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Abstract

Artificial neural networks have become a staple in machine learning research and are employed in
many interdisciplinary domains. Thus, it is paramount to understand their inner workings when
designing and developing new models. One field of research that is particular useful is called visual
analytics, which combines interactive visual representations and data analysis algorithms to obtain
knowledge. The aim of this thesis is the development of a visual analytics system to analyze the
training behavior of a machine learning model predicting microstructure material responses. The
goal is to enable the user to explore how different training configurations influence the training
process and the model’s performance. In addition, a novel regularization technique and a novel
optimization improvement, greedy stochastic permutations, are proposed.
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1 Introduction

In recent years, neural networks have seen a surge in popularity in research. With the risen popularity,
not only is more effort invested in improving neural networks, but also in understanding neural
networks to facilitate that improvement. Neural networks are often seen as a black-box that is fed
with data and outputs predictions with its inner working unbeknownst due to its complexity. The
source of this complexity stems from the fact that in most non-trivial neural networks, a multitude
of neurons are necessary to achieve adequate results. In addition to the sheer amount of neurons in
a deep neural network, the interactions between different optimizers and their learning process is
difficult to grasp without tools. Neural networks can come in different architectures and varying
levels of deepness and wideness, and it is nontrivial to figure out which architecture works best for
a specific problem. Further, there are many different hyperparameters that require expert tuning, for
example, the learning rate or regularization options. Understanding how different training data and
different hyperparameter settings affect prediction accuracy is difficult even for experts with years
of experience. However, by using certain tools and techniques to solve these issues, researchers
can obtain improved insight and enhanced interpretability for their neural networks to locate and
ameliorate flaws and to ultimately create better networks.

One effective way to gain more insight is to use a visual analytics system. During the training of
neural networks, a huge amount of data is generated. Combing through this data manually to find
information on the effects of each hyperparameter is far from practical. To handle huge amounts
of data, it is possible to use data analysis algorithms that can find correlations and structures in
the data or use visualizations that enable the user to understand vast amounts of data at once. In
general, visual analytics combines automated data analysis with interactive visualization tools. It
allows the user to visually explore the data with interactive visual representations of the data by
employing the user’s experience and intuition. In the tool developed in this work, the exploration
process starts with the user setting the training configuration for a neural network. Afterwards,
the training commences and data is gathered during the training. This data can then be visualized
interactivly by the user. To this end, several visualization tools provide support in analyzing and
comparing the training history. With the insights gained from the analysis, the user then adjusts the
training configuration and the process starts anew. Practically, this can be used to gain knowledge
on how different optimimzers compare to each other or which hyperparameter configurations work
well with the training data.

This work will showcase one such visual analytics system that was build specifically to allow
explorations for neural network models predicting microstructure material responses. The use of
machine learning techniques for predicting material properties, like heat or electric conductivity,
given the microstructure is reasoned in [LF19]. Given the microstructure, it is possible to compute
the properties through virtual testing, but this approach is costly. Instead, the more efficient approach
is to use a trained neural network to predict the material properties. Training the neural network
requires a dataset of microstructure images with their properties annotated. To be used in a neural
network, a microstructure image needs to be converted into a feature vector. This is done by
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1 Introduction

multiplying its two-point correlation function with a precomputed reduced basis. The resulting
feature vector can then be fed into the network, and a prediction can be obtained. By comparing the
prediction with the annotation in the dataset, the neural network will then move towards the correct
parameters to minimize its prediction error. Once the network is sufficiently trained, it should be
able to accurately predict the right material properties, even for unseen microstructure images. This
can be used to discover materials with desired material properties, by randomly generating different
microstructures until the network predicts fitting properties.

The goal of this visual analytics system is to facilitate the exploration of different neural network
models predicting the material properties, and discover the optimal network architecture and
hyperparameters that yield the best prediction. This system is build as a web-based system with a
web application as the front end. Users are able to interact with the web page to build, configure,
and train neural networks. The resulting training history is then available for the user, and can be
interactively visualized using various tools.

In addition to that, experiments on weight regularization methods are performed to empirically
test hypothesis on how smaller network weights affect a model’s performance. Further, a novel
optimization approach is proposed that can significantly improve the performance of common
optimizers like SGD or Adam. All experiments are done and supported by the visual analytics
systsem, showcasing its usefulness in exploring deep learning models and trainings to obtain more
knowledge and insights.

This thesis is structured as follows: After this introduction, the related works are listed and described
in Chapter 2. In Chapter 3, the methods and the data that are used in this work are presented by
laying the theoretical groundwork. Next, in Chapter 4, a more in-depth description of this visual
analytics tool is given and the practical implementations of the methods in Chapter 3 are described.
Afterwards, in Chapter 5, the insights that were gained during the visual exploration of deep learning
models and trainings for microstructure data are presented together with visualizations that illustrate
the results. Lastly, a conclusion is provided and an outlook given in Chapter 6.
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2 Related Work

In this chapter, an overview of the works that are related to this thesis is given. Visual Analytics
is an active research field in visualization and many visual analytics systems have already been
developed. Additionally, multiple visualization tools that are used in this work stem from research
in the field of visualtization and the field of deep neural networks. This thesis also builds on the
many works of the very active machine learning research on deep learning.

A crucial work for this thesis is [LF19]. In that paper, Lißner motivates the use of deep learning
neural networks for predicting the resulting material properties of experimental materials given the
underlying microstuctures. The two-dimensional microstructure data set and the code to extract the
representative feature vectors necessary for neural networks were provided by them.

In regards to visual analytics systems, this work takes inspiration from other such systems like ClaVis
[HMN+20]. Many of the functionalities and tools can also be found in other papers. PathExplorer
[HSS+21] showcases a visualization of decision-making paths using dimensionality reduction
techniques in order to find patterns. Similarly in this work, dimensionality reduction techniques
are employed to create visualizations of the training path of neural network models. One popular
dimensionality reduction technique is principle component analysis (PCA), which is explained
in [AW10] but is originally described by Pearson in [Pea01]. A newer dimensionality reduction
technique that is also used here is t-SNE, first described by Van der Maaten and Hinton in [VH08],
and builds upon the Stochastic Neighbor Embedding (SNE) described in [HR02]. Lastly, UMAP is
a more modern dimensionality reduction algorithm. It was proposed in [MHM18] in 2018 and
provides a similar visualization as t-SNE. These techniques allow the visualization of multivariate
data by reducing high dimensional data points to a lower dimensional space. In most cases, this
means a projection onto two dimensions which can be plotted on a flat screen. The implementation
details depend on the respective algorithms, but in general, the information loss that inevitably
occurs when projecting to a lower amount of dimensions should be minimized, i.e. nearby points in
high dimensional space should also be nearby in the low dimensional projection space.
Besides dimensionality reduction, another visualization process called loss landscape is part of
this visual analytics system. [LXT+18] presents a way to explore the loss function of a neural
network by visualizing its high-dimensional optimization space using methods from topographic
maps in dependence to the network parameters. Alternatively, this can also be used to visualize the
optimizer path in robot motion planning as [HAO+22] shows.

On the machine learning side of things, this thesis is build on top of works pertaining to training
techniques for neural networks. One focal training configuration that can be set in this tool are
the regularization options. Regularization strategies play an important role in the training of deep
learning models. They strive to prevent overfitting and improve the ability of the model to generalize
from the training data. There is however no strategy that works for every problem, and for each
model configuration a different approach might lead to the best result. Thus, over the years many
diverse regularization techniques were developed and tested. An overview on the various options
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2 Related Work

can be found in [MBM20]. Here, two strategies are considered: The first one is called weight decay.
As the name suggests, the main idea here is to reduce the value of the weights of the neural network.
This is accomplished by adding a regularization term in the objective function that punishes high
value weights. The other regularization strategy is dropout, and is described in [SHK+14]. The
general idea of dropout is that each neuron in a neural network has a certain chance to drop out
of a learning epoch, meaning that the input to that neuron is set to zero. This way, during each
training epoch, one of all possible thinned subnetworks is trained instead of the whole network,
effectively training multiple thinned models whose weights are highly shared. This results in
significant reduction in overfitting, making this a popular choice for regularization since it also
works on almost all neural network architectures.
Apart from regularization techniques, this work will also look at some other machine learning
mechanisms like early stopping, ensemble learning, and simulated annealing. Early stopping as a
concept existed as early as 1998 by Prechelt in [Pre98]. The question behind that concept is to find
a way to choose the optimal number of training epochs to balance the bias-variance trade-off. If the
training is too short, the model is underfitted, leading to high bias, whereas when the training is too
long, the model is overfitted and as a result has a high variance. The best training duration lies
somwhere inbetween and early stopping can be used to find the optimal balance. Basically, during
the training the network is tested on validation data, which represents unseen data that was not in
the training. As soon as the measured validation loss, which does not contribute to optimization,
worsens, the training is stopped. In practice, however, a less strict stopping criterion is employed:
the training stops after 𝑛 epochs of no improvements where 𝑛 is a hyperparameter to be tuned. The
reason for this is the fact that during the optimization process, the validation loss can temporarily
raise, only to drop lower than before the increase.
This work also includes a short dive into ensemble learning. The core idea of ensemble learning is
to train multiple networks on the same task and using a combination of their predictions to come to
a solution. Here, instead of using multiple models, the neurons on the output layer are duplicated,
which results in a multi-headed network where each head represents an ensemble learner similar to
[CS20] where one single ConvNet was used instead of a group of ConvNets.
Lastly, a big part of this thesis is the exploration of the effect of simulated annealing techniques on
the training of neural networks. Simulated annealing originally stems from optimization research
like in [KGV83], and describes how it is possible to reach global optimas by using stochastic
samples. Here, this concept is carried over to find the global minima in the loss function of the
models. After every 𝑛th step, random perturbations are created and sampled to find a potentially
better starting point for the next step.
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3 Methods and Data

In this chapter, several relevant concepts and techniques are explained to lay the groundwork for
future chapters. The main task of this thesis is to build a visual analytisc system that can assist in
developing neural networks and gaining insights about them. In order to understand this work, a
certain level of knowledge of neural networks is required. Thus, in the first section of this chapter a
brief explanation of the basics is given. The next section of this chapter focuses on the different
regularization methods that are used in this work. Afterwards, the different visualization techniques
that are used in this tool are described. Finally, the training data that all models in the experiments
train on is introduced.

