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Abstract
The stability properties of a freely rotating rigid body are governed by the intermediate axis
theorem, i.e., rotation around the major and minor principal axes is stable whereas rotation
around the intermediate axis is unstable. The stability of the principal axes is of importance
for the prediction of rockfall. Current numerical schemes for 3D rockfall simulation, how-
ever, are not able to correctly represent these stability properties. In this paper an extended
intermediate axis theorem is presented, which not only involves the angular momentum
equations but also the orientation of the body, and we prove the theorem using Lyapunov’s
direct method. Based on the stability proof, we present a novel scheme which respects the
stability properties of a freely rotating body and which can be incorporated in numerical
schemes for the simulation of rigid bodies with frictional unilateral constraints. In particu-
lar, we show how this scheme is incorporated in an existing 3D rockfall simulation code.
Simulations results reveal that the stability properties of rotating rocks play an essential role
in the run-out length and lateral spreading of rocks.

Keywords Intermediate axis theorem · Lyapunov stability · Euler equations: 3D rockfall
simulation · Energy-momentum preserving scheme

1 Introduction

In this paper an extended version of the intermediate axis theorem is presented and rigor-
ously proven. These results are used to derive a novel simulation scheme which respects the
stability properties of a freely rotating body. The research is being motivated by the practical
application of rockfall simulation.

Rockfall is a serious natural hazard in mountainous areas and represents a major threat
to infrastructure, transportation lines, and people [7]. The identification of potential rockfall
starting zones, the calculation of the rock trajectories in complex three-dimensional terrain,
and the interaction of falling rocks with protection measures, such as rockfall dams, catch-
ing nets, and mountain forests, are three major components of the rockfall problem and
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research [27]. Methods to predict rockfall trajectories in complex three-dimensional terrain
(given an unstable source area) have great practical value as they can be used to determine
the danger of rockfall run-out zones as well as to dimension protection measures. Although
rockfall research has been dominated in the past by simple point mass and 2D models be-
cause of their computational efficiency, 3D rockfall simulation with complex shape models
is now becoming standard. Several 3D codes exist (see [16] for an extensive overview),
but only few consider a 3D rock shape for the inertia properties, contact detection, and
contact laws. CRSP-3D (Colorado Rockfall Simulation Program) [2] employs the distinct
element method together with a penalty approach. Aspherical boulder shapes, such as a rect-
angular cuboid or a cylinder, are approximated in [2] by a collection of rigid spheres with
interconnecting elastic elements. The rockfall simulation code STAR3-D [6, 13, 14] is a
fully three-dimensional rockfall simulation code with a rigid complex shape model. How-
ever, STAR3-D is limited to parallelepiped rock shapes. A full 3D simulation technique for
rockfall dynamics, taking rock shape into account and using the state-of-the-art methods
of multibody dynamics and nonsmooth contact dynamics, has been developed in [16]. The
rockfall simulation technique is based on the nonsmooth contact dynamics method with hard
contact laws, i.e., a Moreau-type timestepping method, see [1, 15, 21]. The rock is modeled
as an arbitrary convex polyhedron and the terrain model is based on a high-resolution digi-
tal elevation model. The developed numerical methods have been implemented in the code
RAMMS::ROCKFALL, which is being actively used in the natural hazards research com-
munity [5].

Field observations of natural rockfall events,1 as well as high precision measurements
with instrumented experimental rocks [4], have shown that platy disk-shaped rocks have the
tendency to roll and bump down the slope around their major principal axis, performing a
wheel-like motion. Simulations with the present scheme implemented in RAMMS::ROCK-
FALL, which treats gyroscopic terms in an explicit way, fail to represent the observed wheel-
like motion of platy rocks around the major principal axis. Furthermore, numerical simula-
tions with the present scheme showed that stable rotation in free flight around the major
principal axis is not possible, contrary to the intermediate axis theorem. The speed of devia-
tion from the major principal axis can be controlled by choosing a small integrator timestep,
but leads to unacceptable simulation times. The stable rotation around the major principal
axis of platy disk-shaped rocks enlarges the run-out distance of rockfall trajectories. The
present “explicit” scheme leads to a reduced estimation of the run-out zone of wheel-shaped
rocks and therefore underestimates the rockfall danger.

The intermediate axis theorem [8, 19] is a result of the Euler equations describing the
movement of a rigid body with three distinct principal moments of inertia. The theorem de-
scribes the following effect: rotation of a rigid body around its minor and major principal
axes is stable, while rotation around its intermediate principal axis is unstable. These stabil-
ity properties where already reported by Poinsot [22]. A rigorous proof of the stability of
the minor and major principal axes of the Euler equations has been given in [11] using the
energy-Casimir method, i.e., a Lyapunov function based on the Hamiltonian and a suitable
Casimir function (see also [12]). The classical intermediate axis theorem, however, only
involves the Euler equations for the three components of the angular velocity and not the
orientation of the body.

In the course of the paper, we will see that the conservation of mechanical stability
properties by numerical schemes (not to be confused with numerical stability properties)
is closely related to their ability to exactly keep energy and momentum as invariants of

1https://youtu.be/oWkTfTGeAEo.

https://youtu.be/oWkTfTGeAEo
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motion. The development of energy–momentum conserving schemes is a field of active re-
search [9, 10]. We may distinguish between projective methods and schemes which directly
preserve the energy and momentum. Of the latter type, we name the ALGO-C1 algorithm
of Simo and Wong [26], the symplectic Discrete Moser–Veselov Algorithm [20] (being for
rigid body equations equivalent to the RATTLE algorithm) [20] and the quaternion-based
scheme of Betsch and Siebert [3]. However, the application and implementation of exist-
ing energy–momentum conserving schemes in rockfall simulation are not straightforward.
The scheme needs to be able to deal with a singularity-free description of orientation. The
scheme needs to be able to accommodate for dissipation and, at the same time, preserve in-
variants of motion in the dissipation-free case. Furthermore, the need to deal with frictional
unilateral constraints in rockfall simulation asks to embed the energy–momentum conserv-
ing scheme in the Moreau-type timestepping scheme, which is not a trivial task. Moreover,
existing rockfall simulation codes take into account a wealth of different types of dissipa-
tion mechanisms (e.g., to take into account the effect of trees and vegetation [18]). The fully
implicit coupling between position and velocity updates of most energy–momentum con-
serving schemes makes it difficult to judge if they can be successfully combined with these
specialized dissipation and contact laws.

The aims of the current paper are threefold:

• An extended version of intermediate axis theorem for motion in the 6-dimensional state-
space, which also involves the orientation of the body, is presented and rigorously proven.

• An energy–momentum preserving scheme which preserves the stability properties in ac-
cordance with the (extended) intermediate axis theorem is presented. The novel scheme
treats the gyroscopic terms in an implicit way. It is shown how this scheme can be easily
incorporated in an existing rockfall simulation code, meeting all the requirements men-
tioned above.

