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Abstract

The sense of touch is one of the most crucial components of the human
sensory system. It allows us to safely and intelligently interact with the phys-
ical objects and environment around us. By simply touching or dexterously
manipulating an object, we can quickly infer a multitude of its properties.
For more than fifty years, researchers have studied how humans physically
explore and form perceptual representations of objects. Some of these works
proposed the paradigm through which human haptic exploration is presently
understood: humans use a particular set of exploratory procedures to elicit
specific semantic attributes from objects. Others have sought to understand
how physically measured object properties correspond to human percep-
tion of semantic attributes. Few, however, have investigated how specific
explorations are perceived. As robots become increasingly advanced and
more ubiquitous in daily life, they are beginning to be equipped with haptic
sensing capabilities and algorithms for processing and structuring haptic
information. Traditional haptics research has so far strongly influenced
the introduction of haptic sensation and perception into robots but has not
proven sufficient to give robots the necessary tools to become intelligent
autonomous agents. The work presented in this thesis seeks to understand
how single and sequential haptic interactions are perceived by both humans
and robots.
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In our first study, we depart from the more traditional methods of studying
human haptic perception and investigate how the physical sensations felt
during single explorations are perceived by individual people. We treat
interactions as probability distributions over a haptic feature space and train a
model to predict how similarly a pair of surfaces is rated, predicting perceived
similarity with a reasonable degree of accuracy. Our novel method also allows
us to evaluate how individual people weigh different surface properties when
they make perceptual judgments. The method is highly versatile and presents
many opportunities for further studies into how humans form perceptual
representations of specific explorations.

Our next body of work explores how to improve robotic haptic perception
of single interactions. We use unsupervised feature-learning methods to
derive powerful features from raw robot sensor data and classify robot ex-
plorations into numerous haptic semantic property labels that were assigned
from human ratings. Additionally, we provide robots with more nuanced
perception by learning to predict graded ratings of a subset of properties. Our
methods outperform previous attempts that all used hand-crafted features,
demonstrating the limitations of such traditional approaches.

To push robot haptic perception beyond evaluation of single explorations,
our final work introduces and evaluates a method to give robots the ability to
accumulate information over many sequential actions; our approach essen-
tially takes advantage of object permanence by conditionally and recursively
updating the representation of an object as it is sequentially explored. We
implement our method on a robotic gripper platform that performs multiple
exploratory procedures on each of many objects. As the robot explores ob-
jects with new procedures, it gains confidence in its internal representations
and classification of object properties, thus moving closer to the marvelous
haptic capabilities of humans and providing a solid foundation for future
research in this domain.
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Zusammenfassung

Der Tastsinn ist eine der wichtigsten Komponenten des menschlichen Sin-
nessystems. Er ermöglicht uns eine sichere und intelligente Interaktion mit
den physischen Objekten und der Umwelt um uns herum. Durch einfaches
Berühren oder geschicktes Manipulieren eines Objekts können wir schnell
auf eine Vielzahl von dessen Eigenschaften schließen. Seit mehr als fünfzig
Jahren untersuchen Forscher, wie der Mensch Objekte physisch erkundet
und Wahrnehmungsrepräsentationen von Objekten bildet. In einigen die-
ser Arbeiten wurde das Paradigma vorgeschlagen, durch das die haptische
Erkundung des Menschen heute verstanden wird: Der Mensch verwendet
eine bestimmte Reihe von Erkundungsverfahren, um bestimmte semantische
Eigenschaften von Objekten zu erfahren. Andere Arbeiten haben versucht zu
verstehen, wie physikalisch gemessene Objekteigenschaften mit der mensch-
lichen Wahrnehmung von semantischen Attributen übereinstimmen. Nur
wenige haben jedoch untersucht, wie spezifische Erkundungen wahrgenom-
men werden. Da Roboter immer fortschrittlicher und im täglichen Leben
allgegenwärtiger werden, gehören auch allmählich haptische Sensoren und
Algorithmen zur Verarbeitung und Strukturierung haptischer Informationen
zu ihrer Ausstattung. Die traditionelle Haptik-Forschung hat die Einführung
haptischer Empfindungen und Wahrnehmungen in Robotern bisher stark
beeinflusst, sich aber nicht als ausreichend erwiesen, um Robotern die not-
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wendigen Werkzeuge zu geben, intelligente, autonome Agenten zu werden.
Diese Arbeit versucht zu verstehen, wie einzelne und sequenzielle haptische
Interaktionen sowohl von Menschen als auch von Robotern wahrgenommen
werden.

In unserer ersten Studie weichen wir von den traditionelleren Metho-
den zur Untersuchung der menschlichen haptischen Wahrnehmung ab und
untersuchen, wie die körperlichen Empfindungen während einzelner Erkun-
dungen von einzelnen Personen wahrgenommen werden. Wir behandeln
Interaktionen als Wahrscheinlichkeitsverteilungen über einen haptischen
Merkmalsraum und trainieren ein Modell, das vorhersagt, wie ähnlich ein
Paar von Oberflächen bewertet wird, wobei die wahrgenommene Ähnlichkeit
mit einem angemessenen Grad an Genauigkeit vorhergesagt wird. Unsere
einzigartige Methode ermöglicht es uns auch zu bewerten, wie einzelne
Personen unterschiedliche Oberflächeneigenschaften gewichten, wenn sie
Wahrnehmungsurteile fällen. Die Methode ist äußerst vielseitig und bietet
viele Möglichkeiten für weitere Studien darüber, wie Menschen Wahrneh-
mungsrepräsentationen von spezifischen Erkundungen bilden.

Der nächste Teil unserer Arbeit beschäftigt sich mit der Verbesserung der
haptischen Wahrnehmung von Robotern bei einzelnen Interaktionen. Wir
verwenden unüberwachte Feature-Learning-Methoden, um leistungsstar-
ke Merkmale aus unverarbeiteten Robotersensordaten abzuleiten und die
Erkundungen des Roboters in zahlreiche semantische haptische Eigenschafts-
labels zu klassifizieren, die durch menschliche Bewertungen zugewiesen
wurden. Darüber hinaus ermöglichen wir Robotern eine nuanciertere Wahr-
nehmung, indem wir lernen, abgestufte Bewertungen für eine Untergruppe
von Eigenschaften vorherzusagen. Unsere Methoden übertreffen frühere
Versuche, die alle handverlesene Merkmale verwendeten, und zeigen die
Grenzen herkömmlicher Ansätze auf.

Um die haptische Wahrnehmung von Robotern über die Bewertung einzel-
ner Erkundungen hinaus zu erweitern, wird im abschließenden Teil dieser
Arbeit eine Methode eingeführt und bewertet, die es Robotern ermöglicht,
Informationen über viele aufeinanderfolgende Aktionen zu akkumulieren;
unser Ansatz nutzt im Wesentlichen die Objektpermanenz aus, indem er
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die Darstellung eines Objekts bedingt und rekursiv aktualisiert, während es
nacheinander erkundet wird. Wir implementieren unsere Methode auf einer
Robotergreiferplattform, die mehrere Erkundungsprozeduren an einzelnen
Objekten durchführt. In dem Maße, in dem der Roboter Objekte mit neuen
Verfahren erkundet, gewinnt er an Vertrauen in seine internen Darstellungen
und die Klassifizierung von Objekteigenschaften. Mit dieser Methode nähern
wir uns den vielseitigen haptischen Fähigkeiten des Menschen und schaffen
eine solide Grundlage für zukünftige Forschung in diesem Bereich.
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Introduction

As the first sense to develop, touch plays a crucial role during infant devel-
opment. As babies, we instinctively grasp objects [Twi65] and mouth them,
developing mental representations of haptic and tactile sensations [SF05].
As our perceptual models of the world improve, we are able to deliberately
interact with new objects and influence our environment to rapidly acquire
haptic information and accomplish complex tasks. Despite their relevance
to our development and daily life, haptic perception and the sense of touch
have received relatively little attention in research compared to other senses,
particularly vision and hearing. Undoubtedly, the fundamental nature of
touch makes it generally more difficult to study. Whereas vision and audition
are passive senses, touch is inherently active; we cause or impact our haptic
sensations through direct action. Consequently, useful haptic perception
requires integrating haptic sensing with specific interaction and the ability
to construct complete, general representations from piecemeal information
gathered over time.
Much of the existing work in the field of haptics has focused on high-

level understanding of human haptic exploration and perception. Lederman
and Klatzky [LK93] created a highly influential taxonomy of exploratory
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procedures (EPs) that humans use to probe and extract information from
objects and surfaces. Later experiments demonstrated that when humans
perform a particular task, they vary which EPs they use to extract relevant
object properties. Additional work has demonstrated that people vary the
parameters of EPs under certain circumstances or combine multiple EPs
to elicit either redundant or more complex information [LK09]. Studies
of human haptic and tactile perception are typically approached from a
similarly high level [ONY13]. Physical properties of surfaces or objects
are measured, typically with an engineering tool such as a compression
tester, and study participants are asked to perform some task to rank the
objects or surfaces along a particular semantic dimension. The subjective
ordering of objects is correlated with the measured physical properties, and
the more strongly correlated properties are suggested as representative of
the associated semantic property. Additionally, the results often suggest one
or multiple principal semantic components, such as hardness or roughness, of
haptic perception. This paradigm has broadly persisted as haptic and tactile
perception has been introduced to computational and robotic systems. Apart
from work done to improve robot grasping and manipulation using tactile
sensing, efforts to develop computational or robotic haptic understanding
have typically introduced a set of exploratory procedures, extracted specific
features from sensor data that are informed by previous haptic literature, and
used those features either to identify the objects or surfaces being touched
or to identify their semantic properties [LBDL17].

Between these two primary approaches lies a middle ground that is rela-
tively unexplored. Specifically, how is the raw information that is felt by hu-
mans or acquired by sensors during single and sequential explorations mapped
and generalized to broader haptic representations and properties? As a person
explores an object or a surface, how does information from millisecond in-
teractions accumulate and form a integrated perception of that interaction?
In Chapter 2, we introduce and evaluate a method to study how individual
people combine and weigh signals acquired during haptic explorations to
make perceptual judgements. This method accumulates haptic information
from micro-interactions that occur over a series of exploratory procedures
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performed by individual people and learns to predict how those individuals
weigh those data when they make a perceptual judgement. How can we
then train a robot to learn a similar haptic perceptual structure from its
own exploration data without explicitly encoding information about haptic
attributes? We demonstrate that unsupervised feature-learning methods
can powerfully represent tactile data acquired from robot exploration by
learning to predict human haptic semantic descriptions. These methods even
outperform the traditional hand-crafted features that are assumed to be con-
gruent with these semantic properties. Finally, can we provide a robot with
the necessary haptic learning framework to interact autonomously with the
world, accumulating data over long periods of interaction or even a lifetime
and learning representations that capture relevant and general properties.
We present a method that leverages powerful assumptions about object
permanence to allow a robot to accumulate haptic information over multiple
exploratory procedures and develop robust and general representations of
objects that inherently capture valuable haptic properties.

1.1 Outline

This thesis addresses the modeling and development of systems that can
compress extremely complex physical interactions into much simpler, gener-
alizable representations. This work is presented in three main chapters, each
of which begins with a detailed introduction and ends with a summary. The
thesis is capped by a conclusions chapter that summarizes the main aims
and achievements of this work and presents an outlook for its continuation
in the future.

Modeling Human Haptic Perception from Unconstrained Surface
Exploration

The first part of this thesis explores how to represent human haptic percep-
tion of surfaces. Touch perception is somewhat unusual in that sensation
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and action are connected; rarely do we perceive anything haptically without
consciously interacting with our environment. Thus, instead of trying to
correlate general surface characteristics with average human perception
of those surfaces, we explore a new way of understanding how perceptual
judgements are made directly from the experiences in single interactions.
Specifically, the work presented in this chapter seeks to model the relation-
ship between (a) raw tactile and haptic signals during specific, individual
explorations of pairs of surfaces and (b) the corresponding perception of
haptic similarity between those two surfaces. We additionally seek to model
how individual people weigh various surface properties in their perceptual
judgements. This work has been accepted for publication in a peer-reviewed
archival journal as

B. A. Richardson*, Y. Vardar*, C. Wallraven, and K. J. Kuchenbecker.
‘Learning to Feel Textures: Predicting Perceptual Similarities from
Unconstrained Finger-Surface Interactions’. In: IEEE Transactions on
Haptics (2022). *Equal contribution. Accepted.

Unsupervised Feature Learning for Predicting Human Perception
of Haptic Properties

Although predefined characteristics of haptic signals have been proven to
correlate reasonably well with human perception both in simple tasks such as
roughness perception and complex tasks like surface similarity, they are still
simplistic representations of more complex phenomena. The work presented
in this chapter presents and evaluates an unsupervised dictionary learning
method for extracting relevant features from raw signals captured by tactile
sensors as a robot probed various objects. These learned features outperform
traditional predefined features in the tasks of predicting human perception
of various haptic and tactile properties; thus, the learned features are more
general and descriptive. Additionally, we explore how robotic exploratory
procedures can capture different information about haptic properties. This
work has been published in a peer-reviewed archival conference proceedings
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and a peer-reviewed archival journal as
B. A. Richardson and K. J. Kuchenbecker. ‘Improving Haptic Adjective
Recognition with Unsupervised Feature Learning’. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA).
2019, pp. 3804–3810
and
B. A. Richardson and K. J. Kuchenbecker. ‘Learning to Predict Percep-
tual Distributions of Haptic Adjectives’. In: Frontiers in Neurorobotics
13 (2020), pp. 1–16.

Implicit Robot Learning of Haptic Properties from Sequential
Interactions

The ability of humans to accumulate information over diverse successive
exploratory procedures is crucial to forming comprehensive representations;
individual exploratory procedures can elicit only partial information about
any given object. If robots are going to operate autonomously across diverse
environments, they will require similar abilities to accumulate and condense
information over time. The work in this chapter introduces a method that
assumes object permanence to allow robots to combine haptic data from
multiple physical interactions with objects into a comprehensive model that
contains information about many object properties. As the robot uses new
exploratory procedures that provide new information, the object representa-
tions become more precise. Additionally, the robot only needs to perform a
small number of exploratory procedures to get a general object representa-
tion. This work is in preparation for submission to a peer-reviewed archival
conference as
B. A. Richardson, K. J. Kuchenbecker, and G. Martius. A Sequential
Group VAE for Robot Learning of Haptic Representations. 2023. In
preparation for submission to Robotics: Science and Systems.
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1.2 Contributions

As indicated by his position as first or co-first author of all four included
publications, the writer of this dissertation was personally responsible for the
vast majority of the reported research. All co-authors are faculty members
who shared ideas and guidance but did not carry out the reported research.
No other students or postdoctoral researchers were involved in the reported
research to the level of co-authorship.
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Modeling Human Haptic
Perception from

Unconstrained Surface
Exploration

2.1 Introduction

When humans touch a surface with their fingers, spatio-temporal fingertip
deformations activate several types of mechanoreceptors which send signals
to connected tactile afferents, transmitting information to the central nervous
system [JF09] that derives from and relates to physical surface properties
such as friction, roughness, and elasticity. The skin deformations that occur
depend on the material properties and geometry of the finger and the surface
[ADT+17; MSB+14], normal force [DBE+16], and speed [WSL+13], and
they can vary substantially even for the same person exploring the same
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texture [MPC16]. Little is known about how the brain distills the information
needed to evaluate textures from the combination of skin deformation and
exploratory motion.
A common approach to determining the fundamental factors underpin-

ning texture perception is conducting psychophysical experiments in which
participants rank the similarity of surfaces or give ratings for their specific
features (e.g., hardness, roughness). The results are typically analyzed by a
dimensional reduction technique such as multidimensional scaling (MDS) or
principal component analysis (PCA), which reveals a compact representation
of a resultant perceptual space. In this perceptual space, similarly rated
stimuli cluster and dissimilar stimuli separate [DWCK18; ONY13]. The cur-
rent consensus in the literature [HBKY00; HFRY93; ONY13] is that tactile
perception of surfaces can be compressed down to three to five perceptual
dimensions, with axes roughly aligned with the rating dimensions of micro
and macro roughness/smoothness, hardness/softness, stickiness/slipperi-
ness, and coldness/warmness. The perceptual dimensions obtained for any
particular study, however, depend highly on the selected set of surfaces.
Although the above approach gives a general understanding of how hu-

mans make perceptual judgments about surfaces, it is inadequate to explain
the fundamental relationship between the tactile information elicited from
the finger-surface interaction and the resulting perception. Revealing this
relation is also crucial for many applications, such as robot perception [FL12;
RK20; SBKS20], product design [ETA+13], and haptic rendering [CK17a;
FKPC21; IVB19]. Despite the rich, complex, and unique information avail-
able from finger-surface interaction, the existing literature has generally
forgone interaction-specific analysis in favor of general surface descriptors:
most studies have sought correlations between the derived perceptual space
and each surface’s physical features (e.g., power spectral density, friction
coefficient, average power, spectral centroid, and compressibility) measured
in a controlled condition (fixed speed and force) [BK06; SHCR20; VWK19;
YBCH07]. This approach oversimplifies the complex finger-surface inter-
action and its dependence on user exploration, as people modify their ex-
ploratory movements depending on both the perceptual task and scanned
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texture to make better perceptual judgments [CSDB15]. More importantly,
some studies [BK06; PCC19; SHCR20] overlooked the importance of finger
properties during interaction and focused on surface properties measured
via a tool or specific machinery when correlating with a perceptual space
that was obtained via free finger exploration.
In this chapter, we aim to understand the fundamental relationship be-

tween the tactile information obtained from unconstrained finger-surface
interaction and the corresponding human perception of that interaction.
Specifically, we are interested in determining the extent to which common
signal features (e.g., average power, spectral centroid, friction coefficient)
calculated from free finger-surface interactions play a role in human per-
ceptual judgments. Since the values of these features change with normal
force and scanning speed [CK17a], relating them to perceptual judgments is
not straightforward for free exploration. To address this challenge, we first
propose a methodology that enables both the conversion of finger-surface
interaction signals into a distribution of features and the calculation of the
distances between feature distributions from different surfaces based on
perceptual similarities rated by humans. Then, based on this methodology,
we present general and participant-specific models that can predict the per-
ceptual similarity of two surfaces from their corresponding finger interaction
signals. The model parameters and predictions suggest relevant physical
features and their weighted roles in human texture perception.

The results indicate that our model is able to predict the perceptual judg-
ments for surface dissimilarities with moderate accuracy despite the great
variety in the measured fingertip-surface interactions for the same surface,
person, and interaction. We also found evidence that people weigh fea-
tures differently, suggesting they employ individual mental models when
distinguishing surfaces.
The work presented in this chapter has been accepted for publication in

the IEEE Transactions on Haptics as:
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B. A. Richardson*, Y. Vardar*, C. Wallraven, and K. J. Kuchenbecker.
‘Learning to Feel Textures: Predicting Perceptual Similarities from
Unconstrained Finger-Surface Interactions’. In: IEEE Transactions on
Haptics (2022). *Equal contribution. Accepted.

2.2 Methods

We tested our approach on perceptual and interaction data collected from
a previous study by Vardar et al. [VWK19]: human participants explored
pairs of textures drawn from a set of ten and rated each pair’s similarity
while their finger-surface interaction data were recorded (Section 2.2.1).
First, these signals were segmented into the two key exploratory proce-
dures used by participants, tapping and sliding. Then, we partitioned these
segmented physical signals into overlapping windows and extracted simple
features from each window, resulting in feature distributions for each surface
(Section 2.2.2). Finally, we projected these features into a low-dimensional
space such that the distances between pair-wise feature distributions match
the perceived surface-pair dissimilarities (Section 2.2.3); the models and
optimization procedure were implemented in PyTorch (Section 2.2.4).

2.2.1 Data Collection

The data were collected via psychophysical experiments whose details were
previously described [VWK19]. However, because the physical data pre-
sented in this work were not analyzed before, we summarize the details of
the experiments here.

