about the purpose to which it needs to be
considered in additional test case specification can be derived with minimal
effort. The noteworthy limitations of the approach are direct consequences
of the limitations named for the classification scheme. Accordingly, the
proposed test gap identification only highlights data flow which is unused in
existing test cases. Data flow which can be used in a more meaningful way
is not pointed out. At the company at which the study related to test gap
identifications has been conducted the approach has been established for
practice as it is presented in section 4.6.

OurCorrelation Study for CouplingMeasures and Failure Occurrences
(C2.1)mainly provides the evaluation for the proposed approach of test case
selection and prioritization during system integration testing. By testing five
different coupling measures at both component and interface level, we found
that measures which reflect the number of elements coupled to a certain
component or interface correlate best with the distribution of failures found
during integration testing. Results indicate that over 70% of the failure
distribution at the component level can potentially be explained by these
measures. We are therefore convinced that the number of coupled elements
is an indicator for fault-proneness and can be used to guide test case priori-
tization during system integration testing. However, in addition to that, the
correlation study has also been used for the identification of future research
directions. One of the key findings which could be derived from the study is
the fact that existing coupling measures are not directly applicable to reactive
real-time systems like the studied chassis control system as they depend to a
certain degree on the programming paradigm (e.g. object oriented, caller/-

128 6 | Discussion and Conclusion

callee communication) used for the implementation of the system under
test. In addition to that, the study also showcased only moderate correlation
of coupling measures to the failure prone component interactions which
highlights that other aspects are potentially causing component interaction
related failures other than coupling.

The proposed approach for Coupling based Test Case Selection and
Prioritization (C2.2) combines the data flow based coverage analysis and
the insights derived from the correlation study in order to allow for a selection
of test cases with the highest projected fault detection probability during
system integration testing. Our results provide the empirical foundation
for potential approaches to guide test case selection by utilizing coupling
measures. Within the context of this work, the approach has only been
compared to the experience based test selection and prioritisation established
at the department for system integration testing at which the provided
studies have been conducted. As also named in section 6.3, a comparison
of the presented approach to other approaches for test case selection and
prioritization applicable for integration testing of black box components has
been left out for future work. However, for the practice of system integration
testing the proposed approach has been established as an addition to the
experience based test selection in order to collect data about its effectiveness.

6.3 Future Work

Based on our contributions, a wide variety of follow-up research is possible
which address either the limitations discussed in the previous section or the
enhancement of the presented approaches for its use in practice. In this
section, we split our proposal for future research directions into two sections.
First, we address potential future work regarding the use of coupling as
an indicator for error prone component interactions in reactive real-time
systems. Second, we discuss research directions regarding the data flow

6.3 | Future Work 129

based test coverage measurement.

For the goal of defining a systematic test methodology and process model
for system integration testing of automotive subsystems, there is a clear need
for future research in the direction of coupling and its definition. In our
studies, we only consider the existence of data flow between two or more
components or interfaces as a coupling indicator. Therefore, our studies
in that direction only cover the quantitative aspect of coupling while quali-
tative aspects as described in 4.3 are left out. As a consequence, coupling
has been measured based on the assumption that each individual data flow
based component interaction has an equally likelihood of showing failure
behavior during system integration testing. However, we highly agree with
Xia’s definition of coupling [Xia00] as a composite measure combining the
number of dependencies, the complexity of shared information as well as the
impact on dynamic behavior. Accordingly, future work should investigate
additional qualitative aspects of coupling addressing the complexity and
impact as defined in literature. In addition, aspects unique to the program-
ming paradigm used for automotive subsystems like the frequency of cyclic
component interactions and the differentiation of cyclic and event triggered
data flow should be considered for future research.

However, beside taking additional details of data flow based coupling mea-
surement into account another major research direction can be identified
based on the architectural view provided in section 2.1. In this thesis, we
studied coupling between individual ECUs (Component Coupling) and exter-
nal interfaces implemented by these ECUs (Interface Coupling). However,
the architectural views commonly available in the automotive industry also
provide a functional architecture in which functions are defined on usage
level and broken down into sub-functions. Each individual sub-functions
provide and consume shared data elements. In a follow-up study, coupling
measures can be applied to such a functional architecture to derive the
Function Coupling of the system under test in order to evaluate its usefulness
as an fault prediction model or to select and prioritize test case for execution.
In summary, we are convinced that additional work in the mentioned di-

130 6 | Discussion and Conclusion

rections would lead to an coupling measurement with improved correlation
to the failure locations and occurrence rates. Furthermore, this research
direction will result in the theoretical foundation required to derive a compre-
hensive Coupling based Fault Prediction Model for system integration testing.
In addition, research in the mentioned directions would also provide argu-
ments to the question if and to which degree the definition of coupling is
dependent to the programming paradigm implemented by the system under
test.