3.1 Artificial Neural Networks

Artificial Neural Networks are frequently used in supervised machine learning due to their scalability
with big amounts of data. When doing supervised machine learning, annotated training data is
required, and in the age of big data they have become more and more popular. Once sufficiently
trained, they can swiftly process unseen data. The processing speed can be further increased by
using less accurate networks. Vice versa, the accuracy can be improved at the cost of their speed.
In any case, their use cases are plentiful, they are used in natural language processing, computer
vision, robotics and many more.

A neural network consists of multiple neurons. They were inspired by their biological counterpart
and they receive and forward signals. Usually, these neurons are organized into layers, with each
layer connecting to the previous and the next layer. Each individual neuron can receive inputes from
neurons of the previous layer and its output is fed to neurons in the next layer. Of course, there are
exceptions and different network architectures exists where neuron connections are less restrictive.

𝑥1 𝑤1

𝑥2 𝑤2 Σ 𝑓𝑎𝑐𝑡

Activation
function

𝑦𝑜𝑢𝑡

Output

𝑥3 𝑤3

Weights

Bias
𝑏

Inputs

Figure 3.1: Operation principle of single neuron
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Figure 3.2: Examples of commonly used activation functions: logistic sigmoid, hyperbolic tangent,
rectified linear unit, and softplus

In this work, however, the neurons are only connected to neurons in neighboring layers. Figure 3.1
depicts the typical neuron: the inputs from the preceding neurons are weighted with individual
weight values. In addition, each neuron has a bias value. All weighted inputs and the bias are then
summed up and put in an activation function. The output is then forwarded to following neurons.
In equation form that is:

𝑦𝑜𝑢𝑡 = 𝑓𝑎𝑐𝑡 (𝑏 + 𝑥1 · 𝑤1 + 𝑥2 · 𝑤2 + ... + 𝑥𝑛 · 𝑤𝑛)

The activation function is often a nonlinear function since without any nonlinear activation functions
the whole network will be linear and thus unable to solve non-trivial problems. Examples of
commonly used activation functions are depicted in Figure 3.2.

The first layer of an artificial neural network is called input layer and is filled with the values of the
feature vector. A feature vector contains the features of a data instance of a training data set. This
can be, for example, the age, the height, and the sex of a patient. Numerical or boolean features
can be put directly in the feature vector, while categorical features are usually one-hot encoded.
Input images usually have their individual RGB values of each pixel as feature vectors. The last
layer is called the output layer. The amount of output neurons will depend on the problem, for
example, predicting tomorrow’s temperature is a one-dimensional regression task and thus only has
one output neuron that predicts the temperature, while image classification tasks have an output
neuron for each class that outputs the probability of the input image being in that class.

Layers that are neither the input layer nor the output layer are called hidden. Depending on the
type of neural network, there are different types of hidden layers, like convolutional layers, encoder
layers, embedding layers and many more. In this work, the hidden layers are all fully connected
layers, which means that a neuron from a fully connected layer receives inputs from all neurons
from the preceding layer and forwards its output to all neurons in the following layer. Figure 3.3
shows an example neural network with all connections drawn.
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Figure 3.3: Fully connected neural network with one hidden layer and one output neuron

To learn from the training data, backpropagation is used. This algorithm computes the gradient
of the loss function with respect to the neurons’ weights. The loss is a measure of how far off the
predictions of the network is to the actual annotation in the training data. The gradient is calculated
first for the last layer with respect to the neurons’ weight. Changing these weights according to the
gradient would lead to a better loss. By iterating backwards, layer for layer, the gradients for every
neurons’ weight can be obtained efficiently.

Training an artificial neural network consists of iterative improvements of the weights. A training
epoch is over when the whole training data set is put through the network and all the gradients
are calculated. Afterwards, an optimizer returns improved weights using the gradients. Usually, a
training consists of hundreds or even thousands of epochs, until the weights converge, i.e., when the
early stopping condition is met. At that point a loss minima is reached.

3.2 Regularization Methods

To motivate the use of regularization methods, it is important to learn about a common concept
in machine learning which is the variance-bias tradeoff. Bias describes the distance between a
model’s average prediction and average true values, while variance describes the spread of a model’s
prediction. High bias occurs if a model cannot learn the latent data representation of the training
data, which is called underfitting. In contrast, high variance occurs if the model learned too much
of the training data and does not generalize well on unseen data, which is called overfitting. Ideally,
the optimal network has low variance and low bias. In reality, there is a tradeoff between both, and
balancing the model’s complexity is key to reduce the total error. Figure 3.4 visualizes this tradeoff:
a model with low complexity cannot learn the latent data representation and thus has high bias.
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Figure 3.4: Bias and variance as function of model complexity

With high complexity, the model gains more and more degrees of freedom in its parameters and can
minimize the training loss by learning the data by heart. When confronted with unseen data the
model fails due to the high variance. Thus, the optimal spot is somewhere in the middle.

Overfitting is more often a concern than underfitting and over the years several techniques were
developed for neural networks that aim at preventing overfitting. They are often called regularizers.
In this work, two state of the art regularization methods are used: weight decay and dropout.
Additionally, novel regularization techniques are proposed and their effectiveness empirically
tested.

The first method assumes that overfitting occurs due to bigger weight values, and aims to keep
these weights small. As a result, the effective output range of each neuron and the spread of the
model’s predictions is reduced and thus the variance is lowered. Weight regularization punishes
high values in the weights by adding a regularization term in the loss function. Usually, the loss
functions measures the model’s prediction error and its gradient tells the model how to change the
weights to achieve a better prediction. By adding a term to the loss that scales with a network’s
weights, its gradient will now also try to improve the predictions while keeping the weights as small
as possible. The regularizing term can theoretically be anything that increases monotonically, in
practice the 𝐿2-Norm is used. With that, the loss Φ looks like this:

Φ = 𝐿 (𝑌true, 𝑌pred) + 𝛼 ∥𝑊 ∥𝐿2

where 𝐿 is the loss function, 𝛼 the weight decay factor, and 𝑊 the weight tensor of the network.

The latter regularization method is called dropout because there each neuron has a certain probability
to drop out during training, meaning that the input to that neuron is set to zero, whereas for all other
neurons in that layer which do not drop out, the input is scaled such that the sum over all inputs
remains unchanged. This way, during each training epoch, one of all possible thinned subnetworks
is trained instead of the whole network, effectively training multiple thinned models whose weights
are highly shared.
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3.3 Other Machine Learning Methods

Apart from regularization, there are other machine learning schemes available that improve a
model’s performance. One example includes using cyclical learning rate as proposed in [Smi17]. In
this work, two well known methods, early stopping and a variant of ensemble learning, and a novel
optimization improvement, which was developed in cooperation with a supervisor, are tested.

3.3.1 Greedy Stochastic Perturbations

Greedy Stochastic Perturbations (GSP) is the name of the novel optimization improvement proposed
in this work. During the training of a neural network an optimizer is employed to perform a
gradient descent step with the goal of arriving at the global loss minima. During that process, the
optimizer might get stuck at some local minima. To prevent that, the weight tensor of the network is
perturbed randomly, and after each perturbation the loss is measured, it jumps to the best performing
perturbation.

The random perturbations are obtained as follows: let 𝑊𝑐𝑢𝑟𝑟 be the current weight tensor of the
network and 𝑊𝑙𝑎𝑠𝑡 be the weight tensor of the network before the last optimization step. The
perturbation tensor 𝑃 is then:

𝑃 = 𝑊𝑐𝑢𝑟𝑟 −𝑊𝑙𝑎𝑠𝑡

Next, a sign tensor 𝑆 of the same dimension is generated. Each element in 𝑆 is either -1 or 1, which
is decided with equal probability during generation. To obtain a perturbed weight tensor 𝑊𝑃, the
pertubation tensor is element-wise multiplied with 𝑆 and scaled with an perturbation factor pf :

𝑊𝑃 = 𝑊𝑐𝑢𝑟𝑟 + pf · (𝑃 ⊙ 𝑆)

The network is then fitted with the new perturbed weight tensor, and the validation loss is measured.
This is repeated for multiple different perturbed weight tensors. If no perturbation has a lower loss
than the validation loss with 𝑊𝑐𝑢𝑟𝑟 , then the network continues with that weight tensor. Otherwise,
it takes the best performing perturbed weight tensor.

