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Abstract
Unsteady, 3D particle tracking velocimetry (PTV) data are applied as an inlet boundary condition in a direct numerical 
simulation (DNS). The considered flow case is a zero pressure gradient (ZPG) turbulent boundary layer (TBL) flow over a 
flat plate. The study investigates the agreement between the experimentally measured flow field and its simulated counter-
part with a hybrid 3D inlet region. The DNS field inherits a diminishing contribution from the experimental field within the 
3D inlet region, after which it is free to spatially evolve. Since the measurement does not necessarily provide a spectrally 
complete description of the turbulent field, the spectral recovery of the flow field is analyzed as the TBL evolves. The study 
summarizes the pre-processing methodology used to bring the experimental data into a form usable by the DNS as well as 
the numerical method used for simulation. Spectral and mean flow analysis of the DNS results show that turbulent struc-
tures with a characteristic length on the order of one average tracer particle nearest neighbor radius r̄

NN
 or greater are well 

reproduced and stay correlated to the experimental field downstream of the hybrid inlet. For turbulent scales smaller than 
r̄
NN

 , where experimental data are sparse, a relatively quick redevelopment of previously unresolved turbulent energy is seen. 
The results of the study indicate applicability of the approach to future DNS studies in which specific upstream or far field 
boundary conditions (BCs) are required and may provide the utility of decreasing high initialization costs associated with 
conventional inlet BCs.
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Graphic abstract

1  Introduction

The relative advantages and disadvantages of computational 
fluid dynamics (CFD) and experimental fluid dynamics 
(EFD) as they pertain to the study of turbulent flows are 
well understood. CFD, in particular DNS, delivers com-
plete information about a turbulent flow field and is highly 
reproducible, however is limited in Reynolds number Re due 
to computational cost and may be sensitive to the choice 
of boundary conditions. By contrast, EFD can reach much 
higher Re but is typically constrained in spatial and/or tem-
poral resolution and contains unavoidable measurement 
uncertainties whose correction may be ambiguous.

While the pros and cons of DNS and EFD are still very 
present, the simultaneous increase in availability of comput-
ing resources and progress in the development of experimen-
tal techniques in recent years have led to more overlap in the 
datasets that DNS and EFD produce in terms of Re regime 
and spatiotemporal resolution. For example, advances in 
post-processing algorithms for PTV image sequences and 
advanced PTV measurement setups (Schanz et al. 2013; 
Schröder et al. 2015; Schanz et al. 2016; Schröder et al. 

2018) have allowed for significantly increased tracer seed-
ing densities. As a result, high-frequency, transient 3D data-
sets have been produced which are the first of their kind 
and quality. The tracer particle localization scheme termed 
‘Shake-The-Box’ (STB) approximates individual particles’ 
trajectories as continuous B-splines through 3D space and 
time, allowing for the extrapolation of particle locations to 
new frames thus greatly reducing identification effort and 
improving accuracy. In doing so, the occurrence of so-called 
‘ghost particles’ is reduced, in turn reducing measurement 
error. Ghost particles are spurious peaks falsely identified 
as tracer particles during PTV image post-processing which 
come about largely due to optical ambiguities of a given 
multi-camera arrangement (see Maas et al. 1993; Elsinga 
et al. 2006). Because the STB technique uses spatiotemporal 
(4D) information in its efficient predictor-corrector formula-
tion, it is also referred to as 4D-PTV. As will be explored, 
such 4D-PTV datasets pose a unique opportunity to be 
used as BCs for DNS studies, which often struggle with the 
economical definition of realistic and/or appropriate BCs. 
The BC can be defined in various ways, for example as an 
‘initial value’ type BC as in the present study or as a global 
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immersed BC. The dual advantage of such a technique is 
the integration of realistic BCs in a numerical study and in 
turn the potential extraction of higher resolution informa-
tion about the experimental problem through analysis of 
the numerical results. Combined experimental/numerical 
approaches are broadly referred to as ‘hybrid methods.’

Hybrid methods refer to techniques seeking to leverage the 
relative advantages of EFD and CFD for combinations of vari-
ous purposes, including noise reduction through assimilation to 
governing equations, the derivation of unknown field quanti-
ties, resolution enhancement, and the application of highly spe-
cific boundary conditions (Suzuki and Yamamoto 2015). Such 
goals are by no means separate, and the pursuit of one of these 
objectives often implicitly involves others. By assimilating 
real-world data within numerical simulation, highly resolved 
and reproducible outputs having agreement with the governing 
equations of fluid physics may be attained that have the added 
credibility of being at least partially rooted in natural observa-
tion. For example, techniques for the derivation of pressure 
and/or body forces (Fujisawa et al. 2005; Van Oudheusden 
et al. 2006; Murai et al. 2007; Schneiders et al. 2016) or tem-
perature (Ma et al. 2007) have been successfully implemented 
in multiple studies. Similarly, modern numerical weather fore-
casting models (Skamarock et al. 2005) incorporate real-time 
sparse measurement data to define an initial condition (IC).

Measurement data may be integrated into a simula-
tion through various means, for example via projection of 
proper orthogonal decomposition (POD) modes (Ma et al. 
2003; Sirisup et al. 2004) or the coupling of PIV data to a 
2D DNS via a proportional feedback term in the governing 

equations (Suzuki et al. 2006, 2009, 2009; Yamagata et al. 
2008; Suzuki et al. 2010). More recently, optimal Kalman 
filtering of the input data has allowed for the extension of the 
hybrid approach to higher Re (Suzuki 2012). The hybrid stud-
ies referenced employ advanced coupling schemes that are at 
least partially active within a complete subdomain of interest.

1.1 � Methodology and objectives

In the present study, unsteady PTV data from a state-of-
the-art PTV measurement are used as an inflow boundary 
condition in a DNS. To evaluate the applicability of such a 
hybrid experimental-numerical approach, the canonical case 
of a flat plate TBL at a momentum thickness Reynolds num-
ber of Re

�
≈4000 is examined, where Re

𝜃
=𝜌̄ ūe𝜃∕𝜇̄e . Here, 

� is the incompressible momentum thickness, the index e 
denotes values evaluated at the edge of the boundary layer 
and overlined variables (◻̄) represent time-averaged values. 
The external data are coupled via a relatively straightfor-
ward proportional forcing scheme (see Sect. 5.2) in a 3D 
inlet subdomain, downstream of which the flow is allowed to 
evolve freely. The current work is unique in that it uses 3D, 
unsteady PTV data from a state-of-the-art PTV technique 
rather than a single 2D plane, an achievement made realiz-
able thanks to the availability of such datasets in the first 
place. Hybrid studies typically focus on the enhancement 
of experimental data within the complete area of interest, 
such as determination of the pressure field or the reduction 
of experimental noise. The current study focuses on the 
implementation and evaluation of a realistic turbulent inflow 

Fig. 1   Schematic of experimen-
tal setup, from (Schanz et al. 
2019)
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condition in which the incoming flow is already at a devel-
oped turbulent state, quantified by Re

�
 , though not spectrally 

complete. For reference, conventional DNS studies of flat 
plate TBLs often require significant computational effort to 
arrive at an equivalent Re

�
 . By qualitatively evaluating the 

resulting flow field’s agreement with the input of the original 
EFD contribution, a first estimation of the potential of the 
methodology is assessed. Additionally, through analysis of 
the spectral development of the TBL within the DNS, infer-
ences can be made about the degree of spectral deficiency 
inherent to the measurement and pre-processing chain. To 
the knowledge of the authors, the present study is the first of 
its kind in terms of resolution and dimensionality of inflow.

