
Transparent Data Exchange
in Service Choreographies:
An eScience Perspective

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
sowie dem Stuttgarter Zentrum für Simulationswissenschaft (SC SimTech)
an der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Michael Hahn
aus Ostfildern

Hauptberichter: Prof. Dr. Dr. h. c. Frank Leymann

Mitberichter: Prof. Dr. Dimka Karastoyanova
apl. Prof. Dr.-Ing. Jörg Fehr

Tag der mündlichen Prüfung: 21.02.2023

Institut für Architektur von Anwendungssystemen
der Universität Stuttgart

2023

2

Contents

1 Introduction 13
1.1 Motivation Scenario . 17
1.2 Research Contributions . 21
1.3 Scientific Publications . 25
1.4 Structure of the Document . 26

2 Background and Related Work 29
2.1 Service Compositions: Paradigms, Modeling Languages and

Execution Aspects . 30
2.1.1 Choreography Modeling . 32
2.1.2 Choreography Execution . 34

2.2 Data-Awareness in Service Compositions 36
2.3 Alternative Modeling and Execution Approaches with Focus on

Data . 46
2.3.1 Artifact-centric Business Process Management 47
2.3.2 Modeling and Enforcing Business Collaborations using

Shared Ledger Technologies 47
2.4 Integrating Heterogeneous Data Transformation Logic into Ser-

vice Compositions . 49

3

3 Data-Aware Choreography Methodology 53
3.1 Motivation . 54
3.2 The TraDE Approach . 59

3.2.1 Modeling . 59
3.2.2 Execution . 63

3.3 Life Cycle of Data-Aware Choreographies 67
3.3.1 Modeling . 70
3.3.2 Transformation . 72
3.3.3 Refinement . 76
3.3.4 Deployment . 78
3.3.5 Execution . 79
3.3.6 Monitoring . 80
3.3.7 Analysis . 82

4 Formal Model for Data-Aware Choreographies 83
4.1 Overview . 84
4.2 Data-Aware Choreography Models 87

4.2.1 Choreography Data . 88
4.2.2 Choreography Activities . 99
4.2.3 Choreography Participants 104
4.2.4 Control Flow . 106
4.2.5 Message Flow . 108
4.2.6 Data Flow . 118
4.2.7 Correlation of Messages and Data Objects 128
4.2.8 Choreography Model Graph 136

4.3 Choreography Data Dependency Graphs 138
4.3.1 Choreography Data Model 139
4.3.2 Choreography Data Dependencies 139

4.4 Process Model Graphs and Staging Elements 144
4.4.1 Staging Elements . 144
4.4.2 Process Model Graphs . 151

4 Contents

4.5 Transformation of a CM-Graph to a Collection of interconnected
PM-Graphs . 153
4.5.1 Generating a Choreography Data Dependency Graph for

a CM-Graph . 156
4.5.2 Generating PM-Graphs based on a CM-Graph 160

5 A Middleware for Data-Aware Choreography Models 169
5.1 Overview . 170
5.2 Conceptual Model of the Middleware 173
5.3 TraDE Event Models . 178
5.4 Architecture of the Middleware . 183
5.5 Integration with Process Engines 187

6 Transparent Data Transformation in Data-Aware Choreographies191
6.1 The TraDE Data Transformation Approach 194

6.1.1 Overview . 194
6.1.2 Specification and Packaging of DT Implementations . . . 196
6.1.3 Architecture of the DT Integration Middleware 200

6.2 Modeling Data Transformations in Service Choreographies . . . 204
6.2.1 A TraDE Query Language . 207
6.2.2 Formal Model for TraDE Data Transformations 209

6.3 Transparent Execution of Data Transformations 218

7 System Architecture and Implementation 225
7.1 System Architecture of the TraDE Ecosystem 225
7.2 Prototypical Implementation . 228

7.2.1 Data-aware Choreography & Orchestration Modeling En-
vironment . 229

7.2.2 TraDE Middleware . 232
7.2.3 TraDE-aware Process Engine 232
7.2.4 DT Integration Middleware 233
7.2.5 TraDE Web UI . 234

Contents 5

8 Validation and Evaluation 237
8.1 OPAL Case Study . 237

8.1.1 OPAL Simulation Choreography with TraDE Concepts . . 241
8.1.2 OPAL Simulation Choreography with TraDE Data Trans-

formations . 243
8.2 Evaluation . 245

8.2.1 Evaluation Methodology and Experimental Setup 246
8.2.2 Experimental Results . 251

9 Conclusions and Outlook 255
9.1 Conclusion . 256
9.2 Outlook . 259

Bibliography 263

List of Figures 281

List of Definitions 287

List of Algorithms 289

List of Symbols 291

Acronyms 295

6 Contents

Abstract

This work is motivated by the increasing importance and business value of
data in the fields of business process management, scientific workflows as a
field in eScience, and Internet of Things, all of which profiting from the recent
advances in data science and Big data. Although service choreographies
providemeans to specify complex conversations betweenmultiple interacting
parties from a global perspective and in a technology-agnostic manner, they
do not fully reflect the current paradigm shift towards data-awareness at
the moment. Therefore, the focus of this work is on tackling respective
shortcomings. These include the missing modeling support for data flow
across participant boundaries or specifying a choreography data model as a
contract on the business data relevant to realize the collaboration and all
interacting parties agree on.
Towards this goal, we introduce a choreography management life cycle

that assigns data its deserved primary role in service choreographies as well
as defines the functions and artifacts necessary for enabling transparent and
efficient data exchange among choreography participants. To implement the
introduced life cycle we present the notion of data-aware choreographies
through our concepts for Transparent Data Exchange (TraDE) by introducing
cross-partner data objects and cross-partner data flows as means to increase
runtime flexibility while reducing the complexity of modeling data flows

7

in service choreographies. The TraDE concepts focus on decoupling the
data flow, data exchange and management, from the control flow in service
compositions and choreographies. To provide an end-to-end support for the
modeling and execution of data-aware choreographies and supporting the
respective phases of the choreography management life cycle, we introduce
and prototypically implement an overall TraDE ecosystem. This ecosystem
comprises a modeling environment for data-aware choreographies as well
as the required runtime environment to execute such data-aware choreogra-
phies through a new TraDE Middleware and its integration to corresponding
Business Process Engines (BPEs). The inherent goal of this work is to sim-
plify the modeling of data and its exchange in choreography models while
increasing their runtime flexibility and enabling the transparent exchange
and transformation of data during choreography execution.

8 Contents

Zusammenfassung

Diese Arbeit ist motiviert durch die zunehmende Bedeutung und den ge-
schäftlichen Wert von Daten in den Bereichen Business Process Management
(BPM), Scientific-Workflows als ein Bereich in eScience und dem Internet
der Dinge (IoT), die alle von den jüngsten Entwicklungen in den Bereichen
Data Science und Big Data profitieren. Obwohl Service-Choreographien die
Möglichkeit bieten, komplexe Konversationen zwischen mehreren interagie-
renden Parteien aus einer globalen Perspektive und in einer technologie-
unabhängigen Weise zu spezifizieren, spiegeln sie den Paradigmenwechsel
in Richtung Daten und deren Wichtigkeit derzeit noch nicht vollständig
wider. Daher liegt der Schwerpunkt dieser Arbeit auf der Identifikation und
Auflösung aktueller Einschränkungen, wie z.B. der fehlenden Modellierungs-
unterstützung für den Datenfluss über Teilnehmergrenzen hinweg oder der
Spezifizierung eines Choreographie-Datenmodells als Vertrag über die für
die Realisierung der Zusammenarbeit relevanten Geschäftsdaten, auf die
sich alle interagierenden Parteien einigen.
Um dieses Ziel zu erreichen, führen wir einen Lebenszyklusmodell für

das Choreographie-Management ein, der Daten die ihnen notwendige Rol-
le in Service-Choreographien einräumt und die Funktionen und Artefakte
definiert, die notwendig sind, um einen transparenten und effizienten Da-
tenaustausch zwischen Choreographie-Teilnehmern zu ermöglichen. Zur

9

Umsetzung des erweiterten Lebenszyklus führen wir den Begriff der da-
tenbewussten Choreographien (data-aware choreographies) durch unsere
Konzepte für den transparenten Datenaustausch (kurz: TraDE) ein. Mittels
der Einführung und Definition von partnerübergreifenden Datenobjekten
(cross-partner data objects) und partnerübergreifenden Datenflüssen (cross-
partner data flows) soll sowohl die Komplexität der Modellierung von Daten
und Datenflüssen in Service-Choreographien reduziert als auch die Laufzeit-
flexibilität erhöht werden. Der Schwerpunkt der TraDE-Konzepte liegt dabei
auf der Entkopplung der Daten, d.h. Datenfluss, Datenaustausch und Daten-
verwaltung werden unabhängig vom Kontrollfluss in Service-Choreographien
modelliert. Um eine durchgängige Unterstützung für die Modellierung und
Ausführung datenbewusster Choreographien zu bieten und die jeweiligen
Phasen des eingeführten Lebenszyklus zu unterstützen, wird ein übergreifen-
des TraDE-Ökosystem eingeführt und prototypisch implementiert. Dieses um-
fasst eine Modellierungsumgebung und die erforderliche Laufzeitumgebung
zur Ausführung solcher datenbewusster Choreographien durch eine neue
TraDE-Middleware und deren Integration in entsprechende Business Process
Engines (BPE). Das inhärente Ziel dieser Arbeit ist es, die Modellierung von
Daten und deren Austausch in Choreographie-Modellen zu vereinfachen und
gleichzeitig deren Laufzeitflexibilität zu erhöhen und so den transparenten
Austausch und die Transformation von Daten während der Ausführung einer
Service-Choreographie zu ermöglichen und zu vereinfachen.

10 Contents

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Dr. h. c. Frank Ley-
mann for giving me the opportunity to work at the Institute of Architecture
of Application Systems (IAAS) and do the research culminating in this work
as well as for his great support, guidance and advice. I always enjoyed our
discussions and really appreciated the freedom given by the trust placed in
me and my work.
Many thanks also to Prof. Dr. Dimka Karastoyanova for all her support and

guidance in doing research in general and in writing papers in particular as
well as shaping the topic of this work and for being the second supervisor of
my thesis.
I would also like to thank apl. Prof. Dr.-Ing. Jörg Fehr from the Institute

of Engineering and Computational Mechanics for acting as a second co-
examiner and for giving me additional insights in another application domain
for service choreographies in eScience.
During my time at the IAAS I learned a lot, not only technically also in

terms of personal development. Therefore, I would like to thank all my
colleagues at the institute for all the fruitful discussions and their support.
Special thanks go to Andreas Weiß and Vladimir Yussupov for being great
office-mates and always having time for discussing new ideas and concepts
as well as providing helpful comments on papers. I would also like to thank

11

Dr. Oliver Kopp for his support and for never stopping to ask me about the
status of this work and therefore introducing additional pressure to finish
it. Moreover, special thanks go to Sebastian Wagner for proof-reading and
providing helpful comments on this thesis. Finally, I would like to thank
my family for their patience and support throughout the whole endeavor of
writing this thesis.

12 Contents

Ch
ap

te
r 1

Introduction

Service-oriented Architectures (SOA) [Pap03] have seen widespread adop-
tion. The concept of composing self-contained units of functionality – services
– over the network has found application in many research areas and applica-
tion domains [Zim16], e. g., in Business Process Management (BPM) [LKP10;
LRS02; Wes12], Cloud Computing [Ley09; QLDG09], the Internet of Things
(IoT) [MSDC12], eScience [HTT+09] and in particular scientific workflows
[BG07; TDGS07]. The goal of eScience is to provide IT support for scientists
from different scientific fields in order to enable faster scientific exploration
and discovery. Therefore, generic approaches and tools are required which
support scientists throughout the whole life cycle of their computer-based
experiments, simulations and scientific calculations, from data collection
and curation, through data processing and analysis to permanent archiving
in digital repositories for preservation [HTT+09].
To compose multiple existing services into service compositions a huge

variety of modeling languages evolved. These languages can be divided
into two general groups each following a different paradigm: service orches-
trations and service choreographies. Service orchestrations, also known as
workflows or processes, are modeled from the viewpoint of one party that

13

acts as a central coordinator [DKB08]. The most prominent orchestration
modeling languages are the Business Process Model and Notation (BPMN)
[BPMN] and the Business Process Execution Language (BPEL) [BPEL] which
provide means to specify orchestration-based service compositions, where
BPMN also supports the modeling of service choreographies. In contrast to
service orchestrations, service choreographies provide a global perspective of
the potentially complex conversations between multiple interacting services
without relying on a central coordinator. Each party that takes part in the
collaboration, as a so-called participant, is able to model its conversations
with other involved parties by specifying corresponding message exchanges
with them [BDH05; DKB08]. Therefore, participants of a choreography
communicate in a direct, peer-to-peer manner without requiring a central
coordinator. Since most choreography modeling languages are typically
not directly executable a common approach is to transform and refine the
choreography participants to a collection of executable workflows that im-
plement the specified choreography [AW01; DKL+08]. To model service
choreographies, modeling languages such as BPMN or BPEL4Chor [KLW11]
can be used. Decker et al. [DKLW09] provide an overview and comparison
of the most prominent choreography modeling languages.
The notion of workflows was originally introduced in the area of BPM as a

new information processing technology which enables the implementation
and automation of business processes as well as easing their adaptation to
changing requirements [LR00]. Instead of the term workflow often also the
more generic term process is used in literature. Depending on the underlying
definition, there can be slight differences between those terms, however,
they are used as synonyms within this work. Workflows provide the means
to specify a process based on a set of activities and the order in which they
need to be performed. Therefore, a workflow can be seen as a directed
graph, where the nodes are the activities or tasks to perform and the edges
specify the possible paths between them, also known as control flow. The
logic behind the activities themselves is not restricted to a certain technology
and can be provided in various manners, e. g., through scripts, applications
or services based on the capabilities of the used process modeling notation

14 1 | Introduction

and Business Process Engine (BPE) that conducts the modeled workflows.
The concept of workflows is also successfully applied to provide the re-

quired IT support for eScience. While for the conventional workflow technology
in the domain of BPM, a lot of standards and corresponding tools evolved,
such as BPMN or BPEL, in the domain of eScience (scientific workflow technol-
ogy) a landscape of different, sometimes domain-specific, Scientific Workflow
Management Systems (sWfMSs) were developed, where each of the sWfMSs
comes with its own workflow modeling notation [YB05]. The most promi-
nent examples for such sWfMSs are Pegasus [DSS+05], Kepler [ABJ+04],
Triana [TSWH07] and Taverna [OAF+04]. The use of standardized nota-
tions for the modeling and execution of conventional workflows provides
several advantages such as a broad variety of existing, ready-to-use tools,
portability of the models, fault handling, forward and backward recovery
or monitoring of the workflow execution. To transfer these capabilities to
scientific workflows, conventional workflow technology is successfully ap-
plied to automate computer-based experiments and scientific calculations
in eScience [BG07; GSK+11; SKD10; Slo07; WEB+07]. Various works
identified and introduced required functionality to tackle the special chal-
lenges of scientific workflows when using conventional workflow technology,
e. g., to support the modeling of workflows in a trial-and-error manner or
to introduce flexibility concepts to steer simulations during runtime [BG07;
GDE+07; SK10; SK11; SK13; Slo07; WEB+07].
Service choreographies have been also already successfully applied to

capture collaborations from a global perspective without the necessity to
directly specify technical details in both the business [DKB08; MPB+15] and
eScience domain (simulation choreographies) [BWR09; WAHK15b; WK14a;
WK14b; WKMS14]. The efficient exchange of data between the composed
services is a crucial factor not only in classical data-centric domains like
eScience. With the advent of the fields Big Data and the IoT, the importance
of data in terms of its business value and as a driver for gaining advantages
over competitors is also increasing in the domain of BPM significantly. The
impact of this development on the domain of BPM has already been docu-
mented [MSMP11; SMM+14]. Therefore, in recent years there has been

Contents 15

a convergence of approaches from BPM and data-intensive domains such
as eScience, and both domains will be able to benefit from future research
advances in the other domain.
Through our experience in the fields of BPM and eScience, and based on

existing literature, we argue that conventional workflow technology needs
to reflect the paradigm shift to data-awareness and provide support for
the efficient integration and exchange of heterogeneous data through a
central role in the BPM life cycle. However, the current state of the art in
service choreographies, despite some promising works trying to improve data-
awareness [KPR12a; LN11; MPB+15] and also showcasing performance
benefits [BCF06; BW+12; BWV08b; LLW02], fails to provide an adequate
solution that allows data to assume its deserved primary role.
To tackle this problem and account for the crucial importance of data in

service choreographies, the traditional BPM life cycle has to be extended
with data management capabilities. This will enable the automation of
further steps of the transformation and refinement of choreography models
to executable process models. While most of the existing approaches only
utilize the performance benefits from decentralizing the data flow, we want to
provide further improvements throughout all life cycle phases and especially
during choreography modeling. The inherent goal of this work is to introduce
data as a first-class citizen already at the level of the choreography model,
to enable the decoupling of data flow, data exchange and data management
from the control flow in choreography and process models. This decoupling
enables a more flexible exchange and management of data and will support
modelers with the data dimension of their service compositions. To execute
the resulting data-aware choreography models, a middleware layer is required
that carries out the exchange of data between the participants of the modeled
choreography in an efficient and transparent manner. The ultimate goal is
to provide an end-to-end approach and a respective ecosystem of tools and
middleware components which supports the modeling and execution of data-
aware choreographies. Therefore, the approaches and methods introduced
within this work shall remain independent from the various existingmodeling
languages for choreography and process model specification.

16 1 | Introduction

O
pa

l S
im

ul
at

io
n

Sn
ap

sh
ot

 P
ro

ce
ss

in
g

O
pa

lP
re

p

O
pa

lM
C

O
pa

lC
LU

S

O
pa

lX
YZ

R

O
pa

lV
isu

al

Run
Opal

Simulation
Create

Plot
opal_in

lattice

saturation

snapshots
Process

Opal
Snapshot

Prepare
Input Files

Create
Video

Search
Atom

Clusters

Determine
Position
and Size

cluster[i]
snapshots[i]

#snapshots[i]

posSize[i]

energy

#cluster[i], #posSize[i]#energy
#opal_in

#lattice, #opal_in

#snapshots[],
#saturation

#snapshots[i] #cluster[i] #cluster[i] #posSize[i]

#saturation
#plot #snapshots[]

#video

plot

video

Service
Task

Data Object Data Object
Collection

Parallel
Gateway

Message
Start Event

Message
End Event

Legend
#dataObject

Message
Flow

Exchanged
Data Object

Figure 1.1: Example simulation choreography conducting a thermal aging
simulation from material science domain (based on Weiß et al.
[WKMS14]).

1.1 Motivation Scenario

To further illustrate and motivate data-aware choreography models, we
present in the following a scenario from the domain of material science
[BS03; MMC+12; WKMS14]. Figure 1.1 shows a choreography model of
a Kinetic Monte Carlo (KMC) simulation using the custom-made simula-
tion software Ostwald ripening of Precipitates on an Atomic Lattice (OPAL)
[BS03]. The choreography model is expressed in form of a BPMN 2.0 col-
laboration model. OPAL simulates the formation of copper precipitates, i. e.,
the development of atom clusters, within a lattice due to thermal aging.
The choreography model specifies the conversations between the seven cho-
reography participants which constitute the overall simulation. The Opal
Simulation and Snapshot Processing participants are implemented through
corresponding process models and control the conversations between the

1.1 | Motivation Scenario 17

other five participants through corresponding service invocation tasks, indi-
cated by small gear wheels in the upper left corner of a task in Figure 1.1.
The consumed and produced data is represented through BPMN data objects
which are only accessible within the scope of the respective participant. To
exchange data between participants, corresponding message exchanges have
to be introduced which are depicted as dashed lines in Figure 1.1. The labels
on the dashed lines in Figure 1.1 visualize which data objects of the two
process-based participants are exchanged during the modeled conversations
in form of message payloads. The other five participants are implemented
as web services which wrap the different modules of the OPAL simulation
software to enable their composition through process models. The wrapping
of the OPAL simulation software as services is described in detail by Sonntag
et al. [SHK+11]. In the following, we will shortly introduce how the overall
simulation is conducted and then describe the shortcomings of the state of
the art in service choreographies to motivate the rest of the work.
Whenever the message start event of the Opal Simulation participant re-

ceives a new request message, a new simulation instance is created. The
initial request contains a set of parameters such as the atomic lattice, energy
parameters and the number of snapshots to take. The Prepare Input Files ser-
vice task sends these parameters to the OpalPrep participant which calculates
the energy configuration and replies all required input parameters (opal_in)
for the KMC simulation. The OpalMC participant is invoked by the Run
Opal Simulation task to start the actual KMC simulation. According to the
specified number of snapshots in the initial request, the OpalMC participant
saves the current state of the atom lattice at a particular point in time in a
snapshot and responds all snapshots together with the saturation data back
to the Opal Simulation participant. The snapshots are then searched for atom
clusters and the position and size of each identified cluster is calculated.
Therefore, each snapshot is analyzed by a separate instance of the Snapshot
Processing participant created by the Process Opal Snapshot service task which
is contained in a loop task as shown in Figure 1.1. Each Snapshot Processing
instance invokes first the OpalCLUS participant (Search Atom Clusters task)
with the current snapshot to identify clusters and then uses these clusters

18 1 | Introduction

to determine their position and size by invoking the OpalXYZR participant
(Determine Position and Size task). The resulting cluster, position and size
data are replied back to the Opal Simulation participant. Finally, a video of
animated 3d scatter plots of the simulation snapshots (Create Video task) and
a 2d plot of the saturation function of the precipitation process are created
(Create Plot task) by the OpalVisual participant.

