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Abstract Many plant tissues exhibit the property of frost resistance. This is mainly due to two factors: one is
related to metabolic effects, while the other stems from structural properties of plants leading to dehydration of
their cells. The present contribution aims at assessing the impact of ice formation on frost-resistant plant tissues
with a focus on structural properties specifically applied to Equisetum hyemale. In this particular case, there is
an extracellular ice formation in so-called vallecular canals and the pith cavity, which leads to a dehydration of
the tissue cells to avoid intracellular ice formation, what would be fatal for the cells and subsequently for the
whole plant. To address the underlying phenomena in the plant, a coupled thermo-hydro-mechanical model
based on the Theory of Porous Media is introduced as the modelling framework. The dehydration of the tissue
cells is referred to as of quasi-double-porosity nature, since the water is mobile within the intercellular space,
but confined to the cells in the intracellular space and consequently kinematically coupled to them. However,
the mass exchange of water across the cell wall is considered. The presented numerical example shows the
strong coupling of the underlying processes as well as the quasi-double-porosity feature. Finally, it supports
the experimental finding of the vallecular canals as the main location of ice formation.

Keywords Plant biomechanics · Frost hardiness · Water transport · Cell dehydration · Double porosity ·
Theory of Porous Media (TPM)

1 Introduction

Frost hardiness is an evolutionary adaption of terrestrial plants to climates with frost occurrence. Two main
strategies are essential. Whereas the (deep) supercooling process alters ice crystal growth and form [20],
dehydration prevents ice formation within living cells (freezing avoidance [34]). In the latter case, extracellular
ice formation occurs in specific intercellular spaces or extracellular on the plant surface, and water is drawn
from adjacent cells by the lower water potential of the ice which accumulates continuously. Cell dehydration
increases cellular solute concentration, thereby lowering the freezing point further [6,38,40].
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Freezing avoidance is of interest in plant research formore than 150 years [50]. So far, extracellular freezing
was detected in many different species including spore-bearing vascular plants and mosses [40,44,61] and
different plant parts as petioles [43,50], leaves [5], buds [36] and woody tissue [2,60].

In the present contribution, the process of extracellular ice formation is studied numerically with regard
to Equisetum hyemale var. robustum. Equisetum hyemale (winter scouring rush) is a spore-bearing plant
consisting of nodes and internodes which prefers moist habitats and shows an extensive internal canal system
[64]. Extracellular freezing takes place within the pith cavity (PC), the vallecular canals (VC), the intercellular
spaces of the chlorenchyma and the substomatal chambers as described by [61]. Therein, the analysis of the
freezing sites is presented and taken into account for the current model and the numerical investigation together
with various other studies regarding the extracellular freezing process within Equisetum hyemale by [46,58]
and [38].

So far, a holistic treatment of biomechanical phenomena as multiphasic porous biomaterial in terms of
mechanical, genetic, metabolic, chemical and potentially other influences, is already established in the field of
human biomechanics, compare, for example, [28] and quotations therein. In plant biomechanics, poroelastic
approaches have been used occasionally, compare [4,54] or [56,57], where plants are treated as a multiphasic
material of solid and fluid based on a simple binary poroelastic model according to Biot’s theory [8]. For more
sophisticated models with multiple constituents, the first-principle-based framework of the Theory of Porous
Media (TPM) is particularly suited to derive thermodynamically consistent constitutive models, while it also
accounts for classical biological approaches. Regarding the fluid dynamics of macro(bulk)-flow in plants,
compare [12] or [45], as well as micro-porosity-based flow such as cell dehydration, compare [16] or [39], one
usually proceeds from a water potential as the flow-driving force. In the present contribution, this somehow
fundamental idea is combinedwith the continuum-thermodynamical TPM, compare [9,19,23,24] and citations
therein, which allows to couple the mechanical, hydraulic and thermal effects of plants in the framework of
finite deformations.

Generally, when frost-resistant plants are cooled down, the temperature in the tissue is decreasing faster
than in air/vapour-filled compartments due to the higher thermal conductivity of the tissue. This leads to a
condensation of water in these compartments at the surface from the tissue. Note that the condensed water
freezes at 273.15K under atmospheric pressure starting at the surface from the biggest compartment to smaller
ones. The ice formation leads to a so-called cryo-suction of liquid water to the freezing site, when the tem-
perature is decreased further [17]. Since the focus is on the strategy of dehydration as key mechanism of
frost hardiness, the modelling approach is chosen accordingly. Regarding the impact of ice formation on plant
tissues, distinction is made between localised and rather dispersed ice. From the modelling point of view,
dispersed ice formation within the plant tissue, as for example in Betula nana (dwarf birch) [60], requires the
explicit inclusion of ice as a model constituent. As a result, phase transformation processes between liquid
water and solid ice have to be included into the overall approach. This results in a quaternary TPM model
with a solid skeleton as load-bearing structure, water in liquid and frozen states, and air, as emphasised in
[30,31]. However, for a local accumulation of larger ice bodies within extracellular spaces, as for example
predominantly in Equisetum hyemale [61], the impact of ice formation on the plant tissue can be modelled by
a reduced ternary TPM model with the constituents solid skeleton, liquid water and air, as pointed out in [32].
In this particular case, the main locations of ice formation are in the pith cavity (open space in the centre of the
stem) as well as in the vallecular canals (open spaces in the wall of the stem). These compartments are not part
of the porous medium. Note in passing that ice formation may also occur at other locations within the porous
medium, but is there of minor importance. Following this, ice build-up appears at the external side of the body’s
boundary causing a drop in water potential [46], which attracts even more water to the freezing site. Imposing
Dirichlet pressure boundary conditions at these surfaces, where ice formation can occur, exhibits ice build-up
by the ice-induced drop of the water potential. This approach reduces the computational effort dramatically
compared to a quaternary model that additionally has to numerically account for phase transformations. In this
article, the case of localised ice in Equisetum hyemale is addressed.

On a conceptual basis, the distinction of ice-formation pattern and the correspondingmodelling approaches
represent a novelty with respect to an understanding of the underlying thermo-hydro-mechanical (THM)
processes and the influence of the microstructure upon ice formation in plant tissues. In particular, the TPM
approach allows for a coupled assessment of ice build-up and the deformation of Equisetum hyemale, which
is in good agreement with experimental investigations [61]. The location of maximum ice accumulation in
Equisetum hyemale has been determined and is also confirmed by the same experimental investigations [61].
Generally, the key is the understanding of the availability of water with focus on a microstructurally based
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process of plants, which is essential for their frost hardiness. This is the dehydration of their cells occurring
via water percolation through pores in the cell walls.

The importance of the porosity at the cell scale has been emphasised by [39,66] and many others. This
feature indicates the existence of pore spaces at two scales, at the microscale within the cells and at the
macroscale in terms of the vascular system that transports water and nutrients at the scale of the whole plant.
Within porous-media theories, a multiscale porosity feature has been set into a sound continuum-mechanical
framework by [11,15,33] as well as [70]. These articles proceed from the assumption of individual fluid
constituents at two porosity scales and, consequently, individual states of motion for the fluids in the micro-
and macro-pore spaces with appropriate mutual interactions. This is usually referred to as been of double-
porosity nature. In contrast, the present approach does not require an independent state of motion for water
at two porosity scales, since the water is either confined to the solid skeleton as cell water in the micro-pore
space or it is mobile within the macro-pore space. Hence, there is no independent state of motion for the water
at the microscale, although the exchange of water of the cells with the macro-pore space is considered via cell
dehydration. This introduces the so-called quasi-double-porosity feature. Therefore, beyond establishing the
framework for the description of the involved THM processes in plant tissues, this article specifically aims at
assessing the water management of plant tissues in a freezing environment with a focus on the availability of
water at two porosity scales in Equisetum hyemale.

In the following sections, a macroscopic ternary model of solid skeleton, liquid water and air is utilised for
the description of stem-based plant tissues like that ofEquisetumhyemale. Basically, triphasicmaterials of solid,
liquid and gas need to be described by their mass, momentum and energy balances of all constituents resulting
in a coupled set of fifteen scalar equations as far as fully three-dimensional (3-d) problems with different
constituent temperatures have to be considered. While the solid mass balance can usually be integrated to yield
a relation between the initial and the current partial solid density, this does not apply in case of the existence of
mass production terms. In this case, the integration of the mass production results in an implicit equation that
has to be solved numerically. As a result, the balance equations are governed by primary variables given by
the solid density or, as in the present contribution, by the solid volume fraction and constituent-individual fluid
pressures for the mass balances, the solid displacement and the fluid or seepage velocities for the momentum
balances and by constituent-individual temperatures for the energy balances. Beyond the primary variables,
a lot of secondary variables have to be determined as functions of the primary variables, such that the set of
equations can be solved. In this context, it should be noted that except for some very specific simple problems,
there is no chance to obtain exact solutions from the so-called strong formulation of the initial-boundary-value
problem (IBVP). Instead, weak solutions have to be preferred that can be based on the finite element method
(FEM), where a weak solution y has to be found for the function G( y), such that G( y) = 0. Here, G( y) is the
vector of all governing equations depending on all primary variables included in the vector y.

