
Empirical Software Engineering (2021) 26: 104
https://doi.org/10.1007/s10664-021-09999-9

Industry practices and challenges for the evolvability
assurance of microservices

An interview study and systematic grey literature review

Justus Bogner1 · Jonas Fritzsch1 · StefanWagner1 ·Alfred Zimmermann2

Accepted: 8 June 2021
© The Author(s) 2021

Abstract
Context Microservices as a lightweight and decentralized architectural style with fine-
grained services promise several beneficial characteristics for sustainable long-term soft-
ware evolution. Success stories from early adopters like Netflix, Amazon, or Spotify have
demonstrated that it is possible to achieve a high degree of flexibility and evolvability with
these systems. However, the described advantageous characteristics offer no concrete guid-
ance and little is known about evolvability assurance processes for microservices in industry
as well as challenges in this area. Insights into the current state of practice are a very
important prerequisite for relevant research in this field.

Objective We therefore wanted to explore how practitioners structure the evolvability assur-
ance processes for microservices, what tools, metrics, and patterns they use, and what
challenges they perceive for the evolvability of their systems.

Method We first conducted 17 semi-structured interviews and discussed 14 different
microservice-based systems and their assurance processes with software professionals from
10 companies. Afterwards, we performed a systematic grey literature review (GLR) and
used the created interview coding system to analyze 295 practitioner online resources.

Results The combined analysis revealed the importance of finding a sensible balance
between decentralization and standardization. Guidelines like architectural principles were
seen as valuable to ensure a base consistency for evolvability and specialized test automa-
tion was a prevalent theme. Source code quality was the primary target for the usage of tools
and metrics for our interview participants, while testing tools and productivity metrics were
the focus of our GLR resources. In both studies, practitioners did not mention architectural
or service-oriented tools and metrics, even though the most crucial challenges like Service
Cutting or Microservices Integration were of an architectural nature.

Communicated by: Arpad Beszedes and Miryung Kim

This article belongs to the Topical Collection: Software Maintenance and Evolution (ICSME)

� Justus Bogner
justus.bogner@iste.uni-stuttgart.de

Extended author information available on the last page of the article.

/ Published online: 22 July 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09999-9&domain=pdf
http://orcid.org/0000-0001-5788-0991
http://orcid.org/0000-0002-5256-8429
http://orcid.org/0000-0003-3352-7207
mailto: justus.bogner@iste.uni-stuttgart.de

Empir Software Eng (2021) 26: 104

Conclusions Practitioners relied on guidelines, standardization, or patterns like Event-
Driven Messaging to partially address some reported evolvability challenges. However,
specialized techniques, tools, and metrics are needed to support industry with the contin-
uous evaluation of service granularity and dependencies. Future microservices research in
the areas of maintenance, evolution, and technical debt should take our findings and the
reported industry sentiments into account.

Keywords Microservices · Evolvability · Assurance · Industry · Interviews ·
Grey literature review

1 Introduction

Fast moving markets and the age of digitalization require that software can be quickly
adapted or extended with new features. If change implementations frequently happen under
time pressure, the sustainable evolution of a long-living software system can be signifi-
cantly hindered by the intentional or unintentional accrual of technical debt (Lehman 1980;
Avgeriou et al. 2016). The quality attribute associated with software evolution is referred
to as evolvability (Rowe et al. 1998): the degree of effectiveness and efficiency with which
a system can be adapted or extended. Software evolution can therefore be seen as a sub-
set of maintenance since the latter also includes changes where the requirements are stable,
like the fixing of bugs. For Rajlich (2018), evolvability is therefore more demanding and
requires maintainability, i.e. an evolvable system is always maintainable but not vice versa.
In this sense, it is impossible to evolve unmaintainable software, yet maintaining software
that can no longer be evolved may still be possible. Evolvability is especially important for
software with frequently changing requirements, e.g. internet-based systems.

To provide sufficient confidence that such a system can be sustainably evolved, software
professionals apply a set of numerous activities that we refer to as evolvability assurance.
These activities are usually either of an analytical or constructive nature (Wagner 2013).
The goal of analytical activities is to identify evolvability-related issues in the system, i.e.
to evaluate or quantify evolvability. This includes manual techniques like code review or
scenario-based analysis but also tool-supported static or dynamic analysis with e.g. met-
rics. The goal of constructive activities, on the other hand, is the remediation of identified
issues or systematic evolvability construction for some part of the system, i.e. to improve
evolvability. The primary constructive activity is code-level or architectural refactoring.
However, adhering to evolvability-related principles and guidelines or using evolvability-
related design patterns during software evolution is also a constructive – and proactive –
form of evolvability assurance. Lastly, some practices like conscious technical debt man-
agement cover both areas: the identification and documentation of technical debt items is
analytical, while the removal of prioritized items is constructive. For larger systems, all
these activities often form a communicated assurance process and are an important part
of the development workflow with integration into the continuous integration and delivery
(CI/CD) pipeline.

Microservices constitute an important architectural style that prioritizes evolvabil-
ity (Newman 2015). A key idea here is that fine-grained and loosely coupled services that
are independently deployable should be easy to change and to replace. Consequently, one
of the postulated microservices characteristics is evolutionary design (Fowler 2019). While
these properties provide a beneficial theoretical basis for evolvable systems, they offer no
concrete and universally applicable solutions. As with each architectural style, the imple-
mentation of a concrete microservice-based system can be of arbitrary quality. Especially

104 Page 2 of 39

Empir Software Eng (2021) 26: 104

the “service cutting” activity has been described as challenging and several approaches have
been proposed by academia to support it (Fritzsch et al. 2019b). Apart from this, very lit-
tle scientific research has covered the areas of maintenance, evolution, or technical debt
for microservices. Examples include the tracking and management of microservices depen-
dencies (Esparrachiari et al. 2018), antipatterns for microservices (Taibi et al. 2020), and
the applicability of service-based maintainability metrics for microservices (Bogner et al.
2017).

In addition to this sparse scientific state of the art, there are also very few empirical
studies on the industry state of practice. Little is known about what evolvability assurance
processes and techniques companies use for microservices or if these are different com-
pared to other architectural styles. In the general area of service-based systems, Schermann
et al. (2016) even describe a mismatch between what academia assumes and what industry
actually does. An analysis of industry practices in this regard could identify common chal-
lenges, showcase successful processes, and highlight gaps and deficiencies. This would also
provide insights into how industry perceives academic approaches specifically designed for
service orientation, e.g. service-oriented maintainability metrics. Results of such a study
could help to design new and more suited evolvability assurance processes or techniques.

We therefore conducted an analysis of the industry state of practice based on two qual-
itative studies. First, we interviewed 17 Germany-based software professionals from 10
different companies (see Section 4). They described 14 different systems with various
microservices characteristics and their concrete evolvability assurance process including
tool, metric, and pattern usage. We also talked with them about the evolution qualities
of microservices, how microservices influence the assurance process, and their perceived
challenges for evolvability.

Using these identified concepts, we subsequently conducted a systematic grey litera-
ture review (GLR) to confirm and expand our interview results based on a large number
of practitioner blog posts, conference presentations, white papers, and Q&A forum posts
(see Section 5). In total, we analyzed 295 relevant internet resources written by software
professionals using our existing interview coding system, which we extended with newly
identified labels.

In this paper, we present the results of these two qualitative studies and discuss their
combined implications (see Section 6). The interview results related to the evolvability
assurance of microservices have already been discussed on their own in (Bogner et al.
2019a). Since the extensive interviews also covered additional topics, there are also pub-
lications on used technologies, the adherence to microservice characteristics, and overall
software quality (Bogner et al. 2019b) as well as on intentions, strategies, and challenges
for migrating to microservices (Fritzsch et al. 2019a). This article therefore extends our pre-
vious work (Bogner et al. 2019a) with a grey literature review and the joint interpretation of
interview and GLR results.

2 RelatedWork

Several empirical studies that report challenges for microservices adoption have been pub-
lished so far. Baškarada et al. (2018) conducted 19 in-depth interviews with experienced
architects. They discussed opportunities and challenges associated with the adoption and
implementation of microservices. Four types of corporate systems with different levels of
suitability for microservices were identified. Especially large corporate systems of record

Page 3 of 39 104

Empir Software Eng (2021) 26: 104

like enterprise resource planning (ERP) systems were not seen as appropriate targets. In this
context, organizational challenges such as DevOps methodologies would be less serious for
information and communication technology enterprises than for traditional organizations,
where IT was perceived as a “necessary evil” (Baškarada et al. 2018).

Ghofrani and Lübke (2018) conducted a similar empirical survey among 25 practitioners
that were mainly developers and architects. Their objective was to find perceived challenges
in designing, developing, and maintaining microservice-based systems. The results reveal
a lack of notations, methods, and frameworks for architecting microservices. Several par-
ticipants named the distributed architecture as responsible for the challenging development
and debugging of the system. Participants generally prioritized optimizations in security,
response time, and performance over aspects like resilience, reliability, and fault tolerance.

In their interviews with 10 microservices experts from industry, Haselböck et al. (2018)
focused on design areas of microservices and associated challenges. The study identified 20
design areas and their importance as rated by the participants. Design principles and com-
mon challenges from earlier mapping studies could be confirmed by the authors. Similar to
our qualitative study, interviewees’ rationales are discussed as well. Microservices design
is a fundamental aspect of their evolvability later on. As such, the study can be seen as a
valuable contribution to the topic at hand.

Some studies also focus on evolvability-related areas like technical debt and antipatterns.
Carrasco et al. (2018) conducted a literature review to gather migration and architecture
smells. The authors derived best practices, success stories, and pitfalls. By digesting 58
different sources from academia and grey literature, they presented nine common bad smells
with proposed solutions.

Similarly, Taibi et al. (2020) synthesized a taxonomy of 20 microservices antipatterns
via an extensive mixed-method study over several years, combining an industrial sur-
vey, a literature review, and interviews. Their most recent replication relied on interviews
with 27 experienced developers, who shared bad microservices practices that they encoun-
tered and their applied solutions. The taxonomy contains both organizational and technical
antipatterns.

To sum up the frequently studied area of microservices antipatterns, Neri et al. (2019)
conducted a multivocal review on the refactoring of antipatterns which violate microser-
vices principles. In addition to scientific publications, they also included grey literature from
practitioners, such as blog posts, industrial white papers, or books. As results, they present
16 refactorings for seven architectural microservices smells.

In a previous study (Bogner et al. 2018), we surveyed 60 software professionals via
an online questionnaire to assess maintainability assurance practices in industry as well
as notable differences with both service- and microservice-based systems. We asked ques-
tions related to the used processes, tools, and metrics to learn about treatments specific to
such systems. Very few participants reported the usage of techniques to address existing
issues related to architecture-level evolvability. Since 67% of participants neglected service-
oriented particularities in the assurance, the study revealed a weak spot in industry practice
that may impair the lifespan of service-based systems.

A pure grey literature review in the area of microservices was conducted by Soldani et al.
(2018). To distill commonly perceived technical and operational advantages (“gains”) and
drawbacks (“pains”) of microservices, they selected and analyzed 51 practitioner resources
obtained via search engines like Google, Bing, or Duck Duck Go. The analyzed white
papers, blog posts, and videos were published between 2014 and 2017 and were mapped to
the general areas of microservices design, development, and operations.

104 Page 4 of 39

Empir Software Eng (2021) 26: 104

Bandeira et al. (2019) investigated how microservices were discussed on StackOver-
flow. They argue that Q&A websites can serve as representative samples of the community.
With StackOverflow being the biggest platform for software development, they refer to sev-
eral other studies that already leveraged this source of accumulated knowledge. Unlike our
approach, they did not use keyword search, but only retrieved questions for which the author
used the microservices tag. In total, they applied mining techniques and topic modelling to
1,043 discussions and extracted technical and conceptual subjects. While there is a slight
overlap with codes we used in our GLR, evolvability is not a thematic priority in their very
general classification scheme.

Lastly, Lenarduzzi and Taibi (2018) investigated technical debt interest by means of a
long-term case study where they monitored the migration of a monolithic legacy system to
microservices. The study aimed to characterize technical debt and its growth comparatively
in both architectural styles. As a preliminary result, they found that the total amount of
technical debt grew much faster in the microservice-based system.

In summary, the majority of microservices industry studies focuses on general challenges
or antipatterns and not on a broader set of applied evolvability assurance activities. Our
survey (Bogner et al. 2018) is one of the few to do so, but we did not focus exclusively on
microservices and could not report much on developers’ rationales due to the limitations of
the quantitative questionnaire. To address this gap, we therefore conducted two qualitative
microservices studies to analyze industry evolvability assurance processes, techniques, and
challenges.

3 Research Design

We generally followed the five-step case study process as described by Runeson and Höst
(2009) to structure our research, which includes the consecutive steps of study design,
preparation for data collection, evidence collection, data analysis, and reporting. As a first
step, we defined a research objective and related research questions. The primary goal of
this study can be formulated in the following way:

Analyze the applied evolvability assurance
for the purpose of knowledge generation
with respect to common practices and challenges
from the viewpoint of software professionals
in the context of microservices in industry

We formulated three research questions to set more fine-grained directions for our study
and to limit its scope:

RQ1:What processes do software professionals follow for the evolvability assurance
of microservices and for what reasons?

This RQ covers the process aspects of evolvability assurance, i.e. what concrete activities
are used and how are they structured and combined.

RQ2: What tools, metrics, and patterns do software professionals use for assuring
the evolvability of microservices and with what rationales?