• As demonstration of the above, we briefly study the performance of the scheme in a 3D
rockfall simulation software on two test cases.

The paper is organized as follows. In Sect. 2 we describe the dynamics of a freely rotat-
ing body in state-space form using as states the three angular velocity components and an
arbitrary parametrization of the orientation of the body with respect to the inertial frame.
Furthermore, we explicitly describe the stationary motion of which we want to assess the
stability properties. Using the method of Lyapunov functions we rigorously prove in Sect. 3
an extended version of the intermediate axis theorem in the full state-space. In Sect. 4 we
use the same techniques to investigate stability properties of numerical schemes. First, we
prove that the present scheme, which is fully explicit during flight phases of the rock, does
not respect the intermediate axis theorem. Furthermore, we present an alternative implicit
scheme which correctly describes the stability properties of a freely rotating body. Results
with the novel scheme implemented in RAMMS::ROCKFALL are given in Sect. 6.

2 Dynamics of a free spinning body

In this preliminary section, we first set notation in Sects. 2.1 and 2.2 and then cast the error
dynamics with respect to a stationary motion in terms of an ordinary differential equation
suitable for standard Lyapunov techniques in Sect. 2.3.
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Fig. 1 Coordinate frames for a
free spinning body

2.1 Equations of motion of a free spinning body

Let V be a Euclidean vector space. To describe the orientation of a rigid body, we use a
body-fixed frame K = (�eK

x ,�eK
y ,�eK

z ), as well as an inertial frame I = (�eI
x,�eI

y,�eI
z ) (Fig. 1). An

arbitrary vector �a ∈ V can be expressed in the K-frame through the tuple K �a ∈ R
3, which is

related to its representation I �a in the inertial frame through

I �a = AIKK �a, (1)

where AIK = (
I�eK

x I�eK
y I�eK

z

) ∈ SO(3) is the transformation matrix describing the orien-
tation of the body. Likewise, we introduce AKI = (

K�eI
x K�eI

y K�eI
z

) = AT
IK = A−1

IK .

Let K
�� denote the angular velocity of the body expressed in the body-fixed frame K .

The spin of the body (sometimes called “angular momentum with respect to the center of
gravity,” “spin angular momentum,” or simply “angular momentum”) is defined by

�NS = �S
��, (2)

where �S is the inertia tensor. The inertia tensor takes a constant form in the body-fixed
frame, which we choose to be aligned along the principal axes of inertia, such that

� := K�S =
⎛

⎝
A 0 0
0 B 0
0 0 C

⎞

⎠ , (3)

where A,B,C > 0 are the principal moments of inertia around the minor, intermediate, and
major principal axis, respectively. We will denote � := K�S as inertia matrix to have a
short-hand notation. During flight, the rotational motion of the rock is decoupled from the

translational motion and fully described by the spin invariance �̇NS = �0, yielding

K
�̇NS + K

�� × K
�NS = �0 (4)

in the body-fixed frame, which leads to the Euler equations for a freely rotating rigid body

�ω̇ + ω × (�ω) = 0. (5)
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Herein, we used the short-hand notation ω = K
�� for the angular velocity expressed in the

body-fixed frame.
The evolution of the orientation of the body may be derived through the use of the rigid

body formula on the triad
(�eK

x

)· = �� × �eK
x , (6)

which yields in the I -frame

I

(�eK
x

)· = (
I�eK

x

)· = I
�� × I�eK

x

= ˜
I
�� I�eK

x

= AIK
˜
K

��AKI I�eK
x

= AIK ω̃AKI I�eK
x

(7)

and similarly for �eK
y and �eK

z , where the tilde operator gives the skew-symmetric matrix ω̃

such that ω̃c = ω × c for all c ∈R
3. Hence, the time-derivative of the transformation matrix

is given by

ȦIK = ((
I�eK

x

)· (
I�eK

y

)· (
I�eK

z

)· ) = AIK ω̃AKI

(
I�eK

x I�eK
y I�eK

z

) = AIK ω̃AKIAIK, (8)

which yields the result

ȦIK = AIK ω̃. (9)

The orientation of the body may be freely parameterized using, for instance, unit-
quaternions p ∈ R

4 or axis-angle notation (n, χ ), see [23]. The matrix differential equa-
tion (9) results in a set of ordinary differential equations for the chosen parametrization. If a
quaternion p = (ε0, ε

T)T representation is used, then the rotation matrix is parametrized as

AIK = I + 2

ε2
0 + εTε

(ε̃ε̃ + ε0ε̃), (10)

resulting in

ṗ = F (p)ω (11)

with

F (p) = 1

2‖p‖
(

εT

ε̃ + ε0I

)
. (12)

2.2 Invariants of motion of the Euler equations

The body has the rotational kinetic energy

T = 1

2
ωT�ω, (13)

being a constant of motion as directly follows from the Euler equations (5),

d

dt
T = ωT�ω̇ = −ωT

(
ω × (�ω)

) = 0. (14)
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The second invariant is the spin

I
�NS = AIK�ω, (15)

which is constant in the inertial frame, i.e., using (15) and (9),

d

dt

(
I
�NS

)
= ȦIK�ω + AIK�ω̇ = AIK (ω × (�ω)) − AIK (ω × (�ω)) = 0. (16)

When expressed in the body-fixed frame, the spin K
�NS is not constant but keeps a constant

magnitude as follows from

d

dt
||K �NS ||2 = d

dt
(K

�NT
SK

�NS) = 2(�ω)T�ω̇ = −2(�ω)T
(
ω × (�ω)

) = 0. (17)

2.3 Stationary motion

A rigid body may undergo a stationary motion for which its angular velocity is constant, i.e.,
ω̇ = 0. We will denote such a stationary motion in state-space as (AIK�(t),ω�). From the
Euler equations (5), we infer that stationary motion is only possible if the term ω × (�ω)

vanishes. Stationary motion therefore implies that ω� is in an eigendirection of �, resulting
in three stationary directions of motion K�eK

x , K�eK
y , K�eK

z . Without loss of generality, let ω� =
�e�, where e� = e3 = [

0 0 1
]T

agrees with K�eK
z . The vector e� may be complemented

by e1 = [
1 0 0

]T
and e2 = [

0 1 0
]T

to form an orthonormal basis. The evolution of
the orientation of the body during stationary motion

AIK�(t) = AIK�(0)eω̃�t (18)

follows from the closed form solution of the matrix differential equation (9). Without loss
of generality, we set AIK�(0) = I . From