These general statements will be reduced to the specific model for Equisetum hyemale in the following
sections.

2 Macroscopic TPM model

2.1 Theoretical modelling and basic quantities

The theoretical foundation for the description of extracellular ice formation in plants is ideally given by the
TPM.RegardingEquisetumhyemale, the plant geometry is schematically depicted in Fig. 1with its constituents
and involved pore spaces. The THM model applied to the plant tissue comprises the porous material with its
micro- and macro-pore spaces but excludes the domains beyond the surfaces towards the pith cavity and the
vallecular canals. In detail, the cross section of Equisetum hyemale is shown in Fig. 1a in its natural state with
the pith cavity in the centre and the vallecular canals within the tissue, both pointing with their longitudinal
axes towards the out-of-plane direction, thus defining a sort of preferred direction. This indicates that the
mechanical, hydraulic and potentially also the thermal behaviour of the plant are anisotropic. A representative
elementary volume (REV) of the porous tissue material excluding the pith cavity and the vallecular canals, as
shown at the top of Fig. 1b, is composed of a solid, water and air. Note again that the solid skeleton ϕS is itself
a multiphasic material made of lignified elements as well as of tissue cells that contain a significant amount of
water up to 90%, while the macro-pore space is filled with two immiscible fluids, liquid water ϕL and gaseous
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(a) (b) (c)

Fig. 1 In a, the cross section of Equisetum hyemale is shown in its natural state with the pith cavity (PC) and the vallecular canals
(VC). At the top of b, the basic constituents are displayed schematically including the multiphasic solid skeleton together with
liquid and gas in the macro-pore space. The detail at the bottom of b reveals the two pore spaces as well as the cell wall and the
intracellular space. Note that the intracellular space and the cell wall including the micro-pore space constitute the solid skeleton.
In c, the idealised model yields three substitute continua (solid, gas and liquid), which are smeared over the entire control space

air ϕG , such that the overall aggregate ϕ is given as:

ϕ =
⋃

α

ϕα = ϕS ∪ ϕL ∪ ϕG, where α = {S, L ,G}. (1)

Furthermore, the detailed viewat the bottomofFig. 1b indicates themacro-pore space (or in plant-biomechanics
terminology also referred to as the intercellular or extracellular space). The remaining part of the detailed view
is composing the solid skeleton, which includes the intracellular space as well as the cell wall with its micro-
pores. All constituents are smeared out (volumetrically averaged) over the entire control space, as depicted in
Fig. 1c, with three emerging substitute continua.

Note that the impact of extracellular ice formation in the pith cavity and the vallecular canals is addressed
by introducing pressure boundary conditions representing a drop in the water potential due to the formation
of ice at the surface of the porous tissue material. As a result, the inclusion of an ice phase in the modelling
approach can be omitted. Moreover, note that air is exclusively present within the intercellular (macro-pore)
space, such that the double-porosity feature is considered for water only.

The local amount of the individual constituents introduced in (1) is described by their volume fraction

nα = dvα

dv
, (2)

where dvα is the volume element of ϕα and dv the volume element of the overall aggregate ϕ. As there is no
vacant space within the plant tissue, the saturation condition holds at any instant of time yielding

∑

α

nα = nS + nL + nG = 1. (3)

The volume fraction nα of a constituent ϕα also relates the effective (intrinsic or realistic) density ραR to the
partial density ρα , such that

ραR = dmα

dvα
, ρα = dmα

dv
−→ ρα = nαραR . (4)

Therein, dmα is the mass element of ϕα . Note that the intrinsic density is constant under isothermal conditions
for amaterially incompressible constituent; however, the intrinsic densitymay vary due to temperature changes.
Furthermore, the immiscible fluids within the macro-pore space are usually addressed by their saturation sβ ,
where β = {L ,G}. The respective saturation sβ is defined by relating the volume fraction nβ to the porosity
nF via

sβ = nβ

nF
with nF = nL + nG . (5)
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In terms of saturation, the constraint
∑

β

sβ = sL + sG = 1 (6)

holds according to (3) also at any time. Due to the volume-fraction concept, all kinematical as well as physical
quantities are defined in the entire control space in an averaged sense.

2.2 Kinematics and deformation measures

In the framework of the TPM, each constituent is assigned an own motion function χα with corresponding
velocities vα and accelerations (vα)′α. Thus,

x = χα(Xα, t) →

⎧
⎪⎨

⎪⎩

vα = ′
xα = d

dt
χα(Xα, t)

(vα)′α = ′′
xα = d2

dt2
χα(Xα, t) .

(7)

Therein, x is the current position of the overall material at time t with corresponding reference position Xα

of each ϕα at time t0. Furthermore, ( · )′α and ( · )′′α are the first and second material time derivatives of ( · )
following the motion of ϕα . As is usual in porous-media mechanics, the solid skeleton is described within a
Lagrangian setting with respect to the reference configuration via the displacement field

uS = x − XS , (8)

while the pore fluids are described within a modified Eulerian setting governed by the seepage velocities

wβ = ′
xβ − ′

xS . (9)

As not only the motion itself is of interest, but also the deformation of the tissue material, the corresponding
deformation measures are introduced. Within thermoelasticity, the idea of splitting the material deformation
gradient FS into a thermal part FSθ and a mechanical part FSM is a common practice, compare [27] or [41]:

FS = ∂χ S(XS, t)

∂XS
= FSM FSθ . (10)

Thermally induced volume changes are assumed to be isotropic. Hence, the thermal deformation is given via

FSθ = (det FSθ )
1/3 I, where det FSθ = exp

[
3αS(θ − θ0)

]
. (11)

Therein, (θ − θ0) is the difference of the Kelvin’s temperatures in the current (θ ) and the reference (θ0)
configurations, while αS is the linear thermal expansion coefficient. Note that a single temperature for all
constituents is considered.

As the solid constitutive equations proceed from the basic principles of rational thermodynamics [68], the
deformation gradient FS is substituted by the right and left Cauchy–Green deformation tensors CS and BS ,
respectively, that will be used along with the spatial Karni-Reiner strain tensor KS:

CS = FT
S FS, BS = FSFT

S , KS = 1

2
(BS − I). (12)

Finally, the spatial velocity gradient Lα and the rate of deformation tensor Dα are defined as:

Lα = grad
′
xα, Dα = 1

2

(
grad

′
xα + gradT

′
xα

)
(13)

with grad ( · ) as the gradient operator applied to ( · ). Note that the above rates are solely needed for the
evaluation of the entropy inequality of the overall process. Note that the time effect, as described in [64] for
Equisetum hyemale, is assumed to originate from the interaction of the solid skeleton with the pore fluids.
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2.3 Balance relations

2.3.1 General form

The local balance relations of mass, linear momentum and energy for each constituent ϕα read

(ρα)′α + ρα div
′
xα = ρ̂α,

ρα ′′
xα = divTα + ρα bα + p̂α,

ρα (εα)′α = Tα · Lα − div qα + ρα rα + ε̂α,

(14)

where div ( · ) is the divergence operator corresponding to grad ( · ). Furthermore, ρ̂α is the so-called mass-
production term describing mass interactions. In (14)2, Tα is the partial Cauchy stress and bα the body force
per unit mass that is usually substituted by the gravitation vector g, while p̂α is the direct momentum production
that can be interpreted as the local interaction force acting on ϕα through all other constituents of the overall
model. In (14)3, εα is the mass-specific internal energy that can be to the Helmholtz free energy ψα via the
Legendre transformation εα = ψα + θαηα , where θα is the constituent-specific temperature and ηα the mass-
specific entropy. The heat influx is denoted by qα , rα is the radiation and ε̂α is the direct energy production
describing the energetic interaction among the constituents.

The balance relations (14) are accompanied by the following constraints for the production terms on the
right-hand side of the respective equation:

∑

α

ρ̂α = 0,

∑

α

(p̂α + ρ̂α ′
xα) = 0,

∑

α

[ ε̂α + p̂α · ′
xα + ρ̂α(εα + 1

2
′
xα · ′

xα) ] = 0.

(15)

In (15)2, the total momentum production is split into a direct part p̂α and a part that is associated with mass

production, i. e. ρ̂α ′
xα . In (15)3, the total energy production is also split into a direct part ε̂α , a part that is

associated with the production of linear momentum, i. e. p̂α · ′
xα and a part that is coupling the mass production

with the mass-specific internal and kinetic energies, i. e. ρ̂α(εα + 1

2
′
xα · ′

xα). For a derivation of the balance

equations (14) and their restrictions (15), the interested reader is referred to [9] or [23,24]. Note that the entropy
inequality for the overall aggregate will be evaluated in detail when deriving admissible material laws.