This RQ is concerned with three concrete concepts which are frequently used within
evolvability assurance activities, namely tools and metrics to quantify evolvability or to
identify evolvability-related issues as well as design and architecture patterns for systematic
evolvability construction.

Page 5 of 39 104

Empir Software Eng (2021) 26: 104

RQ3: How do software professionals perceive the quality of their microservices and
assurance processes and what parts do they see as challenging?

This RQ analyzes software professionals’ perceptions with respect to the quality charac-
teristics of their systems (e.g. what evolvability characteristics are they satisfied with) and
their assurance activities (e.g. do they think that their activities are effective and efficient).
Special emphasis is put on perceived challenges for the evolvability of microservices.

Since quantitative survey research with questionnaires would not be in-depth enough to
cover practitioners’ rationales – an issue we also experienced during the analysis of our sur-
vey data (Bogner et al. 2018) – we selected a predominantly qualitative research approach.
Qualitative methods analyze relationships between concepts and directly deal with iden-
tified complexity (Seaman 2008). Results from such methods are therefore very rich and
informative and may provide insights into the thought process behind the analyzed infor-
mation. As concrete methods for surveying the state of practice, we chose semi-structured
interviews (Seaman 2008; Hove and Anda 2005) and a systematic grey literature review
(GLR) (Garousi et al. 2019), i.e. we collected and analyzed a large number of practitioner
online resources related to our research objective. The detailed research designs for each
method are described in the following two subsections.

3.1 Practitioner Interviews

Semi-structured interviews left us with a basic agenda, but also allowed us to dynami-
cally adapt our questions based on responses. For our interview participants, we defined the
following requirements:

– Significant professional experience (minimum of five years) and solid knowledge of
service orientation

– Technical role (e.g. developer or architect) that at least sometimes writes code
– Recent participation in the development of a system with microservices characteristics

We recruited participants via personal industry contacts of the research group and by
attending industry meet-up groups on microservices, where we approached companies from
different domains and of different size. To ensure a base degree of heterogeneity within
our population, we only allowed a maximum of three participants per company and if two
participants worked on the same system, they needed to have different roles.

3.1.1 Preparation for Data Collection

Before conducting the interviews, we created several documents. We prepared an interview
preamble (Runeson and Höst 2009) that explained the interview process and relevant top-
ics. To make participants familiar with the study, they received this document beforehand.
The preamble also outlined ethical considerations like confidentiality, requested consent for
audio recordings, and guaranteed that recordings and transcripts would not be published. As
a second document, we created an interview guide (Seaman 2008) that contained the most
important questions grouped in thematic blocks. This guide helped us to scope and orga-
nize the semi-structured interviews and was used as a loose structure during the sessions.
We did not share it with interviewees beforehand. Furthermore, we created a slide set with
additional interview artifacts for certain topics or questions, such as an exemplary list of
assurance tools. These slides were also not shared with participants before the interviews.
For the analysis, we created a preliminary set of coding labels and a case characterization
matrix (Seaman 2008) containing the most important case attributes.

104 Page 6 of 39

Empir Software Eng (2021) 26: 104

3.1.2 Evidence Collection

In total, we conducted 17 individual interviews (no group interviews). Six of these were
performed face to face and 11 via remote communication software with screen sharing.
All interviews except for a single English one were conducted in German. Each partici-
pant agreed to a recording of the interviews, which took between 45 and 75 minutes. We
loosely followed the structure of the interview guide and adapted based on how a partic-
ipant reacted. As an initial ice breaker, participants were asked to describe their role and
the system they worked on. Later on, the topic shifted to the evolvability of the system and
potential symptoms of technical debt.

The next thematic block was the concrete evolvability assurance process for the system.
We presented a custom maturity model with four levels that ranged from implicit and basic
to explicit and systematic (see Fig. 1). We created this simplistic model inspired by existing
frameworks like CMMI (Software Engineering Institute 2010) or the maintenance maturity
model from April et al. (2005). Since its only purpose was to act as an initial conversation
opener about evolvability assurance, our model has not been evaluated in any way. To get
participants to reflect on their own assurance, we explained the different levels and exam-
ples of associated practices. Participants were then asked to place themselves on the level
that corresponded the most to their current assurance activities and to give some rationales
for their choice. From there, we discussed the details of their processes and concrete tech-
niques, tools, and metrics. Even though we discussed specific level placements in some
cases, it was neither the intention to reach perfectly consistent maturity levels across all
cases nor to rigorously assess the maturity of the different companies. The model just served
as an icebreaker to talk about evolvability assurance. Additionally, the level placements
give an indication for how elaborate and systematic the interviewees perceived their own
practices.

Lastly, we asked questions about challenges and participants’ satisfaction with the cur-
rent process. The satisfaction and reflection questions relied on a five point scale from -2
(very negative) to +2 (very positive) with 0 being the neutral center. After the interviews,
we manually transcribed each audio recording to create a textual document. We then sent
these documents to participants for review and final approval. During this review, intervie-
wees were able to delete sensitive paragraphs or change statements of unclear or unintended
meaning. The approved transcripts were then used for detailed qualitative content analysis.

Fig. 1 Evolvability Assurance Maturity Levels

Page 7 of 39 104

Empir Software Eng (2021) 26: 104

3.1.3 Data Analysis

As a first step for analyzing the interview data, we performed the coding of each tran-
script. Using the created preliminary set of codes, we assigned labels to relevant paragraphs.
During this process, several new labels were created and already finished transcripts were
revisited. Labels were also renamed, split, or merged as we acquired a more holistic under-
standing of the cases. These coding activities followed the constant comparison method that
is based on grounded theory (Seaman 2008). After the coding of all transcripts, we analyzed
the details and code relationships of each individual transcript. This activity resulted in a
textual description for every case1.

In the second step, we applied cross-case analysis (Seaman 2008) to identify important
generalizations and summaries between the cases. We used the coding system and the cre-
ated case characterization matrix as well as tabulation (Runeson and Höst 2009). For each
research question, important findings were extracted from the transcript and documented.
During this process, we also refined the case characterization matrix. General trends and
deviations were documented and later aggregated into results and take-aways. To increase
transparency and reproducibility, we published all interview documents and artifacts (except
for the full transcripts) as well as the results of the analysis on both GitHub2 and Zenodo3.

3.2 Grey Literature Review (GLR)

Since software engineering is a very practitioner-oriented field and microservices still have
limited scientific publication coverage in a lot of areas, grey literature may hold valuable
insights that academic literature simply cannot provide yet (Garousi et al. 2016). Therefore,
multivocal and grey literature reviews in software engineering experienced a rise in popu-
larity over the last years, even though the usage of such methods is still at an early stage
and clear guidelines are only starting to emerge (Neto et al. 2019). In our research design,
we used the identified concepts and results from our interview as the basis for planning our
GLR, i.e. the goal of the GLR was to confirm (or reevaluate) the interview results on the
foundation of a large sample size of documents.

3.2.1 Preparation for Data Collection

We developed a detailed review protocol based on many of the guidelines proposed in
(Garousi et al. 2019) to support us during the process (see also Fig. 2). With respect to data
sources (see also Fig. 3), we decided to include the search engines Google and Bing, as they
are the two most popular ones4 and have been used in most GLRs in the field of software
engineering. Additionally, we included the Q&A platform StackOverflow and the three spe-
cialized StackExchange communities Software Engineering, Software Quality Assurance
& Testing, and DevOps. StackExchange communities are popular with practitioners and
especially valuable to identify frequently experienced issues and challenges.

Based on our experiences with the interviews, we defined a set of seven search strings for
Google and Bing (see Fig. 4). Each included the term microservices combined with

1https://github.com/xJREB/research-microservices-evolvability-interviews/tree/master/case-descriptions
2https://github.com/xJREB/research-microservices-evolvability-interviews
3https://doi.org/10.5281/zenodo.2586916
4https://www.reliablesoft.net/top-10-search-engines-in-the-world

104 Page 8 of 39

https://github.com/xJREB/research-microservices-evolvability-interviews/tree/master/case-descriptions
https://github.com/xJREB/research-microservices-evolvability-interviews
https://doi.org/10.5281/zenodo.2586916
https://www.reliablesoft.net/top-10-search-engines-in-the-world

Empir Software Eng (2021) 26: 104

Fig. 2 General GLR Process

various relevant concepts like quality attributes (e.g. evolvability) or means of assur-
ance (e.g. metrics and tools). Additionally, we excluded domains that only produced
unwanted academic results like researchgate.net or scholar.google.com5. For
StackOverflow and the StackExchange communities, we constructed a detailed query for
the offered SQL interfaces6. This SQL query7 relied on the same search terms, but only
included posts created in 2014 or later that had a score of at least +2. To limit the long run-
time and large number of results, the required score was raised to +5 for the StackOverflow
query.

3.2.2 Evidence Collection

We manually entered all seven search strings into both Google and Bing and extracted the
first 100 URLs per search string, i.e. a total of 1,400 URLs (7 ∗ 100 ∗ 2). We used an
anonymous browsing session and set the search location to the United States. As Google did
not reliably respect domain exclusions of its own domains and Bing did not offer a feature
for this at all, we identified any excluded domains via regular expression search and filled up
the list with additional search hits to guarantee 100 results per search string. Concerning the
four Q&A platforms, we simply extracted all posts returned by the respective queries. We
then merged the results (1,730 resources) and eliminated duplicates (485 resources, 28%),
which left us with a total of 1,245 URLs that we needed to manually assess for inclusion.

This assessment was based on the following criteria. First, we only included textual prac-
titioner online resources in English. Most frequently, these were resources like blog posts,
news or wiki articles, Q&A posts, tutorials (in written form), company white papers, or
presentation slides. Resources were excluded if they were not in English or if they were sci-
entific papers, books, videos, job offerings, or announcements of conferences, seminars, and
trainings. On top of these basic criteria, filtering out resources not relevant for our research
questions was most important. To be included, a resource needed to contain a description or
reflection of some form of evolvability assurance or some form of systematic evolvability
construction. This could be the usage of tools, metrics, or patterns, but also descriptions of
guidelines, best practices, or lessons learned as well as experienced challenges. A last pos-
sibility for exclusion was a perceived suboptimal quality of the resource, e.g. if the author’s
or company’s experience or authority was questionable. It was important that the author had

5https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#
google-and-bing-search
6https://data.stackexchange.com/stackoverflow/query/new
7https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#
stackexchange-sql-query

Page 9 of 39 104

https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#google-and-bing-search
https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#google-and-bing-search
https://data.stackexchange.com/stackoverflow/query/new
https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#stackexchange-sql-query
https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/protocol.md#stackexchange-sql-query

Empir Software Eng (2021) 26: 104

Fig. 3 Used Search Engines and Q&A Platforms

applied or experienced the described assurance techniques in the real world and that they
were not simply a hypothetical suggestion the author thought about. For Q&A posts, we did
not follow this as sternly, since we also wanted to record the experienced challenges.

To be able to split the manual work of filtering over 1,200 resources without significantly
reducing consistency, the first two authors performed several rounds of inter-rater reliability
calibration by both filtering the same set of resources and comparing the results. We did this
for four consecutive rounds, each with 100 mixed resources from all sources. After each
round, differences were discussed and resolved, which gradually led to more consensus.
For the last 100 resources, the percentage agreement was 87% and Cohen’s Kappa (Cohen
1960) was 0.602, which Landis and Koch (1977) categorize as right at the end of “moderate”
and the beginning of “substantial” agreement. At this point, we split the remaining 845
resources between us and filtered independently. If one rater was unsure about the inclusion
of a resource, he assigned a review of his preliminary decision to the other rater. Differences
of opinion were discussed until a consensus was reached. Using this process, we finally
ended up with 295 included resources that needed to be analyzed in detail (see also Fig. 5).

3.2.3 Data Analysis

To analyze the selected GLR resources, we relied on roughly the same coding process as
with the interviews. We used the existing coding system as the basis and iteratively extended
it with new labels we discovered during the process. A difference to the interview tran-
scripts was that we did not code concrete text passages, but assigned labels to the complete
resource. For longer resources, we also documented the occurrence of the label to support
data extraction later on, e.g. a page number or associated heading. Similar to the filtering
stage, we also wanted to split the work between two coders and therefore performed an ini-
tial calibration round where both coders analyzed the first 20 resources and discussed any
differences. Due to the very elaborate coding system (over 130 unique labels in six cate-
gories), it did not make sense to calculate agreement measures like Cohen’s Kappa since

Fig. 4 Used Search Terms for Google and Bing

104 Page 10 of 39

Empir Software Eng (2021) 26: 104

Fig. 5 GLR Stages with # of Resources at Each Stage (SO: StackOverflow, SE: Software Engineering,
DevOps: DevOps, SQA: Software Quality Assurance & Testing)

high values are unlikely to be reached, even if the majority of labels will be the same per
resource. After the calibration discussion, however, we felt that we had been sufficiently
consistent to nonetheless split up the remaining resources. Additionally, if a coder was
unsure about one of his resources, he could assign it to the other coder for double-checking.
After coding was completed, we synthesized answers to our research questions by analyzing
frequently occurring labels and their related text passages. Similar to the interview analysis,
we looked for general tendencies and documented interesting quotes. Later on, these extrac-
tions were aggregated into results and take-aways. Likewise, all GLR artifacts and results
are published on both GitHub8 and Zenodo9.

