
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:12508–12536
https://doi.org/10.1007/s11227-021-03730-7

1 3

Lustre I/O performance investigations on Hazel Hen: 
experiments and heuristics

Marco Seiz1  · Philipp Offenhäuser2,3 · Stefan Andersson4,5 · 
Johannes Hötzer1,6 · Henrik Hierl1 · Britta Nestler1,6 · Michael Resch7

Accepted: 8 March 2021 / Published online: 9 April 2021 
© The Author(s) 2021

Abstract
With ever-increasing computational power, larger computational domains are 
employed and thus the data output grows as well. Writing this data to disk can 
become a significant part of runtime if done serially. Even if the output is done in 
parallel, e.g., via MPI I/O, there are many user-space parameters for tuning the per-
formance. This paper focuses on the available parameters for the Lustre file system 
and the Cray MPICH implementation of MPI I/O. Experiments on the Cray XC40 
Hazel Hen using a Cray Sonexion 2000 Lustre file system were conducted. In the 
experiments, the core count, the block size and the striping configuration were var-
ied. Based on these parameters, heuristics for striping configuration in terms of core 
count and block size were determined, yielding up to a 32-fold improvement in write 
rate compared to the default. This corresponds to 85 GB/s of the peak bandwidth 
of 202.5 GB/s. The heuristics are shown to be applicable to a small test program as 
well as a complex application.

Keywords High-performance computing · MPI I/O · Parallel I/O · Lustre · Striping

 * Marco Seiz 
 marco.seiz@kit.edu

1 Institute of Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Straße am 
Forum 7, 76131 Karlsruhe, Germany

2 Numerical Methods and Libraries, High Performance Computing Center Stuttgart (HLRS), 
University of Stuttgart, Nobelstrasse 19, 70569 Stuttgart, Germany

3 Hewlett Packard Enterprise (HPE), Herrenberg Straße 140, 71034  Böblingen, Germany
4 Cray Computer Deutschland GmbH, Munich, Germany
5 Amazon Web Services EMEA SARL, Niederlassung Deutschland, Marcel-Breuer-Str. 12, 

80807  München, Germany
6 Institute for Digital Materials (IDM), Hochschule Karlsruhe Technik und Wirtschaft (HSKA), 

Moltkestraße 30, 76131  Karlsruhe, Germany
7 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Nobelstrasse 

19, 70569 Stuttgart, Germany

http://orcid.org/0000-0002-7712-2394
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03730-7&domain=pdf


12509

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

1 Introduction

While current supercomputers provide hundreds of PFLOP/s [1], the speed of 
I/O has not grown as much. Furthermore, often applications do not fully exploit 
the parallelism of parallel file systems. Especially for voxel-based simulations on 
regular grids, the data required for checkpointing grows proportionally with the 
domain size. Hence, running large-scale simulations often implies large amounts 
of data, which need to be written to disk, necessitating high-performance I/O for 
current and future HPC applications. Such applications find use in many research 
areas, e.g., engineering, weather and climate research or material science, as 
they allow a deeper insight into the physical mechanisms and give predictions 
for future processes and design of process chains. The focus of past HPC opti-
mizations is primarily found in computation and communication, whereas I/O 
tends to be neglected in optimization efforts. Considering all this, investigating 
and improving I/O for real applications are of great importance. The objective 
of this paper is to give the end-user as well as the application developer heuris-
tics to tune the striping on Lustre file systems such that high-performance I/O is 
achieved. This paper first re-capitulates the state of the art in parallel I/O and then 
describes the software and hardware used for the performance measurements. 
Experiments are then conducted in which the time taken for a parallel write call 
to finish is measured, investigating the parameters of block size, processor count 
and striping configuration. Based on the analysis of the experimental results, heu-
ristics employing the varied parameters are determined such that the write rate is 
substantially improved, up to a factor of 32. Finally, it is shown that the heuristics 
are transferable between similar I/O strategies as well as between similar Lustre 
setups.

2  State of the art in parallel I/O

The I/O stack of a parallel application is shown in Fig. 1. On the top of the paral-
lel I/O stack, an application solves a numerical problem on a multi-dimensional 
discrete grid. At each grid point, a number of quantities such as velocity, concen-
trations, temperature and order parameters may be stored. The data structure fits 
to the numerical model and to the data structure of the code, not to the pattern in 
the file and the hardware where the data is actually stored.

High-level I/O libraries such as HDF5 or PnetCDF may be employed to facili-
tate data exchange with other scientists. Below this layer, MPI I/O provides 
the portable middleware for parallel file I/O. MPI I/O is part of the MPI-2 [2] 
standard and was introduced in 1997. The I/O forwarding layer bridges the gap 
between the application and the file system and may aggregate the I/O. Paral-
lel file systems show a single, unified high-performance storage space while 
abstracting away many storage devices and servers. While there are many differ-
ent parallel file systems, almost only Lustre and GPFS/IBM Spectrum Scale are 



12510 M. Seiz et al.

1 3

used in the top 100 supercomputers [1]. The focus of this paper is on Lustre as it 
allows the end-user to manipulate the striping of files, which GPFS does not, thus 
obviating the need to investigate. At the very bottom of the I/O stack is the actual 
hardware, classical spinning hard disk drives (HDD) or solid-state drives (SSD), 
where user data is actually stored [3, 4].

Almost all of the above-mentioned layers have adjustable parameters in order 
to enhance I/O performance. In this paper, we are primarily concerned with the 
parameters available to the user. Similar concerns were investigated by [5–7]. 
In [5] experiments were conducted on the Texas Advanced Computing Center’s 
Stampede employing Lustre. The authors investigated the influence of stripe 
count, number of aggregators and stripe size for a fixed number of processes and 
file size. They found that if the stripe count and the number of aggregators are 
not chosen appropriately together, performance drops abruptly. This problem is 
avoided by choosing the number of aggregators greater than or equal to the stripe 
count. No significant influence of stripe size was found in [5] for the chosen pro-
cess count and file size. Based on these findings, the authors implemented a par-
allel I/O library to improve I/O performance called “TACC’s Terrific Tool for 
Parallel I/O.” In [6], the authors investigated the performance of the HDF5 and 
NetCDF-4 parallel I/O libraries on a Lustre system. Among other things, it was 
found that the highest I/O performance was found at transfer sizes as big or big-
ger than the stripe size for both libraries. The authors of [7] conducted experi-
ments on various systems with several I/O benchmarks. The experiments form a 
base for a performance model employed in an autotuning framework to optimize 
I/O performance. Parameters include the file size, stripe size, stripe count and 
number of aggregators for a fixed process count.