I�eK�
z (t) = AIK�(t)e3 = eω̃�te� = e� = I�eI

z (19)

it follows that �eK�
z = �eI

z for all t . The stationary motion (AIK�(t),ω�) itself cannot be stable,
irrespective of the principal axis which is considered, because a small error �� in the mag-
nitude of the angular velocity ω = (� + ��)e� will cause AIK(t) to diverge from AIK�(t).
Hence, instead of the stationary motion, we need to study the stability of the axis of rotation,
or, more precisely, of a manifold in state-space related to that. Hereto, we consider the dif-
ference between the axes of rotation �eK�

z = �eI
z of the stationary motion and �eK

z of an arbitrary
motion, which we express in the K-frame using the quantity

d(t) = K�eK�
z − K�eK

z = K�eI
z − K�eK

z = AKI (t)e� − e�. (20)

Furthermore, to parametrize the transformation matrix AIK(t), we also introduce the time-
dependent quantities

h1(t) = AKI (t)e1 − e1, (21)

h2(t) = AKI (t)e2 − e2. (22)
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The transformation matrix may therefore be expressed as

AT
IK(t) = I + [

h1(t) h2(t) d(t)
] [

e1 e2 e�

]−1

= I + [
h1(t) h2(t) d(t)

]
.

(23)

Furthermore, we introduce the quantity

α(t) = ω(t) − ω� (24)

to express the difference in rotation speed, which is being governed by the Euler equa-
tions (5)

�α̇ + (ω� + α) × (�(ω� + α)) = 0. (25)

Having introduced the quantities d and α, we can define the manifold of stationary rota-
tion in a straightforward way by

M = {
(AIK,ω) ∈ SO(3) ×R

3 | d = 0,α = 0
}
. (26)

The dynamics of the difference d(t) to the axis of stationary rotation is given by

ḋ(t) = ȦKI (t)e� = (AIK(t)ω̃(t))
T e�

= −ω̃(t)AKI (t)e�

= − (ω̃� + α̃(t)) (d(t) + e�)

= −ω̃�d(t) − α̃(t) (d(t) + e�) ,

(27)

being only dependent on d and α. It holds that ḋ(t) = 0 if d = α = 0 and α̇(t) = 0 if α = 0.
Hence, the manifold M of stationary rotation is invariant. The differential equations (27)

and (25) can be gathered using y(t) = (
dT αT

)T
in the system of ordinary differential

equations

ẏ(t) = f (y(t)), (28)

which is time-autonomous. The stability of the axis of rotation now bears down to the stabil-
ity of the invariant manifold M, i.e., the stability of the equilibrium y� = 0 of system (28).
The stability properties of stationary rotation in the 6-dimensional state-space y will be
referred to as the extended intermediate axis theorem.

3 Extended intermediate axis theorem

3.1 Stability of rotation around the major principal axis

We consider motion in the vicinity of the stationary rotation ω� = �e�, � > 0, and C ≥
max(A,B) such that e� is the major principal axis of inertia. Herein, the K�-frame is the
body-fixed frame of stationary motion, whereas we will reserve the K-frame for the body-
fixed frame of an arbitrary motion in the vicinity of the stationary motion. The frames are
related through AKK� = AKIAIK� = AT

IKAIK� and it therefore holds that

AKK�e� = AKIAIK�e� = AKIe� = d + e�. (29)
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The following theorem may be viewed as an extended intermediate axis theorem, as it not
only proves that the angular velocity ω remains close to ω� (i.e., the classical intermediate
axis theorem), but also proves that d remains small, i.e., the orientation of the axis of rotation
is stable.

Theorem 3.1 (Stability of rotation around the major principal axis) Let C ≥ max(A,B) be
such that e� is the major principal axis of inertia. The invariant manifold

M = {
(AIK,ω) ∈ SO(3) ×R

3 | d = 0,α = 0
}

is Lyapunov stable.

Proof In order to set up a Lyapunov function for the equilibrium y� = 0 of system (28), we
consider the function

V̄ (d,α) = ‖I
�NS − I

�NS�‖2 = ‖K
�NS − K

�NS�‖2. (30)

The spin �NS� can be easily expressed in the K�-frame as K�
�NS� = �ω� = C�e�, which

can be cast in the K-frame through

K
�NS� = AKK� K�

�NS� = C�AKK�e� = C�(d + e�). (31)

Using K
�NS = �ω = �(α + ω�) = �α + C�e�, we arrive at

V̄ (d,α) = ‖�α − C�d‖2 = (Aαx − C�dx)
2 + (Bαy − C�dy)

2 + (Cαz − C�dz)
2. (32)

Furthermore, we introduce the function

V̂ (α) = 2C T (ω) − ‖ �NS(ω)‖2 + 1

�2
(2 T (ω) − 2 T (ω�))

2 , (33)

which can be expressed as

V̂ (α) = CωT�ω − ωT�2ω + 1

�2
(ωT�ω − ωT

� �ω�)
2

= (α + ω�)
T(C� − �2)(α + ω�) + 1

�2

(
(α + ω�)

T�(α + ω�) − ωT
� �ω�

)2

= αT(C� − �2)α + 1

�2

(
αT�α + 2CωT

� α
)2

= A(C − A)α2
x + B(C − B)α2

y + 1

�2
(Aα2

x + Bα2
y + Cα2

z + 2C�αz)
2.

(34)

To prove stability of the trivial equilibrium of (28) for C ≥ max(A,B), we consider the
Lyapunov candidate function

V (y) = V̄ (d,α) + V̂ (α), (35)

which purely consists of the invariants of motion �NS = const. and T (ω) = const. and is
therefore constant, i.e., it holds that V̇ = 0 along solutions of the system. The (local) positive
definiteness of V remains to be investigated in the following.
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First, we prove that the function V̂ (α) is a locally positive definite function of its argu-
ment α. We infer that V̂ (α) ≥ 0 for arbitrary α ∈ R

3 as it is a sum of squares with positive
coefficients for C ≥ max(A,B). Moreover, the points where V̂ (α) = 0 are characterized by
αx = 0, αy = 0 and αz(αz + 2�) = 0. This implies that V̂ vanishes at the origin and at the
point α = (0 0 − 2�)T and is strictly positive for all other α ∈ R

3, proving that V̂ (α) is
locally positive definite.

As V is the sum of V̄ (d,α) ≥ 0 and V̂ (α) ≥ 0, it may only vanish if V̄ (d,α) and V̂ (α)

vanish simultaneously. From the local positive definiteness of V̂ (α) it is clear that, in the
neighborhood of the origin, V may only vanish for α = 0.