The modeling and execution of the choreography model depicted in Fig-
ure 1.1 with state-of-the-art choreography modeling notations and BPEs has
from our viewpoint several drawbacks related to data management and ex-
change. Since the data flow between participants is bound to the exchange of
messages, data is unnecessarily routed through several participants instead
of directly exchanged in a peer-to-peer manner. For example, the resulting
snapshot data is sent from the OpalMC participant to the Opal Simulation
participant and then later forwarded to the Snapshot Processing participant
from where it is ultimately sent to the OpalCLUS participant which actu-
ally processes the data. Decoupling data flow from message exchanges, or
choreography control flow in general, allows an easier modeling as well as
provides more flexibility and further optimization possibilities of the data
flow during choreography runtime. Potentially, data can be pro-actively
transferred between participants as soon as it is available, independent from
the choreography execution, based on knowledge gained from the underly-
ing models, e. g., by analyzing their data dependencies, or monitoring data
from previous choreography executions. For example, the snapshot data in
Figure 1.1 is available as soon as the Run Opal Simulation task is completed
and can be therefore directly transferred from the OpalMC participant to the
OpalVisual participant instead of waiting until the Create Video task triggers
the corresponding message exchange which normally transfers the snapshot
data. Introducing data already at the level of choreographies and enabling
the definition of explicit data exchange between choreography participants
and their activities also reduces the manual refinement effort when trans-
forming and refining the choreography models to executable process models
following the Public-to-Private approach introduced by van der Aalst and
Weske [AW01]. There, the specified data and data exchanges can be di-

1.1 | Motivation Scenario 19

rectly used for automatically generating respective data definitions and data
flows within the resulting process models. This will be discussed in detail in
Chapter 3. Furthermore, with respect to the presented eScience simulation
example, the entry barrier for scientists will be lowered to specify their
complex simulations potentially involving and combining different scientific
fields or simulation approaches in form of choreography models [WK14b].
From our viewpoint, choreographies are better suited than process models
to graphically model complex interactions between multiple components
of a simulation. The main reason for that is that choreography models pro-
vide means to specify and visualize the big picture of a service composition
from an overall global perspective in a technology-agnostic and independent
manner. Since the focus is not on defining directly executable models, the
specification of technical details regarding the composition of services can
be postponed to a later time. Therefore, choreographies allow to specify the
components of a simulation, how these components communicate with each
other and what data will be produced and consumed by each simulation
component. From a generic BPM viewpoint, the same holds, i. e., choreo-
graphy models provide means to specify and visualize potentially complex
conversations of multiple collaborating parties from a global viewpoint.
Despite the modeling dimension, especially in the eScience domain also

choreography execution has some drawbacks related to data management
and exchange. For example, BPEs are often not designed for or even capable
of handling large amounts of data and therefore may become a perfor-
mance bottleneck when using them for executing simulation choreographies
[GSK+11]. Therefore, within this work, we want to introduce concepts
and a corresponding middleware, called TraDE Middleware, to reduce the
workload and storage overhead of BPEs used in data-intensive domains such
as eScience by outsourcing the storage and exchange of larger data volumes
from the BPEs to the TraDE Middleware. The goal is that only data that is
actually required for the navigation of the process model instances will be
stored by a BPE. Furthermore, scientists require an easy and intuitive way
to provide and access data of their simulations independent of the lifetime
of the simulation instances. This means, that simulation input data can be

20 1 | Introduction

provided before the simulation is started, and intermediary and final results
are still accessible after the execution of the simulation is completed. To
avoid the problem of an uncontrolled growth of data, related strategies for
garbage collection are discussed in Chapters 4 and 5 as part of our formal
model and the TraDE Middleware. In summary, the TraDE Middleware will
enable scientists to upload and provide simulation input data, inspect in-
termediary results during the execution of a simulation or reuse data from
previous simulation runs by simply providing a reference to it. The main
goal is to decouple the life time of the data from the choreography and
therefore simulation life time with the help of the TraDE Middleware, i. e.,
data specified within a data-aware service choreography will be globally
accessible through the TraDE Middleware, e. g., over a Web user interface.
Therefore, the TraDE Middleware handles the data exchange automatically
and transparently between the collaborating parties in the background.
For example, regarding the OPAL simulation choreography presented in

Figure 1.1, scientists are able to provide the initial lattice data by uploading
it once to the TraDE Middleware instead of sending it multiple times encap-
sulated in the initial request message to the Opal Simulation participant.
Furthermore, if a scientist wants to reuse the same lattice for multiple sim-
ulation runs, it does not make sense to send the same data multiple times
over the network, if this is not really required for other reasons. The same
applies to the resulting video, here the video is automatically transferred
from the OpalVisual participant and can then be downloaded from the TraDE
Middleware by a scientist, even after the simulation has been completed.

1.2 Research Contributions

Figure 1.2 shows the research contributions of this work which are introduced
in more detail in the following.

Contribution 1: Life cycle of data-aware service choreographies

As outlined in the introduction, this contribution introduces an extended
business process management life cycle for choreographies where data is

1.2 | Research Contributions 21

Contribution 1:
Life cycle of data-aware service choreographies

Contribution 2:
Modeling and refinement of data-aware service choreographies

Contribution 3:
Middleware for transparent data

provisioning, exchange, and access in
data-aware service choreographies

Contribution 4:
Transparent data transformation in data-

aware service choreographies

Contribution 5:
Prototypical tool support and middleware for the modeling

and execution of data-aware service choreographies

Figure 1.2: Overview of contributions provided in this work.

treated as a first-class citizen by introducing and applying our concepts
for data-aware choreographies. Therefore, each of the life cycle phases
and its data-related aspects are introduced and described. The goal is to
provide a holistic support of data-related aspects throughout the whole
life cycle while utilizing within each life cycle phase the knowledge of the
involved stakeholders, e. g., domain experts or choreography and process
modelers. Furthermore, the life cycle provides an overview and initial require-
ments regarding required tooling support (e. g., modeling environments)
and middleware systems.

Contribution 2: Modeling and refinement of data-aware service chore-
ographies

One of the core contributions of this work is to support and improve the level
of data-awareness for choreography modeling and execution. Accordingly,
this contribution provides the required support for the enhanced modeling

22 1 | Introduction

and refinement life cycle phases based on Contribution 1 by introducing our
concept for Transparent Data Exchange (TraDE) in service choreographies.
This comprises a general introduction of related modeling constructs as
well as a complete formal model for data-aware choreographies and their
semi-automated transformation and refinement to a collection of executable
process models. The underlying goal is to maintain the independence of
our conceptual approach and introduced methods from the various existing
modeling languages for choreography and process model specification.

Contribution 3: Middleware for transparent data provisioning, access,
and exchange in data-aware service choreographies

This contribution provides the required support for the deployment and
execution life cycle phases of data-aware choreographies introduced by
Contribution 1. Therefore, the underlying concepts of the TraDE Middleware
are presented which enables the transparent execution of cross-partner data
flows modeled within a data-aware choreography. The actual execution of a
data-aware choreography model is based on the generated refined collection
of executable process models with our TraDE concepts applied, based on
the formal model introduced by Contribution 2. Therefore, the underlying
architecture and conceptual model of the TraDE Middleware is presented
and its integration with a respective BPE is described.

Contribution 4: Transparent data transformation in data-aware service
choreographies

Data exchange and processing in distributed scenarios such as choreogra-
phies always introduces data transformation requirements, e. g., to alleviate
differences in data formats or splitting and aggregation of data of differ-
ent participants. This is even more important in data-intensive domains
such as eScience. There, large amounts of data in unstructured or at least
semi-structured proprietary file-based formats have to be transformed. In
addition, data transformations are use case specific and go far beyond simple
format translations or data aggregations in eScience.

1.2 | Research Contributions 23

This contribution presents a transparent data transformation approach,
which is build on top of the TraDE concepts introduced by Contribution 2,
to enable the specification and modeling of required data transformations
already at the level of a choreography model. Despite the modeling, the
seamless integration of data transformation logic into the choreography run-
time environment is of major importance to enable the transparent execution
of data transformations during choreography runtime. Therefore, the focus
of this contribution is on the modeling as well as on the integration and
transparent execution of heterogeneous data transformation logic provided
by experts, e.g., the scientists who also specified the simulation choreography,
to support the required transformation of use case specific and unstructured
data based on the data transformation logic implemented by an expert.

Contribution 5: Prototypical tool support and middleware for the mod-
eling and execution of data-aware service choreographies

The last contribution of this work is a proof-of-concept of Contributions 1 to 4
for data-aware choreographies and middleware components for transparent
data exchange and transformation. Therefore, the main components of our
prototypical TraDE ecosystem, namely the data-aware Choreography and Or-
chestrationModeling Environment, a TraDE-aware Process Engine, the TraDE
Middleware, the Data Transformation (DT) Integration Middleware, and a
TraDE Web UI are introduced and described. All these components together
provide the required support for the respective phases – from modeling to
execution – of the life cycle introduced by Contribution 1. Furthermore, the
modeling and execution of data-aware choreographies is validated through
a case study from the eScience domain. The prototypical implementation of
the overall TraDE ecosystem is evaluated through a performance evaluation
comparing the execution of a choreography model with and without the
TraDE concepts applied.

24 1 | Introduction

1.3 Scientific Publications

The following peer-reviewed publications have been published at journals
and conferences based on the research conducted in the context of this work.

• M. Hahn, D. Karastoyanova, and F. Leymann. “Data-Aware Service
Choreographies through Transparent Data Exchange.” In: Proceedings
of ICWE’16. Vol. 9671. Lecture Notes in Computer Science (LNCS).
Springer International Publishing, 2016, pp. 357–364.

• M. Hahn, D. Karastoyanova, and F. Leymann. “A Management Life
Cycle for Data-Aware Service Choreographies.” In: Proceedings of
ICWS’16. IEEE Computer Society, 2016, pp. 364–371.

• M. Hahn, U. Breitenbücher, O. Kopp, and F. Leymann. “Modeling and
Execution of Data-Aware Choreographies: An Overview.” In: Computer
Science - Research and Development (2017), pp. 1–12.

• M. Hahn, U. Breitenbücher, F. Leymann, and A. Weiß. “TraDE – A
Transparent Data Exchange Middleware for Service Choreographies.”
In: Proceedings of OTM 2017 Conferences. Ed. by H. Panetto, C. De-
bruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna, and
R. Meersman. Vol. 10573. Lecture Notes in Computer Science (LNCS).
Springer International Publishing, 2017, pp. 252–270.

• M. Hahn, U. Breitenbücher, F. Leymann, M. Wurster, and V. Yussupov.
“Modeling Data Transformations in Data-Aware Service Choreogra-
phies.” In: Proceedings of EDOC’18. IEEE Computer Society, 2018,
pp. 28–34.

• M. Hahn, U. Breitenbücher, F. Leymann, and V. Yussupov. “Transparent
Execution of Data Transformations in Data-Aware Service Choreogra-
phies.” In: Proceedings of OTM 2018 Conferences. Vol. 11230. Lecture
Notes in Computer Science (LNCS). Springer International Publishing
AG, 2018, pp. 117–137.

1.3 | Scientific Publications 25

1.4 Structure of the Document

After the general introduction of the work and its underlying research contri-
butions within this chapter, the rest of the document is structured as follows.
Chapter 2 introduces the foundations of this work and presents the state of
the art in research in the context of the presented contributions.
Based on that, in Chapter 3 our data-aware choreography methodology is

presented which includes our TraDE approach as well as its integration into
the traditional BPM life cycle [Wes12] providing a life cycle for data-aware
choreographies (cf. Contribution 1).
Chapter 4 introduces a formal model for data-aware service choreographies

together with a graphical notation to provide means for the modeling of
data-aware service choreographies (cf. Contribution 2) as well as their
transformation and refinement to executable process models.
In Chapter 5, the concept underlying the TraDE Middleware is introduced

which provides the required runtime support for the execution of data-aware
service choreographies based on our TraDE concepts (cf. Contribution 3).
To further support modelers in specifying data-related aspects at the level
of choreography models, Chapter 6 presents a concept for the modeling and
execution of transparent data transformations within choreography models
(cf. Contribution 4) as well as a supporting data transformation middleware.

In Chapter 7, the resulting prototypical implementations of all the compo-
nents introduced in the previous chapters are described (cf. Contribution 5).
They form together the TraDE ecosystem that provides an end-to-end support
for the modeling and execution of data-aware choreographies by supporting
the respective phases of the extended BPM life cycle presented in Chapter 3.
A validation and evaluation of the TraDE concepts and their prototypical

implementation is presented in Chapter 8. The validation is provided in form
of a case study from the eScience domain which describes and discusses
the applicability and use of the presented TraDE concepts to ease modeling
and provide additional runtime support regarding data-related aspects such
as data exchange and data transformations. In addition, a performance
evaluation of the prototypical implementation of the TraDE Middleware is

26 1 | Introduction

presented which compares the execution of a choreography model with and
without our TraDE concepts applied.
Chapter 9 concludes the work and gives an outlook to future work.

1.4 | Structure of the Document 27

Ch
ap

te
r 2

Background and Related
Work

This chapter provides an overview on the background and state-of-the-art in
research underlying this work. Therefore, in Section 2.1 a short overview
on service compositions is presented. This includes a discussion of their
specification following the orchestration or choreography paradigm as well
as related modeling languages and their execution aspects. Section 2.2
presents and discusses related work regarding data-awareness in service
compositions for both service choreographies and orchestrations. In addition,
Section 2.3 presents some alternative modeling and execution approaches
with focus on data which are based on alternative modeling paradigms and
technologies. Finally, we discuss different approaches for integrating and
utilize heterogeneous data transformation logic in service compositions in
Section 2.4. Since the ability to transform data is one of the core requirements
and aspects of data management in general and therefore also of major
importance for introducing concepts for the modeling and execution of
data-aware choreographies within this work.

29

2.1 Service Compositions: Paradigms, Modeling Languages
and Execution Aspects

With the advent of Service-oriented Architectures (SOA) [Pap03] as a new
architectural style, the concept of services – self-contained units of function-
ality – is introduced. Base on that, SOA furthermore enables the combination
of such services over the network, to create higher-level service composi-
tions [Pel03]. As outlined in Chapter 1, in the domain of Business Process
Management (BPM) a variety of modeling languages evolved to specify and
model such service compositions by either following the orchestration or cho-
reography paradigm. Before we will have a closer look into the choreography
paradigm in Sections 2.1.1 and 2.1.2, we first provide an overview on both
paradigms by discussing their main aspects and their differences.
Service orchestrations, specified in form of workflows or processes [LR00],

are modeled from the viewpoint of one party that acts as a central coordi-
nator [DKB08]. Therefore, an orchestration always represents the control,
i. e., business logic and task execution order, from one party’s perspective
required to reach a certain goal, e. g., to book a flight [Pel03]. The involved
services which are orchestrated to reach this goal are treated as black boxes
and their invocation is represented via respective activities as part of the
underlying process model. The most prominent orchestration modeling
languages are the Business Process Model and Notation (BPMN) [BPMN]
and the Business Process Execution Language (BPEL) [BPEL].
In contrast, service choreographies are modeled from a global perspec-

tive without relying on a central coordinator. A choreography represents
the potentially complex interactions between the services of multiple, in-
dependent parties to achieve an overall goal. Each party that takes part in
the collaboration is represented as a so-called participant. The interactions
between the services of the involved parties are specified through message
exchanges between the choreography participants [BDH05; DKB08]. The re-
sulting set of message exchanges between two or more participants is called
a conversation. Therefore, participants of a choreography communicate in
a direct, peer-to-peer manner without requiring a central coordinator. To

30 2 | Background and Related Work

O
pa

l S
im

ul
at

io
n

Vi
su

al
iz

at
io

n

Sc
ie

nt
is

t
Pr

ep
ar

at
io

n

O
pa

l S
im

ul
at

io
n

Sn
ap

sh
ot

Pr
oc

es
si

ng
Orchestration
Choreography

Prepare
Input Files

Run Opal
Simulation

Process Opal
Snapshots

Create
Video

Create Plot

Create
Video

Create Plot

Prepare
Input Files Run Opal

Simulation

Search
Atom

Clusters

Determine
Position and

Size

Start new
Simulation

Collect Cluster Data

Collect
Visualization Results

Process
Snapshots

Visualize
Saturation

Process

Figure 2.1: Visualizing the orchestration and choreography paradigm based
on the eScience simulation example from Section 1.1.

model service choreographies, modeling languages such as BPMN [BPMN]
or BPEL4Chor [DKLW07; KLW11] can be used. Decker et al. [DKLW09] or
Kopp [Kop16] provide an overview and comparison of the most prominent
choreography modeling languages.
While the goal of service orchestrations is to specify executable business

processes, the goal of service choreographies is on providing a global view on
the potentially complex conversations of multiple interacting parties. Based
on that service choreographies are usually not directly executable, e. g., since
they lack required technical aspects such as the to be used transport protocol
or message format and encoding for conducting the modeled conversations.
Figure 2.1 shows the eScience simulation presented as a motivation ex-

ample in Chapter 1, specified as an orchestration as well as a choreography
using the modeling notations of the BPMN [BPMN] standard. Therefore, the

2.1 | Service Compositions: Paradigms, Modeling Languages and Execution Aspects 31

orchestration is modeled as a BPMN 2.0 process model and the choreogra-
phy is specified in form of a BPMN 2.0 collaboration model. In our opinion,
the core difference between orchestrations and choreographies outlined
above, becomes directly clear when visually comparing the example mod-
els depicted in Figure 2.1. The orchestration, i. e., the process model, just
specifies a sequence of service tasks invoking respective services which are
black boxes and therefore not further detailed as part of the model. From an
orchestration perspective it is therefore unclear how the conversation-related
internal behavior of the services look like regarding the processing of the
request message and how the response is formed. This hides also the know-
ledge if the service itself is again an orchestration or not. In contrast to that,
following the choreography paradigm such conversation-related behavior is
made visible as part of the choreography model. This allows to specify the
interconnections between the collaborating parties and therefore provides
the underlying big picture of the service composition enabling each party to
be aware of its role and potential implications on their conversations. For
example, by introducing the scientist as a participant to the choreography
model depicted in Figure 2.1, it is directly clear that the simulation input
parameters have to be send to the Preparation participant for processing and
afterwards the simulation results can be collected by receiving respective
messages from the Snapshot Processing and Visualization participants. By
following the modeled message flows, i. e., conversations, between the par-
ticipants, the overall Opal simulation and its building blocks as well as their
interconnection becomes instantly clear in our opinion. Since all such know-
ledge is abstracted away and moved into the invoked services at the level of
an orchestration, it is way more complex or sometimes even impossible to
get such an underlying big picture by studying the specified process models.

2.1.1 Choreography Modeling

For the specification of choreography-based service compositions two cate-
gories of modeling approaches exist as shown in Figure 2.2: interaction mod-
els and interconnected interface behavior models, or interconnection models for

32 2 | Background and Related Work

P1

P3

P2

B

A

Interconnection Model

Interaction Model

Choreography
Task (CT) 1

P1

P2

CT 2

P2

P3

CT 3

P2

P3

CT 4

P1

P2

Figure 2.2: Visualizing the interaction and interconnection choreography
modeling approaches based on an example specified as BPMN 2.0
choreography and collaboration model.

short [DKB08]. The former enable the specification of interactions between
participants from a global perspective only through message exchanges and
behavioral dependencies between the interactions. The most prominent ex-
amples for modeling languages following the interaction modeling approach
are Web Service Choreography Description Language (WS-CDL) [WS-CDL],
Let’s Dance [ZBDH06] or BPMN choreographies [BPMN]. The downside of
such interaction models is, that they might be locally unenforceable [DKB08].
This is the case, if an interaction model defines behavioral constraints that
cannot be enforced locally, i. e., the individual participants cannot guarantee
that they are able to fulfill the specified constraints while conducting their
message exchanges as defined within the interaction model [ZDH+08]. This
local unenforceability results from the fact that individual participants do
not know the state of interactions they are not involved in.
The latter, interconnection models allow the specification of control flow

per participant and the interaction between the participants through the

2.1 | Service Compositions: Paradigms, Modeling Languages and Execution Aspects 33

specification of message connectors [DKL+08; KLW11]. As shown in the
example depicted in Figure 2.2, the BPMN collaboration model following
the interconnection modeling approach specifies respective intermediate
message throw and catch events within the participants as well as message
flows between them. In addition, further control flow constructs such as
tasks may be specified at the level of the participants which may have an
impact on the overall choreography or are relevant for the other involved
parties. The most prominent examples for modeling languages following the
interconnected interface behavior, or interconnection modeling approach for
short, are BPMN collaborations [BPMN] and BPEL4Chor [DKLW07]. Since
the control flow of each participant is explicitly modeled, unenforceabil-
ity issues cannot arise. However, such models might be incompatible, so
that the different participants do not interact correctly at the level of the
resulting process models. For example, deadlocks are one of the typical
incompatibilities of interconnection models [DKLW09].
Since the inherent goal of this work is to introduce data already at the

level of the choreography models to enable the decoupling of data flow, data
exchange and data management from the control flow in choreography
models, the internal behavior of participants is one of the relevant aspects for
introducing data-aware choreography models. However, interaction models
do not allow to specify such internal behavior or control flow of participants
[KLW11] and therefore we use the interconnection modeling approach as a
basis for the contributions presented within this work.