Fig. 1  I/O stack of a parallel application. The higher levels are designed to provide the developer with an 
interface to implement I/O, while the lower levels are designed to maintain the access to the hardware [4]



12511

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

2.1  I/O access patterns

The I/O access pattern determines the possible performance of a parallel I/O appli-
cation. Thakur et al. [8] defined various I/O access patterns and provided a classifi-
cation of the different ways to implement I/O with MPI I/O. They classify the access 
patterns into four levels, level 0 to level 3, and explain why users should implement 
level 3 MPI I/O access patterns for performance reasons. In the following, we repre-
sent the classification of I/O access patterns and discuss the advantage and disadvan-
tage of three typical I/O access patterns for parallel applications.

2.1.1  Classification of I/O patterns

Based on the work of [8], the four levels of parallel I/O are recapitulated. In level 0, 
the application uses Unix-style I/O. Each process does independent I/O: To write a 
local array to disk each process will perform an independent write for each row in 
the local array. Level 1 uses collective I/O functions: All processes write in a shared 
file by using a collective call without the knowledge of what the other processes do. 
To describe the non-contiguous file access pattern in the level 2 file access, each 
process creates an MPI-derived data type, defines a file view and performs inde-
pendent write calls. Similar to level 2, MPI-derived data types in level 3 are used to 
describe the non-contiguous access pattern and a file view is defined, but a collec-
tive write call is used to perform the I/O.

2.1.2  Mapping data onto the file system

There are mainly three methods of mapping file I/O calls onto a file system in paral-
lel programs. In the first method, each MPI process creates and writes to a separate 
file, the one-file-per-process I/O method or the N:N model as depicted in Fig. 2a. 
The implementation of this method is simple because no MPI communication is 
needed. The drawback of this method is that a large number of files are hard to man-
age [3]. Furthermore, the method does not scale to a large number of MPI processes 
as the number of metadata operations for the file creation is a bottleneck and the 
number of simultaneous disk accesses creates contention for file system resources. 
Recently, newer parallel filesystems, e.g., GekkoFS [9] or DAOS [10], are being 
developed in order to alleviate these problems, but they have not yet found wide-
spread adoption. Adding onto this, reading the data back into the application is only 
simple for the same number of processes. Reading the data back into the applica-
tion with a different number is complicated and error-prone [3]. The second method 
is the so-called spokesperson model or the 1:1-model. One MPI process receives 
all data from the other MPI processes and writes it to one file in the file system 
as shown in Fig. 2b. This approach leads to a poor performance for a large num-
ber of MPI processes because of the communication congestion of the all-to-one 
communication pattern. A second limiting factor is the memory space available for 
one process to handle all the data of the other MPI processes [3]. Even worse, one 
process cannot saturate the available bandwidth of a parallel file system. Because 
of the mentioned drawbacks, the spokesperson pattern will not scale, i.e., the time 



12512 M. Seiz et al.

1 3

increases linearly with the amount of data and increases with the number of MPI 
processes. In order to alleviate some of the performance issues, it is possible to 
define groups of processes, which aggregate the data to one process (master) within 
a group. Each group master writes a separate file, which leads to a N:M model with 
M<N, as shown in Fig. 2c. This approach increases I/O performance relative to the 

(a)

(c)

(e)

(d)

(b)

Fig. 2  Different I/O access patterns for I/O in MPI-parallel applications [3]



12513

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

1:1 model, but incorporates problems of the N:N model such as increasing number 
of metadata operations and a more complex implementation. Parallel I/O to a shared 
file performed by all MPI processes as depicted in Fig. 2d can overcome the limita-
tion of the one-file-per-process model and the spokesperson model. For the single 
shared file (SSF) model (N:1 model), one file is opened by all MPI processes and 
each MPI process performs I/O to a unique portion of the single file. The file could 
be physically distributed among disks, but appears to the program as a single logi-
cal file. With sufficient I/O hardware, a parallel file system and an efficient MPI I/O 
implementation, this model scales to a large number of MPI processes [3]. Figure 2e 
shows a modification of the SSF model, in which only a subgroup of MPI processes 
performs the I/O to the SSF.

Besides mapping the data per checkpoint onto files, there is another degree of 
freedom involved in how to store time series. This can be done in one file per check-
point approach, e.g., VTK, or with many checkpoints per file as employed in the 
proprietary format used by Pace3D [11].

2.2  Two‑phase MPI I/O

In collective I/O, all MPI processes, or a subgroup of processes, perform the I/O 
operations in one collective MPI call and provide a comprehensive view of the data 
movement over all processes. With the SSF model, shown in Fig. 2d, e, collective 
I/O is possible. A very successful process collaboration strategy is the two-phase 
I/O. It was first proposed by [12] and is used in the MPI I/O implementation ROMIO 
[8]. In the first phase, called the request aggregation phase or communication phase, 
a subset of MPI processes is selected as I/O aggregators. The file is divided into 
non-overlapping sections, called file domains, and each file domain is assigned to 
an aggregator. The non-aggregators send their data to write or request to read to 
the aggregators. In the second phase, called the file access phase or I/O phase, the 
aggregators perform the write or the read operations on the file system [3, 8].

Figure 3 exemplarily shows how the two-phase I/O works and how it improves 
the performance of the I/O. A 5 × 8 two-dimensional array is partitioned by a 
block–block pattern among four MPI processes. As each local array is non-contig-
uous in the file, if every MPI process were to write their portion of the file indepen-
dently many small and non-contiguous file operations would be necessary. A collec-
tive I/O operation circumvents this by collecting data from all MPI processes to a 
smaller number of aggregators, which write to contiguous blocks in the file and thus 
improving I/O performance.

3  Experimental environment

In this section, we will describe the hardware and the software environment on 
which all experiments were performed.



12514 M. Seiz et al.

1 3

3.1  Cray XC40 Hazel Hen

All experiments are performed on the Cray XC40 supercomputer (Hazel Hen) at 
the High-Performance Computing Center Stuttgart (HLRS). The system consists 
of 7 712 compute nodes, each with two sockets and 128 GiB of main memory. 
The nodes are connected via the high-performance Cray Aries interconnect. Each 
socket is equipped with a 12-core  Intel®  Xeon® E5-2680V3 (Haswell) proces-
sor with a base frequency of 2.5GHz , so each node has 24 cores. This leads to a 
homogeneous massively parallel system with 185 088 compute cores and approxi-
mately 987 TiB of main memory. The Cray XC40 at HLRS has a peak perfor-
mance of 7.4 PFLOP∕s and 5.64 PFLOP∕s in the LINPACK-benchmark. In the 
HPCG benchmark, the system at the HLRS reached 0.138 PFLOP∕s . The HPC 
system is connected to three Lustre file systems with a capacity of about 13.5 PiB 
in total. The technical details of the file system on which the experiments were 
performed are presented in the next section. The employed MPI I/O implementa-
tion is the Cray MPI-I/O, which is based on the MPICH ROMIO implementation 
[8].