The present paper addresses the primary question of 
whether a 3D DNS using coupled 4D-PTV data is possi-
ble and worthwhile. Since the utility of the coupling as it 
pertains to the definition of an upstream BC is of central 
focus, the success of the study is evaluated through com-
parison of the freely evolving DNS field with the experi-
mental field. This evaluation will reveal the net effect of 
factors such as potential mismatches in the exact far field 
condition, for example the freestream pressure gradient 
and presence of periodic span-wise conditions, on the 
evolution of the TBL flow. The central question of how 
the limited resolution of the external data source, in the 
present case meaning the finite tracer density, affects the 
development of turbulent kinetic energy k and the arrival 
upon a state of constant k production will be addressed. 
In short, the limiting factors of the methodology are to be 
investigated, such as resolution criteria.

The paper is organized according to the following struc-
ture. Section 2 provides a compact summary of the experiment 
from which the data for the simulation were derived. Section 3 

Fig. 2   Wall-normal (y) profiles of bin-averaged tracer data

Fig. 3   ZPG region, binning schemes and comparison with DNS 
domain extents. Tracers at a single snapshot timestep are pictured
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characterizes the experimental data directly. Section 4 presents 
the interpolation method used to assimilate the Lagrangian 
PTV data to the rectilinear DNS grid. Section 5 presents the 
numerical method used, including information about the flow 
solver NS3D, the applied boundary conditions, as well as the 
hybrid coupling scheme used to introduce velocity perturba-
tions into the flow domain. The results of the simulation itself 
are shown in Sect. 6, focusing on the mean flow (6.1) and wave-
number domain analysis (6.2). The simulation and experiment 
are then directly compared in Sect. 7, including snapshots of 
the instantaneous flow fields in Sect. 7.1, a quick demonstration 
of the application of spatial filtering in Sect. 7.2 and a look at 
the correlation between the experimental and DNS in Sect. 7.3. 
Finally, Sect. 8 summarizes the results presented in Sects. 6 and 
7 and discusses the conclusions of the study.

2 � Experimental data source

The 4D-PTV data were generated as a product of experiments 
described in Schanz et al. (2019) using the state-of-the-art 
4D-PTV technique. The experiment was run in the Atmospheric 
Windtunnel Munich (AWM) at the University of the Federal 
Armed Forces Munich (Universität der Bundeswehr München) in 
Neubiberg, Bavaria. Figure 1 (from Schanz et al. 2019) provides 
a schematic of the experimental setup. In the 1.8 × 1.8 m test sec-
tion, a double ramp wind tunnel model from the DLR VicToria 
(Knopp et al. 2018; Deutsches 2020) project was installed, which 
has an initial, upward-sloped favorable pressure gradient (FPG) 
region, followed by a ZPG flat region that is 4.0 m in stream-wise 
length, followed by a favorable pressure gradient (FPG) region 
that immediately precedes the adverse pressure gradient (APG) 
region associated with the 18° downward-sloped wall. The test 
section was seeded with Helium filled soap bubbles (HFSBs), 
which were illuminated by 10 LED array panels.Images were 
captured by a total of 12 high-speed cameras, 4 of which were 
focused primarily on the aft-most half of the ZPG region, having 
a resolution of 4096 × 2160 pixels per camera and capable of 
producing 1000 exposures per second. Datasets for 19 runs were 
received, each containing around 1360 timesteps, representing 
1.36s of measurement duration at 1 kHz. The flow was seeded 
with HFSBs from two locations, using a total of 250 nozzles to 
produce the bubbles. To maximize the seeding density and pre-
vent a large portion of bubbles from bursting upon contact with 
the wind tunnel meshes, 200 of the nozzles were placed imme-
diately upstream of the test section, which was noted as having 
reduced the span-wise uniformity of the averaged boundary layer 
as seen in Fig. 2. However, since neither the original experiment 
nor the present numerical study rely on comparisons to canonical 
flat plate TBL studies in literature, but rather focus on the evalua-
tion of new methodologies, this feature is inconsequential.

3 � Characterization of experimental data

To allow for precise comparisons between the DNS and 
experimental results, detailed characterization of the orig-
inal experimental flow field is necessary. This involves 
quantifying the degree of span-wise variance present in 
the 4D-PTV data as well as the isolation of a ZPG region 
having minimal absolute stream-wise (x) pressure gradi-
ent. A ZPG region is defined where the mean stream-wise 
acceleration is virtually unaffected by the FPG or APG 
regions, derived through analysis of the mean accelera-
tion with respect to the stream-wise (x) and stream-normal 
(y, z) magnitudes. The ZPG box pictured in Fig. 3 rep-
resents the boundaries of the region found to be free of 
significant mean stream-wise pressure gradients as well 
as corner flow effects. It has dimensions [Δx×Δy×Δz] 
= 1.5⋅𝛿99,multi⋅[5×2×4] , where 1.5⋅𝛿99,multi represents an 
approximate average boundary layer thickness at the mid-
dle of the wind tunnel model for several experimental 
runs, multiplied with a factor of 1.5. All later comparisons 
between the experimental and DNS flow fields are con-
tained within this region, as illustrated by the superposi-
tion of the DNS domain within the ZPG region in Fig. 3. 
The precise determination of the dimensionless flow 
parameters needed for the DNS flow definition are derived 
by bin-averaging the tracers within this rectangular region. 
The average wall-normal profiles generated from the bin-
averaged tracer data are presented in Sect. 3.1. The calcu-
lation of the average tracer nearest neighbor distance r̄NN 
is discussed in Sect. 3.2. This characteristic length plays 
an important role in the interpretation of the analyses pre-
sented in Sect. 6 and may be thought of as the effective 
spatial resolution of the experimental dataset.

3.1 � Spatial bin‑averaging

Bin-averaging is performed to derive averaged flow metrics 
in a stationary 3D reference frame. Binning is the process of 

Fig. 4   Wall-normal profiles of nearest-neighbor distance r
NN
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quantizing or aggregating non-uniformly distributed discrete 
data into ranges. Here, binning is necessary for deriving a 
spatiotemporal average of PTV data in the form of discrete 
‘point cloud’ style tracer measurements with sufficient sta-
tistical confidence. Spatial bin boundaries are defined, and 
tracer measurements for all times residing in each bin are 
averaged.Figure 3 shows the near-ZPG region as well as the 
stream-wise and span-wise binning schemes. Additionally, 
a superposition of the eventual DNS domain boundaries is 
shown. In the wall-normal direction, a bin width of 200 µm 
was used. Figure 2a shows the wall-normal ū+ and u�u�

+
 

profiles for the [nx×nz] = [5×1] binning scheme, where it 
is evident that the profiles consistently collapse when non-
dimensionalized in wall coordinates. Primes (◻�) denote 
fluctuations with respect to the Reynolds averaged mean 
value. Figure 2b shows the same wall-normal profiles for 
the [nx×nz] = [1×4] binning scheme, showing a degree of 
span-wise non-uniformity present within the experimental 
data due to the presence of the upstream bubble rakes men-
tioned in (Schanz et al. 2019). For reference, Fig. 2 contains 
ZPG profiles from (Eitel-Amor et al. 2014) for comparable 
Re

�
 , represented by gray lines.Additionally, the u+=y+ trend 

for the viscous sublayer, u+=1∕� ⋅ log(y+) + C (with �=0.41 , 
C=5.2 ) trend in the logarithmic layer and an approximation 
for the transition region from (Spalding 1961) are plotted.