This optimization improvement aims to prevent the optimizer from getting stuck at local minimas
and to accelerate the optimization by taking bigger steps due to the perturbation factor. This will
be seen in the results of the experiments ran in Section 5.3. This improvement also works for any
optimizer and is not too costly because measuring the validation losses is rather cheap since no
gradients have to be calculated.

3.3.2 Ensemble Learning

Another way to receive better results is to use multiple models and average their predictions. This is
called ensemble learning. The models used are usually of lower complexity but, as an ensemble,
they can achieve better results. In this work, a variant of that is used. Here, instead of building
multiple smaller models, the last layer of the neural network is repeated multiple times. The resulting
architecture is a multi-headed neural network. Each head represents one instance of the ensemble.
During training, the training set is modified accordingly to accommodate multiple predictions.
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That way, the weights of each head receives individual corrections during the optimization steps.
However, when measuring the validation loss, all outputs of each head are averaged to form a
prediction.
The success of ensemble learning is well documented, but it remains to be known, if that multi-headed
approach delivers the desired improvements here.

3.3.3 Early Stopping

In the previous section, the variance-bias tradeoff and the need to find the balance between them
were explained. Too many epochs will result in overfitting, while too few epochs will underfit the
model. Thus, finding the amount of training epochs that trains the model just enough to not overfit
is necessary. This can be done by using the validation loss as a metric for the model’s performance.
With increasing training, that metric should decrease until a point where the model is starting to
overfit. By monitoring the validation loss, it is possible to pinpoint that moment and immediately
stop the training. In general, at the epoch where the validation loss stops decreasing, a counter
is started and the validation loss is recorded. With each following epoch where the validation
loss is not below the recorded loss, the counter increases. Otherwise it is reset to zero. If the
counter surpasses a defined threshhold, the training is stopped. If the threshhold is set to low, then
the training might stop too soon since during the optimization process, phases of temporary loss
increase could occur, only to decrease further down the line. If the threshhold is set too high, too
much unneccessary training might occur. Finding the right threshhold is one of the experiments
that will be presented later in Section 5.5.

3.4 Visualization Techniques

Creating and training neural networks is only the first half of this work. What really enables
exploration and gaining knowledge are visualizations. A network’s training history contains way
to many values to directly detect any patterns or outliers. To this end, visualization can help by
exploiting a human’s ability to quickly and effectivly recognize patterns in visual representations.

3.4.1 Dimensionality Reduction

For one-dimensional data, conventional plots suffice. For example, it is very trivial to plot a
model’s validation loss over all epochs. However, this is not possible for high-dimensional data
like a network’s weights. Yet, not visualizing it is also not an option, e.g., consider a very small
neural network as depicted in Figure 3.3. Each of the three neurons in the hidden layers have five
trainable weights with three more trainable weights in the output layer. This sums up to eighteen
weights which seems manageable for very few epochs but in practice, the number of epochs are
in the thousands. To solve that problem, multiple dimensionality reduction algorithms exist that
aim to project high-dimensional data to low dimensional space while minimizing the inevitable
information loss. Here, three are presented:
The first dimensionality reduction algorithm is Principal Component Analysis (PCA). First, a data
matrix 𝑋 is assembled. Each row of that data matrix contains a data point. Depending on the filters,
this can be the weight tensor of a model at an epoch or just a part of it. In any case, the tensor
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Figure 3.5: One-dimensional PCA on two-dimensional data points. Image from [Com09]

is flattened and added as a row to the data matrix. Each row has 𝑚 components, and for 𝑛 data
points, the data matrix has size 𝑛 ×𝑚. Next, that matrix is corrected such that its mean is the origin.
Afterwards, the covariance matrix is calculated:

𝐶 =
𝑋𝑇𝑋

𝑛 − 1
which can be diagonalized:

𝐶 = 𝑉𝐷𝑉𝑇

𝑉 is the matrix of eigenvectors and 𝐷 is the diagonal matrix with the eigenvalues on the diagonal
in decreasing order. The projection of the data matrix is simply 𝑋𝑉 . For two dimensions, it is
sufficient to only use the first two columns of 𝑉 , i.e., only the two eigenvectors with the highest
eigenvalue. In practice, running PCA is computational intensive. Even for small networks, the
number of component can easily surpass one thousand and the number of data points is also in the
thousands, making the calculation of the covariance matrix and its diagonalization costly. Luckily,
a cheaper method exists: Singular Value Decomposition (SVD). With SVD, the data matrix can be
decomposed into three different matrices:

𝑋 = 𝑈𝑆𝑉𝑇

When projecting the data matrix, the projection is simply

𝑋𝑉 = 𝑈𝑆𝑉𝑇𝑉 = 𝑈𝑆

Figure 3.5 illustrates a one-dimensional PCA used on two-dimensional data. All data points are
orthogonally projected onto the black line which was chosen such that the information loss, i.e., the
sum of the squared distances of the points to the line, is minimalized. In two-dimensional PCA
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the points are orthogonally projected onto the plane spanned by the first two eigenvectors of the
covariance matrix 𝐶. That way, the variance of the data points is maximized, thus minimizing the
squared distances.

The next dimensionality reduction algorithm is t-distributed stochastic neighbor embedding, or
t-SNE in short. This algorithm was first presented in [VH08] and builds upon the Stochastic
Neighbor Embedding (SNE) described in [HR02]. There, conditional probability distributions are
established between each pair of datapoints in the high dimensional space. These are obtained
by converting the euclidean distance between two points 𝑥𝑖 and 𝑥 𝑗 to a conditional probability
𝑝 𝑗 |𝑖 which is proportional to the probability that point 𝑥𝑖 picks the point 𝑥 𝑗 as its neighbor under
a Gaussian distribution centered at point 𝑥𝑖 with variance 𝜎𝑖. Similarily, this can be done in the
lower dimensional projection with probabilities 𝑞 𝑗 |𝑖. The goal now is to minimize the difference
between the distributions P and Q to correctly model the similarities. This is done by minimizing
the Kullback-Leibler divergence of both distributions via gradient descent. The result is that similar
datapoints are kept nearby and different datapoints are further apart. Now, SNE has several problems
upon which t-SNE improves. The main improvement is that instead of also using a Gaussian
distribution in the lower dimensional space, t-SNE uses the Student’s t-distribution with one degree
of freedom. This solves the crowding problem that SNE visualizations run into, where the datapoints
are crowded around the center, since the heavier tails of the t-distribution allow moderately similar
datapoints to be further apart. The t-distribution is also faster to evaluate and needs less steps in the
gradient descent.

Lastly, UMAP is a more modern dimensionality reduction algorithm. It was proposed in [MHM18]
in 2018 and provides a similar visualization as t-SNE. It uses theory from Riemannian geometry
and algebraic topology and claims to be an improvement over t-SNE. Going into the details would
be outside the scope of this thesis, as such it is advised to refer to the original paper.

3.4.2 Loss Landscape

Loss landscapes are visualizations that show the loss values across the weight space. They are useful
to show in which areas the loss functions have minimas and where different models converge. The
visualized loss function is dependent on the network’s weight tensor 𝑊 and its value is computed
by measuring the loss on a sample data set that remains consant for all weight tensors. Due to
the nature of neural networks, the weight tensors are high-dimensional and thus, the loss function
exists in a high dimensional space. Visualizations, however, only really make sense in one or two
dimensions. To overcome this problem, interpolations between interesting weight tensors are used.
In the one dimensional case this means that two weight tensors 𝑊0 and 𝑊𝑛 are chosen from training
histories. One represents the left end of the x-axis and the other the right end of the x-axis. Now,
to obtain the weight tensors inbetween both points, linear interpolation can be used. For a finite
amount of interpolation steps 𝑛 this yields:

𝑊𝑖 = (1 − 𝑖

𝑛
)𝑊0 +

𝑖

𝑛
𝑊𝑛

for 𝑖 ∈ {1, . . . , 𝑛}. In the two-dimenionsal case, four weight tensors are chosen, one for each corner:
top right 𝑊𝑡𝑟 , top left 𝑊𝑡𝑙 , bottom right 𝑊𝑏𝑟 , and bottom left 𝑊𝑏𝑙 . This time, the weight tensors are
interpolated bilinearly:

𝑊𝑖 𝑗 =
𝑖

𝑛
· 𝑗
𝑛
𝑊𝑡𝑟 + (1 − 𝑖

𝑛
) · 𝑗

𝑛
𝑊𝑡𝑙 +

𝑖

𝑛
· (1 − 𝑗

𝑛
)𝑊𝑏𝑟 + (1 − 𝑖

𝑛
) · (1 − 𝑗

𝑛
)𝑊𝑏𝑙
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(a) Exemplary microstructure image (b) 2-point spatial correlation function

Figure 3.6: Left, an exemplary microstructure image; right, its 2-point spatial correlation function

with 𝑖 and 𝑗 ranging from 0 to 𝑛, indicating the amount of steps in x and y direction from the bottom
left corner. Alternatively, only one weight tensor 𝑊𝑐 is picked and put in the center. Using the first
two eigenvectors, scaled to match the norm of the last optimization step of that weight tensor, one
can then take a step in x or y direction. With this, one can again obtain the grid of weight tensors
necessary for the loss landscape:

𝑊𝑖 𝑗 = 𝑊𝑐 + (𝑖 − 𝑛

2
) ·𝑈 + ( 𝑗 − 𝑛

2
) · 𝑉

with 𝑖 and 𝑗 ranging from 0 to 𝑛, indicating the amount of steps in x and y direction from the bottom
left corner and 𝑈,𝑉 being the scaled eigenvectors.