Now we consider V̄ (d,α) and note that V̄ (d,0) = C2�2‖d‖2 can only vanish if d = 0.
This proves local positive definiteness of V and, thereby, that rotation around the major
principal axis is stable. �

Remark In [11] the stability of stationary rotation around the major principal axis of the
3-dimensional Euler equations (5), or equivalently of the error dynamics (25), was proven
in a coordinate-free way using a Lyapunov function constructed using the sum of the Hamil-
tonian T (ω) and a suitable Casimir function �( 1

2‖ �NS(ω)‖2). The result of [11] would have

given an alternative choice for the function V̂ (α) in Theorem 3.1, being constant and lo-
cally positive definite in α. Here, the aim is to derive a numerical scheme and we have
refrained from a coordinate-free description. The choice (34) for the function V̂ (α) involves
less powers of the components of α than a construction by using a Casimir function.

3.2 Stability of rotation around the minor principal axis

We now consider the stability of stationary rotation around the minor principal axis by set-
ting again ω� = �e�, � > 0 with e� = e3, but assuming C ≤ min(A,B). The proof of the
stability of stationary rotation around the minor principal axis is completely analogous to
the proof for the major principal axis.

Theorem 3.2 (Stability of rotation around the minor principal axis) Let C ≤ min(A,B) be
such that e� is the minor principal axis of inertia. The invariant manifold

M = {
(AIK,ω) ∈ SO(3) ×R

3 | d = 0,α = 0
}

is Lyapunov stable.

Proof We consider again the Lyapunov candidate function of the form

V (y) = V̄ (d,α) + V̂ (α), (36)

where the function

V̄ (d,α) = ‖�α − C�d‖2 = (Aαx − C�dx)
2 + (Bαy − C�dy)

2 + (Cαz − C�dz)
2 (37)

is defined as before, but V̂ (α) is chosen as

V̂ (α) = −CωT�ω + ωT�2ω + 1

�2
(ωT�ω − ωT

� �ω�)
2

= A(A − C)α2
x + B(B − C)α2

y + 1

�2
(Aα2

x + Bα2
y + Cα2

z + 2C�αz)
2.

(38)

The Lyapunov function is constant along solutions and is locally positive definite for C ≤
min(A,B), proving stability of rotation around the minor principal axis. �
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3.3 Instability of rotation around the intermediate axis

Within Lyapunov stability theory, instability of equilibria is usually proven using Chetayev’s
instability theorem, which involves a continuously differentiable function V for which V̇ >

0 in a wedge V > 0 near the origin. The construction of such a function can therefore not
be based on invariants of the system. For the instability proof, we therefore resort to an
eigenvalue analysis. The angular velocity dynamics (25) is decoupled from the orientation
dynamics (27). It therefore suffices to prove instability of the equilibrium α = 0 of (25),
similar to the classical intermediate axis theorem, of which we briefly show the main steps.

Rearranging (25) leads to

α̇ = −�−1
(
(ω� + α) × (�ω� + �α)

)

= −�−1
(
ω� × (�ω�) + ω� × (�α) + α × (�ω� + �α)

)

= −�−1
(
ω� × (�α) + α × (�ω�) + α × (�α)

)
.

(39)

Neglecting terms of second-order leads to the linearized dynamics

α̇ = −�−1
(
ω� × (�α) + α × (�ω�)

) =: −�−1Aα. (40)

The newly defined matrix A can be obtained from

ω� × (�α) + α × (�ω�) = Aα (41)

and, therefore, it holds that

A = ω�� − �̃ω� =
⎛

⎝
0 �(C − B) 0

�(A − C) 0 0
0 0 0

⎞

⎠ . (42)

The eigenvalues of the error dynamics, i.e., the roots λ of the characteristic polynomial

det(λI − (−�−1A)) = det

⎛

⎝
λ �

A
(C − B) 0

�
B
(A − C) λ 0

0 0 λ

⎞

⎠

= λ

(
λ2 − �2

AB
(A − C)(C − B)

)
(43)

are given by

λ1 = 0, λ2 =
√

�2

AB
(A − C)(C − B), λ3 = −

√
�2

AB
(A − C)(C − B) . (44)

We see that the eigenvalue analysis is inconclusive for rotation around the major principal
axis (C ≥ max(A,B)) and minor principal axis C ≤ min(A,B) as all eigenvalues have a
vanishing real part. For rotation around the intermediate axis (A < C < B or A > C > B),
all eigenvalues are real with λ2 > 0 and λ3 < 0. Stationary rotation around the intermediate
axis is therefore a saddle point and unstable.
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4 Numerical schemes for a free rotating body

We first briefly discuss the fully explicit scheme (or pseudoimplicit scheme) which is cur-
rently implemented in RAMMS::ROCKFALL in Sect. 4.1 and subsequently present a novel
scheme in Sect. 4.2. A numerical comparison is given in Sect. 4.3.

4.1 Fully explicit scheme

Let ωk denote the angular velocity of the rock at time instant tk . The present scheme calcu-
lates the angular velocity ωk+1 at time instant tk+1 = tk +�t (in the absence of contact with
the terrain) through

�(ωk+1 − ωk) + �t

2
G(ωk)(ωk+1 + ωk) = 0, (45)

where G(ω) = �ω̃ + ω̃�. The resulting explicit velocity update is

ωk+1 =
(

� + �t

2
G(ωk)

)−1 (
� − �t

2
G(ωk)

)
ωk

= ωk − �t

(
� + �t

2
G(ωk)

)−1

G(ωk)ωk,

(46)

where the last step is the result of a telescopic expansion. The rotation matrix is parametrized
using a quaternion pk with a midpoint update rule

pk+1
pre = pk+ 1

2 + �t

2
F (pk+ 1

2 )ωk+1, pk+1 = pk+1
pre

‖pk+1
pre ‖ , (47)

where pk+ 1
2 = pk + �t

2 F (pk)ωk .
The rationale behind the explicit scheme is that it preserves the kinetic energy. The

change in kinetic energy over the time step is

T (ωk+1) − T (ωk) = 1

2
(ωk+1)T�ωk+1 − 1

2
(ωk)T�ωk

= 1

2
(ωk+1 + ωk)T�(ωk+1 − ωk).

(48)

Substitution of the explicit scheme (45) yields

T (ωk+1) − T (ωk) = −�t

4
(ωk+1 + ωk)TG(ωk)(ωk+1 + ωk) = 0 (49)

due to the skew-symmetry of G(ω) which shows that the kinetic energy is conserved. A
stationary solution ω� = ωk = ωk+1 of the scheme respects

G(ω�)ω� = ω� × (�ω�) = 0, (50)

and corresponds to a stationary rotation of the Euler equations around principal axes.
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Let αk be the perturbation of the angular velocity with respect to the stationary rotation
ω� = �e� around the principal axis e� = e3. The perturbation dynamics is obtained using
ωk = ω� + αk as

�(αk+1 − αk) + �t

2
G(ω�)(α

k+1 + αk) + �t

2
G(αk)(αk+1 + αk) + �tG(αk)ω� = 0, (51)

where the linearity of G and (50) have been used. For small perturbations we can neglect
higher order terms in αk giving the linearized perturbation dynamics

0 = �(αk+1 − αk) + �t

2
G(ω�)(α

k+1 + αk) + �tG(αk)ω�

=
[
� + �t

2
G(ω�)

]
(αk+1 − αk) + �t

(
G(αk)ω� + G(ω�)α

k
)
.