3.2 � Nearest neighbor calculation

In an effort to characterize the datasets received, one metric 
of interest is the nearest neighbor (NN) distance rNN of every 
tracer at every timestep. A k-dimensional tree based method 
was used to establish the distance between every combina-
tion of roughly 550K tracers per timestep at each of 1359 
timesteps. The minimum of these distances, the nearest-
neighbor distance (or radius), is then saved as an additional 
scalar which can be averaged in time and space. Addition-
ally, the standard deviation of rNN for tracers at all times in a 
given spatial bin delivers information about the uniformity 
of the tracer density. Figure 4 shows that, on average, the 
mean tracer distance r̄NN in the ‘well-seeded’ part of the 
experimental flow is roughly 5.3 mm.The plot colors indi-
cate the x-bin (see Fig. 3), demonstrating the consistency of 
the seeding density in the stream-wise direction in addition 
to the wall-normal y direction between 100 and 2000 dimen-
sionless viscous wall distance units y+=yu

�
∕�w . Addition-

ally, the standard deviation of rNN is roughly 1.8 mm.
Close to the wall ( y+<100 ), both the mean rNN and its 

variance increase. Since no new tracers are ‘randomly walk-
ing’ from underneath the wall, the tracer replenishment is 
only coming from above (elsewhere from above and below). 
When tracer bubbles hit the wall they burst, so for a given 
random walk there are more sinks than sources of tracers. 
This phenomenon is well illustrated in Fig. 4, where the 

mean NN radius r̄NN starts to change at r̄NN from the wall, 
which is where the effect of the wall acting as a tracer ‘sink’ 
would be expected to first become visible on average, being 
that for y<r̄NN a sink exists within the local sphere defined 
by r̄NN . Also, the standard deviation NN radius has a sharp 
increase also at r̄NN=5.3 [mm] , which is likely due to tracer 
bubbles bursting. When this happens, the sudden elimina-
tion of one tracer from the local population causes a jump 
in r̄NN between timesteps, hence increasing the variance of 
a time-collapsed population.

4 � Tracer data pre‑processing

4.1 � Spatial interpolation to a rectilinear grid

The experimental data are in the form of sampled tracer 
trajectories, meaning that the velocity of the turbulent flow 
field is only known at scattered point locations for a given 
timestep. Since the coupled hybrid region acting as an 
unsteady inlet will require information at a set of stationary 
points (rectilinear grid points) a spatial interpolation of the 
data is necessary. Interpolation of sampled, limited-resolu-
tion data will generally introduce some level of error with 
respect to the continuous (and unknown) ‘ground-truth’ data, 
in this case the turbulent flow in the laboratory. The choice 
of interpolation method is therefore important and in the 
present case was chosen with two priorities in mind, namely 
the minimization of interpolation error and the fulfillment 
of known conservation relationships such as mass conserva-
tion. Naturally, these priorities are aligned in that reduction 
of error implies fulfillment of conservation laws (and vice-
versa). For this reason, significant effort was invested into 
the comparison and validation of potential methods.

One well-known interpolation method often employed for 
the general problem of interpolating ‘point cloud’ style data 
is inverse distance weighting (IDW), whereby the value at a 
given output point is determined by the distance-weighted 
average of N nearest input points. While highly scalable 
and computationally efficient, IDW was tested and seen 
to be highly sensitive to both free parameters: the choice 
of weighting exponent and number of NN points used for 
the average. Furthermore, IDW does not directly take into 
account any physical conservation law in its mathematical 
formulation.

Another class of commonly used interpolation methods 
for tasks of this type is radial basis function (RBF) based 
interpolation. Practical details of RBFs and their application 
to interpolation are available in (Schaback 2007; De Marchi 
and Perracchione 2018) and a formal mathematical descrip-
tion can be found in Buhmann (2000, 2003). Similar to poly-
nomial and the special case of piecewise polynomial (spline) 
interpolation, RBF interpolation involves setting up and 
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solving a system of linear equation in the classic form A�=f  , 
such that a coefficient vector �=A−1f  is obtained and used 
to form a continuous interpolant through linear dot-product 
summation of the coefficients and a set of basis functions 
(e.g., [1, x, x2, x3,…] in 1D polynomial interpolation). RBF 
interpolation differs from classical polynomial interpolation 
in that the interpolant is constructed from the set of distances 
between the known point coordinates rather than the spa-
tial coordinates themselves. This has enormous advantages 
when extending the method to higher dimensions, where 
polynomial interpolation quickly becomes expensive, dif-
ficult, and is not guaranteed to produce an interpolant for 
any arbitrary set of points when using a given set of basis 
functions (Mairhuber 1956). Discussion on the differences 
between polynomial interpolation and RBF interpolation, 
especially concerning interpolation in multiple dimensions 
can be found in (Buhmann and Jäger 2019). Section 4.2 
gives a summary of radial basis function interpolation for 
3D scalar fields as well as the extension to a ‘divergence-
free’ formulation for 3D vector fields.

4.2 � Summary of radial basis function interpolation

In its conventional formulation, RBF interpolation seeks to 
derive a continuous approximation (or interpolant) function 
s of a scalar-valued function f: s(�)≈f (�) . Here, the scalar-
valued function f is assumed to be a function of (and is inter-
polated in) 3D space ℝ3 , though the method is equivalent 
for functions of any space ℝn since it transforms the sup-
port point coordinates to a set of shifted scalar distances. 
The function f is therefore a multivariate function of three 
coordinate dimensions, or equivalently the coordinate vec-
tor �=[x, y, z] . If f is known at N known points in space, the 
condition is set on s that the input f must be exactly recov-
ered at these N points, i.e., s(�i)≡f (�i) for i=1, 2,… ,N . The 
interpolation process has two main steps: the solution of 
the scaling vector � and the formation and evaluation of the 
interpolant. In the first step, a linear system of equations 
(LSE) of the form A�=f  is set up:

(1)

⎡⎢⎢⎢⎣

�(‖�1 − �1‖) �(‖�2 − �1‖) … �(‖�N − �1‖)
�(‖�1 − �2‖) �(‖�2 − �2‖) … �(‖�N − �2‖)

⋮ ⋮ ⋱ ⋮

�(‖�1 − �N‖) �(‖�2 − �N‖) … �(‖�N − �N‖)

⎤⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

⎡⎢⎢⎢⎣

�1

�2

⋮

�N

⎤⎥⎥⎥⎦
⏟⏟⏟

�

=

⎡⎢⎢⎢⎣

f1
f2
⋮

fN

⎤⎥⎥⎥⎦
⏟⏟⏟

f

 where the A matrix is the square ( N×N ) distance matrix 
with every Euclidean distance r=‖�i − �j‖ element evalu-
ated by a scalar-valued, positive-definite RBF � . Typical 
candidates for � include �=r , r3 , r2log(r) or e−�r , where � 
is an adjustment parameter. The f vector contains the values 
of f (�i) at the N known points. The � vector is the unknown 
scaling coefficient vector, which can be solved for through 
inversion of A as �=A−1f  . In the second step, the interpolant 
function s(�) is built and evaluated in the form s=B�=BA−1f  , 
where the B matrix

is an M × N matrix similar to A, but is now the RBF evalu-
ation of the distance matrix between the N known and M 
‘new’ points. The s vector is the resulting vector of inter-
polated values at the M new points. In the present case, 
the number of tracers at a given timestep within and in 
the vicinity of the inlet region fluctuates around the aver-
age value of N≈6000 . The tracer data are used to form 
the interpolant, which interpolates the PTV flow field to 
M=[33×424×1280]=17.9M grid point locations for use in 
the DNS.

In the present study, the interpolated scalar f would represent 
each individual component of the vector-valued velocity field 
�=[u, v,w]T and the ‘new’ points would be the inlet grid points. 
Interpolating each velocity component independently would not 
leverage known physical relationships between these quantities, 
such as being approximately divergence-free ∇⋅�≈0 due to mass 
continuity and the effectively constant mass density � at the low 
experimental freestream Mach number of M∞,exp=0.019 . There-
fore, a vector field � (�) can be interpolated using a matrix-valued 
RBF kernel (Narcowich and Ward 1994). A significant advantage 
of this formulation is that the RBF kernel can be formulated in 
such a way that the resulting interpolated vector field inherits the 
quality of being divergence-free by virtue of how the RBF kernel is 
constructed. Formal mathematical foundations and analysis of this 
method are found in Lowitzsch (2002, 2005) and further applied 
examples are presented in McNally (2011); Yang et al. (2014). 
This extension reduces interpolation error by eliminating ∇⋅�≠0 
error. Alternatively considered, the accuracy of the interpolant is 
increased because it now has more detailed constraints.