Figure 5.2 shows two loss landscapes generated with this tool. For the one-dimensional loss
landscape, the measured loss is plotted over all 𝑊𝑖 while for the two-dimensional loss landscape,
each 𝑊𝑖 𝑗 is represented by a cell colored according to their loss. In addition, ten isolines are added
with their equidistant values ranging from the lowest measured loss to the highest measured loss.

3.5 Training Data

In the last section, it is explained what training data was used and how the feature vector was
extracted from the training data. As mentioned in the introduction, the problem domain is about
microstructure data and this work is built upon the foundations of [LF19]. Their work also included
an annotated training set which will be used extensively here. The data set consists of up to 15,000
randomly generated microstructure images. Those microstructure images are labelled with their
manually computed heat conductivity. To convert these microstructure images to feature vectors, a
precomputed reduced basis is matrix-multiplied with the two-point correlation function obtained
from the images. There are three precomputed reduced bases obtained through training excusively
with each inclusion type. The three inclusion types are: circle, rectangle, and mixed. The inclusion
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type signifies the shapes used to randomly generate the microstructure image. It was shown that
it was best to choose the same basis training type as the inclusion type. More details about the
training data and the feature extraction process can be found in their paper.
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4 Visual Analytics System

Now that the theoretical foundations are laid, the visual analytics system can be introduced. It aims
to facilitate the developement of neural networks by providing the possibility to train and obtain the
training history from a configurable training setup and providing interactive visualizations of the
training history. This chapter aims to give a quick overview over the visual analytics system and
explains how the methods mentioned in Chapter 3 were implemented.

This visual analytics system is split into a front end and a back end. The front end consists of a
standard web page. Core to the visualizations is the D3.js library [Bos12], which allows the plotting
of data points onto an SVG format. On the back end, there is a web server that listens for JSON
requests sent from the web application that executes the corresponding python code. The result is
returned as JSON back to the front end for display. In addition, it has access to a computer cluster
for computing intensive training and visualizations. In case the computer cluster is needed, the web
server uploads the JSON request to the computer cluster instead and runs a batch file on the cluster.
Upon completion of the task the cluster copies the result to the web server which consecutively
forwards them to the front end.

A screenshot of the user interface can be seen in Figure 4.1. On the left panel, the user can choose
the training configuration and see an overview of already loaded training histories where the models
can be inspected by selecting a model and clicking on the “View configuration” button. The training
configurations of that model will then overwrite the current parameters in the training configuration

Figure 4.1: Screenshot of the user interface, left is the configuration panel, in the middle is the
visualization panel, and on the right is the filter panel
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panel. This is useful when the user wants to keep most of the hyperparameters constant and only
change a few settings. Apart from viewing the configuration, the user can also import a training
history, download a training history, rename a model or delete a model.

Concrete details on how to configure the training is described in the next section. The following
section dives into the implementation details of the trainings and how the training history is saved.
Afterwards, there is a section on the visualizations that are possible and how they are created. As can
be seen in the screenshot, the middle panel is where the visualizations are presented, and the right
panel is where the user can interact with them by adding filters and selecting further visualization
options.

4.1 Training Configuration

As mentioned in the introduction, the visual analytics system presented here, allows the user to
choose the training configuration. This encompasses a plethora of hyperparameters and training
options. In the following, each option is briefly explained.

First, the user can select the training data for this training instance. The domain of this visual analytic
sytem is microstructure data. The data set from [LF19] contains three types of microstructures: one
generated with circle inclusions, one generated with rectangle inclusions, and one generated with
mixed inclusions, i.e., circle and rectangle inclusions. For the feature extraction, there are three
precomputed reduced bases and they are choosing by selecting the basis training type. Usually this
type should be the same type as the inclusions, but other basis training types are possible.

Secondly, the user decides on the network architecture. Two model types are offered: a standard
fully connected regressor or one with multiple heads, used for ensemble learning. In both cases, the
user proceeds by adding the hidden layers of the network. The input and output are added by default
and are not shown in the interface. Depending on the choice of the training data, the input features
have 80 (circle), 282 (rectangle), or 260 (mixed) dimensions. The to be predicted heat tensor is
a two by two matrix, and thus, there are always four output neurons. For each hidden layer, the
amount of neurons and the activation function can be chosen.
Additionally, two hyperparameters for regularization must be picked. The weight decay factor
impacts the weight of the regularization term during the optimization process. A weight decay of
zero negates that term. Usually this value ranges between 0.001 and 0.01 but technically there is no
limit set. The other hyperparameter is the dropout probability. This parameter sets the probability
of all neurons in all hidden layers to drop out during a training epoch. Since it is a probability the
value must be in [0, 1].
Further, it is possible to set an initialization seed. The initial weights of the model are then seeded
based on it. This is very important to compare the effect of different hyperparameters since it is
desirable to remove all sources of randomness to achieve reliable experiment results. As such,
setting the same initialization seed for the experiments is a necessary feature.
Lastly, there are two caching options for the sake of efficiency. By ticking the cache model checkbox,
the training configuration is mapped to the resulting training history. If in the future the same
training configuration is detected, the backend can simply return the cached training history instead
of retraining a model. If this behavior is not desired on subsequent requests, it is possible to tick
the force training checkbox, which forces the backend server to retrain the model even if a cached
training history already exists.
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Thirdly, the user has to choose the training hyperparameters. There are the basic hyperparameters
like the amount of training epochs, the learning rate, and the optimizer to use. Moreover, advanced
hyperparameters can be chosen. While in regression, mean squared error is used for both the cost
and the loss function other functions can be selected. Also, the user can activate early stopping and
specify the threshhold for the amount of allowed consecutive epochs with no improvements in the
validation loss.
Furthermore, by selecting to apply greedy stochastic perturbations during the training process, every
𝑛th epochs, the weights of the networks are perturbed randomly. This way, stochastic samples in the
vicinity are taken and the perturbation that yields the best loss is taken as the starting point for the
next optimization step. This newly proposed optimization scheme will be discussed in detail below
in Section 5.3.
Finally, the user has the option to train the model on the cluster. Since this visual analytics system
is built with domain experts as end users in mind, it is left up to the user to make that call. Training
on the cluster can lead to a decrease in training time, but additional overhead is introduced, which
makes it slower for smaller trainings. However, if the model is too complex, training on the cluster
should also be considered for other reasons, like storage limitations for example.

Lastly, the user can configure the tracking options. During the training process of the model, the
training history is recorded and sent to the front end for visualization. The training history consists
of several metadata, but most importantly of the neuron weights in the network. The user can
select the frequency with which these weights are selected. For example, by choosing to track all
epochs, after each training epoch, the weights and biases of every neuron are tracked and saved in
the training history, which is a HDF5-file. The advantages of this file format are the efficient writing
and reading of multidimensional data in addition to its directory structure which allows storing
metadata in the same file. Since that file can get rather big for longer trained and complex networks
(up to one gigabyte), it might be preferable to only track every 𝑛th epoch. Here, 𝑛 is calculated as
𝑛 = max(1, ⌊ epochs

500 ⌋) meaning that the amount of epochs tracked is always lower than 1000. The
training history of a small network with around a thousand epochs tracked takes about 25 MB of
storage. If the user is only interested in the weights of the best epoch, i.e., the epoch with the lowest
validation loss, then that can also be selected.
Another metric that is recorded in the training history is the validation loss. Before the training
starts, the training data is split into a training set and a validation set. The validation set is used
after each training epoch to evaluate the model’s performance on unseen data. Unlike the weight
data, storing the validation loss is very cheap since it only consists of one float per epoch. Still,
if the user prefers to only track the same 𝑛th epochs as the weight data, then they can select that
option here as well.
The last metric that is stored in the data tracker is the perturbation data. When enabled, after every
or after every 𝑛th epochs of the training, stochastic samples in the vicinity will be taken. To do that,
the tensor of the last optimizer step is taken, scalar-multiplied by the perturbation factor, and the
sign in each dimension is selected randomly. This results in a perturbation tensor which is added to
the current weight tensor of the network. The amount of perturbations and the perturbation factor
can be set by the user.

20



4 Visual Analytics System

4.2 Training and Training History

Upon pressing the “Start training” button, the training configuration is sent to the backend where the
training is done. Any incoming training request must come with the training configuration attached.
Depending on the training configuration the feature vectors from the correct training data must be
extracted. The extracted feature vectors are cached in a .npz file for future requests. The training
begins by loading the feature vectors and setting up the model according to the provided training
configuration. The models are built and trained using the keras [Cho+15] library.
The training of every model creates a training history, i.e., a HDF5-file, which contains every
relevant information of that model and its training. While this visual analytics system caches the
training history by maintaining a training configuration to training history file map, it is also possible
to upload a training history file to the system. This has the same effect as training a model with the
specified training configuration of the training history file. In addition to the training configuration,
the training history file contains for each tracked epoch:

• the weights and biases collected during the training

• the validation loss

• the percentage of perturbations that resulted in a lower validation loss

• the degree of how the best perturbation improved the loss.