(52)

The linearized perturbation dynamics can be solved for αk+1 explicitly. Hereto, the second
term is reformulated as

G(αk)ω� + G(ω�)α
k = �α̃kω� + α̃k�ω� + �ω̃�α

k + ω̃��αk

= α̃k�ω� + ω̃��αk

= αk × (�ω�) + ω� × (�αk)

=: Aαk,

(53)

where A = −(̃�ω�) + ω̃��. Next, the matrix �̂ = � + �t
2 G(ω�) in (52) has the inverse

�̂
−1 = 1

det �̂

⎛

⎝
BC �t

2 �C(A + B) 0
−�t

2 �C(A + B) AC 0
0 0 detB

C

⎞

⎠ , (54)

where the determinant of �̂ is given by det �̂ = ABC + �t2

4 C(A + B)2. Hence, the lin-
earized perturbation dynamics can be given in the explicit form

αk+1 =
(
I − �t�̂

−1
A

)
αk = Dαk, (55)

in which the matrix D has the nonzero components

D11 = 1 − �t2

2 det �̂
�2C(A + B)(A − C), D12 = − �t

det �̂
�AC(A − C),

D21 = − �t

det �̂
�BC(C − B), D22, = 1 + �t2

2 det �̂
�2C(A + B)(C − B),

D33 = 1.

(56)
The stability of rotation around the major principal axis is determined through the eigenval-
ues of D, being the roots of the characteristic polynomial

det(λI − D) = (λ − 1) [(λ − D11)(λ − D22) − D12D21)]

= (λ − 1)
[
λ2 − (D11 + D22)λ + (D11D22 − D12D21)

] (57)
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given by

λ1/2 = b ± √
b2 − 4c

2
and λ3 = 1. (58)

Herein, the parameters b = D11 + D22 and c = D11D22 − D12D21 can be calculated as

b = 2 − �t2�2

2 det �̂
C(A + B)(A + B − 2C),

c = 1 + �t2�2

2 det �̂
C ((A + B) (A + B − 2C) − 2 (A − C) (C − B)) .

The eigenvalues λ1/2 in (58) take the form

λ1/2 = 1 − d

2
±

√
d2 + 4e

2
(59)

with

d = �t2

2 det �̂
�2C(A + B)(A + B − 2C), e = �t2

det �̂
�2C(A − C)(C − B). (60)

For rotation around the major principal axis, it holds that C ≥ max(A,B), from which fol-
lows that d < 0. Therefore, at least one of the eigenvalues has a magnitude larger than unity
which proves instability of rotation around the major principal axis, contrary to the inter-
mediate axis theorem. Hence, the explicit scheme cannot correctly represent the stability
properties of a freely rotating body.

4.2 A stability preserving implicit scheme

Here, we propose an alternative scheme for the rotational motion of a free body which
preserves the stability properties of the principal axes of rotation in accordance with the
extended intermediate axis theorem.

As a side remark, one needs to keep in mind that the aim of the paper is the improved pre-
diction of rockfall. There exists of course a wealth of general purpose schemes which are of
higher order, e.g. (explicit or implicit) Runge–Kutta schemes, BDF schemes, etc. However,
any scheme that is not energy–momentum preserving will perform poorly on the dynamics
of a freely rotating rigid body as it cannot respect the stability properties. Moreover, for
rockfall simulation a scheme is needed which can deal with a singularity-free description of
orientation (e.g., using unit quaternions). Of course, as explained in the introduction, there
already exist energy–momentum preserving schemes for rigid body motion (e.g., ALGO-
C1), having much better properties than the scheme presented here. However, for rockfall
simulation a few constraints need to be met:

1. The scheme needs to be energy–momentum preserving;
2. It needs to use a singularity-free description of the orientation;
3. It needs to fit within the Moreau timestepping scheme, together with specialized dissipa-

tion and contact laws.

The last requirement rules out the use of existing dedicated schemes for rigid body motion
as for these schemes there is a close mutual coupling between the angular velocity and ori-
entation dynamics. Moreover, the use of higher-order approximations within the Moreau
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timestepping scheme makes little sense as, due to the fact that it has to deal with collisions,
the Moreau scheme is intrinsically of low order. We therefore present a very simple alterna-
tive scheme in this section and will show in the remainder of the paper that this leads to an
improved rockfall simulation code.

The alternative scheme consists of two consecutive parts:

1. As update rule for the angular velocity, we use the implicit midpoint scheme proposed
by [24];

2. As update rule for the orientation parametrization, we propose a novel scheme which
preserves the spin.

The implicit midpoint scheme for the angular velocity calculates ωk+1 at time instant
tk+1 = tk + �t during a flight phase as

�(ωk+1 − ωk) + �tωk+ 1
2 × (�ωk+ 1

2 ) = 0 with ωk+ 1
2 = 1

2
(ωk + ωk+1). (61)

Substitution of the scheme (61) in the kinetic energy expression (48) yields

T (ωk+1) − T (ωk) = −�t

2
(ωk+ 1

2 )T
[
ωk+ 1

2 × (�ωk+ 1
2 )

]
= 0, (62)

showing that the kinetic energy is preserved by the implicit scheme. The magnitude of the
spin ‖ �NS‖ = ‖K

�NS‖ = ‖�ω‖, defined by (15), is only dependent on the angular velocity.
The implicit scheme for the angular velocity also conserves the magnitude of the spin as
follows from

|| �N k+1
S ||2 − || �N k

S ||2 = (�ωk+1)T�ωk+1 − (�ωk)T�ωk

= 2(�ωk+ 1
2 )T�(ωk+1 − ωk)

(61)= −2�t(�ωk+ 1
2 )T

[
ωk+ 1

2 × (�ωk+ 1
2 )

]
= 0.