A vector-valued approximation function �(�) of a vector-valued 
field � (�) is now once again sought such that �(�)≈�(�) . Drawing 
on Helmholtz’s theorem, it is known that any smooth, well enough 
behaved vector field � can be decomposed as the sum of a curl-free 
(irrotational) and a divergence-free (solenoidal) field �=∇p+∇×� , 
where the gradient of the scalar potential ∇p is curl-free by identity 

(2)

B =

⎡⎢⎢⎢⎣

�(‖�1 − �1‖) �(‖�2 − �1‖) … �(‖�N − �1‖)
�(‖�1 − �2‖) �(‖�2 − �2‖) … �(‖�N − �2‖)

⋮ ⋮ ⋱ ⋮

�(‖�1 − �M‖) �(‖�2 − �M‖) … �(‖�N − �M‖)

⎤⎥⎥⎥⎦
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( ∇×(∇p)=0 ) and the curl of the vector potential ∇×� is divergence-
free by identity ( ∇⋅(∇×�)=0 ). In the special case that the vector 
field � is known a priori to be divergence-free ( ∇⋅�≡0 ), then it 
can be shown that Helmholtz’s theorem reduces to �=∇×� (Grif-
fiths 2014), i.e., that � is the curl of a vector potential field � . The 
vector function � can still not be uniquely defined as the curl of a 
vector field � , i.e., �≡∇×� because for any � , where ∇×�=� , the 
offset of � by the gradient of any arbitrary scalar potential field ∇p� 
would also yield a field where ∇×(�+∇p�) is also =� (see (Jack-
son 2002)). This non-uniqueness is summarized by the concept 
‘gauge freedom’ or ‘gauge invariance,’ i.e., that inconsequential 
additional degrees of freedom (realized by ‘gauge transformations’) 
are available which yield equivalent observed states of a system 
(Jackson and Okun 2001). To break the gauge invariance and hence 
the non-uniqueness problem, additional conditions are needed, i.e., 
the gauge must be ‘fixed.’ One common choice of gauge is the Cou-
lomb gauge, equivalent to saying that the vector potential � is itself 
divergence-free, i.e., ∇⋅�=0 , which can be implemented by setting 
�=∇×� (see (Jackson 2002; Stewart 2003)). Thus � can be uniquely 
defined as �≡∇×(∇×�)=∇(∇⋅�)−∇2� . This is the starting point 
for the definition of the divergence-free approximation function � , 
which can be expanded in 3D Cartesian coordinates:

The 1D derivative operator �

�xi
 is shortened to �xi above for 

compactness. The operator {−Δ�+∇∇T} maps the field � to 
� and is also used in the construction of the matrix-valued 
RBF with � being the 3x3 identity matrix, Δ being the 
Laplace operator Δ=∇2=∇⋅∇ and ∇ is the del operator being 
∇=[�x, �y, �z]

T in 3D Cartesian coordinates. A scalar RBF � 
with sufficiently high order can be modified by the differen-
tial operator {−Δ�+∇∇T} (see (Lowitzsch 2002)) to form 
the matrix-valued RBF �={−Δ�+∇∇T}�.

(3)
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In the present study, a Wendland polynomial (Wendland 
1995) was chosen for � , specifically �4,2 , which in 1D is

where �4,2(r) is defined as null for r>1 . The 3D Cartesian 
derivatives of �4,2(�) needed for the construction of � are 
as follows:

in which the components rx , ry and rz are 1D distance com-
ponents of �=[rx, ry, rz]T and �̂ is the norm �̂=‖�‖ , i.e., the 
3D Euclidean distance. The same linear system is set up as 
in the scalar case to find the coefficient vector � , except now 
in block-structured form

whereby A now has dimensions 3N×3N, and � and f 
have dimensions 3N× 1. Each block of A, i.e., Aij is the 

(4)

� =

⎡
⎢⎢⎣

−�2
y
− �

2
z

�x�y �x�z

�y�x −�2
x
− �

2
z

�y�z

�z�x �z�y −�2
x
− �

2
y

⎤
⎥⎥⎦

� =

⎡⎢⎢⎣

Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33

⎤⎥⎥⎦

(5)�4,2(r) = (1 − r)6
(
35r2 + 18r + 3

)

(6)

𝜕
2
x
(𝜓4,2) = −56(�̂ − 1)4

(
4�̂ − 35r2

x
− 5r2

y
− 5r2

z
+ 1

)

𝜕
2
y
(𝜓4,2) = −56(�̂ − 1)4

(
4�̂ − 5r2

x
− 35r2

y
− 5r2

z
+ 1

)

𝜕
2
z
(𝜓4,2) = −56(�̂ − 1)4

(
4�̂ − 5r2

x
− 5r2

y
− 35r2

z
+ 1

)

𝜕x𝜕y(𝜓4,2) = 1680rxry(�̂ − 1)4

𝜕y𝜕z(𝜓4,2) = 1680ryrz(�̂ − 1)4

𝜕z𝜕x(𝜓4,2) = 1680rzrx(�̂ − 1)4

(7)

⎡⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

⎡⎢⎢⎣

�1

�2

�3

⎤⎥⎥⎦
⏟⏟⏟

�

=

⎡⎢⎢⎣

f1
f2
f3

⎤⎥⎥⎦
⏟⏟⏟

f

Fig. 5   Schematic 1D illustration of interpolation scheme used to 
enforce no-slip condition at the wall
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corresponding Ψij evaluation of � with dimensions N × N. 
The blocks of the vector f are the stacked vector field com-
ponents, i.e., f=[u1 … uN|v1 … vN|w1 …wN]

T in the present 
study.

The evaluation of the interpolant B�=BA−1f  is analo-
gous to the scalar case except now the block-structured 
B has dimensions 3M× 3N and each M × N block Bij is the 
corresponding Ψij evaluation of � , where � is the vector of 
1D distances between the known and new points. When 
the interpolant B� is evaluated, the resulting vector field 
(formed by reshaping f from 3M× 1 to M × 3) is divergence-
free. Formal mathematical derivation of this feature is shown 
in Lowitzsch (2002) and additional discussion can be found 
in McNally (2011) and Yang et al. (2014). The divergence-
free feature of the output vector field becomes conceptually 
clear when considering that [u, v, w] at every output point 
is realized as the linear dot-product sum of weighted basis 
functions. Since the basis function kernel is constructed as 
the curl of the curl of a single polynomial function, the diver-
gence of their resulting collocated sum is automatically null 
by identity ∇⋅(∇×◻) = 0.

The divergence-free RBF interpolation method has been 
implemented and its increased accuracy with respect to the 
scalar formulation has been confirmed (Appelbaum 2020). 
The interpolation of experimental velocity field to a grid 
block is the first step in the preparation of the unsteady inlet 
for the DNS.

4.3 � Preparation of the unsteady velocity inlet

Following the spatial interpolation of the tracer data to the 
DNS inlet grid, a series of additional pre-processing steps 
are necessary to make the data suitable for numerical simu-
lation. These include treatment at the wall boundary as well 
as periodic boundaries, the solution of the pressure and tem-
perature fields, and finally the non-dimensionalization and 
subsequent Mach number scaling of the input data.