For the set of balance equations (14), the restrictions (15) and further considerations within a constitutive
setting, the following assumptions and simplifications will be introduced:

• Local thermal equilibrium is considered, which implies a common temperature, such that θα = θ .
• Materially incompressible solid skeleton, such that ρSR = ρSR(θ).
• Materially incompressible liquid water, such that ρLR = ρLR(θ).
• Mass interaction solely as cell dehydration between the solid skeleton and the macro-pore water, such that

ρ̂S + ρ̂L = 0. Although this is a simplification as no sort of conversion of tissue material to water occurs,
it is still a valid assumption, since the cells are filled by up to 90% of water.

• Quasi-static conditions, i. e. ρα ′′
xα ≈ 0, since the processes upon ice formation in Equisetum hyemale are

rather slow.
• The gravitation bα = g will be neglected, as the dynamics of interest is acting in the horizontal plane,
while the gravitation naturally acts vertically along the twig of Equisetum hyemale.

• Note that for the material under study symmetric Cauchy stresses at the macro-scale are considered, i. e.
Tα = (Tα)T , such that the balance of angular momentum is always satisfied.

• The radiation rα will be neglected.

• The mass-specific kinetic energy
1

2
′
xα · ′

xα is considered small in comparison with the internal energy εα ,

such that
1

2
′
xα · ′

xα � εα .
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2.3.2 Materially incompressible thermo-elastic solid

Based on (14)1, an alternative form of the mass balance for a thermo-elastic, materially incompressible solid is
obtained by integration. In case of material incompressibility, the effective solid density ρSR does not change
under pressure but can change as a result of temperature variations. On the other hand, mass balance equations
are given on the basis of partial densities, such as ρS = nSρSR , cf. (4). As a result, the integration of (14)1
yields

ρS = ρS
0S (det FS)−1 exp

(∫ t

t0

ρ̂S

ρS
dt̃

)
. (16)

This equation can be further elaborated by considering the split of the solid deformation gradient, compare
(10), viz.

nSρSR = nS0S ρSR
0S (det FSM )−1 (det FSθ )

−1 exp

(∫ t

t0

ρ̂S

ρS
dt̃

)
. (17)

Therein, nS0S and ρSR
0S are the initial values of nS and ρSR . Furthermore, it is seen that the partial density

ρS = nSρSR can change due to various sources, such as mechanical deformation, thermal deformation or
mass production, respectively. In case of materially incompressible solids, the intrinsic density ρSR is constant
under isothermal conditions, while it can vary under non-isothermal conditions according to [27] yielding

ρSR = ρSR
0S (det FSθ )

−1 = ρSR
0S exp [−3αS(θ − θ0)]. (18)

By use of this relation, (17) reduces to

nSρSR = nS0S ρSR (det FSM )−1 exp

(∫ t

t0

n̂SρSR

nSρSR
dt̃

)
. (19)

Note that in (19), the mass production ρ̂S has been substituted by n̂SρSR meaning that the production of partial
density does not mean that the density function ρSR is growing or shrinking but the amount of volume that
is covered by ϕS with density ρSR is changing through n̂S . Thus, while ρSR is governed by (18), the solid
volume fraction is governed by

nS = nS0S (det FSM )−1 exp

(∫ t

t0

n̂S

nS
dt̃

)
. (20)

2.4 Constitutive setting

2.4.1 Thermodynamical basis

In order to derive admissible material laws, the second law of thermodynamics in form of the Clausius–Duhem
inequality for the overall aggregate is applied. It states the direction, in which a certain process has to occur
and reads for the overall aggregate ϕ, cf. [24],

∑

α

{
− ρα

[
(ψα)′α + θ ′

αηα
] − p̂α · ′

xα − ρ̂α
(
ψα + 1

2
′
xα · ′

xα

)

+ Tα · Lα − 1

θ
qα · grad θ − P(nα)′S

}
≥ 0,

(21)

where the saturation condition has already been included as a side condition by means of the time derivative
( · )′S of (3)multiplied by theLagrangemultiplierP . In particular, this time derivative yields under consideration
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of (4) and (14)1 together with the property of material incompressibility of the solid skeleton and the liquid
water

∑

α

(nα)′S = ρ̂S

ρSR
− nS I · DS − nS

ρSR

∂ρSR

∂θ
θ ′
S

− ρ̂S

ρLR
− nL I · DL − nL

ρLR

∂ρLR

∂θ
θ ′
L − grad nL · wL

− nG I · DG − nG

ρGR
(ρGR)′G − grad nG · wG = 0

(22)

with I as the identity tensor. When (22) is inserted into the entropy inequality (21), the following form is
obtained:

(
TS + nSP I

) · DS − ρS(ψ S)′
S − ρS

[
ηS − P 1

(
ρSR

)2
∂ρSR

∂θ

]
θ ′
S

+ (
TL + nLP I

) · DL − ρL(
ψ L)′

L − ρL

[
ηL − P 1

(
ρLR

)2
∂ρLR

∂θ

]
θ ′
L

+ (
TG + nGP I

) · DG − ρG(
ψG)′

G − ρGηGθ ′
G + P nG

ρGR

(
ρGR)′

G

− (
p̂L − P grad nL

) · wL − ρ̂S ′
xS · wL − (

p̂G − P grad nG
) · wG

− 1

θ

(
qS + qL + qG

) · grad θ

− ρ̂S
(
ψ S + P

ρSR
+ 1

2
′
xS · ′

xS − ψ L − P
ρLR

− 1

2
′
xL · ′

xL
)

≥ 0.

(23)

Therein, according to [25], extra stresses and the extra momentum productions are identified via

Tα
E = Tα + nαP I,

p̂β
E = p̂β − P grad nβ.

(24)

Proceeding from the basic principles of continuum thermodynamics, the set of process variables is chosen to
account also for the principle of phase separation [22]. Based on the immiscibility of solid, liquid and gas,
the phase-separation principle proceeds from the assumption that each material, as on its microstructure, does
only depend on its own constitutive variables. Following this, the free energies ψα and their time derivatives
(ψα)′α read

ψ S = ψ S(θ,CS,MS)

−→ (
ψ S)′

S = ∂ ψ S

∂ θ
θ ′
S + ∂ ψ S

∂ CS
· (CS

)′
S,

ψ L = ψ L(
θ, sL

)

−→ (
ψ L)′

L = ∂ ψ L

∂ θ
θ ′
L + ∂ ψ L

∂ sL
(
sL

)′
L ,

ψG = ψG(
θ, ρGR)

−→ (
ψG)′

G = ∂ ψG

∂ θ
θ ′
G + ∂ ψG

∂ ρGR

(
ρGR)′

G .

(25)

As a result of the above,ψ S depends on temperature and deformation, and additionally on the structural tensor
MS = aS0 ⊗ aS0 with one preferred direction, thus indicating a transversely isotropic material. As aS0 is given
in the reference configuration, MS is constant yielding (MS)′S ≡ 0. In addition to ψ S , ψ L depends on
temperature and saturation and ψG on temperature and effective density.
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As sL is a function of further kinematic variables, (sL)′L has to be found with the aid of (5) and (14)1
together with the property of material incompressibility of the solid skeleton and the liquid water, viz.

(
sL

)′
L = 1

nF

(
− ρ̂S

ρLR
− nL I · DL − nL

ρLR

∂ρLR

∂θ
θ ′
L + sL ρ̂S

ρSR
− sLnS I · DS

− sLnS

ρSR

∂ρSR

∂θ
θ ′
S + sLgrad nS · wL

)
.

(26)

Combining this resultwith (25)2 and inserting the timederivatives of the free energies into the entropy inequality
(23) yield

[
TS
E + nS

(
sL

)2
ρLR ∂ψ L

∂sL
I − 2ρSFS

∂ψ S

∂CS
FT
S

]
· DS

+
(
TL
E + nLsLρLR ∂ψ L

∂sL
I
)

· DL + TG
E · DG

− ρS

[
ηS − P

(
ρSR

)2
∂ρSR

∂θ
− (

sL
)2 ρLR

(
ρSR

)2
∂ψ L

∂sL
∂ρSR

∂θ
+ ∂ψ S

∂θ

]
θ ′
S

− ρL

[
ηL − P 1

(
ρLR

)2
∂ρLR

∂θ
− sL

1

ρLR

∂ψ L

∂sL
∂ρLR

∂θ
+ ∂ψ L

∂θ

]
θ ′
L

− ρG
(
ηG + ∂ψG

∂θ

)
θ ′
G +

(
P nG

ρGR
− ρG ∂ψG

∂ρGR

) (
ρGR)′

G

− 1

θ

(
qS + qL + qG

)
· grad θ

−
[
p̂LE + (

sL
)2

ρLR ∂ψ L

∂sL
grad nS + ρ̂S ′

xS

]
· wL − p̂GE · wG

− ρ̂S
[
ψ S + P

ρSR
+ (

sL
)2 ρLR

ρSR

∂ψ L

∂sL
+ 1

2
′
xS · ′

xS

−ψ L − P
ρLR

− sL
∂ψ L

∂sL
− 1

2
′
xL · ′

xL

]
≥ 0.