New insights about additional aspects relevant for measuring coupling
or additional architectural views used to guide system integration testing
would also be relevant for the topic of data flow based test coverage analysis.
Similar to the measurement of coupling as studied in this work, the test
coverage analysis also only takes the use of existing data flow in a given test
case or failure report into account in combination with the purpose of the
use. Therefore, a coverage analysis done based on the classification scheme
proposed in section 3.3 results in an overestimation of actual test coverage
which is described in more detail in section 3.6. One potential aspect to be
considered in future work regarding data flow based test coverage analysis
is the coverage of the value spaces for each relevant data element. The
extension of the classification approach should address existing approaches
for code-based data flow coverage. By using the definition of data flow
similarity as provided in section 3.4, real world test data can be identified
and used for evaluation which show high similarity to failures in terms of
data flow utilization but have not lead to their detection. Given additional
aspects relevant for data flow based coverage analysis, the data flow based
coverage criteria could be revisited in a future work as well. Here the
extension of the criteria to valuable test exit criteria for practice and the
evaluation is the most important line for future work.

Another major research direction can be identified for the practical use of
the data flow based test coverage analysis approach. As described in section
5.2, manual work is required in order to conduct the coverage analysis
and ultimately perform the test gap identification as it is presented in this

6.3 | Future Work 131

work. Consequently, the automated identification of data flow covered by an
existing test case or relevant in a certain failure report represents a valuable
research direction. In addition, the generation of data flow sequences for
potential test case implementation or the generation of test cases based on
the system’s architecture definition would be of high value for the practice
of system integration testing.

In summary, the mentioned future research directions for data flow based
test coverage analysis would increase the accuracy of the actual coverage
archived by existing test cases which would subsequently also improve the
test gap identification. Furthermore, addressing the major drawback of
requiring manual work provides an important line for future work.

6.4 Conclusion

The task for system integration testing of automotive subsystems is extensive.
On system level, multiple independently developed of-the-shelf ECUs are
integrated to implement a coherent set of software functions. In this thesis,
we have highlighted some of the relevant aspects of system integration testing
for the context of the automotive industry. We have studied the correlation
between several coupling measures proposed in scientific literature and
the number of observed failures and failure locations at two architectural
levels: the component level, which shows the inter-connectivity of ECUs as
components of the chassis control system, and the software interface level,
which represents the external software interfaces implemented by each ECU.
In addition, we investigated the problem of test coverage analysis applicable
for integration testing of a component based system containing black box
components. Inspired by code-based component behavior observation we
defined a data flow centric model of the overall component interactions
which can automatically be derived from the system system- and architecture
specification. In addition to a classification scheme for test and failure
data, we derived an approach of coverage analysis based on component
interactions. However, given the fact that the amount of software based

132 6 | Discussion and Conclusion

functions in a modern vehicle is growing exponentially, an increasing amount
of the effort for software development is done by different development
teams external to the car manufacturer. Consequently, this leads to an
increasing need for systematic methodologies and processes for integrating
and testing these black box software and hardware components in a time
and cost constrained context. For this, we believe that the work provided
in this thesis provides a unique contribution to this field and holds value
for both researchers and practitioners. However, we want to highlight that
much more work is required in this field as modern vehicles represent highly
distributed and complex software systems.

6.4 | Conclusion 133

Bibliography

[AAEW18] S. Ali, M. Abdellatief, M. Elfaki, A. Wahaballa. “Complexity Metrics
for Component-based Software Systems: Developer Perspective.” In:
Indian Journal of Science and Technology 32 (Sept. 2018) (cit. on p. 91).

[AK99] E. B. Allen, T.M. Khoshgoftaar. “Measuring coupling and cohesion:
an information-theory approach.” In: Proceedings Sixth International
Software Metrics Symposium (Cat. No.PR00403). Nov. 1999, pp. 119–
127 (cit. on pp. 43, 105).

[AKC01] E. B. Allen, T.M. Khoshgoftaar, Y. Chen. “Measuring coupling and
cohesion of software modules: an information-theory approach.” In:
Proceedings Seventh International Software Metrics Symposium. Apr.
2001, pp. 124–134 (cit. on pp. 43, 92, 93).

[All02] E. B. Allen. “Measuring graph abstractions of software: an information-
theory approach.” In: Proceedings Eighth IEEE Symposium on Software
Metrics. June 2002, pp. 182–193 (cit. on pp. 43–48, 93).

[AMgA13] M. Abdellatief, A. B. Md Sultan, A. a. abdul ghani, M. A. Jabar. “A
mapping study to investigate component-based software system met-
rics.” In: Journal of Systems and Software 86 (Mar. 2013), pp. 587–603
(cit. on p. 86).

[AMS+18] M. Abdellatief, A. B. Md Sultan, M. Sultan, A. a. abdul ghani, A. Abd
Ghani, M. A. Jabar. “Component-based Software System Dependency
Metrics based on Component Information Flow Measurements.” In:
The Sixth International Conference on Software Engineering Advances.
May 2018 (cit. on pp. 41, 88).