Seven women and three men with an average age of 28.5 years (SD: 4.14)
participated in the experiments. The experimental protocol was approved
by the Ethics Council of the Max Planck Society (HI protocol number: 18-
09B). All participants gave written informed consent. Those who were not
employed by the Max Planck Society were compensated at a rate of 8 EUR
per hour.
Ten surfaces from the Penn Haptic Texture Toolkit [CLK14] were used
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Figure 2.1: The ten surfaces used for the study.

as stimuli; the selected surfaces vary in material properties, resulting in a
haptically diverse stimulus set (Figure 2.1). During the experiments, the
participant sat in front of two surfaces (Figure 2.2(a)). A black divider was
placed between the participant and the surfaces, and the participant wore
noise-canceling headphones to mask auditory cues. These interventions en-
sured that the participants used only haptic cues during the experiment. Each
surface was placed on top of a force/torque sensor (Nano 17 Titanium, ATI
Inc.). The contact force vector, contact torque vector, and finger acceleration
vector were measured during experiments. The force and torque data were
collected by a data acquisition board (PCIe 6323, NI Inc.) with a sampling
rate of 10 kHz. Two custom-built digital accelerometer boards (MPU-9250,
Invensense Inc.) were placed on the index fingernails of both hands of the
participant. The accelerometer data were collected via a micro-controller
(ATmega32U4, Atmel Inc.) with a sampling rate of 4 kHz. The scene was
recorded from above by a high-resolution camera (C920, Logitech Inc.)
In the experiment, each surface pair was placed on the force sensors

by taping them to the holders at the edges. After this preparation, the
participant was alerted with a sound. They then freely explored the two
surfaces for 5 seconds using only their index fingers. Another sound indicated
it was time to remove their fingers from the surfaces. Then, the participant
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Figure 2.2: (a) The experimental setup for data collection. A participant
touches a pair of surfaces. The finger-surface interaction data
is collected via force sensors placed under each surface and
accelerometers (indicated by "Accel.") attached to each index
fingernail. A camera records the scene from above. (b) Example
of calculated fingertip positions of one participant in one trial.
The positions are calculated from the force-torque sensor data
assuming each finger makes point contact with its surface. (c)
Segmentation process. The force (and simultaneously collected
acceleration) data are partitioned into tap and sliding regions
based on the velocities of each finger. Each region consists of
320 samples, and each sliding segment overlaps with the former
one 90%.

rated the similarity of the pair of surfaces using a nine-point scale. All 45
possible pairs of surfaces were presented twice, with each surface in the
pair appearing once on the left and once on the right. Each participant
touched the pairs in a different random order. Before each experiment, the
participants were given instructions and asked to complete a training session.
The training session included one very similar pair (stone tile and leather),
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one very dissimilar pair (metal foil and carpet), and three random pairs.
The very similar and dissimilar pairs were selected based on preliminary
experimental results. In total there were 95 trials (5 training + (45 pairs ×
2 locations)). Each participant completed the experiments in two sessions
separated by a ten-minute break. The duration of the experiment was about
90 minutes.

2.2.2 Fingertip Interaction Features

As opposed to previous studies [ARSD17; BK06; KWT+13; SHCR20; VWK19;
YBCH07], which represented textures as average features calculated from
data collected in controlled conditions, we parse the interaction signals
collected in each trial into smaller segments and then calculate features
from them. As a result, we obtain a fine-grained distribution of features
representing the interactions of each participant with each surface.

2.2.2.1 Segmentation

We compute two types of segments corresponding to the two key exploratory
procedures used by participants: tapping and sliding. We define a tap as the
moment when contact is initiated between the fingertip and surface, and we
define a slide as a period of sustained tangential movement by the fingertip
on the surface. To compute the tapping and sliding segments, we first trans-
form the raw force-torque data into position and velocity (Figure 2.2(b))
by assuming each fingertip made point contact with the surface. The same
technique was used in previous studies [BSB93; CK17b] to estimate the
contact location of a fingertip or a tool on a surface. Before the position was
computed, the force and torque signals were down-sampled to 2 kHz using
MATLAB’s downsample function. They were then low-pass filtered using a
third-order Butterworth filter with a cut-off frequency of 20Hz to capture
hand motions [CK17a]. The fingertip velocity vectors were calculated by
taking the time derivative of the fingertip position vectors. Given the filtered
velocity signals, we use MATLAB’s findpeaks function to select potential taps.
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Only a peak that immediately follows a region of no contact (exactly zero
velocity) is considered a tap peak.

We use the tap peaks to partition 2 kHz down-sampled force and accel-
eration signals into tap segments and sliding regions (Figure 2.2(c)). The
tap segment is defined as a 320 sample (0.16 s) window starting from 19
samples before the peak. These values were determined by preliminary
screening of the interaction data. Considerably shorter segments would not
have captured all the relevant information from a tap interaction, whereas
longer ones would have blended tap and sliding interaction data. After
computing tap segments, all remaining non-zero velocity regions of the
interaction are considered sliding regions. Segments are extracted from
slide regions by scanning a 320 sample window (equal size to tap segments)
directly after tap segments until the end of the sliding region. Each sliding
segment was overlapped 90% with the previous one.

2.2.2.2 Feature Calculation

Select features were calculated from each segment of the 2 kHz signals to
represent the three fundamental perceptual dimensions of surfaces: hard-
ness/softness, roughness/smoothness, and friction (sometimes called sticki-
ness/slipperiness) [HFRY93; YBCH07]. Features describing surface rough-
ness/smoothness and friction were extracted from slide segments, whereas
a feature representing hardness/softness was extracted from tap segments.

Our rationale behind choosing our particular set of features is as follows:
previous studies [GBGB05; PDVG03] provide evidence that the roughness
dimension is composed of both macro and micro roughness, and perceived
roughness of the surfaces is related to the intensity and spectral content of
the vibrations induced during fingertip sliding [FL12]. Hence, two metrics
were selected to represent the roughness dimension during sliding segments:
spectral centroid and vibration power. These two metrics were computed for
both the force sensor and the fingernail-mounted accelerometer to enable
comparisons between these distinct sources of information. The three-axis
force and three-axis acceleration signals were first each combined into one
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axis using the discrete Fourier transform 3-to-1 (DFT321) method [LRMK10].
The spectral centroid was computed by band-pass filtering the compressed
signal between 5 Hz and 400 Hz and then taking the fast Fourier transform.
For the vibration power, we further filtered the same signals between 20 Hz
and 400 Hz and then calculated their average power.
The kinetic friction coefficient was selected as the metric to represent

slipperiness. For each slide segment, the kinetic friction coefficient was
calculated by fitting a Coulomb friction model to the unfiltered normal and
tangential forces.
It has been previously shown that people can discriminate the hardness

of a surface from the vibration that occurs after tapping on it with a tool
[LaM00]. Because the spectral centroid of this vibration increases with the
stiffness of the surface [CK17a], we chose it to represent hardness. Unlike
the centroid described above, this spectral centroid was computed during
tap segments from the force signal normal to the surface.

In summary, each sliding segment was represented by seven features: fin-
ger speed (v), normal force (Fn), kinetic friction coefficient (µk), and sliding
power (P·) and spectral centroid (C·) calculated from force sensor (·f ) and
accelerometer (·a) data, whereas each tapping segment was represented by
one feature: tap spectral centroid (Ctap) obtained from force sensor data.
Therefore, the interaction data collected from one finger in each trial was
reduced to the collection of seven + one different features calculated from
each sliding or tapping segment of the entire interaction.

2.2.3 Modeling Framework

Our method aims to learn the relationship between the features extracted
from the segments of raw tactile data and the perceptual similarity ratings
provided by the participants. We do this by considering the set of seg-
ments extracted from the left- and right-handed interactions as two discrete
probability distributions. We learn a mapping from feature space into a
lower-dimensional embedding space such that the distances between the
pairs of embedded distributions agree with the corresponding similarity
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ratings. We will first introduce the problem definition and give a general
overview of the entire modeling pipeline in Section 2.2.3.1. We then describe
the details of the individual components of the pipeline. Figure 2.3 shows a
summary of the full pipeline and a more detailed example of a single trial
from the feature distributions to the distance computation in embedding
space to the ranking of the computed distance relative to others.

2.2.3.1 Learning Problem

Let the set of all trials be denoted S and the set of corresponding similarity
ratings be denoted Y. Given a single trial s ∈ S with rating ys ∈ Y,
the left- and right-handed interactions Ls and Rs with ls and rs segments,
respectively, can be represented by matricesXL,s ∈ Rls×8 andXR,s ∈ Rrs×8,
where 8 is the total number of features. Each row of a matrix X contains
the features calculated from a single segment of that interaction and can be
written as

X(i) = {v, Fn, µk, Pf , Pa, Cf , Ca, Ctap}, (2.1)

where i denotes an arbitrary segment. If i is a sliding segment, the feature
Ctap (last vector element) is assigned zero. Otherwise, the other seven fea-
tures are assigned zero. Note that interaction matrices X can have different
numbers of rows/segments. Examples of the eight columns ofXL,s andXR,s

from an arbitrary trial s are shown in the bottom left panel of Figure 2.3.
Additionally, to learn a compact representation of the features that more

closely represents the human perceptual space, we define a mapping function
Φ : Rm 7→ Rn from the m-dimensional fingertip interaction feature space to
an n-dimensional embedding space. We will describe this mapping function
in greater detail in Section 2.2.3.3. This mapping function Φ(X) embeds
each row of X as a unique point in Rn. The projections of the left- and
right-handed interactions (Φ(XL,s), Φ(XR,s)) can be represented as discrete
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Figure 2.3: An arbitrary trial s is comprised of left- and right-handed interac-
tions with different surfaces. The recorded 3D force (shown) and
acceleration signals are parsed into many segments over time.
Features are then extracted from each of these segments such
that each segment is represented as a single point X(i)

·,s ∈ X·,s
in multidimensional feature space (distributions and individual
points shown in the bottom left panel). The two sets of points
{XL,s,XR,s} are then mapped via the function ϕ into an embed-
ding space. The point sets are then converted to probability den-
sities γs and ηs by assigning probability mass to each embedded
point. The optimal transport distance Wλ

p (γs, ηs) is computed
between the left- and right-handed densities (bottom central
panel). Finally, the resulting distance ŷs is ranked relative to
the distances of all other trials and compared to rankings of the
human similarity ratings (in detail in bottom right panel). The
function ϕ is optimized to maximize the Spearman’s correlation
between distances and rankings.
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probability distributions γs and ηs, with

γs =

ls∑
i=0

giδΦi(XL,s) and ηs =

rs∑
i=0

hiδΦi(XR,s), (2.2)

where g and h are non-negative vectors summing to 1 and δΦi(·) is the
Dirac delta function centered at the point indicated by the i-th row of
Φ(X). Then, ŷs ∈ Ŷ := {ŷs ∀ s ∈ S} is defined as the distance between
probability distributions γs and ηs for the specific trial s. Specifically, we use
the Wasserstein distance function, which we describe in Section 2.2.3.2.
Given this notation, the learning problem can generally be described

as optimizing a parameterized mapping function Φ that maximizes the
correlation between Y and Ŷ. Because Likert scales provide qualitative,
ordinal data, we are specifically interested in maximizing the rank correlation
between Y and Ŷ. This is called the Spearman’s correlation, and it can be
defined specifically for this problem as

ρsp(Ŷ,Y) =
cov(rgŶ, rgY)

σrgŶ
σrgY

, (2.3)

where rgŶ and rgY are the rank variables of Ŷ and Y, cov(rgŶ, rgY) is
the covariance of the rank variables, and σrgŶ

and σrgY
are the standard

deviations of the rank variables. We implement a differentiable ranking
function that is described in Section 2.2.4.

2.2.3.2 Regularized Wasserstein Distance

To compute the distance between probability distributions, we use the p-
Wasserstein distance, which is the solution to the traditional optimal trans-
port problem and essentially measures the minimum cost of transporting
the mass from one probability distribution to another in a metric space
[Vil08]. Although there are other popular methods of measuring the simi-
larity between probability distributions, such as the Kullback–Leibler (KL)
and Jensen-Shannon divergence, we chose the Wasserstein metric because it
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is symmetric (unlike KL-divergence), can be computed on distributions that
do not share a support set, and has usable gradients over the entire support
set [KPMR18]. This distance can be extremely costly to compute for both
continuous and discrete distributions. Thus, we use the entropy-regularized
p-Wasserstein distance, which approximates the true Wasserstein distance
but admits a simpler solution that can be computed orders of magnitude
faster using GPUs [Cut13]. Given two discrete measures γ and η with G

and H (in our case ls and rs) support points, respectively, the discrete,
entropy-regularized p-Wasserstein distance with regularization parameter λ
is defined as

Wλ
p (γ, η)

p = min
T≥0

tr(D p T⊤)− 1

λ
h(T ) (2.4)

s.t. T1 = γ, T⊤1 = η,

with h(T ) = −
G∑
i=1

H∑
j=1

Ti,j log(Ti,j).

Dp ∈ RG×H
+ is a matrix of distances with Dp

ij = d(xi, yj)
p = ||xi − yj ||pp

and T ∈ RG×H
+ is the discrete transport plan with Tij the probability mass

transported from γi to ηj [Cut13; FMS19]. T1 = γ and T⊤1 = η are the
marginal constraints on T . The optimal T can be solved for using Sinkhorn’s
fixed point iteration. The black lines between points in the bottom central
panel of Figure 2.3 display the elements Tij of an example transport plan
with a single element highlighted in orange. More information about optimal
transport and the Wasserstein distance can be found in [Vil08], and specific
details about the discrete Wasserstein distance with entropic regularization
appear in [Cut13; FMS19].
Given this probability metric, ŷs = Wλ

p (γs, ηs), where γs and ηs from
Equation (2.2) are the discrete probability distributions defined over the
embedding space for trial s.
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2.2.3.3 Mapping Functions

We use two different types of mapping functions Φ in our experiments to
embed the features extracted from the tactile data: affine maps and fully
connected neural networks. These two choices represent two different levels
of embedding complexity, with the affine maps having the simpler, more
constrained embedding resulting from fewer degrees of freedom compared
to the neural networks. For the affine maps,

Φaf(X) = θX⊤ + β, (2.5)

where θ ∈ Rm×n are the linear mapping parameters and β ∈ Rn are the
biases.

For the neural network, we employ a single hidden-layer architecture with
rectified linear unit (ReLU) activation functions. The general structure is
then

Φnn(X) = θ(o) · ReLU(θ(h)X
⊤ + β(h)) + β(o), (2.6)

where θ(h) ∈ Rm×k and β(h) ∈ Rk are the weights and biases of the hidden
layer with output dimension k and θ(o) ∈ Rk×n and β(o) ∈ Rn are the
weights and biases of the output layer with dimension n.

2.2.4 Implementation

All optimization of the parameters θ of Φ was performed using stochastic
gradient descent and back-propagation with a loss function of

L(θ) = 1− ρsp, (2.7)

where ρsp is the Spearman’s correlation from Equation (2.3).
One difficulty of implementing this loss function is that computing rank

variables (e.g., rgŶ and rgY) is typically non-differentiable. To address this
issue, we use a regularized, differentiable soft-rank function that approxi-
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mates exact rankings [BTBD20]. The soft-rank function uses regularization
to trade off between a more accurate ranking (smaller regularization) and a
more strongly convex (and continuously differentiable) optimization (larger
regularization).

The full optimization procedure was implemented in Python and PyTorch.
The built-in Adam optimizer was used with a learning rate of 0.01 and
default values for the remaining parameters. The ranking of the Wasserstein
distances was performed using the soft-rank PyTorch implementation from
Blondel et al. [BTBD20] with a regularization of 0.1, a value which pro-
vided a reasonable trade off between accuracy and convexity in preliminary
experiments.

We used the regularized 1-Wasserstein distance (with the distance function
d(xi, yj) the L1 norm) and computed it using the auto-differentiable Sinkhorn
implementation by Gabriel Peyré1 with a regularization of 0.1 chosen from
preliminary experiments. Additionally, the two weight vectors g and h from
Equation (2.2) were defined such that probability mass was distributed
uniformly across all points in an interaction. That is, for trial s with ls and
rs segments, gs = 1/ls and hs = 1/rs.

2.3 Modeling Procedure and Computational Experiments

Computational experiments were conducted to both evaluate the perfor-
mance of the method and to learn more about the perceptual models of
individual participants. As such, it was important to balance model inter-
pretability with performance.
With this goal in mind, we first compared the performances of more

complex, non-linear models with simpler affine models across a variety
of embedding dimensions, demonstrating that simpler, more interpretable
models are sufficient.

We then trained simple models to test the generalizability of the method
to unseen participants and fine-tuned those general representations to indi-

1https://github.com/gpeyre/SinkhornAutoDiff
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vidual participants. We analyzed and compared the model structures to try
to understand differences between the general, “average” representations
and the representational perceptual structures of the individual participants.
Additionally, this analysis allows us to look at differences between individual
participants.

Finally, we systematically evaluated the performance of much larger and
deeper networks with various hyperparameter combinations to demonstrate
that the smaller models are sufficient to capture meaningful information in
the data.

2.3.1 Constructing General Models

General models were trained in two distinct ways. First, we ran a preliminary
experiment to compare the performance of neural networks and affine maps
as a function of the embedding dimension. We trained both types of models
on data from all participants. We used a small neural network architecture
of one hidden layer with eight nodes.
Second, we trained general affine map models on data from a subset of

participants and evaluated those models on unseen participants. We did
not perform this second training procedure with neural networks because
the neural networks’ slight edge in performance in the first experiment did
not outweigh the greater interpretability of the affine maps. This finding is
explained in greater detail in Section 2.4.1.

2.3.1.1 Model Comparison

For the first case, five-fold nested cross-validation was used to train pre-
liminary comparison models. To form the folds, the samples from each
participant were partitioned into five equally-sized, stratified groups, with
each group having a roughly equal distribution over the ratings. Then, each
of the five groups was added to a separate fold. A single fold was held out of
the training process for testing, and a model was trained and evaluated on
every possible three-one split of the remaining four folds. Thus, there were
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four models trained for each hold-out. Each fold was held out as a test set,
yielding a total of 20 trained models (4 per fold × 5 folds). For each training
run the features were mean-centered for each participant independently
using the data in the three training folds.

2.3.1.2 General Affine Models

For the training procedure of the general affine models, there were ten folds
with each fold containing all the data from a different participant. The same
process described above was performed, yielding a total of 90 trained models
(9 per fold × 10 folds). In this case, the features for each participant were
independently mean-centered using all their data.

In all cases, models were trained with a batch size of 180 for 200 epochs.
The model state with the best validation performance over the 200 epochs
was kept. Additionally, the loss was calculated on a per-participant basis and
then averaged over participants. The participant-wise loss differs slightly
from Equation (2.7) and can be formulated as

L(θ) = 1− 1

|J |
∑
j∈J

ρsp(Ŷj ,Yj), (2.8)

where J is the set of participants and Ŷj ⊂ Ŷ andYj ⊂ Y are the subsets of
distances and ratings, respectively, for participant j. That is, the Spearman’s
correlation ρsp was calculated independently for each participant.

2.3.2 Participant-specific Modeling

To measure how the perceptual representations of individual participants dif-
fered from the generalized representations trained on other participants, we
tuned general models to specific participants instead of training participant
models from random initial conditions. Specifically, the participant-specific
models for a particular participant were initialized using the best-performing
(on the validation set) of the nine general models that were trained with that
participant held out. To train the participant-specific models, a participant’s
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data were split into the same five folds used in the comparison model train-
ing. The models were trained for 100 epochs instead of 200 while the rest of
the training, validation, and testing procedure remained the same. Features
were mean-centered using the data in the training folds.

2.3.3 Evaluating More Complex Architectures

Initial testing with various model sizes and architectures suggested that
smaller models performed comparably to larger ones. We performed addi-
tional, systematic experiments with networks that are larger and deeper
than those used in our main experiments. Additionally, we tested these
architectures with combinations of various nonlinear activation functions
and regularization schemes and a much larger embedding space.
All the models were trained in the same way as those described above,

except that they were trained for 1000 epochs with a learning rate of 0.001.
All models have three hidden layers with 128 nodes each with an output
embedding of ten dimensions. We tested combinations of three different
activation functions (ReLU, Leaky ReLU, and Sigmoid), three different L2
regularization values (corresponding to the weight decay parameter in the
Adam optimizer), and batchnorm and dropout layers. Each combination of
hyperparameters was trained five times for all combinations of five folds.

2.4 Results

2.4.1 Model Type and Embedding Dimension

To measure the modeling performance as a function of model type and
embedding dimension, we trained and evaluated neural networks and affine
map models with outputs from one to five dimensions using five-fold nested
cross-validation, as described in Section 2.3.1.1. Four models were trained
for each testing fold, and of those four models, the one that performed
the best on the validation set was then evaluated on the test set. Thus,
for every full training procedure, five models were evaluated, one for each
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Baseline

Figure 2.4: Mean and standard deviation of model performance vs. embed-
ding dimension by model type. The neural networks all have one
hidden layer with eight nodes. The baseline loss on the dataset
with no feature mapping is indicated by the solid black line.

fold. To account for the random initialization of model parameters, the
full modeling procedure described above was performed ten times for each
embedding dimension and each model type. Thus, there are a total of 50 (5
folds × 10 random model seeds) evaluated models of each type (neural net
and affine map) for each embedding dimension. The means and standard
deviations of these test set evaluations are shown in Figure 2.4. To make
the results clearer, we show 1− L(θ) instead of L(θ), which represents the
Spearman correlation ρ between the predictions and psychophysical ratings.
The baseline represents the loss on the original features with no mapping,
i.e., Φ = 1.

To demonstrate that our smaller models are sufficient, we also evaluated
much larger, more complex models on the same learning task. The perfor-
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mance of the much larger neural networks confirms that the small models are
approaching the maximum performance given our particular assumptions
and constraints. The average scores of the large models across all different
hyperparameter combinations are shown for the training, validation, and
testing sets in Table 2.1.
As can be seen in Figure 2.4, the ability to train an additional, low-

dimensional embedding represents a considerable increase in performance
for all values of embedding dimensionality. Furthermore, the neural net-
work models marginally outperform the affine models, especially for a low
embedding dimensionality of 1. However, there seems to be no additional
benefit of adding further dimensions for neural network mappings. Given
that affine maps in general are more interpretable compared to neural net-
works and that their performance saturates at an embedding dimension of
three, we exclusively learned affine map models into three dimensions for
our remaining experiments.