A major challenge is posed by the finite tracer density 
near the wall boundary ( y = 0 ) when the dimensionless 
wall-distance is considered. The dimensional tracer density 
is relatively constant, with a slight reduction near the wall 
due to the tracer bubbles bursting (see Fig. 4), however when 
considering the local tracer density relative to velocity gra-
dient ∇� (or, similarly, spatial tracer density normalized by 
the local dimensionless wall distance) one sees that near 
the wall there relatively sparse tracer coverage. For refer-
ence, the average nearest neighbor distance r̄NN≈5.3[mm] 
(see Sect. 3.2), is equivalent to a wall distance y+≈100 , well 
into the logarithmic layer. This means that, if reduced to a 
1D problem, there is on average one single tracer available 
to resolve the curvature of the velocity profile, including the 
no-slip condition, below y+≈100 during the interpolation 

process, which must produce output for every grid point at 
every timestep.The no-slip condition is therefore not univer-
sally respected during the interpolation step (see Sect. 4.1), 
so measures must be taken to force �y=0≡� to avoid pos-
sible discontinuities in the computational domain. For 
example, one can introduce ‘extra’ artificial tracers having 
null velocity at the wall grid points for every timestep dur-
ing interpolation, however this can have the opposite effect 
in which the null wall velocity becomes over-represented 
spatially if no real tracers are momentarily in the vicinity 
to otherwise influence the result, meaning that the veloc-
ity profile approaches zero too sharply too far away from 
the wall. Instead, a wall blending scheme is applied in a 
post-processing step to force the velocity of the experimental 
domain to �y=0≡� at the wall. Figure 5 schematically demon-
strates this procedure and shows the true proportion between 
r̄NN and 𝛿99 in the experimental data. A third-order natural 
spline (blue) is lofted and blended via a window function to 
u(y) (red), replacing the lower portion of the velocity profile 
(red dotted). The black line represents a reference average 
velocity profile ū(y) at the experimental Re

�
 . This procedure 

is performed for all velocity components u,v and w. A blend-
ing function is also used to transition the unsteady field to 
the steady mean flow field at the span-wise boundaries of 
the inlet to enforce the periodic condition. Such boundary 
condition enforcement schemes introduce a certain amount 
of non-physicality to the incoming flow, the effects of which 
are discussed in Sect. 6.

In a final step, the flow field variables are non-dimen-
sionalized according to the convention required by NS3D 
and split up into separate MPI domains for use in the simu-
lation. The dimensionless problem is defined by the char-
acteristic dimensionless quantities

where Re
𝛿99

 is the hydrodynamic boundary layer thickness 
Reynolds number, Pr is the Prandtl number, M∞ is the 
freestream Mach number, k∞ is the freestream thermal con-
ductivity, �∞ is the freestream density, �= cp

cv
 is the specific 

heat ratio and c∞ is the freestream speed of sound. The 
freestream velocity magnitude is signified by U∞ and gener-
ally U indicates the velocity magnitude, i.e.,

U=‖�‖=�̂=(u2+v2+w2)
1

2 . The freestream dynamic vis-
cosity �∞ is determined by Sutherland’s Law (Sutherland 
1893). The length, velocity and time scales are non-dimen-
sionalized by

(8)
Re

𝛿99
=
𝜌∞U∞𝛿99

𝜇∞

, Pr =
𝜇∞

𝜌∞k∞
, M∞ =

U∞

c∞

=
U∞√
𝛾RT∞
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where 𝛿99 is the average inlet hydrodynamic boundary layer 
thickness. The 3D, unsteady dimensionless temperature, 
pressure and density fields are calculated as deviations 
with respect to 1D, dimensionless averaged wall-normal y 
profiles, which are calculated as follows. The averaged 1D 
dimensional temperature profile T̄(y) is calculated using the 
Crocco–Busemann relation (Crocco 1932; Busemann 1935; 
White and Corfield 2006)

where Taw is the dimensional adiabatic wall temperature

and r is the recovery factor r=Pr
1

3 (Stalder et al. 1950; Acker-
mann 1942; White and Corfield 2006) with Pr=0.71 for air. 
The low Mach number of the experiment ( M∞,exp = 0.019 ) 
means that stagnation heating and compressibility effects 
in the measured flow field are negligible; therefore, the 
necessity of deriving the unsteady temperature and density 
fields is purely numerical and a product of the Mach scal-
ing applied to the dimensionless simulation, as described 
in Sect. 5.3. With an assumed constant pressure p̄ over the 
boundary layer, the density profile is then derived using the 
equation of state. The inputs to the equations above are from 
the full (interpolated) transient field which is averaged in the 
stream-wise (x) and span-wise (z) directions as well as in 
time so that only a 1D wall-normal profile remains. The 3D 
unsteady dimensionless temperature, pressure and density 
fields are then calculated by their unsteady dimensionless, 
mean-removed (◻�) components as

(9)�̃ =
�

𝛿99

, �̃ =
�

U∞

, t̃ =
t

(𝛿99∕U∞)

(10)T̄(y) = Tw + (Taw − Tw)
Ū(y)

U∞

− r
Ū(y)2

2cp
,

(11)Taw = T∞

(
1 + r

� − 1

2
M2

∞

)

where the 3D primitive variable field is at all points com-
pared to the corresponding wall-normal (y) position of the 
averaged profile, indicated by the overlined variables (◻̄) . 
More details regarding the pre-processing toolchain can be 
found in Appelbaum (2020).

5 � Numerical simulation

5.1 � Flow solver: NS3D

The flow solver NS3D is used to simulate a ZPGTBL. 
NS3D is an in-house DNS code developed at the Institute 
of Aerodynamics and Gas Dynamics (IAG) at the Univer-
sity of Stuttgart. Publications by Babucke (Babucke et al. 
2006; Babucke 2009), Linn & Kloker (Linn and Kloker 
2008, 2011) and Keller & Kloker (Keller and Kloker 
2015, 2017) provide a formal numerical description of the 
solver. NS3D directly solves the 3D, unsteady, compress-
ible Navier–Stokes equations on a structured rectilinear 
grid. NS3D uses 6th order compact finite difference (CFTD) 
operators or 8th order explicit finite differences (Keller and 
Kloker 2013; Babucke 2009; Dörr 2018) to evaluate discrete 
spatial derivatives. A 10th order low-pass filter (Visbal and 
Gaitonde 2002) is used for additional numerical stability. 
Time integration of the discretized transport equations is 
performed via the explicit 4th order ‘classical’ Runge–Kutta 
scheme (Runge 1895; Kutta 1901).

5.2 � Computational domain and boundary 
conditions

The computational grid is composed of [576×536×1280] 
nodes (395M total) in a domain of dimensions 
𝛿99 ⋅ [8.8×3.0×3.0] . The mesh and extents of the computa-
tional domain were configured in a manner consistent with 
studies performed in Wenzel et al. (2018); Wenzel (2019). 
The bottom boundary of the DNS domain is designated as 
an adiabatic, no-slip wall such that (�T∕�y)y=0≡0 , �y=0≡� 
and (�p∕�y)y=0≡0 . The downstream boundary is defined 
as a subsonic outflow, which requires a steady flow field 
(��∕�t)N=(��∕�t)N−1≡0 and thus the absence of any stream-
wise velocity gradient (��∕�x)≡0 , assured through the 
presence of sponge zones. Sponge zones numerically limit 
the flow field’s deviation from a reference field. The time 
derivative of the vector of conservative numerical fluxes 
Q=[�, �u, �v, �w,E]T is adapted by the relation

(12)
T =T̄ − (𝜅 − 1)M2U�Ū, 𝜌 = 𝜌̄

(
1 −

T �

T̄

)
,

p =p̄ =
𝜌T

𝛾M2
,

Fig. 6   Sponge gain field within the DNS domain
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where G(�) is a gain parameter. Fluctuations are attenuated 
by means of an additional source term in the discretized 
Navier–Stokes (NS) equations which is proportional to the 
amplitude of the fluctuation of each element of Q . The gain 
parameter is a constant multiplicative factor on the attenu-
ative body force. The reference field Qref is typically the 
so-called ‘baseflow’ or steady 1D y-normal mean profile 
(projected in [x, z]) which serves as an initial condition and 
steady boundary condition where required. The steady base-
flow profile is calculated from the averaged experimental 
flow field, as described in Sect. 4.3. In the present case, an 
additional unsteady disturbance field is present in the inlet 
region (the green box in Fig. 3), serving locally as Qref . A 
unity gain parameter G=1 provides a relatively ‘soft’ damp-
ing of disturbances with respect to the reference field and 
is therefore used at the downstream, top and lateral bound-
aries. A null gain parameter G=0 means that no artificial 
damping of the simulated field is present and is therefore 
used in the bulk of the simulation domain. Within the inlet 
region, the reference field Qref is the unsteady field derived 
from the 4D-PTV data, as described in Sect. 4.3. Here, a 
relatively high gain parameter 0<G<50 is used to enforce 
the externally derived flow field by strongly damping the 
solution vector’s deviation from the reference field. Figure 6 

(13)
�Q

�t
=

�Q

�t

||||NS − G(�)
(
Q − Qref

)

illustrates the distribution of the sponge gain G in the DNS 
domain.By x∗≈0.16 downstream of the inlet, the sponge gain 
is null and the DNS solution is thus no longer (directly) 
forced by the inlet field.

