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Abstract As the demand for lithium-ion batteries increases, a better understanding of the complex phenomena
involved in their operation becomes crucial. In this work, we propose a coupled thermo-chemo-mechanical
model for electrode particles of Li–ion batteries. To this end, we start with a general finite strain continuum
framework for the coupled thermo-chemo-mechanical problem and then narrow it down to cathode active
particles of Li–ion batteries, particularly to lithium manganese oxide particles. Electrochemical kinetics at
the surface of the particle and also heat generation due to current exchange are taken into account. Next, the
numerical treatment of the problem using the finite element method is presented. Specific line elements are
needed to evaluate the flux of ions at the surface of the particle. Finally, the performance of the proposed model
is evaluated using a few representative boundary value problems.

1 Introduction

Lithium–ion batteries are broadly used in portable consumer electronics, medical equipment, military devices,
etc. Recently, the demand for lithium–ion batteries has increased dramatically due to the rise of electric and
hybrid electric vehicles. Additionally, Li–ion batteries have the potential to be used for storing renewable
energy derived from intermittent energy sources such as wind and sunlight, see Zubi et al. [61] and Diouf and
Pode [20]. In comparison to other rechargeable batteries such as lead-acid or nickel-based batteries, Li–ion
batteries provide higher specific energy and cycle life, which explains their popularity; however, due to safety
reasons, they require a battery management system. With the increase in the demand for Li–ion batteries,
researchers continue to enhance their performance and safety while decreasing the production costs.

A Li–ion battery cell consists of four main components: an anode, a cathode, a separator and an electrolyte.
The anode is typically made of graphite, the cathode is normally a lithium metal oxide and the electrolyte is
usually a lithium salt mixed in an organic solvent. The separator, which is usually made of polyethylene or
polypropylene, has almost zero electrical conductivity and is placed between the electrodes to prevent short
circuit while allowing the flow of lithium ions through its micropores. Despite the attempts to improve the
battery capacity by replacing graphite anodes with alternative materials such as silicon-based anodes, graphite
remains the preferred anode material for most industrial applications. Hence, the cathode active materials have
been the focus of attention in enhancing battery performance. Some examples of cathode active materials
are: lithium cobalt oxide (Li CoO2 or LCO), lithium manganese oxide (LiMn2 O4 or LMO), lithium nickel
manganese cobalt oxide (NMC) and lithiumnickel cobalt aluminumoxide (NCA), seeBuchmann [8] for a lucid
introduction. The reader is also referred to Whittingham [52]. The latter two cathode chemistries mentioned
above have risen in popularity in the recent years, especially in electric vehicles. The charging process in
Li–ion batteries is driven by an external voltage. During the charging of the battery, electrons move in the
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outer circuit from cathode to anode. In the meanwhile, lithium ions are extracted from the cathode, migrate
in the electrolyte, permeate the separator and intercalate into the anode. During discharging, the process is
reversed and the generated electric current in the outer circuit can be exploited. Charging and discharging of
battery, and hence, intercalation and extractions of lithium ions, cause volumetric deformation of electrode
active materials. The resulting stresses may lead to fracture of the particles of active materials, and thus, to
battery capacity fade, see Wang et al. [48], [49] and also the review article of Lyu et al. [34].

The growingdemand forLi–ion batteries has risen questions about sustainability and environmental impacts
of their extensive use. In addition to these issues, there remain some technical challenges for engineers in the
application of Li–ion batteries, for example, capacity fade, self-discharge, thermal runaway and poor low
temperature performance, see Bandhauer et al. [3] for a good review and the references cited therein. All of
these issues are linked with thermal effects in the battery. Of all the issues listed above, thermal runaway is
probably the most critical for electric vehicles as it poses a threat to the safety of the passengers. Thermal
runaway occurs when a chain of unwanted exothermic reactions takes place in the battery, which can eventually
lead to battery failure, venting with flames and even explosion, see Feng et al. [23] and Yang et al. [54] for a
description of possible mechanisms of thermal runaway.

An interplay of complex effects across multiple scales, which influence each other directly or indirectly, is
observed in Li–ion batteries. A complete picture of these effects may be achieved by considering the coupling
between electrochemistry, thermodynamics and mechanics. Pioneering efforts to model full lithium battery
cells mathematically were made by Doyle et al. [21] for solid-state batteries and Fuller et al. [24] for Li–ion
batteries. These rigorous one-dimensional models are purely electrochemical. A two-dimensional model for
evaluation of electrochemical fields and chemically induced stresses within porous cathodes was proposed
by García et al. [25] based on a linearized form of the Butler–Volmer interfacial kinetics. Christensen and
Newman [13] proposed a continuummodel for intercalation-induced stress generation in spherical particles of
electrode active materials. This model was then used in Christensen and Newman [14] to predict fracture onset
in spherical lithiummanganese oxide particles. A three-dimensionalmodel for predicting intercalation-induced
stresses within cathode particles was proposed by Zhang et al. [56]. This model was utilized in the subsequent
work of Zhang et al. [57], which additionally took electrochemical kinetics into account using the Butler–
Volmer equation. The latter model could, furthermore, predict intercalation-induced heat generation. The
authors, however, did not comment on the numerical implementation of their model. Analytical relationships
for diffusion-induced stresses in spherical electrode particles were proposed in Cheng and Verbrugge [10–12]
and Verbrugge and Cheng [47]. Several other models have been proposed which treat phase transformation [6,
17,42–44,50,59], fracture [1,18,19,30–32], plasticity [7,58], homogenization [26] and structural instabilities
[53] in Li–ion batteries, just to name a few. See also the review article by Zhao et al. [60] on coupled chemo-
mechanical modeling approaches for Li–ion batteries across various scales.