The training history also contains metadata which indicates the training time, the amount of epoch
trained or which epoch performed best.

4.3 Visualization

After obtaining the training history of a model, multiple visualizations are offered. To start a
visualization, the user can select a visualization mode in the visualization panel. Each mode will be
explained in this section. In general, any number of training histories can be visualized at the same
time, although there are a few exceptions.

4.3.1 Plots

This mode of visualization is the simplest mode and is preferred to obtain an overall understanding
of a model. In the filter panel the user can select a metric which is then plotted over the epochs.
These metrics are:

• the validation loss

• the weight values

• the average weight values

• the average weight change

• the percentage of perturbations that yield a better loss

• the best perturbations loss improvement.
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Figure 4.2: An example visualization. The average weight of two networks is plotted over every
epoch. For each network, the weights are grouped per layer, thus multiple lines of the
same color exist.

The epoch range is costumizable in the filter panel as well as the model selection for this visualization
and the color of each model can be freely set. In this visualization, the epochs are plotted over
the x-axis while the chosen metric is plotted on the y-axis. There is an option to make the y-axis
scale logarithmically, which is practical for discriminating small values. Depending on the selected
metrics, more filter options are available. Every weight metric can further be filtered by layer and
neuron. For the average weight and the average weight change they can also be grouped, which
results in multiple lines per model which can be seen in Figure 4.2. Hovering over a line, will
highlight it and a tooltip will appear with more details. Selecting the perturbations also unlocks
a smoothing option, since that metric contains high frequency fluctuations. Here, exponential
smoothing and a moving average are offered. Lastly, there are a few options to show or hide a legend,
a grid or the best loss, as well as an option to calculate the visualization data on the cluster.

4.3.2 Loss Landscape

Three different methods of showing the loss landscape are possible with this tool. The first method
shows the loss landscape between two points by plotting the loss over one dimension. To do
that, two weight tensors are selected by specifying a model and an epoch. The weights in the
epoch of the model’s training history are taken for the leftmost point and for the rightmost point,
respectively. Note, that both tensors must match in all dimensions, i.e., both models must have
the same architecture. Both tensors are then sent to the web server together with the training
configuration. There, the model architecture is extracted from the training configuration and a new
model is built using that training configuration. To obtain the weight tensors for the loss landscape
inbetween both points, each weight is linearly interpolated. The amount of interpolation steps is
determined by the user. For each step, the model’s weights are set with the weight tensor that
are linearly interpolated and then evaluated on the validation set. This results in a sequence of
validation losses, that is sent to the front end and visualized on the screen. It is also possible to add
more models, which will result in multiple loss landscapes on the same plot. The leftmost weight
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Figure 4.3: An example visualization of multiple one-dimensional loss landscapes. The left most
points represents the loss of the weight tensor of model 1 in the last epoch. The
rightmost orange point represents the weight tensor of model 2 in the last epoch, while
the rightmost green point represents model 3.

tensor is the same for all loss landscapes, and every addition model adds a new rightmost point.
That rightmost point is then scaled to represent the distance. An example visualization can be seen
in Figure 4.3. Since the weight tensor of the last epoch of model 3 is closer from the weight tensor
of the leftmost point than the weight tensor of model 2, they are scaled accordingly, i.e., the end
point is closer to the left.
The second method is a two-dimensional loss landscape. Here, four weight tensors are chosen.
Each corner is occupied by one weight tensor and the weight tensors in the square are interpolated
bilinearly. Thus, the amount of necessary weight configurations that are evaluated have to be
squared. The loss value is represented by a color, and isolines can be added for more clarity. The
isolines are drawn using the marching squares algorithm described in [Map03]. A recommended
way to use the two-dimensional loss landscape is to choose the same epoch for the left corners and
the same epoch for the right corners while choosing the same model for the top corners and the
same model for the bottom corners. This will show the loss history of the two models on the top
border and the bottom border, while the rest of the square visualizes the loss landscape inbetween
both paths.
The third option also shows a two-dimensional loss landscape but this time, one weight tensor is
chosen to be in the middle of the loss landscape. This visualization aims to show the loss landscape
of the surroundings of that particular weight configuration. The surrounding weight tensors are
calculated using two base vectors. The first base vector is the last optimization step, and the other is
a randomly generated vector that is orthogonal to the first base vector with the same norm. In the
two-dimensional projection, the first base vector represents the x-axis and the second base vector
represents the y-axis. The step size is chosen such that the base vectors cover half the square, i.e.,
the leftmost center point represents the network’s weights before the last optimizations step, the
center point is the chosen weight tensor, and the rightmost center point are the network’s weights
after adding the optimization step twice.
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(c) UMAP

Figure 4.4: Three different visualizations after applying different dimensionality techniques on the
same models. Both networks start with the same initial weights but diverge from each
other during the training process.

4.3.3 Dimensionality Reduction

In this visualization mode, the user can select different dimensionality reduction algorithms to
visualize the weights of the chosen model(s). Just like in the plots mode, it is possible to filter
certain epochs or layers and neurons or to group the results by model or neuron. The goal is to
reduce the weight tensor of each model for every epoch to just two dimensions. That way each
epoch of each model can be drawn as a datapoint on a coordinate system. Close points in the
projection mean that the euclidean distance between the high dimensional weight tensors that they
represent is also small. If the distance between the datapoints of a model keeps diminishing with
advancing epochs, then this can be a sign that the model converges. If different models converge
to the same point in the projection, then their weight tensor also converges, suggesting that these
networks arrived in the same loss minima. If they, however, converge in different points, that can be
interpreted as getting stuck in different local loss minimas.

Figure 4.4 shows three different visualizations that resulted from different dimensionality reduction
techniques. The two depicted networks have the same weight tensor in the beginning of the training.
During training, the weights diverge from each other. In the visualization, each weight tensor during
an epoch is represented by a point and is connected to the point of the preceding and succeeding
epoch. Every 𝑛th epoch is represented by a larger point and a black outline. This makes it possible
to quickly grasp the point density of each line. In all three visualization, the starting point of both
models overlap before quickly diverging. This is seen most cleanly with PCA, where the lines do
not curve much.

All dimensionality reduction algorithms were implemented in JavaScript libraries. The SVD
decomposition was done with a library [Sal] which implemented the algorithm described in [GR71].
t-SNE is implemented using the Druid-JS library [Cut] and can be configurated with two parameters,
the perplexity parameter which determines the amount of neighbors used to learn the probability
distribution 𝑃 and the learning parameter epsilon of the gradient descent. UMAP was also in the
DruidJS library.
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Figure 4.5: Using the correlation mode, two different metrics can be plotted against each other.
Here, the average weight change and the validation loss are shown to be correlated.
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(b) Using difference mode

Figure 4.6: It can be hard to discern the difference of the average weight of both models in the plot
mode. Instead, using the difference mode, the exact difference can be plotted.

4.3.4 Correlation and Difference

The next visualization mode offers a method to find correlations between different metrics. Here,
the user can choose which metric to display on the x-axis and y-axis. The chosen datapoints are then
plotted accordingly. The resulting visualizations allow the user to easily spot negative or positve
correlations. As an example, Figure 4.5 depicts a visualization that showcased a positive correlation
between the average weight change and the validation loss of the model.
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Sometimes it is helpful to look at the difference between two models and compare them closely. In
this visualization mode exactly two different models need to be chosen and the absolute difference
between their values in the selected metric are plotted over all chosen epochs. This can be helpful
to inspect minor differences between two models that would not be apparent in the standard plot as
can be seen in Figure 4.6.
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5 Experiments and Results

In this chapter, the results and the knowledge gained from various experiments are presented. The
experiments in this work are mostly explorative in nature since their goal is to gain additional insight
into the used models rather than to prove a theorem. The visual analytics system will execute the
experiments and visualize the results. Often, the results of an experiment lead to the design of the
next experiment. Each experiment will increase the understanding of how to ameliorate the training
configurations in order to improve the model’s performance. In addition, there are also experiments
that test whether known techniques that improve a model’s performance would also work in this
domain.

To ensure reproducibility, all outside factors that can influence the results must be eliminated. In
particular, sources of randomness will distort the experiments, making it hard to say whether a
model performed better because the independant variables were changed or because of stochastic
variance. As such, the training process should be as deterministic as possible, meaning all sources
of randomness should be removed or at least seeded with the same seed for all experiments. The
main offender for this are the initial weights. When a model is first initialized every weight is set to
random weight using the Glorot uniform initializer. The initializer can take an integer as seed and
depending on the seed the result can be very different, as Figure 5.1 shows. The models have very
different performances even after a thousand training epochs. The reason for this is that depending
on the seed each model converges into a different loss minima.
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Best loss: 1.610e-4

Seed: 0 Seed: 1 Seed: 2 Seed: 3 Seed: 4

Figure 5.1: The validation loss per each training epoch for two networks with the same architecture
((10, 6), softmax, Adam) but different seeds for the initial weights. Depending on the
initial weights the networks can result in different performance.
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Figure 5.2: The loss landscape between two networks with the same architecture ((10, 6), softmax,
Adam) but different seeds for the initial weights. Left, a one-dimensional interpolation
between the neurons of both networks in the last epoch. Right, a two-dimensional
interpolation using four different network’s states as corners. The loss landscape
between both networks shows a loss ridge inbetween.

