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Abstract

Carbon aware scheduling is a technique used to optimize the allocation of compute resources in
a cloud computing system in order to minimize the carbon emissions associated with running
those resources. As the demand for computing resources continues to grow, the carbon emissions
associated with data centers and other computing infrastructure are becoming an increasingly
significant contributor to climate change. In this paper, we present an overview of the state of the
art in carbon aware scheduling techniques for cloud computing systems, including both centralized
and decentralized approaches. We discuss the advantages and disadvantages of different carbon
aware scheduling approaches, and provide insights into the trade-offs that need to be considered
when choosing an approach. Finally, we identify key challenges and open problems in the field of
carbon aware scheduling for cloud computing systems, and suggest directions for future research.

Kurzfassung

Die kohlenstoffbewusste Planung ist eine Technik zur Optimierung der Zuweisung von Rechenres-
sourcen in einem Cloud-Computing-System, um die mit dem Betrieb dieser Ressourcen verbundenen
Kohlenstoffemissionen zu minimieren. Da die Nachfrage nach Rechenressourcen weiter steigt, tra-
gen die mit Rechenzentren und anderen Recheninfrastrukturen verbundenen Kohlenstoffemissionen
immer stärker zum Klimawandel bei. In diesem Beitrag geben wir einen Überblick über den aktuellen
Stand der Technik bei kohlenstoffbewussten Planungstechniken für Cloud-Computing-Systeme,
einschließlich zentralisierter und dezentralisierter Ansätze. Wir erörtern die Vor- und Nachteile
der verschiedenen Ansätze zur klimabewussten Planung und geben Einblicke in die Kompromisse,
die bei der Auswahl eines Ansatzes zu berücksichtigen sind. Abschließend identifizieren wir die
wichtigsten Herausforderungen und offenen Probleme im Bereich der kohlenstoffbewussten Planung
für Cloud-Computing-Systeme und schlagen Richtungen für die zukünftige Forschung vor.
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1 Introduction

Greenhouse gases, such as carbon dioxide (𝐶𝑂2) are the most significant driver of observed climate
change since the mid-20th century. They build up in the atmosphere and increase the global
temperature, leading to changes on land and in the oceans. The greenhouse gases persist in the
atmosphere for tens and hundred of years after being released, the effects of the climate change have
impact on both present and future [Age]. One of the biggest 𝐶𝑂2 emmitent of today is the electricity
industry. For example Germany still heavily relies on the use of fossil fuels, such as coal and gas
for electricity generation. According to the Fraunhofer ISE only 45, 7% of electricity is generated
by renewable energy sources, such as wind, photovoltaik, water and biogas [ISE21]. The total
amount of available renewable energy is growing, but the increase is still lower than the increase in
energy demand. That means renewable energy sources cannot keep pace with the rising energy
demand, so fossil fuel demand is still going up [CNB21]. Another major problem of renewables is
the intermittency. That means renewable energy sources cannot always consistently generate energy
at all hours of the day [Ene]. Technologies like wind and solar only generate energy when the wind
is blowing or the sun is shining, resulting in fluctuating carbon emissions per kilowatt-hour (kWh)
of energy used. Producing high capacity lithium-ion batteries could solve this problem. According
to a report published by the International Renewable Energy Agency (IRENA) [IRE17], the cost of
lithium-ion batteries has fallen significantly in recent years, but they still remain relatively expensive
compared to other forms of energy storage. The report notes that the cost of producing lithium-ion
batteries is largely dependent on the cost of raw materials, such as lithium, cobalt, and nickel,
which are not only expensive and resource-intensive to extract, but also controversial regarding our
environment. Therefore, it is more efficient to consume energy when and where it is generated.

Piontek [Pio22] proposed a Kubernetes (K8s) scheduler that delays the execution of workload to
hours with less 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑤ℎ grid emissions. However, this approach does not use a realitstic
workload prediction and is purely a proof of concept. Furthermore, the proposed carbon emission
model is suboptimal and not suitable for predicting carbon emissions of a specific day. James and
Schien [JS19] proposed a method that uses carbon intensity data of a distributed cluster to reduce
the 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑤ℎ grid emissions. Nonetheless, this method works only for distributed clusters,
where the nodes are located in different regions with varying grid emissions.

In this thesis we propose a method to exploit the fluctuation of carbon emissions in the power
grid in a K8s cluster, to decrease the total carbon emissions of a K8s cluster. To achieve this,
several methods have to be used e.g. temporal workload shifting, which describes the delaying
of workload, which is marked as non-critical, until carbon emissions of the local grid are less
intense (p.2 [RKS+22]). This assumes the implementation of a carbon emission model to predict
an optimal time window for scheduling. Additionally, the standard implementation of the K8s
scheduler must be extended to allow for this method to work. Furthermore, a workload prediction
must be implemented to prevent shifting workload to times with no available resources, which could
impact the Service Level Agreement (SLA), which is a set of rules defined in a contract between
service provider and client, to ensure a certain quality of service [Phi11].
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1 Introduction

An alternative method for reducing carbon emissions is to shift workload not in time, but rather
in space. This approach requires a distributed cluster with nodes in different regions, each with
its own optimal carbon dioxide emissions window. In order to implement this method, access
to an Application Programming Interface (API) providing current values for 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ is
necessary in order to determine the greenest node at any given time. This approach can be effective
in increasing the carbon efficiency of workloads, even in cases where a high proportion of critical
jobs, which cannot be shifted in time, are present. However, in practical scenarios, there may be
jobs that need to run on a specific node due to considerations such as privacy or reliance on local
data that cannot be easily transmitted.

Another method for reducing carbon emissions is consolidation, which involves maximizing the
number of idle nodes in the cluster. This can be achieved by scheduling jobs preferentially on nodes
that are already running other jobs, thereby increasing the number of idle nodes that can be shut
down to save static power consumption. This approach is most effective in clusters with a high
number of nodes and an overall low utilization environment. However, it should be noted that
consolidation also increases the risk of outages due to a less distributed cluster, which could violate
the SLA.

In general we need flexible workloads to effectively reduce the𝐶𝑂2 emissions of a cluster. Workloads
such as batch jobs often tolerate delays, as long as the amount of computation they perform per day
is preserved (p.4 [RKS+22]). To realize that, cluster users could provide a deadline along with the
workload. Workloads, that are flexible in space, e.g. text to image diffusion models where only the
prompt and the trained model are needed, can simply be performed by the greenest node in the
cluster.

In this research paper, we propose a method for predicting the future workload and carbon dioxide
emissions of a K8s cluster using time series forecasting techniques. We compare and evaluate
various approaches to time series forecasting, including statistical modeling and machine learning
methods. We present and test a Temporal Workload Scheduler that utilizes the predictions made
by these techniques to minimize the carbon emissions of the cluster. Additionally, we present
and evaluate a Spatial Workload Shifter that aims to minimize carbon emissions in distributed
clusters. Finally, we compare our K8s carbon-aware scheduling methods and highlight their key
advantages.

The structure of this thesis is organized as follows:

• 2 Technical Background: This chapter provides an overview of the technologies used in the
implementation of the carbon-aware scheduler.

• 3 Related Work: This chapter presents a review of existing work in the field of carbon-aware
scheduling and compares it to the methods proposed in this thesis.

• 4 Design and Implementation: This chapter presents the proposed methods for temporal
workload shifting, spatial workload shifting, and predicting workload and carbon emissions.

• 5 Testing and Evaluation: This chapter presents the results of the evaluation of the proposed
methods.

• 6 Conclusion and Outlook: This chapter concludes the findings of the research and outlines
directions for future work in the field of carbon-aware scheduling.
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2 Technical Background

In this section, we will provide a technical background on the technologies and concepts that are
central to our research on carbon aware scheduling for K8s. We will introduce K8s, a popular
open-source container orchestration platform that enables users to deploy and manage containerized
applications at scale [Thu23]. We will also discuss the kube-scheduler, a critical component of
K8s that is responsible for assigning pods to nodes in the cluster. We will introduce Minikube,
a tool that allows users to run a single-node K8s cluster on their local machine, and Docker, a
containerization platform that is frequently used in conjunction with K8s. Finally, we will discuss
time series forecasting, a statistical technique that can be used to predict the future grid carbon
emission, or optimize the scheduling of workloads to minimize carbon emissions.

2.1 Kubernetes

K8s is an open-source container orchestration system that allows users to automate the deployment,
scaling, and management of containerized applications. Originally developed by Google, the Cloud
Native Computing Foundation now maintains it [Vio20].

In K8s, containers are grouped into units called pods, which can be managed and scaled together.
Pods run on nodes, which are physical or virtual machines that are part of a cluster managed by the
K8s system. The underlying architecure is displayed in figure 2.1.

K8s provides several key features that make it useful for managing large-scale, distributed applica-
tions:

• It provides users with a declarative configuration model, which means that they can specify
the desired state of their application. K8s works to make sure the application meets these
requirements.