4 Interview Results

Our interviewees were from 10 different companies (C1–C10) of different sizes and
domains (see Table 1). Half of these were software & IT services companies that mostly
developed systems for external customers. The companies from other domains always had
an internal system owner. Every participant was located in Germany, even though some
companies had sites in several European countries or even globally. From our 17 partici-
pants (P1–P17), 11 stated architect as their role while four were developers. The remaining
two roles were data engineer and DevOps engineer. All participants possessed a minimum
of five years of professional experience, with a median of 12 and a mean of 14.7 years.
Altogether, we discussed 14 systems (S1–S14) and their evolvability assurance processes,
where in three cases, two participants talked about the same system (S5, S9, S11).

For the sake of brevity, this publication only contains the aggregated interview results.
We provide a detailed description of every case in our online repositories2,3. The descrip-
tions include general information about the system, the details of the evolvability assurance

8https://github.com/xJREB/research-microservices-evolvability-glr
9https://doi.org/10.5281/zenodo.3731259

Page 11 of 39 104

https://github.com/xJREB/research-microservices-evolvability-glr
https://doi.org/10.5281/zenodo.3731259

Empir Software Eng (2021) 26: 104

Table 1 Interview Demographics: Companies and Participants (CID: Company ID, SID: System ID, PID:
Participant ID, Exp.: Professional Experience in Years

process, and lastly reflections and challenges per system. Table 2 provides some basic sys-
tem information and the self-assessed assurance maturity levels while Table 3 lists the usage
of tools, metrics, and patterns to analyze and improve evolvability. By analyzing and com-
paring the individual cases, we identified several trends or common relationships. These
generalizations, summaries, or notable deviations from common assumptions are presented
in the following subsections that correspond to our three research questions.

4.1 Assurance Processes (RQ1)

The intention of RQ1 was to find out what general activities participants employed to assure
the evolvability of microservices, how systematically they organized these activities, and
what participants’ rationales for these decisions were. Since one microservices characteris-
tic is the decentralization of control and management, we also wanted to analyze how much
central governance was applied.

4.1.1 Decentralization vs. Governance

In general, every analyzed assurance process had some degree of explicit and conscious
addressing of evolvability, even though the sophistication and extensiveness of the applied
techniques varied greatly. When looking at the larger systems, there were two different
approaches for assuring evolvability: very decentralized with very autonomous teams (e.g.
S9, S10, S12, S14) vs. centralized governance for macroarchitecture, technologies, and
assurance combined with a varying degree of team autonomy for microarchitecture (e.g. S2,
S3, S4, S7, S13). The latter kind was usually applied for systems that were built for external
customers and that exhibited some project characteristics.

In the decentralized variant, the internal system was managed in a continuous product
development mode, which created quality awareness by making people responsible and
simultaneously empowering them. This variant is more in line with the microservices and

104 Page 12 of 39

Empir Software Eng (2021) 26: 104

Table 2 Interview Systems: General Characteristics

ID System Purpose Age in Years # of Services Assurance Maturity Level (0-3)

S1 Derivatives management
system (banking)

1.5 9 2

S2 Freeway toll management
system

2 10 3

S3 Automotive problem man-
agement system

1 10 1.5

S4 Public transport sales sys-
tem

2 ∼100 1.5

S5 Business analytics & data
integration system

1.5 6 P5: 1

P6: 1.5

S6 Automotive configuration
management system

1 60 3

S7 Retail online shop 2.5 ∼250 2.5

S8 IT service monitoring plat-
form

3 9 2

S9 Hotel search engine 2 ∼10 P10: 1.5

P11: 3

S10 Hotel management suite 1.5 20 2

S11 Public transport manage-
ment suite

(S11a: human resource
management part)

2.5 10 products P13: 1.5

P14: 2.5

S12 Retail online shop 2 ∼45 2.5

S13 Automotive end-user ser-
vices mgmt. system

2 7 2

S14 Retail online shop 6 ∼175 2

DevOps principle “you build it, you run it”. Techniques in this variant also were by no means
basic or implicit. Even though teams were allowed to choose their own assurance activities,
they usually created a more or less structured processes that did not depend on external gov-
ernance. This was hard to replicate for IT service providers that often did not operate the
systems themselves (S2, S3, S4, S7, S13) and had to coordinate with external customers or
even other contractors (S4, S7). Therefore, they relied more on central governance. Archi-
tect P4 described it as follows: “In our case, the main challenge is to convince 300 people
to move in the same direction. For that, we created a very large number of guidelines and
rules for service creation.”

Such guidelines, principles, or standardizations were nonetheless seen as important
parts of the process in both variants. These coding labels were among the most frequent
ones. Nearly all participants reported their usage in various areas such as architectural
principles, rules for service communication, skeleton projects, style guides, cross-cutting
concerns like logging or authentication, candidate technologies, or Docker images. The
degree of enforcement varied between companies and was usually higher within the cen-
tralized variant. In the decentralized variant, pragmatism was often more important than

Page 13 of 39 104

Empir Software Eng (2021) 26: 104

Table 3 Interview System Assurance Processes: Tools, Metrics, and Patterns

ID Tools Metrics Patterns

S1 IDE linting – Event-Driven Messaging,
Service Registry

S2 SonarQube (FindBugs,
Checkstyle, PMD)

Test coverage, cyclomatic
complexity, clone cover-
age, # of defects per ser-
vice, # of failed tests, # of
code smells, # of endan-
gered requirements

Event-Driven Messaging

S3 SonarQube (FindBugs,
Checkstyle, PMD)

Test coverage, clone cov-
erage, defect resolution
time

Event-Driven Messaging,
Strangler

S4 SonarQube (FindBugs),
VersionEye

of code smells, test
coverage, # of outdated
dependencies

Event-Driven Messaging,
Backends for Fron-
tends, Consumer-Driven
Contracts, Tolerant Reader

S5 SonarQube (FindBugs,
Checkstyle, PMD)

Test coverage Event-Driven Messaging

S6 SonarQube (FindBugs,
Checkstyle)

Test coverage, # of failed
tests, # of code smells,
cyclomatic complexity,
clone coverage, LOC

Event-Driven Messaging

S7 SonarQube (FindBugs,
PMD, Checkstyle), Cober-
tura, IDE linting, custom
static analyzer for coding
conventions

Test coverage, cyclomatic
complexity, clone cover-
age, # of rule violations,
velocity

API Gateway

S8 SonarQube (FindBugs),
IDE linting

Cognitive complexity, # of
code smells, test coverage

Event-Driven Messaging

S9 P10: Checkstyle, IDE
linting P11: SonarQube
(FindBugs, Checkstyle)

P10: Defect resolution
time, burndown P11: #
of code smells, # of rule
violations

Event-Driven Messaging,
Request-Reaction

S10 SonarQube, IDE linting Test coverage, # of endan-
gered usage scenarios

Self-Contained Systems,
Backends for Frontends

S11 P13: SonarQube (Find-
Bugs, Checkstyle) P14:
FindBugs, PMD, Cober-
tura, custom tool for archi-
tectural conformance

P13: # of code smells P14:
of architectural viola-
tions, # of rule violations

–

S12 SonarQube (FindBugs,
Checkstyle, PMD),
IDE linting, Codecov,
Cobertura

Test coverage, cyclomatic
complexity, # of code
smells, # of rule violations

Event-Driven Messag-
ing, Consumer-Driven
Contracts

S13 SonarQube (FindBugs,
Checkstyle, PMD)

Test coverage, # of code
smells, # of rule violations

Event-Driven Messaging

S14 SonarQube (FindBugs,
Checkstyle, PMD),
Structure101, Codecov,
Cobertura, Codacy

Test coverage, CI/CD
pipeline duration, LOC

Event-Driven Messaging,
Self-Contained Systems,
Event Sourcing

104 Page 14 of 39

Empir Software Eng (2021) 26: 104

the strict adherence to rules and several participants (P5, P8, P10, P12, P15, P17) reported
simplicity as a key principle (“KISS” ⇒ “keep it simple, stupid”).

4.1.2 Automated andManual Activities

To make assurance activities more efficient and objective, all participants saw automation
and tool support as useful, albeit with varying enthusiasm. Several participants reported the
integration of quality analysis tools into the CI/CD pipeline (P2, P3, P8, P9, P11, P14, P15,
P17). This was often combined with quality gates, i.e. automated source code checks that
could prevent merging or deployment. For architect P17, the pipeline’s execution time was
very important: only tools that were absolutely necessary should therefore be integrated.
Additionally, several participants advocated for a sensible usage of quality gates. Data engi-
neer P11 was frustrated with how difficult it would be to get a passing merge request due to
the strict rules. Similarly, developer P10 mentioned that strict quality gates could hinder the
deployment of important production bug fixes. Architect P7’s team did not use any qual-
ity gates because of continuous experimentation and prototyping. Lastly, lead architect P2’s
team circumvented some of these issues by applying quality gates only for releases and not
for merge or pull requests.

Nearly all participants agreed that test automation was an important part for the assur-
ance process of microservices. While unit tests were very common, several participants
also reported automated end-to-end tests for the integration of microservices and stressed
their importance (P2, P3, P7, P12, P16). Some teams also had more elaborate strategies that
linked tests to requirements (S2) or usage scenarios (S10). Participants with only unit tests
(P5, P6, P9) or barely any tests (P10) also saw the importance to bring their test automation
to a higher level.

Despite the reported importance of automation and tool support, several participants also
highlighted the usefulness of manual assurance activities. Code reviews were seen as an
important practice to increase code quality and to share knowledge within the team (P1,
P3, P4, P5, P7, P8, P10, P11). Pair programming was used for the same reasons by two
participants and the downside of additional man-hours was willingly accepted (P8, P15).
Lastly, refactoring was highly valued and some participants also explicitly mentioned the
use of the “boy scout” rule during feature implementations (P11, P15), i.e. the principle
to always leave changed code cleaner than before. Activities like these would efficiently
increase code quality over time.

4.1.3 Documentation Practices

Even though some participants were proponents of concise documentation or architec-
tural decision records within the source code repository (P10, P11), several systems relied
on more elaborate architecture and service documentation in a system like Confluence
or SharePoint (S1, S4, S5, S6, S8). Common types of documentation were system archi-
tecture, service dependencies and contracts between teams, service functionality and API
descriptions, reference architectures and service blueprints, design rationales, or architec-
tural principles and guidelines. For IT service providers, parts of this documentation was
also used to communicate with the customer. Lastly, only P7 and P14 reported the conscious
tracking of identified technical debt items for later debt management. Architect P7’s teams
held an explicit meeting every two weeks, where the most important technical debt items
were discussed and their prioritization was decided.

Page 15 of 39 104

Empir Software Eng (2021) 26: 104

4.2 Tools, Metrics, and Patterns (RQ2)

Our second research question targeted the application of and rationale for tools, metrics,
and design patterns. Automation and tool support is an often cited microservices character-
istic and seen as necessary to manage a large number of small components. We were also
interested if participants used tools and metrics specifically designed for service orientation.
Lastly, we wanted to explore the usage of design patterns for evolvability construction, since
there is a large body of patterns for service-oriented architecture (SOA) and more recently
also for microservices.

4.2.1 Tools Related to Evolvability Assurance

While the usage of over a dozen different tools for evolvability assurance was reported,
14 of 17 participants named SonarQube as a central tool that was usually integrated into the
CI/CD pipeline. Since P1 and P10 planned to introduce it soon, architect P14 remained the
only participant that would not use SonarQube in the foreseeable future. Reported reasons
for its popularity were the OpenSource license, the easy installation, plugin availability,
and configurability. In Java-focused systems, SonarQube was often extended with tools
like FindBugs, Checkstyle, and PMD. Additionally, specialized tools for test coverage like
Cobertura (P8, P14, P15, P17), Codecov (P15, P17), or Codacy (P17) were used. For a basic
degree of local and immediate quality assurance, IDE linting via e.g. TSLint, ESLint, and
PHPLint was reported by some participants (P1, P8, P10, P12, P15).

4.2.2 Evolvability-Related Metrics

With respect to metrics, 10 of the 17 participants reported the usage of test coverage, even
though some perceived this metrics as less important than others and were very aware of
possible quality differences with automated tests. Architect P12 termed it as follows: “Even
I could fake the coverage for two classes you give me in like five minutes. You can write a
test that brings coverage to about 60%, but actually it covers like 2%.” Some participants
also focused on additional metrics for testing and functional correctness like # of failed
tests over time (P2, P7), # of defects per service (P2), or # of endangered requirements (P2)
or usage scenarios (P12). Most SonarQube users also payed attention to standard findings
like code smells, code duplication, and cognitive or cyclomatic complexity. Participants
with rule-based tools like FindBugs, Checkstyle, or other linters used the number of rule
violations as a simple metric that had to be zero.

Overall, most applied metrics were focused on source code quality, even though their
effectiveness for the whole system was seen as controversial by a few participants (P8,
P17). Architect P17 described it as follows: “Most of these metrics relate to a single project,
which is very useful when I have a monolith with a million LOC. However, if I have a
service with 1000 LOC which code base is separated from all other 150 microservices,
most of these metrics lose their importance.” With respect to productivity metrics, some
interviewees reported the usage of defect resolution time (P3, P10), velocity (P8), sprint
burndown (P10), or deployment duration (P17). These were important for them to control
and manage software evolution.