2.1.2 Choreography Execution

Since all standards-based choreography modeling languages do not sup-
port the specification of directly executable choreography models [DKB08;
KEL+11], a common approach is to transform the specified choreographies
to a collection of process models [ALM+08; AW01; DKLW09]. van der Aalst
and Weske [AW01] introduce this concept at the level of inter-organizational
workflows via the Public-to-private (P2P) approach. In relation to this ap-
proach, a choreography model can be seen as the public model specifying

34 2 | Background and Related Work

P1
P3

P2

P1
P3

P2

P1
P3

P2

B

A

Private Process ModelsChoreography Model Executable Process Models

B

A

B

A

X

Y

ZZ

Y

X

Figure 2.3: The P2P approach translated to choreographymodels by example

the overall collaboration contract between the interacting parties [AW13].
Such a public model is then transformed into a collection of private process
models specifying the internal logic of each choreography participant (such
as abstract BPEL [BPEL]) while implementing the conversations defined at
the level of the choreography model. This approach is used as a basis for
the execution of choreography models using private process models within
this work and therefore a summary of how the P2P approach is applied to a
choreography model is provided in the following.
Figure 2.3 shows an example for applying the P2P approach to a choreo-

graphy specified as BPMN collaboration model. The resulting private process
models are specified as BPMN process models. For each of the modeled cho-
reography participants P1, P2 and P3 a private process model is generated
based on the specified participant’s control and data flow as shown in the
middle of Figure 2.3. Since the resulting private process models lack required
details, such as actual process logic in addition to the specified conversations
as well as technical details, they are also not directly executable.
For example, a task type has to be specified for the modeled tasks A and

B shown in Figure 2.3. Required technical details are, for example, the
to be applied transport protocol and message encoding for the specified
message exchanges or required runtime environment configuration data for
successful deployment of the refined process models to respective Business
Process Engines (BPEs). Therefore, a manual refinement takes place which
uses the private process models as input and produces the executable process
models depicted on the right of Figure 2.3 as output. In addition, during the

2.1 | Service Compositions: Paradigms, Modeling Languages and Execution Aspects 35

refinement the process models can be enriched and extended with additional
logic that was not relevant from a collaboration perspective but is required
to enable an enactment of the choreography, or with participant internal
control and data flow that should not be unveiled to the other collaborating
parties, e. g., the invocation of internal services.
Such extensions can range from refining already specified modeling con-

structs or introducing completely new ones. In the example shown in Fig-
ure 2.3, new tasks of different types are introduced within each of the three
participants and the existing A and B are refined to service tasks as well as
required properties are specified, e. g., the endpoints of the services to be
invoked by the task. Finally, the resulting collection of executable process
models shown on the right of Figure 2.3 implement the specified choreo-
graphy model provided as input to the P2P approach, i. e., by executing the
process models the overall choreography is conducted. A detailed example
how the application of the P2P approach looks like is presented by Reimann,
Kopp, et al. [RK+08] using BPEL4Chor as choreography modeling notation
and BPEL for the generated private process models.

2.2 Data-Awareness in Service Compositions

In this section, we introduce and discuss related works that provide contri-
butions towards improving data-awareness in service choreographies. The
focus is on the modeling and exchange of data regarding our goal of decou-
pling data flow from control flow and the exchange of messages in service
compositions towards introducing data-aware choreography models.
The model-driven approach presented by Meyer et al. [MPB+15] supports

the modeling and enactment of data exchange in choreographies using mes-
sages. The authors propose an extension of the BPMN modeling language by
introducing annotations on BPMN data objects. These annotations are then
automatically transformed into SQL queries to specify and enact message
extraction from and message storage to local databases. To model and enact
data transformations between messages and local data they refer to standard

36 2 | Background and Related Work

data query languages, e. g., XML Query Language (XQuery) [XQuery]. This
enables the complete automation of data exchange between participants
and the enrichment of the model transformations with data-related aspects
from the global choreography to the local process model level.
We fully support the authors arguments that the collaborating partners

should specify the exchanged data and its structure in a commonly agreed
global data model already at the level of a choreography model [MPB+13;
MPB+15]. This indeed strengthens the collaboration contract by enhancing
it with the data dimension and therefore ensuring correct data exchange in
addition to enforcing the specified conversations, i. e., order of messages.
However, our goal is to provide generic concepts and methods that can

be applied to different modeling languages and are therefore not directly
bound to one specific language such as BPMN. In addition, instead of directly
binding data objects to databases at the level of the choreographymodels, our
approach introduces cross-partner data objects and corresponding runtime
support in form of the TraDE Middleware as an abstraction layer. The TraDE
Middleware can therefore be seen as a data hub from the viewpoint of the
interacting choreography participants. Arbitrary data sources can then be
connected to the TraDE Middleware to enable the provisioning of data for
respective cross-partner data objects using existing generic data provisioning
concepts such as the pluggable data management framework SIMPL [Rei17;
RRS+11]. This allows us to support also other domains where data is not
necessarily stored in databases by default, e. g., in the eScience domain, data
is commonly stored and exchanged through files in different formats.
Moreover, our goal is to decouple the exchange of data from the exchange

of messages to simplify modeling and improving runtime flexibility of chore-
ographies regarding their data perspective by supporting explicit data flow
between choreography participants without the need to exchange messages.
Knuplesch, Pryss, and Reichert [KPR12a; KPR12b] introduce the notion

of data-aware process interaction models as a means to model data-aware
choreographies. Their goal is to enrich interaction models with a data
perspective as a means to explicitly consider data being exchanged through
messages between participants and also used for routing decisions while

2.2 | Data-Awareness in Service Compositions 37

ensuring correctness of the resulting models. Therefore, they define a formal
framework and specific correctness criteria for Data-Aware Choreographies
(DAChor) while their behavior is described using elements of Interaction
Petri Nets and Workflow Nets with Data.
Although the authors concentrate on the modeling and correctness of data-

aware choreographies, our focus is not only on introducing data as a first-class
citizen during modeling. Moreover, we want to introduce data-awareness in
an end-to-end manner towards increasing runtime flexibility while reducing
the complexity of modeling data flows in service choreographies. Similar to
our cross-partner data objects, the authors introduce so-called virtual data
objects. However, the exchange of actual business data is still message-based
and virtual data objects only allow to share states across participants to
support data-based routing decisions.
Barker, Walton, and Robertson [BWR09] define a new language called

Multiagent Protocols (MAP) which allows to specify directly executable ser-
vice choreographies. For the enactment of respective MAP choreographies
an open source framework called MagentA and the concept of peers is intro-
duced. A peer provides extra functionality through a choreography interface
that enables web services to participate in a choreography without requiring
to adapt the underlying service implementations.
Additionally, Barker, Walton, and Robertson [BWR09] present arguments

in which scenarios it is beneficial to apply the choreography paradigm to com-
pose services. One such case is the enactment of data-intensive workflows
which are very common in the domain of eScience where scientific workflows
are used to conduct data-intensive simulations or scientific calculations. The
exchange of huge amounts of intermediate data between the composed
services through a centralized workflow engine results in potentially un-
necessary data transfer, congestion of the engine, and as a result decreases
the overall performance of the scientific workflow. Therefore, the authors
suggest to model such data-intensive service compositions as choreographies
using their MAP language to model and conduct the data exchange in a
distributed, peer-to-peer manner directly between the composed services.
Instead of introducing a completely new modeling notation, we rely on

38 2 | Background and Related Work

existing choreography notations like BPMN or BPEL4Chor. While BPMN is
itself a standardized notation widely-adopted in industry, BPEL4Chor is an
extension of the standardized BPEL language which enables the modeling of
choreographies. Consequently, this results in reusable and portable models
that are supported by a broad variety of existing tools for both modeling
and execution. Furthermore, when following the public-to-private approach
[AW01] the resulting private process models that implement the choreo-
graphy participants are also specified through standardized notations like
BPMN and BPEL and therefore already provide, for example, established
fault or compensation handling capabilities and mechanisms.
Another point is that, in our opinion, the main purpose of a choreography

is to provide a global view on the potentially complex conversations of the
collaborating parties. Therefore, a choreography model should support
the specification of all aspects relevant from this global viewpoint, i. e.,
conversations between choreography participants expressed by the exchange
of messages as well as shared choreography data and its exchange or use
within and across the participants. These definitions can then be used to
enhance the generation of the resulting process models that represent the
modeled choreography participants.
In addition, any unnecessary complexity and information not relevant

at the level of the choreography such as technical details regarding the
exchange of messages, e. g., transport protocol or message encoding to be
used, should be hidden from the modelers at the choreography level. Such
technical details can then be provided at the level of the process models by
the modelers themselves or by IT specialists that refine and enhance the
generated processes to make them executable. If making choreographies
directly executable, modelers have to specify the collaborations between the
participants in a very fine-grained manner and in addition provide already
technical details at the choreography level. In our opinion, this decreases the
idea of using choreographies as a global view on the complex conversations
between the collaborating parties.
Furthermore, Barker, Weissman, et al. [BW+12] introduce the Circulate

approach that combines the advantages of both paradigms: orchestration

2.2 | Data-Awareness in Service Compositions 39

and choreography. Although the control flow remains orchestration-based,
the data flow is conducted in a choreography-based manner. More precisely,
the control flow and the service interactions are enacted through a central
coordinator, a BPE, and therefore the underlying benefits of such BPEs like
robustness and scalability are retained [LR00].
Conversely, the data flow follows the choreography paradigm and there-

fore participants are allowed to directly exchange data between each other
without a central coordinator as intermediary. To enable services to transfer
data between each other, proxies are introduced to provide the required
functionality. Therefore, a proxy acts as an intermediary between the process
engine and the actual services during service invocations. Consequently, the
process engine triggers the invocation of services and the exchange of data
between services through a proxy.
In general, we are following a similar approach by applying the public-

to-private approach [AW01] to our data-aware choreography models and
introducing the TraDE Middleware to decouple the specified cross-partner
data flows from the control flow of participants. However, instead of explic-
itly modeling the invocation of proxies and data exchange through them,
we propose to introduce cross-partner data objects and cross-partner data
flows as modeling elements within choreography models. Translated to
corresponding annotations at the level of the resulting process models, the
process engine is then able to transparently enact the cross-partner data
flows together with the TraDE Middleware. As a result, process models are
enriched instead of changed and the coordination of cross-partner data flow
is outsourced to the TraDE Middleware instead of explicitly specified in pro-
cess models. The former preserves the portability of the models on runtime
environments without TraDE support while enabling an easier specification
of data-related aspects. The latter provides more flexibility and optimization
possibilities during runtime.
An approach similar to the ideas presented in this work, but with focus at

the level of process models and BPEL in particular, is provided by Habich et al.
[Hab+08]. They try to overcome the issue of centralized and only implicitly
specified data flow in BPEL through variables and assign activities and the

40 2 | Background and Related Work

resulting by value semantics of data exchange. Therefore, they combine their
concept of Data-Grey-Box web services with an extension of BPEL through
so-called BPEL data transitions, or BPEL-DT for short. The former allow to
enhance web service interfaces with an explicit data aspect allowing the
separation of parameters passed by value and data passed by reference. The
latter support the annotation of BPEL processes with explicit data flows
between the composed Data-Grey-Box web services. Both concepts together
allow to integrate specialized data propagation tools and logic, e. g., specified
using Extract Transform Load (ETL) tools, as a means to implement the
specified data transitions and act as mediators between Data-Grey-Box web
services during runtime to provide and resolve data by reference.
In addition, Khalaf and Leymann [KL06] introduce BPEL-D as a model-

ing extension for the specification of explicit data flow between activities
within process models. Process models containing BPEL-D data flows are
not directly executable. They have to be translated into standard BPEL
process models where BPEL-D semantics are implemented using standard
BPEL constructs. Kopp et al. [Kop+11a] provide an overview of such BPEL
extensions, including BPEL-DT and BPEL-D, as well as an evaluation of their
conformity to the BPEL standard and its extension mechanisms.
Although the authors propose to introduce explicit data flow at the level

of BPEL, or process models in general, we argue that cross-partner data flow
can be specified easier and more intuitive at the level of a choreography
model representing all participants of a service composition. Furthermore,
while we also aim at supporting the exchange of data by reference, our
overall goal is to hide as much as possible of the data flow related logic at
the level of the process models by outsourcing the required functionality to
the TraDE Middleware. Therefore, the TraDE Middleware can be used to
propagate and resolve data by reference as well as an integration layer for
specialized data propagation tools and logic.
Liu, Law, and Wiederhold [LLW02] introduce a Flow-based Infrastructure

for Composing Autonomous Services (FICAS) and the Compositional Language
for Autonomous Services (CLAS) used to express the relationships between
collaborating services, i. e., the service composition. The resulting CLAS

2.2 | Data-Awareness in Service Compositions 41

programs can then be executed by the FICAS runtime. Based on the analysis
of the data dependencies between the services, a CLAS program is decom-
posed into services and an execution plan for their composition. A central
coordinator carries out the execution plan and thus controls the control
and data flow and sends the corresponding commands to the services. The
decoupling of control commands and data flow happens only at the level of
the invoked services through separate data and control queues associated
to each service for this purpose. Based on that, the approach supports the
decentralized exchange of data among services.
While we also support the idea of coordinating the control flow in a

centralized manner and handling data flow in a decentralized fashion, the
FICAS approach does not rely on, nor incorporate the capabilities of common
web service standards. Furthermore, we follow a model-based approach to
specify service compositions on both the choreography as well as the orches-
tration level instead of specifying the compositions through programs. This
lowers the entry barrier and increases the usability of the TraDE approach,
especially in combination with a graphical modeling tool that supports the
users during the specification of their service compositions.
Binder, Constantinescu, and Faltings [BCF06] introduce the concept of

Service Invocation Triggers in order to allow for conducting service composi-
tions in a decentralized manner. Such a trigger acts as a proxy for a specific
service and collects all input data, invokes the service and routes the output
data to successor triggers. In sum, the triggers deal with the data exchange
and its ordering on behalf of the services in a service composition. It is our
understanding that there is no global process model that is decomposed into
such triggers. The triggers themselves, however, contain partial knowledge
of the process logic and the data dependencies among services to be invoked.
In contrast to our approach, the application of service invocation triggers

requires the decomposition of process models into a set of sequential frag-
ments that are subject to certain restrictions, e. g., they neither can contain
loops nor conditional control flow, and the data dependencies have to be
encoded into the triggers. Therefore, the data flow related logic specified
in the processes is offloaded to the triggers. A trigger fires as soon as all

42 2 | Background and Related Work

required input values are available, then actually invokes the service and
collects all output data. The output data is then routed to a successor trigger
based on the routing information that is encoded into the trigger itself, based
on the knowledge gathered from the process model. The successor trigger
again waits for all required input data before it fires. Therefore, the order of
the triggers is only implicitly defined based on the data being exchanged
and the routing information at the triggers.
Monsieur, Snoeck, and Lemahieu [MSL12] present a pattern language for

the specification of data flows within service compositions that provides a
systematic way for designing the data flow aspects of respective coordination
scenarios by composing the introduced patterns as building blocks. The
pattern language comprises three classes of patterns: data flow initiation
patterns as well as direct-indirect request and data transmission patterns.
The data flow initiation patterns reflect from which role a data flow is
initiated: service provider, service requestor, or data provider. The request
and data transmission patterns reflect if the data is directly or indirectly
requested and transmitted, respectively.
While the proposed pattern language enables guiding choreography mod-

elers to select and apply the best data flow patterns for representing their
use cases, the target of this work is to introduce data-aware choreographies
and to provide an end-to-end approach and a respective ecosystem of tools
and middleware components to support their modeling and execution. How-
ever, the pattern language introduced by Monsieur, Snoeck, and Lemahieu
[MSL12] could be incorporated into the modeling environment of the TraDE
ecosystem to further support and guide choreography modelers in defining
the required data flow of their collaboration scenarios specified in form of a
data-aware choreography model.
Köpke, Franceschetti, and Eder [KFE19] present a flexible, heuristic al-

gorithm for generating good implementations, with respect to given quality
criteria, for the data flow of inter-organizational processes via message ex-
changes. For example, the number of required interactions, confidentiality
issues or the absence of obsolete data transmissions are such quality criteria
for generating optimal data flow implementations. The underlying idea

2.2 | Data-Awareness in Service Compositions 43

is that at the beginning a global process model specifies the collaboration
between multiple parties and for each modeled process construct, e. g., an
activity or transition condition, the consumed and produced data is specified
within this global process model. Based on that, the heuristic algorithm
automatically derives a collection of local process models based on respective
user preferences and the specified data requirements. This collection of
local process models together implements the global process model and
therefore each of the generated local process models contains respective
communication activities that conduct the data-transfer in a message-based
manner between the participants.
The resulting message-based data exchange is generated in an optimized

way based on the defined data requirements from the global process model.
As a result, modelers do not have to take care of how and when respective
data has to be exchanged between the participants of a choreography during
modeling. They only have to specify the data an individual control flow step
requires or produces and the heuristic algorithm generates an optimized set
of local process models reflecting the provided definitions.
In contrast to our work, the authors build on the available means for

exchanging data across participants via messages. Therefore, they do not
require an additional middleware as proposed within this work by intro-
ducing the TraDE Middleware for the execution of modeled cross-partner
data flows. However, the TraDE Middleware does not only execute the cross-
partner data flows in a transparent manner, it further allows to decouple
the data exchange from the exchange of messages and therefore from the
control flow of the participant’s process models which from our viewpoint
introduces new abilities for transparent data processing, transformation or
the integration of heterogeneous data sources. This may also introduce
new optimization potentials during choreography runtime regarding flexible
adoption of data transformation and optimized data exchange as well as
more efficient data placement and staging. Another aspect why we are not
following a message-based implementation of cross-partner data flows is
that from our experience in data-intensive domains such as eScience, the
exchanged data is often not processed nor used within the process models

44 2 | Background and Related Work

and only forwarded as input to a respective service invocation [GSK+11].
Related aspects are also discussed in the motivation example presented in
Section 1.1. However, a combination of the concepts introduced within this
work and the ones presented by Köpke, Franceschetti, and Eder [KFE19]
will be a valuable direction for future research. For example, scenarios from
the eScience domain will benefit from the combination of optimized, gener-
ated message-based and TraDE-based cross-partner data flows since the best
concept can be selected for each data exchange.
Ghilardi et al. [GGMR21] introduce delta-BPMN as a language for the

modeling and verification of data-aware BPMN process models. For the
modeling of data-related aspects, i. e., modeling data and its manipulation, a
SQL-based language called Process Data Modeling andManipulation Language
(PDMML) is introduced which allows to represent as well as manipulate
data within BPMN process models in a verifiable way by using BPMN data
objects and data stores as a basis for representing data. The resulting
delta-BPMN models can then be verified by a state-of-the-art Satisfiability
Modulo Theories (SMT)-based model checker for infinite state systems by
translating them into the respective input format. SMT refers to the problem
of determining whether a first-order formula is satisfiable with respect to
some logical theory [BT18]. To prove the feasibility of the overall approach,
the Camunda BPMN modeler is extended to enable the modeling of delta-
BPMN process models and allow their automatic translation into the required
format for their immediate verification.
Since our focus is on increasing data-awareness already at the level of

choreography models, especially to ease and improve the modeling of cross-
partner data flows, the concepts introduced by the authors are out of scope of
this work. However, the SQL-based PDMML language introduces interesting
extensions which can be applied to our cross-partner data flows to enable the
modeling and verification of complex data flows between cross-partner data
objects as well as participant’s control flow constructs such as activities or
conditions. This could be an interesting future research direction to further
improve the expressiveness of data-aware choreography models.
The Essential Flow Model presented by Kopp et al. [KLUW11] tackles

2.2 | Data-Awareness in Service Compositions 45

the issue that modelers have to decide early which service composition
paradigm they follow when modeling collaborations: orchestration or cho-
reography. This imposes not only restrictions during modeling, but also on
the IT infrastructure for the execution of the resulting models specifying
the collaborations. The notion of essential flow models allows to defer the
decision how to split and organize a collaboration to a later phase. It enables
modelers to specify their collaborations by modeling essential flows between
tasks and responsible partners. Based on that, an essential flow model can
be mapped and implemented in different ways, e. g., as orchestration or as
choreography, taking the target IT infrastructure into account. The authors
idea of removing the burden from modelers to distinguish between and
decide on local or remote control flow, i. e., message flow, is similar to our
approach regarding data flow. Although the authors do not take data flow
into account, the notion of essential flowmodels provides a useful abstraction
technique and entry point for specifying data-aware service choreographies.

2.3 Alternative Modeling and Execution Approaches with
Focus on Data

In the previous sections, the focus is on related works that also follow the
goal of improving data-awareness and data-related capabilities for the mod-
eling and execution of choreographies. Therefore, we support the arguments
of Meyer et al. [MSMP11] that data-related aspects or data-awareness in
general should only be supported to the degree actually required in the
domain or scope in which a modeling language is used. Since our focus is
on improving and extending the role of data in classical control flow driven
choreography and process modeling languages such as BPMN, BPEL4Chor,
and BPEL, related work following the same paradigm is presented above.
This means, the specification of control flow remains the main part of cho-
reography and process modeling while further support for the specification
of data and data flow is introduced. However, within this section we shortly
outline other potentially related approaches following another paradigm

46 2 | Background and Related Work

and therefore not discussed in detail in the context of this work.

2.3.1 Artifact-centric Business Process Management

Modeling languages following the artifact-centric modeling paradigm con-
sider business data and how it evolves or is changed within a process as the
main driver. Therefore, the focus changes from modeling control flow with
associated data to modeling data with associated control flow, specifying the
actions performed on data. Examples for corresponding artifact-centric mod-
eling approaches are business artifacts [NC03] or case handling [Aal+05].
Lohmann and Wolf [LW10] apply the paradigm of business artifacts at

the level of choreographies to model collaborations from a data perspective.
Therefore, they provide a systematic approach to specify relevant data as
artifacts and a set of agents that are operating on that data in the context
of a collaboration. By enhancing artifacts with information about their
location and its impact on remote access of agents to them, they are then
able to derive an overall interaction model. Furthermore, Lohmann and
Nyolt [LN11] investigate to what extend BPMN can be used or requires
extensions in order to support modeling of artifact-centric processes and
choreographies. Although we support the author’s arguments to make data
more prominent and increase modeling support in choreography and process
models, we still rely on control flow as the main driver for processes and
related established standards such as BPMN and BPEL.