Predicting the amount of heat generation during the operation of batteries is of key importance in designing
thermal management systems. Numerous efforts have been made to predict and simulate heat generation in
batteries. A general expression for energy balance in battery cells, which considered electrochemical reactions,
phase transitions,mixing effects and Joule heating,wasgiven inBernardi et al. [4]. In theirwork, the temperature
inside the cell was assumed to be uniform. Gu andWang [27] presented a coupled thermal and electrochemical
model using the volume-averaging approach, which allowed for a spatial variation of temperature within the
battery cell. Heat generation in a one-dimensional cell with a porous electrode was simulated by Thomas
and Newman [45] and compared with the experimental measurements. A three-dimensional thermal model
for batteries with layered structure was given in Chen et al. [9]. Zhang et al. [57] used the expression given
by Thomas and Newman [45] to calculate heat generation in LMO cathode particles under potentio-dynamic
control. A different formulation of transport phenomena in Li–ion batteries, including heat transfer, was
given by Latz and Zausch [33] based on non-equilibrium thermodynamics, see De Groot and Mazur [16].
See also the work of Hu and Shen [29] on variational formulation of coupled thermo-chemo-mechanical
processes based on non-equilibrium thermodynamics. Hu et al. [28] presented a continuum model for hollow
core-shell electrodes by coupling a one-dimensional electrochemical battery model with a two-dimensional
thermal model. Werner and Weinberg [51] proposed, based on thermodynamics of irreversible processes,
a coupled thermo-chemo-mechanical model for solid state batteries, which also takes phenomena such as
phase transformations, thermal diffusion and thermoelectric effects into account. A coupled thermo-chemo-
mechanical model for graphite, NMC, and LMO electrode particles was proposed by Masmoudi et al. [35]
based on thermodynamics of irreversible processes. Their small strain formulation has been supplemented
with numerical examples; however, an algorithmic implementation of the model has not been addressed.
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Following the previous works by Dal and Miehe [15] and Miehe et al. [38], we propose a coupled thermo-
chemo-mechanical model for electrode particles in Li–ion batteries. Our four-field formulation uses also
elements of the previous works by Miehe et al. [36] on variational formulation of diffusion in elastic solids
and Miehe et al. [37] on phase field modeling of brittle fracture in thermo-elastic solids. The model is used
to simulate the response of LMO cathode particles during battery operation. This finite strain model can
be used to simulate other electrode particles, provided that the electrochemical properties of the material
and the necessary material parameters are known. In Sect. 2 of this work, a general framework for coupled
thermo-chemo-mechanics is formulated. The governing equations of the coupled problem are given and the
thermodynamical consistency of the model is discussed. An alternative approach to fulfill the second law of
thermodynamics is discussed, which is related in the subsequent section of the paper to Onsager’s reciprocal
relations. In Sect. 3, the general framework of Sect. 2 is narrowed down to electrode particles of Li–ion batteries.
To this end, the corresponding constitutive functions are specified and the electrochemical reaction kinetics
and heat generation at the boundary of particles are discussed. In Sect. 4, the numerical implementation of the
model with a specific application to electrode particles is presented. Finally, in Sect. 5, the model response is
evaluated with the help of a few representative boundary value problems.

2 Four-field formulation of the coupled problem

This section outlines a general continuum formulation of coupled thermo-chemo-mechanics. We will start by
introducing the primary field variables, their gradients and the material and spatial fluxes. We will then discuss
the global and local balance laws of the coupled problem, the principle of irreversibility and the constitutive
equations that fulfill the principle of irreversibility.

2.1 Primary field variables of the coupled problem

The coupled problem under consideration can be treated as a four-field problem. The primary field variables
are the deformation of the solid

ϕ :
{
B0 × R

+ → Bt ⊂ R
3

(X, t) �→ x = ϕ(X, t) ,
(1)

the species concentration and the chemical potential

c :
{B0 × R

+ → [0, 1]
(X, t) �→ c(X, t) and μ :

{B0 × R
+ → R

(X, t) �→ μ(X, t) (2)

and the absolute temperature

θ :
{B0 × R

+ → R
+

(X, t) �→ θ(X, t) .
(3)

At any time t ∈ R
+, the deformation ϕ is a one-to-one mapping of the points X ∈ B0 of the reference

configuration B0 onto the points x ∈ Bt of the current configuration Bt . The concentration field c ∈ [0, 1]
is a dimensionless measure of the amount of the diffusing species (lithium ions) in unit reference volume of
the solid. It may be considered as the molar concentration c̃ of the diffusing species in unit reference volume
of the solid divided by the maximum possible molar concentration c̃max. The chemical potential μ is the
energy-conjugate variable to concentration. The absolute temperature θ is a positive scalar field defined over
B0, i.e., θ ≥ 0. See Fig. 1 for a visualization of the primary variables. The material gradients of deformation,
(negative) chemical potential and temperature fields are denoted by F, M and F and defined by

F := ∇ϕ(X, t), M := −∇μ(X, t), F := ∇θ(X, t) . (4)

In order to circumvent penetration of matter, we require that the determinant of the deformation gradient be
positive, i.e., J := det[F] > 0. The deformation gradient F, its cofactor cof[F] = J F−T and its determinant
J serve as the mappings of infinitesimal line, area and volume elements, respectively:

dx = FdX, da = cof[F]dA, dv = JdV . (5)
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ϕ = ϕ̄

X ∈ B0

ϕ

N

P · N = T̄

X ∈ B0

c

μ = μ̄

X ∈ B0

μ

N

· N = H̄

θ = θ̄

X ∈ B0

θ

N

· N = Q̄

deformation field species concentration field chemical potential field temperature field

Fig. 1 Primaryfield variables of the coupled thermo-chemo-mechanical problem.The boundary ∂B0 of the reference configuration
is decomposed into Dirichlet and Neumann boundaries for the deformation field ϕ, the chemical potential field μ and the
temperature field θ . The prescribed values on the boundary are marked with an overbar

2.2 Stress tensors and flux vectors

Consider an arbitrary part P0 ⊂ B0 cut out of the reference configuration B0 of the body under consideration.
Let Pt ⊂ Bt denote the deformed configuration of P0 at time t . Thus, we can write Pt = ϕt (P0). Let also ∂P0
and ∂Pt express the boundaries of P0 and Pt , respectively. We will write the balance laws for this arbitrary
part, assuming that solid material can not cross the boundary ∂Pt of the spatial region Pt as it deforms with
the body.

2.2.1 Stress tensors

The mechanical force per unit area exerted on Pt by the rest of the body Bt\Pt is called the traction vector and
is denoted by t . Based on Cauchy’s stress theorem, at any point x ∈ ∂Pt there exists a second-order tensor σ ,
called the Cauchy stress tensor, that relates the outward unit normal n to the traction vector t acting on Pt :

t(x, t; n) = σ (x, t) · n . (6)

We define the referential traction vector T by scaling the spatial force tda to the referential area element d A
such that the identity tda = TdA holds. The first Piola-Kirchhoff stress tensor P is then defined by forming
a relationship, analogous to (6), between the referential outward unit normal N and traction vector T :

T (X, t; N) = P(X, t) · N. (7)

The area mapping (5)2 relates the infinitesimal area element dA = NdA to da = nda; thus, the relationship
between the first Piola–Kirchhoff stress tensor P and the Cauchy stress tensor σ can be obtained as

P = Jσ F−T . (8)

2.2.2 Species flux vectors

The species flux h represents the amount of the species that flows outwards, per unit time, through a unit area
element of the boundary ∂Pt of the part Pt . It is related to the outward normal n by a flux vector h in the form

h(x, t; n) = h(x, t) · n . (9)

The material species flux, denoted by H and defined by the identity hda = HdA, represents the flow of the
species, per unit time, through a unit area element of the boundary ∂P0. In analogy to (9), we assume that the
material species flux H is related to the outward normal N to ∂P0 by a material species flux vector H

H(X, t; N) = H(X, t) · N. (10)

Using the area mapping (5)2, the relationship between thematerial species flux vectorH and the spatial species
flux vector h is obtained:

H = J F−1h . (11)
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2.2.3 Heat flux vectors

The heat flux q is the outward flow of thermal energy, per unit time, through a unit area element of the boundary
∂Pt . It is related to the outward normal n to the surface ∂Pt by the heat flux vector q

q(x, t; n) = q(x, t) · n . (12)

The material heat flux Q is defined by the identity qda = QdA and represents the amount of thermal energy
which flows outward, per unit time, through a unit area element of the boundary ∂P0. Similar to (12), the
material heat flux Q is related to the outward normal N to ∂P0 by a material heat flux vector Q