2.4.2 Generalizability

To test the generalizability of the modeling method to unseen participants,
we trained affine maps into three dimensions on a subset of participants
and evaluated them on unseen participants, as described in Section 2.3.1.2.
Again, we analyze the performance of the best models by evaluating only
the best validation model on the associated test fold (remember, each fold is
a single participant). However, evaluating only the top-performing models
could introduce bias if particular validation sets were always modeled more
accurately than others. Thus, we also measure the ensemble performance
of all the models trained for each test fold. Specifically, we compute Ŷ for
each of the nine models, normalize each Ŷ so that all distances are between
0 and 1, take the average across all Ŷ, and then compute the Spearman’s
correlation between the averaged distances and the corresponding similarity
ratings.
As above, we repeat the full modeling process ten times to account for

randomness in the initial model parameters. The mean performances of the
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Table 2.1: Average Spearman’s correlations for each hyperparameter combi-
nation.

Batchnorm Dropout Weight Decay Activation Spearman’s
Training Validation Testing

True

True

0.0
ReLU 0.787 0.485 0.386

Leaky ReLU 0.779 0.490 0.353
Sigmoid 0.515 0.480 0.379

0.1
ReLU 0.770 0.522 0.354

Leaky ReLU 0.747 0.507 0.363
Sigmoid 0.327 0.410 0.278

0.3
ReLU 0.799 0.520 0.374

Leaky ReLU 0.757 0.511 0.372
Sigmoid 0.322 0.400 0.285

False

0.0
ReLU 0.779 0.490 0.367

Leaky ReLU 0.798 0.470 0.367
Sigmoid 0.530 0.471 0.373

0.1
ReLU 0.746 0.499 0.372

Leaky ReLU 0.728 0.507 0.364
Sigmoid 0.334 0.426 0.288

0.3
ReLU 0.751 0.509 0.375

Leaky ReLU 0.760 0.511 0.361
Sigmoid 0.310 0.408 0.270

False

True

0.0
ReLU 0.664 0.465 0.360

Leaky ReLU 0.678 0.470 0.349
Sigmoid 0.488 0.452 0.356

0.1
ReLU 0.694 0.490 0.358

Leaky ReLU 0.787 0.497 0.356
Sigmoid 0.324 0.411 0.282

0.3
ReLU 0.763 0.505 0.366

Leaky ReLU 0.754 0.537 0.374
Sigmoid 0.322 0.427 0.279

False

0.0
ReLU 0.801 0.478 0.346

Leaky ReLU 0.723 0.495 0.360
Sigmoid 0.492 0.473 0.379

0.1
ReLU 0.796 0.485 0.370

Leaky ReLU 0.754 0.488 0.335
Sigmoid 0.335 0.406 0.292

0.3
ReLU 0.745 0.488 0.365

Leaky ReLU 0.743 0.499 0.352
Sigmoid 0.314 0.413 0.272
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Figure 2.5: Means and standard errors of the best general (G_best), general
ensemble (G_ensemble), best participant-specific (P_best), and
participant-specific ensemble (P_ensemble) models.

best validation models (G_best) and the ensembles (G_ensemble) are shown
in Figure 2.5, with error bars indicating the standard error of the mean.
Although the generalization performance differs substantially by partic-

ipant, the average performance across all participants is very similar to the
performance of the 3D affine model. Additionally, there is little change in
performance between the best and ensemble predictions. Participants 3, 7,
and 10 are modeled fairly well, whereas participant 6 is almost completely
unpredictable. This finding suggests that much of the information about
how most participants rated similarity is either not captured by the model
or not contained in the data at all.
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2.4.3 Participant-specific Model Tuning

From each of the ten randomized runs, the best general affine model for
each participant hold-out was used as the starting configuration to train
participant-specific models. Using this method, we can make direct compar-
isons between the tunedmodels and the original general models. Wemeasure
performance in the same way as above, evaluating both the best validation
model for each test fold and the ensemble predictions. The mean perfor-
mances of the best tuned models (P_best) and the ensembles (P_ensemble)
are shown side by side with the general model performance in Figure 2.5.

In general, there is an improvement in performance when the models are
individually tuned to individual subjects, particularly for participants 4, 7, 9,
and 10. The performance for participant 3 is still relatively good, although
there is no increase in accuracy. While there is a minor improvement for
participant 6, the performance is still particularly poor. Again, there is little
difference between the accuracy of the best and the ensemble models in
most cases.

2.4.4 Model Analysis for Perceptual Characterization

One method of analyzing a simple affine model is to project the original
feature axes into the embedding space and measure the relative scales of the
axes. Because the Wasserstein distance depends on the distances between
points in the metric space, a feature axis with a larger scale contributes more
to the overall Wasserstein distance than a feature axis with a smaller scale.

To compute the relative axis scales for a single model, the unit vector along
each feature axis can be projected into the embedding space. The projected
vector lengths can all be divided by the magnitude of the longest vector to
scale them between zero and one. Different models can be compared by
normalizing the projected vector lengths for all models. This process was
performed for the general models trained with participant holdouts and for
the models that were tuned to specific participants. Figure 2.6 shows the
density estimates of the relative axis lengths by participant for the general
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(purple) and participant-specific (green) models. We show the results for the
ensemble of models as opposed to only the best performing models. These
are the same models whose performance is plotted in dark purple and dark
green in Figure 2.5.

There are some observable patterns across subjects and different modeling
scales. Clearly, the tap spectral centroid (Ctap) is consistently one of the
largest embedded feature dimensions, meaning it contributes more to the
overall Wasserstein distance than other dimensions. Conversely, the average
vibration powers measured from both the force sensor (Pf ) and accelerome-
ter (Pa) are the smallest feature dimensions. Thus, the average vibration
power does not greatly contribute to the Wasserstein distance. Additionally,
for both pairs of features that were computed from both sensors, the feature
computed from the accelerometer is always smaller than the corresponding
feature computed from force data.

Interestingly, the models seem to get less consistent when they are tuned.
For many features, the spread (height of the densities) actually increases from
the general to the tuned models. This trend is most clearly demonstrated by
the friction coefficient (µk) and force sensor slide spectral centroid (Cf ).
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Figure 2.6: Distributions of normalized feature axis lengths by participant.
Purple regions show distributions of normalized axis lengths for
the trained general models by participant holdout. Dark green
shows the distributions of normalized axis lengths for the fine-
tuned participant models.

2.5 Discussion

The work presented in this chapter tried to solve the unique problem of
predicting human perception from individual haptic experiences by aiming
to understand the physical factors governing these perceptual judgments.
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We presented a method that predicts the perceived similarity of two surfaces
from the features extracted from the physical signals elicited during the
interaction. The results demonstrate that this method somewhat works on
both general and participant-specific levels. General representations learned
on a subset of participants can partially predict the perceptual similarities
of unseen participants with accuracies ranging from low to high depending
on the participant. Analysis of the model structures provides a method
to interpret the weights of different haptic properties in the perceptual
similarity judgments of different people, albeit with limited confidence due
to the model performance.

2.5.1 Complex Versus Simple Models

A key question about this method is whether a simple model is sufficient to
capture the relationships between the tactile features and similarity ratings.
The results shown in Figure 2.4 answer this question, demonstrating that
simple affine models are comparable in performance to more complex neural
networks despite having fewer than half the parameters; the additional
experiments on deepmodels confirm this finding. The neural networkmodels
do perform marginally better, but the small improvement demonstrates that
the method is not primarily limited by the model type, at least for this
particular dataset and choice of features. The consistent performance as a
function of the number of embedding dimensions, particularly for neural
networks, provides additional evidence that the performance limitations are
not due to the model architectures and that the Wasserstein metric has large
representational capacity across a number of embedding dimensions.
Overall, the average performance reaches “only” levels of ρ = 0.4. One

reason behind this moderate performance could be the significant noise
in the participant ratings. The participant agreement can be measured by
computing the Spearman’s correlation for each pair of participants over all
90 trials and averaging, yielding an inter-rater agreement of 0.707 [VWK19].
Thus, the consistency of ratings across participants likely provides an approx-
imate upper bound on the modeling performance. It is possible but highly
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unlikely that all the rating noise can be explained by the data contained in
each interaction, as humans are imperfect perceptual machines subject to
inconsistency, distraction, and fatigue. Additionally, finding strong correla-
tions between surface properties and human perception has been proven to
be difficult. For example, Bergmann Tiest and Kappers [BK07] had subjects
order a set of surfaces by roughness and found Spearman’s correlations from
0.4 to 0.8 (depending on the subject) between the perceptual orderings and
the physical roughness measures of the surfaces.

Another underlying reason for the moderate prediction performance of our
model could be its use of selected features. Although we included the most
common physical factors mentioned in the literature, ones that we did not
consider (e.g., thermal conductance, spatial finger deformation, or skewness
and kurtosis of the segments) may have significant effects on similarity
judgments. It is also possible that human tactile processes do not estimate
physical quantities but seek to estimate statistical variations in the tactile
signals. This hypothesis has also been proposed for visual [FS19; PS00]
and audio [MS11] senses. In a recent study [MT22], Metzger and Toscani
trained a deep neural network with unsupervised learning to reconstruct
vibratory signals elicited by human exploration of surfaces using a tool.
They found that the learned latent space could classify different material
categories similar to perceptual distances rated by human participants. If
this is the case, it would be advantageous to construct a mapping from this
latent space to the perceptual space without segmenting and calculating
physical features from the original tactile signals. This work did not consider
that option as we wanted to find relations between physical factors and
perception.

2.5.2 Generalization and Specialization

By training models on subsets of participants and testing the performance
on unseen participants, we demonstrate that our method can find an aver-
age perceptual representation across multiple people that can reasonably
predict the perceptual similarity judgments of unseen participants. Tailoring
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these general representations to individual participants suggests that the
perceptions of each participant differ uniquely from the average but mostly
can be captured by the tuned models.
Figure 2.5 demonstrates that the general models perform quite differ-

ently depending on the participant. They perform exceptionally well for
participants 3, 7, and 10, but perform terribly for participant 6. This differ-
ence in performance likely indicates that there is some consistency across
participants in how they judge similarity, but there are many differences
that cannot be explained in an average model. However, it is possible that
participants 3, 7, and 10 all employ a more similar rating strategy than the
rest of the participants.

When the models are tuned, the accuracy improves most significantly for
participants 4, 7, 9, and 10. Participant 3 still performs well even though
the tuned models are not more accurate. This result provides evidence that,
at least for these participants, a large part of their perceptual similarity
judgments can be explained by the simple models and features that we used.
It is particularly interesting that participants 4 and 9 improve quite clearly. It
is possible that each of them relies primarily on the features that we included,
but they treat them differently from all the other participants.
There are a variety of possible explanations for the comparatively worse

performance on the other participants. For example, they may have relied
more heavily on tactile signals that were not captured in our small feature
set. As mentioned before, one feature in particular that was not included
was the thermal conductivity of the surfaces. Temperature perception could
have been a dominant cue in many cases, particularly for surface pairs that
included aluminium [HJ06]. Other explanations could be that these partici-
pants used unique strategies to determine similarity or were inconsistent in
applying their strategy. An example strategy could be to consider a surface
pair very dissimilar if it differs dramatically in only a single dimension. An
alternative strategy could be to consider a surface pair as similar unless
it dramatically differs across multiple dimensions. Our method does not
currently account for the use of different strategies, although we will discuss
how this might be addressed in Section 2.6.
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2.5.3 Inferring Perceptual Structure

The main benefit of using affine maps instead of neural networks is that
their simplicity allows us to interpret the learned models and draw infer-
ences about the participants’ tactile perceptual representations. We focus on
comparing the relative scales of the original feature axes projected into the
learned embedding spaces. Despite the large amount of variance in percep-
tion that is not captured by our models, we propose that the larger features
can be interpreted as more perceptually relevant. Given this assumption, it is
immediately clear that, overall, the tap spectral centroid (Ctap) is a relevant
feature. There are typically many fewer tap segments than slide segments,
which means that much less probability mass is assigned to the tap segments
overall. The large relative scale of Ctap demonstrates that despite the low
mass, the tap segments provide unique information and are very important
in modeling similarity. This holds true across all participants in both the
general and tuned models. Considering the large variety in hardness of the
selected surfaces (Figure 2.1) and that every trial started with a tap, it is
indeed reasonable that hardness-relevant cues played an important role in
similarity judgments.

Friction (µk) and the slide spectral centroid (Cf ) are also relatively impor-
tant compared to other features. Interestingly, a recent study [FKPC21] also
found these features correlated with the two main axes in the perceptual
space of fine textures created on friction modulation displays. Hence, the
results suggest that friction and the slide spectral centroid could be relevant
physical parameters for surface perception via direct fingertip touch.

On the other hand, both average vibration power features (Pf and Pa) are
consistently the smallest of the features, with Pa being especially small. This
means that these features did not contribute substantially to the distance
between surface pairs. Thus, it is unlikely that the participants considered
vibration power a relevant cue when measuring the similarity of the selected
surfaces. Nonetheless, earlier studies [BK06; YBCH07] found that vibration
power correlated with one of the main perceptual dimensions. A likely
reason for this discrepancy is the difference in data collection. In both of
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these earlier studies, the physical interaction data was collected via a tool,
whereas we analyzed data that occurred during finger-surface interactions.
The variety of selected surfaces and the range of motions used could also
contribute to this discrepancy.
Interestingly, both features computed from the accelerometer (Pa and

Ca) are typically smaller than their counterparts computed from the force
sensor (Pf and Cf ). This likely means that the force sensor mounted rigidly
to the surface more accurately captured the fingertip-surface interaction
than the accelerometer mounted to the fingernail; it is possible that the
accelerometer data is even confounding. Due to the complex mechanical
properties of the human finger and the fact that vibrations do not travel
well from the fingerpad to the fingernail [SK21; WKWD06], the vibrations
transmitted to the accelerometers likely differed substantially from those
measured at the force sensors. Additionally, the limited sensitivity and noise
susceptibility of the fingernail-mounted accelerometers compared to the
force sensor could cause this discrepancy in sensor relevance.

For many features, the height of the densities (i.e., the spread of relative
feature scales) actually increases from the general to the tuned models.
However, we believe that the increase in spread is caused by the much
smaller amount of data on which the tuned models are trained and the high
variance in the data across folds. With more training examples for individual
participants, the models would likely become more uniform and the feature
densities narrower.

There is visible variability in the features that different participants relied
on when making similarity judgments (Figure 2.6). For example, participant
4 seems to consider friction (µk) as highly relevant compared to the other
participants. Additionally, the narrower densities of many features in the
tuned models could explain why the performance increases dramatically
from the general to those tuned models; participant 4 models similarity in a
predictable way, but somewhat differently from all the other participants.
Participant 9 also has tuned model distributions that differ substantially from
the general models, particularly with regard to the velocity (v) and slide
spectral centroid (Cf and Ca). On the other hand, participants 3, 7, and 10
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have tuned model distributions more similar to the corresponding general
model distributions, meaning that the general model was able to explain
these participants’ perceptual similarity judgments as well as possible with
the given data.
Nonetheless, it is difficult to conclude much about the participants for

which the modeling does not perform well. The predicted models of these
participants could be accurate representations of their perceptual structure
within the limitations of the used dataset. The poor prediction performance of
their models could be explained by their inconsistent rating strategies among
different surfaces. It is also possible that they relied on other tactile cues not
presented in the data (e.g., thermal conductivity, stickiness, absorbency).

2.6 Summary

This chapter presented a new method for modeling and explaining how
individual people make perceptual similarity judgements from specific haptic
interactions. Unlike more traditional approaches, our method considers
information taken from short windows of time during specific interactions
instead of general surface characteristics. Because the method considers
interaction specifics, it can potentially provide a deep level of explainability.

Although our method performed moderately for predicting general percep-
tual representations and better for some individual participants, this work
has several limitations and sources of variability that we believe limited the
potential performance; many of these factors could be individually addressed
in future work and experiments.
The dataset has a limited number of participants who each made a lim-

ited number of surface comparisons. Likely, with more participants, more
surfaces, and more surface comparisons, there would be less noise in the
similarity ratings, and it would be possible to learn more predictive mod-
els. Additionally, the participants never compared two of the same surface.
Comparing identical surfaces could provide valuable information about the
consistency of user ratings as well as a powerful comparison that the model
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might have been able to use to more strongly cluster similar surfaces.
We used a limited set of haptic features to represent the finger-surface

interactions. While these features do correspond to primary tactile percep-
tual dimensions, it might be that secondary properties also contribute to
similarity perception. As mentioned earlier, surface thermal conductivity
was not included. There are additional vibration-related features, such as
the spread or skewness of the frequency spectrum [SBKS20], that we did
not include, and that could be included in future studies. Additionally, there
is some evidence that not only temporal but also spatial features of sur-
faces play a role for perception during both static and dynamic exploration
[WLH11; WSL+13]. As explained earlier, it is also possible that human sim-
ilarity judgments do not rely on estimation of physical quantities but rather
solely on statistical variations in the tactile signals [FS19; MT22]. In the
future, this hypothesis can be tested by implementing unsupervised learning
methodologies on unsegmented tactile signals elicited from finger-surface
interactions.

Our method did not account for the possibility that people can use varying
strategies to judge surface similarity. However, we believe that with minor
changes this method could be extended to account for at least some strategic
variance. The opportunity to provide strategic diversity lies in how probabil-
ity mass is assigned to individual interaction segments, specifically how the
vectors g and h are defined in Equation (2.2). As described in Section 2.2.3.2,
we assigned mass uniformly across all segments. Because segments are sam-
pled using discrete time windows, this means that low-velocity regions of
the interactions automatically have a higher concentration of probability
mass than high-velocity regions and thus contribute more to the Wasserstein
distance. As a strategy, this could be described as participants weighing
regions of low-velocity more heavily than others. However, normalizing the
probability mass assignment by velocity (low-velocity segments have lower
mass and high-velocity segments have higher mass) represents a different
strategy where unique regions of the feature space are weighed indepen-
dently of the velocity. These are just two examples, but there are many
more strategies that can be captured by modifying the probability mass
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assignment.
Overall, our method was able to model similarity judgments of many

participants with moderate accuracy. The general model performances
demonstrate that similarity judgments are extremely complex, and more
information and method flexibility are necessary to capture judgments more
accurately. However, even with our limited number of features, small model
size, and simple mass-assignment strategy, we did find some consistent
patterns explaining similarity judgments. By tuning models to specific par-
ticipants, we found that the judgments can be explained more accurately in
many cases. We believe these initial results are promising for the utility of this
method to explain complex perceptual processes and how different people
weigh various tactile features; future experiments could more precisely test
how individual participants use different features. Moreover, given surface-
finger interaction data or computed features from two different surfaces,
our model can give a good approximation of the perceived similarity of these
two surfaces without the need for time-intensive perception experiments.

In general, we believe our approach can help derive a deeper understand-
ing of human tactile perception that can be applied across multiple domains.
For example, by considering which tactile properties are relevant in an indi-
vidual’s texture preferences, recommender systems could suggest particular
clothing or other textured objects. These properties could be captured by a
haptic robot that learns what exploratory procedures most efficiently elicit
the relevant data. Alternatively, haptic rendering systems could generate
more realistic virtual textures by altering specific characteristics of the haptic
output to better match the patterns seen in real textures over short time
windows.
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Unsupervised Feature
Learning for Predicting

Human Perception of
Haptic Properties

In Chapter 2, we investigated how humans perceive haptic similarity during
specific interactions with different surfaces. The modeling method used a
fine-grained approach, comparing distributions of features captured from
short time segments of full interactions. We used a small set of predefined
features, developed a model directly by comparing multiple pairs of interac-
tions, and tried to incorporate mechanisms into the method to account for
individualistic behavior. While this method is a useful tool for understanding
the perceptual patterns of individual humans, it is not clear how to general-
ize it to robotic haptic perception, where a more general understanding of
haptic interactions might be preferred.
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The work in this chapter focuses on bridging the gap between robot
and human tactile perception. We present two separate studies where
we predict human adjective descriptions of objects from data gathered by
a robot during various exploratory procedures. In the first, we predict
a large number of binary adjective labels for many objects, and in the
second, we predict scaled adjective ratings for those same objects. In both
cases, we use unsupervised feature learning methods to extract compressed
representations of interactions. The work presented in this chapter has been
published as:

B. A. Richardson and K. J. Kuchenbecker. ‘Improving Haptic Adjective
Recognition with Unsupervised Feature Learning’. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA).
2019, pp. 3804–3810,
and
B. A. Richardson and K. J. Kuchenbecker. ‘Learning to Predict Percep-
tual Distributions of Haptic Adjectives’. In: Frontiers in Neurorobotics
13 (2020), pp. 1–16.