2.3.2 Modeling and Enforcing Business Collaborations using Shared Ledger
Technologies

Another emerging approach for realizing business collaborations is the use
of shared/distributed ledger technology as exemplified by blockchain. Fol-
lowing this paradigm, different works exist which discuss the modeling and
enforcing of business collaborations in a choreography or process-based man-
ner with a special attention on the data dimension. For example, Hull et al.
[HBC+16] discuss the use of abstractions from business artifacts [NC03] as

2.3 | Alternative Modeling and Execution Approaches with Focus on Data 47

the basis for introducing a shared ledger Business Collaboration Language
(BCL). The idea is to specify collaborations between multiple parties using
such a BCL language and then conduct the modeled collaboration using
shared ledger technology by mapping the BCL to respective smart contracts
which operate on data where all business-relevant data shared between the
collaborating parties is persisted within the shared ledger itself. Combining
the business artifacts paradigm with the data-centricity of shared ledgers
seems to be a natural fit towards introducing data as a first-class citizen and
the main driver in business collaborations.
Ladleif, Weske, and Weber [LWW19] also highlight shared data and deci-

sion logic defined as smart contracts being capabilities of distributed ledger
technologies, and blockchains in particular, as promising foundations for
realizing blockchain-based choreographies. Therefore, they analyze the un-
derlying assumptions and limitations of the BPMN 2.0 standard [BPMN]
as one of the most prominent choreography modeling languages against
the possibilities introduced by the shared ledger technology. Based on the
results, they present proposals for the extension of BPMN choreography mod-
els to align them with and support the execution semantics of shared ledger
technology. In accordance with Meyer et al. [MPB+13], they also identified
that the specification of a shared data model is an essential building block
towards modeling blockchain-based choreographies. The proposal is also
implemented as a proof-of-concept on the Ethereum blockchain to test and
discuss its expressiveness and practical feasibility.
Similarly, Sturm et al. [SSJS20] propose a novel form of workflow interop-

erability through decentralized control for inter-organizational workflows by
also utilizing shared ledger technology. A shared ledger, e. g., a blockchain,
acts as a central source of truth and enables decentralization of control by
relying on shared data and encapsulating process information and decision
logic into smart contracts. The authors therefore present a corresponding
decentralized control implementation using extended BPMN modeling el-
ements for specifying inter-organizational processes and execute them on
the Ethereum blockchain. A special focus is on the support of data-based
routing, i. e., data-based decisions in conditional control flow, using the

48 2 | Background and Related Work

shared process data stored in the blockchain.
A general overview of research works regarding the enactment of business

collaborations on blockchains is presented by Stiehle and Weber [SW22]
based on a taxonomy which itself is derived through a systematic literature
review. The resulting taxonomy is structured into supported capabilities
and enforced guarantees of blockchain-based process enactment approaches.
Based on the taxonomy, the authors classify available research works focusing
on blockchain-based process enactment regarding their introduced concepts
and approaches for tackling the challenges of inter-organizational processes,
namely interoperability, traceability, scalability, flexibility, and correctness.

2.4 Integrating Heterogeneous Data Transformation Logic into
Service Compositions

Within this section different approaches for integrating and utilizing het-
erogeneous data transformation logic in service compositions are discussed.
This is of major importance for introducing concepts for the modeling and
execution of data-aware choreographies, since the ability to transform data
is one of the core requirements and aspects of data management in general.
The focus is therefore on related work regarding application reuse and wrap-
ping techniques to specify, package, provision and execute heterogeneous
data transformation implementations in the context of data-aware service
choreographies. This is especially important to support data transforma-
tions within simulation choreographies from the eScience domain, since
there often file-based data has to be processed which is only semi-structured
or even unstructured and related data transformations are very use case
specific and therefore normally implemented by the scientists themselves,
e. g., using programming languages such as Python. Data transformation
languages such as XQuery [XQuery], XML Path Language (XPath) [XPath] or
Extensible Stylesheet Language Transformations (XSLT) [XSLT] established
in the domain of BPM and often directly supported by underlying process
modeling languages such as BPEL [BPEL] or BPMN [BPMN] as well as re-

2.4 | Integrating Heterogeneous Data Transformation Logic into Service Compositions 49

lated BPE implementations, are therefore not usable to specify and execute
data transformations in choreography models within the eScience domain.
Zdun [Zdu02] introduces an approach for legacy application migration to

the web. He describes a method with the following four steps:

• providing an Application Programming Interface (API) using either
wrapping or redevelopment approaches,

• implementation of a component responsible for mapping of requests
to the legacy API,

• as well as implementation of a component responsible for response
generation, and

• the integration of these components into a web server.

Furthermore, a reference architecture supporting the introduced concepts
and issues is presented.
Sneed [Sne06] introduce white-box wrapper generation approaches for

wrapping functions in legacy applications based on XML descriptions. The
presented tool supports, e.g., the transformation of PL/I and COBOL func-
tions’ into WSDL interfaces. Additionally, the transformation generates
modules responsible for mediation of the input and output data between
legacy and WSDL interfaces.
Afanasiev et al. [Afa+13] present a cloud platform called MathCloud

which allows reusing scientific applications by exposing them as RESTful
web services having a uniform interface for a task-based execution. Requests
contain the task description, inputs specification and resulting output is
returned when the task is completed. Sukhoroslov and Afanasiev [SA14]
introduce Everest, a PaaS platform for reusing scientific applications based
on the MathCloud platform [Afa+13]. The authors further improve the ideas
of providing a uniform interface for task-based execution of applications.
Delaitre et al. [Del+05] propose a black-box approach for deployment of

legacy applications written in several languages, e.g., Java, C, and Fortran,
as grid services called Grid Execution Management for Legacy Code Archi-
tecture (GEMLCA). Legacy applications are described using an XML-based

50 2 | Background and Related Work

descriptor which contains information regarding the runtime environment
and parameters required for execution.
Glatard et al. [Gla+08] propose a generic web service wrapper which

provides a standard service interface for running legacy applications. Addi-
tionally, the authors demonstrate how to achieve dynamic service grouping
using the generic wrapper and MOTEUR workflow system. The idea is to
hide the grid infrastructure behind a standard interface which can then be
invoked using any web services specification-compliant client.
Juhnke et al. [Juh+09] present the Legacy Code Description Language

framework which allows wrapping legacy code. An extensible legacy code
specification model is used as a basis for the generation of executable wrap-
pers. The model stores the information necessary for wrapping binary and
source code legacy applications. For instance, the model describes the oper-
ations supported by the legacy applications and respective bindings which
define the type of the wrapper.
Wettinger et al. [Wet+15] present an APIfication approach which allows

generating API implementations for executable programs. The underlying
assumption is that an executable is provided along with metadata describing
its dependencies, inputs, outputs, and other required information. Addition-
ally, the authors introduce any2api as a generic and extensible framework
for reusing executable software.
Hosny et al. [Hos+16] introduce AlgoRun, a container template based on

Docker suitable for wrapping CLI-based scientific algorithms and exposing
them via a Representational State Transfer (REST) interface to simplify the
reuse of scientific algorithms. Therefore, the algorithm has to be described
using a predefined format. Moreover, a Dockerfile has to be created which
wraps the algorithm’s source code.
Kim et al. [Kim+17] describe how bioinformatics pipelines can be run

using so-called Bio-Docklets, pre-configured Docker containers. With this
approach, the complexity of the pipeline is hidden behind a Docker container
which exposes only input and output endpoints required for executing the
pipeline. Therefore, from a user’s perspective the invocation of the complex
pipeline does not differ from the invocation of a single application.

2.4 | Integrating Heterogeneous Data Transformation Logic into Service Compositions 51

While some of the works are used as a basis for the data transformation
approach introduced in Chapter 6, none of them fit completely our needs.
Since our focus is on enabling the transparent integration and use of hetero-
geneous data transformation software within data-aware choreographies,
the data-related aspects and capabilities of the above presented application
reuse and wrapping techniques are of major relevance. The idea to cre-
ate specifications for legacy applications similar to the ones introduced by
Juhnke et al. [Juh+09] and Hosny et al. [Hos+16] is used as a basis for
the concepts introduced within this work. Our goal is to provide generic
concepts and a supporting middleware for the specification, packaging and
provisioning of data transformation applications to enable their use within
data-aware service choreographies.

52 2 | Background and Related Work

Ch
ap

te
r 3

Data-Aware Choreography
Methodology

This chapter introduces our methodology for data-aware choreographies.
As outlined in Chapter 1, the goal of the methodology is to increase data-
awareness throughout the complete life cycle of choreographies. Therefore,
we further motivate the need for improving data-awareness in service chore-
ographies by discussing shortcomings of the state-of-the-art in Section 3.1.
Based on that, we introduce our Transparent Data Exchange (TraDE) ap-
proach to mitigate the presented shortcomings and improve data-related
aspects of service choreographies in Section 3.2. Since in our opinion, data-
related aspects are not only relevant during choreography modeling and
execution, in Section 3.3 a complete life cycle for data-aware choreographies
based on the the traditional Business Process Management (BPM) life cy-
cle [Wes12] is presented to reflect data-related aspects in a seamless fashion.
To provide an overview of the TraDE approach and the data-aware choreo-
graphy methodology as a whole, an example data-aware choreography and
its way through the different phases of the extended life cycle is presented.

53

P1
P3

P2 Data Object

Message Start
Event

Message End
Event

Message
Catch Event

Message
Throw Event

Data
Association

Legend

Message
Flow

Task
Sequence

Flow

s1 e1

s3 e3

t1

c1

mx1 mx4

B

D

E

F

E

G

G

s2 e2D

E

F

t2

mx2

A
c1

mx3
G

Figure 3.1: Example choreography illustrated as BPMN collaboration model,
based on [HBKL17].

3.1 Motivation

To further illustrate and motivate the need to improve data-awareness in
service choreographies we first present a motivation example followed by a
discussion on shortcomings regarding the modeling and execution of data-
aware service choreographies.
We use BPMN as a basis for the following discussion and also to illustrate

our concepts within this work. However, our concepts are not bound to
BPMN and can be applied to other choreography modeling languages such
as BPEL4Chor. The only assumption is, that the underlying choreography
modeling language follows the interconnected interface behaviormodeling ap-
proach [DKB08] introduced in Chapter 2. This means, that the choreography
model specifies control flow per participant and the interactions between
participants through message flows. Figure 3.1 shows an example of such an
interconnected interface behavior model illustrated as BPMN collaboration

54 3 | Data-Aware Choreography Methodology

model with three interacting participants. The conversations between the
participants are modeled by message intermediate events and message flows.
Data is modeled by BPMN data objects and the reading and writing of data
objects from tasks and events is specified through BPMN data associations.
As outlined in Chapter 2, a lot of choreography modeling languages are not
directly executable, we therefore follow the Public-to-private (P2P) approach
introduced by van der Aalst and Weske [AW01]. Based on the P2P approach,
a choreography model specifies a public model of a collaboration which
is then transformed into a collection of private process models specifying
the internal logic of each participant while implementing the conversations
defined at the level of the choreography model [ALM+08; DKB08; DKLW09].
As a result, the data-awareness and data modeling capabilities of the used

choreography as well as process modeling languages have to be taken into
account. Exactly for this purpose, Meyer, Smirnov, and Weske [MSW11]
already evaluated business process modeling languages with respect to
their level of data-awareness and data modeling capabilities. Therefore, in
the context of this work, we reuse their results as a basis to discuss and
identify further issues based on the introduced motivation example depicted
in Figure 3.1 with focus at the level of choreographies.
One of the major shortcomings is, that data flow across participants has

to be modeled differently compared to the data flow inside a participant.
The former we call inter-participant data flow and the latter intra-participant
data flow in the following. For example, in BPMN intra-participant data
flow can be expressed intuitively by drawing data associations between
data objects and tasks as shown in Figure 3.1 between the message start
event s1, data object D and the message intermediate throw event t1 of
participant P1. However, to model the exchange of data between two or
more participants, i. e., inter-participant data flow, data associations are not
allowed anymore and message flow has to be introduced to exchange the
required data. For example, in Figure 3.1 data objects D and E are send from
participant P1 to participant P2 via the message flow mx1 specified between
the intermediate message throw event t1 and message start event s2 of
participant P1 and P2, respectively. While from an execution and technical

3.1 | Motivation 55

point of view it is clear that data exchange across participant boundaries
needs to be handled differently than local data exchange within a participant,
the question is, if this difference has to be explicitly specified within a
choreography model using distinct modeling constructs. As shown by the
example, introducing message flow to exchange data between participants
requires the specification of a whole set of additional modeling constructs.
First, a message has to be specified that will transport the data between the
participants during runtime. Second, the modeler has to add a corresponding
message send task or event (e. g., t1 in Figure 3.1) with data associations
on data objects containing the data to exchange, in order to encapsulate
data into a message and send it to another participant. On the side of the
receiving participant, the modeler has to add a message receive task or
event (e. g., s2 of P2 in Figure 3.1) to consume the message and specify
data associations to one or more data objects where the data contained in
a message should be extracted to. Finally, the modeler has to connect the
sending and receiving tasks or events with a message flow (e. g., mx1 in
Figure 3.1), to specify the exchange of the previously introduced message.
The result is that data produced by one participant is now also accessible at
another participant both having their own local, independent copy of the
data. We call this type of inter-participant data flow: message-based data
exchange. As outlined above, the example choreography shown in Figure 3.1
uses this message-based data exchange style to define inter-participant data
flows. For example, data objects D and E are exchanged through message
flows between participants P1, P2 and P3, respectively. The key point to
take away is that data cannot be exchanged between participants without
introducing additional control flow and modeling constructs to exchange
the data. While Figure 3.1 depicts rather simple conversation scenarios, it
already gives an idea of the potential complexity and overhead such message-
based data exchange will introduce. This overhead of introducing additional
modeling constructs in order share data between participants will increase,
e. g., if multiple participants require the same data or received data has to
be routed to other participants.
Another drawback of message-based data exchange is the fact that the

56 3 | Data-Aware Choreography Methodology

same data objects, or slight variations of them, need to be specified in the
scope of each participant that interacts with the data. This is also directly
visible in Figure 3.1 where participants P1 and P2 define the same four data
objects and participant P3 defines its own copy for two of them. However, to
technically enable the collaboration between different participants through
a choreography they have to define and agree on the structure of the to be
exchanged data. This leads to the question if the underlying choreography
modeling language allows the specification of a common, globally consoli-
dated and agreed set of data objects representing a data contract between
the collaborating parties. Often, this is not supported and therefore model-
ers have to agree on structures without being able to specify the outcome
explicitly and in a central, reusable manner within a choreography model.
As a result, each party has to take care of specifying the required set of data
objects in the context of all participants it is responsible for while being com-
pliant with the agreed structures. The issue is that if these structures change
over time, there is no central point in a choreography model to do this and
changes have to be manually reflected in all affected data objects specified
in the context of several participants interacting with this data. This makes
changes error-prone and might lead to inconsistent specifications of data
objects [Lic22]. Furthermore, the data required and produced by the choreo-
graphy as a whole and of each participant individually has to be identified
by analyzing the model instead of being directly visible through its graphical
representation. Another potentially useful capability not supported at the
moment, is that modelers should be able to express that multiple data objects
(semantically) belong together. This will improve the visual expressiveness
of the models regarding their data perspective [MSW11].
Moreover, binding data flow between participants to message exchanges

potentially results in unnecessary routing of data and blocking of control flow
of participants while data is exchanged. The former means that data might
be passed through several consecutive message flows across participants
instead of directly exchanging it in a peer-to-peer manner. The latter point
addresses the fact that while the data is exchanged through message flow
the receiving participants are blocked until the message arrives. For example,

3.1 | Motivation 57

data object E in Figure 3.1 is send from participant P1 to participant P2
via message flow mx1 and then routed from there to participant P3 via
message flow mx2 without being processed at participant P2 at all. This is
actually the result of an inherent trade-off modelers have to make during
choreography modeling. On the one hand, they can improve and optimize
the data flow by introducing additional message-based data exchanges to
exchange the data as soon as it is available in a peer-to-peer manner. On
the other hand, modelers can try to keep the number of message-based data
exchanges minimal and only pass all required data to another participant at
once, if the exchange of a message is anyhow required in terms of control
flow. The first choice results in more complex and conversation-intensive
models but reduces the time participants have to wait for required data. The
second choice results in less complex and less conversation-intensive models
but increases the time participants have to wait for required data because
data is only exchanged in blocks at certain points in time.
To sum up our discussion, when applying a message-based data exchange

approach the exchange of data during runtime has to be specified completely
upfront at modeling time. Therefore, during runtime it is hard to flexibly
improve data exchange between participants since all data exchanges are
strictly expressed through message flows. The only way to realize (more)
dynamic data capabilities using the message-based approach is to introduce
corresponding control flow logic already at the level of the choreography
models. The main drawback of this approach is that the models are polluted
with data management functionality that is not relevant from a business
perspective. Therefore, we are arguing that intra- and inter-participant data
flow should be expressed within choreography models in a consolidated and
control flow independent manner while the underlying data management
and exchange functionality should be provided transparently by the runtime
environment without the necessity to be explicitly modeled via control flow
constructs in a choreography model. Furthermore, choreography models
should allow to define a common, globally consolidated and agreed set of
data objects representing the data contract between the collaborating parties
in form of a choreography data model.

58 3 | Data-Aware Choreography Methodology

P1
P3

P2

B

A

Data Element

Cross-Partner
Data Object

input

D
E

output

F
G

Data Object

Message Start
Event

Message End
Event

Message
Catch Event

Message
Throw Event

Data
Association

Legend

Message
Flow

Task
Sequence

Flow

Cross-Partner
Data Flow

Figure 3.2: Example choreography with TraDE concepts applied, based on
[HBKL17].

3.2 The TraDE Approach

In this section, we introduce our concepts for the modeling and execution of
data-aware choreographies through TraDE towards mitigating the presented
shortcomings and improve data-related aspects of service choreographies.
Therefore, we first have a look at the modeling perspective and introduce the
notion of cross-partner data objects and data flows in Section 3.2.1 and how
they tackle the shortcomings discussed in Section 3.1. Based on that, we will
introduce our proposal for required runtime support for these new modeling
constructs through a new TraDE Middleware component in Section 3.2.2.

3.2.1 Modeling

Figure 3.2 shows the example choreography model from Figure 3.1 with
our TraDE concepts applied. To enable the specification of choreography
data, representing a data contract between the participants within a cho-
reography model, we introduce a choreography data model (CDM). A CDM
provides the foundation for data-awareness and data-related capabilities
in choreographies. It enables to specify required data and its structures
in a self-contained and consolidated manner as a building block of a cho-

3.2 | The TraDE Approach 59

reography model. Therefore, a CDM consists of a set of cross-partner data
objects that express the commonly agreed data of a choreography shared by
and accessible from all participants. To avoid confusion between BPMN 2.0
data objects and cross-partner data objects as a general concept, we use
the term data container as a language-independent name for a modeling
construct that allows the specification of data, e. g., BPMN 2.0 data objects
or BPEL variables, within this work. The data-aware choreography model
in Figure 3.2 makes it explicit which data the overall choreography as well
as each of its participants requires or produces. The major advantage is
that data required by multiple participants of a choreography can be itself
modeled less redundantly. Moreover, its exchange can be expressed more
intuitively using cross-partner data flows instead of specifying messages and
corresponding tasks or events to process them. Although each participant
can still have its own local data containers, cross-partner data objects allow
to model shared data which is associated to the whole choreography instead
of a single participant. By using cross-partner data objects, data containers
have to be modeled only once which normally need to be specified multiple
times at the level of the different participants within the choreography.
A cross-partner data object has a unique identifier and contains one or

more data elements. A data element has a unique name, from the scope of
its surrounding data object, and a reference to a definition of its structure,
e. g., using a simple, build-in type system or XML Schema Definitions (XSDs)
[XSD1]. The idea of this single level of nesting is that cross-partner data
objects can be seen as named envelopes for a collection of typed data contain-
ers, namely data elements, which semantically belong together. Therefore,
data elements hold the corresponding data values during runtime. We dis-
tinguish between cross-partner data objects that can be instantiated only
once (single-instance) or that hold a collection of values (multi-instance)
during runtime. Where multi-instance cross-partner data objects are useful
to hold a collection of identically structured values that can be processed
with the same sequence of tasks through a loop, while the number of loop
iterations is dynamically bound to the size of the collection during runtime.
Based on top of the notion of cross-partner data objects, we introduce

60 3 | Data-Aware Choreography Methodology

cross-partner data flow. The idea is that modelers should be able to in-
tuitively specify data flow within and across participants. Furthermore,
cross-partner data flow allows to decouple the exchange of data from the
exchange of messages and therefore from choreography control flow as
shown in Figure 3.2. As participant internal data flow, cross-partner data
flow also supports the specification of transformation logic, selective queries
and mappings, e. g., to read or write only parts of a data element or cross-
partner data object or multiple data elements at once. The only difference
between intra-participant and cross-partner data flow is how the specified
data flow is conducted during runtime, i. e., if the Business Process Engine
(BPE) executing a participants private process or the TraDE Middleware is
handling the data exchange. Regarding the modeling perspective, these two
extensions, i. e., cross-partner data objects and data flows, provide the basis
for introducing data-aware choreographies and enable an easier and more
intuitive specification and handling of data.
As already outlined in Section 3.1, the modeled choreographies are trans-

formed to a collection of interconnected process models in order to execute
them [AW01; DKB08]. The idea is to translate the introduced cross-partner
data objects into standard data containers at the level of the private process
models again. For example, using data objects in BPMN 2.0 or variables in
BPEL. Using the specified choreography data model as input, this can be
done in an automated manner. Based on that, we are able to reduce manual
refinement efforts at the level of the resulting private process models by
leveraging provided data-related knowledge to generate more complete pro-
cess models. The overall goal is that modelers refining the private processes
should not need to know nor distinguish between local or globally shared
data containers. From the viewpoint of each private process model, there
is no difference between a data container that is defined locally or globally.
As a result, during process refinement, modelers can extend the generated
private process models with additional control and data flow as usual.
Since the BPEs executing the private process models need to communicate

with the TraDE Middleware to conduct the modeled cross-partner data flow
together, data containers which are generated based on cross-partner data

3.2 | The TraDE Approach 61

objects need to be identifiable somehow, e. g., by enhancing them with
corresponding metadata required by the BPEs. This metadata reflects the
context to which a data container belongs, i. e., a data element of a cross-
partner data object, and therefore allows to differentiate data containers
provided by the BPEs locally and the ones representing shared data provided
by the TraDE Middleware in form of cross-partner data objects. To represent
this metadata and the linking of a data container to a cross-partner data
object at the level of a process model, the modeling construct for data
containers of the underlying process language has to be extended. In the
case of BPMN 2.0 and BPEL the extensibility of the languages can be used
to introduce new attributes and elements that can be associated with the
corresponding modeling constructs for BPMN data objects or BPEL variables,
respectively. In addition, to enable a more fine-grained level of data staging,
i. e., pulling and pushing data of cross-partner data objects between a BPE
and the TraDE Middleware, we will introduce and describe so-called Staging
Elements in Section 3.3 as a process modeling language extension. Both
types of language extensions can then be used by the BPEs to communicate
with the TraDE Middleware and therefore realize the modeled cross-partner
data flow. However, for describing the overall idea of our TraDE approach
and how modeled cross-partner data flow is conducted, we will rely on the
simple linking of process data containers and cross-partner data objects
described above. To enable the TraDE Middleware to provide the defined
cross-partner data objects, during transformation all data object related
information is bundled into a corresponding TraDE deployment descriptor.
This deployment descriptor can then be deployed to the TraDE Middleware
to make the specified cross-partner data objects available. All related details
will be discussed and presented in more detail in the remaining chapters of
this work. In the following, a brief overview of the execution of a data-aware
choreography model is presented.