Figure 5.2 visualizes this by showing the loss landscape between two models with different initial-
izations. If both models converge to the same loss minima, the interpolated weight configurations
would also lead to a similar loss value. However, as the figure shows, the loss landscape inbetween
both models shows a loss hill, indicating that each model converges to a local loss minima. The
two-dimensional loss landscape illustrates that this divergence is consistent in the last 200 epochs.
To keep the results comparable, a default set of training configurations is used for every experiment.
If not mentioned explicitely otherwise, there is no weight regularization nor early stopping and the
models are trained on the first thousand entries of the circle dataset. The loss metric will always be
mean squared error (MSE):

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2

with 𝑛 being the size of the validation set, 𝑌𝑖 the true value, and 𝑌𝑖 the predicted value.

Now, that each training can be run deterministically, it is possible to compare different network
setups. The experiments in the first section are about the architecture of the models. Their results
provide the default network architecture for the following experiments. With this, the experiments
in the next section explore how different weight regularization techniques affect the training process,
i.e., how they influence the loss and the weights of the network. Then, in the third section, the greedy
stochastic perturbation technique is presented and its effectiveness is shown in several experiments.
Next, a brief overview of the ensemble learning experiments is given and lastly some more insights
are unveiled.
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Figure 5.3: The validation loss per each training epoch for two networks with the same architecture
((10, 6), softmax,) but different optimizers. Adam greatly outperforms SGD in this
visualization.

5.1 Architecture and Initialization

When designing a neural network, one of the unavoidable issues is to decide on a network architecture.
A neural network can take on many different forms. It can differ in the number of neurons, the
number of layers, how the neurons are connected to each other or which activation functions are
used. In the field of deep learning, there are a plethora of different possible architectures from
simple multilayer perceptrons (MLP) to complex Long short-term memory (LSTM) networks, each
better or worse depending on the problem. Bigger and more complex architectures can learn more
complex structures but also require more training while smaller and simple networks train faster
and may perform well enough. To find the most fitting architecture, an expert might rely on their
experience, or intuition or educated guesses. However, ultimately it often comes down to trying out
different architectures and sizes, or using some algorithms for hyperparameter optimization, such as
grid search, and picking the best one. In this work, the problem can be solved by simple regression.
Thus, only MLPs are considered and because the regression target is the heat conduction tensor
this already dictates the number of output neurons and since the feature vector is also given, the
number of input neurons is also prescribed. Ergo, the only parameters left to decide is the number
of hidden layers, and the amount of neurons and the type of activation function of each layer. The
experiments in this sections will explore the different possibilities and reveal how they perform
against each other.

All hyperparameters will be the same, except for the network architecture, which is changed between
training. The optimizer was chosen to be Adam, since it is the optimizer that consistently performed
the best. In the beginning SGD was used, but it was soon discovered that Adam greatly outperforms
SGD in all tested architectures. An example of that can be seen in Figure 5.3 where after a thousand
epochs the model with SGD has a validation loss of almost a factor of one hundred higher.
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Figure 5.4: The validation loss per each training epoch for two networks with the same architecture
((10, 6), Adam) but with different activation functions.

With that out of the way, there are still a multitude of hyperparameters to experiment on. The
amount of hidden layers, the number of neurons per layer and the activation function of each layer
will influence the model’s performance. Testing the many different possible permutations seem
unattainable, so in this work a few simplifications are assumed. First, the activation function is the
same for all hidden layers. It is possible to choose different activation functions for each individual
layer, but for the experiments here they will remain identical for all layers. Secondly, the amount
of neurons per layer is decreasing with progressing layers. Recall, that the output layer only has
four neurons and the input feature vectors have at least eighty dimensions. Thus, it makes sense to
gradually decrease the number of neurons in each layer. The third and last simplification is that
each hyperparameter is independant from the others. This is obviously not the case in reality, an
activation function might outperform in deeper networks and underperform in simplier network.
But looking for the best hyperparameters is outside the scope of this work. This is merely a
demonstration of what this tool is capable of. In the following, a network configuration is shortened
to a tuple, an activation function, and an optimizer. For example, ((10, 6), softmax, Adam) denotes a
neural network with two hidden layer, the first hidden layer with ten neurons and the second hidden
layer with six neurons, with softmax as activation function in both layers and Adam as optimizer for
the gradient.

First, an experiment on the different possible activation functions is undertaken. Figure 5.4 shows
the validation loss during training of different activation functions. All models use the ((10, 6),
Adam) architecture. The results are quite spread out, ranging from 2 · 10−4 to 10−2 after a thousand
epochs. The best performer is the softmax functions with a loss under 2 · 10−4 after the same
amount of training, a loss more than fifty times smaller than the worst performer. Interestingly,
ReLU and similar activation functions like SELU, ELU, and softplus perform the worst, while
softmax, softsign, and sigmoid perform the best. The main difference between both groups is that
the first group has an infinite endpoint in their range, while the range of the second group does not
exceed 1.
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Figure 5.5: The validation loss per each training epoch for networks with different network
complexity.

Using the assumption that softmax also works best for models of different sizes, it is now possible
to experiment with different amount of neurons. Considering that bigger networks might require
more time to converge, the amount of epochs trained is also increased. Figure 5.5a depicts the
performance of different networks that vary in the amounts of neurons per layer. The biggest and
smallest network perform about equal, while the middle network has worse performance. The
smallest network also converges faster, i.e., less training epochs are needed and is thus preferred.
In addition, due to the small amount of weights, its training is also faster and it is less prone to
overfitting.
It seems that smaller networks perform as good or even better than their larger counterparts. To
confirm that this also applies to the depth of a neural network, different models with varying
amounts of hidden layers are compared. The results of this comparison can be seen in Figure 5.5b.
Each model achieve a similar validation loss after 2000 epochs with the smallest one having a small
lead. This confirms the hypothesis, that smaller networks can perform equally good or better than
bigger networks on this dataset.

In the following experiments, if not mentioned otherwise, the ((10,6), softmax, Adam) architecture
is chosen, since it is the best performing architecture and due to its small size it reduces the time
needed for training. Of course, it is a naive assumption to say that this particular architecture
will still work best with other hyperparameters but the alternative would be to test all kinds of
architectures every time a hyperparameter is changed, which would be very time consuming and
outside the scope of this work.
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Figure 5.6: Comparison of four networks with the same architecture ((10, 6), softmax, Adam) but
different weight decay (wd). Adding weight decay seems to worsen this network’s
performance.

5.2 Weight Regularization

Now that the optimal network architecture was found, it is possible to look into other ways to
improve a model’s predictions. A common method is to introduce some kind of regularization
to avoid overfitting, reduces the variance of the model and ultimately improve the prediction of
the regressor. The experiments in this section aim to show how these effects manifest during the
training. The challenge here is that there is no singular metric that describes whether a model
is underfitted or overfitted and thus it is hard to measure the effects of weight regularizers. In
general, if the validation loss stops decreasing and starts increasing, this can be a sign for overfitting.
In addition, the weights themselves can be an indicator. Growing weights tend to be a sign of
overfitting, so observing the average weights can be used to detect that.
This tool offers two levers for weight regularization. One can define a factor that will directly
impact the weight regularization term that is added to the loss function. That term is the sum of
the 𝐿2-Norm of all weights in the network. The other option is to set a dropout probability, which
will dictate the frequency of which a neuron in the networks drops out during an epoch during the
training.

Starting with the first regularization method, Figure 5.6a shows a visualization of the validation
loss. The three depicted models show networks with varying weight regularization factors, namely
0, 0.01, and 0.05. A weight decay of zero effectively ignores the weight regularization term. As the
visualization shows, adding a factor significantly worsens the network’s performance in these cases.
While the model with the lower factor slows down the validation loss decrease, the model with the
higher factor seemingly stops all improvements.
Further inspection of the average model weights resulted in the visualization in Figure 5.6b. The
plot clearly shows that the models with a weight regularizing factor greater than zero immediately
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Figure 5.7: The weights of two networks with the same architecture ((10, 6), softmax, Adam) but
different weight decay. The weights were reduced to two dimensions using PCA. In the
starting epochs their weights are the same and they diverge during the training process.

push the average weights down. While this direction was expected, the speed of the decrease is
somewhat unexpected. The reason for that is that the regularizing term outweights the loss term in
the calculation of the loss function. The training losses are in the realm of 10−3 while the average
weights start at around 10−1. Even with factors in the hundredths, this will significantly weigh on the
loss gradient. Additional experiments show that choosing a factor of 10−5 results in a comparatively
similar loss as using no weight regularization at all. Again, the average weight of the model with
no weight regularization starts growing immediately while the average weight if the other model
decreases, albeit not at the extreme rate as before. This makes itself noticeable in the validation
loss, keeping its performance competitive.