• It offers self-healing capabilities, which means that if a container crashes or becomes
unresponsive, K8s can automatically restart it or replace it with a new one.

• It allows users to scale their applications horizontally by increasing or decreasing the number
of replicas of a given container. This makes it easy to manage applications that receive a lot
of traffic.

• It provides automatic load balancing, which means that traffic is automatically distributed
across the containers in a cluster. This helps to ensure that applications remain responsive
even under high load conditions.
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2 Technical Background

As a conclusion, K8s is a powerful tool for managing and scaling containerized applications in a
distributed environment [Kub22a].

Figure 2.1: Kubernetes architecture

2.2 Scheduler

Scheduling in K8s refers to the process of matching pods to nodes so that the kubelet can run
them. The kube-scheduler is a control plane process, that waits for newly created unassigned pods
and assigns them to a node. The standard implementation of the kube-scheduler, schedules pods
according to their priority. The priority values can range from zero to one billion, higher values are
more prioritized. If no priority is assigned to a pod, the pods priority is set to zero. In case pods
have the same priority, the scheduler also considers the timestamps and favors pods that have been
waiting for a longer time [Kub22b].

Once a pod has been picked the kube-scheduler picks a suitable node for the pod. There are many
different ways to influence the node selection process. One possibility is to use node labels, which
can be attached manually. Adding labels to nodes, allows pods to target specific nodes, using the
nodeSelector. Another selection method is called pod affinity and anti-affinity. Affinity allows pods
to be scheduled next to other pods on the same node, depending on the pod label. Anti-affinity
works in a similar way, but prevents pods from being scheduled next to pods with a certain label.
There can be multiple label requirements and affinities, in this case a node must be found which
fulfills all the requirements [Kub22c].

2.2.1 Extending the Scheduler

We see there are some ways to modify the scheduling decision of the kube-scheduler. However, these
approaches are limited and do not provide the functionality needed to implement a carbon-aware
scheduler. Fortunately, the standard K8s can be easily extended using the scheduler extender.

The scheduler extender allows users to define custom rules and policies for the scheduler to follow
when making scheduling decisions. The scheduler extender is a simple REpresentational State
Transfer (REST) API that allows the scheduler to communicate with the extender by sending HTTP
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2.3 Minikube

requests and receiving HTTP responses. The extender can then use this communication to provide
the scheduler with additional information about the pods and nodes in the cluster, and to influence
the scheduler’s decision-making process.

There are three types of plugins that can be used with the K8s scheduler extender: filter, score, and
bind. These plugins allow users to customize the scheduling behavior of their clusters by providing
the scheduler with additional information and control over the scheduling process. They are capable
of being used individually or in combination to achieve a wide range of scheduling behaviors.

• The filter plugin is used to filter the set of nodes that are eligible to host a particular pod.
This plugin can be used to exclude nodes that do not meet certain criteria, such as having
certain labels or taints. One could use a filter plugin to ensure that pods with certain resource
requirements are only scheduled onto nodes that have sufficient resources available.

• The score plugin is used to assign a score to each node in the set of eligible nodes. This score
is used by the scheduler to determine which node is the best fit for a specific pod. The score
plugin can be used to prioritize certain nodes over others based on various factors, such as the
available resources on the node, the workloads already running on the node, or the proximity
of the node to other components of the application.

• The bind plugin is used to bind a pod to a node. This plugin is called after the scheduler has
selected the best-fit node for the pod, and is responsible for making the necessary changes to
the cluster to allocate the resources required by the pod on the chosen node. Additionally, the
binding plugin can be used to perform additional validation or to make other customizations
to the binding process.

There are other ways of modifying the scheduler, which are not as relevant for our implementation
and therefore not discussed [Gui19].

2.3 Minikube

The Minikube tool enables users to run a single-node K8s cluster on their local machine for
development and testing purposes. It is useful for developers who are looking to test their
applications locally before deploying them to a larger K8s cluster.

Minikube requires a virtualization platform such as VirtualBox or Hyper-V to be installed on your
machine and the kubectl Command-Line Interface (CLI) for K8s.

Once these requirements are satisfied, one can use the minikube command to start a local K8s
cluster. The cluster can be interacted with using the kubectl CLI.

Minikube also provides some additional features that can be useful for local development and
testing. Users can enable a metrics-server addon, which provides a local aggregator of resource
usage data. This is necessary for testing our implementation. Furthermore, it allows users to add a
dashboard addon, which provides a web-based interface for managing and monitoring the cluster.

In conclusion, Minikube is a useful tool for developers who want to be able to test their applications
on a local K8s cluster before deploying them to a production environment. [Kub22c].
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2.4 Docker

Docker is a tool that allows users to package applications into lightweight, portable containers. These
containers can be run on any platform that supports Docker. A container is a standardized, isolated
environment that contains all of the dependencies and libraries required to run an application. This
makes it easy to run the application without worrying about conflicts or compatibility issues.

Docker defines the configuration of a container using the concept of a Dockerfile. A Dockerfile
contains instructions for building a Docker image, which is a blueprint for a container. The
Dockerfile specifies the base image to use for the container, as well as any dependencies or libraries
that the application requires, and any other configuration settings that are necessary.

Users can use the docker CLI to build a Docker image based on the instructions in the Dockerfile.
The image resulting from this process can then be used to create and run Docker containers.

One advantage of Docker is that it allows users to run applications in a consistent environment,
regardless of the host platform. Since the same image can be used on any platform that supports
Docker, it is easier to develop, test, and deploy applications.

In addition to this, Docker provides a single container for packaging applications and their
dependencies. This simplifies the process of deployment and managing applications in a distributed
environment. This is particularly useful in the context of K8s 2.1 [Doc].

2.5 Time Series Forecasting

The task of using a model to predict the future values of a time-dependent series of data points
is known as time series prediction. Finance, meteorology, and engineering are some of the fields
where this type of prediction is commonly used.

Time series prediction aims to build a model that can take a series of historical data points as input
and predict the next value in the series. The model then can be used to make predictions for future
values in the series.

Time series prediction can be achieved with several approaches, including statistical modeling,
machine learning, and artificial neural networks. The choice of which approach to use depends
on the specific data and the goals of the prediction task. Each approach has its own strengths and
weaknesses.

For short-term predictions based on known patterns in the data, statistical modeling approaches
may be effective, while machine learning approaches may be better suited for making longer-term
predictions based on more complex relationships in the data.

Time series prediction is a valuable tool for making predictions about future values in time-dependent
series of data points [Shm16].
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3 Related Work

Researchers have proposed various techniques for reducing the carbon footprint of datacenters,
including energy-efficient scheduling, workload consolidation, and the use of renewable energy
sources. In this section, we will review some of the most relevant studies in this area, highlighting
their key contributions and limitations. We will focus on approaches that aim to reduce the
carbon emissions of datacenters by intelligently scheduling workloads and maximizing the use of
energy-efficient resources.

3.1 Spatial Workload Shifting

A Low Carbon Kubernetes Scheduler by Aled James and Daniel Schien [JS19] presents an
implementation of a low carbon K8s scheduler, which considers the carbon intensity and local
temparature across regions. The paper covers a range of green scheduling approaches, including
techniques that consider power consumption, energy cost, carbon emissions, and other factors. The
main contributions of this survey are as follows:

• It presents an implementation of the spatial load shifting algorithm.

• It suggests techniques to increase energy efficiency in data centers (e.g. consolidation, virtual
capacity planning, load balancing, etc.)

• It presents a carbon emission model that considers the utilization of compute resources as
well as the energy consumed during trainsmission of data.

3.2 Temporal Workload Scheduling

CO2 Aware Job Scheduling for Data Centers by Tobias Piontek [Pio22] presents a carbon-aware
job scheduler for K8s that considers carbon emissions when allocating resources to jobs. The
scheduler is designed to minimize the carbon emissions associated with running a data center while
still meeting the performance and reliability requirements of the jobs being scheduled. The main
contributions of this thesis are as follows:

• It provides a simulation environment for testing the K8s carbon aware scheduler.

• It presents a carbon-aware job scheduler using the scheduler-extender that considers carbon
emissions in addition to other resource constraints when making load shifting decisions.

• It evaluates the performance of the carbon-aware scheduler through simulations, and demon-
strates that it is able to significantly reduce carbon emissions while meeting the performance
and reliability requirements of the jobs being scheduled.
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3 Related Work

• It suggests using an advanced Machine Learning Algorithm to improve the precision of the
𝐶𝑂2 prediction, as well as shifting workloads between different locations.

However, this approach is not suitable for real-world scenarios due to the absence of a workload
prediction model and a 𝐶𝑂2 prediction model. Additionally, the shifting method is inefficient as it
does not consider the amount of shiftable workload to determine the optimal window.

Let’s Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in
the Cloud by scientists of the "Technische Universität Berlin" [WBS+21] discussed methods for
reducing carbon emissions in the cloud using temporal workload shifting.