62 3 | Data-Aware Choreography Methodology

Process Engine 3

Process Engine 1

Process Engine 2

P1
P3

P2
s1 e1

s3

e3

c1

B

s2 e2t2
A

c2

E* F*

D*

F*

E*

G*

TraDE Middleware

input

D
E

output

F
G

1
2

3

D*

4 5

6

G*

Legend

D*
BPMN Data Object linked to a

cross-partner data object

t1

Figure 3.3: Execution of the example choreography from Figure 3.2 based
on its refined private process models.

3.2.2 Execution

Figure 3.3 presents the three refined private process models generated out
of the example data-aware choreography model shown in Figure 3.2. Each
of the process models represents one of the choreography participants and
is deployed to a corresponding BPE for its execution. The three process
models together implement and therefore conduct the overall data-aware
choreography. All modeled cross-partner data objects are made available at
the TraDE Middleware by deploying the generated deployment descriptor to
the middleware. The generated data containers at the level of the process
models are represented through corresponding BPMN data objects. As
described above, the data objects are enriched with a link to the respective

3.2 | The TraDE Approach 63

cross-partner data objects at the TraDEMiddleware, indicated by the *within
the data objects shown in Figure 3.3.
By instantiating the deployed process models, e. g., on behalf of a client’s

request, the overall choreography is executed through the started interrelated
process instances which together realize the modeled control and data flow
of a choreography. We use the term choreography instance introduced by
Weiß et al. [WAHK15a] to describe such groups of interrelated process
instances conducting a choreography without implying that there is a central
coordinator within this work.
For our example choreography shown in Figure 3.3, a new choreography

instance is created as soon as process model P1 at Process Engine 1 is in-
stantiated through a corresponding request message. This request message
contains data values which are extracted by message start event s1 and stored
into the BPMN data objects D and E. Since these data objects are linked with
corresponding cross-partner data objects, the BPE instantaneously forwards
the data values to the respective data elements of cross-partner data object
input at the TraDE Middleware as indicated by step 1 in Figure 3.3. After
the data is forwarded, the intermediate message throw event t1 of P1 sents
a corresponding message to process model P2 deployed at Process Engine 2
as specified by message flow mx1 depicted in Figure 3.1. As a result, a new
process instance for P2 is created and no data for data objects D and E has
to be extracted from the message by message start event s2 as required for
message-based data exchange shown in Figure 3.1 since the data is available
at the TraDE Middleware. Next, the intermediate message throw event t2 of
P2 sents a request message to process model P3 deployed at Process Engine
3 as specified by the choreography model depicted in Figure 3.1.

Based on that, a new process instance of process model P3 is created based
on the request message received through message start event s3. According
to the modeled control flow of P3, task B is executed next which requires
the data of data object E as an input. Therefore, Process Engine 3 requests
the data from data element E of the cross-partner data object input from
the TraDE Middleware as indicated by step 4 in Figure 3.3. After task B
is successfully completed, it stores its results into data object G where the

64 3 | Data-Aware Choreography Methodology

process engine directly redirects the result data to data element G of cross-
partner data object output at the TraDE Middleware as indicated by step 5 in
Figure 3.3. Finally, the instance of P3 terminates via the modeled message
end event e3 by sending a response message to P2 to inform it about the
successful completion of the process instance of P3. While P3 is executed
as described above, task A of the process instance of P2 is scheduled which
requires data object D as an input. Therefore, Process Engine 2 requests the
data from data element D of the cross-partner data object input from the
TraDE Middleware as indicated by step 2 in Figure 3.3.
On successful completion of task A, the process engine stores the result

data to data element F of cross-partner data object output at the TraDE
Middleware via the linked data object as shown by step 3 in Figure 3.3.
As soon as the intermediate message catch event c2 of P2 receives the
response message from P3, the instance of P2 is also terminated via the
modeled message end event e2 which sends a response message to P1. The
intermediate message catch event c1 receives this response message from
P2 and terminates itself via the specified message end event e1 by sending a
final choreography response message to the initial requestor. This response
message contains the results from task A and B which are requested by
Process Engine 1 from the output cross-partner data object available at the
TraDE Middleware as shown by step 6 in Figure 3.3. As soon as the instance
of P1 is terminated, the execution of the choreography instance formed by
these three process instances is completed.
In general, whenever a process engine reads or writes data from or to such

linked data containers presented in Figure 3.3, it invokes corresponding
functionality exposed by the TraDE Middleware to query or forward shared
data from or to the middleware, respectively. This allows us to share and
exchange data across multiple interacting parties as modeled through the
choreography but completely independent and decoupled from message
flow. The resulting data containers are only placeholders referring to the
actual cross-partner data objects managed by the TraDE Middleware outside
of the process engines. The process engines therefore have to be extended to
integrate the TraDE Middleware and to support such linked data containers

3.2 | The TraDE Approach 65

which will be discussed in more detail in Chapter 5.
By the TraDE Middleware we want to introduce new degrees of freedom

regarding the data perspective of service choreographies. In general, TraDE
acts as a middleware layer supporting an easier management, exchange, and
provisioning of shared data independent of its processing within a service
choreography or orchestration. Therefore, all cross-partner data objects
are exposed in a web-accessible manner through a Representational State
Transfer (REST) API by the TraDE Middleware. The major advantage is that
each data object is represented as a resource and can therefore be easily
accessed, referenced, and shared with others through a Uniform Resource
Locator (URL) [BFM05]. This is especially important in the eScience domain
where scientists should be supported with the sharing of their simulation data
also independent of the life time of the underlying simulation choreography
instances. The TraDEMiddleware will enable scientists to upload and provide
simulation input data, inspect and observe intermediary results during the
execution of a simulation or enable an easier reuse of data from previous
simulation runs by simply providing a reference in form of an URL to them.
Furthermore, outsourcing the data to the TraDE Middleware decouples

the life time of the data from the underlying process instances and from the
availability of the process engines. This allows an easier reuse of data across
multiple instances of the same choreography model or even across different
choreography models that require common data. Especially the fact that
we are able to share the data not only in the context of a choreography and
its interacting services, opens up completely new ways of how data can be
processed, provided and managed in service choreographies. For example,
using other data-centric tools and systems to process or transform the data
in parallel to the execution of a choreography to allow their use for other
purposes. The logic can therefore be triggered in an event-based manner
using the TraDE Middleware as a data flow coordinator.
In contrast to the previously outlined positive effects and advantages of

introducing cross-partner data flow and decoupled data exchange through
the TraDE Middleware, this causes also some negative side effects. Whenever
something is shared in a distributed context, concurrency as well as security

66 3 | Data-Aware Choreography Methodology

issues will arise. Since in our case data and control flow are running in
parallel, the probability for concurrent access of shared data from differ-
ent, potentially not synchronized participants is much higher than in local
scenarios. Therefore, modelers have to pay attention to concurrency issues
when specifying cross-partner data flows, e. g., by using respective message
exchanges as synchronization points in cases where race conditions between
two or more participants on respective cross-partner data objects may exist.
Since the focus of this work is on the notion of data-aware choreographies

and to enable their modeling and execution in general, a thorough analysis of
potential concurrency issues and cases for which concurrency control mecha-
nisms [BHG87] should be applied are not discussed or presented within this
work. For the prototypical implementation of the TraDE concepts within this
work, pessimistic concurrency control mechanisms are applied. Therefore,
the execution of process instances might be blocked until required data is
available at the TraDE Middleware. The identification and optimization of
concurrency control as well as security demands in the context of our TraDE
concepts are a topic for future research. In the following, the integration of
our TraDE approach into the traditional BPM life cycle is presented.

3.3 Life Cycle of Data-Aware Choreographies

To account and increase data-awareness throughout the complete life cycle
of choreographies we extend the traditional BPM life cycle [Wes12] with
our above introduced TraDE methods. Figure 3.4 presents our proposal
for a data-aware service choreography management life cycle that uses the
traditional BPM life cycle and available extensions for choreographies intro-
duced by Decker, Kopp, and Barros [DKB08] and Weiß and Karastoyanova
[WK14a] as a basis. In the following, we describe each of the life cycle phases,
their relations, the artifacts they produce or consume and how each of the
phases employs our TraDE Methods to support data awareness as a separate
concern throughout the whole life cycle of a choreography. The TraDE Meth-
ods bundle the above introduced set of data-related modeling extensions

3.3 | Life Cycle of Data-Aware Choreographies 67

DeploymentExecution

Monitoring

Analysis

Transparent
Data

Exchange

Modeling

Refinement

Deployment
Bundle

TraDE MethodsEnhanced Phase Artifacts

Choreography Data
Dependency Graph

(CDDG)

Choreography
Model (CM)

Choreography Data
Model (CDM)

Executable
Process Model

Abstract
Process Model

Figure 3.4: Data-Aware Choreography Management Life Cycle, based on
[HKL16b].

and methods as well as model transformations to support data awareness
throughout the whole life cycle and potential optimizations regarding the
data perspective of choreographies.
To abstract away any specific terms or constructs of concrete choreography

or process modeling languages, we define our TraDE methods on formal
models on both the choreography and the process level within this work.
This allows us to maintain the independence of our conceptual approach and
introduced methods from the various existing modeling languages for choreo-
graphy and process model specification. However, the formal models provide
the basis to apply our approach to any choreography and process modeling
notation by defining a corresponding mapping from the formal model to
a concrete modeling notation such as BPMN which we use throughout the
whole document for presenting examples of data-aware choreographies in

68 3 | Data-Aware Choreography Methodology

a graphical manner. Therefore, we use the concept of Choreography Model
Graphs (CM-Graphs) introduced by Weiß et al. [WAHK15a] and Process
Model Graphs (PM-Graphs) defined by Leymann and Roller [LR00] as formal
metamodels. PM-Graphs provide a formal foundation and specify process
models as directed acyclic graphs, where the nodes represent activities and
the edges the control connectors (control flow) between the activities. An
activity expresses a task or piece of work to perform, like invoking a service
or manipulating data. CM-Graphs are based on the PM-Graph definition
and introduce the ability to specify the interactions of collaborating parties
where each party, i. e., a participant, is represented as a kind of reduced
PM-Graph, e. g., by obfuscating all activities that are not involved in the
conversations between the interacting parties. We therefore use the term
communication activity in the following, to refer to the set of activities which
are specifying the conversations between the participants, i. e., activities that
are sending or receiving messages. The coupling between the PM-Graphs
is specified through a set of directed edges where each edge connects a
communication activity from one PM-Graph with a communication activity
of another PM-Graph. These special interconnection edges are called mes-
sage connectors and represent a conversation between two choreography
participants, i. e., a message flow. Chapter 4 introduces our formal model
for data-aware service choreographies together with a graphical notation
based on extended versions of both, the CM-Graphs and PM-Graphs meta-
models. Therefore, required extensions for data-aware choreographies are
only briefly introduced where necessary to describe the life cycle phases.
In the following sections, the data-aware choreography life cycle is pre-

sented in a top-down manner, i. e., a new choreography model is specified
first, based on which a collection of private process models is generated
and refined to represent and implement the participants of a choreography
model. We assume that during a life cycle iteration, in each phase all succes-
sor phases have access to the knowledge and artifacts of the current and all
predecessor phases, as well as the history of previous life cycle loops.

3.3 | Life Cycle of Data-Aware Choreographies 69

Choreography C

Choreography Data Model (CDM)
A
α

B
β

C
γ

Participant P1

A B

C
Participant P2

A B

D
δ
ε

Data FlowMessage Flow

α
Data Element Data Object

A
α
...Name

A
Communication

Activity

Control Flow

D
Activity

Figure 3.5: Detailed view on the Modeling phase, based on [HKL16a].

3.3.1 Modeling

In the Modeling phase the different stakeholders, e. g., domain experts of
different fields in eScience or business specialists from different companies,
who want to collaborate, define their interactions by specifying correspond-
ing participants and their conversations via message exchanges through
a choreography model [Kop16]. The resulting choreography model can
therefore be seen as a collaboration contract on which all participants agree
[MPB+15]. As introduced in Section 2.1, there are a variety of choreography
modeling notations. The most prominent examples are BPMN collaboration
models [BPMN] or BPEL4Chor [DKLW07] following the interconnection mod-
eling approach or BPMN choreography models, Web Service Choreography
Description Language (WS-CDL) [WS-CDL] or Let’s Dance [ZBDH06] follow-
ing the interaction modeling approach. In general, any of these languages
can be used as underlying modeling notation to represent choreography
models, however, as discussed in Section 2.1, within this work we rely on
interconnection models such as BPMN collaboration models and BPEL4Chor
models. They allow to specify the conversations between the participants of
a choreography on a more fine-grained manner and further enable to provide
additional details towards the actual execution of a choreography model. For
example, concrete communication activities at the level of the participants

70 3 | Data-Aware Choreography Methodology

can be specified as part of their control flow to specify and implement the
conversations with other participants. Furthermore, the data flow related to
the conversations, i. e., extracting and wrapping data from and to message
payloads, can be specified as part of the choreography model.
This is exactly where our TraDE approach comes into play. As outlined

in Section 3.2, our TraDE approach introduces an explicit data model and
data flow across the participants at the level of the choreography with the
help of cross-partner data objects and cross-partner data flow in addition
to the possibility of exchanging data via messages as part of the modeled
conversations. This introduces, in addition to the collaboration contract
representing the defined conversations, a data contract defining the data to
be exchanged and the participants consuming or providing the data. The
resulting data contract is represented through a new Choreography Data
Model (CDM) and its related data flows as shown in Figure 3.5. Both together
provide the foundation for the data-awareness of choreographies and a basis
for (semi-)automated phase transitions and model enhancements throughout
the life cycle in the following. Since at the level of the choreography model
only an extract of the actual participant logic is visible in form of activities,
cross-partner data flows and therefore data connectors can be also specified
between participant boundaries as shown in Figure 3.5. There, a data
connector from participant P2 to data object D and from data object D
to participant P1 is specified. This type of cross-partner data flow allows
to specify which of the choreography data objects a participant requires
during runtime to actually provide its part of functionality to the overall
choreography without the necessity to disclose any of its participant-internal
logic or to add respective placeholder activities.
Our goal is that TraDE-based data exchange can be used as an extension

which is seamlessly integrated into choreography modeling. Therefore,
message-based data exchange and TraDE-based data exchange provide two
alternative yet compatible and therefore interchangeable approaches for
modeling data exchange across participants in choreography models, also
allowing to translate one to the other type of data exchange specification.
We will discuss this in more detail as part of our formal model for data-aware

3.3 | Life Cycle of Data-Aware Choreographies 71

service choreographies in Chapter 4. The result is, that already modeled
choreographies relying completely on message-based data exchange can be
analyzed to generate data-aware representations for them, by introducing
cross-partner data objects and data flows based on the modeled message
exchanges. The resulting data models can be manually refined or extended
and are used as input for the TraDE methods in later life cycle phases.
Furthermore, choreography models with already explicit cross-partner data
flows could be analyzed to identify optimization potentials and incorporate
findings from the Analysis phase using the collected choreography execution
event data from the Execution phase of earlier runs of the choreography
without doing a whole life cycle loop again.
The result of the Modeling phase, depicted in Figure 3.5, is a manually

defined choreography model that comprises two or more participants, their
interaction logic and a CDM comprising the specified cross-partner data ob-
jects and data flow. The interaction logic is specified through communication
activities and message flows between the participants. The CDM consists of
a set of cross-partner data objects, or data objects for short, that are explicitly
connected with communication activities, participants or other modeling
constructs through so-called data connectors defining the choreographies
data flow. As shown in Figure 3.5 and described in Section 3.2, a data object
has a unique identifier and contains one or more data elements.

3.3.2 Transformation

At the end of the modeling phase, a Transformation step takes place in which
a collection of private process models is generated. Therefore, for each of the
specified choreography participants an abstract process model is generated
based on the specified participant’s control and data flow. The generated pro-
cess models together implement the globally agreed collaboration behavior
defined through the choreography model and are used as templates in the
Refinement phase. Such abstract process models are not directly executable
since they lack required details such as actual process logic in addition to the
specified conversations as well as technical details, e. g., required runtime

72 3 | Data-Aware Choreography Methodology

Participant P1

Abstract Process

A B

C

IC

OC

OCOC

ICOC

Process|Activity
Output Container

IC

Process|Activity
Input Container

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging Element

Participant P2

Abstract Process

A B
OC

IC

OC

IC

Choreography Data Dependency Graph (CDDG)

P1 P2

A
α

B
β

C
γ

D
δ
ε

A

B

C

A

B

Data Dependency

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Figure 3.6: Detailed view on the Transformation step of the modeling phase,
based on [HKL16a].

environment configuration data for successful deployment. BPMN process
models or abstract Business Process Execution Language (BPEL) process
models can be used to represent such abstract process models. An exam-
ple of how such a transformation may look like is described by Reimann,
Kopp, et al. [RK+08] using BPEL4Chor as choreography modeling notation
and BPEL for the generated private process models. In the context of this
work, the transformation additionally incorporates the results from applying
our TraDE methods to the modeling phase such as the defined CDM and
the modeled choreography data flow during the generation of the abstract
process models. Therefore, the modeled data flow and the resulting data
dependencies between the choreographed participants are extracted and
summarized into a Choreography Data Dependency Graph (CDDG). Fur-
thermore, the process models are enriched with so-called Staging Elements
that reflect the specified cross-partner data exchange between participants
from their own viewpoint. The final output of the modeling phase after the
transformation step comprises the choreography model (CM), its data model
(CDM) and the generated abstract process models with the overall CDDG as

3.3 | Life Cycle of Data-Aware Choreographies 73

shown in Figure 3.4. All generated models and graphs provide the basis for
the manual refinement of the abstract process models to executable process
models (also known as workflows) with transparent data exchange in the
Refinement phase of our life cycle. Our goal is to use all available information
provided on the choreography level to automatically enrich the generated
abstract models depending on the underlying modeling languages.
The transformation itself is performed in three steps. First, an abstract pro-

cess model in form of a PM-Graph according to our underlying metamodel is
created for each of the choreography participants as shown in Figure 3.6. All
participant-related definitions such as communication activities, control flow
and intra-participant data flow is collected and added to the generated PM-
Graphs. Second, the cross-partner data flows specified in the choreography
model between cross-partner data objects, participants and activities are
analyzed using the TraDE methods and the results are collected in the CDDG
as shown in Figure 3.6. We rely on dependency analysis concepts well known
from the domain of programming languages and compiler theory where the
control and data dependencies between the statements of a program are
identified and expressed in form of graphs to optimize the scheduling and
execution of a program [KKP+81; Ott78]. The CDDG is a representation
of the data dependencies between the choreography participants and we
will use it to enrich the generated process models and conduct the modeled
cross-partner data flow during later life cycle phases. A CDDG is a directed
graph where the nodes are choreography participants, activities and data
objects, and the edges the read and write dependencies between them as
depicted in Figure 3.6.
During the last step, the data-specific model transformations will take

place, i. e., the data dependencies collected in the CDDG are incorporated
into the abstract process models or PM-Graphs, respectively, in form of
the above mentioned Staging Elements, resulting in the artifacts shown in
Figure 3.6. The structure of a staging element is shown in Figure 3.7.
We distinguish two general cases for staging elements, pre-staging and

post-staging, depending on the time a staging element is executed. Pre-
staging takes place before the implementation of an activity is executed and

74 3 | Data-Aware Choreography Methodology

PostStagingPostStaging

PreStagingPreStaging

A
Output Container

Input Container

Pre-Staging

Trigger Condition

Reference to Data Object

Fault Handling Strategies

Map to Input Container

Method

Post-Staging

Fault Handling Strategies

Map from Output Container

Trigger Condition

Reference to Data Object

Method

Figure 3.7: Structure of Pre- and Post-Staging Elements and their association
to an activity.

therefore allows to use data from a cross-partner data object by materializing
it within the input container of the associated activity. Post-staging takes
place after the activity implementation is completed and therefore allows
writing data from the activity’s output container to a cross-partner data
object. For each data dependency edge in the CDDG one staging element is
generated in a process model and is associated to the activity or participant
which is referenced by that edge.

As depicted in Figure 3.7, each staging element contains a Reference to a
data object, a Map between the data elements of the referenced data object
and the data elements of the activities’ input or output container, the data
staging Method that specifies if data should be pulled from a data object at

3.3 | Life Cycle of Data-Aware Choreographies 75

Participant P1

Executable Process

A B

C

IC

OC

OCOC

IC
Participant P2

Executable Process
A

BOC
IC

OC

IC

D C
IC

OC

IC

OC

Data Connector

OC

Process|Activity
Output Container

IC

Process|Activity
Input Container

D
Activity

A
Communication Activity

Process
Data Connector Staging Element

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Control Connector

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Staging

Trigger Condition

Reference to DataObject

FaultHandling Strategies

Map to Input Container

...

Method

Figure 3.8: Detailed view on the Refinement phase, based on [HKL16a].

the TraDE Middleware to the activity’s input container (pre-staging) or data
from the activity’s output container should be pushed to a data object at the
TraDE Middleware (post-staging). Furthermore, a staging element allows to
specify a Trigger Condition under which the data staging should take place,
e. g., depending on the status of other activities or local data containers, and
a set of Fault Handling Strategies. The staging elements are used to enact
the transparent data exchange in choreographies. Staging elements and
their use during choreography execution are discussed and described in full
detail in Chapters 4 and 5.

3.3.3 Refinement

During the Refinement phase, IT specialists refine the generated abstract pro-
cess models to make them executable. The result is a collection of executable
process models also known as workflowmodels depicted in Figure 3.8. IT spe-
cialists of the different parties responsible for the choreography participants
refine the participants internal logic by adding new model constructs, e. g.,
activities or control and data flow, as well as refine and extent the complete
control flow and data flow of the process models. This also comprises the

76 3 | Data-Aware Choreography Methodology

specification of the actual activity implementations for all activities already
specified at the level of the choreographies which are therefore reflected
within the abstract process models used as a basis for the refinement.