(27)

According to the Coleman–Noll procedure applied to multiphasic materials, each term of (27) is evaluated
separately in order to ensure the independence of the process variables, compare [24]. In particular, the
entropy inequality (27) can be split in an equilibrium and a non-equilibrium part, compare [25] for details.
The equilibrium part of (27), where the constitutive terms, for which thermodynamical restrictions are used,
do not depend on the rates of deformation and temperature, can be found by skipping all terms after line five
of (27) and setting the remainder equal to zero. Thus, the terms in front of the rates DS , DL and DG as well as
in front of θ ′

S , θ
′
L , θ

′
G and (ρGR)′G have to vanish, such that the equation is fulfilled for arbitrary rates in the

sense of a sufficient condition. Following this, the Lagrange multiplier is found as

P = (
ρGR)2 ∂ψG

∂ρGR
=: pGR (28)

and can be identified as the excess gas pressure. Note that the fluid stresses Tβ generally consist of equilibrium
and non-equilibrium parts; however, only the equilibrium parts are considered here, such that

TG
E = 0 and TL

E = −nLsLρLR ∂ψ L

∂sL
I (29)

result by use of (24)1 in the equilibrium fluid stresses

TG = −nG pGR I ,

TL = −nL
(
pGR + sLρLR ∂ψ L

∂sL

)
I =: −nL pLR I .

(30)
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Based on (30)2, a comparison of the gas pressure pGR and the liquid pressure pLR yields

pLR = pGR + sLρLR ∂ψ L

∂sL
, (31)

such that the capillary pressure pC defined as the pressure difference between the non-wetting and the wetting
fluid, gas and liquid, is obtained as:

pC = pGR − pLR = − sLρLR ∂ψ L

∂sL
. (32)

The evaluation of the solid skeleton stress TS is based on the first line of (27) yielding

TS
E = nSsL pC I + 2 ρS FS

∂ψ S

∂CS
FT
S , (33)

such that

TS = −nS
(
pGR − sL pC

)
I + 2 ρS FS

∂ψ S

∂CS
FT
S

= −nS pFR I + TS
E mech ,

(34)

where

pFR := (
1 − sL

)
pGR + sL pLR ,

TS
E mech = 2 ρS FS

∂ψ S

∂CS
FT
S .

(35)

From (33)–(35), it is seen that the evaluation of the entropy inequality naturally recovers Dalton’s law (35)1,
compare [18], with pFR as the effective excess pore pressure, while TS

E mech from (35)2 yields the basis for
the definition of a nonlinear thermo-elastic, anisotropic porous solid material. Note that the case of pFR = 0
does not necessarily indicate limp tissue cells as only the excess pore pressure vanishes, while the real pressure
equals the ambient pressure. Finally, the thermodynamical restrictions for the entropies can be found in case
of thermodynamical equilibrium by setting lines three to five of (27) to zero. Thus,

ηS = pFR

(ρSR)2

∂ρSR

∂θ
− ∂ψ S

∂θ
,

ηL = pLR

(ρLR)2

∂ρLR

∂θ
− ∂ψ L

∂θ
,

ηG = −∂ψG

∂θ
.

(36)

In the next step, the non-equilibrium parts of (27) are investigated. Introducing the dissipative expression
of the liquid momentum production as

p̂LE dis = p̂LE + (sL)2ρLR ψ L

∂sL
grad nS + ρ̂S ′

xS

= p̂LE − sL pC grad nS + ρ̂S ′
xS ,

(37)

the non-equilibrium terms of (27) can be summarised as the dissipation inequality

D = − p̂LE dis · wL − p̂GE · wG − 1

θ
(qS + qL + qG) · grad θ

− ρ̂S (ψ S + pFR

ρSR
+ 1

2
′
xS · ′

xS − ψ L − pLR

ρLR
− 1

2
′
xL · ′

xL) ≥ 0.
(38)
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In order to make sure that the inequality (38) is fulfilled for arbitrary processes, the following assumptions are
made

p̂LE dis ∝ −wL , p̂GE ∝ −wG, qα ∝ − grad θ. (39)

Furthermore, with regard to the mass interaction, the constraint reads

ρ̂S ∝ −
(

ψ S + pFR

ρSR
+ 1

2
′
xS · ′

xS − ψ L − pLR

ρLR
− 1

2
′
xL · ′

xL

)
. (40)

Based on (39) and (40), the material laws for the respective processes need to be found.

2.4.2 Solid skeleton

The thermo-mechanical extra stress TS
E mech has to be found on the basis of (35), such that it describes the

required properties of finite deformations, anisotropy, thermoelasticity and mass interactions describing the
double porosity. Therefore, the potential energy is additively split into isotropic and anisotropic parts, where
the anisotropic part accounts for one preferred direction (the out-of-plane direction for the presented numerical
example).Within solidmechanics, theHelmholtz free energy is usually substituted by the strain-energy function
WS per unit reference volume via

WS = ρS
0Sψ

S, WS = WS
iso + WS

aniso (41)

with isotropic and anisotropic parts WS
iso and WS

aniso for which an invariant representation has to be found. In
the present case, the first invariant and the square root of the third invariant ofCS are introduced as IS = CS · I
and JS := √

I I IS = √
detCS . Based on various articles, such as [26,27,30,63], the isotropic part of the strain

energy is given via

WS
iso =�S

4

(
J 2S − 2 ln JS − 1

) − μSln JS + μS

2
(IS − 3)

− 3αSkSln JS (θ − θ0) − ρS
0Sc

S
v

[
θ ln

(
θ

θ0

)
− θ + θ0

]
,

(42)

where�S andμS are the Lamé constants, kS the bulkmodulus and cSv the specific heat at constant volume. Note
that for the description of the thermo-mechanical coupling, the stress-temperature modulus mS

θ = −3αSkS is
frequently introduced, cf. [27].

Note in passing that with a decreasing solid volume fraction nS , as in the present case of cell dehydration,
the consideration of the so-called compaction point of porous solids [26], namely the local total closure of the
pore space, is not necessary. The remaining anisotropic part WS

aniso of the solid strain energy, cf. [51,53], has
been developed for transversely isotropic materials, such that

WS
aniso = 1

2
αS1 (JS4 − 1)αS2 . (43)

Therein, the stretch in the preferred direction is denoted by JS4 = aS ·aS , αS1 and αS2 are material parameters.
Note that aS = FS aS0 is pointing into the preferred direction of the current configuration. The anisotropic
extension may account for hard and soft tissues, as it accounts for extension and shrinking as well. In case that
a deformation-independent stiffness in the direction of anisotropy has to be considered, αS2 = 2 needs to be
chosen, since the material tangent is constant in that particular case. Based on the considerations so far, the
mechanical extra-stress is derived via

TS
E mech = TS

iso + TS
aniso, (44)

where the respective parts are given by

TS
iso = ρS

ρS
0S

[
�S

2

(
J 2S − 1

)
I + 2μS KS − 3αSkS (θ − θ0) I

]
,

TS
aniso = ρS

ρ0
αS1 αS2 (JS4 − 1)αS2−1

(
aS ⊗ aS

)
.

(45)

Thus, it is easily seen from (16) that the dehydration of the tissue cells is naturally included in (45) by ρ̂S , also
compare the similar ansatz by [52] dealing with porous materials with a growing (or shrinking) solid skeleton.
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2.4.3 Fluid constituents

Within the macro-pore space, two immiscible pore fluids are present, namely, materially incompressible water
(liquid) and materially compressible air (gas). For the liquid component, the thermal dependency needs to be
accounted for, where the density anomaly at 3.98◦C has also to be taken into consideration. A discussion of
this effect can be found in [7,67] with experimentally based approaches on how to handle this temperature
dependency. Here, the approach from [67] is used, such that the effective liquid density is given via

ρLR(θ̃) = a5

[
1 − (θ̃ + a1)2(θ̃ + a2)

a3(θ̃ + a4)

]
, (46)

where a1 − a5 are fitting parameters. Note that θ̃ in (46) is given in ◦C, such that the conversion θ̃ [◦C] =
θ [K] − 273.15 has to be used.

For the gaseous component, the equation of state of the ideal gas law in the form of Boyle–Mariotte is
applied

ρGR(θ, pGR) = pGR + p0
R̄Gθ

, (47)

where R̄G is the specific gas constant and p0 the ambient pressure. Therefore, pGR is the excess pressure
compared to the ambient pressure.