135

[AO00] A. Abdurazik, J. Offutt. “Using UML Collaboration Diagrams for Static
Checking and Test Generation.” In:≪UML≫ 2000 — The Unified Mod-
eling Language. Ed. by G. Goos, J. Hartmanis, J. van Leeuwen, A. Evans,
S. Kent, B. Selic. Vol. 1939. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 383–395 (cit. on
p. 50).

[ASR09] M. Anan, H. Saiedian, J. Ryoo. “An architecture-centric software main-
tainability assessment using information theory.” In: Journal of Soft-
ware Maintenance 21 (2009), pp. 1–18 (cit. on p. 43).

[AUTa] AUTOSAR. Application Interfaces User Guide. https://www.autosar.
org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_
EXP_AIUserGuide.pdf. url: htp://www.autosar.org (cit. on
pp. 36, 94).

[AUTb] AUTOSAR. Software Component Template. https://www.autosar.
org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_
TPS_SoftwareComponentTemplate.pdf. url: htp://www.autosar.
org (cit. on pp. 94, 114).

[BDW97] L. C. Briand, J.W. Daly, J. Wust. “A unified framework for cohesion
measurement in object-oriented systems.” In: Proceedings Fourth Inter-
national Software Metrics Symposium. Nov. 1997, pp. 43–53 (cit. on
p. 44).

[BDW99] L. C. Briand, J.W. Daly, J. K. Wust. “A unified framework for coupling
measurement in object-oriented systems.” In: IEEE Transactions on
Software Engineering 25.1 (Jan. 1999), pp. 91–121 (cit. on p. 44).

[BFL08] L. Bocchi, J. L. Fiadeiro, A. Lopes. “Service-Oriented Modelling of Au-
tomotive Systems.” In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference. 2008, pp. 1059–1064 (cit. on
p. 30).

[BH95] Y. Benjamini, Y. Hochberg. “Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing.” In: Journal
of the Royal Statistical Society: Series B (Methodological) 57.1 (Jan.
1995), pp. 289–300. url: https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x (cit. on p. 101).

136 Bibliography

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_AIUserGuide.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_AIUserGuide.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_AIUserGuide.pdf
htp://www.autosar.org
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-1/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
htp://www.autosar.org
htp://www.autosar.org
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

[BMB96] L. C. Briand, S. Morasca, V. R. Basili. “Property-based software engi-
neering measurement.” In: IEEE Transactions on Software Engineering
22.1 (1996), pp. 68–86 (cit. on p. 17).

[BMD+09] R. E. Blakesley, S. Mazumdar, M. A. Dew, P. R. Houck, G. Tang, C. F. Reynolds,
M. A. Butters. “Comparisons of methods for multiple hypothesis test-
ing in neuropsychological research.” In: Neuropsychology 23.2 (2009),
pp. 255–264. url: https://doi.org/10.1037/a0012850 (cit. on
p. 101).

[Bro03] M. Broy. “Automotive software engineering.” In: June 2003, pp. 719–
720 (cit. on pp. 29, 30).

[CWZB11] J. Chen, H.Wang, Y. Zhou, S. Bruda. “ComplexityMetrics for Component-
based Software Systems.” In: International Journal of Digital Content
Technology and its Applications 5 (Mar. 2011), pp. 235–244 (cit. on
p. 90).

[DAM+21] B. Du, S. Azimi, A. Moramarco, D. Sabena, F. Parisi, L. Sterpone. “An
Automated Continuous Integration Multitest Platform for Automotive
Systems.” In: IEEE Systems Journal PP (May 2021), pp. 1–12 (cit. on
p. 35).

[DRK04] H. Do, G. Rothermel, A. Kinneer. “Empirical studies of test case pri-
oritization in a JUnit testing environment.” In: 15th International
Symposium on Software Reliability Engineering. 2004, pp. 113–124
(cit. on p. 63).

[EJA14] A. Elsafi, D.N. A. Jawawi, A. Abdelmaboud. “Inferring approximated
models for integration testing of component-based software.” In: 2014
8th. Malaysian Software Engineering Conference (MySEC). 2014, pp. 67–
71 (cit. on p. 52).

[EMR02] S. Elbaum, A.G. Malishevsky, G. Rothermel. “Test case prioritization:
a family of empirical studies.” In: IEEE Transactions on Software Engi-
neering 28.2 (2002), pp. 159–182 (cit. on pp. 63, 79).

[FCX12] C. Fang, Z. Chen, B. Xu. “Comparing logic coverage criteria on test
case prioritization.” In: Science China Information Sciences 55 (Dec.
2012) (cit. on p. 63).

Bibliography 137

https://doi.org/10.1037/a0012850

[FI98] P.G. Frankl, O. Iakounenko. “Further empirical studies of test effec-
tiveness.” In: ACM SIGSOFT Software Engineering Notes 23.6 (1998),
pp. 153–162 (cit. on p. 54).

[FW88] P. G. Frankl, E. J. Weyuker. “An applicable family of data flow testing
criteria.” In: IEEE Transactions on Software Engineering 14.10 (1988),
pp. 1483–1498 (cit. on pp. 50, 55).