The main contributions of this survey are as follows:

• It proposes a method to exploit the interruptibility of workloads by carbon-aware schedulers

• It states that the potential for load shifting is generally highest in the early morning hours for
countries with a lot of solar power and in the evening hours for countries that throttle their
fossil fuel production at night (p.7 [WBS+21]).

• It states that shifting delay-tolerant workloads towards the weekend can result in savings of
more than 20% in most regions.

• It found that the greatest savings can be achieved when taking advantage of the interruptibility
of workloads (p.12 [WBS+21]).

However, this approach is limited to long running and highly delay-tolerant workload.

Carbon-Aware Computing for Datacenters by Radovanovic et al. [RKS+22] discussed methods
for decreasing carbon emissions at Google datacenters, such as shifting execution of flexible
workload in time and space, or powering down redundant machines (p.1 [RKS+22]). According to
the authors of the journal, the delay decision should be a trade-off between environmental, cost, and
modeled performance objectives (p.2 [RKS+22]).

The system’s potential comes with the temporal flexibility of a significant fraction of Google’s
workloads that tolerate delays as long the job is completed within 24 hours. The opportunity
to effectively manage the flexible workload lies in the predictability of resource usage and daily
consumption within a day-ahead (p.2 [RKS+22]).

The main contributions of this survey are as follows:

• It presents a new method of load shaping with so called Virtual Capacity Curves (VCCs)
which are hourly resource usage limits (p.2 [RKS+22]).

• It proposes a total of 5 analytical pipelines necessary for implementing a Carbon-Intelligent
Computing system (Carbon fetching-, Power models-, Load forecasting-, Optimization-
Service-Level Objective violation detection- pipeline)

• It evaluates the Carbon-Intelligent Computing system performance and demonstrated a power
consumption drop of 1 − 2% at times with the highest carbon intensity.
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3.3 Other

Assessment of Carbon-Aware Flexibility Measures from Data Centres using Machine Learning
by M. Saeed Misaghian et. Al. [MTC+22] presents a study on using machine learning (ML)
techniques to predict the energy consumption and server temperature of data centers and integrate
these predictions into an optimization framework for power system unit scheduling. The main
contributions of this research paper are as follows:

• Comparison of the accuracy of ML models for predicting energy consumption and server
temperature to other approaches such as computational fluid dynamics (CFD), resistance-
capacitance (RC) network models, and building and energy simulation models.

• Proposal of a framework for integrating ML models into an optimization process to enable a
fleet of data centers to participate in a demand response program.

• Exploration of five scenarios for flexibility provision from data centers in terms of their
impact on power system operation.

• it proposed series of steps for future work including considering a wider range of system
conditions and examining the cost effectiveness and utilization of different strategies.
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The main objective of the implementation is to reduce energy consumption at times of high grid
carbon emissions, in order to decrease the overall 𝐶𝑂2 emissions of the K8s cluster across the day.
There are two types of workloads, critical and non-critical ones. The critical workloads have to
be scheduled immediately and cannot be shifted in time. Non-critical workloads may be delayed
up to 24 hours. To achieve a high efficiency in scheduling, the workload must be predictable and
consistent.

In this chapter, we describe the different methods used in our implementation of a 𝐶𝑂2 aware
scheduler for K8s. In section 4.1 different methods for predicting carbon emissions are compared
and evaluated. Section 4.3 presents a method for predicting workload using time series forecasting.
In section 4.4 the implementation of the carbon aware scheduler is presented.

4.1 CO2 Prediction

The 𝐶𝑂2 prediction model, is an essential part of the Temporal Workload Scheduler. The precision
of the model ultimately determines the efficiency of the scheduling algorithm. A better prediction
of the 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values will lead to a better prediction of the optimal scheduling window,
which will in turn prevent the workload from being scheduled as early or too late. The data used
for the model is kindly provided by [Map], which is the leading resource for 24/7 electricity 𝐶𝑂2
data. We evaluate the most effective strategy for predicting the 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values by comparing
the accuracy of different time series prediction models. For evaluating the performance of our
prediction models we use following two metrics. The first metric called Mean Average Percentage
Error (MAPE) is defined as:

(4.1) 𝑀𝐴𝑃𝐸 =
100%
𝑛

𝑇∑︁
𝑡=1
| 𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|

Where 𝐴𝑡 is the observed and 𝐹𝑡 is the predicted value. This metric is a good measure for the
accuracy of a prediction model and is more interpretable than Mean Absolute Error (MAE). The
second metric called Local Minimum Error (LME) is defined as:

(4.2) 𝐿𝑀𝐸 (𝑡0,𝑡𝑛 ) =
1
𝑛
𝑚𝑖𝑛( |𝑡𝑚𝑖𝑛(𝐴𝑡 ) − 𝑡𝑚𝑖𝑛(𝐹𝑡 ) |, |𝑡𝑚𝑖𝑛(𝐹𝑡 ) − 𝑡𝑚𝑖𝑛(𝐴𝑡 ) |), 𝑡0 ≤ 𝑡 ≤ 𝑡𝑛, 𝑛 ∈ N

Where 𝑡𝑚𝑖𝑛(𝐴𝑡 ) is the time of the observed minimum and 𝑡𝑚𝑖𝑛(𝐹𝑡 ) is the time of the predicted
minimum. This is a metric that measures how well our model can predict the local minimum of a
certain time interval. This metric is even more important than the MAPE, because the scheduler
does not care about the actual predicted value, but only for the local minimum. A prediction model
with a low MAPE could still fail to predict the local minimum of the day, resulting in a suboptimal
scheduling behavior.
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We want our prediction model to be capable of predicting at least 24 hours of 𝐶𝑂2 values, so we
can find the optimum within the next day. To ensure that we are picking the overall best performing
model, we use different datasets from electricity-map [Map] for comparing the prediction models.
We train our model on the entire dataset except the last 24 hours, which we use to determine the
predcition error of the model. The first dataset we use are 𝐶𝑂2 signals from Germany of 2018,
seen in figure 4.1a. The second dataset we use are 𝐶𝑂2 signals from France of 2018, seen in figure
4.1b.
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Figure 4.1: 𝐶𝑂2 Signals

4.1.1 Autoregression

The first prediction model we tested is called ForecasterAutoreg, which is an autoregressive model
from the skforecast library. Autoregression is a method of prediction that uses a linear regression
on the previous values, as well as a stochastic (randomly varying) term. The prediction for the first
dataset with default settings yielded a MAPE of approximately 10%. The observed daily minimum
was at 12 : 00, the prediction delivered 23 : 00, which results in a high LME of 45, 83%. The
results can be seen in figure 4.2
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Figure 4.2: Autoregression Germany

Further testing with different model parameters showed that the accuracy of the model could still be
improved, as seen in figure 4.3. Using the grid search forecaster, the following parameters were
found to be optimal.

• max_depth = 20

28
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• n_estimators = 10

• lags = 400

Training the forecaster with these parameters resulted in a low MAPE of approximately 4%. The
observed daily minimum was at 12 : 00 and the prediction was for 14 : 00, resulting in a LME of
8, 33%.
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Figure 4.3: Autoregression Germany Optimized

For the second dataset, we initially attempted to use the standard parameters for prediction , the
figure can be seen in 4.4. This yielded a low MAPE of approximately 9%. The observed minimum
was at 02 : 00, and the prediction was for 03 : 00, resulting in a low LME of 4, 16%.
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Figure 4.4: Autoregression France

Once again we used the grid search forecaster to find optimal parameters.

• max_depth = 10

• n_estimators = 16

• lags = 400

Training the forecaster with these parameters resulted in a MAPE of 12, 1%. The predicted daily
minimum was at 00 : 00 and the observed at 02 : 00 resulting in a LME of 8, 33%. However, the
less-than-ideal model parameters in this case were found to give more satisfactory results.
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Figure 4.5: Autoregression France Optimized

The optimization for the skforecast models, was achieved by using the grid search forecaster from
the scikit library. However, improving the performance of a forecaster can take a considerable
amount of time. This is because the model has to be refitted several times with different model
parameters. Furthermore, the optimization process requires knowledge about the parameters, since
the search grid has to be defined manually. Additionally, the optimization can result in a decrease in
the model’s precision at predicting a specific day, as seen in figure 4.5.

4.1.2 Prophet

The second approach used for the prediction is called Prophet [Met] and is an open source time
series forecasting library created by Meta. The authors explain that the forecasting is based on
an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality. The
Prophet model uses the Stan algorithm to fit the data, which benefits the forecast speed.

The first training on the first dataset Germany 2018, leads to following predictions shown in 4.6. We
once again used the last 24 hours of data for testing and trained the model on the remaining data.
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Figure 4.6: Prophet Germany 2018 Predictions

The forecaster performed well not only at predicting the values of a specific day or hour, but also at
predicting the behavior overall. The model achieved a low MAPE of approximately 3, 48%, and a
LME of 4, 16%. Furthermore, if we look at the predictions in figure 4.7, we can see the following
trends:

• The yearly trend of emission is decreasing towards the middle of the year and is again
increasing towards the end of the year.
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• The lowest emission per week is usually observed on Sunday.

