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1 Introduction

Excitons are quasiparticles that can occur in insulators and semiconductors. Their
postulation in 1930 by Frenkel [1], Peierls [2], and Wannier [3] was of great theoretical
interest regarding the optical properties of these solids. In 1952, excitons in Cu2O were
discovered experimentally by Gross and Karryev [4]. The choice of this solid followed,
among other things, from the already widely researched electrical properties of Cu2O. Also,
due to a publication in 2014 by the Bayer Group of the Technical University of Dortmund
[5], excitons are still part of the latest research. The experimental determination of
exciton states in Cu2O up to quantum numbers of n = 25, illustrated in fig.1.1, was unique
to date and amplified the research interest. Since then, the Institute for Theoretical
Physics I (ITP1) at the University of Stuttgart has also been working continuously on
excitons in Cu2O. A hydrogen-like Hamiltonian served as a first approximation for the
theoretical description of the exciton states. This approximation already explains the
rough form of the Rydberg series shown in fig.1.1. Since a description of the exciton states
without considering the crystal is trivially not exact, this Hamiltonian was modified via
the band structure of the crystal. Since the analytical solution of the simplified model
system is well known, the research of ITP1 was mainly concerned with excitons in the
bulk. The bulk refers to a three-dimensional, and arbitrarily far-reaching crystal structure.
Since excitons in the bulk are now already extensively researched, see for example in
the Ph.D. thesis of Frank Schweiner [6], an additional potential was introduced for new
insights.

The so-called Quantum Wells correspond to an infinite potential well, which spatially
limits one dimension of the crystal. Again a hydrogen-like description, containing the
quantum wells was considered first. A programme implemented by Pavel Belov [7] serves
to solve the exciton states with included Quantum Wells. A previous bachelor thesis by
Leon Kühner [8] already dealt with the solution of the hydrogen-like model with Quantum
Wells. In his bachelor thesis, Niklas Scheuler is currently optimising the programme
to reduce the required CPU time and memory. This bachelor thesis is focused on an
analytical reduction of the degrees of freedom of the Hamiltonian containing Quantum
Wells and the band structure corrections. Combined with the parallel work of Niklas
Scheuler, this should make it possible to extend the programme to solving the exciton
states with the band structure and the Quantum Wells. The reduction of the degrees
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1 Introduction

Figure 1.1: (a) Absorption spectrum of the yellow exciton series in Cu2O. Optical
density plotted against the energy of the photons required for excitation. The maxima
correspond to resonant energies of different quantum numbers n. (b) Naturally occurring
Cu2O ore. (c) Pure Cu2O crystal and experimental sample. (d) Wave function of an
exciton with quantum number n = 25 [5].

6



of freedom was realised by transforming the Hamiltonian into cylindrical coordinates
using the existing translation and rotation symmetries. The calculation was checked
by Mathematica as well as by a symmetry test of the resulting Hamiltonian. Finally,
a basis for the numerical diagonalisation of the Hamiltonian was sketched to give an
outlook on future research. Future results by the Giessen group, from the 4th Physical
Institute at the University of Stuttgart, will serve as a falsification test for the theoretical
discoveries.
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2 Solid State Basics

The following sections 2.1 to 2.5 are based on References [6, 8-10].

2.1 Crystals

Based on their external appearance, solids can be divided into two classes. On the one
hand, there are crystals, which have a regular, ordered atomic structure and thus also a
regular outer appearance. On the other hand, amorphous solids have a disordered atomic
structure and thus a disordered appearance. The following considerations are limited to
crystalline solids. The underlying atomic structure is referred to in the following as the
base. A base can consist of one or more atoms. Single-atomic bases are called primitive,
multi-atomic bases are called non-primitive. Furthermore, a base must be constructed in
such a way that an arrangement of several identical bases can cover the space inside the
crystal completely and without overlap. The shape of a base is therefore dependent on
the atomic structure of a crystal and is closely related to its symmetry properties. The
periodic, regular arrangement of the bases in a crystal motivates the introduction of a
periodic lattice. The bases are mapped onto points, and thus the crystal is represented
by a periodic point lattice. This separation simplifies further analysis of the crystal.

2.2 Crystal Symmetry

Crystal symmetries are of particular interest. We are therefore looking for operations
that hold the point lattice invariant. Possible operations are translations, rotations,
reflections, and inversions. First consider the translation symmetry, where an arbitrary
point r is chosen within the crystal. Let the environment of r be U(r). If one shifts the
point r by the lattice vector

R = n1a1 + n2a2 + n3a3, (2.1)

9



2 Solid State Basics

Table 2.1: A primitive Bravais lattice exists for each of the seven crystal systems. They
are distinguished by the lengths a, b, c and the angles α, β, γ of the basis vectors relative
to each other. The order of rotation corresponds to the number of rotational axes.

crystal system lattice constants angles rotational axes
triclinic a 6= b 6= c α 6= β 6= γ 1
monoclinic a 6= b 6= c α = γ = 90◦, β 6= 90◦ 2
orthorombic a 6= b 6= c α = β = γ = 90◦ 2
tetragonal a = b 6= c α = β = γ = 90◦ 4
hexagonal a = b 6= c α = β = 90◦, γ = 120◦ 6
trigonal a = b = c α = β = γ < 120◦ 6= 90◦ 3
cubic a = b = c α = β = γ = 90◦ 3

one again ends up in an identical environment

U(r) = U(r + R). (2.2)

The basis vectors a1,a2, and a3 form a coordinate system that spans the crystal lattice.
The lengths |a1| = a, |a2| = b, |a3| = c and angles α, β, γ of the basis vectors relative to
each other can be used to construct different lattices. Taking into account the properties
of a base (2.1), 14 Bravais lattices are possible in three-dimensional space. For seven of
the 14 Bravais lattices primitive bases can be found, which represent the seven crystal
systems, listed in tab.2.1. The integers n1, n2, n3 serve as a count of the discrete lattice
points. Rotation, reflection and inversion belong to the point symmetry. Characteristic
of the point symmetry is the fixing of at least one lattice point. A trivial rotation by
2π leads to an identical structure for any grid and is therefore of little interest. More
interesting are discrete rotations around 2π/n with n ∈ {2, 3, 4, 6}. The choice for n
arises from the requirement of an area-covering and non-overlapping basis. Illustratively,
the two-dimensional space can thus be completely covered by triangles, quadrangles and
hexagons, but not by pentagons, heptagons or octagons without overlap, as it can be
seen in fig.2.1. The same applies to the corresponding polyhedra in three dimensions.
Reflection symmetry arises through reflection on a fixed plane and therefore always
occurs in the company of rotation symmetry. The inversion projects the position vector r
back to its negative −r and thus occurs with every ideal point lattice but not necessarily
in the crystal itself. With the three point symmetries, the seven crystal systems can be
subdivided into a further 32 crystal classes or point groups. Since the cubic structure of
the Cu2O-crystal has the same point symmetry as the octahedron, it belongs to the Oh

point group, see fig.2.2.
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2.2 Crystal Symmetry

(a) triangles (b) squares (c) hexagons

(d) pentagons (e) heptagons (f) octagons

Figure 2.1: In the first row from left to right, various arrangements of triangles (a),
squares (b), and hexagons (c) can be seen. These three geometric forms fulfill the
conditons to be a base and therefore the corresponding rotational symmetries can exist.
In the second row from left to right, various arrangements of pentagons (d), heptagons (e),
and octagons (f) can be seen in two-dimensional space. This results in either unavoidable
gaps or overlaps of the individual polygons that are not permitted for bases. Accordingly,
corresponding rotational symmetries of order n = 5, 7, 8 cannot exist in the crystal lattice.

11



2 Solid State Basics

Figure 2.2: The blue edges, red vertices, and intervening faces form a regular polygon,
the octahedron. The green straight line through two of the vertices corresponds to one
of the three fourfold axes of rotation. The yellow straight line through two centres of
opposite faces corresponds to one of the four triple axes of rotation. The cyan straight
line through two centres of opposite edges corresponds to one of the six two-count axes
of rotation. The nine symmetry planes are composed of three planes each containing
four corner points (red) and six planes each containing two corner points and two center
points along the edges (green).

2.3 Cuprous Oxide

This section is based on References [6, 8, 11].

Cu2O occurs in nature initially as a green-yellowish ore while the pure substance has a
reddish appearance as it is shown in fig.1.1. The cubic crystal structure, illustrated in
fig.2.3 consists of the mutually displaced superposition of a bcc lattice of oxygen and
an fcc lattice of copper. Due to its structure, Cu2O is in the cubic crystal system and
therefore belongs to the Oh group. Thus, Cu2O has the full octahedral symmetry, i.e.
four sixfold rotational mirror axes 4S6, three fourfold rotational mirror axes 3S4, three
fourfold rotational axes 3C4, four threefold rotational axes 4C3, 6 twofold rotational axes
6C2, 9 symmetry planes 3σn and 6σd, as well as the inversion I.
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2.4 Reciprocal Lattice

Figure 2.3: Structure of the Cu2O crystal, consisting of two cubic lattices spatially
displaced against each other. The blue lattice occupied by oxygen atoms is body-centered
cubic (bcc). The orange lattice occupied by copper atoms is face-centered cubic (fcc)
[12].

2.4 Reciprocal Lattice

If particles are investigated in periodic potentials V (r) = V (r + R), the introduction
of reciprocal space is suitable. The reciprocal space or momentum space is spanned by
wave vectors k. Let a point lattice with the corresponding lattice vector R be given.
Furthermore, let the plane wave

ψk(r) = ψ0 exp{ikr} (2.3)

with amplitude ψ0 be a solution of the stationary Schrödinger equation

Hψ = Eψ (2.4)

in real space. Then the reciprocal space is spanned by the wave vectors, which correspond
to the periodicity of the point lattice. Let the lattice periodic condition

ψ0 exp{ikr} = ψk(r) = ψk(r + R) = ψ0 exp{ik(r + R)} (2.5)

be fulfilled. To solve this equation the reciprocal lattice vector

G = h1b1 + h2b2 + h3b3 (2.6)

13



2 Solid State Basics

is introduced. The new basis vectors

b1 =
2π

a1 · (a2 × a3)
a2 × a3,

b2 =
2π

a1 · (a2 × a3)
a3 × a1,

b3 =
2π

a1 · (a2 × a3)
a1 × a2,

(2.7)

in the reciprocal space follow directly from the condition

exp{ikR} = exp{iGR} = 1, (2.8)

and equation (2.6), while h1, h2, h3 take integer values. The value of the scalar triple
product a1 · (a2 × a3) = V corresponds to the volume V of the unit cell in the real
space. It is now suitable to introduce a geometric construction into the newly created
point lattice. The Wigner Seitz cell, see fig.2.4 is now a monatomic basis, which after
construction covers all points that have the smallest distance to its own base atom. The
Wigner Seitz cell in reciprocal space is also called the first Brillouin zone.