[GB08] N. S. Gill, Balkishan. “Dependency and Interaction Oriented Complex-
ity Metrics of Component-based Systems.” In: ACM Special Interest
Group on Software Engineering 33.2 (Mar. 2008), 3:1–3:5. url: http:
//doi.acm.org/10.1145/1350802.1350810 (cit. on p. 42).

[GG04] N. S. Gill, P. S. Grover. “Few Important Considerations for Deriving
Interface Complexity Metric for Component-based Systems.” In: ACM
Special Interest Group on Software Engineering 29.2 (Mar. 2004), pp. 4–
4. url: http://doi.acm.org/10.1145/979743.979758 (cit. on
p. 88).

[GKJ16] G. L. Gopu, K. V. Kavitha, J. Joy. “Service Oriented Architecture based
connectivity of automotive ECUs.” In: 2016 International Conference
on Circuit, Power and Computing Technologies (ICCPCT). 2016, pp. 1–4
(cit. on p. 30).

[Gra07] R.M. Gray. Entropy and information theory. 2nd ed. Springer US, Jan.
2007 (cit. on p. 45).

[GRM+18] M. Golagha, A.M. Raisuddin, L. Mittag, D. Hellhake, A. Pretschner.
“Aletheia: A Failure Diagnosis Toolchain.” In: 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion). 2018, pp. 13–16 (cit. on p. 25).

[Gro] V. C. Group. FIBEX und AUTOSAR – die Unterschiede und Gemein-
samkeiten im Detail. https://www.elektronikpraxis.vogel.
de/fibex-und-autosar-die-unterschiede-und-gemeinsamkeiten-
im-detail-a-226651. Accessed: 2021-08-23 (cit. on p. 115).

[GS09] G. Gui, P. Scott. “Measuring Software Component Reusability by Cou-
pling and Cohesion Metrics.” In: Journal of Computers 4 (Sept. 2009)
(cit. on p. 90).

138 Bibliography

http://doi.acm.org/10.1145/1350802.1350810
http://doi.acm.org/10.1145/1350802.1350810
http://doi.acm.org/10.1145/979743.979758
https://www.elektronikpraxis.vogel.de/fibex-und-autosar-die-unterschiede-und-gemeinsamkeiten-im-detail-a-226651
https://www.elektronikpraxis.vogel.de/fibex-und-autosar-die-unterschiede-und-gemeinsamkeiten-im-detail-a-226651
https://www.elektronikpraxis.vogel.de/fibex-und-autosar-die-unterschiede-und-gemeinsamkeiten-im-detail-a-226651

[HBSW22] D. Hellhake, J. Bogner, T. Schmid, S. Wagner. “Towards using coupling
measures to guide black-box integration testing in component-based
systems.” In: Software Testing, Verification and Reliability 32.4 (Mar.
2022). url: https://doi.org/10.1002/stvr.1811 (cit. on
pp. 24, 78).

[HK81] S. Henry, D. Kafura. “Software Structure Metrics Based on Information
Flow.” In: IEEE Transactions on Software Engineering SE-7.5 (Sept.
1981), pp. 510–518 (cit. on p. 41).

[HS91] M. J. Harrold, M. L. Soffa. “Selecting and using data for integration
testing.” In: IEEE Software 8.2 (1991), pp. 58–65 (cit. on p. 50).

[HSS+13] L. Heidrich, B. Shyrokau, D. Savitski, V. Ivanov, K. Augsburg, D. Wang.
“Hardware-In-The-Loop Test Rig for Integrated Vehicle Control Sys-
tems.” In: vol. 7. Sept. 2013, pp. 683–688 (cit. on pp. 33, 34).

[HSW19] D. Hellhake, T. Schmid, S. Wagner. “Using Data Flow-Based Coverage
Criteria for Black-Box Integration Testing of Distributed Software
Systems.” In: 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). Apr. 2019, pp. 420–429 (cit. on pp. 24, 50,
82).

[HW18] D. Hellhake, S. Wagner. Kommunikationsfluss-orientiertes Testen von
Softwarefunktionen im Steuergeräteverbund. Tech. rep. 7. FACHKON-
FERENZ AUTOTEST, 2018. url: https://fkfs-veranstaltungen.
de/fileadmin/4_AutoTest/pdf/AutoTest_2018/ (cit. on pp. 24,
50).

[HZZ+14] D. Hao, L. Zhang, L. Zhang, G. Rothermel, H. Mei. “A Unified Test Case
Prioritization Approach.” In: ACM Trans. Softw. Eng. Methodol. 24.2
(Dec. 2014). url: https://doi.org/10.1145/2685614 (cit. on
p. 79).

[Int08] International Standard. 829-2008 - IEEE Standard for Software and
System Test Documentation. Mar. 2008. url: https://standards.
ieee.org/standard/829-2008.html (cit. on p. 59).

[Int11] International Standard. ISO 26262: Road Vehicles - Functional Safety.
Nov. 2011. url: http://www.iso.org (cit. on pp. 21, 32, 35).