• There is a daily trend of the lowest emission occurring between 10:00 and 14:00.
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Figure 4.7: Prophet Germany 2018 Trends

The reasons for these trends cannot be explained without guessing. It is safe to assume that energy
consumption is lower on Sundays, because it is a rest day in Germany. And reduced energy
consumption leads to less burning of fossil fuels, because the amount of renewable energy generated
is sufficient. One could also argue that the midday drop is due to the sun being at its highest around
that time, resulting in more solar energy.

For the second dataset, the forecaster performed well at predicting the 𝐶𝑂2 emissions, as seen in
figure 4.8. The model achieved a low MAPE of approximately 8, 58%, and a perfect LME of 0%.
The trends can be seen in figure 4.9:.

• The yearly trend of emission is decreasing towards the middle of the year and is again
increasing towards the end of the year.

• The lowest emission per week is usually observed on Sunday.

• There is a daily trend of the lowest emission occuring around 03:00.
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Figure 4.8: Prophet France 2018 Predictions
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Figure 4.9: Prophet France 2018 Trends

4.1.3 Conclusion

The results of the comparison can be viewed in 4.1 and 4.2. The Prophet model consistently
outperforms the AutoregForecaster. Furthermore, it can be fit faster and does not need optimzation
compared to the autoregression model.

One potential advantage of the Prophet model is that it is designed for forecasting time series data
with trends and seasonality, and can handle missing data and outliers [Met]. This may make it a
good choice for datasets that exhibit these characteristics like 𝐶𝑂2 emissions. The Autoregression
model is a linear model that makes predictions based on the relationships between the current value
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of a time series and its past values [sci]. This may make it a good choice for datasets that are
relatively stable and do not have strong trends or seasonality. Therefore, we choose the Prophet
model for predicting carbon emissions.

AutoregForecaster Prophet
Germany 4% 3, 48%
France 9% 8, 58%

Table 4.1: MAPE

AutoregForecaster Prophet
Germany 8.33% 4.16%
France 8.33% 0%

Table 4.2: LME

4.2 Workload Generation

The process of creating a set of data or tasks that are representative of the workload that a system or
application is expected to handle is referred to as workload generation. This is typically done to
evaluate the performance of the system or application, or to test its ability to handle different types
of workloads.

There are several approaches to workload generation, depending on the specific goals and require-
ments of the evaluation or testing. In some cases, workloads may be generated using synthetic data
that is designed to mimic the expected characteristics of the workload. In other cases, workloads
may be generated using real-world data that has been collected from a production system.

For this implementation, the workload is generated using real-world data, in particular so-called job
traces. Job traces are detailed information about a cluster’s workload, including job submission
times, job durations, and resource reservations. The information thus obtained can then be used to
estimate the hourly workload characteristics of a cluster.

However, the available resources of the target cluster and the real-world cluster usually differ.
Therefore, the workload has to be scaled to match the actual cluster’s utilization. This is achieved
by calculating the relative resource reservation per job rather than the total usage. The relative
consumption can then be multiplied by the total resources of the target cluster, resulting in a similar
level of utilization.

Additionally, K8s is limited to 110 pods per node. That requires scaling down the number of pods
to a manageable amount for single node clusters. In order to compensate for the reduced utilization
of the cluster, the resource usage per pod must be scaled up accordingly.

We calculate the utilization per hour as follows:

(4.3)
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𝑈 (ℎ) = 𝑚𝑖𝑙𝑙𝑖𝑐𝑜𝑟𝑒𝑠_𝑝𝑒𝑟_ 𝑗𝑜𝑏(ℎ) ∗ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_ 𝑗𝑜𝑏(ℎ) ∗ 𝑡𝑜𝑡𝑎𝑙_ 𝑗𝑜𝑏𝑠(ℎ)
𝑡𝑜𝑡𝑎𝑙_𝑚𝑖𝑙𝑙𝑖_𝑐𝑜𝑟𝑒𝑠 ∗ 3600

+ 𝑠𝑡𝑎𝑡𝑖𝑐_𝑚𝑖𝑙𝑙𝑖𝑐𝑜𝑟𝑒𝑠
𝑡𝑜𝑡𝑎𝑙_𝑚𝑖𝑙𝑙𝑖_𝑐𝑜𝑟𝑒𝑠

The implementation of the workload generation algorithm can be viewed in „WorkloadGenera-
tor.ipynb”

4.3 Workload Prediction

Workload prediction is essential for efficient resource management in server clusters. By analyzing
the system logs and identifying patterns and trends in the types of requests received, it is possible
to make predictions about future workloads. Statistical modeling techniques, such as regression
analysis or time series forecasting, can be used to train models that accurately predict future
workloads based on historical data. An accurate workload prediction is crucial for the successful
operation of the Temporal Workload Scheduler as it helps to ensure that resources are used efficiently
and sustainably.

4.3.1 Analyzing System Logs

One approach is to predict the workload of a server cluster by analyzing the system logs. This can
provide insight into the types of requests that the server cluster is receiving, and can help to identify
patterns and trends that can be used to make predictions about future workloads.

The first dataset we analyze is from a server cluster called GWA-T-11 LCG [05a], which was
provided by the e-Science Group of HEP at Imperial College London, and made publicly available
by Hui Li through the Parallel Workloads Archive [Tec]. The dataset is a relatively short one with
only 11 days, but it was chosen because of its steady and periodic workload characteristic.
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Figure 4.10: Workload components LCG

As the figure 4.10 shows, the runtime and number of cores per job seem to behave predictably.
However, the Total Jobs per hour of the underlying server cluster is periodic but noisy. Predicting
the Total Jobs per hour assumes using a machine learning or a statistical model.

The second dataset we analyze is from a server cluster called GWA-T-10 SHARCNet [05b], which
is larger than the GWA-T-11 LCG dataset. However, the SHARCNet dataset is much less steady,
aperiodic, and more difficult to predict than the LCG dataset, as seen in figure 4.14.
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Figure 4.11: Workload components SHARCNet

4.3.2 Statistical Modeling

One way to predict the workload of a server cluster is to use statistical modeling techniques, such as
regression analysis or time series forecasting. This approach involves using data on the workload of
the server cluster over time to train a statistical model that can predict future workloads.

For the time series forecasting models we once again used the AutoregForecaster from the skforecast
library and the Prophet model from Meta [Met].

Figure 4.12a shows the cores per job prediction for the LCG dataset using the AutoregForecaster
model. It can be observed, that the models prediction is accurate with a MAPE of 0%. This was to
be expected, due to the constancy of the historical data.
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Figure 4.12b shows the runtime per job prediction for the LCG dataset using the AutoregForecaster
model. The model has a high accuracy with a negilible MAPE of approximately 0.4%. This is
accurate enough to precisely predict the resource reservation of jobs in the workload.
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Figure 4.12: AutoregForecaster Prediction LCG

However, the main challenge of predicting workloads is to predict the total amount of jobs at a
specific point in time. As stated in 4.3.1 the total jobs per hour of the LCG cluster are periodic
but noisy. The figure 4.13a shows a prediction of the total jobs per hour for the LCG dataset using
the AutoregForecaster model. The MAPE of prediction is approximately 34.3%, which can be
improved.

Using the Prophet model we receive following prediction, seen in figure 4.13b. The MAPE of the
prediction is approximately 31.6%, which is slightly better than the AutoregForecaster prediction.

In figure 4.14, we can see the predictions for the SHARCNet dataset. Again, the AutoregForecaster
prediction was sufficient for the runtime and cores per job prediction, with a neglible MAPE of
< 0.1%. Still, the AutoregForecaster’s prediction of the total number of jobs is hihgly inaccurate
with a MAPE of 1989.9%, which is unacceptable for predicting workloads. The Prophet model on
the other hand managed to predict the total number of jobs with a relatively high accuracy compared
to the AutoregForecaster, achieving a MAPE of 90.3%. Nonetheless, both models performed
suboptimal due to the noise in the historical data. As stated in subsection 4.3.1 the aperiodic and
noisy data is difficult to predict. Therefore, a MAPE of 90.3% may be considered an acceptable
prediction error.
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(a) AutoregForecaster
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Figure 4.13: Total jobs per hour LCG dataset
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(c) Total jobs prediction AutoregForecaster
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Figure 4.14: Workload prediction SHARCNet
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4.3.3 Machine learning

Another approach for predicting the workload of a server cluster is to use machine learning
algorithms. This involves training a machine learning model on historical workload data, and using
the trained model to make predictions about future workloads.