2.5 Quasi Free Electrons and Ideal Band Structure

First consider a free electron gas in the volume V = L1L2L3 of the solid. The electrons
are assumed to be mobile and the particle interaction is neglected. Assuming that N
electrons are enclosed in the volume V at a negligible temperature T , the many-particle
Hamiltonian

H =
N∑
l=1

p2
l

2m0

(2.9)

with electron mass m0 and momentum operator pl of a single electron is given. The
approach

14



2.5 Quasi Free Electrons and Ideal Band Structure

(a) Construction of the Wigner
Seitz cell in two dimensions

(b) Various Wigner Seitz cells in three dimensions with points of high symmetry

Figure 2.4: (a) The construction of the Wigner Seitz cell for a cubic crystal lattice in
two-dimensional space is shown. The dashed, red lines connect the center of the cell
with the nearest neighboring atoms. The black lines bisect the connecting lines and thus
enclose all points nearest to the center. By definition, the enclosed area is the Wigner
Seitz cell. (b) From left to right the three-dimensional Wigner Seitz cells of a simple
cubic cell, a diamond-type cell, and a hexagonal cell are shown. The marked points
correspond to points of high symmetry [6].
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2 Solid State Basics

Ψ({rl}l=1,...,N) =
N∏
l=1

ψ(rl) (2.10)

with total wave function Ψ({rl}l=1,...,N) and the wave functions ψ(rl) of single electrons
reduces the problem to the stationary single-particle Schrödinger equation

Hlψ(rl) =
p2
l

2m0

ψ(rl) = Elψ(rl) (2.11)

with energy eigenvalues El of the electron. Let the solution be a plane wave

ψk(r) =
1√
V

exp{ikr} (2.12)

with the normalisation

∫
V

|ψk(r)|2dr = 1. (2.13)

The parabolic energy eigenvalues

El(k) =
~2k2

2m0

(2.14)

with Planck’s constant ~ result. The allowed energy states are thus classified by the wave
vector k. The periodic boundary conditions

ψ(rl) = ψ(rl + L) (2.15)

caused by the edge of the volume V lead to discrete values ki = 2πni/Li with i ∈ {1, 2, 3}.
Thus, ni is an integer and, analogously to k, describes the allowed states and energy
eigenvalues

En =
~2

2m0

3∑
i=1

(2π)2

L2
i

n2
i (2.16)

of the electrons. Since electrons are fermions and therefore obey the Pauli principle,
each of these states can be occupied by two electrons of different spin. In the ground
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2.5 Quasi Free Electrons and Ideal Band Structure

Figure 2.5: Representation of the energy bands of quasi-free electrons. The band
structure in one-dimensional lattice with negligible potential is shown. The energy
eigenvalues E(k) have a periodicity of 2π/a. The reduction of the band structure to the
first Brillouin zone −π/a < k < π/a is highlighted in blue [6].

state with temperature T = 0, the energy levels are filled according to increasing energy.
The maximum occupied state corresponds to the Fermi energy Ef. The possible electron
states E(k) form the parabolic band structure of the free electron gas.

As an intermediate consideration, let the electrons be in a vanishing periodic potential
V ≈ 0. From the solution of the free electron gas and the demand for a periodicity of
the wave function, periodically repeating energy eigenvalues E(k) = E(k + G) follow.
If a is the distance between the lattice points in real space, the length of the reciprocal
lattice vector is a multiple of 2π/a. As a result, periodic, overlapping energy bands arise,
which can be seen fig.2.5. Due to the finite lattice spacing a, the k-vectors within the
first Brillouin zone −π/a < k < π/a cannot be distinguished from the k-vectors with
|k| ≥ π/a. For the complete description, it is therefore sufficient to consider the band
structure reduced to the first Brillouin zone.

Let the electron gas now be in a finite crystal. For the theoretical description, it is
suitable to introduce a periodic potential

V (rl) = V (rl + R) (2.17)

caused by the crystal structure. Furthermore, the Coulomb interaction of the electron
with the remaining charges is also taken into account. The result is the Hamiltonian

17



2 Solid State Basics

Figure 2.6: Image of the one-dimensional Bloch function. Shown is the real part of
the Bloch function Re(ψk). The containing lattice periodic function uk(x) is responsible
for the finer form of the curve, while the real part of the complex exponential function
Re(exp{ikx}) models the red, dashed sine wave. The black dots correspond to the
positions of the atoms in the real space [6].

H =
N∑
l=1

( pl
2m0

+ V (rl)
)

+
1

2

N∑
k,l=1
k 6=l

e2

4πε0|rl − rk|
(2.18)

with dielectric constant ε0 and elementary charge e. To solve the resulting Schrödinger
equation, it is suitable to introduce an effective potential Veff, which contains both the
lattice periodic potential V (rl) and the Coulomb interaction. Again, the stationary
Schrödinger equation (2.4) has to be solved with the Hamilton operator

H =
N∑
l=1

( p2
l

2m0

+ Veff(rl)
)
. (2.19)

It should be mentioned that now the wave function does not describe an electron anymore
but a suitable quasiparticle. The Bloch function

ψk(r) = uk exp{ikr} (2.20)

is assumed where

uk(r) = uk(r + R) (2.21)

represents the periodicity of the lattice as shown in fig.2.6. It should be noted that due
to Bloch’s theorem the product of a complex exponential exp{ikr} and a lattice periodic

18



2.5 Quasi Free Electrons and Ideal Band Structure

Figure 2.7: Image of the charge density of an electron with the wave vector k = π/a

in one-dimensional real space. The charge density ρs of the electron in the case of a
symmetric wave function ψs, and the charge density ρa of the electron in the case of an
antisymmetric wave function ψa are shown. The x axis is in units of the lattice constant
a, so each integer corresponds to an atom in the lattice.

function uk(r) could generally be used to solve periodic potentials. From a shift of the
stationary Schrödinger equation

Hψk+G(r) = Enψk+G(r) (2.22)

around G, the periodicity of the energy eigenvalues E(k) = E(k + G) follows as we
already assumed for the vanishing potential. Again, periodically repeating energy bands
arise. The periodic lattice leads to another effect. The reflection of the wave functions at
the lattice points leads to a superposition between the incoming and reflected wave and
thus to a standing wave

ψs ∝ cos
πx

a
,

ψa ∝ sin
πx

a
.

(2.23)

This means that the probability density

19



2 Solid State Basics

Figure 2.8: (a) Band structure of the one-dimensional lattice with influence of electron
scattering and the resulting standing waves. The deviation of the dispersion of free
electrons in red from the dispersion of electrons with the influence of the Bragg reflection
in blue creates zones of forbidden energies, the band gaps. (b) Reduced zone scheme,
created by mapping the bandstructure into the first Brillouin zone [6].

ρs ∝ cos2
πx

a
,

ρa ∝ sin2 πx

a
.

(2.24)

at the lattice points becomes extreme. In the symmetrical case ψs, the charge density ρs
at the lattice points is at its maximum, and thus the energy of the electrons is lowered.
In the antisymmetrical case ψa, on the other hand, the charge density ρa at the lattice
points is minimal, and thus the energy of the electrons is increased, see fig.2.7. As a
result, the predominant degeneracy of the states is lifted. The resulting gaps illustrated
in fig.2.8 in the previously allowed energy spectrum are called band gaps. Now solids
can be categorised by the occupation scheme in the ground state and the position of
the band gaps relative to the Fermi energy. If the Fermi energy is within a band, one
speaks of a conductor, otherwise of a semiconductor or insulator. Semiconductors and
insulators differ in the relative distance between the two bands next to the Fermi energy.
Larger band gaps are characteristic to insulators, while smaller band gaps belong to
semiconductors.

20



3 Excitons in Cuprous Oxide

Let the semiconductor Cu2O be given. The bands that are completely occupied in the
ground state are called valence bands. The empty bands, on the other hand, are called
conduction bands. The band gap Eg, which can be seen in fig.3.1, between the uppermost
valence band and the lowermost conduction band prevents a spontaneous exchange of
particles between the two bands. However, external excitations, such as light of frequency
ω = ∆E/~, can detach an electron from a valence band and lift it into a conduction
band. ∆E corresponds to the energy difference between the two bands. This charge
transfer creates a negative charge in the conduction band as well as a positive hole in
the valence band. The resulting electron-hole pair can obtain bound states, and is called
exciton. It should be noted that the exciton is called a quasiparticle because the hole
does not exist as a particle but only has the corresponding properties. Because of their
similarity to the hydrogen atom, excitons are assigned to the Rydberg atoms.

3.1 Previous Research

Various analytical and numerical approaches already used to describe exciton states in
Cu2O are presented. A distinction is made between excitons in the bulk and excitons in
quantum wells, as well as between a hydrogen-like description and a consideration of the
band structure.

In a first approximation, excitons can be described as hydrogen-like. Taking into
account the changed parameters, such as the effective masses of electron and hole, bound
states analogous to the hydrogen atom result. The time-independent and rotationally
symmetric Coulomb potential leads to conservation of energy and angular momentum.
The conservation quantities correspond to the later introduced good quantum numbers
{n, l,m} of the hydrogen atom. Finally, the existing rotational symmetry motivates the
introduction of spherical coordinates {ρ, θ, φ}. Altogether, this shows the analogy to
the bound states ψnlm(ρ, θ, φ) of the hydrogen atom. These states satisfy the stationary
Schrödinger equation (2.4) with the Hamiltonian

21



3 Excitons in Cuprous Oxide

Figure 3.1: Band structure of Cu2O with band gap Eg = 2.172 eV. Shown are the lowest
three conduction bands, where Γ+

6 is single degenerate and Γ−8 is double degenerate, and
the top three valence bands, where Γ+

7 is single degenerate and Γ+
8 is double degenerate.

The yellow, green, blue, and purple arrows indicate electron transitions, in which light
of the corresponding colour is emitted. Note that in the following calculations, yellow
excitons corresponding to the yellow light are considered [11].
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3.2 Hydrogen Atom

H = Te(pe) + Th(ph) + Vc, (3.1)

depending on the Coulomb potential Vc, the kinetic energy Te of the electron, and the
kinetic energy Th of the hole.

Since a description of the excitons without taking the band structure into account
is obviously incomplete, this consideration has already been extended by taking the
band structure into account. In the bulk, the band structure breaks the previously
existing rotational symmetry and thus also the conservation of the orbital angular
momentum. As a result, l loses the property of a good quantum number and is replaced
by the quantum number j, which also contains the spin-orbit coupling. If we further
consider the three-dimensional translational symmetry, the initial six degrees of freedom
{xe, ye, ze, xh, yh, zh} of electron and hole can be reduced to three degrees of freedom
{x, y, z}, which correspond to the relative coordinates. The Hamiltonian

H = Te(pe) + Th(ph,Sh, I) + Vc (3.2)

thus includes additional corrections to the hole dynamics Th, as well as the spin-orbit
coupling of hole spin Sh and quasispin I.

3.2 Hydrogen Atom

This section is based on References [13-15].