While architecture-related topics like microservices dependencies were very prevalent
during our interviews, participants generally did not apply architecture-level tools and
metrics. Architect P14’s team used a custom tool for architectural conformance checking in
the monolithic code base for a sub product of S11 and architect P17 reported the intermittent

104 Page 16 of 39

Empir Software Eng (2021) 26: 104

usage of Structure101 for a larger subsystem that also consisted of one code base. Apart
from that, tools or metrics were exclusively focused on code quality with a local view for
a single service. No automatic or semi-automatic efforts were mentioned to evaluate the
architecture of a microservice-based system.

Likewise, no participant reported the usage of a tool or metric specifically designed
for service orientation. When we explicitly asked about service-oriented metrics like the
coupling of a service, the cohesion of a service interface, or the number of operations
in a service interface, several participants indicated that these sounded interesting and
useful (P1, P5, P6, P7, P8, P15). Some interviewees also noted that the underlying princi-
ples of these metrics were important guidelines in the architecture and design phase (P7,
P8, P10, P15, P17). They tried to manually respect these principles during e.g. service
cutting, even though they currently had no concrete measurements in place to validate
them.

Another common theme in this area was the healthy and non-patronizing usage of
tools and metrics, which should be respected when developing microservices in decentral-
ized and autonomous teams. As already mentioned, several participants voiced reservations
against test coverage (P10, P12, P15). Architect P14 also warned that a strict metric
focus would pose the danger that people optimized for measurements instead of fixing
the underlying problems. Moreover, lead architect P15 perceived it as difficult to interpret
measurements of a single service without a point of reference or a system-wide average.
Architect P17 advocated for a sparse usage of tools, because too many metrics could not be
analyzed by developers and their collection could slow down the deployment pipeline. Only
tools that would support the analysis of current problems should be kept. Lastly, architects
P8 and P14 highlighted the agile principle of “individuals and interactions over processes
and tools”: the usage of tools and metrics should support developers in their daily work and
not be a frustrating and alienating experience for them.

4.2.3 Service-Based Patterns for Evolvability

We also analyzed the usage of service-oriented design patterns as conscious means to
increase evolvability. In general, we did not find a widespread usage of them. Most com-
mon was Event-Driven Messaging that was partially applied in 11 of the 14 cases. While
several participants stated that the pattern was used to decouple services, another inten-
tion was to implement reliable asynchronous and long-running communication. The pattern
was sometimes paired with Request-Reaction (P10, P16). Apart from messaging, most par-
ticipants applied activity patterns like Service Refactoring, Service Decomposition, and
Service Normalization. In line with the philosophy of evolutionary design, microservices
were frequently split and merged.

Other patterns were used sporadically. P12 and P17 applied the Self-Contained Sys-
tem paradigm to achieve vertical isolation between subsystems. In a migration context, P3
and P16 reported the usage of the Strangler pattern to extend an existing monolith with
new microservices until its final replacement. To place an intermediary between service
consumers and producers, P4 and P12 implemented the Backends for Frontends pattern
that would also prevent too many concurrent long-running HTTP requests. Similarly, P8
chose the API Gateway pattern which also brought benefits for security. The patterns
Consumer-Driven Contracts (P4, P15) and Tolerant Reader (P4) were applied to make ser-
vice interface evolution more robust and to prepare consumers for future changes. Lastly,
developer P1 was the only participant to explicitly report the usage of the Service Registry

Page 17 of 39 104

Empir Software Eng (2021) 26: 104

pattern for dynamic service discovery, even though some participants may have used similar
functionality via Kubernetes.

4.3 Evolvability Reflections and Challenges (RQ3)

With RQ3, we wanted to analyze participants’ perception of the general evolution qualities
of their microservice-based systems as well as their satisfaction with their current assurance
processes (see Fig. 6). We also tried to summarize what participants experienced as the most
important challenges for the evolvability of their microservices (see Fig. 7).

4.3.1 Perceived System Evolvability

In general, our interviewees perceived the evolvability of their microservices as positive
(mean: +0.88, median: +1), especially in cases with a migration context where a monolith
had been rewritten. Only two participants chose a negative rating (-1). Architect P4 saw
the high degree of technological heterogeneity and the very different service granularity as
threatening for the large project, especially once S4 would be handed over to the smaller
maintenance team. Data engineer P11 described the chosen service cuts as inefficient and
politically motivated and worried about significant issues with the consistency of the data
model as well as the inaccessibility of code due to distributed repositories.

As for more specific quality attributes, the analyzability of individual services would
be much improved (P1, P8, P10, P16, P17), even though grasping and understanding the
whole system would be difficult (P7, P8, P11, P17). When compared to most monoliths, the
modularity of microservices would make it very convenient to change or add functionality
(P1, P3, P6, P9, P12, P17) and would also allow to efficiently scale-out the development
with multiple teams (P7, P16). Even though reuse is usually a theme more common in SOA,
several participants reported a positive reusability of their microservices (P1, P3, P7, P8,
P10, P17). To reduce coupling, some participants avoided the sharing of non-open source
libraries between services via duplication (P7, P10, P15, P17). Others tried to consciously
increase reuse via shared libraries (P3, P9) or by slightly generalizing service interfaces
(P1). Lastly, participants reported that individual services would be easy to test (P3, P7,
P10, P13, P15) and to replace (P2, P15, P17).

12%

12%

18%

0%

76%

76%

59%

59%

12%

12%

24%

41%

Evolvability Rating

Assurance Effectiveness

Assurance Impact on
Productivity

Wanted Change in
Assurance Efforts

100 50 0 50 100
Percentage

very negative (−2) negative (−1) neutral (0) positive (+1) very positive (+2)

Fig. 6 Aggregated Evolvability Assurance Reflections of 17 Participants

104 Page 18 of 39

Empir Software Eng (2021) 26: 104

Fig. 7 Evolvability Challenges With At Least 2 Mentions from 17 Participants

4.3.2 Evolvability Challenges

Since most systems were fairly young or even still in the process of being migrated, indi-
vidual services were usually of a good quality. Basic symptoms of technical debt or bad
code quality were rarely seen as an issue, especially since a single service would be easy
to replace. However, problems related to architecture and the data model were reported
as serious threats for long-term evolvability (P3, P7, P11, P13, P15). This was sometimes
exacerbated because coordination between autonomous teams would be difficult (P4, P10,
P11, P15). Moreover, finding the appropriate service granularity was a prevalent theme and
service cutting was by far named as the most challenging activity that was also associated
with frequent refactoring (P2, P3, P4, P6, P7, P9, P11, P12, P15). Harmful inter-service
dependencies sometimes led to ripple effects on changes (P3, P5, P9, P11, P15), which
made adding or changing functionality slower and more error-prone. Breaking API changes
caused similar effects for service consumers (P1) or automated tests (P2). Participants did
not use any tools to support service decomposition or metrics to evaluate the quality of the
chosen cuts, e.g. via coupling or cohesion. Lead architect P2 described it as follows: “In my
opinion, there are no useful tools to split up a monolith. It’s always a very difficult manual
activity. You can use something like Domain-Driven Design, but that’s just a methodology
which doesn’t give you a concrete solution.”

Participants were divided when it came to technological heterogeneity. In very decen-
tralized environments, it was generally perceived as overall beneficial (P10, P15, P17),
as it would allow choosing the best solution for problems at hand, broaden developers’
experience and skills, and make a company a more attractive employer. Other participants
perceived it as potentially dangerous and wished for a more sensible handling of technology
hypes (P3, P4, P12, P16). Similarly, the mix of legacy and modern service technology would

Page 19 of 39 104

Empir Software Eng (2021) 26: 104

sometimes pose additional problems (P2, P11, P13, P14), like in the case of S9 where addi-
tional tooling was necessary to integrate legacy PHP components. Most participants also
noted that significant efforts had to be spent on mastering new microservices and DevOps
technologies and it would be problematic to find skilled developers (P1, P3, P5, P6, P9, P10,
P12, P13, P16). Overall, participants were very aware of the human factors of evolvability
and sometimes even saw them as more challenging as technical ones. Knowledge exchange
between teams was therefore a high priority for some interviewees (P10, P13, P15).

Concerning participants’ reflection of their assurance processes (see also Fig. 6), most
saw the effectiveness of their assurance activities (mean: +0.76, median: +1) as well as
overall impact on productivity (mean: +0.59, median: +1) as positive. Only three intervie-
wees (P9, P11, P12) reported that activities would hinder development efficiency (-1) and
would sometimes slow down feature development. Moreover, participants generally wanted
to invest more effort for the assurance (mean: +0.76, median: +1) and try out new techniques
or metrics. No one reported the wish to reduce efforts.

4.3.3 Influence of Microservices on the Assurance Process

However, the influence of microservices on the assurance process was seen as contro-
versial. While testing a single service would be easy, integration testing would be more
complex because of an additional layer (P2, P3, P13). This would be especially critical
if microservices were developed in independence for a long time and integrated at a later
stage. Furthermore, root cause analysis of issues would be more complex in such a highly
distributed system (P3, P11). A very commonly named concern was that keeping a system-
centric quality view and assessing the macroarchitecture would be much more difficult (P4,
P6, P7, P8, P10, P11, P15, P17), which architect P8 described as follows: “I’d say we are
pretty good when it comes to assuring the evolvability of single services. However, we have
a lot of catching up to do for everything that crosses product or service boundaries.” Dis-
tributed code repositories and autonomous teams would make the access to code as well as
static analysis more complicated. It would also be hard to compare metrics between services
and relate them to system-wide averages (P8, P11, P17).

Nonetheless, participants also named positive factors. Small services would not only
be easy to replace, people would also be much more motivated to fix a small number
of issues for a project (P15, P17), which lead architect P15 described as follows: “In a
monolith with 100.000 FindBugs warnings, you are completely demotivated to even fix
a single one of those. In a microservice with 100 warnings, you just get to work and
remove them.” If adopted correctly, microservices would also bring a cultural change
with respect to quality awareness and responsibility (P10, P15, P17). Architect P17 high-
lighted the importance of continuous product development in this regard: “If you work in
a project mode, evolvability assurance usually annoys you, because you have short-term
goals and want to finish the project. In a product mode, the team knows that they sabotage
their system’s evolvability in the long run, if they take too many short-cuts.” Lastly, lead
architect P15 noted that while they were relatively satisfied with their current evolvability
assurance activities, they did not really invest much efforts into researching and design-
ing a fitting evolvability assurance strategy for the future. Finding out which approaches,
tools, and metrics worked best for their microservices could be a vital advantage in the
long-term.

104 Page 20 of 39

Empir Software Eng (2021) 26: 104

5 GLR Results

From our 295 included resources, 96 were from Bing, 78 from Google, 30 were discovered
by both Bing and Google, 2 by both Google and StackExchange, and 89 were exclusively
from the StackExchange communities (SO: 32, SE: 51, SQA: 4, DevOps: 2). Therefore,
roughly one third of our resources were Q&A posts. From the six categories of our cod-
ing system10, the most frequently used one was Challenges: 218 of 295 resources (74%)
included at least one label from this category. Second and third most popular categories
were Process (66%) and Patterns (48%). 78 resources were assigned at least one label from
Influence on Assurance (26%), while 16% of resources mentioned Tools and only 6% Met-
rics. Similar as with the interviews, we also present the GLR results in three subsections
that correspond to our research questions.

5.1 Assurance Processes (RQ1)

Our first RQ was concerned with the general processes for evolvability assurance and the
applied activities.

5.1.1 Test Automation

The most frequently mentioned process activity was test automation (94 resources, 32%),
which was described as an essential prerequisite for sustainable microservice develop-
ment and evolution. In general, unit tests were still seen as necessary but not sufficient for
microservices. Instead, the majority of resources called for an extension of the classical test
pyramid: “The test pyramid was conceived during the era of the monolith and makes a lot
of sense when we think about testing such applications. For testing distributed systems, I
find this approach to be not just antiquated but also insufficient.”11 Practitioners therefore
advocated for an extensive usage of integration, contract, and end-to-end tests, or as André
Schaffer from Spotify put it: “A more fitting way of structuring our tests for Microservices
would be the Testing Honeycomb. That means we should focus on Integration Tests, have a
few Implementation Detail Tests and even fewer Integrated Tests (ideally none).”12 These
integration or end-2-end tests were often enabled by partly mocking or spawning involved
components. As an alternative to this, some resources mentioned QA in Production (8), i.e.
running tests within the production environment to have the most realistic conditions. Lastly,
a few resources also described the usage of chaos and load testing or applying practices like
test-driven development (TDD) or behavior-driven development (BDD).