Fig. 3  A collective file operation with a two-phase I/O for a 5 × 8 two-dimensional array, distributed 
among four MPI processes in a block–block pattern and the data layout in the file. The MPI processes 0 
and 2 are selected as I/O aggregators [3]



12515

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

3.2  The Lustre file system at HLRS

The Cray XC40 supercomputer at the HLRS is connected to three Lustre file sys-
tems. In this section, we only present the technical details of the file system ws9, 
which we used for the experiments, and explain the basic options to adapt the 
Lustre file system settings to the I/O pattern of the application. ws9 is a Lustre-
based file system, specifically a Cray Sonexion 2000 Data Storage system. The 
schema of the file system configuration and its connection to the Cray XC40 are 
shown in Fig. 4. Each compute node runs a Lustre client in order to access the 
Lustre file system.

The compute nodes are connected via the high-performance Cray Aries inter-
connect with a maximum bandwidth of 8GiB∕s for node-to-node communication. 
Hazel Hen has several service nodes, which connect to both the Aries high per-
formance network (HPN) and to external networks. Fifty-four of these service 
nodes are used as Lustre routers (LNET routers). The LNET routers are con-
nected to an InfiniBand switch as are the 54 Object Storage Servers (OSS). Each 
OSS has one Object Storage Targets (OST) with a capacity of about 169 TiB . The 
connection between the LNET routers, the InfiniBand switch and the InfiniBand 
switch with the Object Storage Servers is based on an FDR InfiniBand network 
with a bandwidth of 14GiB∕s . The number of OSTs sets a limit on the amount of 
parallel I/O throughput that can be achieved, which would ideally be the through-
put which one OST can achieve times the number of OSTs.

Fig. 4  Configuration of the Lustre file system ws9 at the HRLS



12516 M. Seiz et al.

1 3

The data of the files are stored in the OSTs. Each OST consists of 41 HDDs 
and is connected to a GridRaid which is a technique for distributing data across 
multiple HDDs. The OSS provides file I/O services and network request handling 
for OSTs [13]. Two OSS and two OST together build one Scalable Storage Unit 
(SSU). For failover inside of a SSU, an OSS is connected via Serial Attached 
SCSI (SAS) to both OSTs. If one of the OSS in a SSU fails, the other OSS takes 
control of both OSTs. One SSU has a throughput of 7.5GB∕s read and write 
when using the IOR (Interleaved or Random) benchmark, respectively, one OST 
has a bandwidth of 3.75GB∕s [14]. As there are 54 OSTs available on ws9, the 
maximum available I/O bandwidth is 202.5 GB/s. A GridRaid is used to reduce 
the rebuild time in case of drive failure and to improve the performance when 
running in degraded state [14].

To get parallelism, and thus I/O performance, the file is distributed among a num-
ber of OSTs, which is called file striping. Figure 5 shows the principal idea of file 
striping. The user can define, for directories or for a single file, the size of the pieces 
into which the file is divided (stripe size) and the number of OSTs in which the file 
is to be distributed (stripe count). The stripe size and the stripe count are the basic 
options for the user to adapt file system setting to the I/O pattern of their applica-
tion and improve the I/O performance. The stripe count can be varied from 1 to the 
maximum number of OSTS (54), whereas the stripe size can be varied between 64 
KB and 4 GB in increments of 64 KB [13]. The number of aggregator nodes dur-
ing two-phase I/O is automatically set to ����������� × ���������� by the Cray 
MPI-I/O library.

The metadata of the files are stored in seven Metadata Targets (MDT), and seven 
Metadata Servers (MDS) provide access for the Lustre clients to the metadata.

Fig. 5  A file is automatically divided into pieces and distributed among a number of OSTs (file striping). 
Users can adapt the size of the pieces (stripe size) and the number of OSTs on which the file is being 
distributed (stripe count) [13]



12517

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

4  Methods

In this section, the HPC application Pace3D and its I/O method are described. 
Following this, a small test application mimicking the I/O method of Pace3D is 
described. Finally, the experiments and measurements are detailed.

4.1  The Pace3D framework

The massive parallel Pace3D framework (“Parallel Algorithms for Crystal Evolution 
in 3D”) [11] is developed to study the microstructure evolution in different materi-
als. The simulation framework is based on the phase-field method [15] and contains 
multi-physical coupling to fields such as temperature, concentration or stresses to 
include their effect on microstructure evolution. The solver contains modules for dif-
fuse interface approaches (Allen–Cahn, Cahn–Hilliard) [15], grain growth [16–18], 
grain coarsening [19, 20], sintering [21, 22], solidification [23, 24], mass and heat 
transport, fluid flow (Lattice–Boltzmann, Navier–Stokes) [25], mechanical deforma-
tion (elasticity, plasticity) [26–28], magnetism [29], electrochemistry [30] and wet-
ting [31, 32]. The equations are discretized in space with a finite difference scheme 
and in time with different time integration methods such as explicit Euler schemes 
and implicit Euler via conjugated gradient methods [22, 33]. To efficiently compute 
the complex evolution equations, the solver is parallelized using domain decomposi-
tion based on MPI. Selected models are also manually vectorized and achieve up to 
32.5% single-core peak performance on the Hazel Hen as shown in [22]. Explicit 
kernels within the solver scale up to 98304 cores with 97% parallel efficiency [22]. 
In [22], early results of the present paper were used to massively improve I/O perfor-
mance for large-scale simulations.

The framework utilizes several proprietary data formats in order to store the 3D 
voxel-based data. The principal structure is shown in Fig. 6: Each file has a header 
containing general data, and each checkpoint (henceforth called frame) consists of 

Fig. 6  The voxel format used by Pace3D. Each file consists of a header followed by frames representing 
the state of a field at a certain timestep. Each frame consists of metadata, followed by the actual field rep-
resented as N elements of either a 4-byte float, a 12-byte vector or a 64-byte block



12518 M. Seiz et al.

1 3

frame-specific metadata, the data frame itself and an additional another block of 
frame-specific metadata. The data frame contains the data for each voxel, which may 
be one of the following: A single-precision floating point value (4 bytes), a single-
precision floating point vector (12 bytes) or a block of phase-field values (64 bytes). 
For all kinds of data, the write process of each file works as follows: The first part 
of the metadata is written by a single process. Afterwards, each process converts 
its double-precision data to single-precision data and writes it into an output buffer. 
During this conversion, further field- and frame-specific data are also determined. 
Whenever the output buffer is filled entirely during this process, the buffer is flushed 
to the disk via MPI_File_write_all. The output buffer is scaled by the local 
amount of data, ensuring that MPI_File_write_all is called the same number 
of times from each MPI rank. Once the field has been traversed entirely, the output 
buffer is flushed in parallel and the final part of the metadata is written by a single 
process. For the Pace3D measurements, the output buffer size is equal to the biggest 
local output size, and hence, there is only one call to MPI_File_write_all per 
frame.