For the machine learning model we are using eXtreme Gradient Boosting (XGBoost), which is a
popular and efficient open-source software library for implementing the gradient boosting machine
learning algorithm. Gradient boosting is a type of ensemble learning algorithm that combines the
predictions of multiple weak models, such as decision trees, to create a strong model.

One of the key features of XGBoost is its ability to handle missing values and imbalanced datasets,
which are common in real-world data and especially for our datasets. It also provides a range of
hyperparameters that can be fine-tuned to optimize the models performance [XGB].

Unlike statistical models 4.3.2 which use previous values to predict ahead, machine learning works
by training the model on features and target value pairs. Therefore, the first step of a machine learning
time series prediction is called feature creation. We decided to use the features ’hour’, ’dayofyear’,
’month’, ’dayofweek’, which can all be derived from the date. The target value respectively is the
total amount of jobs at the given date.

It is possible for XGBoost to rank features based on their importance. In figure 4.15, the importance
of each feature is shown.
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Figure 4.15: Feature Importance

In figure 4.16a the XGBoost prediction of the total amount of jobs for the SHARCNet dataset is
shown. The prediction performs much better than the AutoregForecaster and Prophet predictions,
which are shown in 4.14. The XGBoost model achieves a MAPE of 47.5%, which is relatively low
compared to the statistical models error.

However, regarding the LCG dataset the XGBoost model performs worse than the statistical models
with a MAPE of 42.8%, as seen in figure 4.16b. This is because the size of the LCG dataset is
much smaller than the SHARCNet dataset. Machine learning algorithms can be very complex,
with many different parameters that need to be optimized. The more data an algorithm has to work
with, the better it can learn the underlying patterns in the data and find the optimal values for these
parameters.
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Figure 4.16: Total jobs per hour XGB prediction

4.3.4 Workload Prediction

After predicting the necessary workload components in the previous subsections, the total utilization
for each hour can be predicted using the equation 4.3. The prediction of total workload utilization
for each hour is performed using the AutoregForecaster model for runtime estimation and the
number of processors, and the Prophet model for the LCG dataset and the XGBoost model for the
larger and noisier SHARCNet dataset for the total number of jobs per hour.

In Figure 4.17, the predicted workload utilization and the actual workload utilization for the LCG
dataset are depicted, with a MAPE of 31.3%. The predicted mean utilization is only 3.5% lower
than the actual mean utilization.
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Figure 4.17: Workload prediction LCG

In figure 4.18, the predicted and actual workload utilization of the SHARCNet dataset can be seen.
The MAPE of the prediction is higher with approximately 47.69% than the LCG prediction, this
was to be expected and is due to the inaccurate prediction of the total number of jobs. The predicted
mean utilization is 33.3% lower than the actual mean utilization.
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Figure 4.18: Workload prediction SHARCNet

4.4 Temporal Workload Scheduler

The goal of the proposed Temporal Workload Scheduler is to delay non-critical workload to periods
of the day with lower grid emissions in order to reduce the total carbon emissions of the cluster.
To achieve this, the Workload Scheduler leverages the workload prediction method described in
Section 4.3 and the 𝐶𝑂2 prediction method described in Section 4.1.

Carbon emissions can be significantly reduced by shifting workloads to periods of the day when grid
emissions are lower. This is especially effective if the cluster is located in an area with significant
differences in grid emissions between peak and off-peak periods. Delaying non-critical workload
can also help to optimize the utilization of resources in the cluster. By shifting workloads to periods
of the day when resources are underutilized, the cluster can operate more efficiently, potentially
reducing overall energy consumption.
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However there are several challenges to consider when implementing a strategy to delay non-critical
workload in order to reduce carbon emissions. As we mentioned in Section 4.3, predicting workload
patterns and determining the optimal periods of the day to shift workloads can be complex, especially
if the workloads are highly variable or the grid emissions are difficult to predict. Delaying workloads
may also increase the overall time required to complete a task, which may not be acceptable for
some types of workloads or for users with strict deadlines.

The proposed algorithm aims to minimize carbon emissions by maximizing the utilization of the
cluster at optimal hours with lower grid emissions. To achieve this, the algorithm utilizes information
about the current non-critical workload, including its CPU reservation, estimated runtime, and
total number of jobs in the queue. The runtime is estimated using an autoregression model (4.3.2),
while the CPU reservation and total number of jobs can be extracted from the metadata of the pod
specification. To prevent non-critical workload from being scheduled at high grid carbon emission
hours, the algorthm utilizes the filter plugin, which was mentioned in 2.2.1.

The algorithm begins by sorting the hours of the timeframe in ascending order of 𝐶𝑂2 emission
predictions, with the hour of lowest emissions at index 0 and the hour of highest emissions at index
n (where n is the length of the timeframe). This step is only performed once at the initialization of
the scheduler. It then iterates through the CO2 optimal hours starting at index 0, checking if the
optimal hour has already passed in order to prevent shifting workload into the past. The algorithm
uses the workload prediction to determine how much of the workload can be shifted towards the
optimal hour, taking into account the dynamically determined CPU limit, which uses information
such as the workload prediction, static workload and current workload of the cluster. If the optimal
hour’s CPU limit is reached, the algorithm increments the CO2 optimal hours index and shifts the
remaining workload to the next best hour. The next best hour in this context refers to the hour with
the next lowest 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ value. This process continues until the remaining workload in the
queue reached 0. The algorithm eventually returns an array of length n, with values in the range of
[0, 1] representing the allocation of CPU to non-critical workload at each hour of the timeframe.
This array is then used in the scheduling decision, and limits the cpu reservation for non-critical
workloads. Pseudocode of the Temporal Workload Scheduler can be viewed in Algorithm 4.1.

The most important part of the algorithm is to define the optimal CPU limits, in order to maximize
utilization and SLA compliance. A high limit can lead to a more utilized cluster, but it can also
increase the waiting time for critical workloads. Low limits reduce the probability of a delay in
critical workload. But it also limits overall potential savings due to a less utilized cluster at hours
with low carbon emission.

One advantage of this algorithm compared to the carbon-aware scheduler proposed by Piontek
[Pio22] is that it uses real-time estimations of the workload in the queue, leading to more optimal
scheduling windows. However, incorrect workload predictions can have negative impacts on the
effectiveness of delaying non-critical workload to reduce carbon emissions in a K8s cluster. If the
workload prediction is overestimated, it may result in shifting too much workload to a specific hour
of the day, potentially leading to resource contention and insufficient resources in the cluster for
critical workloads that need to be scheduled immediately. This can have negative consequences
on the performance and reliability of the cluster, potentially affecting the quality of service and
SLA for critical workload. On the other hand, if the workload prediction is underestimated, it may
result in insufficient utilization of resources during low emission hours, leading to reduced carbon
emission savings. Therefore, it is important to accurately predict workload in order to effectively
delay non-critical workload and maximize carbon emission savings in a K8s cluster.
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Algorithm 4.1 𝐶𝑂2 Optimal Window
𝐻 ← hour with minimum predicted 𝐶𝑂2 emission in the specified timeframe
queue← get workload in queue
while queue > 0 do

limit← Calculate dynamic limit for 𝐻 using workload prediction and currently scheduled
jobs

if H > length of the timeframe then
optimal_workload[now]← limit // Schedule all workload immediately

end if
if 𝐻 has already past then

𝐻 ← hour with the next minimum predicted 𝐶𝑂2 emission
end if
if queue fits in 𝐻 then

optimal_workload[H]← workload_prediction[H] + static + shifted_workload[H] + queue
queue← 0

else
optimal_workload[H]← limit
queue← queue - scheduled workload

end if
end while

Incorrect CO2 predictions can lead to shifting workload towards hours with higher carbon emissions,
which can potentially undermine the goal of reducing the carbon footprint of the cluster. This is
because the Workload Scheduler relies on accurate CO2 predictions to determine the optimal hours
for scheduling non-critical workload. If the CO2 predictions are incorrect, the Workload Scheduler
may inadvertently schedule non-critical workload during hours with higher carbon emissions,
resulting in a higher overall carbon footprint for the cluster. This could occur, for example, if
the CO2 predictions underestimate the actual carbon emissions of a particular hour, leading the
Workload Scheduler to schedule non-critical workload during that hour. To mitigate this risk, it is
important to ensure that the CO2 predictions used by the Workload Scheduler are as accurate as
possible, either through the use of reliable CO2 emission data or by implementing robust prediction
algorithms.

4.5 Spatial Workload Shifter

Shifting workload between nodes can be an effective strategy for reducing carbon emissions in a
K8s cluster. By distributing workloads across different nodes, it is possible to take advantage of
varying carbon emissions patterns throughout the day. For example, if certain nodes are located in
areas with lower grid carbon emissions during certain hours of the day, shifting workloads to those
nodes during those times can result in significant carbon emission savings. However, it requires
the availability of multiple nodes in different locations with significantly varying carbon emissions
patterns.
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4 Design and Implementation

The function 𝑐𝑎𝑟𝑏𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 4.2 is a Score plugin for the K8s scheduler extender. It takes in a pod
and a list of nodes as input and returns a HostPriorityList, which is a list of HostPriority structs
mapping scores of the type integer to nodes. The HostPriorityList will be used in the Bind step of
scheduling, where the node with the highest score will be chosen to host the pod.