5.1.2 Decentralization vs. Governance

Similar as with the interviews, we also found the two antagonistic forces of decentraliza-
tion & empowerment and governance & standardization, which both had an influence
on the assurance process. In general, there was more tendency towards decentralization (37
resources with positive mentions) than towards standardization (28) since this was seen as
important to guarantee independent and fast service evolution. Vinay Sahni, the founder of

10https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/coding-labels.md
11https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16
12https://labs.spotify.com/2018/01/11/testing-of-microservices

Page 21 of 39 104

https://github.com/xJREB/research-microservices-evolvability-glr/blob/master/coding-labels.md
https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16
https://labs.spotify.com/2018/01/11/testing-of-microservices

Empir Software Eng (2021) 26: 104

Enchant, advocated to maximize the autonomy of teams so that they would have to coor-
dinate less and would be more productive.13 WSO2 described a similar philosophy in their
microservices white paper: “With respect to development lifecycle management, microser-
vices are built as fully independent and decoupled services with a variety of technologies
and platforms.”14 Lastly, Armağan Amcalar, head of software engineering at unu GmbH,
also remarked in an interview with InfoQ’s Ben Linders that this decentralization was not
only beneficial for service evolution but also desired by developers: “Teams want autonomy
and ownership. They don’t want to be bound by the decisions of others, and they don’t want
to feel obliged to justify themselves and their decisions towards others.”15

On the other hand, many resources recommended basic standardization and governance
to avoid chaos, especially for infrastructure, cross-cutting concerns, or service communica-
tion, but not for domain-related functionality. Among these were also several proponents of
decentralization like Vinay Sahni (“Provide flexibility without compromising consistency:
Give teams the freedom to do what’s right for their services, but have a set of standardized
building blocks to keep things sane in the long run.”13) and WSO2 (“Run-time gover-
nance aspects, such as SLAs, throttling, monitoring, common security requirements, and
service discovery, are not implemented at each microservice level. Rather, they are real-
ized at a dedicated component, often at the API-gateway level.”14). This sensible balance
between decentralization and autonomy on the one hand and governance and standardiza-
tion on the other hand was also described as “Goldilocks Governance” by Neal Ford, a
director at ThoughtWorks16. In general, a lot of practitioners were very aware of this trade-
off: “Choose wisely what you leave out of your macro-architecture. For every choice you
allow the individual development teams to make, you must be willing to live with differing
decisions, implementations, and operational behaviors.”17

5.1.3 Principles and Guidelines

A very important part of the mentioned standardization were principles or guidelines (66
resources, 22%), which were mostly defined for service design and inter-service commu-
nication. The most popular principle (20) was to limit or completely avoid the sharing of
databases or database tables between microservices. Advocated reasons were to encapsu-
late information and to avoid coupling: clear data ownership should guarantee independence
between services. A similar “don’t share!” principle was related to domain-specific libraries
(18). Having the same shared library within several microservices would lead to upgrade
and deployment dependencies. Most authors saw redundancy as preferable to coupling in
such cases (“lesser evil”). A softer version of this principle we encountered was to allow
sharing libraries between services managed by the same team. In nearly all cases, the shared
usage of open source libraries for non-domain related functionality was not seen as harm-
ful. Another popular guideline was to reduce or avoid direct synchronous (RESTful) calls
between services (14), since this would lead to harmful coupling. Some authors also wrote
that true service independence would only be possible with Event-Driven Messaging. Other
mentioned principles were favoring pragmatism and simplicity (12) over complex solutions,

13https://www.vinaysahni.com/best-practices-for-building-a-microservice-architecture
14https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa
15https://www.infoq.com/news/2018/11/human-side-microservices
16http://nealford.com/downloads/Evolutionary Architecture Keynote by Neal Ford.pdf
17https://www.freecodecamp.org/news/microservices-from-idea-to-starting-line-ae5317a6ff02

104 Page 22 of 39

https://www.vinaysahni.com/best-practices-for-building-a-microservice-architecture
https://wso2.com/whitepapers/microservices-in-practice-key-architectural-concepts-of-an-msa
https://www.infoq.com/news/2018/11/human-side-microservices
http://nealford.com/downloads/Evolutionary_Architecture_Keynote_by_Neal_Ford.pdf
https://www.freecodecamp.org/news/microservices-from-idea-to-starting-line-ae5317a6ff02

Empir Software Eng (2021) 26: 104

avoiding breaking API changes (8), using (semantic) versioning (4) in the spirit of evolvable
providers and adaptable consumers, the SOLID18 design principles (8), and the 12-Factor
App Guidelines (4).

5.1.4 Other Activities

Lastly, the following process-related activities and techniques were mentioned by a few
resources: the deliberate refactoring of services (merging and splitting) to improve evolv-
ability (16); architecture documentation (15), which was seen as especially important for
service interfaces; code reviews (6) to improve quality and share knowledge; and fea-
ture toggles (5) to enable a more flexible service evolution within continuous integration
practices.

5.2 Tools, Metrics, and Patterns (RQ2)

Our second RQ targeted the usage of concrete tools, metrics, and patterns related to
evolvability assurance.

5.2.1 Tools Related to Evolvability Assurance

We identified 46 resources (16%) that mentioned the usage of tools for the evolvabil-
ity assurance process (see Fig. 8). The overwhelming majority were related to automated
testing (38 of 47 of unique reported tools). Among these, tools for integration and con-
tract testing were especially popular. Most frequently mentioned tools here were Pact (15),
SoapUI (5), Spring Cloud Contract (5), and Postman (4). In the important area of consumer-
driven contract testing, the company Testsigma advocated the usage of two tools: “There
are several tools for contract testing, but the most reliable and effective ones are Spring
Cloud Contract and Pact.”19 For the mocking and stubbing of services, WireMock (7) was
the most popular tool, even though a lot of other tools were mentioned as well, e.g. Moun-
tebank (2), Restito (2), Hoverfly (1), or REST-driver (1). Another area of interest was UI
and end-to-end testing. Here, Selenium (8) was the most trusted tool: “Selenium is consid-
ered an industry standard in automating web applications for testing purposes. Thanks to
Selenoid, Selenium Hub successor, multiple Selenium servers can be run with many differ-
ent browser versions encapsulated in Docker containers.”20 An alternative framework was
Cypress (2), which was e.g. chosen by Zalando for its fast performance and avoidance of
non-deterministic tests.21 Less represented were tools to capture and replay HTTP traffic
for realistic and repeatable tests like VCR (4), GoReplay (2), or Betamax (1); resilience and
chaos testing like Netflix’s Simian Army (5) or the Java tool Byteman (1); or load testing
with e.g. JMeter (1).

Besides this variety of testing tools, there was just a small number of tools for other
assurance-related activities. Only three resources reported the usage of SonarQube with
integration into a CI/CD pipeline with quality gates. Other used static analysis tools were
Kiuwan (1), X-Ray (1), NDepend (1), JDepend (1), Code City (1), and Source Monitor (1).

18http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
19https://testsigma.com/blog/testing-microservices-challenges-and-strategies-testsigma
20https://codilime.com/quality-assurance-trends-for-2020
21https://jobs.zalando.com/en/tech/blog/end-to-end-microservices

Page 23 of 39 104

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://testsigma.com/blog/testing-microservices-challenges-and-strategies-testsigma
https://codilime.com/quality-assurance-trends-for-2020
https://jobs.zalando.com/en/tech/blog/end-to-end-microservices

Empir Software Eng (2021) 26: 104

15

8

7

5

5

5

4

3

3

3

3

0 2 4 6 8 10 12 14 16

Pact

Selenium

WireMock

Simian Army

SoapUI

Spring Cloud Contract

Postman

Cucumber

SonarQube

Testcontainers

VCR

of resources

To
o

l

Fig. 8 Evolvability Tools With At Least 3 Mentions in 295 GLR Resources

Overall, we found very little explicit reports of such tools in our resources (only 9 mentions
in 295 resources).

5.2.2 Evolvability-Related Metrics

With respect to evolvability-related metrics (see Fig. 9), we identified 27 unique metrics
in only 19 resources (6%). This makes metrics the least represented label category. Even
though 38 of 47 identified tools were related to automated testing, only seven resources
reported the usage of test coverage as a metric. While this still makes it the most mentioned
metric, some authors like Chris Richardson saw deficits with it, even though he still rec-
ommended its usage: “While test coverage is not the best metric, it should also be enforced
by the deployment pipeline.” 22 Other metrics related to correctness and reliability were
deployment success rate (2), # of defects per service (1), or # of failed tests (1).

Similar to the small number of tools for static analysis, we also identified just a few
metrics for architecture and source code quality (12 metrics with 13 mentions). Apart from
lines of code (2), each of these metrics were only reported once, e.g. # of classes, clone cov-
erage, cognitive complexity, or cyclomatic complexity. Among these 12 metrics, even less
were related to architecture or service orientation. Rare examples were # of dependencies,
component entanglement, or static coupling.

Lastly, the most frequently used metrics were related to productivity, often in the context
of the CI/CD pipeline (19 mentions of 8 metrics). Popular examples were cycle time (5), # of
deploys to production (4), deployment duration (3), or mean time to repair (MTTR) (3). For
Chris Richardson, such metrics were a very important instrument to track and improve the
practices for “rapid, frequent and reliable software delivery”.23 Proponents of such metrics
advocated that teams should have some measure of productivity or stability in place to

22https://chrisrichardson.net/post/antipatterns/2019/04/09/antipattern-flying-before-walking.html
23https://www.slideshare.net/chris.e.richardson/melbourne-jan-2019-microservices-adoption-antipatterns
-obstacles-to-decomposing-for-testability-and-deployability

104 Page 24 of 39

https://chrisrichardson.net/post/antipatterns/2019/04/09/antipattern-flying-before-walking.html
https://www.slideshare.net/chris.e.richardson/melbourne-jan-2019-microservices-adoption-antipatterns-obstacles-to-decomposing-for-testability-and-deployability
https://www.slideshare.net/chris.e.richardson/melbourne-jan-2019-microservices-adoption-antipatterns-obstacles-to-decomposing-for-testability-and-deployability

Empir Software Eng (2021) 26: 104

7

5

4

3

3

2

2

0 1 2 3 4 5 6 7

Test Coverage

Cycle Time

of Deploys to Production

Deployment Duration

MTTR

Deployment Success Rate

Lines of Code

of resources
M

et
ri

c

Fig. 9 Evolvability Metrics With At Least 2 Mentions in 295 GLR Resources

identify changes in their service evolution speed, preferably with drill-downs to identify the
parts of the life cycle that took longer than usual.

5.2.3 Service-Based Patterns for Evolvability

We also analyzed the usage or recommendation of service-based patterns to improve
evolvability (see Fig. 10). Nearly half of our resources reported at least one such pattern
(140 of 295, 48%). Out of the 15 unique patterns, the most frequently mentioned one was
Event-Driven Messaging (73 resources). Practitioners used it to decouple services and to
allow for a more flexible service evolution. Moreover, they sometimes combined it with the
related patterns Command Query Responsibility Segregation (CQRS) (22) or Event Sourc-
ing (21) for an even greater effect. Most resources described this kind of communication
architecture as more evolvable as RESTful HTTP: “The request-response pattern creates
point-to-point connections that couple both sender to receiver and receiver to sender, mak-
ing it hard to change one component without impacting others. Due to this, many architects
use middleware as a backbone for microservice communication to create decoupled, scal-
able, and highly available systems.”24 In an Nginx blog post, Chris Richardson explained
that messaging would decouple client and service via a shared channel so that clients could
be completely unaware of the final message receivers.25

A lot of resources also mentioned the usage of patterns that acted as a shielding inter-
mediary like API Gateway (43), Backends for Frontends (BFF) (12), or Service Façade (8).
This would also reduce the efforts of service interface changes, since only the intermediary
needed to be changed instead of all clients. IBM Cloud Learn Hub described the API Gate-
way as follows in their microservices guide: “While it’s true that clients and services can
communicate with one another directly, API gateways are often a useful intermediary layer,
especially as the number of services in an application grows over time. An API gateway
acts as a reverse proxy for clients by routing requests, fanning out requests across multiple

24https://www.confluent.io/blog/microservices-apache-kafka-domain-driven-design
25https://www.nginx.com/blog/building-microservices-inter-process-communication

Page 25 of 39 104

https://www.confluent.io/blog/microservices-apache-kafka-domain-driven-design
https://www.nginx.com/blog/building-microservices-inter-process-communication

Empir Software Eng (2021) 26: 104

73

43

31

23

22

21

12

9

8

5

0 10 20 30 40 50 60 70 80

Event-Driven Messaging

API Gateway

Consumer-Driven Contracts

Service Registry

CQRS

Event Sourcing

Backends for Frontends

Strangler

Service Facade

Service Mesh

of resources

P
at

te
rn

Fig. 10 Top 10 Evolvability Patterns Mentioned in 295 GLR Resources

services, and providing additional security and authentication.” 26 Similarly, Microsoft
Azure’s Mike Wasson highlighted the advantages of the BFF pattern, namely that backend
microservices did not need to respect specialized needs of different clients, which simplified
and shielded services by shifting client-specific requirements to a BFF.27

To facilitate dynamic communication via service discovery, the Service Registry pattern
(23) was recommended: “In an environment where service instances come and go, hard
coding IP addresses isn’t going to work. You will need a discovery mechanism that ser-
vices can use to find each other.” 13 Another means to cope with a dynamic microservices
environment were patterns to manage API evolution like Consumer-Driven Contracts (31):
“These tests should be part of the regular deployment pipeline. Their failure would allow
the consumers to become aware that a change on the producer side has occurred, and that
changes are required to achieve consistency again.”28 An alternative on the client-side was
the Tolerant Reader pattern (5). Chris Richardson recommended to prepare both client and
services for changes: “It makes sense to design clients and services so that they observe the
robustness principle. Clients that use an older API should continue to work with the new
version of the service. The service provides default values for the missing request attributes
and the clients ignore any extra response attributes.”25 Lastly, a few resources described the
usage of patterns for sharing common infrastructure-related needs like Service Mesh (5) or
Sidecar (4). WSO2 justified this with the argument that a lot of cross-cutting concerns were
shared between services and could be offloaded to infrastructure components to keep the
services themselves analyzable and focused on business logic.14

5.3 Evolvability Reflections and Challenges (RQ3)

Our last RQ for the GLR primarily targeted evolvability challenges for microservices as
well as their influence on the assurance process.