A hydrogen-like Hamiltonian, serves as a first approximation to describe the excitons.
Therefore, the Rydberg energy

En=1 = − me2

32π~2ε0
1

12
= −13.6eV (3.3)

and corresponding Bohr radius

r0 =
4πε0~2

me2
≈ 5.29× 10−11m (3.4)

resulting from the solution of the Schrödinger equation of the hydrogen atom are listed.
A more detailed calculation for solving the corresponding Schrödinger equation can be
found in the appendix A.1. In total, the wave function
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3 Excitons in Cuprous Oxide

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), (3.5)

determined by three quantum numbers n, l,m represents the electron state in the hydro-
gen atom. The principal quantum number n ∈ N essentially determines the energy of
the electron. In the ground state n = 1, equation (A.21) leads to the already introduced
Rydberg energy EH = 13.6eV and the Bohr radius r0 = 0.529× 10−10m. The secondary
quantum number l < n, (l ∈ N) represents the magnitude of the orbital angular momen-
tum. The magnetic quantum number |m| ≤ l, (m ∈ Z) describes the projection of the
orbital angular momentum onto the z-axis and thus its orientation. The spin s = ±1/2,
which has not occurred so far, is interpreted as the intrinsic angular momentum of the
electron. It becomes relevant as soon as several electrons are considered, or also in the
case of an orbital coupling. Other possible quantum numbers are described in tab.3.1. In
order to describe a quantum state φi completely, it is sufficient to know its eigenvalues.
All eigenvalues qi are determined via the eigenvalue equations Qiφi = qiφi, where each
operator Qi corresponds to a quantum number. It is therefore common to describe a
quantum mechanical state via a set of quantum numbers. Since this set is generally not
unique, good quantum numbers are usually chosen. A set of good quantum numbers is
characterized by the fact that their operators commutate with each other in pairs and
the representation of the state is unique. Due to the commutativity of the operators, it
is possible to determine all observables simultaneously and with arbitrary precision. For
the hydrogen atom without spin-orbit coupling, the set {n, l,m} contains good quantum
numbers, since {H,L2,Lz} commutate in pairs and the state is uniquely determined via
the eigenvalues {En, l(l + 1)~2,m~}. While the electron is in a rotationally symmetric
potential, the environment of the exciton is more complex. Both the crystal lattice and
the introduced quantum wells destroy the symmetries of the system that are comparable
to those of the hydrogen atom. As a consequence, {n, l,m} are no longer good quantum
numbers and a different set of good quantum numbers is needed to describe the excitons.
The coupling J = I +Sh of hole spin Sh and quasin spin I caused via the band structure
can be considered as a new good quantum number. J is thus the total angular momentum
of the hole. Since in general the energy eigenvalues of a system are of special interest, the
Hamiltonian is considered first and then a set of good quantum numbers is established
in section 4.2.2.

3.3 Bulk Excitons in Cuprous Oxide

Taking the band structure into account, the hydrogen-like Hamiltonian (3.1) must be
modified. The main differences between excitons in Cu2O and the hydrogen atom are,
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3.4 Excitons in Cuprous Oxide with Quantum Wells

Table 3.1: Quantum numbers important for the hydrogen atom and the later evaluation,
as well as the corresponding operators and eigenvalues. The operators with the index z
each stand for the corresponding projections on the z axis.

operator eigenvalue quantum number values
H En n n ∈ N
L2 l(l + 1)~2 l 0 ≤ l < n

Lz ml~ ml |ml| ≤ l

S2 s(s+ 1)~2 s s = 1/2

Sz ms~ ms |ms| ≤ s

J2 j(j + 1)~2 j j ∈ {|l − s|, ..., |l + s|}
J z mj~ mj = ms +ml |mj| ≤ j

among other things, the effective masses of the charge carriers. Effective hole and electron
mass of excitons are determined by the band structure. In the following, the different
exciton states are described via the colour corresponding to the excitation. If the hole is
in the Γ+

7 band, one speaks of a yellow exciton, if the hole is in the Γ+
8 band, one speaks of

a green exciton, see fig.3.1. While the effective electron mass results in me = 0.99m0 [16],
the effective hole mass is mh = 0.69me for the yellow exciton, and mh = 0.58me for the
green exciton. So while the electron mass is approximately the same as for the hydrogen
atom, the hole and proton mass differ significantly. Besides the replaced effective masses,
the Hamiltonian (3.2) contains additional correction terms of the hole dynamics, in which,
among other things, the spin-orbit coupling between hole spin Sh and quasispin I is
included.

As a result the binding energies Ey = 98.35meV (yellow exciton) and Eg = 88.46meV

(green exciton), and Rydberg energy EH = 13.6eV of the hydrogen atom differ by about
two orders of magnitude. Assigning radii a to the binding energies to determine the size of
the states yields ay = 0.976nm (yellow exciton) and ag = 1.085nm (green exciton). Thus,
the radii of the excitons are about 20 times larger than the Bohr radius r0 = 5.29×10−11m.
Due to the size of the excitons, the sensitivity to external fields also increases. While an
electrical permeability εH = 1 is assumed in the hydrogen atom, ε = 7.5 [17] applies to
the excitons in Cu2O.

3.4 Excitons in Cuprous Oxide with Quantum Wells

In order to gain further insights, the current research at the ITP1 is concerned with an
additional, spatial restriction of the exciton dynamics by Quantum Wells. The Quantum
Well under consideration corresponds to an infinite potential well
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3 Excitons in Cuprous Oxide

V =

{
0 , if |z| < L/2

∞ , else
(3.6)

which is choosen to be along the [001] axis of the crystal. The resulting boundary
conditions break the translational symmetry along the z-axis. It should be noted that
the condition can be realised experimentally by using a few nanometer thick slice of the
sample, so L is typically in the order of nm.

In the case of the hydrogen-like description with Quantum Wells, let the six degrees
of freedom {xe, ye, ze, xh, yh, zh} be given. Due to the broken translation symmetry, the
relative and centre of mass coordinates can only be introduced within the xy-plane. The
four degrees of freedom {x, y, ze, zh} remain. A transformation into cylindrical coordinates
leads to the four degrees of freedom {ρ, φ, ze, zh}, which can be further reduced to the
three degrees of freedom {ρ, ze, zh} by using the remaining rotational symmetry within
the xy-plane. A numerical solution of the exciton states for the resulting Hamiltonian
(3.2), with additional Quantum Wells Ve, Vh has already been dealt with by Pavel Belov
[7], Leon Kühner [8] and currently Niklas Scheuler.

The aim of this bachelor thesis is the analytical reduction of the degrees of freedom of
the Hamiltonian containing quantum wells and the band structure, to enable a numerical
solution within an adequate computing time.

The Hamiltonian (3.2) with additional Quantum Wells, as introduced in equation (3.6),
describe the excitons states in Cu2O with Quantum Wells. It should be noted that both
a Quantum Well for the hole and a Quantum Well for the electron are added. A sketch
of the exciton in Cu2O with Quantum Wells is shown in fig.3.2.
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3.5 Hamiltonian of Excitons in Cuprous Oxide

[001]

γ
h

e

Quantum Well

Quantum Well

Figure 3.2: Sketch of the bound state of an exciton in a cubic crystal lattice with
Quantum Wells along the [001] axis of the crystal.

3.5 Hamiltonian of Excitons in Cuprous Oxide

This section is based on References [11, 18, 19].

The experimental data from [5] show physically determined deviations of the absorption
spectrum of the excitons in Cu2O from that of a hydrogen-like series. A quantum
explanation for this is provided by the spin-orbit coupling of the excitons, as well as the
interband interactions which together lead to a splitting and deformation of the energy
bands. Figure 3.1 shows the splitting of the original Γ+

5 valence band via the coupling of
quasispin I and hole spin Sh to a doubly degenerate Γ+

7 and two doubly degenerate Γ+
8

valence bands. The quasispin

Ik =
∑
l,m

−i~εklm(el ⊗ em) (3.7)

results from the basis vectors el, em and the permutation by the Levi-Civita epsilon
tensor εklm. The hole spin Sh = ±1

2
, on the other hand, is only half-odd-integer. We

can describe the valence band structure using a form deviating from a parabula. The
Suzuki-Hensel Hamiltonian
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3 Excitons in Cuprous Oxide

HV B(k) = −HSO +
1

2m0

[
k2(~2A1 + 2B1ISh) + A2(k

2
1(I21 −

I2

3
) + c.p.)

+B2(2k
2
1(I1Sh1 −

ISh

3
) + c.p.) + A3(2{k1, k2}{I1, I2}+ c.p.)

+B3(2{k1, k2}(I1Sh1 + I2Sh2))
]

(3.8)

from [19] is used to represent the band structure and therefore the hole dynamics in the
bulk. Ai and Bi with i ∈ {1, 2, 3} correspond to six free parameters. The expression
{a, b} = (ab+ ba)/2 serves as an abbreviated notation and

HSO =
2

3
Eg(1 +

1

~2
ISh) (3.9)

with the band gap Eg describes the spin-orbit coupling. It is possible to fit the resulting
Hamiltonian to a simulation of spin density functional theory or spin DFT [18]. With a
least square fit, the initially free parameters Ai and Bi result (Tab. 3.2). The definition
of the Lutting parameters

γ1 ≡ −A1, γ2 ≡
1

6
A2, γ3 ≡

1

6
A3,

η1 ≡ −B1, η2 ≡
1

6
B2, η3 ≡

1

6
B3,

(3.10)

allows for a physical interpretation of the parameters. While γ1 and η1 correspond to
the average effective mass of the hole, the further parameters γ2, γ3, η2, η3 stand for the
splitting and deformation of the energy bands. It should be said that the conduction band
and thus the kinetic energy of the electron, in contrast to the valence band, can still be
well regarded as parabolic. This leads to the Hamiltonian of an exciton in Cu2O. If one
now compares the theoretical expectations with the experimental data, the assumption of
a non-parabolic band structure is justified. Finally, it should be noted that this derivation
of the band structure of Cu2O can be extended to many other semiconductors. Examples
include GaAs and CuBr, where only the values of the parameters differ.
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3.5 Hamiltonian of Excitons in Cuprous Oxide

Table 3.2: Parameters Ai and Bi determined by the fit of the Suzuki Hensel Hamiltonian
to the band structure of the spin DFT [18], as well as the corresponding Luttinger
parameters γi and ηi.

i 1 2 3 i 1 2 3
Ai -1.76 4.519 -2.201 γi 1.76 0.753 -0.367
Bi 0.02 -0.022 -0.202 ηi -0.02 -0.004 -0.034

Figure 3.3: Fit of the Suzuki Hensel Hamiltonian to the band structure from the spin
DFT. The black lines belong to the band structure of the spin-DFT. The blue line shows
the still parabolic lowest conduction band. The red dashed lines show the best fit of the
Suzuki Hensel Hamiltonian to the spin DFT and thus determine the values of the free
parameters Ai and Bi [18].
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3 Excitons in Cuprous Oxide

The Hamiltonian

H = Eg + V +He(pe) +Hh(ph) (3.11)

to describe excitons in cuprous oxide with Quantum Wells is created by simply adding
the infinite potential wells from equation (3.6) to the Hamiltonian (3.2) in the bulk. Now
the Suzuki-Hensel Hamiltonian (3.8) with the parameters characteristic for Cu2O from
equation (3.10) describes the dynamics

Hh(ph) =HSO +
1

2m0

(γ1 + 4γ2)p
2
h −

3γ2
~2m0

3∑
i=1

p2hiI
2
i

− 6γ3
~2m0

({ph1, ph2}{I1, I2}+ c.p.)