Regarding the data flow, the data connectors and staging elements, gener-
ated as part of the model transformation step in the modeling phase, have
to be potentially reconnected or the underlying mapping of data elements
(data maps in PM-Graphs) from the data containers of the connected source
and target constructs have to be refined. For example, when comparing
the abstract process models shown in Figure 3.6 with the refined ones in
Figure 3.8, the staging element associated to participants P1 and P2 are
associated to the activities D and C, respectively. This results from the fact,
that the underlying cross-partner data flow specified at the level of the cho-
reography is defined between the two participants and data object D as
shown in Figure 3.5. Therefore, at the level of the generated abstract process
models the staging elements are linked to the participant boundaries, since
there is no further information how and where the data will be actually
processed within the participants’ process models. During refinement, each
of the IT specialists responsible for one of the participants has now the re-
quired insights to refine this data flow by updating the executable participant
process models. Since in process model P1 a new activity D is introduced
which requires data object D as an input, the respective staging element can
be moved from the participant boundary and associated to activity D. The
same applies to activity C and the related staging element in process model
P2 as depicted in Figure 3.8.
In addition to the described refinements above, IT specialists often need to

specify additional required data such as technical details, e. g., the transport
protocol and content encoding for the message payloads to be used, and
configuration data for the envisaged BPE used to execute the refined process
models implementing the overall choreography. Such BPE configuration
data of a process model is often summarized in a so-called process model
deployment descriptor, where the contained information is processed by the
BPE during the deployment of the related process model.

3.3 | Life Cycle of Data-Aware Choreographies 77

Deployed to CDDG Choreography Data
Dependency Graph

PM Process Model

BPE Business Process Engine

TraDE
Middleware

BPEbBPEa Deployment
Bundle

PM 1
CDDG

Deployment
Bundle

PM 2
CDDG

Data Connector

Figure 3.9: Detailed view on the Deployment phase, based on [HKL16a].

3.3.4 Deployment

In the Deployment phase the executable process models are packaged in
the required format and deployed to the target BPE as shown in Figure 3.9.
The extracted and generated CDDG is deployed to the TraDE Middleware to
make the defined cross-partner data objects available during choreography
runtime as described in Section 3.2.2.
Depending on the requirements of the collaborating parties, the deploy-

ment distribution can range from deploying all models to one central BPE to
the deployment of each individual model to a different BPE node. Beside
such static deployment strategies it is possible to defer or even automate the
decision where each of the process models has to be deployed by dynami-
cally estimating an optimal distribution that takes the location of invoked
services and required data into consideration [BWV08a; CDL+07; DC08].
By leveraging cloud computing capabilities it is even possible to dynamically
spin up new BPE nodes for an optimal placement of process models, services
and data [Bin+13; Vuk+16]. Therefore, the TraDE methods could be used
as a basis to take into consideration all available information, e. g., data
dependency graphs, monitoring data or manually defined deployment re-

78 3 | Data-Aware Choreography Methodology

β

TraDE Middleware
CDDG

β

BPEa BPEbPM 1 PM 2

B
β

CDDG Choreography Data
Dependency Graph

PM Process Model

BPE Business Process Engine Data Object

A
α
...

Data Connector

Figure 3.10: Detailed view on the Execution phase, based on [HKL16a].

quirements, to find an optimal deployment distribution based on respective
state-of-the-art concepts. However, in the context of this work, we rely on
the static deployment, whereas dynamic strategies may be considered within
future work. At the end of the Deployment phase the choreography is de-
ployed and prepared for execution as depicted in Figure 3.9, i. e., all process
models are deployed to corresponding BPEs and the CDDG is deployed to
the TraDE Middleware, respectively.

3.3.5 Execution

After the executable process models are deployed, they are ready to enter
the Execution phase. By instantiating one or more of the deployed models,
e. g., on behalf of a client’s requests, the overall choreography is executed
through the started interrelated process instances which together realize
the modeled behavior of the choreography and represent a choreography
instance. For details about how the execution of the choreography through
such interrelated process instances looks like, we refer to Section 3.2.2.
Regarding the execution of the modeled cross-partner data flow, the re-

spective BPE is pushing or pulling data to and from the defined cross-partner
data objects at the TraDE Middleware as depicted as an example for data

3.3 | Life Cycle of Data-Aware Choreographies 79

element β of data object B in Figure 3.10. During the execution of the
choreography instance each of the interrelated process instances produces a
set of execution events at the underlying BPE. These events contain informa-
tion about executed activities, control and data flow, occurred exceptions or
faults and a variety of other aspects of process model executions. The same
applies for the cross-partner data flow conducted by the TraDE Middleware.
There also respective events are collected regarding the reading and writing
of data from and to data elements of the cross-partner data objects based
on their middleware-internal representation.
Such event data could be analyzed as part of our TraDE methods to detect

potential issues as well as optimizations of the cross-partner data flows
specified at the level of the choreography in future work. The analysis results
can be used, e. g., to identify optimizations for data placement, data transfer
and data lifecycle management. Based on predictions calculated from event
data and additional monitoring information, data can be transmitted to a
BPE in advance. In addition, optimal data lifecycle management ensures
that data is only stored for as long as necessary and as short as possible.

3.3.6 Monitoring

The above mentioned execution events, emitted by the BPEs, are collected
and analyzed during the Monitoring phase. The main target of monitoring
is to ensure that the processes are actually carried out according to the
assumptions made during the specification of the models [LR00]. Therefore,
the monitoring has to detect unintended situations (e. g., exceptions or
faults) by tracking the overall system status or analyzing the utilization
of the processes and as a result enable corresponding users (e.g. system
administrators) or specialized software components to react accordingly,
e. g., by adapting process instances during runtime [BDH+08].
To monitor choreography instances based on the execution event data of

the interacting process instances, these data need to be collected, analyzed,
combined and interpreted. For example, the status of the choreography
instance has to be calculated through the combination of the status of all

80 3 | Data-Aware Choreography Methodology

WfMSj+2WfMSj+1BPEj

Data exchangedData exchangingA
Activity completed

A
Activity executing

Data Element
available

X
a

Data Object
available

Y
b

TraDE
Middleware

TraDE
Events
TraDE
Events
TraDE
Events

Workflo
w Events
Workflo
w Events
Process
Events

Monitoring Tools

Control Flow View
P1

A
B

C P2 A B

Data Flow View

A
α

B
β

C
γ

P1 P2

D
δ
ε

Figure 3.11: Detailed view on the Monitoring phase, based on [HKL16a].

underlying process instances. The resulting data can be expressed again
in form of higher-level choreography events by corresponding Monitoring
Tools as shown in Figure 3.11, so that the interpretation and combination
has to be done only once and other interested parties are able to directly
consume the choreography events instead of interpreting the lower-level
process events on their own. This has also the advantage that the higher-level
choreography events can be propagated and disclosed to all involved parties
of the choreography, while keeping the detailed process events private to
avoid the disclosure of the internal logic of the process models or further pro-
tected internal data of an involved party. A corresponding environment that
enables the monitoring of choreographies is introduced, e. g., by Kopp et al.
[KEL+11] and Wetzstein et al. [WKK+10]. For data-aware choreographies
the modeled cross-partner data flow and the underlying interactions with
the connected BPEs during choreography runtime have to be monitored, too.
This results in the two monitoring views or perspectives shown in Fig-

ure 3.11. The classical control flow view is provided by the monitoring
capabilities of the BPE and the above mentioned aggregation of process
events to choreography events. In addition, a data flow view can be build

3.3 | Life Cycle of Data-Aware Choreographies 81

by combining the data-related process events with the TraDE events to rep-
resent the current execution status of all modeled cross-partner data flows
from a choreography viewpoint. Data-related events are emitted and stored
to a respective database by the TraDE Middleware to allow the monitoring
of the cross-partner data flow and thus to ensure that it is carried out as
defined at the level of the choreography models. Since our focus within this
work is on the modeling and execution of data-aware choreographies, the
monitoring of data-aware choreography instances is not further discussed in
the rest of the document.

3.3.7 Analysis

The goal of the Analysis phase in conjunction with the modeling phase is to
produce choreography and process models that are optimal with respect to
a set of requirements or Key Performance Indicators (KPIs). Already existing
models from earlier life cycle iterations together with their monitoring data
are therefore also taken into account to identify potential optimizations for
the models. Established techniques and methods to identify optimization
possibilities are, for example, the use of modeling best practices, the detec-
tion of so-called anti-patterns [KV07] or the simulation of model alternatives
based on quantitative information, also known as instrumentation [LR00].
The applied optimizations might have an impact on both the level of the
choreography and the process models since the conversations specified in
the choreographies are implemented by the processes. Furthermore, the
generated CDDG introduced by the TraDE methods might also be consid-
ered as a valuable input for the analysis phase towards potential data flow
optimizations at the level of the choreography and process models. However,
the analysis and optimization of data flow is not in the scope of this work,
but may be considered as future work.

82 3 | Data-Aware Choreography Methodology

Ch
ap

te
r 4

Formal Model for
Data-Aware

Choreographies

In this chapter, we introduce a formal model for data-aware service chore-
ographies together with a graphical notation. As introduced in Section 2.1
and discussed by Decker, Kopp, and Barros [DKB08], there are two cate-
gories of modeling approaches for choreographies: interaction models and
interconnected interface behavior models, or interconnection models for short.
Within this work, we follow the interconnection modeling approach which
allows the specification of control flow per participant and interactions be-
tween the participants through message flows. As a result, data-aware
choreographies are modeled through a set of interconnected participants
where each of the participants specifies its interface and control flow, i. e.,
the internal behavior relevant for the interaction with others in the con-
text of a choreography. Another important point to clarify is how modeled
choreographies are executed.

83

An overview of possible approaches from related work is presented in Chap-
ter 2, which can be summarized in two categories: the native execution of
choreography models or following the public-to-private approach introduced
by van der Aalst and Weske [AW01] as presented in Section 2.1.2. The for-
mer introduces corresponding middleware which allows the direct execution
of a choreography model. Following the public-to-private approach, a public
model, i. e., the choreography model, is transformed into a collection of pri-
vate process models representing the participants of the choreography model.
These private process models are then manually refined and enriched to
make them executable on general-purpose Business Process Engines (BPEs).
Our formal model follows the public-to-private approach and provides there-
fore the means for the modeling, transformation and refinement life cycle
phases described in Section 3.3. Therefore, transformation and refinement of
a data-aware choreography model to a set of interconnected private process
models, as means to implement and execute choreography participants, their
interactions and data exchanges according to the choreography model, is
also presented and discussed as part of this chapter in more detail.

4.1 Overview

To get an overview of all relevant choreography elements and their con-
nection, Figure 4.1 shows an example of a data-aware choreography and
its major building blocks using the formal and graphical notation defined
within this work in the following. We use this example to shortly introduce
the structure and major building blocks of a data-aware choreography and
later reuse parts of the example to visualize and explain the definition of
respective choreography elements.
For the definition of our formal model for data-aware choreographies,

we reuse and build on existing formal frameworks for process models and
choreographies, namely Process Model Graphs (PM-Graphs) introduced by
Leymann and Roller [LR00] and Choreography Model Graphs (CM-Graphs)
introduced by Weiß et al. [WAHK17] and Weiß [Wei18]. Therefore, the

84 4 | Formal Model for Data-Aware Choreographies

Choreography C

w x y

a b c

d
α
β

e f

u

Participant P1

Activity A3

j

p

Activity A2

i

Activity A1

h

o

v

g

Participant P2

Activity B1

k

r

Activity B2

l

s

Activity B3

m

t

n

q

Data FlowControl Flow

Choreography Model Participant

a Data Element
d

Data Object
Activity

Input Container

Output Container

Message Flow

Figure 4.1: Example data-aware choreography model with two participants
and a cross-partner data object.

4.1 | Overview 85

syntax and semantics of our formal model are based on graph theory ac-
cording to the PM-Graph metamodel introduced by Leymann and Roller
[LR00]. A data-aware choreography model is represented as a special kind of
directed graph GC , called Choreography Model Graph or CM-Graph for short.
A CM-Graph consists of a set of interacting parties, so-called participants,
e. g., P1 and P2 in Figure 4.1. Each participant specifies its control flow
through a partial order of activities, e. g., A1, . . . , A3 in Figure 4.1, providing
corresponding process logic linked through control flow connectors. Control
flow connectors, or control connectors for short, are visualized in Figure 4.1
through solid black lines between activities. Choreography data is expressed
through so-called data elements, e. g., a, b, c in Figure 4.1, and cross-partner
data objects or data objects for short, e. g., d in Figure 4.1. Data flow be-
tween different elements of a choreography, e. g., participants and activities,
is realized through copying values of data elements between so-called data
containers by specifying data flow connectors or data connectors for short.
Data connectors are visualized in Figure 4.1 through dotted dashed blue
lines between data elements of data containers of different activities or
data objects. The interaction between participants is specified through mes-
sage flow connectors, or message connectors for short, by linking activities of
two participants. This provides the ability to specify a handover of control
and data from one participant to another through the exchange of mes-
sages, e. g., invoking other choreography participants or exchanging status
or notifications with other participants at certain points in time throughout
choreography execution. Message connectors are visualized in Figure 4.1
through dashed black lines connecting two activities of different participants.
According to the choreography depicted in Figure 4.1, Section 4.2 intro-

duces the formal model for data-aware choreographies and their building
blocks. Towards the transformation of choreography models to a collection
of private process models, in Section 4.3 choreography data dependency
graphs are defined as an intermediary model for capturing the data perspec-
tive of a choreography in a condensed manner. Furthermore, in Section 4.4
an extended formal model for process models based on the work of Leymann
and Roller [LR00] is introduced to finally introduce the transformation and

86 4 | Formal Model for Data-Aware Choreographies

refinement of a data-aware choreography to a collection of interconnected
executable process models in Section 4.5.

4.2 Data-Aware Choreography Models

Following the approach of interconnection models [DKB08] and the public-
to-private approach [AW01], a choreography participant can be typically
seen as a restricted process model (cf. Figure 4.1). A data-aware choreo-
graphy model then specifies the interconnections between the participant
process models as well as their data and control flow from a global view-
point. As a result, we can use the formal model of PM-Graphs introduced
by Leymann and Roller [LR00] as a basis for the formalization of data-aware
choreographies in form of CM-Graphs in a choreography modeling language
independent manner. This provides us the basis for the specification of data-
aware choreographies as well as their transformation and refinement to a
collection of interconnected executable process models.
For all sets or maps from the PM-Graphs metamodel that have to be ex-

tended or refined for CM-Graphs, we denote the redefinition with a subscript
C . For example, an input data container for an activity A in a CM-Graph will
be denoted by ιC(A) instead of ι(A) as defined for PM-Graphs by Leymann
and Roller [LR00]. In the following sections, we will introduce the differ-
ent elements of the formal model for data-aware choreographies. Starting
with the definition of data specification in Section 4.2.1 followed by cho-
reography activities and participants with their control and data flow, and
finally summarizing all definitions into an overall definition of a data-aware
choreography model in Section 4.2.8.
As outlined above, our formal model is based on graph theory. Let C

denote the set of all choreography models, then one particular choreography
model C ∈ C is represented as a special kind of directed graph, called
“CM-Graph” following the notion of a metamodel for process model graphs
introduced by Leymann and Roller [LR00]. The node set N of a CM-Graph
consists of all activities of a choreography model C . The edge set E of a

4.2 | Data-Aware Choreography Models 87

CM-Graph prescribes all possible partial orders of executions of activities
within participants of C .

4.2.1 Choreography Data

As introduced by Leymann and Roller [LR00], process data describes all the
information required to properly execute a process model. For example, the
inputs and outputs of activities or control flow conditions which are used by
the BPE executing a process instance by navigating through the defined con-
trol flow connectors, i. e., paths in the PM-Graph, of the underlying process
model. Similarly, we introduce choreography data to enable the specification
of required data and its structure already at the level of choreography models
to support our Transparent Data Exchange (TraDE) concepts as introduced
in Chapter 3. The goal is to enable modelers to specify all data relevant
for actually executing the overall choreography model. Therefore, during
execution concrete values of the modeled data represent the current state
and context of the choreography and its participants. For example, data
to be exchanged between participants, activity input and output data as
well as control flow conditions of participants of a choreography model.
Furthermore, all available information about choreography data is utilized
within the transformation of the participants of a choreography model into
a collection of interconnected private process models later. This reduces
manual efforts and makes the refinement step less error-prone since the
defined choreography data can be automatically incorporated and redefined
within each of the generated private process models.
Choreography data has therefore to be defined and associated to a cho-

reography model and its contained participants, activities, conditions as well
as data objects and messages.

4.2.1.1 Data Elements

According to the data elements definition for PM-Graphs provided by Ley-
mann and Roller [LR00], choreography data is collected in a set V which is

88 4 | Formal Model for Data-Aware Choreographies

associated with a choreography model C according to Definition 4.1.

Definition 4.1 (Data Elements)
Let M be a set of names and S be a set of structures. Then,

1. m ∈ M ∧ s ∈ S⇒< m; s > ∈ V , that means each pair consisting
of a name and an already defined structure is a new valid data
element.

2. ζ1, . . . ,ζk ∈ S (k ∈ N) where ζ1, . . . ,ζk represents atomic struc-
tures, such as Integer, Float or String.

3. d ∈ V ⇒ d(k) ∈ S (k ∈ N) where d(k) denotes an array of k
elements over d.

4. V ⊆ V ⇒×V ∈ S where ×V denotes a tuple over V . �

Amember v ∈ V of this set is called data element. Each data element has an
associated name and structure (condition 1 of Definition 4.1). The name of
the data element allows its identification and access to it, while its structure
is defined based on atomic structures (condition 2 of Definition 4.1) such as
Integer, Float or String or by the combination of already defined data elements
in form of arrays (condition 3 of Definition 4.1) or tuples (condition 4 of
Definition 4.1). While arrays enable the definition of an ordered collection
of data elements with the same structure, tuples allow the definition of
more complex structures by combining multiple data elements with different
underlying structures into one named compound data element [LR00].
Therefore, data elements allow to specify data structures at the level of
choreography models. During execution actual data values can be associated
to an instance of a data element. For example, as shown in Figure 4.2
after activity A1 is executed the resulting data values are materialized in the
respective data elements a and b of the activity’s output data container. From
there the values of the data elements can be copied to the input containers
of other activities through data flow connectors.

4.2 | Data-Aware Choreography Models 89

IC

OC

1

Figure 4.2: Example use of data elements to define data containers of activi-
ties.

4.2.1.2 Domains

Based on the specification of the type and structure of choreography data
through data elements, we can define creation rules for valid instances of
a data element through introducing domains according to Leymann and
Roller [LR00]. This is summarized in Definition 4.2 for the three types of
structures of data elements mentioned above: atomic, arrays and tuples.

Definition 4.2 (Domains)
Each data element v ∈ V has an associated domain DOM(v) that repre-
sents all of its corresponding well-formed values:

1. DOM(< m;ζi >) := domain(ζi), that means, the domain of an
atomic data element is the set of all valid values of the associated
atomic structure.

2. DOM(< m′;< m; s > (k) >) := DOM(< m; s >)(k), that means,
the domain of a data element structured as a k-element array is
the set of all arrays with at most k values from the domain of the
data element being the base for the array.

3. DOM(< m′;×{< m1; s1 >, . . . ,< mr ; sr >} >) := ×
1≤i≤r

DOM(<

mi; si >), that means, the domain of a tuple-structured data

90 4 | Formal Model for Data-Aware Choreographies

Figure 4.3: Visual representation of a data container.

element is the Cartesian product of the domain of the components
of the tuple constructor. �

4.2.1.3 Data Containers

As outlined for the example choreography model presented in Section 4.1,
activities and participants as well as choreography models as a whole need
input and output data. To specify such inputs and outputs within a process
model, Leymann and Roller [LR00] introduce the concept of data containers
which represent a collection of data elements. Within the context of this work,
we transfer this definition to choreography models. The visual representation
of a data container representing a collection of data elements as part of our
graphical notation is shown in Figure 4.3. Each of the labeled boxes within
the overall data container rectangle refers to the name of one data element.
As means to represent something that happens at the level of PM-Graphs,

i. e., activities and process models, Leymann and Roller [LR00] introduce
the set ℋ. According to this definition, we collectively refer to the set of
all activities, participants and data-aware choreography models as ℋC , i. e.,
ℋC = N ∪P (N)∪C. V denotes the set of choreography data associated with
all CM-Graphs (C), N the set of all activities, P (N) the set of all participants,
and 𝒞 denotes the set of all conditions. Furthermore, let ℘(X) denote the
power set of a given set X, i. e., the set of all subsets of X. Then data containers
at the level of a CM-Graph are defined according to Definition 4.3.

Definition 4.3 (Data Containers)
The map ιC assigns to each activity, participant, choreography model

4.2 | Data-Aware Choreography Models 91

and condition its input container:

ιC : ℋC ∪ 𝒞→ ℘(V)

This means,

∀X ∈ℋC ∪ 𝒞 : ιC(X) ⊆ V with card ιC(X)<∞

The map oC assigns to each activity, participant and choreography
model its output container:

oC : ℋC → ℘(V)

This means,

∀X ∈ℋC : oC(X) ⊆ V with card oC(X)<∞ �

This allows us in the following to specify the required input and pro-
vided output data of the above mentioned choreography constructs which
will be later used as the source and target of specified data flow within a
choreography model.

4.2.1.4 Messages

As outlined in the introduction of this chapter, a choreography model has to
enable the specification of control flow per participant as well as conversations
across participants. Such conversations comprise one or multiple interactions
between two or more participants where corresponding collections of data
elements, called messages, are exchanged. The purpose of a message is
therefore to transport data and control from one participant to another at a
specific point within a choreography model. As introduced in Section 3.3,
this is possible by introducing a special type of activity, called communication
activity, which allows to send and receive messages across participants at

92 4 | Formal Model for Data-Aware Choreographies

Figure 4.4: Visual representation of a message.

specific points within the control flow of a participant. For the definition
of a message itself, it is enough to understand that they are created and
consumed by such communication activities when a message is send or
received, respectively. All details about communication activities will be
introduced in Section 4.2.2. Therefore, messages can be interpreted as a
special kind of data container, i. e., collection of data elements, which is
transportable between two participants but has only a limited life time. We
will discuss themeaning and use of messages as well as communication across
participants in more detail when introducing message flow in Section 4.2.5.
To specify messages in a CM-Graph, we introduce, in accordance with

the definition of data containers, an additional set of collections of data
elements in Definition 4.4. This set represents all possible messages that
can be exchanged during a conversation between participants. Therefore,
a CM-Graph C will be associated with a hypergraphM . Each edge of the
hypergraph represents one distinguishable collection of data elements which
is called a message. The visual representation of such a message as part of
our graphical notation is shown in Figure 4.4. There we combined a message
sketch with a label for the message name and the visual notation of a data
container introduced above.