3.1 Introduction

Much of modernmachine learning focuses onmodeling tasks for which inputs
are sorted into discrete categories, such as image classification for visual
data and speech recognition for audio data, e.g., [DDS+09; GBC16]. In the
domain of haptics, machine learning is used to pursue similar classification
tasks in which models aim to recognize specific objects [SLCD16; XLF13]
or surfaces [BK17; FL12] from data gathered during haptic interactions.
Typically, a model is trained on a large amount of tactile data that are
manually labeled; given new tactile data, it can then predict the object or
surface from which the data were captured. Although haptic recognition
is an important task that humans perform well [KLM85], it is limited in
its applications because the classification categories are constrained to a
specific set, which restricts the experiences that can be recognized and
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prevents generalization. For example, if a robot is trained to recognize
specific textures or objects, it has no way to identify anything that it hasn’t
experienced before. Given the limitations of recognition tasks, learning
higher-level semantic attributes that can be applied to new experiences can
improve generalization; these attributes could include structural haptic cues,
like size, or substance-related adjectives, like hardness and texture [KLR87].
Additionally, these machine-learning implementations are rarely trained

directly on raw data; instead, they are usually applied to a set of represen-
tative features extracted from the data, such as the maximum value of a
time-varying signal. In most cases, these features are meticulously designed
according to the data and for the specific application [CMR+15; SS13;
SSS15]. The main disadvantages of these hand-crafted features are that
they require expertise to design, are developed for specific tasks, and depend
on substantial assumptions about the relevant information in the data. Al-
though Hoelscher et al. [HPH15] demonstrated that simplified hand-crafted
features, such as a signal’s mean, can slightly outperform the more complex
features used by Chu et al. [CMR+15], this evaluation was performed on a
simpler multiclass classification task.

Various methods exist for extracting representations from raw data with-
out relying on carefully designed features. Neural networks can extract
many levels of abstracted representations from data while making very few
assumptions about the underlying structure [GBC16]. However, the learned
representations typically depend to some extent on the specific training
task. While research in transfer learning has shown that learned represen-
tations can be transferable to other tasks [Ben12; PY10], other methods
can find underlying structure independently of any task. Autoencoders,
for example, learn representations of data by compressing raw data into a
lower-dimensional space and then uncompressing the middle layer to match
the input data as closely as possible [HS06]. In the haptics domain, Madry et
al. [MBKF14a] avoided designed features by using an unsupervised feature
learning method called dictionary learning, but they tested their learned
features only on the concrete tasks of object classification and grasp stability
prediction.
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This chapter presents work towards enabling a robot to understand com-
mon objects through autonomous tactile exploration. We apply unsupervised
feature learning methods to haptic data gathered with rich tactile sensors
to learn abstract tactile descriptions. Specifically, we apply K-SVD [AEB06]
and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP) [MBKF14a]
to extract features from the haptic data in the Penn Haptic Adjective Cor-
pus (PHAC-2) created by Chu et al. [CMR+15]. We first detail how these
algorithms are applied to the data to extract features. We then perform two
experiments with these learned features.
In the first experiment, we compare the learned features directly to the

hand-crafted features of Chu et al. [CMR+15] in multiple binary classi-
fication tasks. We use SVM to perform the classification. For the second
experiment, we develop and evaluate a modified ordinal regression method
to predict distributions over scaled haptic adjective ratings from the same
learned features. In both cases, we measure the contribution of different ex-
ploratory actions and haptic sensor modalities to the learning and prediction
of the adjectives.

3.2 Background

3.2.1 Learning high-level representations

Various work has focused on teaching robots abstract concepts and repre-
sentations that can be extended to new environments and tasks. Instead
of classifying specific objects, Sinapov et al. trained an algorithm on tactile
and visual data to determine whether two separate observations are from
the same object [SS13]. By training on limited comparisons, the algorithm
accurately individuated many unseen test objects. This framework could
incrementally train with new observations while simultaneously identifying
new objects. Researchers have also used machine learning to accurately
identify certain tactile events, such as slip [SHC+15; VVPH15]. These
events are object independent and can be applied to a variety of haptic
interactions. Chu et al. trained multiple SVMs on tactile and kinematic data
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to identify which adjectives from a predefined set should be attributed to
an object [CMR+15]. Zineb et al. trained a zero-shot learning algorithm to
classify unseen objects by identifying haptic attributes of an object and then
matching them to the object attribute labels [AGCC18].

3.2.2 Unsupervised learning

Although they are not frequently used in haptics, feature-learning algorithms
have largely outperformed and replaced traditional methods of hand-crafted
feature selection in computer vision. Researchers have used deep learning
to demonstrate that these learned representations work well and can often
be used in multiple learning tasks [Ben12].

Autoencoders are a type of artificial neural network that learns represen-
tations, or codings, of data by compressing data into a lower-dimensional
space and then uncompressing the data to match the original input as closely
as possible [HS06]. Because they try to reduce the error between the input
and the reconstructed output, they learn the coding in an unsupervised man-
ner and are task independent. Autoencoders have been shown to generate
robust features [VLBM08].

Another method of generating features is unsupervised dictionary learning,
in which dictionaries of basis vectors are learned. One well-known dictionary
learning method that was inspired by the k-means clustering algorithm is
K-SVD [AEB06]. In an unsupervised manner, K-SVD learns overcomplete
dictionaries of basis vectors, or codewords, for sparse representation of raw
data. Hierarchical Matching Pursuit (HMP) [BRF11] is an extension of K-
SVD, learning dictionaries on small spatial patches of images; its inventors
have shown the utility of this method in learning features for object, scene,
and event recognition in images. ST-HMP extends HMP to tactile data by
incorporating temporal information into the feature extraction [MBKF14a].
The features learned with both HMP and ST-HMP have been successfully
used for multiple, distinct tasks.
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3.2.3 Scaled Adjective Ratings

A standard way to capture richer information about human perception is to
allow human raters to classify samples with discretization levels that are
finer than a binary decision. One experimental method that yields this richer
information is a sorting task. By allowing raters to sort materials by similarity
and then analyzing the results using multidimensional scaling, Bergmann
Tiest and Kappers [BK06] were able to compare perceived compressibility
and roughness across many different materials. Hollins et al. [HFRY93]
used a similar procedure to determine that hardness/softness and rough-
ness/smoothness are primary, orthogonal dimensions of tactile perception,
and that springiness, or the elasticity of a material, might correspond to
an additional primary dimension. Using similar methodology, Hollins et al.
[HBKY00] identified sticky/slippery as a third, less salient dimension of
tactile perception. Another method is to have subjects rate tactile stimuli on
a scale, which was the method used to gather the dataset that we will use
for our experiments.

3.3 The PHAC-2 Dataset

In an effort to understand the relationship between raw tactile informa-
tion and human perception of haptic interactions with objects, Chu et al.
[CMR+15] collected the PHAC-2 dataset using two similar experiments. For
the first, a robot equipped with state-of-the-art tactile sensors repeatedly
touched 60 objects. For the second, human participants explored the same
60 objects in controlled conditions, providing multiple types of haptic de-
scriptions for each object. The experiments were designed to provide the
robot and humans with maximally similar experiences.
The 60 objects were selected from everyday items and constructed from

common materials with the goal of providing a wide range of tactile experi-
ences that would stay consistent throughout the study. To be included, an
object had to be able to stand stably on a table and provide two approxi-
mately parallel, vertical, opposing surfaces with the same uniform texture.
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All objects are between 1.5 and 8.0 cm thick and at least 10 cm tall to
facilitate two-fingered exploration. The selected objects can be clustered
into the following eight categories: 16 foam objects, 5 organic objects, 7
fabric objects, 13 plastic objects, 12 paper objects, 2 stone objects, 2 glass
objects, and 3 metal objects.

3.3.1 Robot Exploration

As shown in Figure 3.1, a Willow Garage Personal Robot 2 (PR2) equipped
with two BioTac tactile finger sensors (SynTouch LLC) was used to gather
multi-modal haptic data. It performed an identical series of interactions with
each of the 60 objects ten times, for a total of 600 trials. The BioTac, which
is designed to imitate the sensing capabilities of a human fingertip, measures
overall pressure, vibration, temperature, heat flow, and fingertip deflection.
The robot performed the same four exploratory procedures (EPs) [LK93]
for each trial in the following order: Squeeze, Hold, Slow Slide, and Fast
Slide. These EPs were designed to imitate the frequently used human EPs of
Pressure, Static Contact, and two speeds of Lateral Motion. Because humans
prefer to determine distinct object properties using individual EPs [LK93],
it is reasonable to expect that certain robot EPs might discriminate some
object properties better than others. Each BioTac measured the absolute
steady-state fluid pressure (PDC), dynamic fluid pressure (PAC), steady-
state temperature (TDC), heat flow (TAC), and voltages on 19 spatially
distributed impedance-measuring electrodes (E1:19). PAC was sampled at
2.2 kHz, and the other channels were sampled at 100 Hz.

To perform Squeeze, the PR2 slowly closed its gripper at constant velocity
until the value of PDC reached a predefined threshold, after which it slowly
opened the gripper to the original position. During the Hold EP, the gripper
was closed for ten seconds to a position that was halfway between the gripper
distance at initial contact with the object and at the PDC threshold during
Squeeze. To perform Slow Slide and Fast Slide, the gripper was closed by 20%
and 10%, respectively, of the Squeeze distance, moved downward by 5 cm at 1
and 2.5 cm/s, respectively, and then released. For a more detailed description
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Figure 3.1: Detailed views of the BioTac-equipped PR2 hand interacting
with the Blue Sponge object, and a diagram showing the internal
components of the BioTac sensor.

of the robot experiment, please see Chu et al. [CMR+13; CMR+15].

3.3.2 Human-Participant Study

To capture how humans describe haptic interactions, thirty-six people took
part in an experiment in which they haptically explored objects and provided
descriptions. All procedures were approved by the University of Pennsylva-
nia’s Institutional Review Board under protocol #816464. Participants gave
informed consent and were compensated $15 for participation. The cohort
of participants contained 34 right-handed and 2 left-handed people, with
10 males and 26 females between the ages of 18 and 21 years. All partic-
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Figure 3.2: A human participant touching the Blue Sponge object during the
experiment.

ipants were students at the University of Pennsylvania and had normally
functioning arms and hands.

3.3.2.1 Experimental Procedure

The participant sat at a table at which the objects were presented. Individual
objects were suspended from a ring stand above the table surface so that
the participant could neither lift nor move the object. A large vertical panel
prevented the participant from seeing their hand or the object. Additionally,
the participant wore noise-cancellation headphones playing white noise to
block ambient noise and any sound generated during interaction with the
objects. To imitate the limitations of the PR2, the participant was instructed
to use only their thumb and index finger from one hand. Additionally, they
were allowed to use only a fixed set of exploratory procedures when probing
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the objects: pressure, enclosure, static contact, and lateral movement. Fig-
ure 3.2 shows an image of a participant mid-experiment. Because Chu et al.
[CMR+15] wanted to understand natural perceptually grounded language,
participants were not coached in any way about how to define or apply the
haptic adjectives used in the study.
To make the experiments more manageable, the 36 participants were

split into three groups of 12, each of which was assigned a unique set of 20
objects (one third of the full set of 60 objects). The 12 participants from
each group interacted only with the 20 objects assigned to their group. For
each participant, the experiment was split into two stages. The first was
used to familiarize the participant with the procedure, and the second was
used to gather concrete data. In both cases, all 20 objects were presented
in a random order, and the participant touched a compliant stress ball
between objects to cleanse his or her haptic “palate.” In the first stage, the
participant freely described the feeling of each object to the experimenter.
In the second stage, the participant was asked to rate each object on both
binary and scaled ratings of pre-determined haptic adjectives while they
were interacting with the object. The participant first selected the binary
labels from a list of 25 haptic adjectives that were displayed in random order
on a screen. Then the participant rated the object on a five-point scale for
the ten basic haptic adjectives hard, soft, rough, smooth, slippery, sticky,
cold, warm,moldable, and springy. Motivated by a lack of consensus in the
literature, these scaled ratings were collected to test whether certain basic
haptic adjectives have antonymous relationships and can be considered to lie
along relevant tactile dimensions [GDM+10; PDVG03]. The 25 binary haptic
adjectives were investigated in detail by Chu et al. [CMR+15]; however, the
scaled ratings were not studied.

3.3.2.2 Scaled Adjective Ratings

Each of the 60 objects was rated on a scale that included 1 – “not at all
(e.g., hard)”, 2 – “slightly (hard)”, 3 – “somewhat (hard)”, 4 – “(hard)”,
and 5 – “very (hard)”, for the ten basic haptic adjectives listed above. These
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Figure 3.3: The 60 objects of the PHAC-2 dataset along with all the scaled
adjective ratings given by participants. The objects are shown
in the same three groups of 20 that were used in the study.
Colored bar length is proportional to the number of responses
the indicated rating received. At a glance, it is clear that hard
and soft are antonyms, whereas moldable and springy seem to
be synonymous.

adjectives are considered by some to comprise five basic antonym pairs
that lie along relevant, and in some cases primary, dimensions of tactile

3.3 | The PHAC-2 Dataset 65



perception [HBKY00; ONY13]. The posited antonym pairs are hard – soft,
rough – smooth, slippery – sticky, cold – warm, and moldable – springy.
The full set of responses for all 60 objects is shown in Figure 3.3, including
the names and small pictures of the objects.

3.4 Unsupervised Feature Learning

In this work we apply dictionary learning methods to the PHAC-2 dataset.
We use dictionary learning algorithms because they are intuitive, fast to train,
have a limited number of parameters, and have proven effective on tactile
data. By learning features from such a diverse dataset and using them for
multiple tasks, we demonstrate the effectiveness, versatility, and robustness
of unsupervised feature learning methods on haptic data. We will compare
the learned features to hand-crafted features on binary classification tasks
for each haptic adjective, and we will use the same features to learn to
predict the distributions of the scaled adjective ratings. In the following
subsections we provide additional detail the unsupervised feature learning
methods K-SVD and ST-HMP and how we use those to extract features from
the raw PHAC-2 BioTac data.

3.4.1 K-SVD for Dictionary Learning

K-SVD [AEB06] is a well-known algorithm for learning a matrix dictionary
composed of unit normal vectors, conventionally referred to as atoms. The
learned dictionary is then used to represent data as sparse linear combina-
tions of atoms. More precisely, given a data array Y = [y1, ..., yM ] ∈ Rn×M

with M observations, each a vector of length n, K-SVD learns a K-atom
dictionary D = [d1, ..., dK ] ∈ Rn×K and the corresponding matrix of sparse
codes X = [x1, ..., xM ] ∈ RK×M by solving the optimization problem

min
D,X
||Y −DX||2F subject to ||xm||0 ≤ T,

for m = 1, ...,M ,
(3.1)
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where || · ||F denotes the Frobenius norm, || · ||0 denotes the L0 norm (which
simply counts the nonzero entries), and T is the sparsity constraint, which
upper-bounds the number of nonzero entries in each column of X.
K-SVD solves the above optimization problem using a greedy alternating

iterative approach. In the first step of each iteration i, the dictionary D(i−1)

is held constant and used to find X by solving the following M distinct
problems

min
xm

||ym −D(i−1)xm||22 subject to ||xm||0 ≤ T,

for m = 1, ...,M .
(3.2)

In general, this minimization is NP-hard, so pursuit algorithms are typically
used to find an approximate solution. K-SVD typically uses the greedy-style al-
gorithm called orthogonal matching pursuit (OMP) [PRK93] to compute xm.
During each iteration, OMP calculates the residual r(i)m = ym −D(i−1)x

(i−1)
m ,

where x
(i−1)
m is the most recent estimate, finds the atom index k that mini-

mizes ||r(i)m −d
(i−1)
k ||2, and updates the corresponding entries of the estimate

to minimize the residual. This process repeats until T atoms are selected.
In the second step of each iteration, the dictionary and nonzero coeffi-

cients are updated simultaneously using SVD. Only a single atom dk and
its corresponding coefficients xk, the kth row in X, are updated at a time.
To prevent the introduction of new nonzero elements, SVD considers only
the observations ym that use dk, and thus only the nonzero elements of xk.
After each atom has been updated, the new dictionary is used to compute
the next sparse code matrix.

The minimization can be performed for a predefined number of iterations
or until the reconstruction error reaches a predefined threshold. Once a
dictionary is learned, it can be used to compute sparse code representations
of new observations. These codes can be used directly or pooled to create
more abstract features.
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3.4.2 Spatio-Temporal Hierarchical Matching Pursuit

ST-HMP applies K-SVD to individual frames from a temporal sequence of
spatially distributed tactile data, where each frame is a 2D tactile image
[MBKF14a]. To construct the observation matrix Y used to train a dictionary,
the individual tactile images are partitioned into small overlapping 2D spatial
patches with size p× p. The observations corresponding to each 2D patch
from each image are treated as single elements yi of Y . Thus, each tactile
image corresponds to several columns of Y . Once a dictionary is learned,
it can be used to compute sparse code representations of the patches from
individual tactile images.

To extract features from the sequences of tactile images, the sparse codes
are spatially and then temporally max pooled. To perform spatial pooling,
the tactile image is split into spatial cells Cs, each containing a number of
patches. To form the feature vector for a cell, the sparse codes representing
each patch in a single cell, {xi|i ∈ Cs}, are max pooled over each component
xm
i , where xm

i is the m-th component of xi. This pooling is done for all cells
at varying scales, and the feature vectors for each cell are concatenated. A
similar process is performed for temporal max pooling, where the feature
vectors from tactile images within a temporal cell Ct are max pooled over
each component. This pooling is also done at varying scales, resulting in a
single feature vector for each tactile sequence.

3.4.3 Feature Extraction

Whereas Chu et al. used hand-crafted features to learn haptic adjectives, we
use the unsupervised feature-learning methods described in the previous
section to extract representations from the multi-modal haptic data. This
is not a trivial problem given the diversity of tactile signals and variability
in the lengths of interactions. The PHAC-2 database contains sequences of
both scalar (PAC , PDC , TAC , TDC) and spatially distributed data (E1:19)
from four EPs of varying length, examples of which are shown in Figure 3.4.
We use K-SVD with the addition of temporal max pooling to learn features

68
3 | Unsupervised Feature Learning for Predicting Human Perception of Haptic

Properties



for the scalar signals and the ST-HMP algorithm to extract features from
the electrode signals. First, dictionaries are learned on tactile sequences.
These dictionaries are then used to compute sparse code matrices for the
individual tactile sequences. Finally, the sparse codes are max pooled to
create the feature sets. This section describes in greater detail how we adapt
the existing methods to the tactile data from the PHAC-2 dataset.

Figure 3.4: Scalar and electrode signals from the robot’s two fingers over
time during execution of the Fast Slide EP on the Blue Sponge
object.

3.4.3.1 Dictionary Construction

A set of dictionaries was learned for each combination of the five sensor
signal types and the four EPs for a total of 5 × 4 = 20 sets of dictionaries.
Each dictionary was trained on data taken only from a single sensor signal
type during a single EP. Six randomly selected trials per object comprising
60% of the total number of trials formed the training set for each dictionary.

3.4.3.2 Scalar Signal Feature Extraction

Motivated by the success of researchers who have used K-SVD to perform suc-
cessful classification and forecasting from scalar time-series data [CZHL15;
RDE16], we use K-SVD with temporal max pooling of sparse codes to extract
features from the scalar BioTac data signals.

To construct the observation matrix Y ∈ Rn×M , we cut tactile sequences
from the dictionary training set intoM overlapping vectors of length n. Each
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vector becomes an observation yi in Y . The learned dictionary can then be
used to compute sparse codes for individual sequences.
To extract features from a tactile sequence, we temporally max pool the

sparse codes. A sequence is first split into temporal cells of multiple sizes.
The sparse codes that represent the observations contained in or overlapping
each cell are max pooled. Finally, the aggregated sparse codes from each
cell are concatenated to form the feature vector for a single sequence. In
our case, almost all of the sequences were partitioned into 16, 8, 4, 2, and 1
cells for a total of 31 temporal cells. Fast Slide sequences from PDC , TAC ,
and TDC were only long enough to split into 8, 4, 2, and 1 cells.
Because each observation yi contains time-series data, the dictionary

atoms represent common temporal patterns of length n. When the value
of n changes, the signal is filtered in different ways. If n is large, atoms
will represent common low-frequency patterns in the data and will tend
to filter out high frequencies. On the other hand, if n is small, atoms will
represent common high-frequency patterns. To ensure that we captured
many frequency components from the signals, we trained dictionaries for
multiple values of n. For the 100 Hz signals (PDC , TAC , TDC), the values
of n were 10, 25, 50, and 100, which correspond to 0.1, 0.25, 0.5, and 1 s,
respectively. The observations overlap by 5, 15, 40, and 90 frames, respec-
tively. The larger overlaps were necessary to acquire enough observations
from a single trial. For the 2.2 kHz PAC signal, the values of n were 22, 44,
110, and 220, which correspond to 0.01, 0.02, 0.05, and 0.1 s, respectively.
In each of these cases, the observations overlap by 0.5× n frames.