Based on the evaluation of the entropy inequality given in (39)1 and (39)2, the following approaches are
admissible for the direct momentum productions

p̂LE dis = −
(
nL

)2
ρLRg

(
KL

r

)−1
wL , p̂GE = −

(
nG

)2
ρGRg

(
KG

r

)−1
wG (48)

with g = |g|. Furthermore, the relative permeabilities KL
r and KG

r are given as functions of the hydraulic
conductivities KL and KG after [13] as

KL
r = κL

r K
L , KG

r = κG
r KG , (49)

where κL
r and κG

r are the so-called relative permeability factors given by [13]

κL
r =

(
sLeff

) 2+3λc
λc

, κG
r =

(
1 − sLeff

)2
[
1 −

(
sLeff

) 2+λc
λc

]
. (50)

Therein, λc is the pore-size distribution index and sLeff the effective liquid saturation defined after [69] as

sLeff = sL − sLres
1 − sLres − sGres

(51)

with the residual saturations sLres and sGres. As plant tissue is an unsaturated porous material, the effect of
capillarity has to be taken into account for the macro-pore space. Choosing the relation between the (effective)
liquid saturation sLeff and the capillary pressure pC , compare (32), according to [13] to ensure thermodynamic
consistency, cf. [27], one makes use of

sLeff =
(
pd
pC

)λc

⇐⇒ pC = pd
(
sLeff

)− 1
λc (52)

for pC ≥ pd , where pd is the bubbling pressure. As there are no experimental data available concerning the
action of capillarity, λc and pd are chosen in order to account for the initial fluid volume fractions and an
assumption regarding the pore size distribution, as will be discussed in Sect. 4. In addition, the conductivity
tensors KL and KG , measured in m3/(m2 s), can be related to the intrinsic permeability KS , measured in m2,
through

KL = ρLRg

μLR
KS, KG = ρGRg

μGR
KS (53)
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withμβR as the shear viscosity of the respective fluid. The intrinsic permeabilityKS in the current configuration
can capture an anisotropic (macro-)pore space, where the anisotropy is assumed to be inherent and not caused
by the deformation. Following [42],

KS =
(

1 − nS

1 − nS0S

nS0S
nS

)π

KS
0S , (54)

whereKS is related to the intrinsic permeabilityKS
0S of the solid reference configurationwithπ as a nonlinearity

parameter covering the change in available pore space, while the term in parentheses accounts for an opening
or shrinking of the pore space.

Based on thermodynamic considerations and the derivation of [27], the Helmholtz liquid free energy is
given as

ψ L = λc pC

ρLR
− cLRv

[
θ ln

(
θ

θ0

)
− θ + θ0

]
+ ψ L

0 , (55)

where cLRv is the specific heat at constant volume. Furthermore, the reference energy potential is chosen as
ψ L
0 = pFR

0 /ρSR
0 − λc pC0 /ρLR

0 − pLR0 /ρLR
0 , such that there is initially no solid mass production . Note that

with ( · )0 or ( · )0α indicated quantities refer to the reference state.
The filter velocity nLwL is determined by solving the quasi-static momentum balance (14)2 by use of the

restrictions (24)2, (37), (48)1–(53)1 with respect to nLwL . Thus,

nLwL = − κL
r

μLR
K

(
grad pLR − ρLRg − pC

sL
grad sL + ρ̂

nL
′
x
)

(56)

Therein, grad pLR is the contribution arising from water pressure, ρLRg from the gravitational potential and
(pC/sL) grad sL from the interaction between the pore fluids in the macro pores, which is mainly determined

by the capillary pressure. Finally, (ρ̂S/nL)
′
xS accounts for the momentum production that is due to mass

interaction in terms of cell dehydration, which is orders of magnitude smaller than the contributions from the
pressures. Concerning the numerical example of this article that is applied to Equisetum hyemale, a standard
cross section of the plant is considered in horizontal direction, such that gravitational forces do not matter,

such that this contribution as well as (ρ̂S/nL)
′
xS can be neglected.

According to the introduction of the water potential to address the flow of water in biology-based articles,
such as [39,43] or [45], one might introduce a potential function hW based on (56), where the gradient of the
water potential consists of four parts:

grad hW = grad pLR − ρLRg − pC

sL
grad sL + ρ̂S

nL
′
xS . (57)

For the water potential itself, this implies

hW = pLR +Ug + λc p
C +Uρ̂S (58)

with the water pressure potential pLR , the gravitational potential Ug , the capillarity potential λc pC and a
potential Uρ̂S accounting for the local momentum production that is due to solid mass production.

For the gas phase, the Helmholtz free energy ψG is based on thermodynamic considerations and is given
according to [25,27] via

ψG =R̄Gθ

[
ln

(
ρGR

ρGR
0G

)
+ ρGR

0G

ρGR
− 1

]
− cGR

v

[
θ ln

(
θ

θ0

)
− θ + θ0

]
. (59)

Therein, cGR
v is the specific heat at constant volume.

As the filter velocity of the pore liquid, the filter velocity nGwG and accordingly the seepage velocity wG
are also determined from the quasi-static momentum balance (14)2 and the restrictions (24)2 and (48)2–(53)2
resulting in

nGwG = − κG
r

μGR
KS

(
grad pGR − ρGRg

)
. (60)
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2.4.4 Cell dehydration

In addition to the fluids within the macro-pore space, the dehydration of the tissue cells occurs via micro pores
in the cell walls. The impact of this structural property in relation to the water status on the tissue cells has
already been tackled by [16,39,49,65,66], however, rather in the context of cell growth.

The double-porosity feature is also an interesting property from an engineering point of view, inter alia
discussed by [21,33], within the group of Borja, cf. [10,11,14,15,70], or within the framework of a THM
model by [37]. As was outlined in the introduction, these articles proceed from individual fluid constituents
at two porosity scales with individual states of motion and mass exchange of a respective fluid across the
scales. However, within this contribution, the water is either confined to the solid skeleton or mobile within
the macro-pore space. Hence, the introduction of an independent state of motion of water in the micro-pore
space is not necessary, but mass exchange is still admissible. Thus, the micro-pore flow is solely considered
in terms of a mass-exchange or a mass-production term, respectively, describing the flow of water through the
cell wall from the intracellular space to the surrounding intercellular (macro-pore) space. Note that the articles
mentioned above regarding double porosity treat the flow already at the continuum scale as the result of a
virtual homogenisation. For a mathematically rigorous treatment of the homogenisation, the interested reader
is referred to [3] or [55].

Similar to the flow of water at the macroscale represented by (56), the flow of water at the microscale is
also considered as a non-equilibrium process. Thus, the evaluation of the entropy inequality (38) suggests that
the flow at the microscale through the cell wall, here represented by the mass production ρ̂S , is governed by
the difference in chemical potentials between the solid skeleton and the water in the macro-pore space. The
chemical potential is constituted by three parts, which are the Helmholtz free energy ψ S , a pressure-driven

part pFR/ρSR and the mass-specific kinetic energy
1

2
′
xS · ′

xS of the solid skeleton. In this context, the chemical

potential may be also denoted as water potential at the microscale. Thus, the mass production is introduced by
the admissible ansatz via

ρ̂S = −κ SLω L p

(
ρSR

)2 (
ψ S + pFR

ρSR
+ 1

2
′
xS · ′

xS − ψ L − pLR

ρLR
− 1

2
′
xL · ′

xL

)
. (61)

Therein, the hydraulic conductivity L p of the cell wall accounts for themicro-poremorphology and the physical
properties of the pore water. Furthermore, ω is the specific surface of the cells in natural conditions and is the
result of a virtual homogenisation accounting for the cell wall, through which the cell dehydrates in relation
to its representative volume. Finally, κ SL ≥ 0 is the effective permeability coefficient that accounts for the
change in effective surface area. This term is introduced as

κ SL =
{
39.0625 (nS − 0.1)2 (0.9 − nS)2 for : 0.1 ≤ nS ≤ 0.9, else.
0

(62)

This ansatz is admissible and accounts for the constraints of dehydration and rehydration, compare Fig. 2.
The constraints are given by a residual solid tissue material of approximately nSres ≈ 0.1 and a residual pore

space of about nFres ≈ 0.1. Thus, the water status of the cells in a freezing environment is described by a local
change in solid volume fraction. Note that the kinetic energy terms in (61) will be ignored for the numerical
example as they are of negligible size.

2.4.5 Heat flux

Based on (39)3, the dissipative character of the respective partial heat fluxes is accounted for by

qα = −nαHαR grad θ, (63)

resulting in Fourier’s law for each constituent ϕα . Therein, HαR ≥ 0 is the effective constituent-specific heat
conductivity.
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Fig. 2 Effective permeability coefficient κ SL for a varying state of hydration of the tissue cells. In particular, κ SL has a maximum
value of 1.0 and it accounts for the residual solid volume fraction nSres and the residual pore space n

F
res

3 Numerical solution via the FEM

3.1 Strong formulation of the governing equations

For the thermo-mechanical ternarymodel under study, numerical computations are based on themass, momen-
tum and energy balances of the constituents, which basically result in six scalar and three vectorial equations,
such that a system of fifteen coupled scalar equations have to be solved. These equations are reduced to only
one momentum and one energy balance of the overall aggregate accompanied by mass balances of the indi-
vidual constituents, such that the general system of fifteen equations reduces to a system of only seven scalar
equations.