Definition 4.4 (Messages)
Let V be the set of all data elements defined in a choreography model
graph C ∈ C, we denote byM (V) ⊆ ℘(V) \ ; the set of all messages
defined within C . Each member ofM (V) is given by its name m. �

4.2 | Data-Aware Choreography Models 93

Figure 4.5: Visual representation of a data object.

4.2.1.5 Data Objects

Data containers enable the specification of input and output data of specific
choreography elements and messages allow to model data to be exchanged
across participants as part of a conversation. However, both of these modeling
constructs are associated to one specific element of a model. For example,
input and output data containers are defined and associated to one specific
activity and a message belongs and is bound to one interaction between two
participants. Therefore, as a central part of our TraDE approach, we introduce
cross-partner data objects, or data objects for short, as outlined in Section 3.2.
Such data objects enable the modeling of collections of data elements, in
accordance with the definition of data containers in Definition 4.3, but
data objects can be specified independent of any other model elements and
participants in particular. Moreover, in comparison to messages, they also
do not have an a priori restricted life time during choreography execution
and therefore provide a durable, shared view on choreography data which
is accessible from all participants, i. e., cross-partner data. Data objects
allow to model the logical grouping of multiple semantically-related data
elements, as a means to enable their identification, referencing them within a
choreography model or adding annotations to specify custom properties, for
example, regarding their operational semantics to influence their behavior
during choreography runtime.
To specify data objects in a CM-Graph, we introduce an additional set

of collections of data elements in Definition 4.5. Therefore, a CM-Graph
C will be associated with a hypergraph D. Each edge of the hypergraph
represents one distinguishable collection of data elements which we call data

94 4 | Formal Model for Data-Aware Choreographies

object. While the previously introduced data containers are only accessible
within the boundaries of a single participant, data objects provide the means
of globally shared, participant-independent data containers which enable
the exchange of data across participants decoupled from the exchange of
messages. The visual representation of such a data object as part of our
graphical notation is shown in Figure 4.5. There we combined a document
sketch with a label holding the data object’s name and the visual notation
of a data container introduced above, to visualize the contextual relation
between data elements and data objects.

Definition 4.5 (Data Objects)
Let V be the set of all data elements defined in a choreography model
graph C ∈ C, we denote by D(V) ⊆ ℘(V) \ ; the set of all data objects
defined within C . Each member of D(V) is given by its name d. �

For the definition and use of the above mentioned property annotations
on data objects, we want to introduce two of them as an example, which
we use within this work, namely data object multiplicity and data object
deletion. The former allows us to distinguish between data objects that can
be instantiated only once (single-instance) and data objects that can be
instantiated multiple times (multi-instance) and therefore hold a collection
of their data elements’ values during runtime. Definition 4.6 introduces data
object multiplicity as an example for specifying further properties on data
objects during choreography modeling. Multi-instance data objects are very
useful to easily model a flexible collection of instances of their contained
data elements, which results in a list of identically structured data values
that can be processed, for example, within a sequence of activities through a
loop, while the loop counter can be dynamically extracted from the number
of a data object’s instances during runtime.

4.2 | Data-Aware Choreography Models 95

Definition 4.6 (Data Object Multiplicity)
Let D(V) ⊆ ℘(V) \ ; the set of all data objects defined within a choreo-
graphy C and let ⊥ be a symbol to specify an undefined cardinality.
The map µD : D(V)→ N∪⊥ associates with each data object d ∈ D(V)
its multiplicity, i. e., the maximum number of instances during runtime,
where µD(d) = ⊥ means that, the maximum number of data object
instances during runtime is not known during modeling time. �

Definition 4.6 enables to specify an upper bound, i. e., the maximum
number of instances of a data object during runtime. For example, to specify
in a supply chain context that offers for a good should be requested from
a predefined number of suppliers, lets say four, and the resulting offers
are hold in a multi-instance data object doffers, i. e., µD(doffers) = 4. To
express an unknown maximum number of data object instances during
runtime, the bottom symbol ⊥ can be used. This is the default case for
multi-instance data objects since an exact number of potential instances
during runtime is often not known during modeling time. For example, in
an auction context bids from an unknown number of bidders have to be
collected before successfully completing an auction, i. e., µD(dbids) =⊥. To
define that exactly one instance of a data object can exist at runtime, the
multiplicity is set to 1, e. g., µD(d) = 1. This is the default case for single-
instance data objects and therefore used as a default in our metamodel. The
specified multiplicity then has an influence on the runtime behavior of how
data objects are managed by the TraDE Middleware, for example, if a data
object is specified as being single-instance, the TraDE Middleware blocks
all requests trying to create an additional instance of the same data object
within the context of a choreography instance. Within the scope of this
work, the TraDE Middleware does not react with an error when blocking
the creation of additional instances, since an overall fault handling concept
for the TraDE Middleware is an open topic for future work. In contrast, for
multi-instance data objects the TraDE Middleware allows the flexible creation
and deletion of data object instances during runtime while enforcing the

96 4 | Formal Model for Data-Aware Choreographies

potentially specified maximum number of allowed instances.
As another example for a data object property annotation, we introduce

the specification of data object deletion strategies in Definition 4.7. This
annotation enables the specification of different deletion strategies to enforce
that instantiated data objects in context of a choreography instance and
their associated data values are treated in a well-defined manner. This is
of major importance since by introducing cross-partner data objects at the
level of choreography models, the life time of the data is decoupled from the
actual choreography instances, i. e., the process instances conducting the
overall choreography model. Therefore, our formal model needs to provide
the ability to specify how the life time of data objects and their deletion
should be handled by the TraDE Middleware to enforce proper operational
semantics, avoid ambiguity and enable garbage collection. In the following,
we first introduce a formal definition of data object deletion strategies and
their association to data objects in Definition 4.7, followed by an informal
description of an initial, non-exhaustive set of concrete deletion strategies as
well as respective values in form of events, expiration, deadlines, conditions
or predefined values as an example.

Definition 4.7 (Data Object Deletion)
Let D(V) ⊆ ℘(V) \ ; the set of all data objects defined within a choreo-
graphy C , let PM be the set of all deletion strategy names, let PV be the
set of all deletion strategy values, and let ⊥ be a symbol to indicate an
optional or empty value, respectively. We denote by P ⊆ PM × (PV ∪{⊥})
the set of all deletion strategies, where each deletion strategy has a name
and a set of complex defined values.
The map ρD : D(V)→ ℘(P) associates with each data object d ∈ D(V)
its deletion strategies through specifying a set of pairs each comprising
a strategy name m ∈ PM and a complex defined value v ∈ PV or the
bottom symbol ⊥, where

∀d ∈ D(V) : (m, v1), (m, v2) ∈ ρD(d)⇒ v1 = v2.

4.2 | Data-Aware Choreography Models 97

To get an idea how concrete deletion strategies will look like, we in-
troduce PM := {manual, event, expiration, deadline, auto-archive} to infor-
mally describe an initial set in the following. These strategies have to be
implemented within the TraDE Middleware to enable their automated exe-
cution. By specifying the manual deletion strategy for a data object d, e. g.,
ρD(d) = {(manual,⊥)}, the TraDE Middleware will persist the data object
until a user is explicitly manually archiving or deleting it. This might be
useful for testing, debugging or analyzing choreography executions to iden-
tify potentially unintended behavior or data flow, or in addition especially
in eScience scenarios to ease ad hoc reuse of intermediate and result data
in other choreography instances or even other systems. The event strategy
allows to specify that a data object d should be deleted on the occurrence
of an event within a choreography, for example, if a participant or choreo-
graphy instance reaches the finished life cycle state (cf. Section 3.5.1, “The
Life of a Process” [LR00]), or an activity instance enters a specific state.
For example, with ρD(d) = {(event,ω(A) = completed)}, data object d is
deleted as soon as activity A enters the completed state, specified through
using the activity state map ω(A) as defined by Leymann and Roller [LR00]
as deletion strategy value. The strategies expiration and deadline enable to
specify a time interval until a data object expires (expiration) if not being
used anymore or a concrete date time (deadline) when to delete a data object
and its associated data values. For example, to specify that after ten days of
inactivity a data object d should be deleted the following strategy can be
associated to a data object d: ρD(d) = {(expiration,P10D)}. A deadline will
look like the following: ρD(d) = {(deadline,2021-01-01T08:00:00)}. As
underlying types for specifying time interval as well as date and time values
the XML Schema Duration and DateTime data types can be used [XSD2].
Another approach to handle the garbage collection of data objects is the
auto-archiving deletion strategy. The idea is that data objects, their instances
as well as the associated data values are compressed and bundled into an
archive and moved to a backup data store out of the TraDE Middleware. This
allows to keep a copy of all relevant data without overloading the TraDE
Middleware with the option of reloading the exported archive back to the

98 4 | Formal Model for Data-Aware Choreographies

middleware, e. g., for reuse or debugging purposes.
Moreover, as defined in Definition 4.7 two or more deletion strategies

of different types can be combined to specify a set of alternatives or com-
plex conditions can be used as deletion strategy values to express more
complex situations, for example, to enforce that a data object d and its
data values will be automatically archived and deleted after not being ac-
cessed for two days after the underlying choreography instance is finished:
ρD(d) = {(auto-archive,⊥), (expiration, P2D ∧ω(C) = finished)}. Concepts
for potentially conflicting strategies, their prioritization or composition are
out of scope of this work. In general, the introduced data object annotations
are just two examples for a potentially huge variety of additional proper-
ties that can be defined for cross-partner data objects and their operational
semantics provided through the TraDE Middleware in future work.

4.2.2 Choreography Activities

As defined by Leymann and Roller [LR00], activities provide the notion
for defining the pieces of work to be done to achieve the particular goal
underlying to a process model, e. g., booking a flight. The same applies
for activities at the level of a choreography model, however, here the focus
is more on the interactions and conversations between the participants
forming together the overall choreography and not on the internal logic of
the individual participants. Or in other words, the goal of the choreography
model is the successful collaboration of the individual participants, where
each of them provides another part of the work to be done in order to achieve
the overall goal which is not necessarily known by nor visible to each of the
involved parties. For example, in a travel agency scenario, the travel agency
uses a trip booking choreography model which defines the collaboration of
different stakeholders, e. g., hotels, airlines or tour operators and car rental
agencies, in form of participants and their conversations in order to fulfill
the customer’s requirements and book a trip by combining the offers of the
involved parties. Therefore, the formal model allows to specify the input and
output data of an activity, its underlying implementation, e. g., the piece

4.2 | Data-Aware Choreography Models 99

Figure 4.6: Visual representation of a choreography activity.

of software conducting the piece of work the activity represents as well as
additional aspects such as staff assignments, in cases where an activity has to
be conducted by a human worker. Since our focus is on the data dimension
of choreography models, these additional aspects are not discussed within
this work. For further details regarding activities at the level of PM-Graphs
we refer to the work of Leymann and Roller [LR00].

Definition 4.8 (Choreography Activities)
The set of all activities of a choreography model C ∈ C is denoted by
N . Each member of N is identified by its name. An activity A can be
written as an operator: A : ιC(A)→ oC(A). �

Definition 4.8 summarizes our definition of a choreography activity by
adapting the process activity definition of Leymann and Roller [LR00]. The
visual representation of a choreography activity as part of our graphical
notation is shown in Figure 4.6. There, the input and output data containers
of an activity are visually attached to its boundary to graphically represent
its operator characteristics, i. e., reflecting the inputs and outputs of the
implementation conducting the activity.
Based on the definition of activities as well as defining their input and

output data containers (cf. Definition 4.3), we are now able to define how
to specify and associate the implementation of an activity. Therefore, we
also have to consider the specification of conversations between participants
within choreography models. The PM-Graph metamodel already provides

100 4 | Formal Model for Data-Aware Choreographies

the means that an activity can trigger the invocation of another process
model by specifying the process model to invoke as the implementation
of the activity. However, this can be seen as kind of a black box approach,
because of the underlying operator semantics of the activity. This means,
the activity provides an abstraction for the referenced process model for
which on activity execution a new process instance is created. The activity’s
input container is passed to the process instance which is executed until it
completes and finally the output data is materialized in the activity’s output
container. As a result, the complete execution of the referenced process
model is done in the background and is therefore not visible at the level of
the process model containing the activity.
While the same should be possible at the level of choreography models,

i. e., that a choreography activity can trigger another choreography or pro-
cess model, we need something in addition to specify complex conversations
between choreography participants as part of a choreography model. As
outlined in Section 4.1, this is realized within our formal model by represent-
ing conversations between participants through the exchange of messages
between them. Therefore, a message connector between respective activities
of two participants has to be defined. Such message connectors together
with their source and target activities and their implementations, explicitly
represent the initial invocation of participants as well as any complex interac-
tions between two or more participants within a choreography model. This
is comprised in Definition 4.9, which allows to associate an implementation
to a choreography activity, where a special type of implementations can be
referenced for sending and receiving messages between participants.

Definition 4.9 (Activity Implementations)
Let ℰ denote the set of all possible implementations of all activities, that
means an element of ℰ can be, for example, a program, script, web
service, a process or choreography model, or even build-in functionality
of a BPE, e. g., logic for sending and receiving messages using a specific
transport protocol. The map Ψ : N → ℰ associates with each activity A

4.2 | Data-Aware Choreography Models 101

its activity implementation Ψ(A).
An activity implementation itself is perceived as a map:

Ψ(A) : ×
v∈ιC (A)

DOM(v)→ ×
v∈oC (A)

DOM(v)
�

Furthermore, for the same purpose, we introduce so-called communication
activities in Definition 4.10 as a special kind of activity, with respective activity
implementations associated for sending or receiving messages, being the
source and target of message connectors, respectively. This provides us the
basis for specifying arbitrary conversations between participants within a
data-aware choreography model using message connectors which will be
defined in detail in Section 4.2.5.

Definition 4.10 (Communication Activities)
Let ℰsend ⊂ ℰ denote the subset of all possible activity implementations
that provide functionality to send messages, ℰreceive ⊂ ℰ denote the
subset of all possible activity implementations that provide functionality
to receive messages, and m ∈M (V) a valid message that will be sent
or received by such an activity implementation.
The set Nsend denotes all sending communication activities, where each
member Asend ∈ Nsend has an associated sending activity implementation.
This means,

Nsend := {Asend ∈ N | Ψ(Asend) ∈ ℰsend}.

The set Nreceive denotes all receiving communication activities, where
each member Areceive ∈ Nreceive has an associated receiving activity
implementation. This means,

Nreceive := {Areceive ∈ N | Ψ(Areceive) ∈ ℰreceive}.

102 4 | Formal Model for Data-Aware Choreographies

The set of all communication activities of a choreography model C ∈ C

is denoted by Ncom ⊆ N , where Ncom = Nsend ∪ Nreceive. �

Such communication activities enable to specify at which point within the
participant’s control flow an interaction with another participant is required.
Therefore, communication activities can be seen as a kind of synchroniza-
tion or checkpoints within a choreography model at which participants, for
example, have to exchange information or notify each other about some-
thing that happened. For example, in the travel agency scenario mentioned
above, the travel agency will send a flight booking request to one or multiple
airlines and then waits for a respective response before starting to send
corresponding hotel booking requests to one or more hotels. This can be
modeled through a receiving communication activity that blocks until the
arrival of a message from another participant, where reaching a specific
checkpoint is modeled through a sending communication activity which
sends the required message as soon as the control flow reaches the activity.
Therefore, as defined in Definition 4.10, a sending communication activity,
or more precisely its implementation, wraps the values of the data elements
of its input container into a message which is send to the receiving com-
munication activity specified as target of the underlying message connector.
The same applies for receiving communication activities, where the values
of the received message are extracted and stored into the activity’s output
data container. Therefore, a receiving communication activity does not have
an associated input data container and a sending communication activity
does not have an output data container by default.
However, we decided to not restrict the formal model in this manner, since

the underlying communication activity implementations might require or
provide some data due to technical reasons or which might be required
or helpful in terms of fault handling. For example, if using a Hypertext
Transfer Protocol (HTTP)-based communication activity implementation,
the returned HTTP response status code might be materialized in the output
container of a sending communication activity. We will discuss the modeling

4.2 | Data-Aware Choreography Models 103

Send Activity

Input Containers

Output Containers

Receive Activity

Input Containers

Output Containers

Figure 4.7: Visual representation of sending and receiving communication
activities.

of conversations and the exchange of messages in more detail as part of the
message flow of choreographies in Section 4.2.5.
Figure 4.7 shows our visual representation for communication activities.

Therefore, we follow the visual notation introduced in BPMN 2.0 [BPMN]
and add a black message icon to sending communication activities and a
white message icon to receiving communication activities. Since the scope
of this work is focused on the data dimension of choreography models, we
do not introduce definitions for staff assignments as well as exit conditions
for activities as provided for PM-Graphs by Leymann and Roller [LR00].
However, these definitions can be transferred one by one into our formal
model for CM-Graphs.

4.2.3 Choreography Participants

To represent participants in a CM-Graph C , we associate C with a hy-
pergraph P . Each edge of the hypergraph is one distinguishable set of
choreography activities which represent the globally observable behavior of
a participant within a choreography following the interconnected interface be-
havior modeling approach [DKL+08]. Definition 4.11 introduces our notion
for specifying the participants of a choreography model.

Definition 4.11 (Participants)
Let N be the set of activities defined in a choreography model graph C ,

104 4 | Formal Model for Data-Aware Choreographies

we denote by P (N) ⊆ ℘(N) \ ; the set of all participants defined within
C satisfying the following conditions

1. ∀R1, R2 ∈ P (N) : R1 ∩ R2 6= ; ⇒ R1 = R2,

2. ∀R1, R2 ∈ P (N) ∀A, B ∈ N ∀p ∈ 𝒞 : (A, B, p) ∈ E ⇒ {A, B} ⊆
R1 ∨ {A, B} ⊆ R2 with E as the set of control connectors of C as
defined in Definition 4.12,

3. ∀R1, R2 ∈ P (N) ∀A, B ∈ N ∀m ∈ M (V) : ∆M (A, B, m) 6= ; ⇒
A∈ Nsend ∧ B ∈ Nreceive ∧A∈ R1 ∧ B ∈ R2 ∧R1 ∩R2 = ;, with ∆M
as message connector map defined in Definition 4.13, and

4. ∀R1, R2 ∈ P (N) ∀A ∈ R1 ∀B ∈ R2 : ∆C(A, B) 6= ; ⇒ R1 = R2,
with ∆C(A, B) as data connector map defined in Definition 4.17.

Each member of P (N) is identified by its name R. �

Condition 1 of Definition 4.11 enforces that each activity of a choreo-
graphy model can be only associated to one participant. Conditions 2-4
restrict the different types of connectors which can be specified between
the activities of a choreography. The connectors are defined in detail in the
following sections, however, for the sake of completeness their restrictions
regarding choreography participants are listed in Definition 4.11 and are
shortly summarized in the following. Condition 2 enforces that a control
connector cannot cross participant boundaries, i. e., can only be specified be-
tween activities associated to the same participant. Condition 3 guarantees
that if a message connector between two communication activities exists,
the source of the message connector has to be a sending communication
activity and the target a receiving communication activity, and in addition
the source and target activity of the connector have to be associated to
different participants. As a result, message connectors are only allowed
to be defined across participant boundaries. Finally, condition 4 ensures
that data connectors between activities are only specified within participant
boundaries and not between activities associated to different participants.

4.2 | Data-Aware Choreography Models 105

Participant
Pi

Input Containers

Output Containers

+

d e

t

Participant P1

-

Activity Ai

f

x

Activity Aj

g

Activity Ak

h

y

Figure 4.8: Visual representation of a choreography participant.

Our visual representation of a participant is depicted in Figure 4.8. It
provides a collapsed as well as expanded representation of a participant
obfuscating or showing the participant’s activities, respectively. If a partici-
pant is collapsed or not is shown by the respective plus or minus sign at the
bottom of the shape. The idea of collapsing complex structured modeling
constructs is well known from respective modeling tools as a means to reduce
the visual complexity and get a better idea of the big picture of a model.
For example, collapsing all participants of a choreography model can help
to get a better overview of the specified conversations and their associated
messages without explicitly showing which activities are implementing the
conversations in detail.

4.2.4 Control Flow

As introduced by Leymann and Roller [LR00], control flow allows us to spec-
ify valid partial orders of executions of activities, i. e., appropriate partial
orders between the pieces of work to be done represented through the mod-
eled activities. Therefore, an activity A can be connected through directed
edges with its potential successor activities A1, . . . , An. The decision which
of A’s successors is executed next depends on business rules controlling the

106 4 | Formal Model for Data-Aware Choreographies

transitions, also known as transition conditions. A transition condition is a
predicate in the choreography data or more precisely in the data elements of
the transition condition’s input container (see Section 4.2.1.3). As a result,
the truth value of a transition condition and consequently the actual flow of
control through a choreography model C varies from choreography instance
to instance depending on the actual data underlying to the instance. There-
fore, the dependency of the control flow between activities and its associated
transition conditions is made explicitly visible as part of the notion of control
connectors defined in Definition 4.12.

Definition 4.12 (Control Connectors)
The set E ⊆ N × N × 𝒞 is called the set of control connectors of a
choreography model C ∈ C, satisfying the condition

∀R1, R2 ∈ P (N) ∀A, B ∈ N ∀p ∈ 𝒞 :

(A, B, p) ∈ E⇒ {A, B} ⊆ R1 ∨ {A, B} ⊆ R2.