(63)

We now propose an update rule for the orientation parametrization. The update of the
orientation Ak+1

IK is chosen such that the spin remains constant, i.e.,

I
�N k+1

S = I
�N k

S, (64)

and such that the kinematic equation is correctly approximated in the sense that

lim
�t↓0

Ak+1
IK − Ak

IK

�t
= ȦIK(tk), (65)

where ȦIK = AIK(t)ω̃. We choose an update of the form

Ak+1
IK = Ak

IKeω̃
k+ 1

2 �tB(ωk,ωk+1), (66)

where the matrix B depends on ωk and ωk+1 and needs to fulfill BTB = I to ensure that
(Ak+1

IK )TAk+1
IK = I . Furthermore, we demand that B(x,x) = I for all x such that

lim
�t↓0

B(ωk,ωk+1) = B(ωk,ωk) = I , (67)
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from which follows the kinematic consistency (65).
To ensure the conservation of spin (64), we demand

Ak+1
IK �ωk+1 = Ak

IK�ωk (68)

which, after substitution of the update rule, gives

Ak
IKeω̃

k+ 1
2 �tB(ωk,ωk+1)�ωk+1 = Ak

IK�ωk. (69)

The matrix B will now be chosen such that

eω̃
k+ 1

2 �tB(ωk,ωk+1)�ωk+1 = �ωk (70)

and therefore

B(ωk,ωk+1)�ωk+1 = e−ω̃
k+ 1

2 �t�ωk, (71)

from which we see that it is indeed only dependent on ωk and ωk+1. The matrix B is a pure
rotation as it is orthogonal, i.e., BTB = I , and has a determinant +1.

We recall that, by using Rodrigues formula, every pure rotation R around the unit vector
k with rotation angle θ can be represented as

R = I + sin θ k̃ + (1 − cos θ)k̃
2
. (72)

If k and θ are chosen as

k = b × c

‖b × c‖ , cos θ = b · c
‖b‖‖c‖ (73)

then it holds that Rb = c if ‖b‖ = ‖c‖. Furthermore, it holds that R → I for b → c.
Hence, we choose

B(ωk,ωk+1) = I + sin θ k̃ + (1 − cos θ)k̃
2

(74)

with

k = �ωk+1 × (e−ω̃
k+ 1

2 �t�ωk)

‖�ωk+1 × (e−ω̃
k+ 1

2 �t�ωk)‖
, cos θ = �ωk+1 · (e−ω̃

k+ 1
2 �t�ωk)

‖�ωk+1‖‖�ωk‖ . (75)

To prove that the proposed scheme has the desired stability properties of the principal
axes of inertia, we use the Lyapunov functions V (yk) for the major and minor principal axes
as presented before. As the proposed scheme conserves the kinetic energy and the spin by
construction it holds that V (yk+1) = V (yk), whereas positive definiteness has already been
shown. The proposed scheme therefore preserves the stability properties of the principal
axes of inertia in accordance with the extended intermediate axis theorem.
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Fig. 2 Angular velocities for initial rotation around the major principal axis. The explicit scheme does not
correctly represent the stability of stationary rotation around the major principal axis and converges to rotation
around the minor principal axis. The implicit scheme correctly reflects the stability of the major principal axis.
(Color figure online)

Fig. 3 Difference vector d(t) = K�eK�
z − K�eK

z for initial rotation around the major principal axis, showing
that the explicit scheme cannot represent the stability of the major principal axis. The orientation of the body
changes drastically. The implicit scheme is able to keep the orientation difference small. (Color figure online)

4.3 Numerical comparison

We compare the explicit and the implicit scheme on a numerical example. We consider a
cuboid of mass m = 1 kg with length a = 3 m, width b = 2 m, and height c = 1 m in
the �eK

x , �eK
y and �eK

z direction, respectively. The principal moments of inertia are therefore
A = m

12 (b2 + c2), B = m
12 (a2 + c2), and C = m

12 (a2 + b2) such that A < B < C. Rotation in
the neighborhood of stationary rotation ω� = �e� around the major principal axis e� = e3

is considered. As initial conditions we choose AIK(0) = I and ω = (
ωx ωy ωz

)T =
(

10−3 10−3 10
)T

rad/s. We simulate 20 s using a timestep of �t = 0.01 s using the
explicit and implicit scheme. The results of both schemes are shown in Figs. 2 and 3.
The body initially rotates in the vicinity of the major principal axis with angular velocity
ωz = � = 10 rad/s, which is stable as follows from the extended intermediate axis theorem.
However, in the numerical solution of the explicit scheme, the body deviates from stationary
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Fig. 4 Angular velocities for initial rotation around the unstable intermediate principal axis. The explicit
scheme converges to stationary rotation around the minor principal axis, whereas the implicit scheme reveals
the back-and-forth swapping of rotation around the intermediate axis in positive and negative direction. (Color
figure online)

rotation around the major principal axis (approximately at t = 10 s) and tends to stable rota-

tion around the minor principal axis with angular speed ωx = −
√

C
A
�. If a smaller timestep

is taken in the explicit scheme, then the change of axis will be slower and will take place at a
later point in time. This also follows from the fact that the eigenvalues λ1,2 in (59) tend to 1
if the timestep is reduced. The solution of the implicit scheme remains very close to the ma-
jor principal axis, both in angular velocity and in the difference vector d(t) = K�eK�

z − K�eK
z

and is therefore much more accurate.
In Fig. 4, the results of both schemes are compared for an initial rotation around the un-

stable intermediate axis principal axis. An initial angular velocity of ω = (
ωx ωy ωz

)T =
(

10−3 10 10−3
)T

rad/s is chosen. For the explicit scheme, the rotation around the K�eK
y -

axis is unstable, and the motion asymptotically tends towards rotation around the minor
principal axis. The implicit scheme correctly predicts that the motion will move on the het-
eroclinic orbit and will keep on swapping back and forth from rotation around the K�eK

y -axis
in positive direction to rotation around this axis in negative direction.

5 Implementation in a rockfall simulation code

The translational and rotational equations of motion and impact equations for rockfall sim-
ulation are described in detail in [16], together with the modeling of rock shape, contact
interactions, dissipation mechanisms, and terrain. The explicit and implicit scheme are dis-
cussed in Sect. 4 for the rotational motion of a free body. Here we will explain how the
implicit scheme can be implemented in RAMMS::ROCKFALL taking into account dissipa-
tion and contact interaction. First, we will briefly explain the current implementation of the
explicit scheme.

The motion of the rock is described through a set of generalized coordinates

q =
(

r

p

)
, (76)

where r := I �rOS is the position of the center of mass and p is the quaternion which encodes
the transformation matrix AIK . The equations of motion are expressed in the generalized
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velocities

u =
(

v

ω

)
, (77)

where v := I �vS = I �̇rOS is the velocity of the center of mass, i.e., the translational motion is
expressed in the inertial frame and the rotational motion in the body-fixed frame.