3.4.3.3 Electrode Array Feature Extraction

Because the electrode signals are spatially distributed on the BioTac sensor,
we use ST-HMP to extract features from this data. Following work by Chebo-
tar et al. [CHS+16], we arrange the 19 electrode measurements from each
finger into a 7×3 rectangular array. The approximate relative positions of the
electrodes are maintained in the array, and each of the two extra array values
is interpolated from the electrodes surrounding it. An example of how the
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t = 0 s ... t = 1 s ... t = 2 s

Figure 3.5: One of the electrode arrays from the signals shown in Figure 3.4.
Darker colors in the array represent a lower measured voltage,
which corresponds to more inward deformation of the finger
surface.

electrode array values change over time during an EP is shown in Figure 3.5.
Following the procedure described by Madry et al. [MBKF14a], the 7 × 3

arrays from the two BioTac fingers are then concatenated along one of the
long edges to form a larger 7×6 array. There are complex arrangements that
might more accurately represent the possible spatial relationships between
electrodes, but we will not explore them here.
ST-HMP is performed on the sequences of 7 × 6 tactile images. A 3 × 3

patch is scanned over each training image and added to the observation
matrix, which is in turn used to learn the dictionary. Sparse codes extracted
from individual sequences are max pooled as described in Section 3.4.2. We
divided each image into 9, 4, and 1 cells for a total of 14 spatial cells. The
tactile sequences were divided into 16, 8, 4, 2, and 1 cells for a total of 31
temporal cells.

3.5 Experiment 1: Binary Adjective Classification

To evaluate the effectiveness of the learned features for separately classifying
each binary adjective in the PHAC-2 database, we trained multiple classifiers
that each use a linear support vector machine (SVM) with the L2 norm
metric. The classifiers were used both to optimize various parameters of
the feature-learning algorithms and to test the effectiveness of the learned
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features on adjective classification. Dictionaries learned on scalar signals
were optimized for observation length n, and all dictionaries were optimized
over dictionary size K and sparsity constraint T .

3.5.1 Training and Testing Sets

To train adjective-specific classifiers, we used different training and test splits
for each adjective. 10% rounded up of both the positively and negatively
labeled objects were randomly selected to form the test set for each adjective
classifier. The rest of the objects were put in the corresponding training
set. All ten trials for each object were put in the same set to prevent the
classifier from accidentally learning to classify objects instead of adjectives.
So that we could directly compare our results, we used the same training
and test sets as Chu et al. [CMR+15]. However, in an effort to avoid the most
severely imbalanced sets, we analyzed only 19 of the 25 original adjectives,
excluding those with fewer than three positively labeled objects.

3.5.2 Training the Classifier

To analyze the many sets of features extracted from each BioTac sensor for
every EP, we trained multiple classifiers for each adjective. Cross-validation
sets were created by randomly selecting 10% rounded up of both the posi-
tively and negatively labeled objects from the training set. Because many of
the adjectives have imbalanced labels, we measure the performance of our
classifiers with the F1 score, which is calculated using the equation

F1 = 2 · precision · recallprecision+ recall , (3.3)

where precision is the fraction of total positive classifier predictions that
are correct, and recall is the fraction of positive examples that are correctly
classified. The F1 score was averaged over 100 randomly selected cross-
validation sets to measure the performance of each classifier. Cross-validation
was used to optimize dictionary learning and sparse code pooling parameters
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as well as the SVM regularization parameter C and the decision threshold.

3.5.3 Results

To obtain the following results, we first trained a set of dictionaries for each
EP-signal pair using cross-validation to optimize dictionary parameters as
described above. Using the features extracted with the optimized dictionaries,
we trained classifiers on the adjective-specific training sets, as described in
Section 3.5.1, and then evaluated on the testing sets, which were held out of
the entire training and optimization process. The F1 score was again used
to evaluate the classifier performance on the test sets.

3.5.3.1 Optimized Dictionary Parameters

Dictionary parameters were separately optimized for each EP-signal pair.
Specifically, the optimal parameters were chosen to maximize the average
F1 score across all adjectives. In some cases, multiple sets of parameters
performed equally well during cross-validation. In those cases, multiple
dictionaries were learned for a single EP-signal pair. As an example, the
optimized parameters for the EP Fast Slide are shown in Table 3.1. In all
cases, the sparsity constraint T was 3 and 4 for the scalar and spatial signals,
respectively. The observation length n was similar for each sensor signal
type across EPs with the exception of PDC , which had longer observation
lengths for Squeeze, Hold, and Slow Slide.
Of note are the shorter observation lengths for PAC and PDC , which

demonstrate that high-frequency components and transient information from
the pressure sensors are more relevant than long-term trends. Conversely,
high-frequency components are less relevant in the temperature sensors.
Additionally, the smaller dictionary sizes for the temperature signals and
electrodes demonstrate that fewer basis vectors are needed to accurately
represent their variations and therefore that there is less variation in these
data.
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3.5.3.2 Performance by Exploratory Procedure

To compare our approach to that of Chu et al. [CMR+15], we first analyzed
how well classifiers trained on data from individual EPs performed on each
adjective. A classifier was trained for each EP using the concatenated features
extracted from each sensor signal type. The results are shown in Table 3.2,
with adjectives ordered by the number of positively labeled objects in the
training set. We compared our F1 scores directly to the maximum scores
achieved between both the static and dynamic features used by Chu et al.
The learned features substantially outperform the hand-crafted features for
the majority of adjectives and EPs.

The mean over all of the individual F1 scores is 0.673, which is a significant
improvement over the results of both the static or dynamic classifiers from
[CMR+15]. Averaging their best scores across the static and dynamic feature
classifiers yields an F1 score of 0.371, so our approach performs about 80%
better. We also outperform their highest scoring combined-features classifier,
the MKL classifier, which achieved a score of 0.620, as reported in the
corrigendum to that article [CMR+16].

Table 3.1: Optimized dictionary parameters for the Fast Slide EP.

Signal Observation
Length n

Dictionary Size
K

Sparsity
Constraint T

PAC
22 80 3
44 80 3

PDC 25 50 3
TAC 100 50 3
TDC

50 10 3
100 10 3

E1 : E19 N/A 10 4
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Table 3.2: F1 scores across adjectives and EPs.

The symbols≫ and > represent relative increases in performance
from Chu et al.’s hand-crafted features [CMR+15] of more than 0.15
and 0.05, respectively. ≈ represents a difference of no more than
0.05. ≪ and < represent relative decreases in performance of more
than 0.15 and 0.05, respectively. Darker shadings indicate higher
performance.

Squeeze Hold Slow Slide Fast Slide PE*
smooth 0.709 ≈ 0.600 > 0.600≫ 0.600≫ 25
solid 1.000≫ 1.000 > 1.000 ≈ 1.000≫ 22

squishy 0.938≫ 0.929 > 0.821≫ 0.822 > 21
compressible 0.938≫ 0.983 > 0.966 > 0.929≫ 20

hard 1.000≫ 1.000≫ 0.984 ≈ 1.000 ≈ 20
textured 0.551≫ 0.444≫ 0.581≫ 0.444≫ 16

soft 0.829 > 0.923≫ 0.821≫ 0.757≫ 13
absorbent 0.889 > 0.750≫ 0.684≪ 0.857≫ 9
rough 0.364≫ 0.545≫ 0.500≪ 0.667 > 9
thick 0.776≫ 0.581≫ 0.522≫ 0.444≫ 9
cool 0.667≫ 0.667 > 0.692≫ 0.645≫ 8

slippery 0.842≫ 0.800≫ 0.571≫ 0.643≫ 8
fuzzy 0.303≫ 0.278≫ 0.270≫ 0.333≫ 6
porous 1.000≫ 0.690≫ 0.533≫ 0.377≫ 6
springy 0.541≫ 0.439≫ 0.389 > 0.383≫ 6
scratchy 0.462≫ 0.467≫ 0.467≫ 0.298≫ 5
hairy 0.412≫ 0.533≫ 0.500≫ 0.471 < 4
bumpy 0.429≫ 0.516≫ 0.857≫ 0.952≫ 2
metallic 0.889≫ 0.727 > 0.667≫ 0.667≫ 2

*PE indicates the number of positive examples in the training set.

3.5.3.3 Performance by Signal Type

As mentioned in Section 3.3, the BioTac is designed to imitate human tac-
tile sensing, using different types of sensors to measure skin deformation,
pressure, vibration, and temperature. Thus, it is of interest to determine
whether certain adjectives are more accurately classified by different haptic
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Table 3.3: F1 scores across adjectives and signals.
PAC PDC TAC TDC E1:19 PE*

smooth 0.600 0.600 0.621 0.625 0.600 25
solid 0.983 1.000 1.000 1.000 1.000 22

squishy 0.852 0.912 0.909 0.938 1.000 21
compressible 0.967 1.000 0.938 1.000 1.000 20

hard 0.983 1.000 1.000 1.000 1.000 20
textured 0.444 0.552 0.444 0.444 0.449 16

soft 0.679 0.976 0.769 0.927 0.952 13
absorbent 0.950 0.667 0.870 0.737 0.900 9
rough 0.696 0.462 0.750 0.824 0.391 9
thick 0.559 0.800 0.723 0.696 0.462 9
cool 0.783 0.643 0.833 0.667 0.692 8

slippery 0.769 0.783 0.857 0.667 0.700 8
fuzzy 0.385 0.267 0.290 0.286 0.274 6
porous 0.727 1.000 0.741 0.947 0.952 6
springy 0.364 0.353 0.333 0.444 0.609 6
scratchy 0.333 0.621 0.367 0.372 0.400 5
hairy 0.643 0.467 0.353 0.270 0.444 4
bumpy 0.455 0.690 0.621 0.444 0.900 2
metallic 0.857 0.714 0.818 0.667 0.571 2

*PE indicates the number of positive examples in the training set.

signal types. For example, do PAC and PDC do a better job of classifying
texture-related adjectives like smooth and rough while TAC and TDC excel
at classifying more temperature-related adjectives like cool and metallic? A
classifier was trained for each signal type using the concatenated features
extracted from each EP. The results are shown in Table 3.3. The overall
performance for each adjective is comparable to that of the EP-specific clas-
sifiers. The five sensor signal types perform similarly for many adjectives,
but there are some adjectives, such as bumpy, for which certain signal types
vastly outperform others.
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3.5.4 Discussion

Our results demonstrate that learned features greatly outperform hand-
crafted features on the task of adjective classification in almost all cases.
Additionally, we found that certain exploratory procedures and sensor signal
types are better at identifying specific adjectives, although performance
across all EPs and sensor signal types is similar for many adjectives.
When grouped by EP, the learned features consistently and significantly

improved the classification performance across all adjectives and EPs. All
three cases in which the learned features under-perform occur for the EPs
Slow Slide and Fast Slide. However, other EPs classify those adjectives more
successfully. Additionally, as expected, our classifier generally performs
worse as the number of positive examples decreases. Interestingly, the EPs
Squeeze and Hold classify slippery, which is typically considered a texture-
related adjective, more accurately than the two sliding EPs. Unsurprisingly,
however, the EPs Slow Slide and Fast Slide outperform the others on both
rough and bumpy. Similarly to Chu et al. [CMR+15], our classifiers struggle
to accurately identify smooth and textured, even though they both have
a relatively large number of positive examples. The learned features also
perform poorly on many of the texture-related adjectives. As Chu et al.
mention, this poor performance probably stems from the fact that the ridges
on the BioTac skin degraded over the course of data collection [CMR+15].

The learned features also performwell when grouped by sensor signal type,
displaying similar trends across all the adjectives. Again, many adjectives
are classified consistently across all the signal types. However, there are
some adjectives for which certain signal types perform much better than
others. For example, PAC , TAC , and E1:19 perform very well for absorbent,
whereas PDC , TDC , and E1:19 perform very well for porous and soft. It is
interesting to note that the signal types seem to perform well in the pairs
{PAC , TAC} and {PDC , TDC}. This pattern could indicate that there is
coupling between these signals in the BioTac. One surprising result is that
TDC classifies rough more accurately than any of the other sensor types.

One potential reason for the inconsistency in performance across adjectives
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could be how the dictionary learning parameters were optimized. Although
we chose parameters that maximized the F1 score averaged across all ad-
jectives, we noticed that these choices did not maximize the F1 score for
each individual adjective. On the contrary, the optimized parameters rarely
achieved the best results on any single adjective, but instead they were
the most consistent. Another strategy to optimize parameters could be to
determine which EP-signal pairs achieve the highest scores for each adjective
and then optimize each EP-signal dictionary to achieve the best results for
the associated adjective.

3.6 Experiment 2: Scaled Adjective Rating Prediction

Although unsupervised feature learning performs well, there are some limi-
tations to reducing haptic properties to binary ratings. One drawback is that
the binary labels are determined by taking the consensus of binary labels
provided by multiple humans, as described in Section 3.3.2 (or in other
examples by thresholding measured mechanical properties such as stiffness
[BRK18b]). In either case, a rich, continuous perceptual space for humans
is reduced to a much simpler binary space for an artificial system, which
requires selection of an arbitrary threshold and ignores any perceived differ-
ences in the strength of attributes. Additionally, associating a single label
with a trial ignores the natural variability in perception across individuals
and interactions. A self-aware human recognizes that some other people
would respond differently and might even be able to estimate the distribution
of reactions a population would provide. The work in this section explores
the more complex ordinal (scaled) ratings from the PHAC-2 dataset.
There are a variety of ordinal regression and classification algorithms

that attempt to model a latent variable underlying ordinal data [GPS+16].
However, these approaches typically account for a variable that underlies
the entire distribution of responses. In the case of the scaled ratings from the
PHAC-2 dataset, each of the 60 objects has its own distribution of labels for
each attribute, which depends on both the object and on the entire underlying
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perceptual distribution of that attribute. Said another way, different people
have different opinions about how to apply specific descriptions. For example,
some people might say a particular blanket is soft, while others perceive
it to be very soft. With enough data, these variations across people can
be captured. Thus, given a single interaction with an object, it should be
possible to predict the distribution of labels that interaction and object would
receive if experienced by a large number of people. Such functionality would
be useful for companies selling tangible products to quickly understand how
a particular material will be perceived by a range of possible customers.
However, we could not find any algorithm that can predict a distribution of
responses from a single interaction; all of them predict single labels.
In this section, we first present a method for capturing these perceptual

distributions and learning to predict them from raw data. Second, we present
the details of the model training procedure and our experiments. Finally, we
analyze both the modeling results and the collected haptic adjective ratings.
An overview of the full feature extraction and modeling process is shown
in Figure 3.6. As in the first experiment, we use the features generated by
K-SVD and ST-HMP. However, we did not do a comprehensive grid search
over hyperparameter values. Instead we simply used a 50% window overlap
for K-SVD with K = 40 for PAC , K = 25 for PDC and TAC , and K = 10 for
TDC and E1:19.

3.6.1 Capturing Perceptual Distributions

As described in Section 3.3, each of the 60 objects has approximately 12 rated
responses for each of the 10 adjectives. With each response selected from five
possible rating classes for each adjective, each object can be given a distinct
five-dimensional label La,o = {n1, n2, n3, n4, n5} for each adjective a, where
o represents the object and nxi is the number of times that the particular
rating xi was chosen by the participants for the selected adjective-object pair.

Given the collected ratings, there exists a unique probability distribution
of ratings for any given adjective-object pair, where for a given rating x, the
P (x|a, o) = nx/

∑
i nxi

. Additionally, because the ratings are ordinal, there is
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Figure 3.6: Summary of the data-processing pipeline. Samples from raw
sensor data (either subsequences or patches of 1D and 2D signals,
respectively) are collected and used to learn dictionaries in an
unsupervised manner. These are then used to extract features
from full exploratory procedure trials. A subset of the feature
vectors is to train neural networks to perform ordinal regression.
The learned models are tested on a distinct subset of feature
vectors.

a corresponding cumulative distribution function (CDF) defined for a discrete
random variable X such that FX,(a,o)(x) = P (X ≤ x) =

∑
xi≤x P (xi|a, o)).

More generally, the probability of a particular response is a function of the
random variable.
In order to predict a probability distribution of adjective responses for a

single trial, we designed a method that trains a model to learn an approxima-
tion of the inverse of Fa,o(x) for all (a, o) pairs, along with how that inverse
function depends on the features extracted from raw data. Then, given new
features, the model can predict the inverse of F (x) for that specific trial,
and thus an approximate distribution of expected responses. The inverse of
F (x) is called the quantile or inverse cumulative distribution function and
is defined as F−1(p) = inf{x ∈ R : p ≤ F (x)}, p ∈ [0, 1]. The inverse CDF
for each adjective of the Blue Sponge object is shown in Figure 3.7. This
approach differs from traditional cumulative link models [Agr02] because it
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Figure 3.7: Inverse cumulative distribution function of each adjective for the
Blue Sponge object. Recall the meaning of the ratings: 1 – “not
at all (e.g., hard)”, 2 – “slightly (hard)”, 3 – “somewhat (hard)”,
4 – “(hard)”, and 5 – “very (hard).”

learns an inverse cumulative distribution function for each specific object
instead of for an entire population. The method works as follows.

Method Description During model training, each trial feature vector ft is
duplicated a fixed number of times W . For each duplicate ft,w, one extra
feature pw ∼ U{0, 1} is added to the end of the feature vector. Thus, each
duplicate of a trial is identical except for the last feature. The single labels
xi,(t,w) for the modified duplicates are assigned using F−1

o (pw), where Fo(x)

is the cumulative distribution function for the object being explored during
that particular trial. One can think of pw as indicating the position of the
rater in the population; it shows in a continuous way whether the associated
rating is near the low end, the middle, or the high end of the distribution of
all ratings for this interaction.
To predict the distribution of labels for a new trial, the feature vector is

again duplicated. However, in this case the extra variable is simply incre-
mented from 0 to 1. For each modified duplicate, one rating is predicted.
Therefore, any changes in the predicted rating across duplicates depend only
on the added variable. This method can thus predict the inverse cumulative
distribution function for single trials. The separate training and testing
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processes are highlighted in the last two columns of Figure 3.6.

3.6.2 Ordinal Classification

Using the features extracted by dictionary learning and our method for cap-
turing perceptual distributions, we trained models to learn how to predict
label distributions for new interactions. Because the adjective ratings are
ordinal (i.e., they have a relative order but no defined scale), we use ordinal
regression instead of traditional multi-class classification. Ordinal regres-
sion accounts for the ordered nature of the ratings, whereas multi-class
classification ignores it.

Specifically, we used the proportional oddsmodel neural network (NNPOM)
algorithm [GTH14]. NNPOM is an extension of the proportional odds model
(POM). POM estimates the inverse CDF of ordinal labels as a linear model of
the inputs [McC80]. NNPOM uses a single hidden layer of neurons between
the input and the POM; it thus estimates the inverse CDF as a linear model
of nonlinear basis functions from the hidden neurons. We chose this algo-
rithm because it has sufficiently high performance with low training times
compared to other common ordinal classification algorithms like support
vector machine (SVM) methods.

Separate and Combined Models With 20 separate feature sets for each
combination of sensor modality and EP, it was natural to train an adjective-
specific model for each feature set to determine which combinations perform
well for which adjectives. We used NNPOMwith a sigmoid activation function
to train each model. A total of 20 models, one for each feature set, was
trained per adjective.

We again run experiments to determine how each robot sensor modality
contributes to the learning and prediction of different haptic properties.
To learn the contribution of each sensor modality to adjective perception
and to determine whether performance is improved by including all sensor
modalities in one model, we trained additional NNPOM models for each EP;
these models merge one EP’s five learned representations from the sensor-
specific models. Specifically, the outputs of the hidden layer neurons from
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Figure 3.8: Neural network structure for the individual sensor model and
the combined model, each with one hidden layer. The combined
model takes as input the outputs from the hidden layers of five
individual models, one from each sensor modality.

the optimized sensor-specific models were used as the inputs to a combined
NNPOM model. The structure of the combined model is shown in Figure 3.8.
A total of four fully combined models, one for each EP, was trained for
each adjective to measure the overall performance change. To compare the
individual contributions of the sensor types, additional combined models
were trained while holding out the features from a single sensor (by setting
their features all to zero). Five of these holdout models were trained for each
EP-adjective pair. To train both the sensor-specific and combined models, we
used the NNPOM implementation developed by Gutiérrez et al. [GPS+16].

3.6.3 Model Training

To train and validate the models, we split the 60 objects into separate
training, validation, and testing sets for each adjective. Six objects were
used for each of the validation and testing sets, and the remaining 48 objects
comprised the corresponding training set. To prevent the classifiers from
learning to understand objects instead of adjectives, all ten trials for each
object were kept together in the same set.

We performed cross-validation by training models on the training set and
measuring their accuracy on the validation sets. This approach was used
to optimize the model parameter N , the number of neurons in the hidden
layer, over the set {1, 5, 10, 20, 30}, and the parameter λ, the regularization
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parameter, over the set {0.001, 0.01, 0.1, 1, 10}. During model training the
validation error was measured every ten iterations. After 150 iterations
with no decrease in error, the training stopped, and the model with the best
performance was kept.

Eachmodel was trained according to the process described in Section 3.6.1.
Each of the training feature vectors was duplicated 15 times, a different
random number p ∼ U{0, 1}was added to each duplicate, and the duplicates
were labeled using F−1

o (p) of the corresponding object o (for a total of 15
duplicates × 10 trials = 150 training examples per object). The validation
and test trials were duplicated 99 times with the added extra variable p

incremented by 0.01 from 0 to 1 noninclusive, and the ground-truth labels
were assigned in the same way as they were for the training samples.