The write time is measured via clock_gettime calls placed around the entire 
I/O function. Thus, the results for Pace3D include the double-to-float conversion 
and its accompanying memory operations as well the actual I/O operations.

4.2  mpiiotester

In order to decouple the I/O from any application effects, a small test program called 
mpiiotester is developed. The goal of this program is to replicate the I/O pat-
tern of the HPC application Pace3D without suffering from start-up and calculation 
noise. Its source code can be found at:

https:// git. scc. kit. edu/ xt5201/ mpiio teste r/-/ tree/ master
It allows both reading and writing to files on a level-3 I/O pattern with different 

I/O styles as explained in Appendix. The resulting times can either be output per 
process or aggregated into a single average time. For the investigation of independ-
ent writes by single processes, a header may also be written and timed alongside the 
normal output.

The write time measurement is done via MPI_Wtime calls around the relevant 
sections, allowing per-process timing. For the following results, the relevant section 
is simply the call to MPI_File_write_all. Thus, the time spent in this call is 
measured, which is also the time an end-user would want to minimize, or conversely, 
maximize the write rate.

4.3  Measurement details

The previously described applications measure the time elapsed during their specific 
I/O actions. Since the data written to disk is known, the write rate (WR) can be cal-
culated with �� =

�����������

�����������
 . Note that the measurement does not include the file 

opening and closing since this is done only once for many writes. If the write opera-
tion is only conducted once per file as in the VTK format, the opening and closing 

https://git.scc.kit.edu/xt5201/mpiiotester/-/tree/master


12519

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

have to be included in the measurements as well as shown in Appendix A. Besides 
the application-specific timers, Cray MPICH provides per-file write rates which are 
enabled via the environment variable MPICH_MPIIO_TIMERS=1. Further statis-
tics per file are gathered with MPICH_MPIIO_STATS=1. Generally there is a sig-
nificant difference between the write rates calculated via the timers and those 
reported by the Cray MPICH library. However, the differences are of a systematic 
kind and show a similar response behavior when a parameter is changed. Thus, the 
heuristics derived based on the results of one timer are similar to those of the other 
timers. In the rest of this paper, the application-specific timer is chosen since it can 
isolate the write time for repeated writes into the same file, which allows the gather-
ing of more data per run.

The measurements are first collected by a series of scripts and then aggregated 
into a SQLite database. This database is accessed via a Jupyter notebook from 
which the analysis is done as well. Reduced1 versions of the databases and Jupyter 
notebooks employing them are available at:

https:// git. scc. kit. edu/ xt5201/ io- on- hazel hen/-/ tree/ master
The following results section will contain variation of several I/O parameters: 

The number of employed processes, the local domain size per process (block size), 
the stripe count, the stripe size and the aggregator node multiplier in the novel Lus-
tre Lock-ahead (LLA) locking mechanism [34]. The ranges of the parameters can 
be found in Table 1, but note that the space spanned by these was subsampled based 
on prior results. The experiments without LLA were conducted at least 30 times 
per configuration at varying times of day and weekdays, with each run containing 
20 write operations (frames). Between each frame a single time step of a simple, 
explicit kernel is calculated with this time not being measured since calculation time 
is not of interest in this paper. The rank-wise write rates for each frame are averaged 
by taking their median, which yields 20 values of write rates per run. As explained 
in Appendix, the first timing of these is dropped with the rest providing 19 data 
points per run; hence, each point is the median over at least 570 values. For the 
experiments with LLA and thus large core counts, only 1-3 runs were conducted per 
configuration due to time constraints, which is reflected in their much larger confi-
dence intervals.

Table 1  Investigated parameters 
and their respective limits

Parameter name Minimum Maximum

Process count 1 49,152
Block size in KB 64 64,000
Stripe count 1 54
Stripe size in KiB 64 1,048,576
Multiplier 1 128

1 The median over the process rank has already been calculated to reduce the size of the database.

https://git.scc.kit.edu/xt5201/io-on-hazelhen/-/tree/master


12520 M. Seiz et al.

1 3

The investigated local domain sizes range from 203 voxels to 2003 voxels per pro-
cess, which represent the span of domain sizes typically employed in Pace3D. With 
one double-precision float per voxel, the data written per process range between 64 
KB and 64000 KB, which will henceforth be called block size. The lower end of 
block sizes might very well stay cached during the experiments. But this in turn 
means that the user does not need to care about I/O configuration as the data will be 
flushed in the background while computation resumes.

5  Results

In the following, the experiments conducted with both the mpiiotester and 
Pace3D are detailed. First, the simpler mpiiotester is used to investigate the 
general write performance. It is shown that the default striping is insufficient to fully 
exploit the parallel filesystem, especially for simulations employing more than one 
compute node. The striping configuration in terms of stripe count and stripe size is 
varied for different experimental configurations in terms of the block size and pro-
cessor count. Based on these results, heuristics for both the stripe count and stripe 
size are derived. With both the stripe count and stripe size heuristics determined, the 
influence of the multiplier with active LLA is investigated. Finally, the derived heu-
ristics are afterwards validated by employing Pace3D, and satisfactorily matching is 
observed.

5.1  mpiiotester performance

This section will show the performance results on ws9 on Hazel Hen with plots 
showing the median performance and its 95% confidence interval (CI), unless noted 
otherwise. Confidence intervals are employed for visual checks on whether the 
parameter variation caused significant differences or not. We note that the measure-
ments were done at a time when ws9 was not commonly accessible, i.e., the meas-
urements were largely done in isolation in terms of file I/O but were still affected by 
network noise. A thorough analysis of the raw data is given in Appendix, determin-
ing vital information on the distribution to enable quantitative analysis.

5.1.1  Stripe count

The single -node write performance of the default striping on ws9 is investigated 
by running the application described in section mpiiotester with the single-file 
output style and without a header. The default striping consists of a stripe count of 
8 OSTs as well as a stripe size of 1MiB . In Fig. 7, the influence of the data written 
per MPI process, henceforth called block size, is shown. A general trend of increas-
ing performance with increasing block size can be seen, with many configurations 
showing only small but still significant improvements at block sizes exceeding 
4096KB . Furthermore, at least 16 cores seem to be required to saturate the write 
rate for a given block size.



12521

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

Going on to look at multi-node performance, the write rate increases as shown 
in Fig. 8 with more than one node. Hence, the bandwidth was not fully utilized in 
the single-node case. However, the write rate does not scale beyond 48 cores. In 
order to achieve I/O scaling for multiple nodes, it is necessary to adjust the strip-
ing of the file. The striping consists of both the stripe count and the stripe size, of 
which the stripe count will be investigated first. This is done by varying the stripe 
count on a single node in order to determine a heuristic for the number of OSTs 
per node for good performance. Figure 9 shows the results of this study for 24 
cores, indicating a performance peak at 8 OSTs.