+
1

~2m0

(η1 + 2η2)IShp
2
h −

6η2
~2m0

3∑
i=1

I1Sh1p
2
h1

− 6η3
~2m0

(
{ph1, ph2}(I1Sh2 + I2Sh1) + c.p.

)

(3.12)

of the hole (h) in the valence band and

He(pe) =
p2
e

2me
(3.13)

describes the dynamics of the electron (e) in the conduction band. HSO corresponds to
the spin-orbit coupling. The potential

V = − 1

4πε0ε

1

|re − rh|
+ Ve(ze) + Vh(zh) (3.14)

contains the Coulomb attraction between electron and hole with the dielectrical constant
ε0, the permeability ε of Cu2O as well as the Quantum Wells Ve(ze) and Vh(zh). Fur-
thermore, re and rh correspond to the position operators of electron and hole with the
corresponding momentum operators

30



3.5 Hamiltonian of Excitons in Cuprous Oxide

pe =
~
i

( ∂

∂xe
,
∂

∂ye
,
∂

∂ze

)T
, (3.15)

and

ph =
~
i

( ∂

∂xh
,
∂

∂yh
,
∂

∂zh

)T
(3.16)

including the effective masses me = 0.99m0 and mh = m0/γ1, and ~ corresponds to
Planck’s constant.
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4 Cuprous Oxide in Quantum Wells

4.1 Reduction of the Degrees of Freedom of the
Hamiltonian

Let the Cu2O crystal be oriented so that the [001]-axis corresponds to the z-axis. To
reduce the degrees of freedom of the Hamiltonian in the bulk, the full three-dimensional
translational symmetry was used. The introduction of three-dimensional relative and
center of mass coordinates thus makes it possible to reduce the six degrees of freedom
{xe, ye, ze, xh, yh, zh} to three relative coordinates {x, y, z}. However, the introduction of
Quantum Wells destroys the translational symmetry along the z-axis. As a result, the
relative and center of mass coordinates

(X, Y )T = R =
1

M
(me(xe, ye)

T +mh(xh, yh)T),

(x, y)T = r = (xe, ye)
T − (xh, yh)T

(4.1)

are introduced only in the xy-plane and the z-components are not altered. Note that
M = me +mh is the total mass. Thus we define

p =(p1, p2)
T,

P =(P1, P2)
T

(4.2)

as the corresponding, two-dimensional relative and center of mass momenta in the xy-
plane. It should be noted that the notation via the indices {1, 2} for the momenta in
relative and center of mass coordinates on the one hand and holding of the z indices
on the other hand, is used to clarify the difference between bulk excitons and excitons
in Quantum Wells. In order to express the momentum operators occurring in the
Hamiltonian (3.12) by the newly introduced momenta, the chain rule
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4 Cuprous Oxide in Quantum Wells

∂

∂xj
=
∑
i

∂xi
∂xj

∂

∂xi
. (4.3)

well known from differential calculus is used. If equation (4.3) is evaluated for xj ∈
{xe, ye, xh, yh} and xi ∈ {x, y,X, Y } then we can find a new expression for the electron
and hole momentum

ph =

phxphy
phz

 =

−p1 + mh
M
P1

−p2 + mh
M
P2

phz

 ,

pe =

pexpey
pez

 =

p1 + me
M
P1

p2 + me
M
P2

pez

 .

(4.4)

By simply squaring, and applying the commutativity for partial derivatives on the
momentum operators, we obtain the quadratic momenta

p2
h = p2 − 2

mh

M
pP +

m2
h

M2
P 2 + p2hz,

p2
e = p2 + 2

me

M
pP +

m2
e

M2
P 2 + p2ez,

(4.5)

occuring in the Hamiltonian and therefore a new expression of the kinetic terms

p2
h

2mh
+

p2
e

2me
=

Mp2

2memh
+

P 2

2M
+

p2hz
2mh

+
p2ez
2me

. (4.6)

Replace 1/mh by the effective mass γ1/m0 of the hole in the valence band and further
identify

γ′1
m0

=
γ1
m0

+
1

me
=

M

memh
(4.7)

as the inverse reduced mass. Then equation (4.6) can be expressed as

p2
h

2mh
+

p2
e

2me
=
γ′1p

2

2m0

+
P 2

2M
+

p2hz
2mh

+
p2ez
2me

. (4.8)
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4.1 Reduction of the Degrees of Freedom of the Hamiltonian

If we include the results from equation (4.5) and equation (4.8) into the Hamiltonian
(3.11), we obtain a representation including relative and center of mass coordinates along
the xy-plane.

H =Eg +HSO +
γ′1p

2

2m0

+
P 2

2M
+

p2hz
2mh

+
p2ez
2me

− 1

4πε0ε

1√
r2 + (ze − zh)2

+ Ve(ze) + Vh(zh)

+
2γ2
m0

[
p21 − 2

mh

M
p1P1 +

m2
h

M2
P 2
1 + p22 − 2

mh

M
p2P2 +

m2
h

M2
P 2
2 + p2hz

]

− 3γ2
~2m0

[
(p21 − 2

mh

M
p1P1 +

m2
h

M2
P 2
1 )I21

+ (p22 − 2
mh

M
p2P2 +

m2
h

M2
P 2
2 )I22 + p2hzI

2
3

]

− 3γ3
~2m0

[
(p1p2 −

mh

M
p1P2 −

mh

M
p2P1 +

m2
h

M2
P1P2

+ p2p1 −
mh

M
p2P1 −

mh

M
p1P2 +

m2
h

M2
P2P1){I1, I2}

+ (−p2phz +
mh

M
phzP2 − phzp2 +

mh

M
P2phz){I2, I3}

+ (−phzp1 +
mh

M
P1phz − p1phz +

mh

M
phzP1){I3, I1}

]

+
1

~2m0

(η1 + 2η2)ISh

[
p21 − 2

mh

M
p1P1 +

m2
h

M2
P 2
1

+ p22 − 2
mh

M
p2P2 +

m2
h

M2
P 2
2 + p2hz

]

(4.9)
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− 6η2
~2m0

[
(p21 − 2

mh

M
p1P1 +

m2
h

M2
P 2
1 )I1Sh1

+ (p22 − 2
mh

M
p2P2 +

m2
h

M2
P 2
2 )I2Sh2 + p2hzI3Sh3

]

− 3η3
~2m0

[
(p1p2 −

mh

M
p1P2 −

mh

M
p2P1 +

m2
h

M2
P1P2

+ p2p1 −
mh

M
p2P1 −

mh

M
p1P2 +

m2
h

M2
P2P1)(I1Sh2 + I2Sh1)

+ (−p2phz +
mh

M
phzP2 − phzp2 +

mh

M
P2phz)(I2Sh3 + I3Sh2)

+ (−phzp1 +
mh

M
P1phz − p1phz +

mh

M
phzP1)(I3Sh1 + I1Sh3)

]
.

Due to the increasing length of the Hamiltonian during the following transformations,
it is suitable to divide the Hamiltonian into multiple parts depending on the occuring
operators. Beside the dividing, according to the operators p,phz,P , the Hamiltonian is
further subdivided by the occurrence of the parameters γi and ηi. The Ni terms include
the γi parameter and the Mi terms include the ηi parameter. Therefore

∑
i

Ni +Mi (4.10)

represents the kinetic terms of the Hamiltonian. Also notice that the trivial transformation
of the potentials and the constant terms is ignored at first. Thus the separated expressions
of the kinetic terms of the Hamiltonian result in

N1(p) =
( γ′1

2m0

+
2γ2
m0

)
p2 − 3γ2

~2m0

(p21I
2
1 + p22I

2
2 )− 6γ3

~2m0

(
{p1, p2}{I1, I2}

)
, (4.11)

N2(p, phz) =
6γ3
~2m0

(
{p2, phz}{I2, I3}+ {phz, p1}{I3, I1}

)
, (4.12)

N3(phz) =
( γ1

2m0

+
2γ2
m0

− 3γ2
~2m0

I23

)
p2hz, (4.13)
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4.1 Reduction of the Degrees of Freedom of the Hamiltonian

N4(phz,P ) = − 6γ3mh

~2m0M

(
{P2, phz}{I2, I3}+ {phz, P1}{I3, I1}

)
, (4.14)

N5(P ) =
( 1

2M
+

2γ2m
2
h

m0M2

)
P 2 − 3γ2m

2
h

~2m0M2
(P 2

1 I
2
1 + P 2

2 I
2
2 ), (4.15)

N6(p,P ) = −4γ2mh

m0M
(p1P1 + p2P2) +

6γ2mh

~2m0M
(p1P1I

2
1 + p2P2I

2
2 ), (4.16)

N7(pez) =
1

2me
p2ez, (4.17)

M1(p) =
1

~2m0

(η1 + 2η2)(I · Sh)p2 − 6η2
~2m0

(p21I1Sh1 + p22I2Sh2)

− 6η3
~2m0

(
{p1, p2}(I1Sh2 + I2Sh1)

)
,

(4.18)

M2(p, phz) =
6η3
~2m0

(
{p2, phz}(I2Sh3 + I3Sh2) + {phz, p1}(I3Sh1 + I1Sh3)

)
, (4.19)

M3(phz) =
( 1

~2m0

(η1 + 2η2)(I · Sh)− 6η2
~2m0

I3Sh3

)
p2hz, (4.20)

M4(phz,P ) =− 6η3mh

~2m0M

(
{P2, phz}(I2Sh3 + I3Sh2)

+ {phz, P1}(I3Sh1 + I1Sh3)
)
,

(4.21)

M5(P ) =
m2

h

~2m0M2
(η1 + 2η2)(I · Sh)P 2 − 6η2m

2
h

~2m0M2
(P 2

1 I1Sh1 + P 2
2 I2Sh2)

− 6η3m
2
h

~2m0M2
{P1, P2}(I1Sh2 + I2Sh1),

(4.22)

and
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M6(p,P ) =− 2mh

~2m0M
(η1 + 2η2)(I · Sh)(p1P1 + p2P2)

+
12η2mh

~2m0M
(p1P1I1Sh1 + p2P2I2Sh2)

+
6η3mh

~2m0M
(p1P2 + p2P1)(I1Sh2 + I2Sh1).