Various kinds of dissipation (e.g., viscous drag in layer close to the terrain) and gravity
are taken into account through an external force f ext(q,u) := I

�F and torque Mext(q,u) :=
K

�MS with respect to the center of mass S. The velocity dependence of the external forces
and torques stems from drag terms which are assumed to be linear [16]

f ext(q,u) = −cdragv + f grav,

Mext(q,u) = −Cdragω,
(78)

where the drag coefficients cdrag and Cdrag are only active in a drag layer above the terrain and
therefore depend on the position r of the rock. Contact interactions with the terrain lead to
nonimpulsive contact forces and impulsive contact forces which are governed by frictional
contact and impact laws. Velocity–impulse-based integration techniques, such as Moreau’s
timestepping scheme, are a very robust way to deal with multibody systems with frictional
unilateral constraints, forming an active field of research within the Nonsmooth Dynamics
community. The implementation in RAMMS::ROCKFALL may be seen as a variant of the
classical Moreau timestepping scheme. Hence, the contact forces and impulsive forces are
gathered in a discrete percussion P which enters into the translational and rotational part
of the equations of motion through the generalized force directions W v(q) and Wω(q).
Specially tailored contact laws are used for the discrete percussion P to correctly describe
the physics of rock–terrain interaction. In particular, a dynamic slippage dependent friction
law is employed to describe the scarring phenomenon, i.e., upon collision with the terrain
the rock tends to slide along the slope pushing soil in front of it which increases the friction
and finally lets it tumble over. These highly specialized contact laws have been developed
and extensively reported in [16].

5.1 Implementation of the explicit scheme

In the style of Moreau’s timestepping scheme, the explicit scheme first calculates a midpoint

rk+ 1
2 = rk + �t

2
vk,

pk+ 1
2 = p

k+ 1
2

pre

‖pk+ 1
2

pre ‖
, p

k+ 1
2

pre = pk + �t

2
F (pk)ωk,

(79)

which is used to approximate the generalized force directions W
k+ 1

2
v = W v(q

k+ 1
2 ) and

W
k+ 1

2
ω = Wω(qk+ 1

2 ).
Subsequently, the generalized velocities uk+1 are obtained by solving the balance laws

on velocity–impulse level

m(vk+1 − vk) = f
k+ 1

2
ext �t + W

k+ 1
2

v P k+1 ,

�(ωk+1 − ωk) + �t

2
G(ωk)(ωk+1 + ωk) = M

k+ 1
2

ext �t + W
k+ 1

2
ω P k+1 ,

(80)
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together with set-valued combined contact–impact laws for the discrete percussions P k+1,

which implicitly depend on uk+1. Also the external forces f
k+ 1

2
ext = f ext(q

k+ 1
2 ,uk+ 1

2 ) and

external torques M
k+ 1

2
ext = Mext(q

k+ 1
2 ,uk+ 1

2 ) depend through uk+ 1
2 = 1

2 (uk +uk+1) on uk+1.
The stepping equations (80), together with the contact–impact laws, form a set of implicit
equations for the unknowns (uk+1,P k+1). The linearity of the drag terms in the external
forces and torques, together with the explicit character of scheme, allows us to express uk+1

directly in the unknown percussion P k+1, i.e.,

vk+1 =
(

m + �t

2
cdrag

)−1 (
(m − �t

2
cdrag)v

k + f grav�t + W
k+ 1

2
v P k+1

)
, (81)

ωk+1 =
(

� + �t

2

(
G(ωk) + Cdrag

))−1 ((
� − �t

2
(G(ωk) + Cdrag)

)
ωk + W

k+ 1
2

ω P k+1

)
,

(82)
which can be used to reduce the set of equations to the unknowns P k+1. In fact, the addition
of the contact percussions to the explicit scheme renders it a semiimplicit scheme. Finally,
the positions are updated through

rk+1 = rk+ 1
2 + �t

2
vk+1,

pk+1 = pk+1
pre

‖pk+1
pre ‖ , pk+1

pre = pk+ 1
2 + �t

2
F (pk+ 1

2 )ωk+1.

(83)

5.2 Implementation of the implicit scheme

We now discuss how to embed the implicit scheme for rotational motion within the Moreau-
type timestepping method in a way which is as little invasive as possible by using a two-step
method.

First, similar to the explicit method a midpoint is calculated as in (79). In a first implicit
step, a free angular velocity ωk+1

free is calculated through the implicit equation

�(ωk+1
free − ωk) + �tω

k+ 1
2

free × (�ω
k+ 1

2
free ) = 0 with ω

k+ 1
2

free = 1

2
(ωk + ωk+1

free ), (84)

which does not account for the external torque and contact interaction. In a second implicit
step, the final generalized velocity uk+1 are obtained by solving the implicit equations

m(vk+1 − vk) = f
k+ 1

2
ext �t + W

k+ 1
2

v P k+1,

�(ωk+1 − ωk+1
free ) = M

k+ 1
2

ext �t + W
k+ 1

2
ω P k+1,

(85)

together with the contact–impact laws. In the case of linear drag, similar to (81) and (82),
equations (85) can be solved for uk+1, allowing us to reduce the equations to the unknowns
P k+1. The final velocity vk+1 is used to obtain the position update

rk+1 = rk+ 1
2 + �t

2
vk+1, (86)
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Table 1 Comparison of the
computational time for the
explicit and the implicit schemes
(1000-rock simulation)

Simulation case Explicit Implicit

idealized slope (ramp) 74.25 s 161.5 s

Chant Sura slope 91.6 s 184.5 s

whereas we cannot use ωk+1 for the orientation update (66) because the spin is not conserved
in the second implicit step. Instead, the free velocity ωk+1

free is used for the orientation update

Ak+1
IK = Ak

IKeω̃
k+ 1

2
free �tB(ωk,ωk+1

free ), (87)

where Ak
IK is calculated from pk using (10) and B follows from (74). Finally, pk+1 is

retrieved from Ak+1
IK using, e.g., Shepperd’s method [25].

6 Simulation results with RAMMS::ROCKFALL

A realistic modeling of platy shaped rocks, which descend downslope in a wheel-like mo-
tion, is of paramount importance in rockfall simulations. The following example simula-
tions show the implications of the implicit integration scheme for accurate simulation re-
sults, especially for rocks that rotate around their major principal axis. Comparisons be-
tween the newly proposed implicit scheme versus the old explicit scheme are visualized
for RAMMS::ROCKFALL simulations. All simulations were performed with a so-called
EOTA221-platy shaped rock (see Table 1) which was also used in rockfall experiments with
instrumented rocks at Chant Sura in Davos, Switzerland [4]. The rock mass is 780 kg, ho-
mogeneously distributed in a rigid body with dimensions of 0.93, 0.93, and 0.47 m along
the three principal axes (x-, y-, and z-axis of the K-frame).