26https://www.ibm.com/cloud/learn/microservices
27https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices
28https://phoenixnap.com/blog/microservices-continuous-testing

104 Page 26 of 39

https://www.ibm.com/cloud/learn/microservices
https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices
https://phoenixnap.com/blog/microservices-continuous-testing

Empir Software Eng (2021) 26: 104

5.3.1 Evolvability Challenges

Since 74% of resources (219) mentioned at least one of the 21 identified challenges (see Fig.
11), this was the most frequent label category. The challenge we encountered most often
was Microservices Integration (86 resources, 29%) and its specialization Aggregating Data
from Several Services (39 resources, 13%): “The biggest challenge is aggregation of all the
individual products or services and their integration with one another. As Sam Newman
points out, ’Getting integration right is the single most important aspect of the technology
associated with microservices in my opinion. Do it well, and your microservices retain their
autonomy, allowing you to change and release them independent of the whole. Get it wrong,
and disaster awaits.’”29 Even though many experienced companies like Spotify pointed out
the importance and difficulty of this problem (“The biggest complexity in a Microservice
is not within the service itself, but in how it interacts with others, and that deserves spe-
cial attention.” 12), they provided very little concrete guidance on how to approach it. Many
questions on StackOverflow and the StackExchange communities circled around these top-
ics and showed practitioners’ uncertainty, e.g. “Microservices : aggregate data : is there
some good patterns?”30 or “Communication between two microservices”31.

Most of these integration issues were arguably related to other prevalent challenges like
Service Cutting (69 resources, 23%), i.e. finding the right service granularity and encap-
sulating related functionality in the same microservice, and its consequences Inter-Service
Dependencies / Ripples (40 resources, 14%) and Breaking API Changes (30 resources,
10%). Many practitioners ended up with far too many services with lots of dependencies:
“In our attempt to decompose our services we have made them very small (e.g. responsi-
ble for handling a few data attributes). This easily creates the challenge of the individual
services to need to talk to each other to accomplish their own task. It is as if they’re jeal-
ous of each other’s data and functionality.”32 Others reported that too large services would
also be problematic and common: “On their initial foray into microservices, many people
are concerned that they’ll overpartition their functionality and end up with too many tiny
microservices. In my experience, overpartitioning is rarely the issue; it’s more common to
stuff too much into each service.”33 Additionally, many developers were often unsure if
they should add new functionality to an existing service or create a new one. With respect
to harmful coupling between services, Mark Richards highlighted the importance to control
dependencies: services should be isolated as much as possible, without a lot of direct com-
munication with other services.34 One frequently encountered advice was to simply merge
two highly coupled services: “If two services are constantly calling back to one another, then
that’s a strong indication of coupling and a signal that they might be better off combined
into one service.”35

Another common challenge was the increased Architectural / Technical Complexity (67
resources, 23%), which would make it more difficult to understand, extend, and operate the

29https://www.cigniti.com/blog/testing-microservices-architecture-strategy
30https://stackoverflow.com/questions/57788014
31https://stackoverflow.com/questions/36701111
32https://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use
-them-part-1
33https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
34https://www.oreilly.com/content/microservices-antipatterns-and-pitfalls
35https://opensource.com/article/18/4/guide-design-microservices

Page 27 of 39 104

https://www.cigniti.com/blog/testing-microservices-architecture-strategy
https://stackoverflow.com/questions/57788014
https://stackoverflow.com/questions/36701111
https://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1
https://www.tigerteam.dk/2014/micro-services-its-not-only-the-size-that-matters-its-also-how-you-use-them-part-1
https://techbeacon.com/app-dev-testing/5-fundamentals-successful-microservice-design
https://www.oreilly.com/content/microservices-antipatterns-and-pitfalls
https://opensource.com/article/18/4/guide-design-microservices

Empir Software Eng (2021) 26: 104

86

69

67

40

39

30

15

14

14

13

13

0 10 20 30 40 50 60 70 80 90

Microservices Integration

Service Cutting

Architectural / Technical Complexity

Inter-Service Dependencies / Ripples

Aggregating Data from Several Services

Breaking API Changes

Distributed Code Repositories

Technological Heterogeneity

Code Duplication

Coordination Between Decentralized Teams

Mastering Technologies

of resources

C
h

al
le

n
g

e

Fig. 11 Evolvability Challenges With At Least 10 Mentions in 295 GLR Resources

system: “Things can get a lot harder for developers. In the case where a developer wants
to work on a journey, or feature which might span many services, that developer has to
run them all on their machine, or connect to them. This is often more complex than simply
running a single program.”36 Many resources described this as a gradually increasing prob-
lem, especially if the necessary automation and infrastructure was not yet present. Thorben
Janssen wrote in a blog post on Stackify that implementing a single microservice would be
straightforward, but – due to the technical complexity of distributed systems – this would
quickly change when developing several inter-connected services.37 In some cases, this
complexity became so unmanageable that teams even moved back to more coarse-grained or
monolithic structures, as for example described by the company Segment: “It seemed as if
we were falling from the microservices tree, hitting every branch on the way down. Instead
of enabling us to move faster, the small team found themselves mired in exploding com-
plexity. Essential benefits of this architecture became burdens.”38 As specialized challenges
of this complexity, practitioners also reported Distributed Code Repositories (15), Code
Duplication (13), and having No System-Centric View (8). While one repository per service
would have the benefit of isolation, it also would come with a management overhead: “As
soon as you start reaching 30+ microservices, managing source repositories/versioning and
setting CI/CD hooks is going to become an increasingly important but also a very tedious
process, and there is no way around it. Managing repositories will add complexity and costs
for you.”39 Lastly, keeping an overview of all microservices and their interactions was also
described as near impossible: “Your management tools no longer work as well, as they may
not have ways of visualizing complex microservices views. [...] Microservices architectures
without some amount of structure are difficult to rationalize and reason with, as there is no
obvious way to categorize and visualize the purpose of each microservice.”40

36https://dwmkerr.com/the-death-of-microservice-madness-in-2018
37https://stackify.com/communication-microservices-avoid-common-problems
38https://segment.com/blog/goodbye-microservices
39https://blog.usejournal.com/microservices-have-you-thought-this-through-44fc2d829fe3
40https://www.slideshare.net/AbhishekSood10/the-top-6-microservices-patterns-83814065

104 Page 28 of 39

https://dwmkerr.com/the-death-of-microservice-madness-in-2018
https://stackify.com/communication-microservices-avoid-common-problems
https://segment.com/blog/goodbye-microservices
https://blog.usejournal.com/microservices-have-you-thought-this-through-44fc2d829fe3
https://www.slideshare.net/AbhishekSood10/the-top-6-microservices-patterns-83814065

Empir Software Eng (2021) 26: 104

In addition to these many technical and architectural challenges, we also found a few
organizational or human-related challenges. In the context of governance, some practition-
ers warned against a too high degree of Technological Heterogeneity (14), as this would also
come with the burden of Mastering Technologies (13): “I wouldn’t recommend mixing too
many programming languages because hiring people gets more difficult. Also, the context
switches for your programmers would slow down development.”41 An explosion in pro-
gramming languages could easily increase maintenance and evolution efforts. According to
Susan Fowler’s “Production-Ready Microservices” guide, it would therefore be more sen-
sible to decide on a small set of languages, frameworks, and libraries to avoid the burden of
supporting a multitude of technologies.42 Finally, practitioners reported the Coordination
Between Decentralized Teams (13) as another challenge in this area: “One obvious source
of complexity is coordination and consensus between teams. In order to control this com-
plexity, this necessitates activities like a deeper understanding of the common libraries and
dependencies used within the microservices.”43

5.3.2 Influence of Microservices on the Assurance Process

As a last focus of analysis, we wanted to determine how practitioners described the influ-
ence of microservices on the assurance process. The 78 resources (26%) in this area
predominantly reported a negative influence (81 of 101 mentions). The most prominently
used label was Increased Testing Complexity (60 resources, 20%). Many practitioners
pointed out the need for new approaches in this area: “Microservices demand a new
approach to QA. In contrast to monolithic applications, where every part of an application
can be tested at the same time, microservices make QA much more complicated because
each microservice may be developed and delivered according to its own schedule.”44 Even
in comparatively small microservice-based systems, testing was described as much more
difficult, especially if each service would have a specialized technology stack and its own
code base, dependencies, feature branches, and database technology.45 Additionally, sev-
eral questions on StackExchange like “How to test a cluster of microservices?”46 or “What
is the role of QA in testing an application having MicroServices architecture?”47 circled
around this topic. Other described negative influences were related to the Difficult Root
Cause Analysis (11), Difficult Macroarchitecture Assessment (6), or Difficult Quality Anal-
ysis (4) in general. Michael Kutz from REWE digital reported the following experiences:
“While the Microservice architectural style has a lot of benefits, it makes certain QA prac-
tices impractical: there is no big release candidate that can be tested before put to production,
no single log file to look into for root cause analysis and no single team to assign found
bugs to. Instead there are deployments happening during test runs, as many log files as there

41https://codingsans.com/blog/microservice-architecture-best-practices
42https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch01.html
43https://www.capitalone.com/tech/software-engineering/analyzing-polyglot-microservices
44https://blog.runscope.com/posts/qa-in-a-microservices-world
45https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according
-to-the-experts-6fb584f2edde
46https://devops.stackexchange.com/questions/731
47https://sqa.stackexchange.com/questions/33998

Page 29 of 39 104

https://codingsans.com/blog/microservice-architecture-best-practices
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch01.html
https://www.capitalone.com/tech/software-engineering/analyzing-polyglot-microservices
https://blog.runscope.com/posts/qa-in-a-microservices-world
https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according-to-the-experts-6fb584f2edde
https://www.freecodecamp.org/news/these-are-the-most-effective-microservice-testing-strategies-according-to-the-experts-6fb584f2edde
https://devops.stackexchange.com/questions/731
https://sqa.stackexchange.com/questions/33998

Empir Software Eng (2021) 26: 104

are microservices and many teams to mess with the product.”48 A similar story is told by
Mark Balbes and Zachary Becker from WWT Asynchrony Labs: “Microservices pose a
new challenge for QA. While maintaining the quality of a given microservice is simplified,
the complexity of a monolithic application doesn’t disappear. It is simply transferred from
the software to the interconnectedness of the systems running the many microservices. So
QA has to consider not just the quality of the individual microservice but of the entire web
of microservices and systems that support them.”49

On the other hand, some practitioners also described three different positive influences
(20 mentions). Developers would have more motivation to improve a small service (8)
and new services would be of good quality (7). Moreover, the organizational and cultural
changes would lead to more quality awareness (5) in general: “There are smaller decentral-
ized teams of 5-7 people that have their own set of KPIs and success metrics to achieve.
This allows them to take ownership of ’their’ product and it gives them better clarity on the
progress. It also gives them the freedom to innovate, which boosts their morale. [...] As you
can see, using DevOps and microservices architecture together will not only boost the pro-
ductivity of the team, but it will also enable them to develop a more innovative and better
quality product at a faster pace.”50 Sachin Dhamane from Majesco reported similar positive
cultural changes: “Organizations need to cultivate a culture of sharing responsibility, own-
ership and complete accountability in microservices teams. [...] They take full ownership
for their services, often beyond the scope of their roles or titles, by thinking about the end
customer’s needs and how they can contribute to solving those needs.”51 Lastly, REWE’s
Michael Kutz also highlighted the positive influence of the “you build it, you run it” DevOps
principle. Empowering teams while simultaneously demanding responsibility would lead to
an increase in service quality: “Teams are made responsible for their services during office
hours, but also after that, even at 3:14 am on a Saturday! Since most people working for us
like sleeping, we expect this to be a good motivation to improve the services’ reliability a
lot. You simply pay more attention to technical debt, when you pay it in sleep!”52

6 Discussion

When interpreting the combined results of the interviews and the GLR, we found a lot of
commonalities, but also some differences. In the following paragraphs, we discuss these
findings per RQ-related topic. Finally, Table 4 provides a summarized overview to compare
the results of both studies.

With respect to perceived challenges for the evolvability of microservices, Service Cut-
ting was reported as one of the most important issues in both studies. Many practitioners
were struggling with finding an adequate service decomposition. As a result, related chal-
lenges like Microservices Integration, Inter-Service Dependencies / Ripples, Aggregating
Data from Several Services, or Breaking API Changes were common as well, even though
they were much more prevalent in the GLR resources. The GLR results were therefore
more focused on architectural and technical challenges, while the interviews also had a

48https://agiletestingdays.com/2019/session/team-driven-microservice-quality-assurance
49https://adtmag.com/articles/2018/04/11/agile-and-tranforming-qa.aspx
50https://www.thinksys.com/microservices/microservices-comes-together-brilliantly-with-devops
51https://www.majesco.com/innovating-insurance-microservices-part-3
52https://slides.com/mkutz/team-driven-microservicequality-assurance

104 Page 30 of 39

https://agiletestingdays.com/2019/session/team-driven-microservice-quality-assurance
https://adtmag.com/articles/2018/04/11/agile-and-tranforming-qa.aspx
https://www.thinksys.com/microservices/microservices-comes-together-brilliantly-with-devops
https://www.majesco.com/innovating-insurance-microservices-part-3
https://slides.com/mkutz/team-driven-microservicequality-assurance

Empir Software Eng (2021) 26: 104

Table 4 Comparison of Interview Results (N=17) and GLR Results (N=295); the percentages refer to the
fraction of total participants/resources that mentioned the label

decent amount of organizational and human-related challenges like Mastering Technologies
or Technological Heterogeneity. In general, the prevalence of most interview challenges was
confirmed by the GLR results. We identified only two new labels in this category, namely
Aggregating Data from Several Services and Vendor / Ecosystem Lock-in. Concerning the
influence of microservices on the assurance process, no new labels were formed during the
GLR analysis. Except for Increased Testing Complexity (60 GLR resources), this small cat-
egory was rarely mentioned in both studies. While the analysis revealed negative as well as
positive influences, the GLR results were generally more negative than the interview partic-
ipants suggested. Besides the more complex testing, keeping a system-centric quality view
of the architecture was seen as difficult. All positive mentions like the increased cultural
quality awareness are predominantly helping the quality of single services in isolation.