The function initializes an empty HostPriorityList, here mentioned as score. It then calculates the
current hour in UTC+1 time and assigns a low score of 0 to all nodes in the cluster. The function
then determines the node with the lowest carbon emission for the current hour and assigns it a high
score of 100. This high score difference is necessary to ensure that the prioritized pod is assigned
to the node with the lowest carbon emission. Without a significant score difference, the scheduler
may consider other factors such as the utilization and distribute the pods across multiple nodes. The
function then returns the HostPriorityList. The current carbon inensity of a specific location can be
retrieved using the API of electricitymaps.com [Map].

Algorithm 4.2 Carbon Score Algorithm
min←∞
greenest← ∅
score← ∅
for all 𝑛𝑜𝑑𝑒 ∈ 𝑁𝑜𝑑𝑒𝑠 do

score[node] ← 0
if getCarbonIntensity(node) < min then

min← getCurrentCarbonIntensity(node) // Use API call or prediction
greenest← node

end if
end for
score[greenest] ← 100
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In this chapter, we will describe the process of testing and implementing the proposed carbon
aware scheduling approach for datacenters. We will provide details on the hardware and software
requirements for running the tests, as well as the steps involved in setting up and configuring the
testing environment. We will also discuss the methodologies and metrics used to evaluate the
performance of the approach, and present the results of the tests. Finally, we will discuss the
challenges and limitations encountered during the testing and implementation process, and offer
insights on how these challenges can be addressed in future work.

5.1 Requirements

In order to test the implementation, a machine with a Windows 10 operating system or higher is
required. The Minikube cluster must have at least 4 cores, and virtualization must be enabled in the
UEFI settings. Additionally, a virtualization software such as Hyper-V must be installed on the
machine. Docker must also be installed, and a Docker Hub account with a repository is required.
These requirements must be met in order to properly test the implementation of the proposed carbon
aware scheduler.

These are the steps to create a single node testing environment:

1. create a new repository in DockerHub

2. run 𝑚𝑖𝑛𝑖𝑘𝑢𝑏𝑒 𝑠𝑡𝑎𝑟𝑡 − − 𝑐𝑝𝑢𝑠 4

3. run 𝑚𝑖𝑛𝑖𝑘𝑢𝑏𝑒 𝑎𝑑𝑑𝑜𝑛𝑠 𝑒𝑛𝑎𝑏𝑙𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 − 𝑠𝑒𝑟𝑣𝑒𝑟 (wait until metrics are available, this can
be checked with kubectl top nodes)

4. run and log in to Docker Desktop

5. run 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑠𝑐𝑟𝑖𝑝𝑡𝑠/𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟.𝑖𝑝𝑦𝑛𝑏 for work-
load generation/prediction (further instructions file)

6. run 𝑐𝑜2_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛/𝑐𝑜2𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.𝑖𝑝𝑦𝑛𝑏 for co2 emission data (further instructions file)

7. change IMAGE=USERNAME/REPOSITORY accordingly in 𝑅𝐸𝑃𝑂𝑆𝐼𝑇𝑂𝑅𝑌/𝑑𝑒𝑝𝑙𝑜𝑦𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝑠ℎ
(𝑙.6)

8. set 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 in 𝑅𝐸𝑃𝑂𝑆𝐼𝑇𝑂𝑅𝑌/𝑑𝑒𝑝𝑙𝑜𝑦𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟.𝑠ℎ accordingly (make sure to set
target time at least 5 minutes earlier than the actual start time, because the initialization takes
time) and run it in bash

9. set 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 in 𝑅𝐸𝑃𝑂𝑆𝐼𝑇𝑂𝑅𝑌/𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑠𝑐𝑟𝑖𝑝𝑡𝑠/𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟/
𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟.𝑠ℎ to your start time and run it in bash
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10. set 𝑡𝑎𝑟𝑔𝑒𝑡_𝑡𝑖𝑚𝑒 in 𝑅𝐸𝑃𝑂𝑆𝐼𝑇𝑂𝑅𝑌/𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘_𝑠𝑐𝑟𝑖𝑝𝑡𝑠/𝑙𝑜𝑔_𝑑𝑎𝑡𝑎/𝑙𝑜𝑔𝐷𝑎𝑡𝑎.𝑠ℎ to your
start time and run it in bash

For a multinode cluster environment, minikube start –cpus 2 –nodes 2 must be used. Additionally
the nodes have to be labeled according to their location using the command kubectl label nodes
<nameOfNode> location=<value>. The value hereby refers to the index of the 𝐶𝑂2 emissions
file.

5.2 Methodologies and Metrics

To evaluate the performance of the scheduler, we calculate the total carbon emission savings
compared to the standard implementation of the scheduler. However, total carbon emission savings
alone do not provide a complete picture, so we also present the relative carbon emission savings,
and the achieved SLA compliance.

It is important to note that the carbon emission savings are also influenced by factors such as
the utilization of the cluster, the proportion of non-critical workload and the daily optimal hours
relative to the time the test is initiated. In a more utilized cluster, the proportion of static energy
consumption is reduced, resulting in a higher relative shift of energy consumption to more optimal
hours. Furthermore, a higher proportion of non-critical workload increases the amount of flexible
workload being scheduled, ultimately increasing the performance of the scheduler. Initiating the
test immediately preceding the optimal hours would result in less workload being scheduled and
more workload being deployed immediately, thereby potentially impacting the performance of the
scheduler. This issue only arises in a 24-hour testing scenario, where the algorithm is limited to
scheduling workloads within a fixed 24-hour window. As a result, workload that is deployed at the
last hour of the window cannot be scheduled. In a real-world scenario, the algorithm would run
continuously, allowing for the scheduling of workloads up to 24 hours into the future.

The intraday fluctuation of CO2 values is another significant factor that can impact the performance
of the scheduler. If there are minimal differences in CO2 emissions between the hours, the savings
that can be achieved will be minimal or nonexistent. On the other hand, if there are unusual dips in
CO2 emissions, the performance of the scheduler may be significantly increased.

It is important to note that there are many factors that can influence the performance of the scheduler
beyond the scheduler itself. Therefore, it is not recommended to compare the performance of
the scheduler to other research without considering these factors. To accurately compare the
performance of different scheduling methods, it is necessary to use similar testing environments.

5.3 Service Level Agreement

A service level agreement (SLA) is a contract between a service provider and a customer that
specifies the terms and conditions under which a service is provided. SLAs are commonly used in
the context of managed IT services, cloud computing, and other technical services. The purpose of
an SLA is to ensure that the service provider meets certain performance standards and commitments,
and to provide a clear understanding of the service level that the customer can expect to receive
[Phi11].
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In our test scenario, the only SLA requirement is the immediate execution of critical workload.
The number of SLA violations is measured by counting the number of critical jobs that cannot be
deployed due to a lack of available resources. This can be measured using the kubectl get pods -l
realtime=critical –field-selector=status.phase=Pending –namespace=pod-benchmark command,
which retrieves a list of currently pending critical pods.

5.4 Performance Logging

Logging the performance of the K8s cluster is an essential aspect of testing and evaluating the
scheduler. To assess the energy consumption of the cluster, detailed information about CPU
utilization at any given time is required. This information can be obtained using the kubectl describe
nodes command. It is important to note that the metrics-server addon must be enabled in the
Minikube cluster in order to retrieve this information.

5.5 Testing Scenarios

To assess the effectiveness of the proposed carbon aware scheduling approach, we will be evaluating
the total 𝐶𝑂2 savings that are achieved through the simulation of workloads and monitoring of
energy consumption in the cluster. To provide a baseline for comparison, we will also be evaluating
the performance of the standard implementation of the K8s scheduler. The carbon emissions will be
calculated using the cluster’s energy consumption and the 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ of the grid. The cluster’s
energy consumption will be estimated using a linear power model that considers the CPU utilization.
This allows us to accurately compare the performance of the carbon aware scheduler with the
standard K8s scheduler and evaluate the potential for reducing carbon emissions in datacenters.

For the first testing scenario 5.6, we used the LCG dataset to generate the workload. The utilization
of the LCG cluster is low and evenly distributed. The duration of the test was 24 hours, and the test
was initiated at 5 pm in order to maximize shifting potential and demonstrate the effectiveness of
the proposed scheduling approach. This testing scenario allows us to evaluate the performance of
the carbon aware scheduler in a low-utilization environment and assess its potential for reducing
carbon emissions in datacenters.