Bibliography 139

https://doi.org/10.1002/stvr.1811
https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/
https://fkfs-veranstaltungen.de/fileadmin/4_AutoTest/pdf/AutoTest_2018/
https://doi.org/10.1145/2685614
https://standards.ieee.org/standard/829-2008.html
https://standards.ieee.org/standard/829-2008.html
http://www.iso.org

[Int13] International Standard. ISO/IEC/IEEE 29119: Software and systems
engineering - Software testing. Sept. 2013. url: htp://www.iso.org
(cit. on p. 32).

[IS06] D. Ince, M. Shepperd. “An empirical and theoretical analysis of an
information flow based design metric.” In: Proceedings of the European
Conference on Software Engineering. Jan. 2006, pp. 86–99 (cit. on
p. 41).

[IYY+05] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, S. Kusumoto.
“Ranking significance of software components based on use rela-
tions.” In: IEEE Transactions on Software Engineering 31.3 (Mar. 2005),
pp. 213–225 (cit. on p. 91).

[JHS03] J. Jones, M. Harrold, I. Society. “Test-Suite Reduction and Prioritization
for Modified Condition/Decision Coverage.” In: IEEE Transactions on
Software Engineering 29 (June 2003) (cit. on p. 63).

[JO96] Z. Jin, A. J. Offutt. “Coupling-based integration testing.” In: Proceedings
of ICECCS ’96: 2nd IEEE International Conference on Engineering of
Complex Computer Systems (held jointly with 6th CSESAW and 4th IEEE
RTAW). IEEE Comput. Soc. Press, 1996, pp. 10–17 (cit. on p. 53).

[JO98] Z. Jin, A. J. Offutt. “Coupling-based criteria for integration testing.” In:
Software Testing, Verification and Reliability 8.3 (1998), pp. 133–154
(cit. on p. 53).

[KE] S. Kandl, M. Elshuber. A Formal Approach to System Integration Testing.
url: %5Curl%7Bhttp://arxiv.org/pdf/1404.6743v1%7D (cit.
on p. 50).

[KH81] D. Kafura, S. Henry. “Software Quality Metrics Based on Interconnec-
tivity.” In: Journal of Systems and Software 2.2 (June 1981), pp. 121–
131. url: http://dx.doi.org/10.1016/0164-1212(81)90032-
7 (cit. on p. 41).

[KS08] L. Kharb, R. Singh. “Complexity Metrics for Component-oriented Soft-
ware Systems.” In: ACM Special Interest Group on Software Engineering
33.2 (Mar. 2008), 4:1–4:3. url: http://doi.acm.org/10.1145/
1350802.1350811 (cit. on pp. 41, 42).

140 Bibliography

htp://www.iso.org
%5Curl%7Bhttp://arxiv.org/pdf/1404.6743v1%7D
http://dx.doi.org/10.1016/0164-1212(81)90032-7
http://dx.doi.org/10.1016/0164-1212(81)90032-7
http://doi.acm.org/10.1145/1350802.1350811
http://doi.acm.org/10.1145/1350802.1350811

[KU11] U. Kumari, S. Upadhyaya. “An Interface Complexity Measure for
Component-based Software Systems.” In: International Journal of Com-
puter Applications 36 (Jan. 2011) (cit. on p. 41).

[LHL18] C. Lee, Y. Huang, I. Lan. “Hardware-in-the-Loop Test Case Specification
for Verification of Software Safety Requirements in the Context of ISO
26262.” In: 2018 International Conference of Electrical and Electronic
Technologies for Automotive. 2018, pp. 1–6 (cit. on p. 59).

[Li03] B. Li. “Managing Dependencies in Component-Based Systems Based
on Matrix Model.” In: Proc. Of Net.Object.Days 2003. 2003, pp. 22–25
(cit. on p. 42).

[LIM94] I. Lee, R. K. Iyer, A. Mehta. “Identifying software problems using
symptoms.” In: Proceedings of IEEE 24th International Symposium on
Fault- Tolerant Computing. IEEE Comput. Soc. Press, 1994, pp. 320–
329 (cit. on pp. 52, 53).

[MCT08] L. Mei, W. Chan, T. Tse. “Data Flow Testing of Service-Oriented Work-
flow Applications.” In: May 2008, pp. 371–380 (cit. on p. 50).

[MDO+16] N. Mendes, D. Dias, L. Oliveira, C. Lana, E. Nakagawa, J. Maldon-
ado. “Exploring together Software Architecture and Software Testing:
A Systematic Mapping.” In: International Conference of the Chilean
Computer Science Society. Vol. 35. Oct. 2016 (cit. on pp. 80, 82).

[MHZ+12] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, G. Rothermel. “A Static
Approach to Prioritizing JUnit Test Cases.” In: IEEE Transactions on
Software Engineering 38.6 (2012), pp. 1258–1275 (cit. on p. 63).