Fig. 7  Single-node performance of mpiiotester, log-scaled x-axis. An increase in block size yields 
higher write performance up to a block size of 4096KB , beyond which the effect is small but significant. 
At least 16 cores out of 24 seem to be necessary in order to saturate the write rate for a given block size

Fig. 8  Multi-node performance of mpiiotester, log-scaled x-axis. The single-node performance is 
strictly below that of any multi-node performance, and thus, the bandwidth was not fully utilized in the 
single-node case. However, the write rate does not scale beyond 48 cores



12522 M. Seiz et al.

1 3

This may suggest that for any number of nodes, using 8 OSTs per node would 
show the highest observed performance, which is tested in a multi-node study 
utilizing multiples of 8 as the stripe count. The result of this study is shown for a 
block size of 4096KB in Fig. 10. Two things are evident: The performance peak 
indeed moves to higher OST counts with more cores, but the peak itself also wid-
ens. Up to 4 nodes (96 cores), the 8 OST per node model describes the perfor-
mance peak reasonably well, but for 8 nodes, the peak is reached before the pre-
dicted value at 64 OSTs. As ws9 only has 54 OSTs, the predicted position cannot 

Fig. 9  Single-node performance of mpiiotester with variable striping count employing a full node 
corresponding to 24 cores. A performance peak is evident for block sizes above 64 KB. All of the results 
of the block sizes above 512 KB are very close together. This suggests that the peak is independent of 
block size for block sizes above of 512 KB

Fig. 10  Multi-node performance of mpiiotester with variable striping count and a block size of 
4096KB . As expected, the write rate rises with increasing OST count up to a maximum but drops off 
afterwards. With increasing core counts, the peak moves to higher OST counts and widens



12523

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

even be reached; however, for small node counts, the estimate describes the 
peak adequately. Determining the OST count showing the highest performance 
for each line of processor count and fitting a linear function for, it yielded the 
function #OST = 5.6N + 4.9 , with N representing the node count. This is valid 
for node counts up to 8, after which the maximum of OSTs (54) should be used. 
A previous study [35] on the predecessor of ws9 with 168 OSTs showed that the 
peak is best described with a linear function #OST = 5N + 3 with N being the 
number of nodes. This function also fits the current data from ws9 but tends to 
underpredict the number of OSTs. By adjusting the striping the multi-node, write 
rate was improved from 2.5 GB/s to up to 9.5 GB/s and thus almost a fourfold 
improvement over the default striping.

(a)

(b)

Fig. 11  Effect of the stripe size on the write performance for a single node, log-scaled x-axis. Generally, 
having a block size as big or bigger than the stripe size yields good performance



12524 M. Seiz et al.

1 3

5.1.2  Stripe size

In order to analyze the effect of the stripe size, a study with varying block sizes, 
stripe sizes and striping counts is done for a fixed core count of 24 (single node). 
This is done in order to maximize the throughput at the OSTs, as the network 
link is assumed not to be a limiting factor. Figure  11a shows the results for a 
fixed striping count of 8 and Fig.  11b for a block size of 4096KB . The plots 
introduce a new parameter ������ =

���������

����������
 , the ratio of block size to stripe 

size, as we are interested in stripe sizes showing good performance for a specific 
block size. For block sizes above 4096KB , the write performance levels off at a 
ratio of 4, whereas for smaller block sizes the performance has a peak at a ratio 
of 1. These results are independent of the striping count being used in this case, 
as shown in Fig. 11b. This result can in fact be explained by considering the data 
gained via the environment variable MPICH_MPIIO_STATS=1. It yields, 
among other information, the number of system writes as well as how many of 
these writes were stripe-sized. Plotting the percentage of stripe-sized writes for 
the data from Fig. 11a yields Fig. 12. The highest performance is achieved at or 
close to 100% stripe-sized writes, which can be achieved by setting the stripe 
size to a small divisor of the block size. Thus, we suggest the following heuristic 
for the stripe size (SS) based on the block size (BS): SS = kBS, k ∈ {1∕1, 1∕2, 1∕4} , 
rounded to the nearest multiple of 64 KiB. The following studies will be using a 
ratio of 1/4, i.e., the data of one process is distributed among 4 stripes. For a 
block size of 64 KB, a stripe size of 64 KiB is employed since that is the mini-
mum available stripe size.

Fig. 12  Variation of the percentage of stripe-sized writes for 8 OSTs on a single node with different 
block- and stripe sizes. The best performance is generally reached at or close to 100% stripe-sized writes, 
which can be achieved by setting the stripe size to a small divisor of the block size



12525

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

5.1.3  Multiplier

As we have already seen, the performance for 8 nodes levels off around the maxi-
mum number of OSTs available, most likely due to lock contention between aggre-
gators. In order to get higher throughput from the OSTs, CRAY provides a novel 
locking mechanism called Lustre Lock-ahead (LLA) on ws9, which allows multiple 
aggregating I/O processes to write concurrently to the same OST [34].

This locking mechanism is activated via MPI I/O hintscray_cb_write_
lock_mode=2:cray_cb_nodes_multiplier=x where x is the multiplier, 
i.e., the number of aggregators writing to the same OST. We shall first show that on 
ws9, increasing OSTs up to the maximum should be done before activating LLA by 
varying both OST count and the multiplier. The results are shown in Fig. 13 for a 
block size of 4096KB and 3072 cores: For 27 OSTs to reach the same performance 
as 54 OSTs without any multiplier, a multiplier of 16 is required, whereas 54 OSTs 
with such a multiplier outperform the 27 OST case. Hence, the maximum perfor-
mance is reached when using all available OSTs, and thus, in the following we only 
need to investigate the effect of different multipliers for the maximum number of 
OSTs.

Figure 14 shows the results of varying the block size, the core count as well 
as the multiplier. Note that a multiplier of 1 refers to keeping LLA turned off, as 
running LLA with a multiplier of 1 shows strictly worse write rates than with-
out LLA. The multiplier was increased until either more aggregators than cores 
would have been used or a multiplier of 64 was reached. The results for block 
sizes 64KB and 512KB should be taken with a grain of salt, as the writing time 
per frame for these was mostly below 0.1 s . For block sizes 64KB and 512KB 
and high core counts ( > 6144 ), smaller multipliers were not investigated as 
these were expected to take excessive amounts of CPU time. In case of a 64KB 
block size, using a multiplier of 4 when using more than 384 cores seems to 

Fig. 13  Effect of multiplier on different stripe counts for a block size of 4096KB at 3072 cores. The 
stripe counts below the maximum show no performance benefit compared to using the maximum number 
of OSTs



12526 M. Seiz et al.

1 3

(a)

(b)

(c)

(d)

Fig. 14  Effect of the multiplier for 54 OSTs for different block sizes, log2-scaled x-axes. While for block 
sizes > 4096KB there seems to be a clear pattern for the highest observed performance, the lower block 
sizes show an erratic behavior



12527

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

give the peak write performance. Increasing the block size to 512KB , the picture 
becomes much less clear, with the peak write performance being reached at a 
multiplier of 4, 8, 16, 32 and 64 for 768, 1536, 3072, 6144 and {12288, 24576} 
cores, respectively. The highest investigated core count 49152 reaches the high-
est performance at its lowest investigated multiplier of 16. A further increase 
in block size to 4096KB yields a less muddled picture, with core counts above 
6144 clearly exhibiting a significant peak at a multiplier of 32. Finally, a block 
size of 32768KB shows this effect even more pronounced starting from 3072 
cores. In total, large block sizes ≥ 4096KB show pronounced performance 
increases (factor of 2-8) when employing a multiplier of 32 to 64. Below this 
block size, a performance increase of up to 2 is possible, but the optimal multi-
plier non-trivially depends on the employed core count.