Q(X, t; N) = Q(X, t) · N. (13)

With the area mapping (5)2, the relationship between the material heat flux vectorQ and the spatial heat flux
vector q can be written as

Q = J F−1q . (14)

2.3 General equations of thermo-chemo-mechanics

2.3.1 Global balance equations

The general equations governing the coupled problem are written for the arbitrary part P0 ⊂ B0 cut out of
the reference configuration B0. No mass production is assumed to take place. During the deformation the total
mass of the solid constituent in the part P0 should remain unchanged and equal to its initial value. Considering
the part P0 as a control volume, balance of species content demands that the temporal changes in the amount
of the diffusing species be equal to the in-flux (negative out-flux) through the surface

d

dt

∫
P0

c dV = −
∫

∂P0

H dA . (15)

Neglecting the inertial effects, balances of linear and angular momentum for the part P0 can be written as∫
∂P0

T dA +
∫
P0

γ dV = 0 and
∫

∂P0

ϕ × T dA +
∫
P0

ϕ × γ dV = 0 , (16)

respectively. In the above equations, γ (X, t) is the body force exerted per unit reference volume. Finally, the
balance of energy reads

d

dt

∫
P0

e dV =
∫

∂P0

(
T · V − Q − μH

)
dA +

∫
P0

(
γ · V + r

)
dV, (17)

where V (X, t) := ϕ̇(X, t) is the material velocity field, e(X, t) is the internal energy of the unit reference
volume and r(X, t) is the heat source per unit reference volume.

2.3.2 Local balance equations

Using the definitions introduced in Sect. 2.2 for the material species flux H , the nominal traction vector T
and the material heat flux Q and with the help of the Gauss and localization theorems, we can write the local
balance equations

1. Balance of species content ċ = −Div[H ]
2. Balance of linear momentum Div[P] + γ = 0
3. Balance of angular momentum skew[PFT ] = 0
4. Balance of energy ė = P : Ḟ − Div[Q] + μċ + r + H · M

(18)
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2.3.3 Principle of irreversibility

The global form of the second axiom of thermodynamics for an arbitrary part P0 ⊂ B0 of the body is

d

dt

∫
P0

η dV ≥ −
∫

∂P0

Q

θ
dA +

∫
P0

r

θ
dV, (19)

where η(X, t) is the entropy per unit reference volume. The local form of the entropy imbalance reads

η̇ − 1

θ

(
r − Div[Q]

)
− 1

θ2
Q · ∇θ ≥ 0 . (20)

Using the balance of energy (18)4 and introducing theHelmholtz free energyψ by the Legendre transformation
e = ψ + ηθ , the above inequality takes the form

η̇ − 1

θ

(
ψ̇ + η̇θ + ηθ̇ − P : Ḟ − μċ − H · M

)
− 1

θ2
Q · ∇θ ≥ 0 . (21)

Multiplying the above inequality by the absolute temperature and defining G := −∇θ
θ
, the local form of the

second axiom is obtained in the form of the dissipation inequality

D := P : Ḟ − ηθ̇ + μċ − ψ̇ + H · M + Q · G ≥ 0 . (22)

This poses a constraint on the material modeling framework. It needs to be fulfilled locally such that the second
axiom of thermodynamics is not violated.

A stronger constraint is achieved by demanding the positiveness of some sets of the individual terms in
the dissipation inequality. To this end, the dissipation inequality (22) is split up into an internal part and a part
due to diffusion and heat conduction and each of these parts is demanded to be non-negative:

Dint := P : Ḟ − ηθ̇ + μċ − ψ̇ ≥ 0 ; Ddi f,con := H · M + Q · G ≥ 0 . (23)

An even stronger constraint may be achieved by splitting the dissipation inequality (22) into an internal part
and two separate parts due to diffusion and heat conduction. Each of these parts is demanded to be non-negative
separately:

Dint := P : Ḟ − ηθ̇ + μċ − ψ̇ ≥ 0 ; Ddi f := H · M ≥ 0 ; Dcon := Q · G ≥ 0 . (24)

2.3.4 Objective free energy and thermodynamical forces

In order to close the problem,we need to specify the constitutive functions such that the principle of irreversibil-
ity is fulfilled. Assuming a local theory of grade one, the Helmholtz free energy ψ is assumed to depend on
the primary variables ϕ, c and θ and their first gradients,

ψ = ψ̄(ϕ,∇ϕ, c, ∇c, θ, ∇θ) . (25)

The stored energy function ψ̄ must remain invariant under a rigid body motion of the form ϕ+ = Rϕ + c
superimposed on the current configuration. Here, R(t) ∈ SO(3) denotes an arbitrarily chosen rotation tensor
of the special orthogonal group and c(t) is a translation vector. Based on this requirement, the stored energy
function ψ̄ can not depend on ϕ and depends on the deformation gradient F through the right Cauchy–Green
tensor C := FT F, which remains invariant under this rigid body motion. This conclusion together with
a standard Coleman–Noll procedure applied on the internal dissipation inequality (23)1 or (24)1 gives the
reduced set of arguments for the stored energy

ψ = ψ̂(F, c, θ) = ψ̃(C, c, θ) , (26)

and the constitutive equations for the thermodynamical forces

P = ∂Fψ̂(F, c, θ) ; μ = ∂cψ̂(F, c, θ) ; η = −∂θ ψ̂(F, c, θ) . (27)

Note that by making the stored energy function dependent on the right Cauchy–Green tensor C , the balance
of angular momentum is automatically fulfilled.
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2.3.5 Temperature evolution equation

With e = ψ + ηθ and the constitutive equations given in (27), balance of energy (18)4 takes the form of a
temperature evolution equation

cθ̇ = −Div[Q] + H · M + r + L , (28)

where the following definitions are used for the sake of compactness:

c := −θ ∂2θθ ψ̂ and L := θ ∂2Fθ ψ̂ : Ḟ + θ ∂2cθ ψ̂ ċ . (29)

2.3.6 Thermo-chemically coupled dissipation potential

A thermodynamically consistent setting can be achieved by demanding that the internal part of the dissipation
inequality (23)1 and the part due to diffusion and heat conduction (23)2 be non-negative. Let us repeat these
inequalities:

Dint := P : Ḟ − ηθ̇ + μċ − ψ̇ ≥ 0 ; Ddi f,con := H · M + Q · G ≥ 0 . (30)

Following a standard Coleman–Noll procedure and using the constitutive equation (27), the internal dissipation
inequality (30)1 can a-priori be fulfilled. What remains is to restrict the material modeling framework such
that the dissipation due to diffusion and heat conduction (30)2 is also non-negative. Let us define the combined
flux vector J := [H;Q] and the combined driving force I := [M;G]. The dissipation inequality due to
diffusion and heat conduction (30)2 takes the form

Ddi f,con := J · I ≥ 0 . (31)

We assume that the flux vector J is specified by an objective dissipation potential

φ = φ̂(I; F, c, θ) = φ̃(I;C, c, θ) , (32)

which depends on the driving force I at a given state {F, c, θ} of deformation, concentration and temperature.
For a convex, positive and normalized φ, the dissipation inequality (31) is a-priori fulfilled if the flux vector
J is specified by the following constitutive equation:

J = ∂I φ̂(I; F, c, θ) . (33)

Convexity of the dissipation potential in I implies that the Hessian H := ∂2II φ̂ is positive semi-definite.
Moreover, H is a symmetric tensor due to symmetry of second derivatives. Let us divide H into four blocks
as below:

H =
[

∂2MM φ̂ ∂2MGφ̂

∂2GM φ̂ ∂2GGφ̂

]
=:

[
a b

bT c

]
, (34)

where we a and c are themselves symmetric. Positive semi-definiteness ofH implies a constraint on the blocks
a, b and c. For a positive semi-definite block a � 0, the tensor given in (34) is positive semi-definite if and
only if the Schur complement H/a of a is also positive semi-definite, that is

H/a := c − bTa−1b � 0 . (35)

With (27) and (33) at hand, we can summarize the constitutive equations in the following box:

1. Constitutive stress P = ∂Fψ̂(F, c, θ)

2. Constitutive chemical potential μ = ∂cψ̂(F, c, θ)

3. Constitutive entropy η = −∂θ ψ̂(F, c, θ)

4. Constitutive flux vector J = ∂I φ̂(I; F, c, θ)

(36)
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2.3.7 Decoupled chemical and thermal dissipation potentials

A simpler formulation with decoupled thermal and chemical dissipation potentials is obtained by demanding
that the dissipation inequalities (24) be satisfied. Let us repeat these inequalities:

Dint := P : Ḟ − ηθ̇ + μċ − ψ̇ ≥ 0 ; Ddi f := H · M ≥ 0 ; Dcon := Q · G ≥ 0 . (37)

Following a standard Coleman–Noll procedure and making use of the constitutive Eq. (27), the internal
dissipation inequality (37)1 can a-priori be fulfilled. We need to restrict the material modeling framework such
that the dissipation inequalities due to diffusion (37)2 and heat conduction (37)3 are also satisfied. To this end,
the material species flux vector H is assumed to be specified by the objective chemical dissipation potential

φc = φ̂c(M; F, c, θ) = φ̃c(M;C, c, θ) , (38)

which depends on the (negative) gradient M of chemical potential at a given state {F, c, θ} of deformation,
concentration and temperature. Assuming a convex, positive and normalized chemical dissipation potential
φc in terms of M , the dissipation inequality (37)2 is a-priori satisfied if the material species flux vector H is
specified by the constitutive equation

H = ∂M φ̂c(M; F, c, θ) . (39)

Similarly, we assume the material heat flux vector Q to be specified by an objective thermal dissipation
potential

φt = φ̂t (G; F, c, θ) = φ̃t (G;C, c, θ) , (40)

which depends on the vector G at a given state {F, c, θ} of deformation, concentration and temperature. For
a convex, positive and normalized φt , the dissipation inequality (37)3 is a-priori fulfilled if the material heat
flux vector Q is specified by the following constitutive equation:

Q = ∂Gφ̂t (G; F, c, θ) . (41)

With (27), (39) and (41) at hand, we can summarize the constitutive equations in the following box:

1. Constitutive stress P = ∂Fψ̂(F, c, θ)

2. Constitutive chemical potential μ = ∂cψ̂(F, c, θ)

3. Constitutive entropy η = −∂θ ψ̂(F, c, θ)

4. Constitutive species flux vector H = ∂M φ̂c(M; F, c, θ)

5. Constitutive heat flux vector Q = ∂Gφ̂t (G; F, c, θ)

(42)

2.3.8 Boundary conditions of the coupled problem

The boundary ∂B0 of the body in the reference configuration is split into Dirichlet and Neumann boundaries
for deformation ϕ, chemical potential μ and temperature θ fields

∂B0 = ∂Bϕ
0 ∪ ∂Bt

0, ∂B0 = ∂Bμ
0 ∪ ∂Bh

0 , ∂B0 = ∂Bθ
0 ∪ ∂Bq

0 , (43)

such that

∂Bϕ
0 ∩ ∂Bt

0 = ∅, ∂Bμ
0 ∩ ∂Bh

0 = ∅, ∂Bθ
0 ∩ ∂Bq

0 = ∅ . (44)

Given are the Dirichlet and Neumann boundary conditions for the deformation

ϕ = ϕ̄(X, t) on ∂Bϕ
0 and P · N = T̄ (X, t) on ∂Bt

0 , (45)

for the chemical potential

μ = μ̄(X, t) on ∂Bμ
0 and H · N = H̄(X, t) on ∂Bh

0 , (46)

and for the temperature

θ = θ̄ (X, t) on ∂Bθ
0 and Q · N = Q̄(X, t) on ∂Bq

0 , (47)
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with ϕ̄, μ̄ and θ̄ being the prescribed deformation, chemical potential and temperature and with T̄ , H̄ and
Q̄ being the prescribed traction, species outflux and heat outflux. The governing equations of the coupled
problem, which are used to derive the weak form, are summarized in the following box:

1. Balance of linear momentum Div[P] + γ = 0
2. Constitutive chemical potential μ = ∂cψ̂
3. Balance of species content ċ = −Div[H ]
4. Temperature evolution equation cθ̇ = −Div[Q] + H · M + r + L

(48)

Note that in the numerical treatment of our four-field setting, the constitutive equation for chemical potential
(48)2 has been treated as a global equation. The reason is that a three-field formulation in terms only of the
primary field variables {ϕ, μ, θ}will lead to complications in evaluating the species flux at the boundary of the
particles using the Butler–Volmer equation, see Sect. 3.3; thus, we consider the concentration c as a primary
(global) variable and regard the constitutive equation for chemical potential as an additional global equation.

3 Model problem: electrode particles of Li–ion batteries

In what follows, we reduce the continuum formulation of Sect. 2 to the specific case of electrode particles
in lithium–ion batteries. To this end, we present the specific choice of constitutive functions for the stored
energy and the dissipation potentials. Then, we comment on the kinetics of electrochemical reaction at particle
interface and finally, we discuss heat generation due to current exchange at the boundary of particles.

3.1 Constitutive functions for the stored energy

A multiplicative decomposition of the deformation gradient into an elastic part Fe, a chemical part Fc and a
thermal part Ft is considered:

F = Fe Fc Ft with Fc = (Jc)
1
3 1 and Ft = (Jt )

1
3 1 , (49)

where the chemical and thermal parts are volumetric deformations in terms of the chemical and thermal
expansions

Jc = 1 + �(c − c0) and Jt = exp
[
3α (θ − θ0)

]
. (50)

Here, c0 and θ0 are the initial concentration and temperature, respectively. � is a swelling parameter and α
is the coefficient of linear thermal expansion. The stored energy function is assumed to additively decompose
into elastic, chemical and thermal contributions

ψ̂(F, c, θ) = ψ̂e(F, c, θ) + ψ̂c(c) + ψ̂t (θ) . (51)

The elastic part ψ̂e of the stored energy function depends on the elastic part Fe of the deformation gradient
and is of compressible Neo-Hookean type

ψ̂e = γ

2

[
Fe : Fe − 3

] + γ

ζ

[
(det Fe)

−ζ − 1
]
. (52)