(4.23)

Now we want to use the introduced center of mass coordinates and the associated two-
dimensional translation symmetry. For this, the center of mass frame is chosen as the
reference frame. In the center of mass frame P = 0 is valid and thus all P dependent Ni

and Mi terms disappear, which corresponds to an enormous reduction of the Hamiltonian
to

H =Eg +HSO −
1

4πε0ε

1√
r2 + (ze − zh)2

+ Ve(ze) + Vh(zh)

+
( γ′1

2m0

+
2γ2
m0

)
p2 − 3γ2

~2m0

(p21I
2
1 + p22I

2
2 )− 6γ3

~2m0

(
{p1, p2}{I1, I2}

)

+
6γ3
~2m0

(
{p2, phz}{I2, I3}+ {phz, p1}{I3, I1}

)

+
1

~2m0

(η1 + 2η2)(I · Sh)p2 − 6η2
~2m0

(p21I1Sh1 + p22I2Sh2)

− 6η3
~2m0

(
{p1, p2}(I1Sh2 + I2Sh1)

)

+
6η3
~2m0

(
{p2, phz}(I2Sh3 + I3Sh2) + {phz, p1}(I3Sh1 + I1Sh3)

)

+
( 1

~2m0

(η1 + 2η2)(I · Sh)− 6η2
~2m0

I3Sh3 +
γ1

2m0

+
2γ2
m0

− 3γ2
~2m0

I23

)
p2hz.

(4.24)
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4.1 Reduction of the Degrees of Freedom of the Hamiltonian

It should also be noted that the six degrees of freedom {x, y, ze, zh, X, Y } of the Hamil-
tonian are thus reduced to the four degrees of freedom {x, y, ze, zh}. Compared to the
excitons in bulk, the introduction of Quantum Wells thus lead to an additional degree of
freedom. If the exciton is described as hydrogen-like, again the degrees of freedom of
the Hamiltonian can be further reduced by exploiting the rotational symmetry in the
xy-plane. However, the additionally considered band structure destroys the full rotational
symmetry, and therefore the degrees of freedom cannot be further reduced. Since the
programme known to us for solving the exciton states was implemented for the hydrogen-
like exciton, and therefore also in cylindrical coordinates, we will nevertheless carry out
a further transformation into cylindrical coordinates. Note that here we again fix the
z-components and perform the transformation only for the relative coordinates in the
xy-plane. A transformation of the two relative coordinates into plane polar coordinates
thus corresponds to a transformation of the Hamiltonian into cylindrical coordinates.
This transformation is well known and we choose

x = ρ cosφ, (4.25)

and

y = ρ sinφ, (4.26)

with φ ∈ [0, 2π). In order to represent the momentum operators in plane polar coordinates,
the corresponding set of partial derivatives

( ∂2
∂x2

,
∂2

∂y2
,
∂

∂x

∂

∂y
,
∂

∂x
,
∂

∂y

)
, (4.27)

are first represented in the generating set

( ∂2
∂ρ2

,
∂2

∂φ2
,
∂

∂ρ

∂

∂φ
,
∂

∂ρ
,
∂

∂φ

)
. (4.28)

Using the chain rule from equation (4.3) again, we obtain the representations

∂

∂x
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
, (4.29)

∂

∂y
= sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
, (4.30)
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∂2

∂x2
= cos2 φ

∂2

∂ρ2
+

2 cosφ sinφ

ρ2

[ ∂
∂φ
− ρ ∂

∂ρ

∂

∂φ

]
+

sin2 φ

ρ2

[
ρ
∂

∂ρ
+

∂2

∂φ2

]
, (4.31)

∂2

∂y2
= sin2 φ

∂2

∂ρ2
− 2 sinφ cosφ

ρ2

[ ∂
∂φ
− ρ ∂

∂ρ

∂

∂φ

]
+

cos2 φ

ρ2

[
ρ
∂

∂ρ
+

∂2

∂φ2

]
, (4.32)

and

∂

∂y

∂

∂x
=

sinφ cosφ

ρ2

[
ρ2
∂2

∂ρ2
− ρ ∂

∂ρ
− ∂2

∂φ2

]
+

cos2 φ− sin2 φ

ρ2

[
− ∂

∂φ
+ ρ

∂

∂ρ

∂

∂φ

]
. (4.33)

Note that taking into account the definition range of the required inverse functions and a
case distinction, the same partial derivatives follow in all quadrants. Also a more detailed
calculation for the determination of the derivatives can be found in the appendix A.2.
With the obtained representations of the partial derivatives, the transformation into
plane polar coordinates can be carried out via matrix multiplication with the transition
matrix M5×5. This method was chosen because it turned out to be the clearest for me
personally. The columns of the transition matrix

M5×5 =


c2 s2 sc 0 0
s2

ρ2
c2

ρ2
− sc
ρ2

0 0

−2sc
ρ

2sc
ρ

c2−s2
ρ

0 0
s2

ρ
c2

ρ
− sc

ρ
c s

2sc
ρ2

−2sc
ρ2

s2−c2
ρ2

− s
ρ

c
ρ


from left to right correspond to the partial derivatives from equation (4.27), from left to
right. The rows from top to bottom correspond to the partial derivatives from equation
(4.28), also from left to right. The entries of the transition matrix are the corresponding
prefactors of the equations (4.29) to (4.33). The M11 component thus corresponds, for
example, to the prefactor of the twofold partial derivative with respect to ρ in equation
(4.31). It should be noted that the abbreviations s := sinφ, and c := cosφ were also
used within the transiton matrix for better representability. The representation of the
Hamiltonian in cylindrical coordinates is done via the generating set from equation (4.28),
with the corresponding coefficients. The searched coefficients are determined via the
transition matrix. Let the row vector be

A5×1 = (Axx, Ayy, Axy, Ax, Ay)
T (4.34)

40



4.1 Reduction of the Degrees of Freedom of the Hamiltonian

with entries

Axx = − ~2

2m0

(γ′1 + 4γ2) +
3γ2
m0

I21 −
ISh

m0

(η1 + 2η2) +
6η2
m0

I1Sh1, (4.35)

Ayy = − ~2

2m0

(γ′1 + 4γ2) +
3γ2
m0

I22 −
ISh

m0

(η1 + 2η2) +
6η2
m0

I2Sh2, (4.36)

Axy =
6γ3
m0

{I1, I2}+
6η3
m0

(I1Sh2 + I2Sh1), (4.37)

Ax = −6iγ3
m0

phz{I3, I1} −
6iη3
m0

phz(I3Sh1 + I1Sh3), (4.38)

Ay = −6iγ3
m0

phz{I2, I3} −
6iη3
m0

phz(I2Sh3 + I3Sh2) (4.39)

given, which contains the coefficients of the partial derivatives in the relative coordinates.
If the transition matrix is multiplied from the left to the row vector A′5×1 = M5×5A5×1,
then the resulting row vector reads

A′5×1 = (Aρρ, Aφφ, Aρφ, Aρ, Aφ)T (4.40)

with the entries

Aρρ =− ~2

2m0

(γ′1 + 4γ2) +
3γ2
m0

(I21 cos2 φ+ I22 sin2 φ)

− ISh

m0

(η1 + 2η2) +
6η2
m0

(I1Sh1 cos2 φ+ I2Sh2 sin2 φ)

+
6

m0

sinφ cosφ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1)),

(4.41)
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4 Cuprous Oxide in Quantum Wells

ρ2Aφφ =− ~2

2m0

(γ′1 + 4γ2) +
3γ2
m0

(I21 sin2 φ+ I22 cos2 φ)

− ISh

m0

(η1 + 2η2) +
6η2
m0

(I1Sh1 sin2 φ+ I2Sh2 cos2 φ)

+
6

m0

sinφ cosφ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1)),

(4.42)

ρAρφ =
6

m0

(− sinφ cosφ(γ2(I
2
1 − I22 ) + 2η2(I1Sh1 − I2Sh2))

+ (cos2 φ− sin2 φ)(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))),

(4.43)

Aρ =
1

ρ

[
− ~2

2m0

(γ′1 + 4γ2) +
3γ2
m0

(I21 sin2 φ+ I22 cos2 φ)− ISh

m0

(η1 + 2η2)

+
6η2
m0

(I1Sh1 cos2 φ+ I2Sh2 sin2 φ− 6

m0

sinφ cosφ(γ3{I1, I2}

+ η3(I1Sh2 + I2Sh1))
]
− phz

[ 6i

~m0

(cosφ(γ3{I3, I1}+ η3(I3Sh1 + I1Sh3))

+ sinφ(γ3{I2, I3}+ η3(I2Sh3 + I3Sh2))
]
,

(4.44)

Aφ =
1

ρ2

[ 6

m0

sinφ cosφ(γ2(I
2
1 − I22 )− 2η2(I1Sh1 − I2Sh2))

− 6

m0

(cos2 φ− sin2 φ)(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
]

− phz
ρ

[ 6i

~m0

cosφ(γ3{I2, I3}+ η3(I2Sh3 + I3Sh2))

− sinφ((γ3{I3, I1}+ η3(I3Sh1 + I1Sh3))
]
.

(4.45)
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4.1 Reduction of the Degrees of Freedom of the Hamiltonian

The entries correspond to the new coefficients of the partial derivatives in cylindrical
coordinates. Notice that the relation

pα = −i~∂α (4.46)

has already been used. To further reduce the length of the hamiltonian we use the well
known trigonometric identities

sin 2φ = 2 sinφ cosφ, (4.47)

and

cos 2φ = cos2 φ− sin2 φ. (4.48)

By rearranging the Hamiltonian in respect to the remaining degrees of freedom and their
corresponding momentum operators, and also including the previously omitted terms

Eg +HSO −
1

4πε0ε

1√
ρ2 + (ze − zh)2

+ Ve(ze) + Vh(zh) (4.49)

we obtain the Hamiltonian H(ρ, φ, pρ, pφ, zh, ze, phz, pez, I,Sh) for the exciton in the bulk
and with Quantum Wells along the [001]-axis of the crystal. Compared to the description
in the bulk, as well as to the hydrogen-like description with Quantum Wells, an additional
degree of freedom is preserved. Also included are the six spin degrees of freedom I,Sh

resulting from the band structure. Written out, the Hamiltonian results in

H =Eg +HSO −
1

4πε0ε

1√
ρ2 + (ze − zh)2

+ Ve(ze) + Vh(zh)

+
1

2~2m0

[
~2(γ1 + 4γ2)− 6γ2I

2
3 + 2ISh(η1 + 2η2)− 12I3Sh3

]
p2hz +

1

2me
p2ez

+
i

2~m0

[
−~2(γ′1 + 4γ2)− 2ISh(η1 + 2η2) + 6γ2(I

2
1 sin2 φ+ I22 cos2 φ)

(4.50)
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4 Cuprous Oxide in Quantum Wells

+ 12η2(I1Sh1 sin2 φ+ I2Sh2 cos2 φ)− 6 sin 2φ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
]1

ρ
pρ

+
6

~2m0

[
cosφ(γ3{I3, I1}+ η3(I3Sh1 + I1Sh3)

+ sinφ(γ3{I2, I3}+ η3(I2Sh3 + I3Sh2))
]
phzpρ

+
3i

~m0

[
sin 2φ(γ2(I

2
1 − I22 ) + 2η2(I1Sh1 − I2Sh2))

− 2 cos 2φ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
] 1

ρ2
pφ

+
6

~2m0

[
cosφ(γ3{I2, I3}+ η3(I2Sh3 + I3Sh2))