For the second testing scenario, we used the SHARCNet dataset to generate the workload. Unlike
the LCG dataset, the SHARCNet dataset has a higher utilization and is less evenly distributed. The
duration of the test was also 24 hours, and the test was initiated at 5 pm in order to maximize
shifting potential. This testing scenario allows us to evaluate the performance of the proposed
carbon aware scheduler in a medium-utilization environment and assess its potential for reducing
carbon emissions in datacenters.

For both testing scenarios, the 𝐶𝑂2 prediction utilized 𝐶𝑂2 signals from Germany in 2018 as
training data.

For the third testing scenario, we used the LCG dataset to evaluate the performance of the proposed
Spatial Workload Shifter. In this test, we simulated two nodes in a Minikube cluster, each
representing a different location with similar but alternting grid carbon emissions. The emission
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data from France and Brazil were chosen, due to their similar average carbon emissions and
alternating optimal 𝐶𝑂2 windows. The 𝐶𝑂2 emission curves of the two nodes can be viewed in
figure 5.6b.

The objective of the fourth testing scenario was to evaluate the performance of the Spatial Workload
Shifter in a cluster with nodes located in distinct geographical regions, each with varying grid carbon
emissions. The emission data used for this evaluation were sourced from Germany and France.
Given the significant difference in 𝐶𝑂2 emissions between the two locations, it is anticipated that
the Workload Shifter will demonstrate high efficiency in this scenario. The workload used in this
test was generated using the SHARCNet dataset, and the 𝐶𝑂2 emission curves of the two nodes can
be observed in Figure 5.7e.

In the fifth and sixth testing scenarios, the two scheduling methods were combined to maximize the
potential savings.

The objective of the fifth scenario is to assess the effectiveness of the proposed scheduling method in
a scenario of moderate utilization, where multiple locations with similar, but varying 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ

values are present. The workload is generated using the SHARCNet dataset, and the nodes are
configured with emission data from France and Brazil, as illustrated in Figure 5.6c.

The sixth scenario aims to evaluate the effectiveness of the proposed scheduling method in a
scenario of moderate utilization, where multiple locations with distinct 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values are
present. The workload is generated using the SHARCNet dataset, and the nodes are configured
with emission data from France and Germany, as illustrated in Figure 5.7e.

5.6 Evaluation

In this section, we present the results of the evaluation of the various testing scenarios. The scenarios
are labeled based on their respective method, location, and workload.

Testing Scenario 1 - Temporal, Germany, Low utilization

As previously mentioned in Section 5.5, the LCG dataset represents a low utilization workload
scenario. The CPU reservation curve for this scenario is shown in Figure 5.2a, with the cyan
curve representing the standard Kubernetes implementation and the magenta curve representing the
Temporal Workload Scheduler.

It can be observed that the Temporal Workload Scheduler scheduled the workload one hour too
early due to an inaccurate prediction of 𝐶𝑂2 emissions. However, as shown in Figure 5.2c, which
compares the 𝐶𝑂2 prediction (purple curve) to the actual 𝐶𝑂2 curve (blue curve), there is not a
significant difference between the optimal hour and the second most optimal hour. As a result, the
performance drawback is minimal.

The energy consumption for the scenario is shown in Figure 5.2b. It was calculated using the linear
power model, which is depicted in Figure 5.1 (p.60 [Pio22]). The 𝐶𝑂2 emissions per hour, depicted
in Figure 5.2d, were calculated by combining the energy consumption data with 𝐶𝑂2 emission data,
and are expressed in 𝑔𝐶𝑂2/ℎ.
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Figure 5.1: Power Model

In Figure 5.2e, the total 𝐶𝑂2 emissions for the standard implementation and the Temporal Workload
Scheduler in the first scenario are depicted and expressed as total 𝑔𝐶𝑂2 at hour ℎ. The green curve
representing the Temporal Workload Scheduler grows at a slower rate than the red line, indicating a
reduction in carbon emissions. However, at approximately 12:00, there is a increase in the total
𝐶𝑂2 emissions due to the Workload Scheduler increasing its utilization in the 𝐶𝑂2 optimal hour.
After this point, the two curves continue with a similar slope, indicating that both implementations
make similar scheduling decisions. Nonetheless, a gap between the two curves can still be observed,
representing the total carbon emission savings achieved by the Temporal Workload Scheduler.

To more clearly illustrate the gap in total 𝐶𝑂2 emissions, the difference between the two curves
in Figure 5.2e is depicted in Figure 5.2f. As shown in this figure, the Temporal Workload Shaper
achieved a carbon saving of approximately 20 g. Given that the total emissions of the workload
scenario are approximately 2245 g, this represents a carbon emission reduction of 0.85%.
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(c) Cluster 𝐶𝑂2 Prediction vs. Actual 𝐶𝑂2
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Figure 5.2: First Scenario

As previously mentioned in Section 5.3 the SLA compliance was measured by counting the amount
of pending critical jobs each minute. If no resources are available for critical workloads, the number
of pending critical jobs will increase, indicating a violation of the SLA The Figure 5.3 presents a
kernel density chart of the number of pending critical jobs for both baseline and optimized methods
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and demonstrates that both implementations exhibit equal compliance with the SLA. The minor
peak at 1 does not necessarily imply a violation but could be a result of a job being scheduled just
before the logger polled the queue status. However, a peak at 2 or higher would indicate congestion,
as multiple jobs are not scheduled simultaneously in our workload scenario.
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Figure 5.3: SLA Violations

Testing Scenario 2 - Temporal, Germany, Medium utilization

For the testing scenarios with medium utilization, we used the SHARCNet dataset. The carbon
emissions data for this scenario were taken from the first testing scenario, as shown in Figure 5.2c.
The CPU reservation curve for this scenario is depicted in Figure 5.4a. It can be observed that the
optimal window determined by the scheduler is significantly larger compared to the first testing
scenario, which used an overall low utilization workload. Figure 5.4b shows the CO2 emissions
per hour, which were calculated using the power consumption data and the grid carbon emissions
data.

The total 𝐶𝑂2 emissions for the second testing scenario, as shown in Figure 5.4c, exhibit a larger
gap compared to the first testing scenario. This can be attributed to a higher utilization level, which
results in a lower proportion of static energy consumption and a higher relative shift of energy
consumption to more optimal hours. The second testing scenario achieved total savings of 60.82 g
CO2, or a saving of 2.35% of the total emissions of 2645 g, as seen in Figure 5.4d.
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Figure 5.4: Second Scenario

A visual representation of the density of SLA violations can be observed in Figure 5.5. It should be
noted that, once again, the optimized method did not result in a impairment of SLA compliance.
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Figure 5.5: SLA Violations
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Testing Scenario 3 - Spatial, France Brazil, Low utilization

The objective of this testing scenario was to evaluate the effectiveness of the Spatial Workload
Shifter method using emission data from France and Brazil. The LCG workload was utilized for a
low utilization scenario and the distributed cluster consisted of two nodes, one master node hosting
the control plane and one worker node. The goal was to determine the potential carbon savings in a
distributed cluster with two similar and alternating 𝐶𝑂2 emission curves. The simulation of the
carbon emission API was conducted using historical 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ data that was available.

As presented in Figure 5.6a, the CPU reservation of the different nodes is illustrated. It is apparent
that the baseline implementation emphasizes on maintaining equal utilization of the nodes. In
contrast, the optimized method prioritizes deploying the workload on the node with the lowest
carbon emissions, regardless of the nodes’ utilization.

It was observed that both clusters have identical energy consumption at all times. This is a result
of the fact that the workload is executed immediately and not delayed in this method, unlike the
temporal approach.

The 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values for this test scenario are presented in Figure 5.6b. The similarity of the
two emission curves indicates that the potential savings are minimal.

As depicted in Figure 5.6c, the CO2 emissions per hour can be observed. The Spatial Workload
Shifter method takes advantage of the differences in 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ between the nodes to minimize
emissions. However, during the first quarter of the testing scenario, the optimized scheduler
displayed higher emissions than the baseline implementation. This is due to the fact that the
Workload Shifter only accounts for the current value of 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ. The overall emissions
can exceed those predicted if the emissions in the next hour are significantly increasing and the
job is still being executed. This problem can be addressed by utilizing runtime estimation and a
𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ prediction. However, to prevent false scheduling, the predictions must be highly
accurate.

As demonstrated in Figure 5.6d, the Spatial Workload Shifter method achieved only minimal savings.
This outcome is consistent with the expectation, due to the similarity observed in Figure 5.6b.
Nonetheless, the Workload Shifter was still able to take advantage of the existing fluctuations and
reduce emissions in this scenario.
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Figure 5.6: Third Scenario

Testing Scenario 4 - Spatial, France Germany, Medium utilization

The objective of this testing scenario was to evaluate the efficacy of the Spatial Workload Shifter
method using emission data from France and Germany. The SHARCNet workload scenario was
utilized to simulate a medium-utilization environment. The cluster consisted of two nodes: one
master node that hosts the control plane and also functioned as a worker node, and one worker-only
node. The two nodes were simulated to be located in different locations with distinct grid emissions.
The worker node used the emission data from Germany, while the master node used the emission
data from France. As shown in Figure 5.7e, the two different grid emission curves are illustrated. It
is apparent that the difference between the two emission curves is substantial, indicating a high
potential for reducing 𝐶𝑂2 emissions.
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5.6 Evaluation

As illustrated in Figure 5.7a, the CPU reservation in milli cores per node can be observed. The
optimized implementation maximizes the utilization of node 1, which is simulated to be located
in France. In contrast, the baseline method aims to evenly distribute the utilization between both
nodes.