In a quasi-static setting, the acceleration terms on the left-hand side of (14)2 are dropped. Following this,
an addition of the momentum balances of all constituents yields

0 = div (TS
E mech − pFR I) + ρ g + ρ̂S wL , (64)

where (15)2 has been used. This equation represents the momentum balance of the overall medium and acts, at
the same time, as the representative of the solid skeleton. Summing up the momentum balances is necessary,
as the external forces, as a result of the internal coupling between the constituents, cannot be split into portions
acting on the individual components of themodel.Note that in the quasi-static setting, the individualmomentum
balances of the pore water and the air drop off, as they have already been used to determine the seepage or filter
velocities of the fluids, compare (56) and (60), that can be inserted into the mass balances of the constituents.
Based on (14)1 and (15)1, these balances read

(ρS)′S + ρSdiv (uS)′S − ρ̂S = 0,

(ρL)′S + div (ρLwL) + ρLdiv (uS)′S + ρ̂S = 0,

(ρG)′S + div (ρGwG) + ρGdiv (uS)′S = 0.

(65)

As the overall system is governed by only one temperature, the energy balances (14)3 of all constituents can
be summed up to yield

ρS(εS)′S + ρL(εL)′L + ρG(εG)′G − TS
E mech · LS + pFR div (uS)′S

− nLgrad pLR · wL − nGgrad pGR · wG

+ div (qS + qL + qG + nL pLR wL + nG pGR wG)

+ p̂LE dis. · wL + nF pCgrad sL · wL + p̂GE · wG

+ ρ̂S(εS + 1

2
′
xS · ′

xS − εL − 1

2
′
xL · ′

xL) = 0,

(66)

where (15)3 has been taken into consideration.
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Together with the initial and boundary conditions, the above system of coupled equations defines the strong
formulation of the IBVP under discussion. This system of equations has to be solved for the primary variables
that can be summarised in the solution vector y= (uS, nS, pLR, pGR, θ)T corresponding individually to the
following equations:

• Momentum balance of ϕ, cf. (64) −→ uS

• Mass balance of ϕS, cf. (65)1 −→ nS

• Mass balance of ϕL , cf. (65)2 −→ pLR

• Mass balance of ϕG, cf. (65)3 −→ pGR

• Energy balance of ϕ, cf. (66) −→ θ

As the problem is formulated in a quasi-static setting, thus neglecting all inertia terms, the fluid momentum
balances have not been used in the numerical setting so far. Thus, the fluid velocities and therewith the filter
velocities nβwβ reduce to secondary variables that can be found from the fluid momentum balances, compare
(56) and (60).

Note that all other secondary variables occurring in the above equations can be determined with the aid of
the primary variable and the corresponding constitutive equations.

3.2 Weak formulation of the governing equations

Based on the strong formulation of the problem, it is usually impossible to find a solution for y. Thus, the
strong formulation is transformed to its weak counterpart by use of the Bubnov–Galerkin method. Following
this, the governing equations (64)–(66) are multiplied by test functions δuS , δnS , δpLR , δpGR and δθ with a
subsequent integration over the solid domain �. Specifically, multiplying (64) with δuS , the weak formulation
of the momentum balance of the overall aggregate ϕ reads after some manipulations

GuS ≡
∫

�

(TS
E mech − pFRI) · grad δuS dv

−
∫

�

(ρ g + ρ̂SwL) · δuS dv −
∫

� t̃
N

t̃ · δuS da = 0,
(67)

where t̃ = (TS + TL + TG)n is the surface traction acting at the Neumann boundary � t̃
N , while n is the

outward-oriented unit surface normal. Regarding the primary variables nS , pLR and pGR , the corresponding
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weak formulations of the mass balances read

GnS ≡
∫

�

[(
nS

)′
S + nS

ρSR

(
ρSR)′

S − ρ̂S

ρSR
− (

uS
)′
S · grad nS

]
δnS dv

−
∫

�

nS
(
uS

)′
S · grad δnS dv +

∫

�ṽS
N

ṽSδnS da = 0,

GpLR ≡
∫

�

[(
nL

)′
S ρLR + nL

(
ρLR)′

S + ρL div
(
uS

)′
S + ρ̂S

]
δpLR dv

−
∫

�

ρLwL · grad δpLR dv +
∫

�m̃L
N

m̃LδpLR da = 0,

GpGR ≡
∫

�

[(
nG

)′
S ρGR + nG

(
ρGR)′

S + ρG div
(
uS

)′
S

]
δpGR dv

−
∫

�

ρGwG · grad δpGR dv +
∫

�m̃G
N

m̃GδpGR da = 0.

(68)

Therein, m̃β = ρβ wβ · n is the mass efflux of the respective fluid through the Neumann boundary �m̃β

N .
However, for the mass balance of the solid skeleton, there is no volume efflux through the Neumann boundary
�ṽS

N that has to be considered, meaning that ṽS = nS(uS)′S · n = 0. This is due to the Lagrangian formulation
of the solid skeleton. However, the fluid effluxes m̃β are generally non-vanishing based on the fact that the
fluids are described by a modified Eulerian description with an Eulerian domain that deforms with the solid
skeleton. Finally, the temperature θ is computed by use of the weak form of the energy balance of the overall
aggregate ϕ. Thus,

Gθ ≡
∫

�

[
ρS(εS

)′
S + ρL(

εL
)′
L + ρG(

εG
)′
G − TS

E mech · LS + pFR div
(
uS

)′
S

−nLgrad pLR · wL − nGgradpGR · wG

+p̂LE dis · wL + nF pCgradsL · wL + p̂GE · wG

+ρ̂S
(

εS + 1

2
′
xS · ′

xS − εL − 1

2
′
xL · ′

xL

)]
δθ dv

−
∫

�

(
qS + qL + qG + nL pLR wL + nG pGR wG

)
· grad δθ dv

+
∫

�
q̃
N

q̃ δθ da = 0.

(69)

Therein, q̃ = (qS +qL +qG +nL pLR wL +nG pGR wG) ·n is the heat influx through the Neumann boundary
�
q̃
N .
Following the above explanations, the overall problem is based on the abstract formulation

“Find a weak solution y that solves the function
G( y) = (GuS ,GnS ,GpLR ,GpGR ,Gθ )

T = 0
and satisfies the boundary conditions”.

(70)

As the bio-physical processes included in G( y) are nonlinear and strongly coupled, a monolithic solution
scheme based on the FEM is applied, where the spatial discretisation proceeds from Taylor–Hood elements
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(a) (b)

Fig. 3 Quarter of Equisetum hyemale, shown a in natural condition and b as an idealised but representative cross section with
dimensions of the hollow cylinder and vallecular canals with 0.22mm diameters. For the discussion of results, points A, B and
C are indicated, the boundaries are denoted by Roman numerals (I–VII), cf. Table 1 for the corresponding boundary condition

with a quadratic approximation function for the solid displacement uS and linear approximation functions for
nS , pLR , pGR and θ , thus fulfilling the Ladyzhenskaya–Babuška–Brezzi (LBB) condition to avoid stability
issues. Aswe use the finite-element solver PANDAS1 for our numerical computations, the spatial discretisation
is based on an implicit solution scheme proceeding from the Newton–Raphson method, while the temporal
domain proceeds from a backward Euler scheme.

4 Application to Equisetum hyemale

The geometry of the underlying plant tissue is depicted in Fig. 3. Therein, Fig. 3a displays a quarter of the cross
section in its natural, unfrozen state. The same quarter of the idealised cross section is shown in Fig. 3b, where
the boundaries are labelled with Roman numerals, for which the Dirichlet or Neumann boundary conditions
are defined according to Table 1. The boundary I is directed to the pith cavity, while the boundary V is directed
to the vallecular canals. Furthermore, three more or less arbitrary points within the cross section of the stem
are indicated with their coordinates given in [mm] as A (1.3435, 1.3435, 0.025), B (1.452, 1.447, 0.025) and
C (1.583, 1.586, 0.025).

As was reported in [61], themain locations of ice formation inEquisetum hyemalewere found at the surface
to the pith cavity and the vallecular canals. The diameter of the pith cavity is 3.8mm, the vallecular canals
with diameter 0.22mm are distributed according to Fig. 3b within a cross section with a width of 0.5mm.
The following computations are based on the TPMmodel described in the preceding sections and make use of
a symmetry assumption, such that only one quarter of the cross section has to be considered. The symmetry
conditions, meaning no fluxes and no circumferential displacements, along with the other boundary conditions
are listed in Fig. 3b and Table 1 for an idealised cross section.