One more way of showing the divergence in the weights is by using the dimensionality reduction
tools. Figure 5.7 shows the resulting projection after using PCA on all the model weights during
all epochs. Each circle represents all weights of a model in one epoch, the circles are so close to
each other, that they look like a solid line in the visualization. For clarity, every 𝑛th epoch the
circle is increased in size to better show the weight convergence. With growing time, each circle is
closer to the previous circle. In the beginning, the datapoints of both model start at the same place,
since the initialization seed is identical. Immediately after, however, they quickly diverge. Another
interesting result is, that both models converge to different local minima. This can be proven by
using the same visualization techniques as used for the initialization seed. Figure 5.8 shows the
loss landscapes between both models and since a loss ridge can be seen inbetween the path of both
models, one can say that each model converges in their own local minima.

For dropout the same experiments were performed and the results are similar. Figure 5.9a shows
the validation losses for four different models. The model with no dropout has the lowest loss and
with increasing dropout probability the validation losses also increase.
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Figure 5.8: The loss landscape between two networks with the same architecture ((10, 6), softmax,
Adam) but different weight decay. Left, a one-dimensional interpolation between the
neurons of both networks in the last epoch. Right, a two-dimensional interpolation
using four different network’s states as corners.

0 100 200 300 400 500 600 700 800 900 1000
1e-4

1e-3

1e-2

1e-1

epochs

validation loss

Best loss: 1.610e-4

P = 0 P = 0.2 P = 0.4 P = 0.05

(a) The validation loss per each training epoch

0 100 200 300 400 500 600 700 800 900 1000
0e+0

5e-2

1e-1

1e-1

2e-1

0e+0

epochs

avg. weight

P = 0 P = 0.2 P = 0.4 P = 0.05

(b) The average weight per each training epoch

Figure 5.9: Comparison of four networks with the same architecture ((10, 6), softmax, Adam) but
different dropout probability. Increasing the probability seems to worsen this network’s
performance.
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Figure 5.10: The weights of two networks with the same architecture ((10, 6), softmax, Adam)
but different dropout probability. The weights were reduced to two dimensions using
PCA. In the starting epochs their weights are the same and they diverge during the
training process.
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Figure 5.11: The loss landscape between two networks with the same architecture ((10, 6), softmax,
Adam) but different dropout probability. Left, a one-dimensional interpolation between
the neurons of both networks in the last epoch. Right, a two-dimensional interpolation
using four different network’s states as corners.
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Figure 5.12: Comparison between two networks ((10, 6), softmax, Adam). The weights of the
second network were manually reduced by multiplying them by 0.1 at the 100th epoch.
Instead of returning to their original values, most weight stay around their new values.

Looking at the average weights of each model in Figure 5.9b it can also be seen that the weight
reducing effects of weight regularization do not occur with dropout. Instead, each model’s average
weights fluctuate around the same values. Using a combination of dimensionality reduction and loss
landscape visualizations, Figure 5.10 and Figure 5.11, respectively, it is possible to see that dropout
influences the network in such a way that it pushes the weights and the path in the loss landscape into
a different local minima that is worse than the original one. In conclusion, dropout is not particular
helpful for the models in this problem space, even though it usually adds improvements.

After confirming that neither weight regularization nor dropout improved the model’s performance,
a more radical experiment was proposed. In essence, regularization punishes large values in weights
and thus prevents overfitting. That weight reduction could be obeserved with weight regularization
and during all training epochs there was incentive to keep the weights small. In the next experiment
no regularization method was used, however the weights were manually reduced exactly once at the
hundredth epoch by multiplying them by 0.1. Figure 5.12a shows the effect on the validation loss of
this intrusion. There is a spike right after the reduction but the loss quickly decreases again. It does
however never reach the same level as the unreduced model instance. The more interesting results
can be seen in Figure 5.12b, where the individual weights are shown. For clarity, only the weights
of the output layer are shown, but all other weights show a similar result. In the first hundred epochs
both instances weights develop equally. After the reduction however, the individual weights do not
climb back to their previous values, instead they settle for totally different values.
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Figure 5.13: The validation loss per each training epoch for two networks with the same architecture
((10, 6), softmax) but different optimization processes. The novel greedy stochastic
perturbations approach results in faster improvements and an overall better loss.

5.3 Greedy Stochastic Perturbation

This section is all about greedy stochastic perturbation (GSP) and how this technique can improve
the training process of the models. Recall that this technique collects samples around the current
weight tensor after each training epoch using the last optimization step. It then picks the sample
that best improves the validation loss as the new weight tensor, or keeps the current weights if no
sample was better. Each sample is obtained by adding a perturbation to the current weight tensor.
The perturbation is calculated by using the last optimization step, randomizing the sign in each
dimension and multiplying it with a perturbation factor which is a hyperparameter selected in the
training configuration. The other relevant hyperparameter is the number of samples to take in each
training epoch. The effect of this technique is best demonstrated with the SGD optimizer.

Figure 5.13a shows the validation losses for the stand-alone SGD optimizer and for the SGD
optimizer improved with GSP. Not only does the latter achieve a better performance, it also reduces
the validation loss alot earlier. This effect can be boosted by increasing the perturbation factor as
Figure 5.13b shows. With an increasing factor, the accelerated validation loss decrease is more
pronounced. After that phase, however, no real improvements are made and the validation loss
quickly converges.

To inspect why that is the case, one can take a look at the percentage of perturbations that result in a
better validation loss. Since the weights of the network converge to their optimal values, finding
better samples in the vicinity might get harder, especially if the perturbation factor is too high.
Figure 5.14a depicts exactly that. For the model with no GSP the metrics can still be measured, the
samples are also taken in every epoch but never overtaken. In the early epochs about half of the
samples lead to a better result but after that depending on the perturbation factor that percentage
drops down. An obvious outlier is the model with a perturbation factor of one hundred. The
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Figure 5.14: Comparison of for multiple networks with the same architecture ((10, 6), softmax)
optimized using SGD assisted with the novel greedy stochastic perturbations approach
but with different perturbation factors. For reference a network with the same
architecture optimized with standard SGD is depicted. The results are smoothed using
simple exponential smoothing (𝛼 = 0.1). Networks with higher a perturbation factor
have perturbations with much lower losses in the early epochs but struggle to find
significant improvements in the later epochs.

samples are way to far from the current weight tensor, which is located very near to the optima, to
find any good perturbations. Interestingly, the next lowest percentage belongs to the model with a
perturbation factor of only five. This can mean that samples that are too close also do not have a
high chance of being lower in the lost landscape. Still, for all variants, a handful of samples can be
found in each epoch. In general, this particular experiment has many random elements, so much
that the results had to be smoothed in the visualization, lest the high-frequency-like results do not
obstruct each other.

To explain why the validation losses stop decreasing after the initial accelerated decrease albeit
better samples are found frequently in even the later epochs the improvement of each sample is
shown relative to the validation loss of the unperturbed setting. To this end Figure 5.14b, shows
the ratio of the loss of the best sample divided by the loss of the current weight tensor. For the
majority, this value is smaller than one, which means that the sampled loss was smaller. Only
on afew occasions does this value exceed one, exactly when no better sample was found. In the
very early epochs, the best samples validation losses are about 5-20% lower than the unperturbed
validation losses. Over time, the best perturbation loss gets relatively less and less, resulting in only
miniscule improvements in the later epochs. The reason for that is probably that the models quickly
arrive at their optima and no improvemtents are possible anymore. Interestingly though, unlike
the other models, the model using the standard SGD optimizer can still find better samples even
in advanced epochs. Perhaps, by using GSP these possible improvements are frontloaded in the
beginning of the training process, which makes GSP an interesting tool to speed up trainings.
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Figure 5.15: The weights of two networks with the same architecture ((10, 6), softmax) but different
optimization processes. The first network uses the standard SGD, while the second
network uses SGD assisted with the novel greedy stochastic perturbations approach.
The weights were reduced to two dimensions using PCA. In the starting epochs their
weights are the same and they diverge during the training process.
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Figure 5.16: The loss landscape between two networks with the same architecture ((10, 6), softmax)
but different optimization processes. Left, a one-dimensional interpolation between
the neurons of both networks in the last epoch. Right, a two-dimensional interpolation
using four different network’s states as corners. Both networks converge into the same
loss trench.
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Figure 5.17: The validation loss per each training epoch for four networks with the same architecture
((10, 6), softmax) but different optimization processes. The first network uses the
standard Adam, while the other networks use Adam assisted with the novel greedy
stochastic perturbations approach. The numbers in the squared brackets [n,m] indicate
the perturbation factor 𝑛 and the number of samples taken m. Depending on the
combination, the results may vary vastly.

The question remains, whether that speedup leads to the same weights as without GSP, or whether
it leads to entirely different weights. Figure 5.15 visualizes the weights of both networks in two
dimensions. Starting at the same point, the weight tensors of each model move to a similar direction,
but ultimately still end at different places. Looking at the loss landscapes in Figure 5.16 shows
that interpolating between both weight tensors lead to similar losses, suggesting that both models
converge in the same local minima. Since the weight are quite different however, it may be more
accurate to say that they are in the same loss ditch.

Taking these insights into consideration, it is now possible to experiment using the Adam optimizer.
Unlike with SGD, adding GSP does not always seem to improve the network. By experimenting with
different perturbation factors and increasing the number of samples accordingly, a competetive setting
can be found. Figure 5.17 compares the stand-alone Adam optimizer with various combinations of
GSP. Using samples that are too close or too far will worsen the performance, while choosing the
samples that are just the right distance can show an improvement. Again, it can be seen that using
GSP accelerates the validation loss decreases, but Adam is able to match the validation loss in the
later stages. Still, even though in the end no real improvement is made, GSP remains an interesting
option for potentially speeding up trainings.