Here, γ is the shear modulus and the parameter ζ > 0 depends on the Poisson ratio ν by the relationship
ζ = 2ν

1−2ν . The purely chemical contribution to the stored energy function is given by

ψ̂c = A
[
c ln c + (1 − c) ln(1 − c)

]
, (53)

where A is a material constant. Finally, the purely thermal contribution to the stored energy function has the
form

ψ̂t = −C
[
θ ln

( θ

θ0

) − (θ − θ0)
]
, (54)

where the heat capacity C is assumed to be constant.
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3.2 Constitutive functions for the dissipation potentials

A simple choice for the dissipation potential function discussed in Sect. 2.3.6 would be a quadratic function
in terms of M and G,

φ̂(M ,G; F, c, θ) = 1

2
a : (M ⊗ M) + b : (M ⊗ G) + 1

2
c : (G ⊗ G) , (55)

wherea = aT and c = cT , while the constraint (35) holds and the blocka is positive semi-definitea � 0. Note
that a, b and c generally depend on deformation, concentration and temperature. The choice of a quadratic
dissipation potential function leads to a linear dependence of J on I in the form J = H · I , where H is a
symmetric positive semi-definite tensor independent of I . Using the representation (34) ofH, we can write

H =
[
a b

bT c

]
J=H·I⇒

{
H = a · M + b · G,

Q = bT · M + c · G.
(56)

The tensor b couples species flow to temperature gradient and heat flow to the gradient of chemical potential.
These couplings are called the Soret effect and the Dufour effect, respectively, see De Groot and Mazur [16]
and Rahman and Saghir [41]. Note that the symmetry of H is in line with Onsager’s reciprocal relations, see
De Groot and Mazur [16].

We choose the following specific form for the dissipation potential function (55)

φ̂(M ,G; F, c) = c(1 − c)C−1 :
[
M

2
(M ⊗ M) + L(M ⊗ G) + K

2
(G ⊗ G)

]
, (57)

where M , L and K are material parameters and C is the right Cauchy–Green tensor. Positive semi-definiteness
ofH imposes a constraint on the material parameters M , L and K . Since c ∈ [0, 1] and the inverse of the right
Cauchy–Green tensor C−1 is symmetric and positive definite, based on (35), the following constraints need to
be fulfilled such that the second law of thermodynamics is not violated:

M ≥ 0 and KM − L2 ≥ 0 . (58)

In Sect. 5.1, we will comment on the response of the coupled thermo-chemo-mechanical model using the
above formulation.

Setting L = 0 in (57) and thus, b = 0 in (55) and (56), brings us the decoupled setting discussed in
Sect. 2.3.7, where the following chemical dissipation potential function characterizes the species flow

φ̂c(M; F, c) = M

2
c(1 − c)C−1 : (M ⊗ M) , (59)

at a given state of deformation represented by the right Cauchy-Green tensor C and concentration c. Here,
M > 0 is identified as the species mobility, see Miehe et al. [36]. The thermal dissipation potential function
governs the heat flow and has a similar structure to the chemical dissipation potential in (59). It is a convex
function in G

φ̂t (G; F, c) = K

2
c(1 − c)C−1 : (G ⊗ G) , (60)

at a given state of deformation and concentration, see Miehe et al. [37]. Here, the parameter K > 0 represents
the thermal conductivity.

3.3 Electrochemical reactions at the boundary of particles

During discharging of the battery, lithium ions migrate from anode through the electrolyte to cathode and
the electrons flow in the external circuit in the same direction, whereas during charging, lithium ions migrate
from cathode through the electrolyte to anode. An external voltage is needed for the charging process. The
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Fig. 2 The open-circuit potential of LiMn2 O4 versus the state of charge based on the curve fitting, proposed in Doyle et al. [22],
to the experimental measurements

reduction-oxidation reaction that takes place during charge/discharge cycles in the cathode of the lithium–ion
battery under our consideration is

LiMn2O4

charge
�

discharge
Li1−xMn2O4 + xLi+ + xe−. (61)

Following the approach of Fuller et al. [24] andNewman andThomas-Alyea [39], the rate of the electrochemical
reaction is related to the surface overpotential ηs , which serves as the driving force of the reaction. Surface
overpotential is the difference between the potential V of the working electrode and the open-circuit potential
Uocp; thus, we have ηs = V − Uocp. The open-circuit potential Uocp is the potential of an electrode of the
same material which is in equilibrium with the electrolyte. It is a function of the state of charge, which is
expressed by the stoichiometric ratio y = 1− x of lithium in the electrode LiyMn2O4. This can be considered
as equivalent to the unitless concentration c of lithium ions in the electrode. Following the work of Doyle et
al. [22], the open-circuit potential of LiMn2O4 is given in terms of the state of charge by the curve of Fig. 2.
Additionally, similar to Zhang et al. [55] we can assume that, due to the small size of the particle, the potential
within the particle is homogeneous and equal to the applied potentialUapplied under potentiodynamic stimulus.
We can then summarize

ηs = V (t) −Uocp(c) with V (t) = Uapplied . (62)

The current density i at the surface of the particle is related to the surface overpotential ηs by the Butler–Volmer
equation

i = i0

{
exp

[
(1 − β)F

Rθ
ηs

]
− exp

[−βF

Rθ
ηs

]}
. (63)

Here, i0 is the exchange current density, β is the symmetry factor, R is the gas constant and F is Faraday’s
constant. The exchange current density i0 is given by

i0 = Fkc̃max(c̃amb)
(1−β)(1 − c)(1−β)cβ , (64)

where c̃amb is the molar concentration of lithium ions in the electrolyte and k is the reaction rate constant.
Finally, the flux of lithium ions through the particle surface is given by

H̄ = i

Fc̃max
= k(c̃amb)

(1−β)(1 − c)(1−β)cβ

{
exp

[
(1 − β)F

Rθ
ηs

]
− exp

[−βF

Rθ
ηs

]}
. (65)

We will assume that concentration of lithium ions in the electrolyte c̃amb remains almost constant during the
operation of the battery. Hence, we consider the multiplier k(c̃amb)

(1−β) as a model parameter and denote it
by H � in the forthcoming sections.
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of LiMn2 O4 plotted versus the state of charge. A curve fitting to the experimental measurements of Thomas et al.
[46] has been performed using the sum of sines with 4 terms in MATLAB

3.4 Heat generation due to current exchange

Neglecting side reactions, we assume, similar to Masmoudi et al. [35], that heat generation within the particle
can be evaluated based on the current exchange at the interface of the particle. Two contributions to the
generated heat are considered, namely the irreversible resistive heating and the reversible entropic heating.
The resistive heating is denoted by Rr and is given in the form of the following integral over the surface of the
particle

Rr =
∫

∂B0

i ηs dA , (66)

where i is the current density determined by the Butler–Volmer equation (63) and ηs is the surface overpotential
(62), see Sect. 3.3. The entropic heating Re is given by

Re =
∫

∂B0

i θ
dUocp

dθ
dA , (67)

where
dUocp
dθ

is a function of the state of charge. Similar to Zhang et al. [57], we use the experimental mea-

surements of Thomas et al. [46] for evaluating
dUocp
dθ

of LiMn2O4 as a function of the state of charge. A curve
fitting, shown in Fig. 3, to the experimental measurements has been performed using the sum of sines with 4
terms in MATLAB. This specific choice has been made to avoid the complexities of implementing a piecewise
function in our numerical treatment. The fit is given by

dUocp

dθ
= a1 sin(b1 y + c1) + a2 sin(b2 y + c2)

+ a3 sin(b3 y + c3) + a4 sin(b4 y + c4) ,

(68)

where the state of charge y is equal to the unitless concentration c and the set of fitting parameters are
⎧⎪⎨
⎪⎩
a1 = 0.07256 b1 = 4.02 c1 = 1.08,
a2 = 0.1061 b2 = 27.24 c2 = −3.571,
a3 = 0.1705 b3 = 15.04 c3 = −2.828,
a4 = 0.02812 b4 = 43.34 c4 = 0.8168 .