The cluster emissions can be observed in Figure 5.7b. It is apparent that the optimized cluster
consistently outperforms the baseline method. The total 𝐶𝑂2 emissions, as displayed in Figure
5.7c, reveal a significant difference between the two implementations.

In Figure 5.7d, the total saved emissions are presented. It can also be observed that the savings
are linear, this is because the Workload Shifter does not delay workload, but rather shifts it to less
carbon-intensive locations. The Spatial Workload Shifter method achieved savings of 592𝑔, which
corresponds to a percentage saving of 32.19%.
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Figure 5.7: Forth Scenario
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5.6 Evaluation

Testing Scenario 5 - Temporal + Spatial, France Brazil, Low utilization

The goal of this testing scenario was to evaluate the effectiveness of the combined scheduling
method, utilizing both the Spatial Workload Shifter and the Temporal Workload Scheduler, under
low utilization conditions and in geographical locations with similar and alternating 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ

values, which can be observed in Figure 5.6b. The test environment is similar to the one in Scenario
3, except the combined method was used in this scenario. It was expected that the combined
scheduling method would perform at least as well as the Spatial Workload Shifter in Scenario 3.

As depicted in Figure 5.8a, the CPU reservation of both nodes in the cluster can be observed. It is
clear that the emission of node 1 is lower than the emission of node 2 during certain time periods,
specifically between 00:00 and 11:00 and again from 14:00 to 16:00. The majority of the workload
is scheduled on the second node during the afternoon and evening. This behavior aligns with the
observations made in Scenario 3. However, due to the implementation of the Temporal Workload
Scheduler, non-critical workload has been postponed to the hours of 23:00 and 00:00 on the second
node, which were predicted to be the most optimal in terms of 𝐶𝑂2 emissions.

In Figure 5.8b, the hourly𝐶𝑂2 emissions can be observed. The optimized method exhibits improved
performance compared to the baseline method. Additionally, a spike in emissions can be noted at
23:00 and 00:00, which is a result of the Temporal Scheduler.

The total emissions savings achieved through the optimization method can be viewed in Figure
5.8d and indicate a minor reduction compared to Scenario 1 and 2, with a total saving of 2.56g of
𝐶𝑂2, which constitutes a 0.46% reduction in this scenario. It should be noted, however, that the
combined method produced higher savings compared to the approach in Scenario 3.

A visual representation of the density of SLA violations can be observed in Figure 5.8e. Both the
optimized and baseline methods display comparable behavior, indicating that the optimized method
did not result in a worsening of SLA compliance.
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Testing Scenario 6 - Temporal + Spatial, France Germany, Medium utilization

The objective of this testing scenario was to assess the effectiveness of the combined scheduling
method, under medium utilization conditions and in two geographical locations with different
𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values. It was expected that the combined scheduling method would perform at
least as well as the Spatial Workload Shifter in Scenario 4. However, the results indicated that
the combined scheduling method performed suboptimally, primarily due to inaccurate predictions.
Additionally, the fluctuation of 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ at the node simulated to be located in France was
not significant enough to be effectively utilized.

The cluster CPU reservation data illustrates several spikes for node 2 between 22 : 00 and 5 : 00.
This outcome was expected to some extent, as similar spikes were observed in the fourth scenario
(Figure 5.7a), which is comparable except that the Temporal Workload Scheduler was not used.
However, the frequency and magnitude of these spikes were found to be significantly higher than
in the fourth scenario. This was determined to be a result of the inaccurate workload prediction
of the SHARCNet workload. As depicted in Figure 4.18, it can be observed that the predicted
workload between the hours 0 and 5 was much lower than the actual workload for this time
window. This inaccurate prediction led to the Temporal Workload Scheduler scheduling more
non-critical workload to these hours on the optimal node than the resources available, resulting
in the unavailability of resources for critical workload on the optimal node at this point in time,
ultimately leading to the scheduling of critical workload on the less optimal node, thereby increasing
the overall emissions.

One solution to mitigate resource contention in a system is to implement preemptive scheduling,
which allows for the interruption of non-critical workload in order to allocate resources to critical
workload. However, it is important to note that this approach requires interruptible workloads, as
otherwise progress may be lost and overall energy consumption may increase upon redeployment of
the workload.

Another approach to reduce emissions in this scenario is to increase the resources available in the
cluster. By increasing the number of millicores per node, more flexible workload scheduling can be
achieved, which would be more resilient to inaccurate predictions. This would result in greater
emissions savings.

Additionally, as depicted in Figure 5.7e, it is evident that the variation in the emission curve of
France is significantly less compared to that of Germany. As a result, the potential for carbon savings
in this scenario is significantly lower in comparison to scenarios 1 and 2, where the Temporal
Workload Scheduler was implemented on a single node simulated to be located in Germany.

The total saved emissions of this scenario were found to be around 515𝑔, which corresponds to a
percentage saving of 26.78%, as seen in Figure 5.9d.

A visual representation of the density of SLA violations can be observed in Figure 5.9e. It should
be noted that, once again, the optimized method did not result in a worsening of SLA compliance.
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5.7 Challenges and Limitations

5.7 Challenges and Limitations

It is important to acknowledge the limitations set in the testing environment due to the potential
complexity of some scenarios. The testing environment only considers two types of workload,
namely critical and non-critical workload. In real-world applications, workload may be bound
to specific locations, thus requiring constraints in space in addition to time. Additionally, only
the CPU reservation is considered when scheduling workloads, this is due to the unavailability of
reliable memory usage data in the used datasets.

Furthermore, the inflexibility of long-running non-interruptable workloads may potentially impact
the performance of the scheduler. To demonstrate the beneficial effects of the scheduler on
long-running workloads, tests exceeding 24 hours would be required. To mitigate this, the tests
were limited to a maximum execution time of 1 hour.

Another limitation of the 24-hour test execution is that all workloads must be deployed within this
timeframe, including those scheduled in the last hour, leading to suboptimal behavior after the
optimal hour for 𝐶𝑂2 emissions has passed. In a real-world scenario, workloads would only be
limited to run in the next 24 hours from the time of creation. Therefore, workloads which are
scheduled in the last few hours could be postponed to the next day’s optimal hour.

61





6 Conclusion and Outlook

In conclusion, this thesis presents a novel approach to reducing carbon emissions in cloud computing
by using statistical models and scheduling strategies in a K8s cluster. The use of statistical models
such as the Prophet model showed promising results in predicting 𝐶𝑂2 emissions, runtime and
resource usage per job. However, it was found that these models do not work as well in predicting
the total amount of incoming workload per hour. The trend analysis presented in Figure 4.7
demonstrates that a shift of workload towards the weekend can result in significant increase in
𝐶𝑂2 savings, which aligns with the conclusions drawn by Wiesner et Al. in their publication (p.6
[WBS+21]).

Both the temporal and spatial methods achieved noticeable carbon savings. We found, that
the performance of the Temporal Workload Scheduler depends on the accuracy of the 𝐶𝑂2 and
workload predictions and is highly susceptible to incorrect predictions. On the other hand, the Spatial
Workload Shifter performs best in environments with high differences in 𝐶𝑂2 emissions between
nodes and does not rely on predictions, making it suitable for highly unpredictable workloads.
Furthermore, the trade-off between efficiency and SLA should also be considered when deciding on
which method to use. The combined scheduling method performs best in multi-location clusters
with distinct grid emissions, which also show a high daily variance in 𝑔𝐶𝑂2𝑒𝑞/𝑘𝑊ℎ values.

In light of these findings, it is evident that there is potential for significant carbon emission savings
in cloud computing through the use of intelligent scheduling strategies.

Outlook

Going forward, there are several areas that can be explored to further improve the performance
of the scheduler. The use of preemptive scheduling can be considered to improve performance
of the temporal scheduler and overall SLA compliance. Preemptive scheduling could potentially
decrease the impact of inaccurate workload predictions, by preempting non-critical workload for
higher SLA compliance and efficiency. The exploitation of interruptible workload can also be
investigated to optimize the use of resources, which would enable the scheduler to make more
optimal decisions, especially for long-running workloads. In addition, finding a better way to
predict the total number of jobs per hour is an important area of improvement, this could increase
the workload prediction accuracy, which would increase the efficiency of the Temporal Workload
Scheduler. Finally, deploying the scheduler in a real-world scenario will provide valuable insights
into its performance and effectiveness in reducing carbon emissions.
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