Furthermore, initial conditions have to be defined for the primary variables uS , nS , pLR , pGR and θ reading

uS0 = 0, nS0S = 0.6, pLR0 = − 0.11 [MPa], pGR
0 = 0, θ0 = 278.15 [K]. (71)

Finally, the Dirichlet boundary condition in terms of temperature (θD) at boundary II, cf. Table 1, is prescribed
by

θD =
⎧
⎨

⎩
θ0 − θdiff

tdiff
t for : t ≤ tdiff ,

θ0 − θdiff else
(72)

1 Porous media adaptive nonlinear finite element solver based on differential algebraic systems (http://www.get-pandas.com).

http://www.get-pandas.com
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Table 1 Boundary conditions for the boundaries I–VII of Fig. 3b applied to the initial-boundary-value-problems for Equisetum
hyemale

I II III IV V VI VII

u1 = 0 t1 = 0 u1 = 0 t1 = 0 t1 = 0 t1 = 0 t1 = 0
u2 = 0 t2 = 0 t2 = 0 u2 = 0 t2 = 0 t2 = 0 t2 = 0
t3 = 0 t3 = 0 u3 = 0 u3 = 0 t3 = 0 u3 = 0 u3 = 0
pLR = pLRD m̃L = 0 m̃L = 0 m̃L = 0 pLR = pLRD m̃L = 0 m̃L = 0
m̃G = 0 pGR = pGR

0 m̃G = 0 m̃G = 0 m̃G = 0 m̃G = 0 m̃G = 0
ṽS = 0 ṽS = 0 ṽS = 0 ṽS = 0 ṽS = 0 ṽS = 0 ṽS = 0
q̃ = 0 θ = θD q̃ = 0 q̃ = 0 q̃ = 0 q̃ = 0 q̃ = 0

Note that t1, t2 and t3 represent the components of the surface traction t̃ in the directions e1, e2 and e3, respectively

with θdiff = 15K and tdiff = 27, 000 s, compare [61]. On the other hand, the onset of ice formation introduces
a drop in the water potential, cf. [46]. Hence, this is applied at the boundaries of the extracellular space. Here,
the interpolated values from the experimental investigation of [46] have been used for the Dirichlet boundary

condition �
pLR

D at the vallecular canals (boundary V) as well as at the pith cavity (boundary I):

pLRD =
{
pLR0 + pdiff (θ − θfr) for : θ < θfr,

pLR0 else
(73)

with θfr = 273.15K and pdiff = 0.007MPa. This shows exemplarily the strong coupling of the underlying
THMmodel, as the pressure drop is a function of the local temperature at the given boundaries of ice formation.

Finally, themodel requires the knowledgeof allmaterial parameters, as given in (Table 2). The approximated
initial effective liquid saturation of sLeff, 0 = 0.1 is implemented by considering a pore size distribution index
of λc = 0.6, as for rather poorly sorted porous materials, cf. [35], and an emerging bubbling pressure of
pd = 0.00237MPa. In addition to the mechanical anisotropy, also the hydraulic anisotropy at the macro scale
is taken into account by the intrinsic permeability tensor KS

0S:

KS
0S =

⎛

⎝
10−8 0 0
0 10−8 0
0 0 10−6

⎞

⎠ ei ⊗ e j [mm2]. (74)

Given (74), the assumption has been made according to the mechanical behaviour of the solid skeleton, that
there is one preferred permeability direction, namely perpendicular to the investigated cross section.Moreover,
note that due to the high water content of the solid skeleton, the material parameters of the solid skeleton and
the pore water are mostly similar.

5 Results and discussion

The following numerical results have been computed with the finite-element solver PANDAS. Of special
interest are the temperature-induced effects on the hydraulics in the micro- and macro-pore space in Equisetum
hyemale, thus exhibiting the double-porosity feature.

5.1 Deformation

The deformation of an underlying cross section of Equisetum hyemale is shown in Fig. 4 exhibiting a represen-
tative in-plane deformation pattern at time t = 50,000 s. This type of behaviour has also been observed by [61]
as a result of their experiments indicating an oval shape of the vallecular canals in the deformed configuration,
compare also Figs. 4 and 7. This behaviour is the result of the coupled thermo-mechanical deformation and
the outflow of water into the vallecular canals and the pith cavity, thus leading to shrinkage of the plant.
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Fig. 4 The undeformed cross section of Equisetum hyemale is depicted in light blue; the representative in-plane deformation
taken at time t = 50,000 s is shown with the adapted mesh in black. (Color figure online)

Fig. 5 Water pressure pLR distribution within the cross section of Equisetum hyemale for time steps 6000 s; 16,000 s; 28,000 s;
36,000 s; 56,000 s; 72,000 s; 116,000 s and 180,000 s increasing from top left to bottom right regarding time

5.2 Thermally induced hydraulics in the micro- and macro-pore space

Based on the initial condition of the effective water pressure pLR , cf. (71)3, Fig. 5 exhibits the distribution of
pLR in the displayed cross section for meaningful time steps. These are 6000 s; 16,000 s; 28,000 s; 36,000 s;
56,000 s; 72,000 s; 116,000 s and 180,000 s increasing from top left to bottom right. When the temperature θ
within the vallecular canals and the pith cavity reaches a value below 273.15K, the described change in water
pressure according to (73) is due to the onset of ice formation. From there on, the pressure drop propagates
from boundaries I and V through the cross section. The values of the permeabilityKS

0S determine how fast the
pressure drop propagates. The minimal value of pLR is − 0.18MPa, which has been chosen according to the
experiments of [46]

The change in water pressure has an effect on the macro-pore flow, as depicted in Fig. 6. In particular and
according to (56), the pressure distribution in Fig. 5 causes a Darcy flow of water into the vallecular canals and
the pith cavity, which is depicted in Fig. 6 in a detailed view. Note that this is a representative pressure and flow
pattern and, therefore, displayed in a qualitative manner. It shows the distribution of the filter velocity nLwL
in the region of interest. Note in passing that the gas exchange at the pith cavity and the vallecular canals is
neglected, as stated in Table 1.

In Fig. 7, a detailed view of the cross section in frozen condition is given. Therein, the vallecular canal is
depicted in light green and the surrounding porous tissue material in dark green. The pith cavity is shown at the
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Table 2 Material parameters of the ternary TPM plant-tissue model

Parameter Value Unit Remark/References

nS0S 0.6 − Image analysis of Equisetum hyemale
sLres 0.05 − Residual saturation of ϕL in (51)
sGres 0.05 − Residual saturation of ϕG in (51)
sLeff, 0 0.1 − Accounting for (71), after [46]
λc 0.6 − Accounting for (71), after [46]
ρSR
0S 1.0 × 10−6 kg/mm3 Density of watery plant [1]

a1 −3.983035 ◦C Parameter in (46) [67]
a2 301.797 ◦C Parameter in (46) [67]
a3 5.225289 × 105 ◦C2 Parameter in (46) [67]
a4 69.34881 ◦C Parameter in (46) [67]
a5 9.9997495 × 10−7 kg/mm3 Parameter in (46) [67]
L p 1.0 × 10−5 mm/(sMPa) Hydraulic micro-conductivity [39]
ω 100.0 1/mm Specific surface of cells [39]
R̄G 2.87 × 105 Nmm/(kgK) Specific gas constant of air [29]
p0 0.101 MPa Atmospheric pressure in (47)
μLR 1.7 × 10−9 N s/mm2 Viscosity of water at 0.01◦C [29]
μGR 1.7 × 10−11 N s/mm2 Viscosity of air at 0.0◦C [29]
θ S
0S 278.15 K Initial temperature of experiment

�S 12.0 MPa In-plane stiffness after [47,48,64]
μS 12.0 MPa In-plane stiffness after [47,48,64]
kS 20.0 MPa In-plane stiffness after [47,48,64]
αS1 300.0 MPa Out-of-plane stiffness after [47,48,64]
αS2 2.0 − Out-of-plane stiffness after [47,48,64]
π 1.0 − Exponent compaction point in (54)
αS 1.0 × 10−5 1/K Thermal expansion of watery plant [62]
cSv 4.2 × 106 Nmm/(kgK) Suggested value of water at 0.01◦C [29]
cLRv 4.2 × 106 Nmm/(kgK) For water at 0.01◦C [29]
cGR
v 7.2 × 105 Nmm/(kgK) For air at 0.0◦C [29]
HSR 0.556 N/(s K) Suggested value of water at 0.01◦C [29]
HLR 0.556 N/(s K) For water at 0.01◦C [29]
HGR 0.024 N/(s K) For air at 0.0◦C [29]

Fig. 6 Characteristic water pressure pLR distribution and resulting filter velocity nLwL (blue arrows) in an enlarged view. Smaller
arrows indicate a lower filter velocity; longer arrows indicate a higher velocity. (Color figure online)
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Fig. 7 By courtesy of [59]. Detailed view of the cross section in frozen condition. The indicated vallecular canal is depicted in
light green and contains frozen water, whereas the surrounding porous tissue exhibits dark green colour. The pith cavity at the
lower end contains partly frozen water, which is also depicted in light green. (Color figure online)

Fig. 8 Cell dehydration in terms of ρ̂S for time steps 6000 s; 16,000 s; 28,000 s; 36,000 s; 56,000 s; 72,000 s; 116,000 s and
180,000 s increasing from top left to bottom right regarding time. Cell dehydration is governed by the arising pressure gradient
and the involved micro porosity, in particular, the effective hydraulic conductivity of the cell wall

lower end, where parts are filled with frozen water, which is also depicted in light green. In frozen condition,
it is shown in Fig. 7 that water left the porous tissue into the vallecular canals and the pith cavity, which is
qualitatively reflected by the numerical results in Fig. 6. Furthermore, as shown in Fig. 7, the shape of the
vallecular canals is oval in frozen condition. Note that this shape change is very pronounced for the displayed
cross section; however, this strong expression is not always the case. Nevertheless, it fits qualitatively to the
displayed deformation pattern in Fig. 4.