[MO97] R. Martin, October. OO Design Quality Metrics. 1997 (cit. on pp. 87,
105).

[MS12] M. Meitner, F. Saglietti. “Software Reliability Testing Covering Sub-
system Interactions.” In: Measurement, Modelling, and Evaluation of
Computing Systems and Dependability and Fault Tolerance. Ed. by
J. B. Schmitt. Vol. 7201. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 46–60 (cit. on
p. 50).

Bibliography 141

[Mye77] G. J. Myers. “Reliable Software Through Composite Design.” In: Jour-
nal of the American Society for Information Science 28 (1977), pp. 303–
303 (cit. on pp. 89, 90).

[NH07] L. Narasimhan, B. Hendradjaya. “Some theoretical considerations for
a suite of metrics for the integration of software components.” In:
Information Sciences 177 (Feb. 2007), pp. 844–864 (cit. on pp. 41,
42).

[NT08] K. Naik, P. Tripathy. “System Integration Testing.” In: Software Testing
and Quality Assurance. JohnWiley & Sons, Ltd, 2008. Chap. 7, pp. 158–
191. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/9780470382844.ch7. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9780470382844.ch7 (cit. on
pp. 18, 32, 33, 108).

[OHK93] A. J. Offutt, M. J. Harrold, P. Kolte. “A Software Metric System for
Module Coupling.” In: Journal of Systems and Software 20.3 (Mar.
1993), pp. 295–308. url: http://dx.doi.org/10.1016/0164-
1212(93)90072-6 (cit. on pp. 53, 55, 89, 90).

[Pag01] M. Page-Jones. The Practical Guide to Structured Systems Design: 2nd
Edition. USA: Yourdon Press, 2001 (cit. on pp. 53, 55, 89).

[RH08] P. Runeson, M. Höst. “Guidelines for conducting and reporting case
study research in software engineering.” In: Empirical Software En-
gineering 14.2 (Dec. 2008), p. 131. url: https://doi.org/10.
1007/s10664-008-9102-8 (cit. on pp. 56, 57, 83).

[RHRR12] P. Runeson, M. Host, A. Rainer, B. Regnell. Case Study Research in
Software Engineering: Guidelines and Examples. 1st. Wiley Publishing,
2012 (cit. on pp. 56, 83).

[RNS20] M. Rizwan, A. Nadeem, M. A. Sindhu. “Theoretical Evaluation of Soft-
ware Coupling Metrics.” In: 2020 17th International Bhurban Confer-
ence on Applied Sciences and Technology (IBCAST). 2020, pp. 413–421
(cit. on pp. 40, 83).

[RNS21] M. Rizwan, A. Nadeem, M. Sindhu. “Vovel metrics-novel coupling
metrics for improved software fault prediction.” In: PeerJ Computer
Science 7 (June 2021) (cit. on p. 81).

142 Bibliography

https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470382844.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470382844.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470382844.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470382844.ch7
http://dx.doi.org/10.1016/0164-1212(93)90072-6
http://dx.doi.org/10.1016/0164-1212(93)90072-6
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8

[RUCH01] G. Rothermel, R. Untch, C. Chu, M. Harrold. “Prioritizing test cases
for regression testing.” In: IEEE Transactions on Software Engineering
27.10 (2001), pp. 929–948 (cit. on p. 63).

[RUCH99] G. Rothermel, R. Untch, C. Chu, M. Harrold. “Test case prioritization:
an empirical study.” In: Proceedings IEEE International Conference on
Software Maintenance - 1999 (ICSM’99). ’Software Maintenance for
Business Change’ (Cat. No.99CB36360). 1999, pp. 179–188 (cit. on
p. 63).

[RW97] D. Richardson, A. Wolf. “Software Testing at the Architectural Level.”
In: International Software Architecture Workshop, Proceedings, ISAW
(Mar. 1997) (cit. on p. 82).

[Sal06] N. Salman. “Complexity Metrics AS Predictors of Maintainability and
Integrability of Software components.” In: Journal of Arts and Sciences
(Jan. 2006) (cit. on p. 91).

[SB91] R.W. Selby, V. R. Basili. “Analyzing error-prone system structure.” In:
IEEE Transactions on Software Engineering 17.2 (1991), pp. 141–152
(cit. on p. 80).

[SBH15] J. Schroeder, C. Berger, T. Herpel. “Challenges from integration testing
using interconnected hardware-in-the-loop test rigs at an automotive
OEM – an industrial experience report.” In: 2015 First International
Workshop on Automotive Software Architecture (WASA). 2015, pp. 39–
42 (cit. on p. 33).

[SBS18] A. Singh, R. Bhatia, A. Singhrova. “Object Oriented Coupling based
Test Case Prioritization.” In: International Journal of Computer Sciences
and Engineering 6 (Sept. 2018), pp. 747–754 (cit. on p. 81).

[SCK10] S. P. Shashank, P. Chakka, D. V. Kumar. “A systematic literature sur-
vey of integration testing in component-based software engineering.”
In: 2010 International Conference on Computer and Communication
Technology (ICCCT). IEEE, 2010, pp. 562–568 (cit. on pp. 19, 37, 50).