(a)

(b)

Fig. 15  Comparison of the writing rates achieved by Pace3D and mpiiotester on a large number of 
nodes for a block size of 32768KB . The difference is mainly attributable to the 3DDD as well as the I/O 
buffer filling being measured as well



12528 M. Seiz et al.

1 3

5.2  PACE3D performance

We have performed similar weak scaling runs as in the previous section for the 
materials microstructure simulation framework Pace3D. There are two key differ-
ences to the mpiiotester configuration: A 3D domain decomposition (3DDD) is 
employed and the time required for filling internal I/O buffers is measured with the 
internal timers. Thus, these results cannot be directly compared to mpiiotester 
results; in advance, we can easily predict that the writing rate will be lower. In total, 
the results showed a similar response behavior to the investigated parameters, and 
the writing rates were indeed smaller than for mpiiotester. Heuristics derived 
from the Pace3D I/O data for stripe count and stripe size yield very similar results as 
previously established for mpiiotester. Consider Fig. 15 as an executive sum-
mary, which shows the performance of both Pace3D and mpiiotester on a large 
number of nodes when the multiplier is varied. Both figures show a dependence of 
the multiplier effect on the core count with higher core counts being able to reach 
higher writing rates, given a sufficient multiplier. For the two highest process counts, 
a higher multiplier than in the previous study was also tested since no clear peak was 
visible. While this configuration showed a lower write rate, the confidence inter-
vals overlap, suggesting that there is no significant difference between employing a 
multiplier of 32, 64 or 128 for these. Thus, a multiplier of 32 to 64 is likely to yield 
good performance for the more usual 3DDD, given a sufficiently big local domain, 
as well.

6  Conclusion and outlook

By performing a large range of write performance measurements with a special-
ized application, heuristics for good write performance for parallel I/O on the 
ws9 filesystem of HLRS were determined. The striping configuration yielding 
the highest write rate while writing a spatially distributed array was found to be 
dependent on both the block size and the number of employed compute nodes. 
The stripe count or equivalently OST count should be set to #OST = 5.6N + 4.9 
with N being the number of employed compute nodes. The stripe size (SS) 
should be set to SS = kBS, k ∈ {1∕1, 1∕2, 1∕4} with BS representing the number 
of bytes to be written per processor, rounded to the nearest multiple of 64 KiB. 
These striping heuristics enabled up to fourfold improvement over the default 
striping configuration. Further performance was gained by employing Cray’s 
LLA locking method, which introduces a new parameter called multiplier. 
Various choices of this multiplier were investigated. No general heuristic con-
sidering both block size and the number of employed compute nodes could be 
derived. However, for block sizes equal to or above 4096  KB and above 3072 
cores (128 nodes), a multiplier of 32 was found to show the best performance, 
yielding another factor of 2–8 from the optimized striping configuration. Thus, 
a total factor of 10–32 of sustained throughput increase was gained for the 
single shared file model, reaching in these experiments up to 85 GB/s which 



12529

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

corresponds to 42% of the total I/O bandwidth of 202.5 GB/s. Finally, the strip-
ing heuristics were shown to be transferable from a similar Lustre setup [35] as 
well as to a general application code.

The transferability of heuristics between similar Lustre setups has been shown 
with this paper and previous work [35]. What needs to be done next is to test the 
transferability further for different Lustre setups and determine how to proceed 
from a Lustre setup to good I/O performance, obviating the need for experi-
mental runs. Furthermore, the effect of burst buffers needs to be considered, as 
prior research [36, 37] has shown these to provide great performance benefits. 
With the coming of the next generation file system at HLRS, both points will be 
investigated.

Appendix

We need to establish some basic information about the distribution of the measure-
ments in order to quantitatively analyze them: 

1.  How are the writing times distributed?
2.  Does the process rank influence the writing time?
3.  Is there an effect of writing style on write performance?
4.  Does the frame number influence the writing time?
5.  Does the domain decomposition affect the writing rate?

As a first example, consider a number of runs N of constant block size, striping 
parameters, frames and number of MPI processes. For each MPI process and frame, 
there are N elapsed times during writing, which can be converted to write rates via 
WR =

�����������

�����������
 . The median of these writes rates for a specific frame is shown in 

Fig. 16a. Each point is based on N = 42 runs conducted at different times of days 
and weekdays. In order to show independence of process rank and writing rate, we 
will use random subsamples of this data and test for statistical significant differ-
ences; if the random subsamples are not significantly different, then the subgroups 
can be exchanged arbitrarily, and hence, there is no significant influence of the pro-
cess rank.

For standard ANOVA to be applicable, the distribution of the writing rate has 
to be normal; Fig. 16b shows the Gaussian kernel density estimation (KDE) of the 
raw data for Fig. 16a which indicates that the data is not normally distributed. Fur-
thermore, the Shapiro–Wilk test was applied for individual runs which showed that 
the distribution of write rates among ranks is not normal. Since the conditions for 
ANOVA are not fulfilled, we shall use the nonparametric Kruskal–Wallis test to test 
for significantly different medians for the data shown in Fig. 16a. The test shows no 
significant differences at the p = 0.01 level. With this we have answered i and ii; the 
data is not normally distributed and the process rank does not significantly influence 
the write rate. The latter also follows from the collective operation to determine the 
exit code at the end of a MPI_File_write_all call.



12530 M. Seiz et al.

1 3

In the following, the rank-wise data is averaged by taking the median of the write 
time over the ranks, which is then used to compute the write rate via 
WR =

�����������

���(�����������)
 . Figure 17 depicts a violin plot of this write rate as well as the 

corresponding write time for three exemplary configurations. Each point corre-
sponds to a specific frame and run, with 800, 840 and 660 total points, respectively 
for 24, 384 and 768 cores.

This shows that while most of the data is closely clustered in and around the IQR, 
there is a significant number of outliers, with the distribution becoming broader 
with more processes. We suspect these effects are caused by contention over shared 
resources (network throughput & disk access) with the chance of contention rising 
with higher process counts.