The lateral ( −z,+z ) boundaries are defined as periodic. 
The top boundary is a characteristic freestream boundary, 
which minimizes the reflection of acoustic waves. Oblique 
waves are minimized through the transitional grading of G 
in the boundary-normal direction, as well as through grid 
stretching in which the growth rate of the grid is increased 
in a given dimension. A more detailed description of the 
boundary conditions used in the present case may be found 
in (Babucke 2009).

The domain is spatially discretized with a rectilinear 
grid, defined through the projection of three orthogonal 
1D coordinate vector arrays. In the present case, the grid 
is uniformly spaced in the span-wise (z) dimension. In 
the wall-normal (y) direction, the grid is stretched in the 
direction of the top boundary ( +y ) from a minimal cell size 
Δy=yi+1−yi adjacent to the bottom wall. The grid growth 
rate Δyi+1∕Δyi in the first block of 136 cells near the wall 
is limited to 1.016 (1.6%), after which it is decreased to 
1.00167 (0.167%) until about y∕�99≈1.5 , where it is allowed 
to grow at a rate of 1.008 (0.8%) up to the top boundary. In 
the stream-wise (x) direction, the grid has a uniform spacing 
until x∗=x∕𝛿99=3 , after which it is stretched in the direction 
of the downstream boundary, promoting numerical damp-
ing of turbulent structures as they approach the subsonic 
outflow boundary. Starred coordinate variables (◻∗) indicate 
the spatial coordinate non-dimensionalized by the average 
hydrodynamic boundary layer thickness 𝛿99 of the experi-
mental data at the inlet plane location and ‘plus notation’ 
(◻+) specifies that a length has been non-dimensionalized by 
the local viscous length scale �w∕u� . The grid resolution has 
been confirmed to be sufficient through post-processing of 
the DNS results, which has revealed that the first cell height 
Δy0 is sufficiently small such that Δy+

0
=(Δy0u�)∕�w stays less 

Table 1   Flow parameters

Parameter Unit Exp DNS

Re
𝛿
99

[–] 43487 43487
M∞ [–] 0.0190 0.850
U∞ [m/s] 6.482 289.3
�
char

[m] 0.0980 0.00220
�∞ [m2/s] 1.4606e-5 1.4606e-5

Fig. 7   Instantaneous near-wall flow quantities illustrating structure breakup and TBL development
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than roughly 0.60 throughout the complete area of interest 
( x∗<3 ). In the stream-wise direction, the maximum Δx+ is 
12 and the maximum Δz+ is 3.6.

The sampling period of the experiment (0.001[s]) is 
roughly 413 times larger than the relatively small timestep 
size required for the explicit time integration scheme of 
NS3D. Accordingly, a temporal interpolation scheme 
is needed to provide data at every sub-timestep of the 
Runge–Kutta temporal integration scheme, for which a third-
order Lagrange polynomial based interpolation is used.

5.3 � Flow parameters

The dimensional and non-dimensional parameters of the 
experiment and DNS are listed in Table 1.The defined inlet 
hydrodynamic boundary layer thickness Reynolds number 
Re

𝛿99
≈43e3 is kept constant, however the freestream Mach 

number M∞ of the dimensionless problem is increased to 
M∞=0.85 to reduce the simulation cost.Compared to an 
equivalent simulation at M∞=0.3 , the computational effort at 
M∞=0.85 is reduced by a factor of roughly three due to the 
less strict stability constraints on the timestep Δtmax related 
to the discretization of the energy equation, see Babucke 
(2009). Error introduced by compressibility effects at 
M∞=0.85 is predicted from similar studies to not be particu-
larly significant (see Wenzel et al. 2018), and in the present 
case is likely to fall beneath the magnitude of error intro-
duced during grid interpolation or boundary blending. The 
dimensionless simulation result is re-dimensionalized using 
the experimental M∞ for dimensional comparisons. Quan-
tification of the impact of M∞ scaling remains to be evalu-
ated in further studies, however the already high agreement 
between the experimental and DNS flow fields presented in 

Sect. 7 despite such potential error is encouraging for future 
studies with lower M∞,DNS∕M∞,exp.

5.4 � Performance and output

The NEC SX-Aurora TSUBASA vector platform at the High 
Performance Computing Center Stuttgart (HLRS) was used 
to run the simulation. Four vector hosts, each containing 
eight vector engines, were used to perform a total of 540K 
timesteps, corresponding to 96.1% of the total possible dura-
tion of the 1.36 s of experimental measurement duration. 
Roughly 175 h of wall time were needed for completion.

6 � Simulation results and analysis

To provide a first impression of the resulting DNS flow field, 
Fig. 7 presents a typical snapshot of the DNS domain fed by 
the unsteady velocity inlet, illustrating the normalized 
stream-wise velocity u∕U∞ (a) and the normalized, mean-
removed z-vorticity 𝜔̃�

z
=

𝜕(v�∕U∞)

𝜕x
−

𝜕(u�∕U∞)

𝜕y
 (b) on a span-wise 

normal plane. Note that only the bottom 15% of the BL 
thickness is pictured. The contour plots represent one fourth 
the resolution of the simulation. Large turbulent structures 
resolved by the experiment are introduced in the inlet region 
(the left-most gray lines), downstream of which the struc-
tures break up into finer characteristic scales. As a result, the 
characteristic turbulent structure size at the inlet tends to be 
larger than downstream. The ‘breakup’ of the near-wall 
structures introduced to the domain tends to fluctuate in 
stream-wise (x) location, however is typically initiated by 
x∗≈2.0 at the latest.

Fig. 8   Stream-wise mean flow development of the DNS domain



Experiments in Fluids (2021) 62:194	

1 3

Page 13 of 21  194

Additionally, non-physicalities resulting from the interpo-
lation scheme adopted to force a no-slip condition (Sect. 4.3) 
are (at least intermittently) present. Such structures in the 
near wall region do not necessarily fulfill the discretized 
transport equations and boundary conditions of the numeri-
cal method used in the DNS and therefore are quickly dis-
sipated within the simulation, leading to a transient effect 
immediately downstream of the inlet. Between the first and 
second dotted gray line, the effective forcing of the unsteady 
inlet field onto the flow solution is reduced to zero, con-
trolled by the sponge parameter (see Fig. 6). After the sec-
ond gray line, the structures freely evolve with no artificial 
forcing.

In the following sections, the simulation results will be 
analyzed in more detail to better characterize and quantify 
the behavior of the flow when using the present hybrid seed-
ing approach, however the general trend captured by Fig. 7 
remains present. As will be shown, the large flow patterns 
resolved by the experiment are preserved in the simulation, 
and the unresolved high-frequency content absent in the 
experimental results due to limited tracer density is rela-
tively quickly recovered, meeting the goals of the present 
initial study and showing promise for future studies. The 
flow’s evolution will be characterized with the help of analy-
sis of the mean flow in Sect. 6.1 and wavenumber domain 
analysis in Sect. 6.2. Afterward, the experimental and simu-
lated flow fields are directly compared in Sect. 7. The DNS 
flow field in Sect. 7.1 is shown alongside a filtered version 
of the flow field which is discussed in Sect. 7.2, though it 
should be emphasized that the filtering is simply a post-
processing exercise and not a separate numerical simulation.