The analysis of applied practices in both studies revealed that industry adopted ways to
at least partially address some of the mentioned challenges. Concerning the general assur-
ance process, we observed a similar theme of finding a balance between decentralization
and standardization, even though the GLR resources generally perceived decentralization
as more positive. Guidelines for foundational standardization and principles for service
communication and architecture were also important in both studies. Finding a balanced
“Goldilocks” governance was promoted as a means to partially address challenges like

Page 31 of 39 104

Empir Software Eng (2021) 26: 104

Architectural / Technical Complexity, Technological Heterogeneity, or Mastering Technolo-
gies. Additionally, test automation was highly valued, but much more pronounced in the
GLR resources, where a lot of practitioners described detailed suggestions for effective
microservices testing. Unfortunately, we could not identify much information about the
concrete structure of assurance processes within the GLR resources, especially concerning
CI/CD pipeline integration, quality gates, review practices, or refactoring. In this area, the
interview results were much richer and the GLR introduced only three new labels (QA in
Production, Feature Toggles, and Code Generation).

In the area of evolvability tools and metrics, the two studies produced very different
results. Our interview participants reported a variety of static analysis tools, while the vast
majority of tools in the GLR were test automation tools and frameworks. The GLR intro-
duced 46 new tool labels and only used one from the interviews (SonarQube). For metrics,
test coverage was the most frequently mentioned metric in both studies, but while the inter-
views primarily mentioned source code quality metrics, the GLR resources mostly described
productivity metrics and led to the creation of 19 new labels. In general, these two label cat-
egories were not well represented and the majority of tools and metrics were only mentioned
once or twice. With the exception of test automation, our analysis suggests that most practi-
tioners have not put much thought into these topics. Especially concerning is the absence of
architectural or service-oriented tools and metrics, even though the most crucial challenges
were of an architectural nature.

Lastly, our two studies revealed the usage of 15 service-oriented patterns to improve
evolvability. While patterns were not strongly represented in the interviews, they were very
prevalent in the GLR resources, which also mentioned six additional patterns not reported
by interview participants. The majority of mentions focused on a small number of pat-
terns, e.g. in the GLR, the top five patterns accounted for 73% of used pattern labels. The
top patterns were similar in both studies and Event-Driven Messaging was by far the most
frequently mentioned pattern. Recommended patterns were predominantly used to reduce
coupling and to mitigate the risk of breaking API changes, i.e. they could partially address
challenges like Microservices Integration, Inter-Service Dependencies / Ripples, and Break-
ing API Changes. However, many practitioners also warned that most of these patterns
simultaneously introduced additional complexity in the system, which required considerable
experience and made them difficult to apply for novice developers.

During our interviews, we collected several properties about the 14 discussed systems
and analyzed their influence on the applied evolvability assurance. However, we did not
identify many noteworthy relationships. While system size seems like an intuitive driver
for different processes, tools, metrics, or patterns, we did not observe substantial differ-
ences between smaller and larger systems in this regard. It should be noted, though, that this
observation was only based on the rough estimates for the number of services and the num-
ber of involved developers as reported by our participants. A thorough and explicit analysis
of this relationship would require more extensive data about the systems. Similarly, we did
not find a relationship between system age and assurance practices. One potential reason
for this may be that most discussed systems were fairly young. With the exception of S14
(6 years), all systems were between 1 and 3 years old. The only major influence on the
assurance process we observed was whether the system was built for an external customer.
In this case, there was a tendency to rely much more on central governance and standard-
ization, while systems based on internal product development exhibited more decentralized
assurance processes with more autonomous teams.

104 Page 32 of 39

Empir Software Eng (2021) 26: 104

In summary, finding a suitable service granularity without harmful dependencies, ripple
effects, or chatty inter-service communication to fulfill basic operations is by far the top
challenge. Due to the dynamic evolution of decentralized microservice-based systems, this
is also not a problem that can be solved once and for all. With every new feature, the ques-
tion will arise whether to add it to an existing service or to create a new one. Continuous
architecture evaluation with respect to properties such as coupling, cohesion, or complexity
is necessary to tackle these challenges in a microservice-based system. Practitioners recom-
mended some guidelines, from which very few are actionable for inexperienced developers,
and a number of patterns like Event-Driven Messaging to at least reduce the impact of these
issues. Nonetheless, our results also indicate that very few specialized tools, metrics, or
other structured evaluation approaches are used in this area. This does not necessarily mean
that no evolvability assurance approaches for microservices exist. Especially early adopter
companies like Netflix, Amazon, or Spotify are more advanced in this regard and rely for
example on distributed tracing for architecture visualization and evaluation. However, such
practices were not used in our sample.

7 Threats to Validity

During preparation, execution, and documentation of our studies, we aimed for rigor, con-
sistency, and objectivity. However, qualitative methods can be especially prone to various
subjective biases if not executed with great care. In this section, we therefore discuss poten-
tial limitations of our work according to the general validity dimensions of Wohlin et al.
(2003) while respecting how these can materialize in qualitative studies (Easterbrook et al.
2008). We describe potential threats in the most common categories – construct, internal,
conclusion, and external validity – and outline the steps we have taken to minimize or
mitigate them.

Construct validity addresses the appropriateness of the chosen methods, the extent to
which selected measurements are suitable to test a hypothesis or theory, and if the constructs
under study are interpreted in a commonly used way. Threats in this category can be the
appropriateness of the chosen research questions, the selected methods, or the categoriza-
tion scheme for data collection and extraction. We carefully reviewed existing literature in
the field to define a research objective and the subsequent questions. Likewise, we clearly
defined our central constructs and study protocols before conducting the research. Lastly, we
combined the two complementary methods of semi-structured interviews and grey literature
review to obtain a rich and in-depth data set from a variety of industry sources.

Internal validity is concerned with the scientific rigor and consistency during study exe-
cution as well as with unknown factors that may influence the correctness of the obtained
data. Concerning our interviews, it could be possible that participants were not completely
honest with their answers, which is a common problem in survey- or interview-based stud-
ies. Nonetheless, we think that the risk for this study is rather low. Most interviewees seemed
quite comfortable to describe negative aspects of their systems and the discussed topics were
only of low to medium sensitivity. Furthermore, confidentiality and anonymity were pro-
vided. As a second threat, participants could have provided incorrect answers because they
misunderstood questions or concepts. To limit this risk, important terms were defined before
the corresponding topics. As an example, the non-validated maturity model and its levels
could also have introduced bias or misunderstandings, even though it was only used as an
icebreaker. However, we posed additional clarifying questions if participants used terms of

Page 33 of 39 104

Empir Software Eng (2021) 26: 104

vague meaning. Interviewees also asked questions themselves, if something was not fully
clear to them. In some cases, our analysis relied on the subjective opinion of participants,
e.g. how they rated the evolvability of their system. Since participants could interpret such
ratings very differently, detailed comparisons between systems may be difficult. Moreover,
we only relied on one single opinion for most systems and people may have different opin-
ions of quality, as is visible in the case of S9. To increase consistency and reduce researcher
bias, every transcript was proofread by both moderators. Additionally, we strongly encour-
aged our participants to adjust wrong or unclear statements in the transcripts. Nevertheless,
there still remains the small possibility that some of the more figurative paragraphs were
misinterpreted.

For our GLR, we followed a systematic approach to ensure transparency and repeata-
bility, thereby reducing common issues with multivocal and grey literature reviews. This
involved a detailed protocol with the documentation of search engines, search terms, inclu-
sion / exclusion criteria, and coding system. All those artifacts are publicly available in our
repositories. One potential threat might arise from the difficulty of analyzing the authority
and trustworthiness of sources. It was not always obvious if the assurance recommenda-
tions were opinions or actually based on substantial experience. Some practitioners may
have simply repeated ideas or concepts they picked up elsewhere. Moreover, the selection of
search engines and StackExchange communities as well as the stopping criteria were partly
subjective. We tried to minimize this threat through the selection of the two most popular
search providers, the inclusion of a large amount of initial search hits in comparison to exist-
ing studies, as well as a general methodological alignment with related studies in the field.
Unfortunately, the reproducibility of our searches through Google and Bing is limited, as
the underlying algorithms may change and it is not possible to select a time frame.

As the terminology for certain concepts may vary, GLR searches may miss important
sources. Therefore, we used seven elaborate search strings and considered several synonyms
to avoid narrowing down search results too much. However, the application of inclusion
/ exclusion criteria and the assignment of coding labels were based on the researchers’
judgment and therefore inevitably involved some bias. To process the large amount of 1,245
sources, splitting among two researchers was necessary as well, which may have affected
the consistency of the results. Both coders had several years of experience in the related
industry field and thus were qualified to perform the important coding task. The initial inter-
rater reliability calibration provided a tangible measurement of the consensus. Furthermore,
all unclear cases were discussed between the two coders. Therefore, we are confident that
following this procedure sufficiently reduced researcher bias and the incorrect inclusion /
exclusion of sources. In the end, it is not necessary that 100% of the resources were selected
and coded “correctly”. Some researchers claim that such a notion of correctness does not
even exist in qualitative and constructivist studies (Easterbrook et al. 2008). Instead, it is
important that the reported general distributions and tendencies of our GLR resources and
labels are correct, which we believe to be the case.

Conclusion validity addresses the concern that the drawn conclusions may not be rea-
sonably grounded in the gathered data or observed phenomena. This may in particular be the
case for evolvability tools and metrics, which were generally identified in a rather low quan-
tity compared to e.g. evolvability patterns or challenges. Thus, the perceived low importance
of those categories is partly more interesting than the distribution of concepts within those
categories. Overall, the largest threat for qualitative studies in this area is that summarizing
and aggregating results depends heavily on the subjective interpretation of researchers. We

104 Page 34 of 39

Empir Software Eng (2021) 26: 104

tried to limit this bias by relying on a precise coding system and by critically discussing all
interpretations and implications between the two coders.

External validity is the degree to which the results and conclusions obtained through
a limited sample can be transferred to the general population. From our 17 interviews, no
distributions can be generalized, e.g. the industry usage of SonarQube for microservices.
Because of its qualitative nature, the center of this research are the intentions and opinions
of participants as well as the relationships between concepts. An additional threat for gen-
eralizability could be that our participants were exclusively based in Germany, even though
we included European and international companies. We also tried to achieve diversity with
respect to company domains and sizes, but had nine participants from software and IT ser-
vices companies (52%). Lastly, possible selection bias could only be reduced in the case of
C2, where we applied random sampling to pick three out of seven candidates.

In our GLR, we limited the scope to English resources only. We are confident that this
provides a fair representation of literature in the studied area, as English is the most fre-
quently used language by IT professionals. However, we need to be careful to generalize
from a vocal minority of individuals and companies that distribute their viewpoints to the
public via blog posts and articles. Even though a lot of practitioners may read and follow
the published advice, it is most certainly not a complete representation of the target pop-
ulation. The inclusion of popular Q&A forums may have reduced this bias by broadening
the selection of perceived challenges. Additionally, the differences between interview and
GLR results in some areas make a complete generalization more difficult. As an example,
the fact that our GLR results were generally more negative than the sentiments of our inter-
view participants may have been influenced by the respective method. Nonetheless, we are
confident that findings that were consistent within both studies have a solid foundation for
generalization, e.g. the most frequent challenges as well as the lack of tool support, metrics,
and structured approaches for architecture evaluation.

Lastly, it needs to be mentioned that some companies with more microservices experi-
ence like Netflix or Amazon apply more advanced practices than the ones identified in our
sample, even though we did not find resources on this during our GLR. As a result, they may
also experience many of the discussed challenges as less crucial. Several findings therefore
may not generalize well to these early adopters. Instead, we believe that many results mostly
apply for companies with less microservices experience, i.e. companies that could benefit
the most from systematic approaches from industry or academia.

8 Conclusion

To analyze industry practices and challenges for the evolvability assurance of microser-
vices, we conducted two qualitative studies. First, we interviewed 17 software professionals
from 10 companies and talked with them about the evolvability assurance for 14 differ-
ent microservice-based systems. Second, we performed a systematic grey literature review
(GLR) and applied the interview coding system to 295 practitioner online resources to
confirm the prevalence of the identified practices and challenges. The combined results
suggest that the evolvability assurance of microservices requires new techniques to tackle
the most critical reported challenges. The quality of individual services was not described
as problematic, but the architecture of the system presented a focus point for issues.
While practitioners were able to (partially) address several problems by using specialized
test automation, evolvability patterns like Event-Driven Messaging, balanced standardiza-
tion, or guidelines for service design and communication, many architectural and technical

Page 35 of 39 104

Empir Software Eng (2021) 26: 104

challenges remain. Especially inexperienced teams may face problems related to Service
Cutting and Microservices Integration, since no tool support and service-based metrics are
employed to aid in the difficult macroarchitectural evaluation.