Then for each adjective, four EP-specific combined models were optimized,
where each model trains using information from all five sensory modalities.
As shown in Figure 3.8, the outputs of the hidden layers of the optimized
sensor-specific models are used as inputs to the combined model. Again,
cross-validation was used to optimize N , λ, and the number of training iter-
ations. The training, validation, and test sets were again prepared according
to the process in Section 3.6.1 with some minor changes. In this case, the
training trials for the combined model are each comprised of the feature
vectors from all five sensor modalities. Each combined trial was duplicated
15 times, and a different random number p ∼ U{0, 1} was added to each
combined duplicate and copied to each sensor-specific feature vector. The
labels for the combined duplicates were assigned in the same way as above,
and the validation and testing trials were prepared similarly.

For each of the 40 combined models (4 EPs× 10 adjectives), five additional
holdout models were trained to measure the contribution of each sensor
modality to the system’s overall performance. Each holdout model has the
same parameters (N and λ) as the corresponding combined model, and
the number of training iterations was optimized on the validation set as
described above. For each of the five holdout models, the features from
a different single sensor model were held out of training and testing. By
measuring the difference in test error between the combined model and
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each of the holdout models, we can measure the relative contribution of
each sensor modality. There are a total of 200 holdout models (5 sensor
types × 4 EPs × 10 adjectives) in addition to the 40 combined models. For
each EP-adjective pair, there are a total of six types of grouped models: the
combined (nothing held out), PAC -holdout, PDC -holdout, TAC -holdout,
TDC -holdout, and E1:19-holdout models.

In all validation and testing, the performance of the models was measured
by taking the average across all trials of the per-trial macroaveraged mean
absolute error (MAEM ) metric, as defined by Baccianella, Esuli, and Sebas-
tiani [BES09]. We use MAEM because it measures error for imbalanced
ordinal datasets more precisely than traditional error metrics such as Mean
Absolute Error. Specifically, it normalizes the contribution to the error by
class. To define it for a single trial t, let the set of duplicate feature vectors
ft,w and associated labels yt,w be denoted Tdt, and let Xt be the set of
ratings xi that are represented in Tdt. With these definitions in mind, the
per-trial MAEM can be defined as:

MAEM
(
Φ̂, Tdt

)
=

1

|Xt|
∑

xi∈Xt

1

|Tdt,xi
|

∑
ft,w∈Tdt,xi

∣∣∣Φ̂(ft,w)− yt,w

∣∣∣ (3.4)

where Φ̂ represents the learned model, Tdt,xi
denotes the set of duplicates

with true labels yt,w = xi, and |Xt| and |Tdt,xi
| denote the cardinality of

the respective sets.

3.6.4 Evaluating the Human Participant Ratings

When considering the participant ratings, we first wanted to investigate how
well participants agreed on how to apply each set of scaled haptic adjective
ratings to each object. We quantified interrater agreement for each adjective-
object combination by calculating rwg, the most common such metric used
in the literature [ONe17]. It is defined as

rwg = 1− S2
X

σ2
eu

= 1− S2
X(

A2−1
12

) , (3.5)
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where SX is the observed variance in the participants’ ratings with the
chosen adjective scale on the chosen object and σeu is the variance of the
null distribution, which we set to the variance of a uniform distribution across
ourA = 5 categories. This metric is equal to one when all participants choose
the same adjective rating for an object, and it is zero when they choose
randomly among the categories. Negative values indicate less agreement
than what stems from random guessing; we do not set negative values to
zero, as is sometimes done, to preserve the information provided by the
calculation [ONe17].
Second, given the uncertainty in the current literature, we investigated

the extent to which participants actually used the five adjective pairs as
antonyms; we were particularly uncertain about the antonym relationships
between slippery and sticky, and between moldable and springy, which
have not been firmly established as antonym pairs. We investigated this
question by calculating Spearman’s rank-order correlation, ρ, between all
possible pairs of adjective ratings. Spearman’s ρ is a nonparametric measure
of rank correlation, similar to the Pearson product-moment correlation for
parametric data; we calculated it using the MATLAB function corr with
the ’type’ option set to ’spearman’. The magnitude of the resulting value
shows the strength of the association between the two involved adjectives,
with values near zero indicating no correlation. The sign of ρ shows the
direction of the association; synonyms have a large positive correlation, while
antonyms have a large negative correlation. We also evaluate the p-value
associated with each observed correlation, using α = 0.05 to determine
significance.

3.6.5 Results

We analyze how the study participants used the scaled haptic adjective
ratings, and then we investigate the extent to which features automatically
extracted from the raw tactile data can be used to learn distributions over
scaled adjective ratings.
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Figure 3.9: The boxplot on the left shows interrater agreement (rwg) for
each of our ten haptic adjective scales. The central mark of each
box indicates the median of the distribution across objects. The
edges of the box are the 25th and 75th percentiles; the whiskers
extend to the most extreme datapoints that are less than 1.5
times the interquartile range (IQR) away from the closer 25th
or 75th percentile mark. Outlier points outside this range are
plotted individually. The graph on the right plots the median of
rwg against its IQR for each haptic adjective scale.
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Figure 3.10: Spearman’s rank-order correlation ρ for all pairs of haptic ad-
jective scales, along with the associated p-value. To improve
readability, we omit these values for insignificant correlations.
Boxes showing strong synonyms are colored blue (including
the self-synonyms along the diagonal), while strong antonyms
are colored red.

3.6.5.1 Human Perception

Figure 3.9 shows the distribution of interrater agreement rwg across all 60
objects for each of our ten adjective scales. The adjectives sticky, hard,
cold, warm, and rough all have relatively high median values (> 0.75) and
relatively small IQRs (< 0.35). Soft and slippery also have relatively high
medians but more variation across objects. Smooth, moldable, and springy
have the lowest medians (< 0.70) paired with higher IQRs.

Our correlation analysis appears in Figure 3.10. We see a strong, significant
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antonym relationship between hard and soft (ρ = −0.71, p < 0.0001), as
well as between rough and smooth (ρ = −0.64, p < 0.0001). Sticky and
slippery are uncorrelated. Cold and warm appear to be weak, significant
antonyms (ρ = −0.30, p < 0.0001), whereas moldable and springy show
a strong, significant synonym relationship (ρ = 0.70, p < 0.0001). Both
moldable and springy are strongly positively correlated with soft, showing
participants used these three adjectives largely synonymously. Slippery is
strongly correlated with smooth (and anti-correlated with rough), showing
that participants used this pair largely synonymously. Hard and cold are also
significantly positively correlated with smooth and slippery. Interestingly,
sticky has no strong positive or negative correlations.

3.6.5.2 Robot Perception

To obtain the following results, models were first trained and optimized on
separate training and validation sets. To account for the variation in neural
network performance caused by the random initialization of the weights,
ten final models were trained for each of the six types of grouped models (all
sensory data streams together plus five holdouts) for every EP-adjective pair,
and these models were all evaluated on a testing set that was completely
held out during training and optimization. As a sample test-set result from
a single combined model, the predicted inverse CDFs of the adjective cold
for all ten Fast Slide trials from the plastic Cutting Board (CB) object are
shown in Figure 3.11 and compared to F−1

cold,CB . The average MAEM across
these ten trials is 0.4355, which is less than half a point on the scale from
1 to 5. Each trial has a different distribution because the recorded tactile
data are unique, due to slightly different initial conditions. Some predictions
are clearly quite close to the true labels, and in other trials the predicted
distribution differs from the true distribution by approximately one rating
point.

Model performance was measured by calculating the macroaveraged mean
absolute error per trial and then averaging over all the testing trials. The
average performance of every set of ten models is shown in Figure 3.12.
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Figure 3.11: Predicted distributions of the adjective cold for all ten Fast
Slide trials from the plastic Cutting Board object. The predicted
inverse CDFs are shown in dashed red, whereas F−1

cold,CB is shown
in blue (and is the same across all ten trials). The ratings mean
1 – “not at all cold”, 2 – “slightly cold”, 3 – “somewhat cold”,
4 – “cold”, and 5 – “very cold.” The average MAEM across all
ten trials is 0.4355.

The bars labeled “−None” display the average performance of the models in
which no sensors were held out. The labels for the remaining bars indicate
the sensor type that was held out. Error bars display the standard deviation
of performance across the ten models. The Kruskal-Wallis test was used to
determine whether the observed differences in performance between the
holdout models and the combined models are statistically significant; an
asterisk indicates p < 0.05. For certain adjectives, some EPs perform better
than others. For example, Fast Slide outperforms the other EPs for rough.
Additionally it is clear that certain sensory modalities are important for
modeling particular adjectives, and that these influential sensors can differ
across EPs for a single adjective.

3.6.6 Discussion

In this section we introduced a learning method for predicting perceptual dis-
tributions of haptic adjectives from single interactions. We used this method
to additionally test the effectiveness of unsupervised feature learning and
how certain exploratory procedures and sensory modalities influence haptic
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Figure 3.12: Average error of all ten trained models for each type of grouped
model, sorted by exploratory procedure and adjective; lower
error is better. Error bars display standard deviations across
ten trained models. The label of a single bar indicates the
sensor type that was held out during model training. Asterisks
mark statistically significant decreases in average performance
compared to the combined model “−None.”
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adjective prediction. The presented results demonstrate that our learning
method can successfully model a distribution of possible adjective labels for
a single interaction with an object that has never been previously touched.
Additionally, we found that certain sensory modalities and exploratory pro-
cedures were more significant to predicting specific haptic adjectives than
others. The analysis of the human labels allows us to evaluate how people
interpret the meaning of certain haptic adjectives and whether the adjective
pairs are indeed used as antonyms.

3.6.6.1 Human Labels

Haptics researchers have proposed the ten adjectives we studied as possible
antonym pairs representing both relevant and primary dimensions of per-
ception. We wanted to further test these propositions and also validate the
collected labels for our subsequent machine-learning investigations.

Even though this labeling task is in principle more straightforward that the
similarity rating task from Chapter 2, we found that the study participants
used some haptic adjective scales more consistently than others. These
patterns may stem from underlying dis/agreement about the definitions
of the employed adjectives, or they might come from the design of the
experiment, such as the chosen set of objects. Sticky stands out as having
high median agreement with low variation in agreement across objects.
As seen in Figure 3.3, only one object (Silicone Block) was rated “very
sticky.” Most other objects were rated “not at all sticky,” yielding the
overall high agreement about the use of this adjective. Sticky has no strong
positive or negative correlations with the other studied adjectives, but this is
because there are very few objects that were rated as sticky. Thus, we cannot
make strong claims about the relationship between sticky and other haptic
adjectives.

The full 1–5 scale was used much more frequently for hard, cold, warm,
and rough. Thus, we believe their high median agreement and relatively
small agreement variation across objects indicates that participants were
generally consistent with one another in how they applied these haptic ad-
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jectives. Indeed, all four of these adjectives have only one physically relevant
definition in a modern American dictionary [SL10], with the possible ex-
ception of warm, whose physical definitions pertain both to temperature
itself and to the ability of a material to keep the body warm. It is thus
reasonable to expect that all participants were applying approximately the
same definition as they made their hard, cold, warm, and rough ratings.
The weak, significant antonym relationship between cold and warm rein-
forces the conclusion that participants used these adjectives consistently; a
stronger antonym correlation might have been observed if we tested thermal
adjectives that were more closely matched in intensity, such as cool/warm
or cold/hot. Interestingly, we did find significant correlations between hard
and cold despite the strong agreement about definitions that don’t seem re-
lated. This phenomenon could be explained by hedonics, which argues that
human sensory perception is affected by emotional attributes. For example,
hard and cold could be correlated with higher arousal, whereas soft and
warm might be correlated with higher comfort [GDM+10].

Participants used the full range of ratings for both soft and slippery but
agreed less on their use than on that of the aforementioned adjectives. The
disagreement about soft most likely stems from the fact that it has two
distinct physically relevant meanings [SL10]: one pertains to being easy
to compress (the antonym to hard, as substantiated by a strong negative
correlation between these adjectives), while the other pertains to texture. In
contrast, slippery has only one physical definition [SL10], so the disagree-
ment on its use may instead stem from disagreement about intensity – how
slippery is “very slippery?”
The relatively low agreement about the words smooth, moldable, and

springy may be a warning to other researchers interested in using these
words in their studies. As with slippery, participants used the full range of
ratings for smooth; this haptic adjective has only one definition [SL10], so
the observed disagreement most likely stems from variations in how people
perceive smoothness intensity. We do not know why this adjective’s use
suffered more than others from the fact that we did not provide adjective
definitions or ground our scales with physical examples. Encouragingly,
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smooth was reliably used as an antonym to rough, again substantiating our
belief that variations in scaling (and not the fundamental definition of the
word) are responsible for smooth’s low interrater agreement.

In contrast to the other eight adjectives, moldable and springy are un-
common words in American English; moldable does not even have its own
dictionary entry [SL10]. Thus we believe that a lack of knowledge of the
intended meanings of these adjectives (centered on whether the surface
quickly returns when pressed and released) prevented participants from
being able to apply them consistently. This physical property is also difficult
to judge on hard materials, as they do not deflect perceptibly when squeezed;
consequently, the disagreement about moldable and springy may simply
reflect a human inability to perceive such differences for many of the chosen
objects. Without guidance, it seems that participants use both of these words
in a similar way as soft.

These findings validate the collected labels and shed insights on how these
ten haptic adjectives are used by everyday Americans. We believe other
researchers studying human and robot perception of haptic properties will
be able to design their own studies more efficiently by considering these
results.

3.6.6.2 Model Performance and Influence of Sensory Modalities

The variance of human perception is rarely represented in the labeling of data
or captured by machine learning. However, our proposed method demon-
strates that it is indeed possible to model this variance. We found interesting
differences in performance across adjectives and across EPs within single
adjectives. Additionally, by holding out each sensor modality separately
and training multiple models with the same architecture, we were able to
measure whether certain tactile data types are better predictors of certain
adjectives within single exploratory procedures. Many of the results make
intuitive sense, suggesting that our method captures relevant structure that
can describe various haptic attributes. As far as we are aware, ours is the
first method to predict the probability distribution over an ordinal variable
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from a single test trial.
For discrimination of hard, PDC seems to be the single most important

sensor modality; the increase in error for the EP Squeeze is by far the largest
increase for any holdout model for the adjective hard. Surprisingly, TDC

is also a valuable predictor. However, this finding could be explained by
the positive correlation between hard and cold, as shown in Figure 3.10.
Similar patterns are apparent in the perception of soft; again, pressure
and temperature seem to be important contributors. However, in this case
the spatially distributed fingertip deformation readings, E1:19, are more
important than PDC , probably because the perception of soft heavily relies
on cutaneous information [SL95].
Rough and smooth are more texture-related properties than hard or

soft. As might be expected, they depend more on PAC , PDC , and E1:19.
However, overall performance is weak, which could explain why no individual
sensor contributes to prediction dramatically more than any other. This low
performance aligns with previous analysis of this dataset, which found that it
is difficult to accurately predict rough and smooth even in a simpler binary
classification task [CMR+15], most likely due to the degradation of the
BioTac surface ridges over the course of data collection.

For slippery, it is interesting that the only large increases in error occurs
when TAC is held out, and that this increase occurs only for Slow Slide and
Fast Slide. Such behavior is reasonable because slippery pertains to sliding
friction and has a relatively strong correlation with cold. However, it is
surprising that the electrodes E1:19 don’t seem to play a significant role. For
Squeeze and Hold, it seems like slip information is encoded in every sensor,
although performance is weaker on average. The models predict sticky very
well. However, this good performance is almost certainly because the labels
for sticky have a strong bias toward “not at all sticky,” which makes it easier
to learn a model for sticky from these data. As such, it is more accurate to
say that the robot learned only an absence of sticky, and not actually the
feeling of sticky.

Cold is influenced more by pressure than by temperature sensors, whereas
warm is influenced more by the temperature modalities. Although it is not
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surprising that PAC is so important to prediction for Fast Slide, given the
dynamic nature of this EP, it is surprising that PAC seems to have more
influence on temperature-related adjectives than texture-related adjectives.
This unexpected dependence on pressure could be a limitation of the object
set, in that a majority of the thermally conductive objects are both hard and
smooth. It is possible that these correlated properties are easier to detect
than cold itself. Warm depends more on temperature sensors, which is
reasonable given that it was found to be more independent from the other
adjectives than cold.
The models for moldable and springy depend on many of the same

sensor modalities. For both adjectives, the electrodes E1:19 are significant for
every EP. Additionally, the EPs Squeeze and Slow Slide are both dependent
on TAC . These sensor modality influences are similar to those for soft.
Interestingly, both of these adjectives are highly correlated with soft and
each other, as shown in Figure 3.10. This finding may demonstrate that
certain object properties that are significant to humans’ judgment of multiple
haptic attributes are being captured by the robot sensors and used in the
modeling of adjectives.

There are a variety of potential limitations to our implementation of these
methods. Particularly, the dictionaries were not optimized for this learning
task. Thus, it is possible that certain sensory modalities provided less infor-
mation than might be expected. Additionally, the individual sensor models
were optimized separately from the combined model. By optimizing the
individual and combined models simultaneously, the learned representations
could likely be improved.

We also did not evaluate the model performance as a function of the num-
ber of random samples taken from the label distributions. Undersampling
could prevent models from learning how the distribution of labels correlates
with the tactile data, whereas oversampling could cause the model to overfit
the object label distributions. A potentially useful improvement could be
to determine how many random samples to take given the total number
of ratings for a particular object-adjective pair. Additionally, evaluating
whether certain training samples appear to be outliers from the primary
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response distribution could be useful. Similarly, we did not look deeply
into performance on a per-object basis. Our initial analysis demonstrated
that some models perform terribly on one or two objects while performing
excellently on the majority. Using a larger and more diverse set of objects
and collecting ratings from more human participants would likely improve
all of our results.
Because our ordinal regression method evaluates each adjective indi-

vidually, it ignores the strong positive and negative correlations between
adjectives. It might be possible to improve both performance and training
efficiency by implementing an algorithm that can learn all adjectives simul-
taneously, therefore incorporating these inter-adjective relationships into
the learning process.
We analyzed how the models performed over the full range of responses

when data from certain sensors were removed. However, it is possible that
certain sensory modalities might not have equivalent predictive power across
the full response range. For example, to determine the probability distribu-
tion of an interaction for the adjective rough, a model could use PDC to make
a distinction between the ratings {1,2,3} and {4,5}, but be unable to use it
to discern ratings within those two groups. Similarly, the electrodes E1:19

could provide information that allows the model to discriminate between
ratings 4 and 5. Analyzing how the contributions of sensor modalities vary
across the full range of ratings could provide greater insight into what type
of information is used to determine the haptic attributes of objects.

3.7 Summary

In this chapter, we used K-SVD and ST-HMP to extract features from multi-
modal haptic data. We used these features for binary adjective classification,
comparing them to hand-crafted features for 19 different adjectives, and
ordinal adjective prediction. We additionally evaluated how each individual
robot EP and signal type performed across tasks.

In the first task, using learned features greatly improved the classification
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of adjectives compared to using hand-crafted features, demonstrating the
viability of these methods for processing haptic data. Although the second
task didn’t have a baseline with hand-crafted features, the learned features
were sufficient to quite accurately predict ordinal haptic adjective labels. The
results also support previous work which suggests that individual EPs are
necessary to more accurately discern various object properties. Additionally,
it is necessary to acquire rich, multi-modal haptic sensory data, as certain
properties can be more accurately identified by different sensors. To further
evaluate the strength of these features, the methods could be compared to
similar algorithms like bag-of-features [SSS+09] and deep learning methods.
Although the learned features perform very well, separate dictionaries

were created for each EP-signal pair. However, it is not necessarily the case
that there need be separate representations for each EP; it’s possible that a
single dictionary or just a subset of atoms could be used for all EPs. Thus,
future work could explore the relationships between different dictionaries,
comparing how strongly dictionaries overlap across EPs.

We believe the work presented in this chapter is an important step toward
fully capturing the robustness and richness of human haptic perception.
Furthermore, because unsupervised dictionary learning and our method are
easily adapted to different sensor and data types, we believe our research
broadens the range of tasks that can be tackled with machine learning.
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Implicit Robot Learning of
Haptic Properties from

Sequential Interactions

In Chapter 3, we investigated how to use unsupervised feature learning
methods to predict human adjective ratings of objects from data gathered
during robot interactions with those objects. However, we looked only at
how well individual exploratory procedures were able to predict different
haptic adjectives. This choice ignores a fundamental aspect of autonomous
haptic exploration in the world, which is that information is accumulated
across many exploratory procedures over time.
In this chapter, we introduce and evaluate a method by which a hapti-

cally sensitive robot can learn robust, general representations of objects
by accumulating information over multiple exploratory procedures in an
unsupervised manner. We use a variational autoencoder to learn compressed
representations of the data, and the representation is updated over time as
more information is gathered through exploratory procedures. We rely on
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the concept of object permanence, assuming that a representation of a single
object remains relatively consistent across multiple interactions with that
same object despite never knowing its identity. The work presented in this
chapter is in preparation for Robotics: Science and Systems:
B. A. Richardson, K. J. Kuchenbecker, and G. Martius. A Sequential
Group VAE for Robot Learning of Haptic Representations. 2023. In
preparation for submission to Robotics: Science and Systems.