[SG14] M. Shahbaz, R. Groz. “Analysis and testing of black-box component-
based systems by inferring partial models.” In: Software Testing, Verifi-
cation and Reliability 24 (June 2014) (cit. on p. 52).

Bibliography 143

[SGK09] A. Sharma, P. Grover, R. Kumar. “Dependency analysis for component-
based software systems.” In: ACM SIGSOFT Software Engineering Notes
34 (July 2009), pp. 1–6 (cit. on p. 42).

[She95] S. Sherer. “Software fault prediction.” In: J. Syst. Softw. 29 (1995),
pp. 97–105 (cit. on p. 77).

[SKB11] S. Sengupta, A. Kanjilal, S. Bhattacharya. “Measuring complexity of
component based architecture: a graph based approach.” In: ACM
SIGSOFT Software Engineering Notes 36 (Jan. 2011), pp. 1–10 (cit. on
p. 42).

[SN13] J. Sobotka, J. Novák. “Automation of automotive integration testing
process.” In: 2013 IEEE 7th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems (IDAACS). Vol. 01. 2013,
pp. 349–352 (cit. on p. 37).

[Spi95] A. Spillner. “Test criteria and coverage measures for software integra-
tion testing.” In: Software Quality Journal 4.4 (1995), pp. 275–286
(cit. on p. 50).

[SRCF17] D. Santos, A. Resende, E. de Castro Lima, A. Freire. “Software Insta-
bility Analysis Based on Afferent and Efferent Coupling Measures.” In:
Journal of Software 12 (Jan. 2017), pp. 19–34 (cit. on p. 88).

[SWM+17] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, Z. Su. “A Survey on
Data-Flow Testing.” In: ACM Computing Surveys 50.1 (2017), pp. 1–35
(cit. on p. 64).

[UY93] H. Ural, B. Yang. “Modeling Software for Accurate Data Flow Rep-
resentation.” In: Proceedings of the 15th International Conference on
Software Engineering. ICSE ’93. Baltimore, Maryland, USA: IEEE Com-
puter Society Press, 1993, pp. 277–286. url: http://dl.acm.org/
citation.cfm?id=257572.257633 (cit. on p. 41).

[WCO03] Y. Wu, M.-H. Chen, J. Offutt. “UML-Based Integration Testing for
Component-Based Software.” In: vol. 2580. Feb. 2003, pp. 251–260
(cit. on p. 50).

[Wey88] E. J. Weyuker. “Evaluating software complexity measures.” In: IEEE
Transactions on Software Engineering 14.9 (Sept. 1988), pp. 1357–
1365 (cit. on p. 91).

144 Bibliography

http://dl.acm.org/citation.cfm?id=257572.257633
http://dl.acm.org/citation.cfm?id=257572.257633

[WGL+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa. “A Survey on Software
Fault Localization.” In: IEEE Transactions on Software Engineering 42.8
(2016), pp. 707–740 (cit. on p. 61).

[Whi87] L. J. White. “Software Testing and Verification.” In: Advances in Comput-
ers. Ed. by M. C. Yovits. Vol. 26. Advances in Computers. Elsevier, 1987,
pp. 335–391. url: http://www.sciencedirect.com/science/
article/pii/S0065245808600108 (cit. on p. 53).

[WZM11] M. Wagner, D. Zöbel, A. Meroth. “An adaptive Software and Systems
Architecture for Driver Assistance Systems based on service orienta-
tion.” In: International Journal of Machine Learning and Computing 1
(Jan. 2011), pp. 359–366 (cit. on p. 30).

[Xia00] F. Xia. “On the concept of coupling, its modeling and measurement.”
In: Journal of Systems and Software 50 (2000), pp. 75–84 (cit. on
pp. 82, 83, 90, 130).

[XLKR00] Xia Cai, M. R. Lyu, Kam-Fai Wong, Roy Ko. “Component-based soft-
ware engineering: technologies, development frameworks, and quality
assurance schemes.” In: Proceedings Seventh Asia-Pacific Software En-
geering Conference. APSEC 2000. 2000, pp. 372–379 (cit. on p. 17).

[YC79] E. Yourdon, L. L. Constantine. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. 1st. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1979 (cit. on pp. 53, 81, 87).

[ZH01] H. Zhu, X. He. “An observational theory of integration testing for
component-based software development.” In: 25th Annual Interna-
tional Computer Software and Applications Conference. COMPSAC 2001.
IEEE, 2001, pp. 363–368 (cit. on pp. 51, 55, 59).

[ZHZ+13] L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei. “Bridging the gap
between the total and additional test-case prioritization strategies.”
In: 2013 35th International Conference on Software Engineering (ICSE).
2013, pp. 192–201 (cit. on p. 79).