(a)

(b)

Fig. 16  Median write rates as well as the frequency distribution of write rates for an exemplary setup 
repeated 42 times



12531

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

The shown data so far have all been for the “single file” (sf) writing style, i.e., 
writing all checkpoints into a single file and keeping it opened. Similar behavior is 
observed for the other two kinds of styles investigated, both inspired by the VTK file 
format: One file per written checkpoint (frame), excluding opening time (mf) as well 
as including the opening time (mf-wo). The write rates of the styles are now inves-
tigated in order to address iii. The plots in Fig. 18 indicate that there is a significant 
difference between the styles. Testing with Kruskal–Wallis shows that all differences 
are significant at the p = 0.01 level. Since the single-file style shows the best write 
performance, we chose to use this style for the performance tests.

Based on the confidence intervals of the figures in Fig.  18, it can be reasoned 
that past the first frame the performance is in a more or less steady state except for 

(a)

(b)

Fig. 17  Exemplary violin plots of three configurations: 24 cores with the default striping and 384 as well 
as 768 cores with the striping count set to 54, block size is 32,768 KB. Higher core counts lead to a more 
spread-out distribution of write rates



12532 M. Seiz et al.

1 3

system jitter. Performing significance tests on pairs of frames shows that indeed the 
first frame is significantly different from other frames. Past the first frame, the num-
ber of significant differences per frame is distributed with no apparent pattern. We 
shall only exclude the first frame from further analysis as its deviation is by far the 
largest.

Finally, we address iv by comparing single-node and multi-node perfor-
mance of a 1D domain decomposition (1DDD) with a 3D domain decomposi-
tion (3DDD). The 1DDD is split along the outermost coordinate and the 3DDD 
such that the number of cores per dimension increases or stays the same as the 

(a)

(b)

Fig. 18  Variation of write performance due to frame count and writing style. The single-file writing style 
generally shows the highest write rate but tends to scatter more. While there is a significant difference for 
the multiple file writing style with and without including the opening time, the difference is small rela-
tive to the total write rate



12533

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

number of cores is increased. Figure 19 shows the single-node case for both con-
figurations, and there is a small but significant difference between the 1DDD and 
3DDD cases. For multiple nodes as depicted in Fig. 20 the write rates and curve 
shapes differ substantially and the maximum write rate is smeared out for higher 
core counts, especially for 192 cores. However, the region of good performance 
in terms of striping does not differ significantly between the 1DDD and 3DDD 
cases. Hence, it is sufficient to investigate the 1DDD case and apply the derived 
heuristics to the more computationally efficient 3DDD.

(a)

(b)

Fig. 19  Influence of spatial decomposition on the writing rate for a single node. Highly similar results 
are achieved for both the 1DDD and 3DDD cases, with the 3DDD generally showing smaller write rates



12534 M. Seiz et al.

1 3

Acknowledgements Funding provided by the Deutsche Forschungsgemeinschaft under Grants NE 
822/9-2 and NE 822/31-2 (Gottfried-Wilhelm-Leibniz-Preis) is gratefully acknowledged. Funding pro-
vided by the Bundesministerium für Bildung und Forschung under Grant 01IH16013 is gratefully 
acknowledged. This work was partially executed within the frame of the German SiVeGCS project. We 
are grateful to the computational resources on the Hazel Hen provided by the HLRS and for their support.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 

(a)

(b)

Fig. 20  Influence of spatial decomposition on the writing rate for multiple nodes for a block size of 
4096KB . While there are now bigger differences than in the single-node case, the OST count at which 
the highest write rate is observed does not differ significantly



12535

1 3

Lustre I/O performance investigations on Hazel Hen: experiments…

Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ 
licen ses/ by/4. 0/.

References

 1. Strohmaier E, Dongarra J, Simon H, Meuer M. Top500 list-november 2020. https:// www. top500. 
org/ lists/ top500/ 2020/ 11//. Accessed 11 Feb, 2021

 2. Message Passing Interface Forum (1997) Mpi-2: Extensions to the message-passing interface. 
https:// www. mpi- forum. org/ docs/. Accessed 13 Mar 2019

 3. Liao W-k, Thakur R (2015) High performance parallel I/O, chapter MPI-IO. Chapman & Hall/
CRC computational science series : A Chapman & Hall book. CRC Press, pp 155–167

 4. Latham R, Ross R (2013) Earth system modelling—volume 4: IO and postprocessing, chapter 
Parallel I/O Basics. Springer, Berlin, pp 3–12

 5. McLay R, James D, Liu S, Cazes J, Barth W (2014) A user-friendly approach for tuning parallel file 
operations. In: SC ’14: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. pp 229–236

 6. Bartz C, Chasapis K, Kuhn M, Nerge P, Ludwig T (2015) A best practice analysis of hdf5 and 
netcdf-4 using lustre. In: Kunkel JM, Ludwig T (eds) High performance computing. Springer, 
Cham, pp 274–281

 7. Behzad B, Byna SP, Snir M (2019) Optimizing i/o performance of hpc applications with autotuning. 
ACM Trans Parallel Comput. https:// doi. org/ 10. 1145/ 33092 05

 8. Thakur R, Gropp W, Lusk E (2002) Optimizing noncontiguous accesses in mpi-io. Parallel Comput 
28(1):83–105

 9. Vef M, Moti N, Süß T, Tocci T, Nou R, Miranda A, Cortes T, Brinkmann A (2018) Gekkofs—a 
temporary distributed file system for hpc applications. In: 2018 IEEE International Conference on 
Cluster Computing (CLUSTER). pp 319–324

 10. Liang Z, Lombardi J, Chaarawi M, Hennecke M (2020) Daos: a scale-out high performance storage 
stack for storage class memory. In: Panda DK (ed) Supercomputing frontiers. Springer, Cham, pp 
40–54

 11. Hötzer J, Reiter A, Hierl H, Steinmetz P, Selzer M, Nestler B (2018) The parallel multi-physics 
phase-field framework pace3d 26:1–12

 12. del Rosario JM, Bordawekar R, Choudhary A (1993) Improved parallel i/o via a two-phase run-time 
access strategy. SIGARCH Comput Archit News 21(5):31–38

 13. Manual Lustre. Lustre software release 2.x - operations manual. http:// lustre. org/ docum entat ion/. 
Accessed 11 Feb 2021

 14. El-Harake HN, McMurtrie C (2015) Evaluation of the cray sonexion 2000 storage system. https:// 
www. cscs. ch/ filea dmin/ user_ upload/ conte nts_ publi catio ns/ techn ical_ repor ts/ Evalu ation_ Cray_ 
Sonex ion20 00_ Stora geSys tem. pdf. Accessed 11 Feb 2021