4.1 Introduction

When people physically interact with unknown items, they very quickly form
a perceptual representation of each object [KLM85]. This representation is
typically developed by integrating prior knowledgewith new information that
is gathered by performing exploratory procedures (EPs) [Gib62; LK87]. Each
characteristic EP elicits information about certain object properties that are
both implicit and explicit, but no one EP alone can provide a complete picture.
For example, by pressing into an object, we can determine its stiffness but
not necessarily its mass, shape, or size. By enclosing an object we can learn
its shape and size, whereas shaking an object provides information about its
dynamic properties and whether there are loose contents inside. Thus, we
might think that two objects are very similar after one EP, but we can quickly
disambiguate them by accumulating information from additional exploration.
To operate in and act upon the real world, autonomous robots will need to
have a similar ability to interact physically with objects in their environment,
accumulate information across sequential exploratory procedures, and form
haptic representations that are useful for real-world tasks.
One challenging aspect of this goal is how to accumulate information

over a sequence of interactions with the world. Information accumulation
has been investigated in haptic exploration for a variety of tasks including
surface classification [DGÉC14; FL12], haptic property identification [GS14],
and contour following [LAC17]. While high performance was obtained in
each of these tasks, they rely on task-specific supervised learning instead of
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learning general representations applicable to many tasks.
Besides simply perceiving object properties, learning robots need to ac-

quire and update useful representations of physical interactions with the
world. It is unlikely that a robot can be given a priori all the knowledge or
broad representative features it will need throughout its existence. Thus,
it should have the ability to learn descriptive factors for a wide range of
physical tasks. Unsupervised learning has been demonstrated to discover
expressive representations of tactile and haptic data that can perform well
across a variety of tasks [KSG+19; LSG+17; NGW+12; RK20; THHS20].
However, these representations are learned on huge amounts of data and do
not include explicit mechanisms for being updated.

We consider the task of learning comprehensive latent representations of
haptic properties from sequences of interactions with objects. Performing a
variety of EPs on objects generates multiple observations. No single EP can
elicit information about every object property, and thus many observations
must be accumulated to build a comprehensive latent representation. We
propose a sequential Group Variational Autoencoder (VAE) based on the
Multi-Level VAE [BTN18]. Our method learns generic representations that
can be used to infer object type and properties and that contain uncertainty
about the inference when the representation is learned on insufficient EPs.
We analyze our method on a synthetic MNIST variant with multiple se-
quential crops and on real data from a robot arm and hand that use four
exploratory procedures to interact with 52 objects that vary across multiple
haptic property dimensions.

The work in this chapter contributes a novel recursive Group-VAE architec-
ture that (i) accumulates information from sequential EPs to learn generic
representations of haptic properties and objects, (ii) uses those learned
representations to infer observations from unseen EPs, and (iii) contains
uncertainty when the EPs are insufficient to elicit information about certain
haptic properties.
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4.2 Related Work

4.2.1 Haptic Representation Learning

Machine-learning techniques have become more popular in haptics in recent
years, being used to classify objects/surfaces [FL12; KSG+19; NGW+12;
SLCD16; SSIS17] and semantic properties [CMR+15; GS14; LSG+17] from
both tactile and proprioceptive data. A common approach has been to define
features informed by the sensing capabilities of human mechanoreceptors
or by human haptic perception (e.g. vibration spectral centroid is correlated
with hardness perception [LaM00]), extract those features from raw haptic
data captured by a tool or robot, and classify a set of objects from those
features [FL12; SSIS17]. Others used these types of predefined features to
learn semantic attributes of objects which can be applied to new, unseen
examples [AGCC18; CMR+13; CMR+15; GS14]. One additional approach
has been to use unsupervised learning or compression techniques to develop
latent representations of haptic interactions [KSG+19; LSG+17; MBKF14b;
NGW+12; RK19; RK20; SSS+09; THHS20], which typically outperform
hand-crafted features when used to learn downstream tasks. Bag-of-words
models [SSS+09] and dictionary learning [MBKF14b; RK19; RK20] have
demonstrated good generalization across many haptic property identification
tasks. In particular, Tatiya et al. [THHS20] adopt a β-VAE to learn latent
representations of objects by encoding data from one action and decoding it
to predict data from a different action.

4.2.2 Haptic Information Accumulation

Information accumulation can occur on multiple timescales during haptic
interactions. During single EPs, data can be processed with recurrent models
(e.g., LSTMs) that learn to estimate and predict instantaneous state, learn-
ing representations of very short moments in time. These methods have
demonstrated great effectiveness for a variety of tasks, including hardness
detection [BRK18a; YZO+17] and clothing material perception [YMWA18].
Alternatively, features can be learned on small segments and concatenated
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to form large feature vectors that represent full EPs [CKS+16; MBKF14b;
RK19]. However, this is a different task from accumulating information over
multiple exploratory procedures, where relevant information is processed at
a different timescale. One method of capturing information across multiple
EPs is simply to learn a separate representation of the data captured from
each EP and then concatenate those representations [SD14], but this is
limited if any downstream model has a fixed number of inputs. A more
flexible approach is to update a representation as more information is gath-
ered. Fishel and Loeb [FL12] use Bayesian inference to improve texture
classification over sequences of parameterized sliding EPs. Gemici and Sax-
ena [GS14] also use Bayesian inference, but they update beliefs over sets
of haptic properties as they perform more EPs. To perform active contour
and shape-feature following, Lepora, Aquilina, and Cramphorn [LAC17] use
recursive Bayesian inference to modify the control of a tactile sensor tip
while it traces shape features like edges and corners. Each of these cases uses
supervised learning to adjust relatively simple models to perform specific
tasks. This rigid structure limits their ability to learn representations that
generalize to new tasks. On the other hand, Dallaire et al. [DGÉC14] per-
form unsupervised clustering of surfaces using Pitman-Yor process mixture
models. This approach assumes that observations come from a discrete set
of underlying distributions and is powerful for data that is sampled from
multinomial or categorical distributions.

4.2.3 Learning Group Representations

As a robot explores an object over time, it should not assume that the indi-
vidual observations are independent. If we assume that a robot understands
object permanence (that objects continue to exist even when not immediately
perceived) [PGV77], at least during the course of a sequence of interactions,
we can leverage that knowledge to build grouped representations. Boucha-
court, Tomioka, and Nowozin [BTN18] propose the Multi-Level Variational
Autoencoder (ML-VAE) for learning disentangled representations. The ML-
VAE splits the latent representation space into two components and forces
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all samples from a single group to share a single latent vector in one of those
components. This approach can learn general representations of classes on
multiple datasets. Sato et al. [SNMU22] use ML-VAE to perform few-shot
anomaly detection of images, grouping samples by domain instead of class.

4.3 Methods

Rather than assuming that all data from a sequence of interactions is pro-
cessed together, our method handles shorter observations from discrete
EPs to build up object representations over time, with high flexibility that
matches the diverse ways in which robots can interact with objects in the
world. Specifically, given observations from a sequence of EPs of an object,
our method uses a β-variational autoencoder (β-VAE) to model a probability
distribution of the latent variable representation of the observations; this
distribution is updated iteratively as each observation in the sequence is
processed. Each progressive representation is conditioned on the most re-
cent observation and the previous latent representation, which we call the
context. Finally, at each update step, a random sample is drawn from the
latent distribution and fed into a decoder network to try to reconstruct all
observations in the sequence. We will first introduce the VAE and then a
context-aware VAE method called Multi-Level VAE [BTN18]. Finally, we will
describe our method.

4.3.1 Background

Variational Autoencoder (VAE) In the standard VAE framework [KW14],
we assume a dataset X = {x1, ..., xn} composed of independent and iden-
tically distributed (i.i.d.) observations generated by a stochastic process
from an underlying random variable z, with z ∼ pθ(z) and xi ∼ pθ(x | z).
The goal is to learn a variational approximation qϕ(z | x) of the true (but
typically intractable) posterior over the latent variable pθ(z | x). Typically,
both the distributions qϕ(z | x) and pθ(x | z) are modeled by encoder and
decoder neural networks parameterizing a Gaussian (or normal) distribu-
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tion, although other choices are possible. Parameters ϕ and θ are learned
simultaneously by minimizing the evidence lower bound L of the marginal
log-likelihood of the data, log pθ(X) (more on this in Section 4.3.2).

Multi-Level Variational Autoencoder (ML-VAE) The ML-VAE [BTN18] does
not assume i.i.d. observations, but instead that there are disjoint subsets of
observations that come from distinct groups g ∈ G. Groups are independent
from each other, but samples within a single group are not independent.
Observations are assumed to be generated from two sets of latent variables:
the content C and the style S. Each observation xi ∈ Xg from a group
g ∈ G is generated from the same latent content variable cg and a unique
style variable si. That is, the likelihood is given by pθ(xi | cg, si)|∀xi ∈ Xg.
Because the content and style are assumed to be independent, the variational
approximation for a sample qϕ(ci, si | xi) can be decomposed into the product
of qϕc(ci | xi) and qϕs(si | xi). In this case, qϕc and qϕs are chosen to be
normal. A group content variable is approximated by multiplying together all
the approximate individual content variables qϕc

(cg | Xg) ∝
∏

i∈g qϕc
(ci |

xi).

4.3.2 Iterative Latent Update via Group VAE

For our method, we assume a group setting where each independent group is
an object o ∈ O. Let the set of observations from object o be denotedXo. We
observe sequences xo ⊆ Xo of observations, where xo = {x1

a1 , ..., xt
at , ..., xn

an},
at ∈ A = {a1, ..., an} indicates which of the n actions was performed to
generate that observation, and t indicates the order in the sequence. Like
in ML-VAE, we assume that the observations are generated from two in-
dependent underlying latent random variables, the content C and style
S, in our case also conditioned on the action. Since our robot will have
access to only a particular sequence of actions on the same object, and object
identities do not have to be known to the robot between trials, we assume
that content is shared across a single sequence, such that every element xt

at
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of the sequence xo shares the same latent content variable co
1. The style

formulation remains unchanged, where each element xt has its own style
variable st, and so = {st∀xt∈ xo}. Thus, within a sequence xo, individual
observations xt

ai
are assumed to be generated from the latent variables ac-

cording to xt
ai
∼ pθ(x | co, st, ai). Again like the ML-VAE, the variational

approximation of a sequence qϕ(co, so | xo) decomposes into the product of
qϕc

(co | xo) and qϕs
(so | xo). We also assume these distributions are normal,

with

qϕc
(co | xo) = N (co | µ(xo, ϕc),Σ(xo, ϕc)) , (4.1)

qϕs
(so | xo) = N (so | µ(xo, ϕs),Σ(xo, ϕs)) (4.2)

A key feature of our approach is that the variational approximation is
updated iteratively, and at each step the approximation is conditioned on
the parameters of the previous variational content approximation, which we
call the context. Specifically, given an observation xt ∈ xo at iteration t, the
variational approximation is given by

q
(t)
ϕ

(
c(t)o , st | xt, q

(t−1)
ϕc

)
, where q(0) = N (0, I) (4.3)

To encourage the content latent variable to capture general descriptions
of the object from which a sequence is sampled, our method performs
inference for every observation of the sequence at each update step. At each
iteration t for sequence xo, the marginal log-likelihood (or evidence) can be
written as the sum of the evidence lower bound (ELBO), denoted L, and the
Kullback-Leibler divergence between the true posterior and the variational

1A sequence could potentially include every observation from a single object (e.g. over a
lifetime of observations), in which case co would be shared across the full object group.
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approximation:

log pθ(xo; t) =KL
(
qϕ

(
c(t)o , s(t)o | xt, q

(t−1)
ϕc

)
|| pθ

(
c(t)o , s(t)o | xt, q

(t−1)
ϕc

))
+ L(t) (xo; θ, ϕc, ϕs) (4.4)

where s(t)o ={su;xu ∈ xo} and qϕs

(
s(t)o | ·

)
=

∏
qϕs

(su | ·) ,

with qϕs

(
su | xu, q

(u−1)
ϕc

)
=

qϕs

(
su | xu, q

(u−1)
ϕc

)
if u ≤ t

N (su | 0, I) if u > t
.

It should be noted that before an observation has been seen by the network,
its style is sampled from a standard normal distribution. Because the KL
divergence is always non-negative, the ELBO is a lower bound on themarginal
log-likelihood. The ELBO for sequence xo at step t can itself be written as
the negative of the sum of the negative log-likelihood (LNLL) and the KL
divergences between the variational approximations and their corresponding
priors:

L(t)(xo;θ, ϕc, ϕs) =

E
q
(t)
ϕc

(
c
(t)
o |xt,q

(t−1)
ϕc

)E
q
(t)
ϕs

(
s
(t)
o |xt,q

(t−1)
ϕc

) log pθ (xo | c(t)o , s(t)o ,ao

)
−KL

(
q
(t)
ϕc

(c(t)o | xt, q
(t−1)
ϕc

) || pθ(co)
)

−KL
(
q
(t)
ϕs

(s(t)o | xt, q
(t−1)
ϕc

) || pθ(so)
)
, (4.5)

where ao is the vector of actions that corresponds to the observations in
xo. In practice, we use the β-NLL formulation [STAM22] of the negative
log-likelihood. This ELBO loss L(t) can be summed over all iterations. The
full training procedure is described in Algorithm 1.

4.3.3 Demonstration on MNIST

To demonstrate our method on a simple example, we first apply it to the
MNIST dataset [LBBH98]. Here, the set of objects O is comprised of the ten
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Algorithm 1: Sequential Group VAE training algorithm.
1 Given X = {(xi, ai, oi)} with ai ∈ A = {a1, . . . , am} and oi ∈ O
2 for each epoch do
3 // Create random sequences for training
4 xs ← {}
5 for (x, a, o) ∈ X do
6 ao = permutation(A \ {a})
7 xo = {x, random set of inputs from object o with actions ao}
8 Xs ← {Xs ∪ xo}
9 end

10 // Train model
11 while All sequences not seen do
12 Xs,b ← Sample batch of sequences Xs

13 for x ∈ Xs,b do
14 q(c)← N (0, 1)

15 q(s)← N (0, 1)|x|

16 for t = 1 . . . | x | do
17 xt ← x[t]

18 q(c)← qϕc

(
c(t) | xt, q

(t−1)
ϕc

)
// Encoding from

Eq. 4.3

19 q(s)[ t ]← qϕs

(
st | xt, q

(t−1)
ϕc

)
// Update style

for action t
20 // Reconstruct for all actions
21 for u = 1 . . . | x | do
22 Sample cu ∼ q(c)
23 Sample su ∼ q(s)[ u ]
24 p(xt)← pθ(x

t | cu, su, au) // Decode cu, su

25 end
26 Compute L(t)(x, p(x); θ, ϕc, ϕs) // From Eq. 4.5
27 end
28 Lx =

∑
t L(t)

29 end
30 Update parameters θ, ϕc, ϕs by back-propagating gradient

∇θ,ϕc,ϕs

∑
x Lx.

31 end
32 end
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Figure 4.1: Model architecture on an example MNIST digit. At each step t a
single crop xt is fed into the encoder, which outputs probabilistic
content and style encodings c(t) and st. The content encoding
q
(
c(t) | xt, c(t−1)

) is passed as context into the encoder for the
next update. The decoding step attempts to reconstruct all four
crops of the MNIST digit. For each crop, the content latent repre-
sentation q

(
c(t) | xt, c(t−1)

) is sampled. If a crop xu has already
been seen, then the style latent representation q

(
su | xu, c(t−1)

)
is sampled. If a crop hasn’t been seen, then N = N (0, 1) is sam-
pled. As more crops are observed, the representation improves
and becomes more certain.

digits d = {0, ..., 9}. We define four actions, each of which crops a different
quadrant (top right, . . . , bottom left) of a traditional MNIST image sample;
like one haptic EP, one crop usually does not fully identify the object. For
model training, we select a digit d and perform one of each cropping action
in random order, generating a sequence four crops long. Then we follow the
iterative training procedure described above. Figure 4.1 shows an overview
of the full approximation and inference procedure on an example MNIST
digit. As individual crops are observed, the content representation is refined,
and the style for each crop is inferred.
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Figure 4.2: Available crops (top row) and corresponding reconstructions
(bottom row) over four progressive iterations for thirty sample
MNIST digits. The digits at (row, col) = (2, 1), (2, 2), (4, 3) and
(5, 3) show the content refinement most clearly over time.

Figure 4.3: Progressive crops for six sample digits (top row) with their style-
independent (middle row) and context-independent (bottom
row) reconstructions.
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After training the models, we can qualitatively evaluate our model behav-
ior by performing inference over iterative context updates under multiple
conditions: using context updates and style, using context updates but ig-
noring style during inference, and using content and style for inference but
bypassing context update. Full reconstructions of test digits are shown in
Figure 4.2. Moving from left to right, as more of the digits are seen, the
content representation improves, and the reconstructions of both the unseen
and seen crops improves.

Selected style-independent and context-independent reconstructions are
shown in Figure 4.3. With no style information, the inference relies solely on
the content. As more of each digit is seen, the content typically remains stable
or improves andmore accurately captures general shapes of the digits (middle
row). Conversely, when the content is not updated, the reconstructions are
much messier, and the general digit representation is unstable (bottom row).
With qualitative evidence supporting our method’s behavior and perfor-

mance, we now apply it to the problem of learning haptic representations
from sequential EPs by a haptically sensitive robot. This cropped MNIST
setting has similarities with our real-world data, as only partial information
is perceived with every action. A difference is that in the synthetic example,
we are interested only in digit identity, whereas in the haptic application we
care about different object properties.

4.4 Experimental Setup

Our platform consists of a robotic arm and hand equipped with kinesthetic
and tactile sensing. It can perform four programmed EPs (drag, press, shake,
and squeeze) on a set of spherical objects that vary widely in size, stiffness,
and mass. Some of the objects are also hollow and contain various media.

4.4.1 Hardware

We use a six-degree-of-freedom (dof) robot arm (Universal Robots UR5)
with a wrist-mounted force-torque sensor (Weiss KMS 40) and a modified
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Figure 4.4: Robot with UR5 arm, customized Reflex Takktile 2 hand, and
wrist-mounted KMS 40 six-axis force-torque sensor (left). The set
of 52 objects (including empty space) used for the study (center).
The distribution of manually measured object properties: size,
mass, and stiffness (right).

three-fingered gripper (Right Hand Labs Reflex Takktile 2), as shown in
Figure 4.4. The UR5 is position controlled and records position, velocity, and
effort at 125 Hz for each of its six joints. The KMS 40 records three-axis force
and three-axis torque at 500 Hz. The modified Reflex Takktile 2 gripper has
three under-actuated fingers each with a customized inertial measurement
unit (IMU) for estimating the distal joint angles, and one of the fingers has
14 tactile pressure sensors. The proximal joint positions are measured by
encoders. Two of the fingers are coupled and can be rotated in opposite
directions (called the preshape). Finally, we record the angular position and
load from all four actuating motors in the hand. All hand data is sampled at
25 Hz. All control and data collection were run via ROS in Python and C++,
building on the existing libraries for the UR5, KMS 40, and ReflexTakktile 2.

4.4.2 Exploratory Procedures (EPs)

The robot is able to perform four exploratory procedures (EPs). To diversify
the robot’s perceptual experiences, it begins each EP by dropping the objects
into a central cardboard well that consists of a circle cut out of a sheet of
cardboard that is adhered to the horizontal table surface. The ball can freely
roll within the well, creating some randomness in its initial position.
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• Drag (Figure 4.5a): The robot moves directly above the well where
the object is held at one of three heights selected based on the size
of the object. It widens the preshape joint to 0.7 radians and then
slowly closes the fingers at 0.5 radians per second until each finger
reaches a motor load of 150 (arbitrary digital units on a ten-bit scale),
after which the finger position is fixed. The object is moved to a fixed
location above the table and lowered at 1 cm/s until the force-torque
sensor measures an increase of 1 N in the z-axis. The robot then begins
recording data, and the object is dragged 5 cm horizontally across the
surface at 3 cm/s in the direction of the single finger, such that the
two preshape fingers are behind the object.

• Press (Figure 4.5b): To perform press, the robot moves into a fixed
position above the well containing the object such that the two preshape
fingers can be positioned directly over the center of the well. These two
fingers are moved to predefined proximal angles, and the preshape is
reduced such that the fingertips just touch. The robot begins recording
data, and the gripper is lowered at 1 cm/s until the force-torque sensor
measures an increase of 10 N in the z-axis, at which point the arm
returns to the starting position at 2 cm/s. The predefined proximal
pressing angles are determined by a calibration procedure where the
robot moves the hand to a fixed position above the table and slowly
closes each parallel finger until its motor load reaches 50.

• Shake (Figure 4.5c): The robot moves to a fixed position over the object
and widens the preshape joint to 0.6 radians. It then slowly closes the
fingers at 0.5 radians per second until each finger reaches a motor load
of 120, after which the finger position is fixed. The robot then lifts the
object to a fixed position such that the two preshape fingers are under
the object. The robot begins recording data, and it then rapidly shakes
the object four times at approximately 2 Hz by actuating the elbow
and first wrist joints with sinusoidal acceleration with an amplitude of
10 rad/s2.