The change in water pressure pLR has also consequences for the micro-pore flow. The flow in the micro-
pore space has been considered as cell dehydration in the modelling approach via the mass production term
ρ̂S according to (61), which is displayed in Fig. 8. It shows the onset of the micro-pore flow, when the pressure
decreases at the surface to the pith cavity and the vallecular canals. As the pressure gradient close to these
regions is higher, also shown by the higher filter velocity in Fig. 6, the cell dehydration is more pronounced in
this region, cf. Fig. 8. Obviously, the change in dehydration follows the pressure gradient.

The initial solid volume fraction nS0S is 0.6. It reduces due to the water loss to a minimal value of 0.1,
which corresponds to the (solid) biological tissue material. This shows essentially the dehydration of the solid
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Fig. 9 Evolution of the solid volume fraction nS for time steps 6000 s; 16,000 s; 28,000 s; 36,000 s; 56,000 s; 72,000 s; 116,000 s
and 180,000 s increasing from top left to bottom right regarding time. It approaches a minimum value of 0.1, which corresponds
to the amount of biological tissue material in the solid skeleton

Fig. 10 Evolution of the liquid volume fraction nL for time steps 6000 s; 16,000 s; 28,000 s; 36,000 s; 56,000 s; 72,000 s; 116,000
s and 180,000 s increasing from top left to bottom right regarding time. The slight drop in liquid volume fraction at time frame
2, cf. also Fig. 15, is due to the macro-pore flow, the increase in the following time frames is mainly due to the micro-pore flow,
i. e. cell dehydration

skeleton as the consequence of the involved thermo-hydro-mechanical processes, which has been recognised
as one of the key features of frost hardiness of plant tissues (Fig. 9).

The liquid volume fraction nL is even more insightful, as it arises due to the micro- and macro-pore flow,
compare Fig. 10. The initial slight drop in liquid volume fraction nL at time frame 2 close to the pith cavity
as well as the vallecular canals, cf. also Fig. 15, is due to the macro-pore flow, as the drop in water pressure
instantaneously leads to an efflux of water into the pith cavity and the vallecular canals, the cell dehydration
cannot compensate for this. However, this depends crucially on the relation between the involved hydraulic
conductivities at the micro- and the macroscale. The increase in liquid volume fraction for later time steps is
due to the increasing cell dehydration.

The described qualitative results are supported by the evaluation of the nodal values at three points A, B
and C within the cross section. The nodal values of the temperature θ , the water pressure pLR , the solid mass
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Fig. 11 Temperature θ close to the pith cavity (Point A), in the middle of the cross section (Point B) and close to the outer surface
(Point C). Although the temperature is prescribed at the outer surface, the respective temperature evolution over time is very
similar for all locations within the cross section (the curves overlap)

Fig. 12 Water pressure pLR for the selected points A, B and C. The pressure at Point A is defined by the prescribed pressure pLRD ,
when the temperature is below the freezing point θfr . The pressure at Point B and Point C is the result of the internally coupled
processes, in particular, the chosen permeability at the macroscale

production ρ̂S , the solid volume fraction nS and the liquid volume fraction nL are given for these points, as
introduced in Fig. 3.

The temperature evolution is very similar for all points, indicating that there is just a small temperature
gradient over the cross section for a certain time step, compare Fig. 11.

As Point A is at the boundary to the pith cavity, where the water pressure drop is prescribed, the pressure
drops linearly, when the temperature is below the freezing point θfr according to (73). When the location of
interest is a bit further away from that boundary, as in case of the points B and C, the pressure arises with
a time shift as a consequence of the THM processes, but also mainly due to the chosen macro permeability,
compare Fig. 12.

The respective time evolution of the local pressure is one factor that influences the dehydration of the tissue
cells, and the other is given by the effective permeability at themicroscale. In particular, at Point A, the pressure
drop leads to the dehydration of the tissue cells, displayed in Figs. 13 and 14, respectively, and, initially to
a drop in liquid volume fraction within the macro-pore space, cf. Fig. 15. But as the dehydration is getting
more pronounced, there is an increase in liquid volume fraction. In fact, this illustrates the double-porosity
feature of the material, where the decrease is a macro effect, i. e. the cells do not dehydrate fast enough to
compensate, and the increase of liquid volume fraction is rather a micro-effect, as the cells dehydrate then
faster and overcompensate the efflux of water into the pith cavity in the specific case of the location at Point
A. The mentioned time shift of the pressure at locations B and C is also reflected in a similar time shift in the
mass production and the corresponding volume fractions. The reduced intensity of the mass production in Fig.
13 indicates a lower gradient of the local pressures.
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Fig. 13 The solid mass production ρ̂S at points A, B and C evolves as a function of the effective permeability at the microscale
and the pressure difference, which propagates through the cross section, but loses its intensity. Therefore, the maximum value for
the solid mass production goes from A over B to C, from the inside, from where the pressure is prescribed, to the outside, with a
lower maximum value but longer duration

Fig. 14 Solid volume fraction nS at points A, B and C. Since the solid mass production ρ̂S has a time shift, that has been shown
in Fig. 13, the cells close to the pith cavity dehydrate faster in relation to locations B and C

Fig. 15 Liquid volume fraction nL at points A, B and C. The double-porosity effect is evident for the time evolution of nL at
Point A, where, after the pressure drop initiates, the water flows immediately into the pith cavity, where the cell dehydration in
terms of ρ̂S cannot keep up. For later time steps, the dehydration leads to an increase of water in the macro-pore space. The initial
effect is hardly visible at Point B, and not at all at Point C, as the flow in the macro-pore space is small at locations B and C
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Fig. 16 Comparison of the volumetric flow rate [mm3/s] into the vallecular canals, marked in blue, and the pith cavity, marked
in red. (Color figure online)

Fig. 17 Comparison of the volumetric flow rate per surface area [mm3/mm2 s] into the vallecular canals, marked in blue, and the
pith cavity, marked in red. (Color figure online)

5.3 Comparison of the bulk flows into the vallecular canals and the pith cavity

Finally, the water efflux into the vallecular canals and the pith cavity are compared. This comparison indicates,
where the larger ice body can be found. Thus, the fraction of the total amount of water leaving the porous tissue
material into the vallecular canals is 0.73, the efflux into the pith cavity is, consequently, 0.27. This supports
the experimental findings by [61] showing that the larger ice body is found in the vallecular canals, as it attracts
more water in freezing conditions. The causal volumetric efflux [mm3/s] of water into the vallecular canals
and the pith cavity is compared over time, which is shown in Fig. 16. It shows that the volumetric efflux into
the vallecular canals is higher compared to the volumetric efflux into the pith cavity at any instant of time.

One reason for the higher total amount of water in the vallecular canals is the higher surface area. Hence,
the volumetric efflux of water in relation to its surface in terms of [mm3/mm2 s] to the vallecular canals and
the pith cavity, respectively, is compared, cf. Fig. 17. This shows that the higher total amount of water in the
vallecular canals is not just an effect that can be traced back to its larger surface area, as the volumetric flow
per surface area is also larger in this case for the vallecular canals.

6 Conclusion

Extracellular ice formation in plant tissues occurs dispersed in intercellular spaces as well as in larger cavities.
Both cases lead to the dehydration of living cells as an essential component of frost hardiness. In order to
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assess the coupled phenomena that lead to the dehydration of the tissue cells as a consequence of dispersed ice
formation, the inclusion of the phase transformation of the water to ice in the macro-pore space is necessary.
However, in case that ice formation on internal surfaces and cavities is considered as in this contribution, the
impact of the formation of ice on the plant tissuematerial can be addressed by appropriate boundary conditions.

Therefore, the particular strength of the presentedmodel is the establishment of amodelling framework that
allows for addressing the coupled thermo-hydro-mechanical phenomena upon freezing conditions including a
proof of thermodynamic consistency, here by application to Equisetum hyemale. The model exhibits a quasi-
double-porosity feature in terms of its hydraulics in the micro- and macro-pore space. This type of water
management is crucial for the survivability of the plant. This is reflected by the numerical results. First of all,
the deformation shows the anticipated pattern. Furthermore, the dehydration of the tissue cells is determined
as a function of the ice-induced drop in water pressure at the surface to the pith cavity and the vallecular canals.
But this pressure drop causes also the efflux of macro-pore water towards the locations of ice formation. It has
furthermore been shown by comparison of these flows that the main location of extracellular ice is found in
the vallecular canals.
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