6.1 � Mean flow development

The flow field at the DNS inlet is reconstructed from 
4D-PTV data and lacks some unsteady high-wavenumber 
content of the laboratory flow. As such, the reconstructed 
inlet flow field can be analogously described as a spectrally 
low-pass filtered version of a turbulent flow, as will be dem-
onstrated by filtering DNS results in a post-processing exer-
cise in Sect. 7.2. As the coarsely resolved TBL flow at the 
domain inlet is introduced to the DNS domain, it undergoes 
an adjustment process before a fully developed turbulent 
kinetic energy k spectrum is once again reached (see Fig. 8). 
As previously mentioned, there are two main drivers for the 
adjustment effects seen immediately downstream of the 
inlet: the limited tracer density of the experiment, leading 
to a lack of high frequency content in the unsteady inflow, 
and the side effects of boundary blending at the wall.

Non-physical flow structures that don’t fulfill the discre-
tized transport equations are quickly numerically dissipated, 
as evidenced in Fig. 8b by the immediate reduction in the 
root-mean-square (RMS) dimensionless wall shear stress 

�
+
w,rms

 , as well as in (a), where a relatively thick layer of low 
dimensionless turbulent kinetic energy k+ is present near the 
wall. The dissipation of such structures and relaxation of 
shear stresses produces a relaminarizing tendency, as seen 
in reduction of the skin friction coefficient cf=2𝜏w∕(𝜌∞U2

∞
) 

whose minimum occurs at x∗≈0.7 , downstream of the mini-
mum in �+

w,rms
 at x∗≈0.3 . Due to its non-dimensional repre-

sentation in wall units, the relaminarizing tendency causes 
k+ to increased, having a peak ‘bubble’ at (x∗,y∗)≈(1.0,0.02) . 
Subsequently, the off-wall fluctuations mix back into the 
near wall region to produce a peak in �+

w,rms
 around x∗≈1.2 . 

By 2.5≲x∗≲2.0 , the transient process begins to reach a more 
or less converged state. Interestingly, the normalized hydro-
dynamic boundary layer thickness �99∕�99,exp grows rela-
tively constantly throughout the domain (Fig. 8b) in spite 
of this transient process, indicating that the re-adjustment 
of non-physical conditions at the wall has little effect on the 
BL thickness.

Such transient effects are also visible in the progres-
sion of the various Reynolds numbers in Fig.  8c. The 
momentum thickness Reynolds number Re

�
=(U∞�)∕�∞ 

initially increases as non-physical structures dissipate, 
then reduces slightly during the pseudo-relaminarization 
phase until x∗≈0.7 , consistent with the minimum in cf  
in (b). After x∗≳1.0 , where turbulent energy production 
begins to recover, Re

�
 once again increases as expected 

for a TBL. The progression skin-friction Reynolds number 
Re

�
=(u

�
�99)∕�w closely resembles that of the skin-friction 

coefficient cf  in (b), seeing as both the friction velocity 
u
�
=
√
�w∕�w and cf  are proportional to the wall shear stress 

�w=�(�u∕�y)y=0 . The shape factor H12=�
∗∕� relates the 

displacement thickness �∗ and the momentum thickness 
� and indicates the state of turbulent development of a 
ZPGTBL. Laminar BLs have higher shape factors, mean-
ing that more deficit in u(y) is present with respect to the 
freestream U∞ over a larger range of the boundary layer 
thickness, and accordingly have less severe wall velocity 
gradients (�u∕�y)y=0 . The slight increase in H12 in the range 
0.3≲x∗≲0.7 is therefore consistent with the previously men-
tioned relaminarizing tendency.

6.2 � Spectral analysis

The turbulent character of the DNS flow field can be effi-
ciently summarized in a composite sense by inspecting the 
flow in the frequency domain. In the present case, spectral 
analysis will help to answer a primary question of interest, 
namely how quickly the recovery of unresolved turbulent 
scales occurs. Figure 9 presents a wavenumber power spec-
tral density (PSD) of the u′u′ component of the Re-stress 
tensor, where k�,99 is the normalized linear wavenumber 
k�,99=k𝛿

99

∕(2𝜋) = 𝛿
99
∕𝜆 . The 1D span-wise wavenumber 

spectral analysis is performed on thin volumes at seven 



	 Experiments in Fluids (2021) 62:194

1 3

194  Page 14 of 21

Fig. 9   1D span-wise wavenumber power spectral density of (u�u�)+
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Fig. 10   Comparison of instantaneous flow fields
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stream-wise x locations, each spaced 0.5⋅𝛿99 apart. Figure 9a 
presents the PSD for every available wall-normal position 
vs normalized wavenumber. As the flow propagates through 
the DNS domain, the fine scales which are absent at the inlet 
begin to re-develop, as made visible by the extension of the 
high power region into the high wavenumber (right) part of 
the plot with increasing x. Eventually, between 2.0≲x∗≲2.5 
the shape of the PSD in the y+ vs k� space converges to a 
final form, indicating that the flow has reached a developed 
turbulent state.

Figure 9b provides a more quantitative representation of 
this convergent effect. Here, the spectrum at every selected 
x-position is plotted in the PSD vs k� space for a number 

of y+ locations, increasing in distance from the wall. At all 
chosen y+ locations, the spectra show a convergent trend 
in the stream-wise direction. It’s also clear that the net gap 
in energy density is not equal at all wall distances, quanti-
fied by the size of the curve envelope. Since the character-
istic turbulent structure size is finer approaching the wall, 
a higher proportion of the spectral energy is concentrated 
in the high wavenumber regime closer to the wall. It there-
fore follows that spectral energy gap is wider in this region, 
as information about high wavenumber modes is limited 
relative to low wavenumber modes during the construction 
of the inlet. However, since the finer structures closer to 
the wall also develop over a shorter characteristic period, 
the larger spectral gap is closed more quickly, i.e., spectral 

Fig. 11   Correlation coefficient of u′ between experiment and hybrid DNS result
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recovery occurs within a shorter transit distance. Closure of 
the tighter energy density gap in the outer log layer occurs 
over a longer distance, as less stress is present to drive the 
development process. Additionally, the flow speed is higher, 
so there is less residence time between the fixed stream-wise 
locations in which the development processes can occur. 
Nevertheless, by roughly 2.5⋅𝛿99 convergent arrival upon a 
power spectral density profile can be seen for all wall distan
ces.

7 � Comparison of simulated 
and experimental flow fields

7.1 � Instantaneous flow

The instantaneous flow fields of the experiment and DNS 
can be compared to help qualitatively visualize and support 
the findings of the spectral analysis in Sect. 6.2. Figure 10 
depicts contour plots of the normalized stream-wise veloc-
ity u∕U∞ on wall-normal slices and wall-parallel slices in 
the left column, as well as the difference between the DNS 
and experiment Δu∕U∞ in the right column. Also present in 
Fig. 10 is a filtered version of the DNS result, which will be 
addressed in Sect. 7.2.

Qualitative large scale structural similarity can be 
clearly seen when the interpolated experimental meas-
urement and DNS domains are compared in Fig. 10, 
indicating that the goal of reproducing the main char-
acteristics of the instantaneous turbulent field has 
been met within the considered domain. This result is 
consistent with the minimal changes seen in the PSD 
below a cutoff wavenumber of k𝓁,99=𝛿99∕(3⋅r̄NN) in 
Fig. 9. The difference in normalized stream-wise veloc-
ity u∕U∞ between the DNS result and the interpolated 

experimental result as seen in the right column in 
Fig. 10 indicates increasing disparity with increasing 
stream-wise position x and in the near-wall region. Dif-
ference within the inlet region itself is due to the tem-
poral interpolation scheme. The large scale similarity 
and the ability to identify equivalent structures in both 
datasets is a highly encouraging result, indicating that at 
least the large scale, most energetic structures near the 
TBL edge may be accurately introduced and propagated 
through a numerical simulation domain of choice. In 
doing so, an already well developed, realistic boundary 
condition at the TBL edge is present, fostering the TBL’s 
quick recovery to a statistically converged state.