• Squeeze (Figure 4.5d): The robot moves to a fixed position over the
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object, widens the preshape joint to 0.7 radians, starts recording data,
and then slowly closes the fingers at 0.2 radians per second. Each
finger closes until it reaches a motor load threshold of 150 and then
maintains that motor load. After every finger has reached the threshold,
the fingers open at 0.5 radians per second.

The EPs squeeze and press are standard human EPs [LK87], whereas shake
has been used as an EP for robots [SWS09]. Because our robot does not
have highly sensitive fingertips, we decided to drag the objects across the
table instead of sliding a finger across the objects.
For all force thresholding performed on the data from the KMS 40 force-

torque sensor, the threshold was applied to a low-pass-filtered version of
the measured force to reduce the influence of high-frequency noise. Specif-
ically, this filtered force was calculated by averaging the most recent 10
measurements, which were collected at 500Hz. Before each EP, the tactile
sensors were all recalibrated by subtracting their present readings, so that
they all begin at zero. Furthermore, the IMU sensors were all recalibrated
by multiplying by the inverse of their present quaternions.

4.4.3 Signal Processing

To prepare our data for the convolutional architecture, all signals were re-
duced to 25 Hz. The UR5 data were downsampled using the scipy decimate
function. To capture both the transient, high-frequency vibrations and the
signal magnitude, force and torque data were separated into AC and DC
components using the scipy spectrogram (window size = 40 points, overlap
= 20 points) and decimate functions. Each interaction in the dataset was
then either cut or padded to the same duration; the standard duration of
400 points (16 seconds) was determined by subtracting the earliest moment
of contact across all presses from the latest moment of contact across all
presses. All presses and squeezes were cropped to these time points, and the
shorter shakes and slides were padded on the end by repeating the values of
the last recorded point.
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(a) Drag

(b) Press

(c) Shake

(d) Squeeze

Figure 4.5: Sequences of still images captured during each of the robot’s
four EPs.
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4.4.4 Objects

We designed a set of 52 objects (Figure 4.4) to test our approach on learning
comprehensive latent representations of haptic properties from sequences of
interactions. All objects needed to be graspable and liftable by our selected
robot platform. To minimize the influence of object orientation on this
investigation, we decided to use only spherical objects. Most are purchased
sports balls, and some of the others are either hollow or filled spherical shells.
Though uniform in shape, the 51 selected items have a range of physical
properties, differing significantly in size, stiffness, mass, and filling. The
final object is empty space, giving a full set of 52 things the robot can drag,
press, shake, and squeeze.

4.5 Experiments

Our experiments were designed to evaluate the behavior and performance of
our method. Specifically, how does the latent content representation change
over iterations? How well are the haptic properties of size, stiffness, mass,
and filling encoded in the latent content space? And how is information
distributed between the content and style latent spaces?

4.5.1 Training Procedure

In total, the robot performed each EP 50 times on each object, for a total
of 10 400 trials. We trained and validated our models on 60% of the data
and tested on the remaining 40%. Our encoder and decoder networks are
composed of four 1D convolutional layers and two dense layers, and we
use ten dimensions for both the content and style vectors. When training
the models, we generate new random sequences of four EPs from the same
object (as in the MNIST example) at the beginning of every epoch.
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4.5.2 Evaluation

Qualitative Haptic Property Representation To determine how well haptic
properties are captured in the latent content representation, we generated
random sequences of four EPs from our test data, passed them through the
full iterative modeling process, and then compressed the ten-dimensional
content space into two dimensions using t-distributed stochastic neighbor em-
bedding (t-SNE). We then visualize the distribution of each haptic property
in the compressed latent space.

Object and Property Classification To determine how the content represen-
tation improves over iterations and how well the properties and objects are
represented in the latent representation, we train models on content and
style representations to classify the objects and their four haptic properties.
We generate random four-EP sequences from the training dataset and use
the final-iteration content and style representations as our training and
validation data for the classifiers. We similarly generate random four-EP
sequences from the test dataset and evaluate the classification performance
on content and style after each iteration through the Group VAE. For each
of the five labels, we train a total of 50 classification models. To label the
objects by size, stiffness, and mass, the objects are grouped into 10 clusters
via k-means clustering.

4.5.3 Implementation Details

4.5.3.1 Sequential Group VAE Implementation

The Group VAE was implemented using the PyTorch library. The models
were all trained using the Adam optimizer [KB15] with β1 = 0.9, β2 = 0.999,
and learning rate= 0.001.
Instead of using the standard VAE for our architecture, we use the β-

VAE, which introduces the regularization parameter β into Equation 4.5 that
allows for tuning the trade-off between the negative loglikelihood and the KL-
divergence [HMP+17]. We implement separate regularization parameters
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βC and βS for content and style. The Group VAE was trained with the
following parameters:

• MNIST: batch size= 256, βC = 0.01, βS = 0.01, 5 latent dimensions
each for content and style.

• Robot Data: batch size= 32, βC = 0.033, βS = 0.066, 10 latent
dimensions each for content and style.

Robot Data The encoder network consists of four 1D convolutional layers
followed by two dense layers, and it outputs the content and style mean
and variance, which parameterize qϕc

(
c(t) | xt

) and qϕs
(st | xt). The four

convolutional layers have kernel sizes and strides of {6, 6, 5, 4} and {4, 4, 2, 2},
with {128, 64, 64, 32} filters. Each layer is followed by batch normalization
and leaky rectified linear unit (Leaky ReLU) activation functions. The output
of the convolution layers is flattened and concatenated with the previous
content mean and variance. This concatenated vector of size ed is the input
to the first dense layer, which has size ed × 100 and is followed by the
Leaky ReLU activation function. The output of this layer is fed into four
separate dense layers, one for each of the content mean and variance and
style mean and variance. The outputs of these four layers parameterize
qϕc

(
c(t) | xt, q

(t−1)
ϕc

)
and qϕs

(
st | xt, q

(t−1)
ϕc

)
.

We then sample a content vector c and a style vector s from these distribu-
tions and concatenate them with a one-hot encoding a of the corresponding
EP. This vector is then fed into the decoder. The decoder is the reverse of the
encoder except for the slightly larger input to the first layer (to accommodate
a) and the final deconvolutional layer, which is split into two equivalent
layers whose outputs parameterize the mean and variance of the normal
distribution pθ(x | c, s, a).

Cropped MNIST [LBBH98] The encoder and decoder architectures for mod-
eling the cropped MNIST data are very similar to those used for the robot
data. The differences are that the convolutions are 2D, all four convolutional
layers use 32 filters with a kernel size of 3 and stride of 2, and the dense
layers have 50 hidden nodes instead of 100.
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Additional Implementation Notes We slightly alter the loss function from
Equation 4.5. Instead of computing the style-KL term for all the style vectors
s(t), we compute it only for the most recent style vector st. Additionally,
the loss is back-propagated through st only at iteration t. For all future
iterations it is used as a constant, detached from the back-propagation graph,
to condition the generative model pθ(x | c, st, a)

4.5.3.2 Classifier Implementation

We implemented relatively small neural networks to perform classification of
the objects and their properties. For the object properties we used networks
with one hidden layer with 10 nodes and a Leaky ReLU activation function.
To classify the objects, the hidden layer had 50 nodes.

The models were all trained with a batch size of 32 using the Adam
optimizer with β1 = 0.9, β2 = 0.999, learning rate= 0.0001, and weight
decay= 1.

4.6 Results

4.6.1 Latent Embedding Visualization

Figure 4.6 shows the results of the qualitative latent embedding. For visual-
ization purposes, we plotted only 10 random embeddings per object. There
is clearly structure encoded in the latent space for all haptic properties. Size
and mass are highly separable in just these two dimensions. Interestingly,
most of the filled objects are clustered together but are indistinguishable.

4.6.2 Object and Property Classification in Content and Style

The results of the classification are shown in Figure 4.7. The high classi-
fication accuracies achieved on the content representations indicate that
general properties of the objects are indeed encoded in content. Conversely,
the style contains very little content information and performs barely better
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Figure 4.6: Final-step content latent-space embeddings of 10 sequences per
object, as visualized in 2D using t-SNE. The points in each plot
are colored to show the respective property value: size, stiffness,
mass, and the filling of the object. For the three continuous
properties, higher values are indicated by the colors at the top of
the color bar. Similar fillings are indicated by shades of the same
color: stones are blue, corn kernels are orange, and salt grains
are purple. Here, green represents objects that have no loose
filling, and yellow indicates a single object containing a loose
solid mass. The dense cluster at the lower left is empty space.

than chance; this result is expected because style is designed to capture only
trial-specific variations.

Additionally, the classification on the test set content improves dramatically
as a function of sequence iteration, indicating that information about different
properties is accumulated over sequences of EPs that each elicit incomplete
information. This strong improvement occurs with content while the style
classification performance improves only incrementally, again implying that
most general group information is contained in the content. The rapid
improvement over a small number of observations is also consistent with the
low number of samples that the ML-VAE needs to perform accurate MNIST
classification [BTN18].

To better understand why classification performance on the objects (“Ball
ID” in Figure 4.7) was relatively poor compared to the properties, we used
a confusion matrix to visualize which objects were difficult to classify (Fig-
ure 4.8). Unsurprisingly, objects of the same type (e.g., baseballs 1 and 2
and the three tennis balls) are confused by the classifier. Additionally, it
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Figure 4.7: Distributions of classification results for individual properties
using the content (top) and style (bottom) representations. As
expected, object properties are strongly represented in the con-
tent latent space and only weakly represented in the style latent
space. Chance performance is indicated by the dashed lines.

appears that the classifier has difficulty detecting the difference between the
filler materials, as the objects of the same size that are filled with different
materials are frequently confused. Perhaps this confusion could be resolved
with high-frequency tactile sensing.

4.6.3 Latent Representation Variance

An interesting result of the evidence accumulation strategy of the Multi-
Level VAE is that as more evidence is accumulated, the variance of the group
content distribution decreases [BTN18]. While that variance reduction is not
analytically derived from our formulation, our method seems to nonetheless
demonstrate a similar property. We generated multiple random sequences
for each trial and measured the variances of the latent content and style
representations for each of those encoded sequences at each iteration. Fig-
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Figure 4.8: Confusion matrix of classification results. Objects of a similar
type are grouped together. There is some confusion between
objects of the same type, and there is confusion between the
three filling materials (popcorn, salt, and stone).
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Figure 4.9: Distributions of the average standard deviations across the ten
dimensions of content and style latent representations as a func-
tion of sequence iteration. Standard deviation (and therefore
variance) in the content representation decreases as a function
of sequence iteration. Style variance doesn’t change at all.

ure 4.9 shows the resulting distributions over thousands of sequences of
the average standard deviations across all ten content and style dimensions
as a function of sequence iteration. For the content representations, the
average standard deviation decreases as a function of sequence iteration for
all three of the training, validation, and testing sets. Conversely, there is
no increase or decrease in standard deviation in the style representations.
These findings reinforce our conclusion that the content representations
are capturing meaningful information about the essential properties of the
objects being touched, and that this information is being accumulated over
multiple interactions. Additionally, the style representations encode mainly
trial-to-trial variability and do not accumulate information over interactions.

4.7 Summary

In this chapter we presented an iterative Group VAE for learning and updating
latent representations of haptic data as a robot sequentially explores and
physically interacts with objects. After validating our method on a modified
MNIST dataset, we used a tactilely sensitive robot platform interacting with
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52 spherical objects to demonstrate that our method accumulates general
group information as it iterates through sequences of exploratory procedures
(EPs).

We investigated the learned representations and found that they are
predictive of relevant object properties, such as size, stiffness, mass, and
filling. Thus, we believe our method is a valuable addition to unsupervised
robot learning because it finds representations that are important for future
downstream tasks from sequential multimodal haptic sensations.
Though promising, this work has some limitations. The set of 52 objects

is quite simple and differs along only a small set of physical and semantic
properties. Additionally, the robot’s set of four EPs should be expanded by
randomly parameterizing the EPs or by allowing the robot to optimize across
parameterizations of the EPs. Finally, the robot’s sensing capabilities were
limited because only one of its fingers includes functional tactile sensors.
Furthermore, none of the robot’s current fingertip sensors can capture the
rich high-frequency vibrations that are likely to be important for perceiving
object texture during drag actions or loose filling during shake.

Although our method could be extended to longer sequences with repeated
EPs, we trained only on sequences of length four with one of each EP. We did
not test how training repeatedly on the same action influences the learned
model; we expect repetition should reduce uncertainty in relevant object
properties, but not along dimensions for which no information is gained.
We also did not evaluate how each EP influences the update of the latent
content representation. These directions should be explored in future work
to build on and test the limits of the promising initial results.
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Conclusions

The work presented in this thesis is directed towards developing a deeper
understanding of how humans perceive complex haptic interactions and
leveraging that understanding to endow robots with similar capabilities.
Such robots would be able to explore objects, gather information over time,
and develop general haptic representations that inherently capture prop-
erties also relevant to human perception. The methods are designed to
avoid some of the most common assumptions made in traditional perceptual
studies and robot haptic learning and instead provide new approaches to
exploring fundamental questions in haptics research. This chapter summa-
rizes the motivating problems and contributions of the individual chapters
and provides an outlook on future work.

Chapter 2: Modeling Human Haptic Perception from
Unconstrained Surface Exploration

The work in Chapter 2 focuses on understanding how individual people
make perceptual judgments of specific haptic interactions. The traditional
approach to modeling human perception has been to ask people to rank or
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cluster various sample objects or surfaces along specific dimensions such
as roughness. Various physical properties of the samples can be measured
separately and then correlated with the given ranks, or the samples can
be embedded in property space and transformed to most closely resemble
the clusters or ranks provided by the human participants. However, these
methods inherently do not take any interaction-specific details into account
even though people are often free to explore samples however they wish. To
address this gap, we proposed a method that learns to model individual and
average group perception and predict perceived surface similarity directly
from physical interaction data. The primary contributions of this work are
as follows:

• Parsing interactions into successive exploratory procedures allows us
to consider the contribution of each EP separately in our modeling
process and assess how each one impacts perception.

• By parsing the signals into short time windows, we can treat the inter-
actions as probability distributions over the property space of surfaces.
This conceptualization provides a versatile tool for both measuring
perception of specific interactions and potentially integrating more
complex perceptual weighting schemes.

• We introduced a pipeline that can embed and estimate perception of
individual interactions while training on only rank-ordered noisy labels
provided by human study participants. Given that many haptic percep-
tion studies use discrete subjective ratings or ordering methods, we
believe that other researchers can use our method as a bridge between
modeling of measured signals and human perceptual measurements.

• By using simple embedding functions, we are able to study how in-
dividual surface properties are scaled and aligned in the perceptual
representations of individual participants.

We demonstrated our approach by learning to predict perceptual represen-
tations for multiple participants, generalizing to unseen participants, and
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fitting to individual participants. Additionally, we made progress toward in-
terpreting how individual people perceptually represent haptic interactions.
Although promising, the work was limited in ways that we believe nega-

tively impacted the overall performance of the method. These limitations
include a small number of participants, surfaces, and chosen features. For
the sake of interpretability, we also avoided full end-to-end learning. Ad-
ditionally, it is possible that perceptual representations can shift between
individual explorations. Addressing these different problems can lead to
a more comprehensive understanding of the relationship between physi-
cal interactions and perception. Nonetheless, our method provides a novel
framework with which to explore human haptic perception.

Chapter 3: Unsupervised Feature Learning for Predicting Human
Perception of Haptic Properties

Chapter 3 focuses on how to provide robots with haptic perception that
is more comparable to human perception. Haptic robotics research has
primarily been informed by human studies, in which certain properties of
recorded physical signals are correlated with semantic attributes. When a
robot interacts with an object, these same properties can be used to predict
semantic properties of that object. However, this approach limits a robot’s
perception in two important ways: potentially useful information in the
signal is simply discarded, and the robot has to judge objects according to
predefined semantic properties. We proposed methods to address both of
these limitations, one which fully addresses the issue inherent in using hand-
crafted features and one that, while not allowing a robot to define its own
properties, provides a robot more flexibility in determining the intensity of
a particular attribute. The primary contributions of this work are as follows:

• We introduced a full pipeline for unsupervised feature extraction from
diverse haptic data streams, using K-SVD dictionary learning for 1D
and 2D data. These features demonstrated great effectiveness across
multiple different classification and regression tasks.
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• We presented and analyzed ordinal adjective labels that human study
participants applied to various objects that they touched. Our anal-
yses provide unique evidence for the relationships between various
adjectives and demonstrate a great subjectivity in human perception
that supports the need for more robust and adaptable robot perception
algorithms.

• Our modified ordinal regression method provides a simple way to
encapsulate diverse and scaled perceptual experiences into a single
model which can then be used to predict intensity distributions for
various semantic object properties.

We demonstrated our approaches on many different tasks for a variety of
robotic exploratory procedures. First, the learned features were evaluated
against and outperformed the baseline achieved with a large set of expertly
hand-crafted features on 19 binary classification tasks, demonstrating that
the assumptions made by using hand-crafted features sacrifice relevant
information contained in haptic signals. Second, these features were used in
ten regression tasks to demonstrate the ordinal regression method. Although
the learned features were successful across all tasks, the performance did vary
by exploratory procedure. These results demonstrate that using unsupervised
feature detection can capture relevant physical data, and that robots can be
trained on crowd-sourced perceptual ratings to develop more robust haptic
representations that are more adaptable to real-world situations. However,
to develop comprehensive models of individual objects, robots needs to be
able to accumulate information across a multitude of exploratory procedures.

Chapter 4: Implicit Robot Learning of Haptic Properties from
Sequential Interactions

In Chapters 2 and 3, we focused on modeling sensor and robot haptic data
from human descriptions of various objects and surfaces. While the human
surface similarity modeling included two different exploratory procedures,
it did not create explicit surface representations that changed with new
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information from additional exploration. Additionally, it relies on human
comparisons to form a model and is thus not particularly suited for a robot to
perform autonomous exploration. Predicting human adjective descriptions
from robot exploration is a step in the right direction, but it still requires hu-
man labeling and provides no way to efficiently combine data from multiple
exploratory procedures. The work presented in Chapter 4 seeks to address
these limitations with a novel learning method to provide a robot with all the
necessary tools to learn robust and comprehensive object representations
from scratch as it explores the world. The primary contributions of this work
are as follows:

• We developed a novel algorithm based on Multi-Level VAEs [BTN18]
that leverages object permanence to accumulate data gathered over
any number of exploratory procedures to build comprehensive object
representations, updating the representations as more information is
gathered.

• We collected a new dataset using a haptically sensitive robot that
used four diverse exploratory procedures to probe objects. The robot
performed many explorations of approximately 50 spherical objects
that differ substantially across several salient dimensions. Our method
was evaluated on this new dataset.

• The multi-level latent structure naturally learned to use one of the
latent spaces to represent general object properties and the other to
capture random variations within single exploratory procedures.

• The accumulation of evidence naturally caused a decrease in the vari-
ance of the posterior estimate, in particular with regards to the latent
space representing object properties.

Our proposed method was able to quickly accumulate information about a
variety of object properties that it was never explicitly instructed to learn.
We demonstrated that our method naturally exhibits desirable properties, is
able to build representations over time in an efficient recursive manner, and
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doesn’t need to make strong assumptions like previously proposed haptic
evidence-accumulation methods.

Outlook

The gap between the current, general understanding of human haptic per-
ception and the development of highly specialized robotic haptic applications
offers fertile ground on which to explore fundamental properties of haptic
perception from both the human and robot perspective. Although the work
presented in this thesis is an initial effort into exploring this gap, it leaves
many unanswered and new questions that can be explored in future work.

To understand human haptic perception, is it sufficient to measure general
surface properties and correlate those with noisy human ratings, or do we
need a more fundamental approach that captures the individual particu-
larities of how humans extract relevant haptic information? Our work into
human perception offers this alternative latter approach, and we believe
it opens the door into a deep new research direction. Continuing work
could begin by formulating more controlled experiments that encourage
or force participants to employ particular judgment strategies when they
explore surfaces. For example, one could design surfaces or textures that
differ on a very fine scale that can be distinguished only by gentle and slow
exploration. Alternatively, participants could be made to explore in different
fixed patterns, and various models of rating strategies could be tested against
the perceptual results. Another direction could be to try to measure how
similarly surfaces are perceived at different contact forces and velocities,
and test whether those similarities or dissimilarities can predict which type
of rating strategy is used. This is just a sampling of what can be explored
using this type of framework.
In this thesis, we also worked on designing a robot perceptual system

that can achieve some aspects of human perception, mainly object conti-
nuity and the ability to accumulate information over time. However, our
implementation is still limited and our overall approach under-explored.
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For example, how many explorations are sufficient to develop a comprehen-
sive understanding of an object? As the complexity and number of objects
increases, will this method scale? We know that humans are capable of
this generalization, so what additional modeling capability does a robot
need to approach our abilities? As it currently stands, our method could
be incorporated into a more general autonomous framework where a robot
can intelligently explore objects to learn necessary properties to perform
particular tasks. How might those learned representations differ if they are
learned independently of or jointly with any real-world tasks? Additionally,
the hand sensors used in our experiments were quite simplistic. By using a
more comprehensive set of sensors, more dynamic and transient data could
be gathered and used to learn new object properties. Continuing to improve
on this research could lead to exciting new improvements in the ability of
robots to operate autonomously in the world.
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