Future work that covers the areas of maintenance, evolution, and technical debt in the
context of microservices should take these findings and industry sentiments into account.
In particular, academia can support industry with methods, metrics, or tools that enable
macroarchitectural assessment of microservices or provide a more system-centric view. We
perceived tool support for service cutting activities and metrics to continuously evaluate ser-
vice granularity, coupling, or cohesion as concrete gaps that could save industry substantial
refactoring efforts. Finally, issues related to the dynamic evolution and decentralized nature
of microservices like breaking API changes, technological heterogeneity, or the coordina-
tion and knowledge exchange between decentralized teams were described as important,
since they would also require organizational solutions and cultural changes.

For transparency and to support future research and replications, we published all arti-
facts and results of both studies on GitHub (interviews53, GLR54) and Zenodo (interviews55,
GLR56).

Funding Open Access funding enabled and organized by Projekt DEAL. This research was partially funded
by the Ministry of Science of Baden-Württemberg, Germany, for the doctoral program Services Computing
(https://www.services-computing.de/?lang=en).

Availability of data and material

• Interviews

– GitHub: https://github.com/xJREB/research-microservices-evolvability-interviews
– Zenodo: https://doi.org/10.5281/zenodo.2586916

• GLR

– GitHub: https://github.com/xJREB/research-microservices-evolvability-glr
– Zenodo: https://doi.org/10.5281/zenodo.3731259

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

April A, Huffman Hayes J, Abran A, Dumke R (2005) Software maintenance maturity model
(SMmm): the software maintenance process model. J Softw Maint Evol Res Pract 17(3):197–223.
https://doi.org/10.1002/smr.311

53https://github.com/xJREB/research-microservices-evolvability-interviews
54https://github.com/xJREB/research-microservices-evolvability-glr
55https://doi.org/10.5281/zenodo.2586916
56https://doi.org/10.5281/zenodo.3731259

104 Page 36 of 39

https://www.services-computing.de/?lang=en
https://github.com/xJREB/research-microservices-evolvability-interviews
https://doi.org/10.5281/zenodo.2586916
https://github.com/xJREB/research-microservices-evolvability-glr
https://doi.org/10.5281/zenodo.3731259
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/smr.311
https://github.com/xJREB/research-microservices-evolvability-interviews
https://github.com/xJREB/research-microservices-evolvability-glr
https://doi.org/10.5281/zenodo.2586916
https://doi.org/10.5281/zenodo.3731259

Empir Software Eng (2021) 26: 104

Avgeriou P, Kruchten P, Ozkaya I, Seaman C (2016) Managing technical debt in software engineering.
Dagstuhl Rep. 6(4):110–138. https://doi.org/10.4230/DagRep.6.4.110

Bandeira A, Medeiros CA, Paixao M, Maia PH (2019) We need to talk about microservices: an analysis from
the discussions on stackoverflow. In: 2019 IEEE/ACM 16th international conference on mining software
repositories, (MSR) IEEE, pp 255–259. https://doi.org/10.1109/MSR.2019.00051

Baškarada S, Nguyen V, Koronios A (2018) Architecting microservices: Practical opportunities and
challenges. J Comput Inf Syst 00(00):1–9. https://doi.org/10.1080/08874417.2018.1520056

Bogner J, Wagner S, Zimmermann A (2017) Automatically measuring the maintainability of service-
and microservice-based systems: a literature review. In: Proceedings of the 27th international work-
shop on software measurement and 12th international conference on software process and product
measurement on - IWSM Mensura ’17, ACM Press, New York, New York, USA, pp 107–115.
https://doi.org/10.1145/3143434.3143443

Bogner J, Fritzsch J, Wagner S, Zimmermann A (2018) Limiting technical debt with maintainability assur-
ance: An industry survey on used techniques and differences with service- and microservice-based
systems. In: Proceedings of the 2018 international conference on technical debt - TechDebt ’18, ACM
Press, New York, New York, USA, pp 125–133. https://doi.org/10.1145/3194164.3194166

Bogner J, Fritzsch J, Wagner S, Zimmermann A (2019a) Assuring the evolvability of microservices: Insights
into industry practices and challenges. In: 2019 IEEE International conference on software maintenance
and evolution (ICSME), IEEE, Cleveland, Ohio, USA, pp 546–556. https://doi.org/10.1109/ICSME.
2019.00089

Bogner J, Fritzsch J, Wagner S, Zimmermann A (2019b) Microservices in industry: Insights into technolo-
gies, characteristics, and software quality. In: 2019 IEEE international conference on software archi-
tecture companion (ICSA-C), IEEE, Hamburg, Germany, pp 187–195. https://doi.org/10.1109/ICSA-
C.2019.00041

Carrasco A, van Bladel B, Demeyer S (2018) Migrating towards microservices: migration and architecture
smells. In: Proceedings of the 2nd international workshop on refactoring - IWoR, 2018, ACM Press,
New York, New York, USA, pp 1–6. https://doi.org/10.1145/3242163.3242164

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46.
https://doi.org/10.1177/001316446002000104

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. In: Guide to advanced empirical software engineering, Springer London, London, pp 285–311
https://doi.org/10.1007/978-1-84800-044-5 11

Esparrachiari S, Reilly T, Rentz A (2018) Tracking and controlling microservice dependencies. Queue
16(4):44–65. https://doi.org/10.1145/3277539.3277541

Fowler M (2019) Microservices resource guide. http://martinfowler.com/microservices
Fritzsch J, Bogner J, Wagner S, Zimmermann A (2019a) Microservices migration in industry: Intentions,

strategies, and challenges. In: 2019 IEEE International conference on software maintenance and evolu-
tion (ICSME), IEEE, Cleveland, Ohio, USA, pp 481–490. https://doi.org/10.1109/ICSME.2019.00081

Fritzsch J, Bogner J, Zimmermann A, Wagner S (2019b) From monolith to microservices: A classification
of refactoring approaches. In: Bruel JM, Mazzara M, Meyer B (eds) Software engineering aspects of
continuous development and new paradigms of software production and deployment. Springer, Toulouse,
pp 128–141. https://doi.org/10.1007/978-3-030-06019-0 10

Garousi V, Felderer M, Mäntylä MV (2016) The need for multivocal literature reviews in software
engineering. In: Proceedings of the 20th international conference on evaluation and assessment in
software engineering - EASE ’16, ACM Press, New York, New York, USA, vol 01-03-June, pp 1–6
https://doi.org/10.1145/2915970.2916008

Garousi V, Felderer M, Mäntylä MV (2019) Guidelines for including grey literature and conducting mul-
tivocal literature reviews in software engineering. Inf Softw Technol 106(September 2018):101–121.
https://doi.org/10.1016/j.infsof.2018.09.006

Ghofrani J, Lübke D (2018) Challenges of microservices architecture: A survey on the state of the prac-
tice. In: 10th Central European workshop on services and their composition (ZEUS), CEUR-WS.org,
Dresden, Germany, vol 10th

Haselböck S, Weinreich R, Buchgeher G (2018) An expert interview study on areas of microservice design
Hove S, Anda B (2005) Experiences from conducting semi-structured interviews in empirical software

engineering research. In: 11th IEEE international software metrics symposium (METRICS’05), IEEE,
Metrics, pp 23–23. https://doi.org/10.1109/METRICS.2005.24

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics
33(1):159. https://doi.org/10.2307/2529310

Page 37 of 39 104

https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1109/MSR.2019.00051
https://doi.org/10.1080/08874417.2018.1520056
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3194164.3194166
https://doi.org/10.1109/ICSME.2019.00089
https://doi.org/10.1109/ICSME.2019.00089
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1145/3242163.3242164
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1145/3277539.3277541
http://martinfowler.com/microservices
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1007/978-3-030-06019-0_10
https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.2307/2529310

Empir Software Eng (2021) 26: 104

Lehman M (1980) Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9):1060–1076.
https://doi.org/10.1109/PROC.1980.11805

Lenarduzzi V, Taibi D (2018) Microservices, Continuous Architecture, and Technical Debt Interest: An
Empirical Study. In: Euromicro SEAA Prague, Czech Republic, June

Neri D, Soldani J, Zimmermann O, Brogi A (2019) Design principles, architectural smells and refac-
torings for microservices: a multivocal review. SICS Software-Intensive Cyber-Physical Systems.
https://doi.org/10.1007/s00450-019-00407-8, 1906.01553

Neto GTG, Santos WB, Endo PT, Fagundes RA (2019) Multivocal literature reviews in software
engineering: Preliminary findings from a tertiary study. In: 2019 ACM/IEEE International sympo-
sium on empirical software engineering and measurement (ESEM), IEEE, vol 2019-Septe, pp 1–6
https://doi.org/10.1109/ESEM.2019.8870142

Newman S (2015) Building Microservices: Designing Fine-Grained Systems, 1st edn. O’Reilly Media
Sebastopol, USA

Rajlich V (2018) Five recommendations for software evolvability. J Softw Evol Process 30(9):e1949.
https://doi.org/10.1002/smr.1949

Rowe D, Leaney J, Lowe D (1998) Defining systems architecture evolvability - a taxonomy of
change. In: International conference on the engineering of computer-based systems, IEEE, pp 45–52
https://doi.org/10.1109/ECBS.1998.10027

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Emp Softw Eng 14(2):131–164. https://doi.org/10.1007/s10664-008-9102-8, 9809069v1

Schermann G, Cito J, Leitner P (2016) All the services large and micro: Revisiting industrial prac-
tice in services computing. In: Norta A, Gaaloul W, Gangadharan GR, Dam HK (eds) Lecture
notes in computer science (including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics), lecture notes in computer science, vol 9586. Springer, Berlin, pp 36–47.
https://doi.org/10.1007/978-3-662-50539-7 4

Seaman CB (2008) Qualitative methods. In: Guide to advanced empirical software engineering. Springer,
London, pp 35–62. https://doi.org/10.1007/978-1-84800-044-5 2

Software Engineering Institute (2010) CMMI® for Development, Version 1.3 (CMMI-DEV V1.3). Tech.
rep. Software Engineering Institute

Soldani J, Tamburri DA, Van Den Heuvel WJ (2018) The pains and gains of microservices: A Systematic
grey literature review. J Syst Softw 146(September):215–232. https://doi.org/10.1016/j.jss.2018.09.082

Taibi D, Lenarduzzi V, Pahl C (2020) Microservices anti-patterns: A taxonomy, Springer International
Publishing, Cham. https://doi.org/10.1007/978-3-030-31646-4 5, 1908.04101

Wagner S (2013) Software Product Quality Control. Springer, Berlin. https://doi.org/10.1007/978-3-642-
38571-1

Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. In: Esernet,
vol 2765. Springer, Berlin, pp 7–23. https://doi.org/10.1007/978-3-540-45143-3 2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

104 Page 38 of 39

https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1007/s00450-019-00407-8
http://arxiv.org/abs/1906.01553
https://doi.org/10.1109/ESEM.2019.8870142
https://doi.org/10.1002/smr.1949
https://doi.org/10.1109/ECBS.1998.10027
https://doi.org/10.1007/s10664-008-9102-8
http://arxiv.org/abs/9809069v1
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1007/978-1-84800-044-5_2
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1007/978-3-030-31646-4_5
http://arxiv.org/abs/1908.04101
https://doi.org/10.1007/978-3-642-38571-1
https://doi.org/10.1007/978-3-642-38571-1
https://doi.org/10.1007/978-3-540-45143-3_2

Empir Software Eng (2021) 26: 104

Affiliations

Justus Bogner1 · Jonas Fritzsch1 · StefanWagner1 ·Alfred Zimmermann2

Jonas Fritzsch
jonas.fritzsch@iste.uni-stuttgart.de

Stefan Wagner
stefan.wagner@iste.uni-stuttgart.de

Alfred Zimmermann
alfred.zimmermann@reutlingen-university.de

1 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
2 Herman Hollerith Center, University of Applied Sciences Reutlingen, Reutlingen, Germany

Page 39 of 39 104

http://orcid.org/0000-0001-5788-0991
http://orcid.org/0000-0002-5256-8429
http://orcid.org/0000-0003-3352-7207
mailto: jonas.fritzsch@iste.uni-stuttgart.de
mailto: stefan.wagner@iste.uni-stuttgart.de
mailto: alfred.zimmermann@reutlingen-university.de

	Industry practices and challenges for the evolvability assurance of microservices
	Abstract
	Introduction
	Related Work
	Research Design
	Practitioner Interviews
	Preparation for Data Collection
	Evidence Collection
	Data Analysis

	Grey Literature Review (GLR)
	Preparation for Data Collection
	Evidence Collection
	Data Analysis

	Interview Results
	Assurance Processes (RQ1)
	Decentralization vs. Governance
	Automated and Manual Activities
	Documentation Practices

	Tools, Metrics, and Patterns (RQ2)
	Tools Related to Evolvability Assurance
	Evolvability-Related Metrics
	Service-Based Patterns for Evolvability

	Evolvability Reflections and Challenges (RQ3)
	Perceived System Evolvability
	Evolvability Challenges
	Influence of Microservices on the Assurance Process

	GLR Results
	Assurance Processes (RQ1)
	Test Automation
	Decentralization vs. Governance
	Principles and Guidelines
	Other Activities

	Tools, Metrics, and Patterns (RQ2)
	Tools Related to Evolvability Assurance
	Evolvability-Related Metrics
	Service-Based Patterns for Evolvability

	Evolvability Reflections and Challenges (RQ3)
	Evolvability Challenges
	Influence of Microservices on the Assurance Process

	Discussion
	Threats to Validity
	Conclusion
	References
	Affiliations