(69)

The overall heat generation due to current exchange would be the sum of (66) and (67)

R = Re + Rr , (70)
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which will be applied within the particle as a local heat source. To this end, we will use the following equation
to evaluate the local heat source r per unit reference volume

R =
∫
B0

r dV . (71)

We will assume a homogeneous distribution of the local heat source r in B0. Thus, one can write

r = R

|B0| , (72)

where |B0| denotes the total volume of B0.

4 Time and space discretization

4.1 Time discretization

Applying an implicit time integration scheme on the governing equations of the coupled problem (48), we
end up with the set of time-discrete equations. To this end, we consider a time step [tn, tn+1] and assume that
all of the variables at time tn are known. All variables at time tn are shown with a subscript n. For the sake
of simplicity, we skip the subscript n + 1 for the variable under consideration at the current time tn+1. Let
τ = tn+1 − tn denote the time step size. The time-discrete form of the balance of species content (48)3 and
the temperature evolution Eq. (48)4 are given by

c − cn
τ

= −Div[H ] (73)

and

− θ ∂2θθ ψ̂

[
θ − θn

τ

]
= −Div[Q] + H · M + rn + θ ∂2Fθ ψ̂ :

[
F − Fn

τ

]
+ θ ∂2cθ ψ̂

[
c − cn

τ

]
. (74)

Note that in (74), the heat source r is frozen at its previous value rn at time tn . This approximation simplifies
the numerical treatment of the problem dramatically. We only need to evaluate the current heat source r and
save it as a history variable to be used in the next time step.

4.2 Space discretization

We construct the weak form of the problem using a standard Galerkin method. For this purpose, the time-
discrete formsof the governing equations aremultiplied by arbitrarily chosen test functions out of the admissible
function spaces listed below:

δϕ ∈ W 0
ϕ := {δϕ | δϕ = 0 on ∂Bϕ

0 },
δμ ∈ W 0

μ := {δμ | δμ = 0 on ∂Bμ
0 },

δc ∈ W 0
c := {δc | δc = 0 on ∂Bc

0 = ∅},
δθ ∈ W 0

θ := {δθ | δθ = 0 on ∂Bθ
0} .

(75)
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The weak forms of the governing equations are then obtained as∫
B0

− {Div[P] + γ } · δϕ dV = 0,

∫
B0

− {
μ − ∂cψ̂

}
δc dV = 0,

∫
B0

− {(c − cn) + τDiv[H ]} δμ dV = 0,

∫
B0

{
∂2θθ ψ̂ [θ − θn] + ∂2Fθ ψ̂ : [F − Fn]

+ ∂2cθ ψ̂ [c − cn] − τ

θ
Div[Q] + τ

θ
H · M + τ

θ
rn

}
δθ dV = 0 ,

(76)

for all admissible test functions δϕ, δμ, δc and δθ . Using Gauss’s theorem, the Cauchy-like relationships
(7), (10) and (13), and the Neumann boundary conditions (45)2, (46)2 and (47)2, the above equations can be
rewritten as ∫

B0

{P : ∇δϕ − γ · δϕ} dV −
∫

∂Bt
0

T̄ · δϕ dA = 0,

∫
B0

{
∂cψ̂ − μ

}
δc dV = 0,

∫
B0

{−(c − cn)δμ + τH · ∇δμ} dV −
∫

∂Bh
0

τ H̄ δμ dA = 0,

∫
B0

{
∂2θθ ψ̂ [θ − θn] + ∂2Fθ ψ̂ : [F − Fn] + ∂2cθ ψ̂ [c − cn] − τ

θ2
Q · ∇θ

+ τ

θ
H · M + τ

θ
rn

)}
δθ dV +

∫
B0

τ

θ
Q · ∇δθ dV −

∫

∂Bq
0

τ

θ
Q̄ δθ dA = 0 .

(77)

Note that in Eq. (77)3, the species flux at the boundary of the particle H̄ is evaluated using the Butler–Volmer
equation (65). For this reason, in addition to discretization of the referential volume B0, a discretization of the
Neumann boundary ∂Bh

0 using surface elements is required. Let us consider a finite element discretization of
the bulk of B0 and the Neumann boundaries ∂Bt

0, ∂Bh
0 and ∂Bq

0 as follows:

B0 =
N⋃

e=1

Be
0 ; ∂Bt

0 =
Nt⋃
s=1

∂Bt,s
0 ; ∂Bh

0 =
Nh⋃
s=1

∂Bh,s
0 ; ∂Bq

0 =
Nq⋃
s=1

∂Bq,s
0 . (78)

Here, N is the number of the bulk finite elements, whereas Nt , Nh and Nq are the numbers of the surface
finite elements used for the discretization of traction, species flux and heat flux boundaries. The following set
of approximations have been used for the primary variables and the corresponding gradients within the bulk
elements Be

0 ⊂ B0

ϕh = Ne
ϕdϕ

ch = Ne
cdc

μh = Ne
μdμ

θh = Ne
θ dθ

and
∇ϕh = Be

ϕdϕ

∇μh = Be
μdμ

∇θh = Be
θ dθ

(79)

Here, dϕ , dc, dμ and dθ are the vectors of nodal displacements, concentrations, chemical potentials and
temperatures. The matrices Ne

ϕ , N
e
c, N

e
μ and Ne

θ include the shape functions used for the approximation of the
fields within the elements, whereas Be

ϕ , B
e
μ and Be

θ include the derivatives of the shape functions. The same
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set of shape functions has been used for the approximation of the virtual displacements δϕ, concentrations δc,
chemical potentials δμ and temperatures δθ . The following approximations of the primary fields within the
surface elements ∂Bt,s

0 ⊂ ∂Bt
0, ∂Bh,s

0 ⊂ ∂Bh
0 and ∂Bq,s

0 ⊂ ∂Bq
0 are used:

ϕh = Ns
ϕdϕ,

ch = Ns
cdc,

μh = Ns
μdμ,

θh = Ns
θ dθ .