6.1 Idealized inclined slope

The first group of simulations was performed on an idealized digital elevation model (DEM)
with an inclined slope of 40◦. In total 1000 simulations were performed. The initial rock ori-
entation was the only varying input parameter. The same soil conditions as well as the same
time step (0.002 s) was employed for both the explicit and the implicit scheme [17]. Figure 5
visualizes the maximal kinetic rock energy of the simulation ensemble of the thousand tra-
jectories using the statistic mode of RAMMS::ROCKFALL for the explicit scheme and for
the new implicit scheme (Figs. 5a and 5b, respectively). The maximal spatial spread of the
explicit scheme is delineated with a red line for comparison purposes (Fig. 5b). The implicit
scheme leads to a narrower distribution in the inclined section but longer and more curved
run-out behavior in the flat run-out area in comparison to the explicit scheme. Figures 5c
and 5d show the altitude of the center of mass of the rock as a function of the projected dis-
tance, being the arclength of the horizontal projection of the trajectory. Furthermore, Figs. 5c
and 5d compare the development of rock rotations along its principal axes for a single sim-
ulation with the same initial orientations. In the explicit scheme, the stability of the major
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Fig. 5 EOTA221 rock rolling down an idealized inclined slope: (a) the explicit scheme, (b) the implicit
scheme (1000 simulations). Figures (c) and (d) show angular velocities of all three axes (x-axis = green,
y-axis = red, z-axis = blue) plotted during the descent for an exemplary trajectory with identical starting
orientation (brown = terrain altitude, black = COG altitude). A clear stabilization around the major principal
axis (blue) is visible for the implicit scheme (d), whereas erratic tumbling motion prevails for the major part
of the descent in the explicit scheme (c). (Color figure online)

Table 2 Comparison of key data
values of 1000 rocks on an
idealized slope for the explicit
and the implicit schemes

Parameter Explicit Implicit

Mean Std Dev Mean Std Dev

kinetic energy (kJ) 168.61 113.8 188.03 131.7

translational velocity (m/s) 17.88 7.4 17.75 7.7

rotational velocity (rot/s) 4.12 1.8 4.77 1.9

jump height (m) 1.93 1.8 1.40 1.1

principal axis (z-axis in blue) is not well pronounced in the beginning, and is completely lost
halfway down the slope. The implicit scheme on the other hand, stabilizes very fast along the
major principal axis, and remains in this configuration after reaching the horizontal run-out
zone. The longer run-out in the implicit scheme is due to the stable rotation along the major
principal axis (wheel-motion). The new integrator is thus able to simulate the effective lat-
eral spreading behavior during the run-out section with larger accuracy whereas the explicit
integrator is producing a broad trajectory area coverage induced by the erratic tumbling
motion. Table 2 compares the corresponding mean and standard deviation values obtained
for both numerical schemes. Rotations and kinetic energy values are larger for the implicit



452 R.I. Leine et al.

Fig. 6 EOTA221 rock rolling down an actual slope at Chant Sura (Davos, Switzerland): (left) the explicit
scheme, (right) the implicit scheme. For the comparison the same starting orientations were used for all
rocks. Figures (c) and (d) show angular velocities of all three axes (x-axis = green, y-axis = red, z-axis
= blue) plotted during the descent for an exemplary trajectory with identical starting orientation (brown =
terrain altitude, black = COG altitude). The implicit scheme leads to wheel-like motion and predicts a longer
run-out distance. (Color figure online)

scheme, whereas the jump heights are smaller and the velocities are only slightly smaller.
The stable motion along the principal axis in the implicit scheme favors higher rotations and
lower jump heights.

6.2 Chant Sura

The second group of simulations was performed using the DEM of the Chant Sura rockfall
test site located near Davos, Switzerland [4]. Again, 1000 simulations were carried out, with
identical soil parameters and the same time step (0.002 s) for both the explicit and the im-
plicit schemes. The implicit scheme gives a similar extent in the acceleration zone for the
rocks, see the first row in Fig. 6, whereas the lateral spreading and the run-out distance in
the run-out zone are much longer when compared with the explicit scheme. The maximal
spatial spread of the explicit scheme is indicated with a red line in Fig. 6b for comparison
purposes. The implicit scheme captures the fast and stable rotation along the major principal
axis (z-axis in blue) of the flat rock during the entire trajectory while the explicit scheme
cannot reproduce the rock’s stable rotation around its major principal axis throughout the
entire traveling path. Table 3 lists the mean and standard deviation values for both numer-
ical schemes. Equivalent trends as for the inclined plane are distinguishable, although the
differences in kinetic energy are more obvious; the differences for the jump heights are less
pronounced. Again, the stable motion along the principal axis in the implicit scheme favors
higher rotations and velocities (and thus kinetic energies) and lower jump heights.
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Table 3 Comparison of key data
values of 1000 rocks at Chant
Sura for the explicit and the
implicit schemes

Parameter Explicit Implicit

Mean Std Dev Mean Std Dev

kinetic energy (kJ) 97.06 69.3 131.72 80.6

translational velocity (m/s) 13.29 5.7 15.06 6.0

rotational velocity (rot/s) 3.31 1.5 4.01 1.5

jump height (m) 1.52 1.3 1.50 1.2

Finally, Table 1 displays the computational time recorded for the 1000-rock simulations
for the explicit and the implicit schemes. The implicit scheme is slower by a factor of around
2 in comparison to the explicit scheme, which is expected as the updating of rock rotations
requires more computational effort. However, the former does respect the stability proper-
ties of rotating 3D objects, which is a key improvement for RAMMS::ROCKFALL. It is
anticipated that for extremely long rolling phases of platy rocks the differences between the
explicit and the implicit schemes could be even larger.

7 Conclusions

In this paper an extended intermediate axis theorem has been presented as a 6-dimensional
extension of the classical stability results for the Euler equations. The stability of the major
and minor principal axes of the 6-dimensional system has been proven using the method
of Lyapunov functions. Using the same Lyapunov functions, we have given a rigorous
proof that the implicit scheme conserves the energy and spin and, thereby, respects the ex-
tended intermediate axis theorem. Here, we have chosen an implicit scheme which uses
the implicit midpoint rule for the angular velocity dynamics. It is evident that all energy–
momentum conserving schemes respect the extended intermediate axis theorem. Existing
energy–momentum conserving schemes may have better accuracy than the scheme we pro-
posed here, but the proposed scheme can be easily incorporated in existing rockfall simu-
lation codes. Further research needs to be conducted to investigate how more sophisticated
energy–momentum conserving schemes can be combined with the specialized dissipation
and contact laws of rockfall simulation using Moreau-type timestepping methods.

The computational cost per time-step is larger for the implicit scheme than the explicit
scheme, as Newton iterations are needed to solve the implicit equations. However, numerical
simulations show that the implicit scheme is far more accurate as it respects both the energy
conservation and the invariance of the spin.

Numerical simulations with RAMMS::ROCKFALL using the newly developed implicit
scheme show that for the downward motion of a platy rock on an actual slope the rotation
around the major principal axis is stable, even in the presence of intermediate collisions
and contact phases with the slope as is also observed in field experiments. Furthermore,
the simulations show that the proper simulation of wheel-like motion is essential for the
correct statistical prediction of the run-out length. Future work will focus on the validation
of simulation results against the real rockfall events and field experiments with instrumented
rocks.
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