− sinφ(γ3{I3, I1}+ η3(I3Sh1 + I1Sh3))
]phz
ρ
pφ

+
1

2~2m0

[
~2(γ′1 + 4γ2) + 2ISh(η1 + 2η2)− 6γ2(I

2
1 cos2 φ+ I22 sin2 φ)

− 12η2(I1Sh1 cos2 φ+ I2Sh2 sin2 φ)− 6 sin 2φ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
]
p2ρ

+
1

2~2m0

[
~2(γ′1 + 4γ2) + 2ISh(η1 + 2η2)− 6γ2(I

2
1 sin2 φ+ I22 cos2 φ)

− 12η2(I1Sh1 sin2 φ+ I2Sh2 cos2 φ) + 6 sin 2φ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
] 1

ρ2
p2φ

+
3

~2m0

[
sin 2φ(γ2(I

2
1 − I22 ) + 2η2(I1Sh1 − I2Sh2))

− 2 cos 2φ(γ3{I1, I2}+ η3(I1Sh2 + I2Sh1))
]1

ρ
pρpφ.
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4.2 Discussion

4.2.1 Discrete Rotational Symmetry

To check the obtained Hamiltonian, a test for the discrete rotational symmetry (C4) of
the crystal is carried out in the following. It should be noted that due to the quantum
wells along the z-axis, the full 3C4 rotational symmetry does not exist and therefore the
rotation is only performed in the (x, y)-plane. The transformation

(φ, ρ)→(φ′ − π

2
, ρ′)

(
∂

∂φ
,
∂

∂ρ
)→(

∂

∂φ′
,
∂

∂ρ′
)

(4.51)

is used. This transformation also affects hole and quasispin

(x, y, I1, I2, Sh1, Sh2)→ (y′,−x′, I2,−I1, Sh2,−Sh1) (4.52)

and with the known relations of the trigonometric functions

sinφ′ +
π

2
= cosφ′

cosφ′ +
π

2
=− sinφ′,

(4.53)

the transformed Hamitlonian (A.4), shown in the appendix results. The different prefactos
of all combinations of momenta remain invariant as if φ had been replaced by φ′ and ρ
by ρ′. Thus the invariance with respect to the discrete π/2 rotation was shown.

4.2.2 Good Quantum Numbers and Outlook for Numerical
Solution

In general, the energy eigenvalues of the Hamiltonian are of particular interest. Using
the bracket notation, the stationary Schrödinger equation

H|ψ〉 = E|ψ〉 (4.54)
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4 Cuprous Oxide in Quantum Wells

has to be solved. Let |bi〉 be the basis of the Hilbert space for square-integrable functions,
then the representation

|ψ〉 =
∑
i

ci|bi〉 (4.55)

results. By multiplying 〈bj| from the left to equation (4.54) we obtain

〈bj|H|ψ〉 =E〈bj|ψ〉

⇔
∑
i

〈bj|H|bi〉ci =E
∑
i

ci〈bj|bi〉.
(4.56)

Since the basis |φi〉 is not an orthonormal basis in general, the general eigenvalue
equation

∑
i

Hjici = E
∑
i

Mjici (4.57)

is obtained with the overlap matrix Mji. In order to determine the components Hij

of the Hamiltonian, the basis vectors |φi〉 are needed. For this purpose, consider the
degrees of freedom {ρ, φ, ze, zh} and the spins {I,Sh} of the Hamiltonian (4.50). The
wave function

ψ(ρ, φ, ze, zh, I,Sh) =
∑
i

cibi(ρ, φ, ze, zh, I,Sh) (4.58)

can now be developed via a corresponding basis. However, the effective spin J = I + Sh

and its projection MJ are used to replace spin Sh and quasispin I and we rewrite

ψ(ρ, φ, ze, zh,J ,MJ) =
∑
i

cibi(ρ, φ, ze, zh,J ,MJ). (4.59)

For the approach to represent |bi〉 choose

|bi〉 =
∑

Nρ,Nze ,Nzh ,ML,J ,MJ

CNρ,Nze ,Nzh ,ML,J ,MJ

exp{iMlφ}BNρ(ρ)BNze (ze)BNzh
(zh) |J ,MJ〉

(4.60)
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with the B-spline functions BNρ(ρ), BNze (ze), BNzh
(zh) [8] and the projection ML of the

angular momentum

ML = −i~ ∂

∂φ
. (4.61)

With the help of the chosen basis, the entries of the Hamiltonian can be determined. The
Hamiltonian, which corresponds to an infinite-dimensional operator in theory, cannot
be realised practically, of course. In practice, the Hamiltonian operator is therefore
represented by a large but finite matrix, which describes the Hamiltonian with a negligible
error.

It should be noted that this approach to diagonalise the Hamiltonian by using B-spline
functions was re-motivated by the preliminary work of Pavel Belov [7] and Leon Kühner
[8].
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5 Summary and Outlook

5.1 English Summary

Excitons, postulated in the 1930s, play an important role in the fundamental research of
optical properties of semiconductors and insulators. While previous research at ITP1
has mainly focused on excitons in the bulk, this bachelor thesis deals with an additional
spatial boundary of the crystal, the Quantum Wells.

The bound states of electron and hole can be described as hydrogen-like in a first
approximation. An already implemented programme serves as a numerical solution
approach for the hydrogen-like description, containing Quantum Wells.

For a more detailed description of the exciton states, however, the crystal structure must
also be taken into account. As a known approach to consider the band structure of Cu2O,
the Suzuki-Hensel-Hamiltonian is chosen. The free parameters are determined by a fit of
the Hamiltonian to a simulation of the spin DFT. Since the naive diagonalisation of the
resulting Hamiltonian with the already known programme would not provide adequate
computing time, both the programme and the Hamiltonian must first be modified. The
numerical optimisation is applied simultaneously in another bachelor thesis at the ITP1.

This bachelor thesis, on the other hand, deals with an analytical consideration of the
Hamiltonian. The aim is to reduce the degrees of freedom of the Hamiltonian by
using the given symmetries, and thus to minimise the required computing time for the
diagonalisation.

The starting point of the bachelor thesis is the Hamiltonian dependent on the twelve
degrees of freedom {xe, ye, ze, xh, yh, zh, I, Sh}, in three-dimensional cartesian coordinates.
Although the translational symmetry along the z-axis is destroyed by the introduced
Quantum Wells, it is still preserved within the xy-plane. By introducing two-dimensional
relative and center of mass coordinates within the xy-plane, the twelve degrees of
freedom {x, y,X, Y, ze, zh, I, Sh} result. The choice of the center of mass frame, as the
reference frame, with PX = PY = 0 reduces the system to ten degrees of freedom
{x, y, ze, zh, I, Sh}.
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In the case of the hydrogen-like description, the degrees of freedom could be further
reduced by taking advantage of the rotational symmetry within the xy-plane. However,
this continuous symmetry is broken down to a four-fold discrete symmetry by the band
structure. As a consequence, the φ dependence of the Hamiltonian is preserved during the
transformation into cylindrical coordinates. The transformation is nevertheless carried
out because of later advantages in the numerical solution. Finally, ten degrees of freedom
{ρ, φ, ze, zh, I, Sh} result.

The calculation was controlled both via a test of the discrete rotational symmetry and via
Mathematica. As an outlook, a suitable basis for the diagionalisation of the Hamiltonian
was outlined, whereby the choice of the B-spline functions is motivated by a previous
bachelor thesis. In the future, this should enable the numerical solution of the exciton
states with consideration of the band structure, and the spatial restriction by Quantum
Wells.

5.2 German Summary

Die in den 1930er Jahren postulierten Exzitonen spielen eine bedeutende Rolle in der
Grundlagenforschung optischer Eigenschaften von Halbleitern und Isolatoren. Während
sich die bisherige Forschung am ITP1 hauptsächlich auf Exzitonen im Bulk konzentrierte,
beschäftigt sich diese Bachelorarbeit mit einer zusätzlichen räumlichen Begrenzung des
Kristalls, den Quantum Wells.

Die gebundenen Zustände aus Elektron und Loch lassen sich dabei in erster Näherung als
wasserstoffähnlich beschreiben. Als numerischer Lösungsansatz der wasserstoffähnlichen
Beschreibung, mit Quantum Wells, dient dabei ein bereits implementiertes Programm.

Für eine detailliertere Beschreibung der Excitonzustände muss allerdings zusätzlich die
Kristallstruktur berücksichtigt werden. Als bekannter Ansatz zur Berücksichtigung
der Bandstruktur von Cu2O sei der Suzuki-Hensel-Hamiltonian gewählt. Die freien
Parameter werden dabei über einen Fit des Hamiltonians an eine Simulation der spin-
DFT bestimmt. Da die naive Diagonalisierung des resultierenden Hamiltonians mit dem
bereits bekannten Programm keine adäquate Rechenzeit liefern würde, müssen zunächst
sowohl das Programm, als auch der Hamiltonian modifiziert werden. Die numerische
Optimierung wird dabei zeitgleich in einer weiteren Bachelorarbeit am ITP1 angesetzt.

Diese Bachelorabreit beschäftigt sich hingegen mit einer analytischen Betrachtung des
Hamiltonians. Ziel ist es, die Freiheitsgrade des Hamiltonians über die gegebenen
Symmetrieen zu reduzieren, und damit die benötigte Rechenzeit zu minimieren.
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5.2 German Summary

Ausgangspunkt der Bachelorarbeit ist der von den zwölf Freiheitsgrade {xe, ye, ze, xh, yh, zh, I, Sh}
abhängige Hamiltonian, in dreidimensionalen, kartesischen Koordinaten. Obwohl die
Translationssymmetrie entlang der z-Achse durch die eingeführten QuantumWells zerstört
wird, bleibt sie weiterhin innerhalb der xy-Ebene erhalten. Durch die Einführung zwei-
dimensionaler Realtiv- und Schwerpunktskoordinaten innerhalb der xy-Ebene, ergeben
sich die zwölf Freiheitsgrade {x, y,X, Y, ze, zh, I, Sh}. Die Wahl des Schwerpunktssystem,
als Bezugssystem, setzt dabei PX = PY = 0 und reduziert das System auf die zehn
Freiheitsgrade {x, y, ze, zh, I, Sh}.

Im Fall der wasserstoffähnlichen Beschreibung könnten die Freiheitsgrade durch Nutzen
der Rotationssymmetrie innerhalb der xy-Ebene weiter reduziert werden. Diese kon-
tinuierliche Symmetrie wird allerdings durch die Bandstruktur auf eine vierzählige,
diskrete Symmetrie heruntergebrochen. Als Folge dessen bleibt bei der Transformation in
Zylinderkoordinaten die φ Abhängigkeit des Hamiltonians erhalten. Die Transformation
wird dennoch ausgeführt, da die verbleibende Punktsymmetrie den numerischen Aufwand
weiter reduziert. Es ergeben sich schließlich die zehn Freiheitsgrade {ρ, φ, ze, zh, I, Sh}.