Lastly, a brief look at the loss landscape in Figure 5.19a and the dimensionality reduction
visualizations in Figure 5.19b reveal that unlike SGD, Adam and its GSP boosted variant do not
converge in the same loss ditch, suggesting that GSP affects each optimizer differently.
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Figure 5.18: The weights of two networks with the same architecture ((10, 6), softmax) but different
optimization processes. The first network uses the standard Adam, while the second
network uses Adam assisted with the novel greedy stochastic perturbations approach.
The weights were reduced to two dimensions using PCA. In the starting epochs their
weights are the same and they diverge during the training process.
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Figure 5.19: The loss landscape between two networks with the same architecture ((10, 6), softmax)
but different optimization processes. Left, a one-dimensional interpolation between
the neurons of both networks in the last epoch. Right, a two-dimensional interpolation
using four different network’s states as corners. Both network converge into different
loss trenches.
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Figure 5.20: Comparison multiple networks with the same architecture (10, 6, tenfold repeated
output) with different weight initializations. A basic regressor of the same architecture
is included for reference.

5.4 Ensemble Learning

Yet another way to improve a model’s performance is to employ multiple instances of models and
using the results of each member of the ensemble to form a prediction. This apporach is also called
Ensemble Learning. Unlike classical Ensemble Learning practices, a different process is employed.
Instead of duplicating the whole network, only the heads, i.e., the output neurons are duplicated.
This results in a multi-headed architecture, with each head acting as a member of the ensemble. In
all the experiments, each output neuron is duplicated ten times. The final prediction is then made
by averaging the predictions of each of the ten heads.

In the first experiment, different procedures for weight initialization are compared. Each head can be
initialized with different weights or the same weights. Figure 5.20a depicts the results. For reference,
a basic regressor, i.e., a single-headed network, is shown. The network with heterogeneous initial
weights is outperformed by the network with homogeneous initial weights. However, when the
homogeneous initial weights are set to be equal to the initial weights of the basic regressor the
performance decreases. This again shows that the network’s performance is very sensitive to its
initial weights. It is important to notice, that when the initial weights for all heads are identical,
their weights stay identical during the whole training process, due to the removel of all stochastic
elements during the training process. As such only by initializing each head heterogeneously can
ensmeble learning be simulated. In any case, all ensemble networks perform significantly worse
then the basic regressor.
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Figure 5.21: The weights per each training epoch for the basic regressor network and the ensemble
network that was initiated with the same seed. Only the weights of neuron 0 in the
output layer ist shown. The weights are identical in the first epoch but diverge during
the training.

A reason for that can be seen in Figure 5.20b. There, a visualization of the quality of nearby
perturbations can be seen. In case of the basic regressor, it shows that in the early epochs one can
achieve better losses by stochastically perturbing the weight tensor of the network. With increasing
epochs the improvements that could be made with GSP decrease as expected. For the ensemble
networks however, no real improvements would be possible by using GSP even in the early epochs.
This suggests that these networks have trouble finding a way to improve.

5.5 Early Stopping

Up until now, most trainings go up to a thousand epochs. There are many reasons for that: most
interesting training developements occur in the early epochs; the models would overfit if the training
would go longer and most models converge around that epoch and do not improve significantly
afterwards. To empiracally prove that this is the case, a technique called early stopping is deployed
here. The gist of that approach is to stop the training as soon as the validation loss does not decrease,
indicating that the model is about to get worse due to overfitting. In reality, the training is noisy
and after some epochs of increasing losses they can decrease again to an even lower value. Thus,
a grace period is introduced where if in the next 𝑛 epochs no improvements are found, then the
training stops. Figure 5.22 shows the results of an experiment where different 𝑛 where tested for
((10, 6), softmax, Adam) the best performing model. As reference, the training history of a model
with no early stopping is shown. Choosing 𝑛=10 stops the training too early, since after the bump
between epochs 700 to epoch 800 the model significantly improves again. Choosing 𝑛=100 stops
the model after epoch 1353 with its best loss being measured at epoch 1253. Letting the model train
up to epoch 3000 shows that there is actually an even better loss at epoch 2113. To reach that place
with early stopping, it would be necessary to set 𝑛 to a thousand, which seems unpractical. Further,
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Figure 5.22: The validation loss per each training epoch for networks with the same architecture
((10, 6), softmax, Adam) but different stopping points in training. The best loss is
achieved in epoch 2113.

that best loss is not even significantly smaller than the previous one (1.610 · 10−4 and 1.765 · 10−4,
respectively). In conclusion, it is not really worth it to train for more than a thousand epochs and it
is best to stop there or use early stopping with 𝑛 = 100.
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In summary, a visual analytisc system was presented that allows its users to train various neural
networks for their experiments by selecting different training configurations and receiving their
training history. Using the visualization tools that this visual analytisc system offers, these training
histories can be visualized in numerous ways to gain more insight on the models. Several experiments
showcased the usefulness of this tool. For example, using the validation loss plots allows the user to
quickly compare the performance of different parameter settings. Inspecting the networks (average)
weights enables them to see the impact of different regularization techniques. Two different weight
loadouts can be compared by looking at the loss landscape inbetween them, or by looking at their
distance after using dimensionality reduction algorithms. It was even possible to show the effects of
the novel optimization technique GSP. All these insights can then be used to ameliorate a model’s
parameters or to design new experiments to gain even deeper knowledge.

In this work, several insights over the neural networks for microstructure data could be gained.
Firstly, after testing several different architectures, the ones that performed the best were smaller
networks. While some bigger networks achieved similar performances, the superior training speed
of the smaller networks made them the obvious choice. In addition, several different activation
functions and optimizers were compared with softmax and Adam coming out on top. Adam makes
sense, since it is the state-of-the-art optimizer and also outperforms other optimizers in other
domains. With the activation functions two groups could be observed. The main difference between
both groups is that the worse performing group has an infinite endpoint in their range while the
range of the better performing group does not exceed 1. It seems that limiting the neuron output,
which in turn keeps the weights small, is beneficial to the network’s performance.
Secondly, after experimenting with different known and one novel weight regularization techniques,
the models with no or very light regularizations were significantly better than those with the
regularization. This seems puzzling and contrary to common results. Perhaps, regularization is
more effective in larger, more complex networks and can be detrimental in small networks like
those used here.
Thirdly, the effects of the novel greedy stochastic perturbation improvement was demonstrated. GSP
has the potential to significantly boost a model’s performance. Adding GSP to optimizers like SGD
will yield lower losses much quicker. Even with state-of-the-art optimizers, the improvements, albeit
less significant, can be demonstrated. The accelerated loss decrease with GSP can be explained
with the perturbation factor, which effectively makes the optimization take bigger steps.
Moving on to the ensemble learning experiments, where the results were less satisfactory. The
ensemble learning variant used there could not show any improvement for the performance and
even worsens it. Perhaps, the multiheaded approch does not simulated the usual ensemble learning
effect and sharing the same body diminishes each heads prediction.
Lastly, the experiments with early stopping demonstrated that the ideal epoch length can be found
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right after a thousand epochs. Training for longer periods still arrived at an even better epoch,
however, that improvement is not much better and not worth the extra investment and risk of
overfitting.

There is one intriguing observation that can be noticed in almost all the experiments, which is the
lack of a global loss minima. Often a small change in the training configuration leads the network
into a new different local loss minima. These local minimas can be better or worse or equally good.
This suggests a non-convex structure of the loss function.

Apart from insights over the neural networks, there are also a couple of lessons learned on the used
techniques. For instance, while being merely a linear projection method, PCA proved to be the
dimensionality reduction technique that was the most suitable to represent the network’s weights
in two dimensions. The projected optimization trajectories in UMAP and t-SNE often overlap
with each other, resulting in misleading gaps between those jumps. Additionaly, minor differences
between the weight tensors resulted in a big divergence, while with PCA the lines remain close to
each other.

Outlook

This visual analytisc system is still a prototype and can easily be extended in different facets. There
is the possibility of adding more different visualizations, like a three-dimensional loss landscape
or projecting the loss landscape over the dimensionality reduction plots. The different metrics of
the training history can also be extended by tracking things like the neuron output. There are also
many different machine learning techniques that could be implemented, like cyclic learning rates
proposed in [Smi17]. This system also has some limitations that could be ameliorated, such as
the fact, that each training configuration has to be done manually by hand. It would be desirable
to have the options to automate this, which would be extremely useful during hyperparameter
optimization. A feature that could start grid search or another algorithm described in [LL19] would
go a long way. Another problem is that the loss landscape becomes fuzzy if the difference between
the highest measured loss and the lowest measured loss is too big. Details and contours get lost
because the isolines and the coloring have to accomodate for the places with extreme losses. One
possible solution is to allow the user to manually set the values of isolines and the color scale. Of
course there is always room for more features and more interactions, but the scope of this work only
allowed for this much. Still, alot of insights have been gained using this visual analytics system and
this tool has the potential to be upgraded in future works to facilitate even more learnings.
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