(80)

Note that these shape functions should be compatible with the shape functions used for the bulk elements.
Introducing the above approximations into the weak form (77) leads to the residual expressions

Rϕ(dϕ, dc, dμ, dθ ) =
N

A
e=1

∫
Be
0

{
Be

ϕ
T P − Ne

ϕ
T γ

}
dV −

Nt

A
s=1

∫

∂Bt,s
0

Ns
ϕ
T T̄ dA = 0,

Rc(dϕ, dc, dμ, dθ ) =
N

A
e=1

∫
Be
0

Ne
c
T (∂cψ̂ − μ) dV = 0,

Rμ(dϕ, dc, dμ, dθ ) =
N

A
e=1

∫
Be
0

{
τ Be

μ
TH − Ne

μ
T (c − cn)

}
dV −

Nh

A
s=1

∫

∂Bh,s
0

τNs
μ
T H̄ dA = 0,

Rθ (dϕ, dc, dμ, dθ ) =
N

A
e=1

∫
Be
0

Ne
θ
T {

∂2θθ ψ̂ [θ − θn] + ∂2Fθ ψ̂ : [F − Fn] + ∂2cθ ψ̂ [c − cn]

− τ

θ2
Q · ∇θ + τ

θ
H · M + τ

θ
rn

}
dV

+
N

A
e=1

∫
Be
0

τ

θ
Be

θ
TQ dV −

Nq

A
s=1

∫

∂Bq,s
0

τ

θ
Ns

θ
T Q̄ dA = 0 .

(81)

The above coupled system has to be solved for the nodal displacements dϕ , concentrations dc, chemical
potentials dμ and temperatures dθ . Let us introduce the following shorthand notation for the global vectors of
residuals and generalized nodal displacements

R := [Rϕ, Rc, Rμ, Rθ ]T and d := [dϕ, dc, dμ, dθ ]T . (82)

The problem under consideration is then to find d such that R(d) = 0. A standard Newton–Raphson scheme
can be used to solve this system of nonlinear equations. The vector of generalized nodal displacements is
updated by

d ⇐ d − [K ]−1R (83)

until a convergence criterion is met, e.g., |R| < tol. Here, K is the tangent of the Newton–Raphson scheme.

5 Evaluation of the model response

In what follows, we will show the results of a few numerical simulations obtained using the model proposed
in the previous sections. In Sect. 5.1, we will comment on the results obtained by the coupled formulation of
the dissipation potential, which was discussed in Sect. 2.3.6. This academic study does not directly apply to
modeling of electrode particles in Li–ion batteries. The latter topic will be treated later in Sects. 5.2 and 5.3,
wherewewill discuss the response of two cathode particles with different geometries under a potentio-dynamic
loading.
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2) θ = θ̄

1) μ = μ̄

μ̄, θ̄

tf0

μf , θf

μ0, θ0

t

(a) (b)

X
Y

Fig. 4 Boundary conditions and the loading scenarios. On the top, bottom and left sides of the square block, zero heat and species
fluxes are applied. On the right side of the block two loading cases are considered: (1) linear chemical potential increase from
μ0 = 0 GPa to μ f = 5 GPa and (2) linear temperature increase from θ0 = 300K to θ f = 600K

Table 1 Material and model parameters

No. Parameter Name Value Unit

1. γ Shear modulus 3.0 GPa
2. ν Poisson’s ratio 0.3 –
3. � Swelling parameter 0.1 –
4. A Chemical energy parameter 1.0 mN/ µm2

5. M Mobility parameter 0.1 µm4/(mN ·s)
6. c0 Initial concentration 0.5 –
7. α Linear thermal expansion 10−4 1/K
8. θ0 Initial temperature 300 K
9. C Heat capacity 10−2 mN/(µm2 · K)
10. K Thermal conductivity 10.0 mN/s

5.1 Model response of the fully coupled formulation

To evaluate the model response of the fully coupled formulation discussed in Sect. 2.3.6, we consider two
thermo-chemo-mechanical loading scenarios on a square block with the side length of 5µm. The block is
mechanically restricted such that it can only expand in horizontal direction, see Fig. 4a. Plane strain conditions
are assumed. The material parameters used for this study are listed in Table 1 and do not represent any real
material. For the discretization of the sample, elements with bi-linear shape functions for all of the unknown
fields are used. Since no species flux boundary conditions are considered, there is no need to use surface
elements at the boundaries.

In the first numerical experiment, a linearly increasing chemical potentialμ = μ̄ is applied on the right side
of the block. See Fig. 4b for the loading function. No species flux is assumed to take place on all of the other
sides. Furthermore, no heat flux through the boundaries is permitted. The problem is indeed a one-dimensional
problem and the primary fields vary only in X direction. For three different values of the coupling parameter
L = {0.0, 0.5,−0.5}µm2/s, introduced in Sect. 3.2, the values of species concentration c, chemical potential
μ and temperature θ are plotted on the mid-line of the block in Fig. 5 at the final stage of loading t f = 100 s.
Let us consider the case when L = 0.0, shown in the graphs by solid black lines. Since chemical potential is
increased on the right side of the block, its gradient points in the X direction. Thus, M points in the negative
X direction, which by (56) creates a flux vector H also in the negative X direction. This leads to an increase
of the concentration field within the block, which can be observed in Fig. 5a. Furthermore, by the temperature
evolution Eq. (48)4, we can expect an increase of the temperature within the block, observed in Fig. 5c. For a
positive L , an additional term in the negative X direction will be added to the heat flux vectorQ in (56). This
term will lead to a temperature decrease on the right side of the block shown in the temperature graph. The
opposite effect takes place for a negative L .

In the second numerical experiment, we apply a linear temperature rise θ = θ̄ on the right side of the square,
see Fig. 4. No species flux is permitted at the boundaries. Heat transfer is also prevented on the top, bottom and
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Fig. 7 a Boundary conditions applied on the circular particle. Due to symmetry, only one quarter of the particle is discretized. b
The electric potential profile used by Zhang et al. [57] is applied on the particle. This induces a species flux through the boundary
and simulates a charging-discharging cycle

left sides of the block. For the above-mentioned values of the coupling parameter L , the species concentration
c, chemical potential μ and temperature θ plots on the mid-line of the block are given in Fig. 6 at the final
stage of loading t f = 100 s. Even though the temperature graphs of Fig. 6c seem identical for L = 0.5µm2/s
and L = −0.5µm2/s, the corresponding concentration graphs show a totally different pattern. For a positive
L , an additional term in negative X direction will be added to the species flux vectorH in (56). This term will
lead to a concentration decrease on the right side of the block and consequently, to a concentration rise on the
left side observed in Fig. 6a. The opposite effect is observed for a negative L .

5.2 A circular disk under potentio-dynamic loading

We evaluate the model response by considering a circular LiMn2O4 cathode particle of radius r = 5µm. The
exterior of the particle is assumed to be free of traction. Additionally, it is assumed that the temperature at the
boundary of the particle remains fixed since it is in constant contact with the electrolyte. We assume that the
temperature of the electrolyte does not change. Due to symmetry, only a quarter of the particle is discretized
by bi-linear bulk elements and linear surface elements. See Fig. 7a for the geometry of the particle and the
applied boundary conditions. Plane strain conditions are considered in the simulation. A species flux through
the boundary is induced by an electric potential applied on the particle. The applied electric potential follows
the sweeping profile given in Zhang et al. [57], which simulates a charging-discharging cycle. See Fig. 7b
for the applied electric potential. The initial values of the concentration and temperature are chosen to be
c0 = 0.996 and θ0 = 298.15 K = 25 ◦C (room temperature), respectively. The material parameters given in
Table 2 are chosen as realistically as possible under the assumptions of our modeling framework. The coupling
parameter L is set to zero.