Kontrolliert wurde die Rechnung sowohl über einen Test der diskreten Rotationssym-
metrie, als auch über Mathematica. Als Ausblick wurde eine geeignete Basis zur Di-
agionalisierung des Hamiltonians skizziert, wobei die Wahl der B-spline Funktionen
durch eine vorherige Bachelorarbeit motiviert ist. In Zukunft soll damit die numerische
Lösung der Exzitonzustände mit Berücksichtigung der Bandstruktur und der räumlichen
Beschränkung durch Quantum Wells ermöglicht werden.
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A Appendix

A.1 Hydrogen Atom

This section is based on References [13-15].

This section serves for a better understanding of quantum mechanically described bound
states. The exact, analytical solution of the hydrogen atom motivates the physically
interpretable quantum numbers, which are sufficient to describe the bound state. Fur-
thermore, the solution of the differential equations via series expansions and the demand
for normalisable states leads directly to the discrete nature of quantum mechanics. As a
result, we obtain discrete eigenenergies and, especially for the ground state, the binding
energy of the hydrogen atom and the corresponding Bohr radius, which enables a later
comparison with the exciton states.

So before we introduce the excitons, let us take a look at the non-relativistic hydrogen
atom. We consider the reference frame in which the proton rests and solve the Schrödinger
equation for the possible electron states Ψ(r, t). The potential

V (r) =
−e2

4πε0|r|
(A.1)

is thus independent of time. In order to find wave functions

Ψ(r, t) =
∑
n

cnψn(r) exp{−iEnt/~}, (A.2)

which satisfy both the stationary Schrödinger equation (2.4) and the non-stationary
Schrödinger equation

i~
∂

∂t
Ψ =

(
− ~2∆

2m
+ V

)
Ψ = HΨ (A.3)
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A Appendix

a product of a location-dependent wave function ψ(r) and an exponential function is
applied. The exponential function exp{−iEnt~−1} describes the development of the
wave function in time. Due to the spherical symmetry of the problem, it is advisable to
continue the consideration in spherical coordinates. Consider the new representation of
the Laplace operator

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (A.4)

In order to determine the location-dependent wave function, the stationary Schrödinger
equation must be solved in spherical coordinates. A common approach is the separation
of variables ψ(r, θ, φ) = R(r)Y (θ, φ). When the Laplace operator ∆ is inserted into
equation (2.4), the expression

−~2

2m

[Y
r2

∂

∂r

(
r2
∂R

∂r

)
+

R

r2 sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)

+
R

r2 sin2 θ

(∂2Y
∂φ2

)]
+ V RY = ERY

⇔ A(r) ≡
[ 1

R

∂

∂r

(
r2
∂R

∂r

)
+

2mr2

~2
[E − V ]

]

=− 1

Y

[ 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

]
≡ −B(θ, φ)

(A.5)

is obtained. Since both sides of the equation (A.5) have independent variables, A(r) and
B(θ, φ) are constant. Choosing A(r) = −B(θ, φ) ≡ l(l + 1), results in two separeted
differential equations. The differential equation

1

R

∂

∂r

(
r2
∂R

∂r

)
+

2mr2

~2
[V − E] = l(l + 1) (A.6)

describes the radial probability density R(r) of the electron. Rewriting the partial
derivatives

1

R

∂

∂r

(
r2
∂R

∂r

)
=

r

R

∂2(rR)

∂r2
(A.7)
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suggests to substitute further U(r) = rR(r). The equation

d2U

dr2
=
[ l(l + 1)

r2
− 2mE

~2
− me2

2πε0~2r

]
U (A.8)

is in the form of a stationary Schrödinger equation with an additional term, which can
be interpreted as a centrifugal potential. Since the differential equation only depends on
one variable, the partial derivatives were replaced by total derivatives. Further replace
r = (4πε0~2ρ)(me2)−1, E = (me4)(32π2ε20~2)ε and write

d2U

dρ2
=
[
−ε− 2

ρ
+
l(l + 1)

ρ2

]
U. (A.9)

A motivation for the form of U(ρ) is provided by two special cases. For ρ→∞, equation
(A.9) tends to

d2U

dρ2
≈ −εU (A.10)

which is solved via the approach U(ρ) = A exp
{
−ρ
√
−ε
}

+ B exp
{
ρ
√
−ε
}
. To obtain

bound solutions, let B = 0. For ρ→ 0, equation (A.9) tends to

d2U

dρ2
≈ l(l + 1)

ρ2
U (A.11)

with the solution U(ρ) = Cρl+1. Note that by considering bound states we choose E < 0

and therefore
√
−ε is real. Introduce a function ν(ρ) such that

U(ρ) = ρl+1 exp
{
−ρ
√
−ε
}
ν(ρ). (A.12)

The resulting differential equation

ρ
d2ν

dρ2
+ 2(l + 1−

√
−ερ)

dν

dρ
+ 2(1−

√
−ε(l + 1))ν = 0 (A.13)

can be solved by the series approach

ν =
∞∑
j=0

ajρ
j. (A.14)
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With equation (A.14) and the partial derivatives

dν

dρ
=
∞∑
j=1

jajρ
j−1 =

∞∑
j=0

(j + 1)aj+1ρ
j,

d2ν

dρ2
=
∞∑
j=1

j(j + 1)aj+1ρ
j−1,

(A.15)

inserted into equation (A.13) the coefficients

aj+1 =
[
−2(−

√
−ε(j + l + 1) + 1)

(j + 1)(j + 2l + 2)
aj

]
(A.16)

are determined recursively. Consider the asymptotic behaviour of ν(ρ) with the coefficients
aj+1 = 2

√
−ε/(j + 1)aj for j →∞. Assuming that the equation

lim
j→∞

aj+1

aj
=

2
√
−ε

j + 1
, (A.17)

is valid for any j, the coefficients result in

aj =
(2
√
−ε)j

j!
a0. (A.18)

If one identifies this expression as an exponential serie,

a0

∞∑
j=1

(2
√
−ε)j

j!
ρj = a0 exp

{
2
√
−ερ

}
(A.19)

follows directly. Therefore ν(ρ), U(r), and finally R(r) would diverge. To avoid the
divergence of

Rnl(r) =
1

r
ρl+1 exp

{
−
√
−ερ

}
ν(ρ) (A.20)
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for large j, there must be a jmax, so that j > jmax implies aj = 0. The condition
amax + 1 = 0 yields the relation −

√
−ε(jmax + l + 1) + 1 = 0. Define n := jmax + l + 1 to

obtain discrete energy values

En = − me2

32π~2ε0
1

n2
=
−13.6eV

n2
. (A.21)

The obtained Bohr’s formula is one of the greatest achievements in quantum mechanics.
Using a semiclassical approach to the conservation of energy

En=1(r0) = − me4

32π2ε20~2
=

~2

2mr20
− e2

4πε0r0
= T (r0) + V (r0), (A.22)

with the kinetic energy T , and the potential V , the Bohr radius

r0 =
4πε0~2

me2
≈ 5.29× 10−11m (A.23)

can also be determined. Taking into account the termination condition to further
identify

ν(ρ) = L2l+1
n−l−1(2ρ) (A.24)

then the radial probability distribution

Rnl(r) = cnl
ρl

r
exp
{
−
√
−ερ

}
L2l+1
n−l−1(2ρ) (A.25)

with the normalisation constant cnl is obtained.

L2l+1
n−l−1(x) =

n−l−1∑
j=0

(−1)j
(

n+ l

n− l − 1− j

)
xj

j!
(A.26)

are the Laguerre polynomials, which represent the remaining exponential terms.

Since solving the angular-dependent differential equations does not yield energy values,
the following solution path is less detailed, but still motivates the occuring quantum
numbers. A separation of the variables Y (θ, φ) = Θ(θ)Φ(φ) is also used for the differential
equation
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1

Y

[ 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

]
= −l(l + 1). (A.27)

The separation Y = ΦΘ leads again to two constant terms

− Φ

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
− Φ

sin2 θ

∂2Φ

∂φ2
=l(l + 1)ΘΦ

⇔ −sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
− l(l + 1) sin2 θ =

1

Φ

∂2Φ

∂φ2
≡ −m2

(A.28)

that can be considered separately. This time −m2 is chosen as the constant. The
differential equation

∂2Φ

∂φ2
= −m2Φ (A.29)

for the φ dependent part is solved using the approach Φ = A exp{imφ}+B exp{−imφ}.
Since φ is cyclic (Φ(φ) = Φ(φ+ 2π)) and therefore holds the condition exp{±2iπm} = 1,
m ∈ {0,±1,±2, ...,±(l − 1),±l} takes integer values. Due to the selection option for m,
we are free to set B = 0. After a normalisation,

Φ =
1√
2π

exp{imφ} (A.30)

results. The θ dependent differential equation

− Θ

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
− l(l + 1) sin2 θ =−m2

⇔ 1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+
(
l(l + 1)− m2

sin2 θ

)
Θ =0

(A.31)

with the entries sin θ and sin2 θ can be solved by a series expansion of sin θ and cos θ.
Therefore substitute ξ = cos θ to get

∂

∂ξ

[
(1− ξ2)∂Θ

∂ξ

]
+
[
l(l + 1)− m2

(1− ξ2)

]
Θ = 0. (A.32)
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Since the differential equation is still difficult to solve, a further substitution

Θ = (1− ξ2)
|m|
2 G(ξ). (A.33)

is used. It should be noted that this non-trivial and also non-obvious substitution
is a common substitution for advanced differential equation solving. Now the series
expansion

G(ξ) =
∞∑
n=0

bnξ
n. (A.34)

is used. The determination of the coefficients bn can be followed in reference [13], in
section 6.5.2. As before, a termination condition of the coefficients is required to avoid
divergence of the series. The solution

Θlm(θ) =

√
(2l + 1)(l −m)!

2(l +m)!
Plm(cos θ), (A.35)

contains the Legendre polynomials

Plm(ξ) =
1

2ll!
(1− ξ2)

m
2
∂l+m(ξ2 − 1)l

∂ξl+m
. (A.36)

and leads to the spherical harmonics functions Yml(θ, φ). In total, the wave function

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), (A.37)

determined by three quantum numbers n, l,m represents the electron state in the hydrogen
atom.
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A.2 Partial Derivatives

Used partial derivatives to transform between Cartesian coordinates (x, y) and plane
polar coordinates (ρ, φ).