 15. Nestler B, Garcke H, Stinner B (2005) Multicomponent alloy solidification: phase-field modeling 
and simulations. Phys Rev E 71:041609

 16. Ankit K, Nestler B, Selzer M, Reichardt M (2013) Phase-field study of grain boundary tracking 
behavior in crack-seal microstructures. Contrib Mineral Petrol 166(6):1709–1723

 17. Ankit K, Urai JL, Nestler B (2015) Microstructural evolution in bitaxial crack-seal veins: a phase-
field study. J Geophys Res Solid Earth 120(5):3096–3118

 18. Ankit K, Selzer M, Hilgers C, Nestler B (2015) Phase-field modeling of fracture cementation pro-
cesses in 3-d. J Petrol Sci Res 4(2):79–96

 19. Vondrous A (2014) Grain growth behavior and efficient large scale simulations of recrystallization 
with the phase-field method, vol 44. KIT Scientific Publishing, New York

 20. Selzer M (2014) Mechanische und strömungsmechanische topologieoptimierung mit der 
phasenfeldmethode

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.top500.org/lists/top500/2020/11//
https://www.top500.org/lists/top500/2020/11//
https://www.mpi-forum.org/docs/
https://doi.org/10.1145/3309205
http://lustre.org/documentation/
https://www.cscs.ch/fileadmin/user_upload/contents_publications/technical_reports/Evaluation_Cray_Sonexion2000_StorageSystem.pdf
https://www.cscs.ch/fileadmin/user_upload/contents_publications/technical_reports/Evaluation_Cray_Sonexion2000_StorageSystem.pdf
https://www.cscs.ch/fileadmin/user_upload/contents_publications/technical_reports/Evaluation_Cray_Sonexion2000_StorageSystem.pdf


12536 M. Seiz et al.

1 3

 21. Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B (2019) Phase-field simulation of solid state 
sintering. Acta Mater 164:184–195

 22. Hierl H, Hötzer J, Seiz M, Reiter A, Nestler B (2019) Extreme scale phase-field simulation of sin-
tering processes. In: 2019 IEEE/ACM 10th workshop on latest advances in scalable algorithms for 
large-scale systems (ScalA). pp 25–32

 23. Choudhury A, Geeta M, Nestler B (2013) Influence of solid-solid interface anisotropy on three-
phase eutectic growth during directional solidification. Europhys Lett 101(2):26001

 24. Choudhury A (2015) Pattern-formation during self-organization in three-phase eutectic solidifica-
tion. Trans Indian Inst Met 68:1137–1143. https:// doi. org/ 10. 1007/ s12666- 015- 0659-9

 25. Ettrich J (2014) Fluid flow and heat transfer in cellular solids, vol 39. KIT Scientific Publishing, 
New York

 26. Schneider D, Selzer M, Bette J, Rementeria I, Vondrous A, Hoffmann MJ, Nestler B (2014) Phase-
field modeling of diffusion coupled crack propagation processes. Adv Eng Mater 16(2):142–146

 27. Schneider D, Tschukin O, Choudhury A et al (2015) Phase-field elasticity model based on mechani-
cal jump conditions. Comput Mech 55:887–901. https:// doi. org/ 10. 1007/ s00466- 015- 1141-6

 28. Schneider D, Schmid S, Selzer M, Böhlke T, Nestler B (2015) Small strain elasto-plastic mul-
tiphase-field model. Comput Mech 55(1):27–35

 29. Mennerich C (2013) Phase-field modeling of multi-domain evolution in ferromagnetic shape mem-
ory alloys and of polycrystalline thin film growth, vol 19. KIT Scientific Publishing, New York

 30. Mukherjee A, Ankit K, Mukherjee R, Nestler B (2016) Phase-field modeling of grain-boundary 
grooving under electromigration. J Electron Mater 45(12):6233–6246

 31. Ben Said M, Selzer M, Nestler B, Braun D, Greiner C, Garcke H (2014) A phase-field approach for 
wetting phenomena of multiphase droplets on solid surfaces. Langmuir 30(14):4033–4039

 32. Weyer F, Said MB, Hötzer J, Berghoff M, Dreesen L, Nestler B, Vandewalle N (2015) Compound 
droplets on fibers. Langmuir 31(28):7799–7805 (PMID: 26090699)

 33. Hötzer J, Tschukin O, Ben SM, Berghoff M, Jainta M, Barthelemy G, Smorchkov N, Schneider D, 
Selzer M, Nestler B (2016) Calibration of a multi-phase field model with quantitative angle meas-
urement. J Mater Sci 51(4):1788–1797

 34. Moore M, Farrell P, Cernohous B (2018) Lustre lockahead: early experience and performance using 
optimized locking. Concurr Comput Pract Exp 30(1):e4332

 35. Seiz M, Hötzer J, Hierl H, Reiter A, Schratz K, Nestler B (2021) High Performance Computing in 
Science and Engineering ’19: Transactions of the High Performance Computing Center, Stuttgart 
(HLRS) 2019, chapter Accelerating phase-field simulations for HPC-systems. Springer, Berlin

 36. Bard D (2017) Accelerate your i/o with the burst buffer. http:// press3. mcs. anl. gov/ atpesc/ files/ 2017/ 
08/ ATPESC_ 2017_ Track-3_ 04_8- 4_ 1030am_ Bard- Burst_ Buffer. pdf. Accessed 11 Feb 2021

 37. Schenck W, El Sayed S, Foszczynski M, Homberg W, Pleiter D (2016) Early evaluation of the infi-
nite memory engine burst buffer solution. In: Taufer M, Mohr B, Kunkel JM (eds) High perfor-
mance computing. Springer, Cham, pp 604–615

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1007/s12666-015-0659-9
https://doi.org/10.1007/s00466-015-1141-6
http://press3.mcs.anl.gov/atpesc/files/2017/08/ATPESC_2017_Track-3_04_8-4_1030am_Bard-Burst_Buffer.pdf
http://press3.mcs.anl.gov/atpesc/files/2017/08/ATPESC_2017_Track-3_04_8-4_1030am_Bard-Burst_Buffer.pdf

	Lustre IO performance investigations on Hazel Hen: experiments and heuristics
	Abstract
	1 Introduction
	2 State of the art in parallel IO
	2.1 IO access patterns
	2.1.1 Classification of IO patterns
	2.1.2 Mapping data onto the file system

	2.2 Two-phase MPI IO

	3 Experimental environment
	3.1 Cray XC40 Hazel Hen
	3.2 The Lustre file system at HLRS

	4 Methods
	4.1 The Pace3D framework
	4.2 mpiiotester
	4.3 Measurement details

	5 Results
	5.1 mpiiotester performance
	5.1.1 Stripe count
	5.1.2 Stripe size
	5.1.3 Multiplier

	5.2 PACE3D performance

	6 Conclusion and outlook
	Acknowledgements 
	References