The governing equations of the problem (48) are solved using the finite element method to evaluate the four
unknown fields shown in Fig. 1. Flux of species H induced by the applied potential is shown in Fig. 8a. In order
to compare this result with the flux profile given in Zhang et al. [57], the computed values of H are multiplied
by the maximummolar concentration c̃max = 2.37×104 mol/m3. Figure 8b shows a comparison of the fluxes
obtained by the simulationwith thefluxprofile of Zhang et al. [57].A relatively good agreement can be observed
between the two results. Li–ion concentration versus time is shown in Fig. 9a at the center and on the surface
of the particle. Due to the small size of the particle, variations of concentration within the particle are relatively
small. This can be observed better in Fig. 9b, which shows the variations of Li–ion concentration within the
particle in the radial direction. At some time instances, there are very small concentration gradients within
the particle, while at some other instances, concentration of Li–ions can not be considered as homogeneous.
The generated resistive and entropic heat at the particle interface are plotted in Fig. 10 in the first half of the
loading cycle. As it can be observed in the figure, the entropic heat is more pronounced compared to resistive
heat. The temperature evolution equation (48)4 is solved by treating the overall generated heat Re + Rr as
a homogeneously distributed source of heat inside the particle, determined by Eq. (72), and using the time
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Table 2 Material and model parameters

No. Parameter Name Value Unit Reference

1. γ Shear modulus 3.85 GPa Calculated based on [56]
2. ν Poisson’s ratio 0.3 – From [56]
3. � Swelling parameter 8.29 × 10−2 – Calculated based on [57]
4. A Chemical energy parameter 2.94 × 10−2 mN/µm2 Estimated based on [35]
5. M Mobility parameter 1.88 µm4/(mN ·s) Calculated based on [57]
6. c0 Initial concentration 0.996 – From [57]
7. α Linear thermal expansion 10−5 1/K Estimated based on [40]
8. θ0 Initial temperature 298.15 K –
9. C Heat capacity 1.05 × 10−3 mN/(µm2 · K) Calculated based on [2]
10. K Thermal conductivity 1.49 × 106 mN/s Calculated based on [2]
11. β Symmetry factor 0.5 – From [57]
12. H � Flux parameter 6.01 × 10−2 µm/s Calculated based on [55]
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Fig. 8 a Species flux through the boundary of the particle plotted versus time. H denotes the flux of the unitless species
concentration c. b The flux shown on the left is multiplied by c̃max to obtain the molar species flux H̃ . It is then compared to the
results obtained of Zhang et al. [57]

discretization approach discussed in Sect. 4.1. It turns out that the heat generated due to current exchange
at the boundary of the particle as well as the heat generated due to diffusion and deformation do not have a
major effect on the temperature inside the particle. Temperature within the particle remains almost constant
and equal to the temperature of the surrounding environment. Hence, the dominant factor that determines the
temperature inside the particle is the surrounding temperature. This observation can be attributed to the small
size of the particle and hence, to the fast dissipation of the generated heat to the surroundings of the particle.

If instead of the Dirichlet temperature boundary condition at the boundary of the particle, shown in Fig. 7,
a Neumann boundary condition Q̄ = 0 for heat flux was considered, the temperature within the particle would
increase dramatically. See Fig. 11 for the results of the simulation with zero flux boundary condition. This
temperature rise is due to deformation, diffusion and heat generation caused by electric current exchange.
These results underline once more the significance of heat dissipation to the surrounding environment without
which, temperature rise is extreme.

5.3 A two-dimensional particle geometry under potentio-dynamic loading

In a second study, we consider a realistic two-dimensional geometry of a LiMn2O4 cathode particle shown in
Fig. 12. This geometry is a two-dimensional reduction of the scanning electron microscope image provided
in Bohn [5]. Similar boundary conditions to the previous example are assumed on the exterior of the particle,
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Fig. 9 a Species concentration plotted versus time at the center (red) and surface (black) of the particle. b Concentration profile
in the radial direction plotted at different time instances during the first half of loading
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Fig. 10 Resistive heating Rr and entropic heating Re, given in Eqs. (66) and (67), are plotted versus time in the first half of the
loading cycle. Integration over the entire surface of the particle is carried out with the help of the line finite elements. The overall
heating Re + Rr is applied as a homogeneously distributed heat source inside the particle determined by Eq. (72)

i.e., the boundary of the particle is traction-free, the surrounding temperature is constant and a species flux
on the boundary is induced by applying the electric potential profile shown in Fig. 7b. The initial conditions
for concentration and temperature inside the particle are c0 = 0.996 and θ0 = 298.15 K (room temperature),
respectively. The coupled problem is solved using the finite elementmethod. The geometry has been discretized
using 598 bulk elements and 100 surface elements. Thematerial parameters of Table 2 are used for this problem.
The coupling parameter L is assumed to be equal to zero. Figure 13 shows the contour plots of the species
concentration at different time instances in the first half of the charging-discharging cycle and also at the final
time t = 4000 s. As it can be observed in the figure, concentration of Li–ions decreases during the first half
of the loading, leading to a decrease in the volume of the particle. The initial volume of particle is recovered
at the end of the loading cycle. The temperature rise within the particle is very small and can be ignored as
far as the ambient temperature does not change. Once more, the ambient temperature turns out to govern the
temperature evolution within the particle. This can be attributed to the small size of particle and fast dissipation
of the produced heat to surrounding environment.
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Fig. 12 Geometry and boundary conditions of the LiMn2O4 cathode particle. The electric potential profile shown in Fig. 7b
induces a species flux at the boundary. The ambient temperature is constant and no traction is present on the boundary

6 Summary

In this work, we presented a four-field formulation of coupled thermo-chemo-mechanical problems with
application to the simulation of cathode particles in lithium–ion batteries. First, the governing equations of
the coupled problem were discussed in a general framework. An alternative way of satisfying the second
law of thermodynamics using Onsager’s symmetric positive-definite matrix of coefficients was explained.
This formulation enables us to take the Soret and Dufour effects into account. Subsequently, the coupled
formulation was applied to the simulation of electrode particles in lithium–ion batteries. The generated heat
due to current exchange at the boundary of the particle was considered as a volume heat source within the
particle. Thereafter, time and space discretization of the problemwere discussed. The response of themodelwas
evaluated under a potentio-dynamic loading applied on different particle geometries. Temperature evolution
within the particle was found to be very minor. The ambient temperature was found to be the most important
factor governing the temperature distribution within the particle.
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t = 0 s t = 1100 s t = 1200 s t = 1500 s

t = 1550 s t = 1650 s t = 2000 s t = 4000 s

c0.17 0.996

Fig. 13 Contour plots of concentrationwithin the particle during the first half of the charging-discharging process at time instances
t = {0, 1100, 1200, 1500, 1550, 1650, 2000} s and at the final stage of loading at t = 4000 s. The dashed line represents the
undeformed dimensions of the particle
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