∂

∂ρ
=
∂x

∂ρ

∂

∂x
+
∂y

∂ρ

∂

∂y
= cosφ

∂

∂x
+ sinφ

∂

∂y
, (A.38)

∂2

∂ρ2
=
(

cosφ
∂

∂x
+ sinφ

∂

∂y

)(
cosφ

∂

∂x
+ sinφ

∂

∂y

)

= cosφ
[ ∂
∂x

(
cosφ

∂

∂x

)
+

∂

∂x

(
sinφ

∂

∂y

)]

+ sinφ
[ ∂
∂y

(
cosφ

∂

∂x

)
+

∂

∂y

(
sinφ

∂

∂y

)]

= cosφ
[sin2 φ

ρ

∂

∂x
+ cosφ

∂2

∂x2
− cosφ sinφ

ρ

∂

∂y
+ sinφ

∂

∂x

∂

∂y

]

+ sinφ
[
− sinφ cosφ

ρ

∂

∂x
+ cosφ

∂

∂x

∂

∂y
+

cos2 φ

ρ2
∂

∂y
+ sinφ

∂2

∂y2

]

= cos2 φ
∂2

∂x2
+ sin2 φ

∂2

∂y2
+ 2 sinφ cosφ

∂

∂x

∂

∂y
,

(A.39)

∂

∂φ
=
∂x

∂φ

∂

∂x
+
∂y

∂φ

∂

∂y
= −ρ sinφ

∂

∂x
+ ρ cosφ

∂

∂y
, (A.40)

60



A.2 Partial Derivatives

∂2

∂φ2
=
(
−ρ sinφ

∂

∂x
+ ρ cosφ

∂

∂y

)(
−ρ sinφ

∂

∂x
+ ρ cosφ

∂

∂y

)

=− ρ sinφ
[ ∂
∂x

(
−ρ sinφ

∂

∂x

)
+

∂

∂x

(
ρ cosφ

∂

∂y

)]

+ ρ cosφ
[ ∂
∂y

(
−ρ sinφ

∂

∂x

)
+

∂

∂y

(
ρ cosφ

∂

∂y

)]

=− ρ sinφ
[(

sinφ cosφ− sinφ cosφ

ρ

) ∂
∂x
− ρ sinφ

∂2

∂x2

+
(cos2 φ

ρ
+ sin2 φ

) ∂
∂y

+ ρ cosφ
∂

∂x

∂

∂y

]

+ ρ cosφ
[(
− cos2 φ− sin2 φ

ρ

) ∂
∂x
− ρ sinφ

∂

∂x

∂

∂y

+
(sinφ cosφ

ρ
− sinφ cosφ

) ∂
∂y

+ ρ cosφ
∂2

∂y2

]

=ρ2 sin2 φ
∂2

∂x2
+ ρ2 cos2 φ

∂2

∂y2
− ρ cosφ

∂

∂x

− ρ sinφ
∂

∂y
− 2ρ2 sinφ cosφ

∂

∂x

∂

∂y
,

(A.41)

∂2

∂x2
+

∂2

∂y2
=

∂2

∂ρ2
+

1

ρ2
∂2

∂φ2
+

1

ρ

∂

∂ρ
, (A.42)

∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂φ

∂x

∂

∂φ
= cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
, (A.43)
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∂2

∂x2
=(cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
)(cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
)

= cosφ
[
cosφ

∂2

∂ρ2
− ∂

∂ρ

(sinφ

ρ

) ∂
∂φ
− sinφ

ρ

∂

∂φ

∂

∂ρ

]

− sinφ

ρ

[( ∂
∂φ

cosφ
) ∂
∂ρ

+ cosφ
∂

∂ρ

∂

∂φ

− ∂

∂φ

(sinφ

ρ

) ∂
∂φ
− sinφ

ρ

∂2

∂φ2

]

= cos2 φ
∂2

∂ρ2
+

2 cosφ sinφ

ρ2
∂

∂φ
− 2 cosφ sinφ

ρ

∂

∂φ

∂

∂ρ

+
sin2 φ

ρ

∂

∂ρ
+

sin2 φ

ρ2
∂2

∂φ2
,

(A.44)

∂

∂y
=
∂ρ

∂y

∂

∂ρ
+
∂φ

∂y

∂

∂φ
= sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
, (A.45)

∂2

∂y2
=(sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
)(sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
)

= sinφ
[
sinφ

∂2

∂ρ2
+
( ∂
∂ρ

cosφ

ρ

) ∂
∂φ

+
cosφ

ρ

∂

∂φ

∂

∂ρ

]

+
cosφ

ρ

[ ∂
∂φ

∂

∂ρ
+ sinφ

∂

∂φ

∂

∂ρ
+
( ∂
∂φ

cosφ

ρ

) ∂
∂φ

+
cosφ

ρ

∂2

∂φ2

]

= sin2 φ
∂2

∂ρ2
− 2 sinφ cosφ

ρ2
∂

∂φ
+

2 sinφ cosφ

ρ

∂

∂φ

∂

∂ρ

+
cos2 φ

ρ

∂

∂ρ
+

cos2 φ

ρ2
∂2

∂φ2
,

(A.46)
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∂

∂y

∂

∂x
=
∂

∂x

∂

∂y
= (sinφ

∂

∂ρ
+

cosφ

ρ

∂

∂φ
)(cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ
)

= sinφ
[
cosφ

∂2

∂ρ2
−
( ∂
∂ρ

sinφ

ρ

) ∂
∂φ
− sinφ

ρ

∂

∂ρ

∂

∂φ

]

+
cosφ

ρ

[( ∂
∂φ

cosφ
) ∂
∂ρ

+ cosφ
∂

∂ρ

∂

∂φ
−
(sinφ

ρ

) ∂
∂φ
− sinφ

ρ

∂2

∂φ2

]

= sinφ cosφ
∂2

∂ρ2
+

sin2 φ− cos2 φ

ρ2
∂

∂φ
+

cos2 φ− sin2 φ

ρ

∂

∂ρ

∂

∂φ

− sinφ cosφ

ρ

∂

∂ρ
− sinφ cosφ

ρ2
∂2

∂φ2
.

(A.47)

A.3 Mathematica Code

Mathematica code for comparsion with the analytical calculation.

pxpx[\[Rho]_, \[Phi]_] := (px[\[Rho], \[Phi]] [
px[\[Rho], \[Phi]] [#]]) &

pypy[\[Rho]_, \[Phi]_] := (py[\[Rho], \[Phi]] [
py[\[Rho], \[Phi]] [#]]) &

pxpy[\[Rho]_, \[Phi]_] := (px[\[Rho], \[Phi]] [
py[\[Rho], \[Phi]] [#]]) &

n1[\[Rho]_, \[Phi]_] := (a1*(pxpx[\[Rho], \[Phi]][#] +
pypy[\[Rho], \[Phi]][#]) -

a2 (i1i1*pxpx[\[Rho], \[Phi]][#] + i2i2*pypy[\[Rho], \[Phi]][#]) -
a3 (pxpy[\[Rho], \[Phi]][#]))

n2[\[Rho]_, \[Phi]_] := (b1*py[\[Rho], \[Phi]][#] +
b2*px[\[Rho], \[Phi]][#]) &

m1[\[Rho]_, \[Phi]_] := (c1*(pxpx[\[Rho], \[Phi]][#] +
pypy[\[Rho], \[Phi]][#]) -

c2*(i1s1*pxpx[\[Rho], \[Phi]][#] + i2s2*pypy[\[Rho], \[Phi]][#]) -
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c3*(pxpy[\[Rho], \[Phi]][#])) &
m2[\[Rho]_, \[Phi]_] := (d1*py[\[Rho], \[Phi]][#] +

d2*px[\[Rho], \[Phi]][#]) &

a1 := (\[Gamma]1’/2/m0 + 2*\[Gamma]2/m0)
a2 := 3*\[Gamma]2/m0
a3 := 6*\[Gamma]3/m0*i1i2
b1 := 6*\[Gamma]3/m0*phz*i2i3
b2 := 6*\[Gamma]3/m0*phz*i3i1
c1 := (\[Eta]1 + 2*\[Eta]2)/m0*i*s
c2 := 6*\[Eta]2/m0
c3 := 6*\[Eta]3/m0*(i1s2 + i2s1)
d1 := 6*\[Eta]3/m0*phz*(i2s3 + i3s2)
d2 := 6*\[Eta]3/m0*phz*(i3s1 + i1s3)

Simplify[n1[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
n2[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
m1[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
m2[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]]]

FullSimplify[
n1[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
n2[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
m1[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]] +
m2[\[Rho], \[Phi]][\[Psi][\[Rho], \[Phi]]]]
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A.4 Symmetry Test

Result of the discrete symmetry test, by inserting (φ, ρ)→ (φ′−π/2, ρ′), and (I1, I2, Sh1, Sh2)→
(I2,−I1, Sh2,−Sh1) into the Hamiltonian (4.50)

H =Eg +HSO −
1

4πε0

1√
ρ2 + (ze − zh)2

+ Ve(ze) + Vh(zh)

1

2~2m0

[
~2(γ1 + 4γ2)− 6γ2I

2
3 + 2ISh(η1 + 2η2)− 12I3Sh3

]
p2hz +

1

2me
p2ez

+
i

2~m0

[
−~2(γ′1 + 4γ2)− 2ISh(η1 + 2η2) + 6γ2(I

2
2 cos2 φ+ I21 sin2 φ)

+ 12η2(I2Sh2 cos2 φ+ I1Sh1 sin2 φ) + 6 sin 2φ(−γ3{I2, I1}

− η3(I2Sh1 + I1Sh2))
]1

ρ
pρ

+
6

~2m0

[
− sinφ(−γ3{I3, I2} − η3(I3Sh2 + I2Sh3)

+ cosφ(γ3{I1, I3}+ η3(I1Sh3 + I3Sh1))
]
phzpρ

+
3i

~m0

[
− sin 2φ(γ2(I

2
2 − I21 ) + 2η2(I2Sh2 − I1Sh1))

+ 2 cos 2φ(−γ3{I2, I1} − η3(I2Sh1 + I1Sh2))
] 1

ρ2
pφ

+
6

~2m0

[
− sinφ(γ3{I1, I3}+ η3(I1Sh3 + I3Sh1))

− cosφ(−γ3{I3, I2} − η3(I3Sh2 + I2Sh3))
]phz
ρ
pφ

(A.48)
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+
1

2~2m0

[
~2(γ′1 + 4γ2) + 2ISh(η1 + 2η2)− 6γ2(I

2
2 sin2 φ+ I21 cos2 φ)

− 12η2(I2Sh2 sin2 φ+ I1Sh1 cos2 φ) + 6 sin 2φ(−γ3{I2, I1}

− η3(I2Sh1 + I1Sh2))
]
p2ρ

+
1

2~2m0

[
~2(γ′1 + 4γ2) + 2ISh(η1 + 2η2)− 6γ2(I

2
2 cos2 φ+ I21 sin2 φ)

− 12η2(I2Sh2 cos2 φ+ I1Sh1 sin2 φ)− 6 sin 2φ(−γ3{I2, I1}

− η3(I2Sh1 + I1Sh2))
] 1

ρ2
p2φ

+
3

~2m0

[
− sin 2φ(−γ2(I22 − I21 ) + 2η2(I2Sh2 − I1Sh1))

+ 2 cos 2φ(−γ3{I2, I1} − η3(I2Sh1 + I1Sh2))
]1

ρ
pρpφ

It can thus be seen that a rotation by π/2 of the Hamiltonian, comparative to its original
form (??) again yields identical terms. This shows the expected preservation of C4(z)

symmetry and thus served as the first falsification test for the Hamiltonian.
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