[ZZH+09] L. Zhang, J. Zhou, D. Hao, L. Zhang, H. Mei. “Prioritizing JUnit test
cases in absence of coverage information.” In: 2009 IEEE International
Conference on Software Maintenance. 2009, pp. 19–28 (cit. on p. 63).

Bibliography 145

http://www.sciencedirect.com/science/article/pii/S0065245808600108
http://www.sciencedirect.com/science/article/pii/S0065245808600108

List of Figures

1.1 Thesis outline and structure . 26

2.1 Architectural Views on Automotive Systems [Bro03] 30
2.2 System- and Software Design relevant Activities of V-Model 32
2.3 Topological classification of HIL test platforms commonly

used in automotive industry [HSS+13] 34
2.4 Illustration of ECUs used in Chassis Control Subsystem. . . . 39
2.5 Undirected graph abstraction of an example system [All02] 44
2.6 Intermodule edge graph MS∗ [All02] 46

3.1 Quality Model for Observation schemes [ZH01] 51
3.2 Failure symptoms and symptom cluster [LIM94] 53
3.3 Embedded case study design for the study of inter-component

base data-flow according to Runeson [RH08] 57
3.4 Results of Test Case Similarity to detected Failures 69
3.5 Results of Test Case Similarity to Undetected Failures 71
3.6 Results of Test Case Similarity to undetected Failures focusing

the Usage of Data Flow for verification purpose 72
3.7 Results of Test Case Similarity to Undetected Failures Focusing

the Usage of Data Flow for Stimulation Purpose 73

147

3.8 Results of Test Case Similarity to Undetected Failures Focusing
on the Usage of Data Flow within Precondition Predicates . 73

4.1 Association of Coupling, Complexity and Fault-Proneness
[RNS20] . 83

4.2 Embedded case study design for the study of component and
interface coupling according to Runeson [RH08] 83

4.3 Generic Information Flow Model for component-based Systems 89
4.4 Correlation of Size(Si) of interfaces to interface level failure

distribution . 98
4.5 Proportion of endpoints to Size(Si) of interfaces 98
4.6 Illustration of the Defect Distribution of the Chassis Control

System . 100

5.1 UML Class Diagram for Software- and Hardware Architecture 114
5.2 FIBEX Class Diagram [Gro] . 115
5.3 Entity Relationship Model for Test Design Classification . . . 118
5.4 Collaborating activities of the V-Model involved in the pro-

posed approach of Coupling-based System Integration Testing 119
5.5 Proposed activities for Coupling-based System Integration

Testing . 122

6.1 Contributions C0-C2 in relation to research process 124

148 List of Figures

List of Tables

2.1 ECUs contained in the case system 40
2.2 Working graph abstractions [All02] 45
2.3 System- and Module-level measures [All02] 47
2.4 Resulting measures for example graph [All02] 48

3.1 Our two hypothesis pairs for measuring the effectiveness of
data-flow classification for test coverage analysis 58

3.2 Exemplary Data-Flow Profile of a functional Test Case 61
3.3 Exemplary Data-Flow Profile of a Failure 62
3.4 Results of Shared-Data-Use Coverage of selected Test Cases 67
3.5 Results of Shared-Data-Use Coverage of Failures found by

selected Test Cases . 67
3.6 Results of Shared-Data-Use Coverage of undetected Failures 67

4.1 Our five hypothesis pairs for the correlation between mea-
surements and failure-proneness at component level 85

4.2 Our four hypothesis pairs for the correlation between mea-
surements and failure-proneness at interface level 86

4.3 Generic coupling types [Mye77] 90

149

4.4 Software Interface, Data Flow and Failure Count for the Case
System . 95

4.5 Results of Module Level Complexity Measures 97
4.6 Results of Component Level Dependency and Data Flow Mea-

sures . 99
4.7 Results of component level Pearson 103
4.8 Results of component level Spearman correlation 104
4.9 Results of interface level Pearson correlation 104
4.10 Results of interface level Spearman correlation 104

150 List of Tables

	Introduction
	Motivation
	Problem
	Research Objective
	Contribution
	Pre-Published
	Thesis Structure

	Theoretical and Technical Background
	Model Driven Development
	System Integration Testing
	Description of the Studied System
	Existing Coupling Measures
	Data Flow Analysis
	Dependency Analysis
	Information Entropy

	Data Flow based Test Coverage
	Related Work
	Research Design
	Data Flow Classification Scheme
	Data Flow Similarity
	Coverage Criteria
	Evaluation
	Data-Flow Coverage
	Test Gap Identification

	Conclusion
	Threats to Validity

	Test Case Selection and Prioritization
	Related Work
	Research Design
	Selection of Coupling Measures
	Data Collection for System Graph Abstraction
	Failure Distribution
	Evaluation
	Conclusion
	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Coupling based System Integration Testing
	Software and Hardware Architecture Model
	Test Data Classification Model
	Coupling based System Integration Testing Process

	Discussion and Conclusion
	Summary of Contributions
	Discussion and Limitations
	Future Work
	Conclusion

	Bibliography
	List of Figures
	List of Tables