7.2 � Spatial low‑pass filtering

A spatial low-pass convolution filter may be applied to 
the DNS results in an attempt to derive an analogy for the 
net attenuative characteristic of the experimental proce-
dure and pre-processing toolchain, which are inherently 
limited in resolution by the tracer density.The aim of such 
an exercise is to show that the experimental field and its 
subsequent interpolation to the DNS inlet grid is broadly 
equivalent to a low-pass filtered DNS result. A simple 
Gaussian-type filter kernel was chosen, leaving the kernel 
width � as a variable parameter. A snapshot of the low-
pass filtered DNS result is presented in Fig. 10. The filter 
operation was run on an x-normal plane at x∗=3.0 , where 
the DNS solution is appropriately turbulently developed. 
Figure 12 shows the effect of low-pass filtering on the 
span-wise wavenumber spectrum, namely that a simple 
Gaussian ‘blur’ filter with a kernel width 𝜎∕r̄

NN
= 0.4 

applied to a statistically converged DNS result yields a 
flow that looks qualitatively similar to the interpolated 
experimental result both in the spatiotemporal (Fig. 10) 
and wavenumber domains.

7.3 � Correlation between experimental and DNS 
flow fields

Wavenumber domain analysis gives composite information 
about how the energy density of turbulent fluctuations is 
distributed across wavenumber modes, however it does not 
necessarily deliver information about the agreement between 
the instantaneous flow fields. However, the correlation coef-
ficient between the experimental and DNS flow fields quan-
tifies their normalized covariance and is a metric for their 
degree of variational similarity in a time-dependent man-
ner. Figure 11 shows the Pearson correlation coefficient r 
(Pearson 1901) on a span-wise normal slice where for every 
grid point in [x,y], r is calculated between two time series of 
velocity magnitude �̂=(u2+v2+w2)

1

2 . In Fig. 11a, �̂(t) from 

Fig. 12   Span-wise wavenumber PSD of filtered DNS result



	 Experiments in Fluids (2021) 62:194

1 3

194  Page 18 of 21

the experimental measurement is correlated with that of the 
filtered DNS result (shown in Fig. 10 and 12) and 11b shows 
r(�̂) between the experiment and the unfiltered DNS result. 
The time series of the mean-removed, normalized veloc-
ity magnitude �̂�(t)∕U∞ for two points is plotted in (c) and 
(d). One point  is located near the wall where the DNS 
flow quickly decorrelates from the experimental flow, and 
the other point  is farther from the wall where the flows 
remain highly correlated. The difference in correlation at 
the two locations is plainly visible when comparing (c) and 
(d), though the slightly better correlation of the filtered DNS 
field is fairly subtle.

In the near wall region, the tracer density is low compared 
to the local strain. As discussed in Sect. 4.3, this low relative 
information density necessitates a post-treatment of the inter-
polated experimental field to ensure that the no-slip condition 
is restored at the near wall region of the unsteady velocity inlet 
before simulation. In doing so, artifacts stemming from this 
treatment are introduced in the region y≲1⋅r̄NN or y+≲100 , for 
example an unrealistically steady near-wall profile in which 
small-scale motions are not resolved. Additionally, the near wall 
region sees the highest production of turbulent kinetic energy 
k and the highest frequency of turbulent motion, serving to 
quickly amplify the deviation from any initially well-correlated 
state. For these two reasons, one expects that the DNS flow field 
will quickly become decorrelated with respect to the experi-
mental field in the near-wall region, which is well illustrated 
in Fig. 11. The decorrelated near-wall flow is transported away 
from the wall through turbulent diffusive flux. Effectively, a 
new and statistically independent flow develops at the wall and 
mixes with the bulk flow. A similar but much weaker effect is 
seen at the upper boundary of the turbulent inlet, where a blend-
ing scheme similar to that used at the wall was used to guaran-
tee a smooth transition to the steady baseflow profile. Accord-
ingly, the artificially ‘blended’ flow at y∗>1.2 no longer shows 
correlation to the experimental flow, and is also (albeit more 
slowly) mixed toward the middle of the BL. As seen in Fig. 10, 
the large scale turbulent structures in the mid and outer layer are 
largely preserved throughout the transit length of Δx∗=3 due to 
their higher momentum and the lower turbulent stress present 
to drive turbulent mixing, which like the near-wall flow would 
amplify the degree of decorrelation.

To very roughly estimate the stream-wise distance at 
which the influence of the decorrelated wall and upper 
boundary flows permeate the entire simulated TBL, a least 
squares trend line was calculated using segments from the 
upper and lower arbitrarily chosen iso-contour of the cor-
relation coefficient r=0.75 . The iso-contour is plotted in 
light gray in Fig. 11, the least-squares linear trend line is 
plotted as a dotted black line and the segment of the r=0.75 
contour used to generate the trend line is indicated in dark 
gray. When extrapolated, the linearized contour segments 
intersect by roughly x∗≈13.1 , indicating that by this transit 

distance, one would expect the simulated TBL flow to be 
largely decorrelated from the experimental flow.

8 � Summary and conclusions

The present study has demonstrated a proof-of-concept 
approach for defining an unsteady inlet boundary condi-
tion for the DNS solver NS3D and evaluated the results in 
the canonical case of a ZPGTBL. In doing so, the potential 
for such a methodology as well as possible difficulties are 
explored. In the current case, a 4D-PTV experiment was 
used to obtain a 3D transient description of a ZPGTBL, 
therefore attention to method-specific metrics such as tracer 
nearest neighbor distance and the inherent limitations of spa-
tial interpolation at finite tracer seeding densities are investi-
gated. Alternate methods of obtaining an input field such as 
LES, VLES or URANS could be explored in future studies 
and would face different limitations.

The cutting-edge 4D-PTV technique is effectively unpar-
alleled in its ability to deliver highly resolved, 3D transient 
datasets of turbulent flows. Even so, 4D-PTV has a limited 
maximum tracer density due to hardware constraints which in 
turn restricts the minimal resolvable turbulent structure size, 
after which the measurement is spectrally incomplete. Since 
information about the flow field is localized at tracer loca-
tions, the information density relative to local velocity gradi-
ent becomes critical near the wall for wall-bounded viscous 
flows. Interpolation to the DNS grid near the wall is therefore 
problematic because of the high ratio of tracer nearest neigh-
bor radius to local turbulent structure size or velocity gradient. 
Steps must be taken to ‘reinstate’ a no-slip condition at the 
wall, introducing artifacts such as an unrealistically steady or 
otherwise unphysical near-wall velocity profile which quickly 
rebalance after entering the DNS domain. This rebalancing 
process is realized as an initial relaminarizing tendency near 
the wall, causing a ‘tripping effect’ and enhanced turbulent 
production slightly off the wall (Fig. 8). As a result, a statisti-
cally independent flow develops at the wall (Fig. 11), which 
mixes upward into the rest of the boundary layer with increas-
ing stream-wise position x.

As the DNS flow develops, smaller scale turbulent struc-
tures previously unresolved in the 4D-PTV measurement 
appear. This effect is well summarized in the wavenumber 
spectrum (Fig. 9), where high wavenumber energetic content 
is recovered within the DNS domain. The wavenumber spec-
trum reaches a converged state after roughly 2.0−2.5⋅𝛿99 . 
This result is highly promising, as similar DNS studies of 
ZPGTBLs require nearly 20−30⋅𝛿99 of transit distance to 
reach such a state when initialized from a randomized field. 
The high-momentum, large scale turbulent structures are 
adequately resolved by the current method, as is evident 
by the consistency of the low-wavenumber regime in Fig. 9 
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and qualitatively through the comparison of large scale 
structures in Fig. 10. The physically well-resolved flow of 
the outer log layer and wake region therefore serves as a 
physically consistent boundary condition under which the 
decorrelated wall flow can quickly recover and converge to 
a fully resolved turbulent DNS flow. This behavior suggests 
the aptitude of the present method for the fully resolved 
simulation of flows developing under unsteady conditions, 
or for the implementation of more efficient DNS initializa-
tion schemes utilizing externally derived turbulent fields.
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