This means, a control connector can only be specified between activities
associated to the same participant. For a control connector (A, B, p) ∈ E,
the predicate p ∈ 𝒞 is called a transition condition. Each transition
condition p is considered as a Boolean function in its input container
ιC(p) ⊆ V :

p : ×
v∈ιC (p)

DOM(v)→ {0,1}
�

Figure 4.9 depicts our visual representation of control connectors within
participants of a choreography model.
Based on the definition, control connectors can be specified in an arbitrary

manner between activities of a participant, however, Leymann and Roller
[LR00] impose two additional restrictions on them which we also apply at
the level of CM-Graphs. To avoid ambiguity and keep the control flow simple
and comprehensive, the set of control connectors has to be unified, i. e., there
is at most one control connector with a single transition condition specified

4.2 | Data-Aware Choreography Models 107

P1

Control Connector

i

IC

OC

k

IC

OC

i k,p

Figure 4.9: Visual representation of the control flow between activities
within a choreography through control connectors.

for linking two activities. In addition, the control flow specified through a
sequence of control connectors linking activities has to be acyclic, i. e., control
connectors must not build loops. As a result, the set of control connectors
within the participants of a choreography model are both unified and acyclic.
For further details, a formal definition of the introduced restrictions as well
as additional control flow aspects such as joining and forking the control
flow or specifying join conditions as well as dead path elimination concepts,
we refer to the work of Leymann and Roller [LR00].

4.2.5 Message Flow

As already outlined in Section 4.2.1.4, in addition to specifying the control
flow between activities within a participant, we require a notion for modeling
conversations across participants. Therefore, we introduced in Section 4.2.2
communication activities as a special combination of activity and activity im-
plementation which allow us to model the sending and receiving of messages

108 4 | Formal Model for Data-Aware Choreographies

as part of the participants’ control flows. What is still missing is a modeling
construct which allows to link message senders and receivers, i. e., the com-
munication activities of different participants, to specify respective message
exchanges and therefore model conversations between participants. There-
fore, choreography modeling languages such as BPMN 2.0 or BPEL4Chor
introduce an additional type of flow: so-called message flow. From the per-
spective of the above introduced definitions, message flow can be seen as
a combination of control and data flow within a single connector. While a
control connector only forwards control between activities within a single
participant and a data connector only forwards data between activities or
data objects, a corresponding message connector forwards control from a
communication activity of one participant to a communication activity of an-
other participant while also enabling to transfer data as part of the messages
exchanged between the sending and receiving communication activities. As
discussed in Section 4.2.1.4, a message is therefore similar to a data object,
but has a restricted life time within our metamodel. This means as soon as
the data contained in the message is materialized at the input container
of the receiving communication activity to which the message connector
points to, the message itself is discarded. Therefore, message connectors
can be defined through a triple comprising two communication activities
and a message representing a combined control and data connector across
participants. In the following, we will have a closer look on the underlying
definition as well as some other aspects regarding the message flow of a
data-aware choreography model.

4.2.5.1 Message Connectors

Figure 4.10 depicts our notion for representing message flows within CM-
Graphs via so-calledmessage connectors. For the definition of message connec-
tors we build on top of the specification of data flow through corresponding
data connectors as defined for PM-Graphs by Leymann and Roller [LR00].
Therefore, the definition of a message connector has to prescribe which com-
munication activities expect to send or receive a message to or from which

4.2 | Data-Aware Choreography Models 109

other communication activities and how the data elements of the messages
are composed from data elements of the input containers of the sending
communication activities or how the data elements of the output containers
of receiving communication activities are composed from data elements of
the messages, respectively. The former represents the message exchanges
or conversations within the choreography model and the latter represent
the message data mappings, i. e., the mapping between data containers of
communication activities and the exchanged messages.
Based on that, a message connector is a directed edge between two

communication activities with a link to the message to be exchanged as
shown in Figure 4.10. The source of a message connector has to be a
sending communication and the target a receiving communication activity,
respectively. The required message data mappings can be defined within our
formal model by specifying corresponding triples of data elements (v1, v2, v3)
with v1 ∈ ιC(A), v2 ∈ m and v3 ∈ oC(B) for a sending communication activity
A, a message m and a receiving communication activity B. The set of all such
triples of data elements specified between two communication activities A, B
and a message m is denoted as ∆M (A, B, m). The operational semantics of
adding a triple (v1, v2, v3) to ∆M (A, B, m) is that after the message exchange
is performed, the data element v3 of the output container oC(B) has received
a copy of the actual instance, i. e., the data value, of data element v1 of
the input container ιC(A). Therefore, the message is used as a kind of data
transport vehicle between the two communication activities. First, the actual
instance of data element v1 of the input container ιC(A) is copied to data
element v2 of the message using the specified activity implementation of the
sending communication activity Awhich then sends the message to the other
participant. As soon as the receiving communication activity B receives the
message via its specified activity implementation the actual instance of data
element v2 of the message is copied to data element v3 of its output container
oC(B). According to this behavior, an element of the set∆M (A, B, m) is called
a message map. To bring everything together, our formal model defines
a so-called message connector map ∆M which associates with each triple
(A, B, m) the set ∆M (A, B, m).

110 4 | Formal Model for Data-Aware Choreographies

Definition 4.13 (Message Connector Map)
Let A∈ Nsend be a sending communication activity, let B ∈ Nreceive be a
receiving communication activity, and let m ∈M (V) the message to be
exchanged between two participants. The map

∆M : Nsend×Nreceive×M (V)→
⋃

A∈Nsend , B∈Nreceive , m∈M (V)
℘(ιC(A)×m×oC(B))

satisfying the conditions

1. ∆M (A, B, m) ∈ ℘(ιC(A)×m× oC(B)),

2. ∀R1, R2 ∈ P (N) : ∆M (A, B, m) 6= ; ⇒ A ∈ Nsend ∧ B ∈ Nreceive ∧
A∈ R1 ∧ B ∈ R2 ∧ R1 ∩ R2 = ;,

3. ∀C ∈ Nreceive :∆M (A, B, m) 6= ; ⇒ C = B,

4. ∀C ∈ Nsend :∆M (A, B, m) 6= ; ⇒ C = A,

5. ∀B ∈ Nreceive : (x , m1, z), (y, m2, z) ∈
⋃

A∈Nsend , m∈M (V)
∆M (A, B, m)⇒ x = y ∧m1 = m2

is called a message connector map. An element (v1, m1, v2) is called a
message map.
The set of all message connectors E∆M is defined as

E∆M := {(A, B, m,∆M (A, B, m))

∈ Nsend × Nreceive ×M (V)×℘(V × V × V) |∆M (A, B, m) 6= ;}

�

Condition 1 of Definition 4.13 enforces that a message connector specifies
only message maps between the input container of the sending communi-
cation activity it originates from to the output container of the receiving
communication activity it points to using the associated message to transport
the values of the data elements in between. Condition 2 guarantees that

4.2 | Data-Aware Choreography Models 111

P1 P2

a b

y z

m

u x

M
essage M

aps

M
essage M

aps

Message

∆M (Ai,Bk,m)

Activity Ai Activity Bk
Message Connector

Figure 4.10: Visual representation of a message connector to define the
exchange of data element values across participants through a
message.

if a message connector between two activities exists, i. e., their message
connector map is not empty, the source of the message connector has to be
a sending communication activity and the target a receiving communica-
tion activity, and in addition each of the activities has to belong to another
participant. Condition 3 and 4 prohibit that two message connectors have
the same source (condition 4) or target (condition 3), i. e., each sending
and receiving communication activity has at most one outgoing or incoming
message connector specified, respectively. Finally, condition 5 prohibits two
different message maps from having the same data element in the output
container of the receiving communication activity as target. As discussed by
Leymann and Roller [LR00], this guarantees the determinism of the formal
model since it avoids conflicts and ambiguity during runtime when data
container instances have to be composed and materialized based on the
specified mappings and potentially multiple message maps could provide
their source data element instances to copy them to the specified target data
element. Therefore, all defined message connectors have to always provide
a conflict free set of message maps.

112 4 | Formal Model for Data-Aware Choreographies

Figure 4.10 shows a concrete example with two participants P1 and P2

connected through a message connector via the sending activity Ai, the
message m and the receiving activity Bk. Based on the specified message
maps, data element x ∈ m will receive a copy of the instance of data element
a ∈ ιC(Ai) and data element u ∈ m will receive a copy of the instance of
data element b ∈ ιC(Ai). The message is then send from participant P1 to
participant P2, where activity Bk is receiving the message.
Finally, the payload of the message m (data elements u, x) is copied to

the output container of activity Bk. Data element y ∈ oC(Bk) will receive
a copy of the instance of data element u ∈ m and data element z ∈ oC(Bk)
will receive a copy of the instance of data element x ∈ m. Thus, it is
(a, x , z), (b, u, y) ∈∆M (Ai , Bk, m).

4.2.5.2 Choreography Message Connectors

While normal message connector maps specify the message exchanges be-
tween participants within a choreography model, the so-called choreography
message connector maps introduced in Definition 4.14 allow to specify incom-
ing and outgoing messages of the choreography model as a whole. Therefore,
they are comparable with the process data connectors introduced by Leymann
and Roller [LR00] at the level of PM-Graphs to enable the specification
of data flow between defined process inputs and outputs and respective
activities processing or producing them, respectively. In accordance, at the
level of CM-Graphs, choreography message connectors allow the specifica-
tion of incoming and outgoing messages of a choreography model and by
which communication activities they are received for processing them or
send with respective data to an external recipient. The main use case for
such choreography message connectors is the message-based invocation of a
choreography model as well as to return a message to the initial requester
on choreography instance termination. Message-based invocation is a well
established concept used in choreography and process modeling notations,
e. g., Business Process Model and Notation (BPMN) provides message start
events or a receive task and Business Process Execution Language (BPEL)

4.2 | Data-Aware Choreography Models 113

 Choreography C

OC

IC

∆M (C,A1,m)

Choreography
Message Connector
⟶

P1

P2

Activity A1

Activity Bk

u w

z

x y

x y

Activity Ai

Activity Bj

Message Connector
∆M (Ai,Bj,n)

n

x y

∆M (Bk,C,o)
⟶

m

u w

Message

o

z

Choreography Message Maps

Figure 4.11: Visual representation of a choreography message connector to
define the exchange of messages between the choreography as
a whole and external entities.

introduces a receive activity with corresponding instance-creation semantics,
respectively. We support this concept by introducing choreography message
connectors and a respective map −−→∆M within our formal model to enable the
modeling of incoming and outgoing messages of a choreography model.
Figure 4.11 shows our visual notation for such choreography message

connectors and how they are used to specify incoming and outgoing mes-
sages of a choreography model. Therefore, they extend the visual notation

114 4 | Formal Model for Data-Aware Choreographies

of message connectors also shown in Figure 4.11 by adding a black circle
to the source of the arrow connecting either the choreography boundary
with a receiving communication activity for incoming messages or a sending
communication activity with the choreography boundary for outgoing mes-
sages. To model the processing of an incoming message m, a choreography
message connector represented by the choreography message connector map
−−→
∆M (C , A1, m), is added between the boundary of the choreography and the
receiving communication activity A1 as depicted in Figure 4.11. For specify-
ing the sending of an outgoing message o, a choreography message connector
represented by the choreography message connector map −−→∆M (Bk,C , o), is
added between the sending communication activity Bk and the boundary of
the choreography as depicted on the lower right of Figure 4.11.
Definition 4.14 provides the notion for the specification of such choreo-

graphy message connector maps within our formal model for CM-Graphs.

Definition 4.14 (Choreography Message Connector Map)
Let C ∈ C be a choreography model, let A ∈ Nreceive be a receiving
communication activity, let B ∈ Nsend be a sending communication
activity, and let m ∈ M (V) the message to be exchanged with the
choreography. The map

−−→
∆M : ({C } ∪ Nreceive)× (Nsend ∪ {C })×M (V)→

⋃

C∈C, A∈Nreceive ,
B∈Nsend , m∈M (V)

(℘(m× oC(A))∪℘(ιC(B)×m))

satisfying the conditions

1. −−→∆M (C , A, m) ∈ ℘(m× oC(A)),

2. −−→∆M (B,C , m) ∈ ℘(ιC(B)×m),

3. ∀C ∈ Nreceive :
−−→
∆M (C , A, m) 6= ; ⇒ C = A∨

−−→
∆M (C , C , m) = ;,

4. ∀C ∈ Nsend :
−−→
∆M (B,C , m) 6= ; ⇒ C = B ∨

−−→
∆M (C ,C , m) = ;

4.2 | Data-Aware Choreography Models 115

is called a choreography message connector map. An element (m1, v1)
or (v2, m2) is called a choreography message map. �

The conditions listed in Definition 4.14 are similar to the ones discussed
for message connectors in general in the previous section. Therefore, each of
the conditions is only shortly discussed in the following. Conditions 1 and 2
ensure that a choreography message connector specifies only choreography
message maps between incoming choreography messages and the output
containers of receiving communication activities the connector points to
or between the input containers of sending communication activities the
choreographymessage connector originates from and outgoing choreography
messages. In addition, conditions 3 and 4 ensure that each incoming message
is received and processed by exactly one receiving communication activity
and each outgoing message is produced and send by exactly one sending
communication activity.

4.2.5.3 Start Activities

Following the above introduced concept of message-based invocations of a
choreography model, i. e., a new choreography instance is created based on
a received initial request message, a choreography model therefore specifies
one or more start activities. These start activities represent the entry points
of the underlying CM-Graph and therefore immediately enter the executable
state when a new instance of the choreography model is created [LR00].
Definition 4.15 introduces the set of all choreography start activities N ′.

Definition 4.15 (Choreography Start Activities)
A choreography activity having no incoming control or message con-
nectors and one incoming choreography message connector is called
choreography start activity:
Let N be the set of activities of a choreography model C . We denote by

116 4 | Formal Model for Data-Aware Choreographies

N ′ the set of all start activities of C :

A∈ N ′ :⇔

�

{e ∈ E | π2(e) = A} ∪
⋃

B∈N , m∈M (V)
∆M (B, A, m)

�

= ;

∧
⋃

m∈M (V)

−−→
∆M (C , A, m) 6= ;.

�

Where π denotes the projection map between Cartesian products and
its indices specify the components of a respective tuple to select, i. e., the
domain onto which to project. For example, the projection π2(e) projects an
element e of the Cartesian product E ⊆ N × N × 𝒞 to its second component
which is the target activity A∈ N of the control connector e.
While at the level of PM-Graphs, there is only one type of start activities,

within CM-Graphs we have to distinguish between choreography and partic-
ipant start activities. The former mark the entry points of the choreography
model as a whole as introduced above, while the latter define the entry
point of a single participant within a choreography model. Such participant
start activities are therefore representing the start activities of the resulting
private process models the choreography model is transformed to in order to
get executed. Therefore, a process instance of a participant’s private process
model is created based on the received request message. A choreography
start activity is by definition also always a participant start activity, since the
choreography is conducted through its participants’ private process models
and therefore the choreography start activity processing the initial request
message resulting into a new choreography instance is defined within one
of the choreography’s participants.
Figure 4.11 depicts both types of start activities and their relation at the

level of a choreography model. There, activity A1 is both a choreography
and a participant start activity because it marks the single entry point of the
choreography as a whole as well as for participant P1. Activity B j represents
a participant start activity because a new instance of participant P2 will

4.2 | Data-Aware Choreography Models 117

be created on receiving message n from participant P1 as specified by the
related message connector. The definition of participant start activities
within our formal model is summarized in Definition 4.16.

Definition 4.16 (Participant Start Activities)
A choreography activity having no incoming control connectors and
an incoming message connector is called participant start activity. In
addition, a choreography start activity is by definition also always a
participant start activity.
Let N be the set of activities defined in a choreography model C and
let R ∈ P (N) be a participant, we denote by N ′(R) the set of all start
activities of a participant R:

A∈ N ′(R) :⇔ A∈ N ′

∨ (A∈ R∧ {e ∈ E | π2(e) = A}= ;

∧
⋃

B∈N , m∈M (V)
∆M (B, A, m) 6= ;)

�

Wewill further discuss related aspects regarding choreography and process
instances in Section 4.2.7 when introducing the correlation of messages and
data objects with choreography instances.

4.2.6 Data Flow

After introducing control flow and message flow which allow us to specify
partial orders of activities within participants as well as conversations and
message exchanges across participants, a notion for the specification of the
data flow within a choreography model is missing. Beside the data flow
between the activities of a choreography participant which is quite similar
to the definitions at the level of PM-Graphs as introduced by Leymann and
Roller [LR00], we add our notion for cross-partner data flows which allows
us to specify intra-participant as well as inter-participant data flow in a

118 4 | Formal Model for Data-Aware Choreographies

P1 P2

Data Object

d
u
x

∆C (Bk,d)
Data Connector

∆C (d,Ai)
Data Connector

Activity Ai

OC

a b

Data Maps

y z

Activity Bk

IC

Data Maps

Data Maps ∆C (Bk,Bk+1)
Data Connector

Figure 4.12: Visual representation of data connectors to define the exchange
of data element values between activities and data objects.

seamless manner within choreography models as discussed in Section 3.2.
Therefore, in this section we introduce the specification of data flow between
the data containers of a choreography, participant, activity or predicate
introduced in Section 4.2.1.3 and the cross-partner data objects presented
in Section 4.2.1.5 as part of our formal model for CM-Graphs.

4.2.6.1 Data Connectors

Figure 4.12 depicts our notion for representing the flow of data within CM-
Graphs via so-called data connectors. For the definition of data connectors
within a CM-Graph, we build on top of the definition of data connectors
introduced by Leymann and Roller [LR00] for PM-Graphs. Therefore, the
definition of a data connector has to prescribe which activities or predicates
expect input data from which other activities or data objects and how the
data elements of an input container are composed from data elements of

4.2 | Data-Aware Choreography Models 119

the output containers of these other activities or the data elements of a data
object, respectively. The former represents the data dependencies within the
choreography model and the latter represent the data mappings, i. e., the
mapping between data containers of activities, predicates and data objects.
Based on that, a data connector is a directed edge between an activity

or data object and another activity, predicate or data object as shown in
Figure 4.12. The required data mappings can be defined within our formal
model by specifying tuples of data elements (v1, v2) with v1 ∈ (oC(A) ∪ d)
and v2 ∈ (ιC(B) ∪ e) for an activity A, an activity or predicate B and data
objects d, e. The set of all such tuples of data elements specified, for example,
between activities A and B is denoted as ∆C(A, B). The operational seman-
tics of adding a tuple (v1, v2) to ∆C(A, B) is that when the input container
of activity B is materialized at runtime, the data element v2 of the input
container ιC(B) will receive a copy of the actual instance, i. e., the data value,
of data element v1 of the output container oC(A). According to this behavior,
an element of the set ∆C(A, B) is called a data map. To bring everything
together, our formal model defines a so-called data connector map ∆C in
Definition 4.17 which associates with each tuple (A, B) the set ∆C(A, B). The
same applies to the specification of data flow between an activity and a data
object. For example, the data connector between data object d and activity
Ai shown in Figure 4.12 represents a data dependency of the activity on the
data object and the underlying data mappings. This is summarized in the
data connector map ∆C(d, Ai) = {(u, b)}. Based on this map, data element
b of the input container ιC(Ai) will receive a copy of the actual instance of
data element u of data object d as soon as the input container of activity Ai

is materialized at runtime.

Definition 4.17 (Data Connector Map)
Let A∈ N be an activity, let B ∈ N ∪𝒞 be an activity or a predicate, and
let d, e ∈ D(V) be data objects. The map

120 4 | Formal Model for Data-Aware Choreographies

∆C : (N ∪D(V))× (N ∪ 𝒞 ∪D(V))→

⋃

A∈N , B∈N∪𝒞,
d,e∈D(V)

(℘(oC(A)× ιC(B))∪℘(d × ιC(B))

∪℘(oC(A)× d)∪℘(d × e))

satisfying the conditions

1. ∀R1, R2 ∈ P (N) ∀A∈ R1 ∀B ∈ R2 :∆C(A, B) 6= ; ⇒ R1 = R2

2. ∀A∈ N ∀B ∈ (N ∪ 𝒞) :∆C(A, B) ∈ ℘(oC(A)× ιC(B)),

3. ∀d ∈ D(V) ∀B ∈ (N ∪ 𝒞) :∆C(d, B) ∈ ℘(d × ιC(B)),

4. ∀A∈ N ∀d ∈ D(V) :∆C(A, d) ∈ ℘(oC(A)× d),

5. ∀d, e ∈ D(V) :∆C(d, e) ∈ ℘(d × e),

6. ∀A1, A2 ∈ N :∆C(A1, A2) 6= ; ⇒ A2 is reachable from A1,

7. ∀A2 ∈ N ∪D(V) : (x , z), (y, z) ∈
⋃

A1∈N∪D(V)
∆C(A1, A2)⇒ x = y

is called a data connector map. An element (v1, v2) ∈∆C(A, B) is called
a data map. The set of all data connectors E∆C

is defined as

E∆C
:= {(A, B,∆C(A, B)) ∈

(N ∪D(V))× (N ∪ 𝒞 ∪D(V))×℘(V × V) |∆C(A, B) 6= ;} �

As shown in Definition 4.17, certain restrictions apply to data connector
maps or data connectors in general which we discuss in the following. Con-
dition 1 ensures that a data connector representing intra-participant data
flow only exists between two activities associated to the same participant,
since cross-partner data flow is specified through data objects. Conditions 2
ensures that data connectors between activities or an activity and a predicate
only specify data maps between the output containers of the activity the
data connector originates from and the input container of the activity or

4.2 | Data-Aware Choreography Models 121

predicate it points to. Conditions 3 and 4 ensure the same for data con-
nectors representing inter-participant, i. e., cross-partner data flow. This
ensures that only data maps are specified between the data elements of
the data object a data connector originates from to the input container of
the activity or predicate it points to or between the output container of the
activity it originates from to the data elements of the data object it points to,
respectively. In addition, condition 5 ensures that a data connector between
two data objects specifies only data maps between the data elements of
these data objects. Regarding the data flow between activities as defined by
Leymann and Roller [LR00] for PM-Graphs, an activity B can only expect or
depend on input data from an activity A, if A is executed before B, i. e., A is
a predecessor of B or in other words there is a control flow path from A to B
and therefore B is reachable from A at the level of the CM-Graph. Therefore,
condition 6 in Definition 4.17 enforces that a data connector between two
activities can only exist, if there is a control flow specified between the source
and the target node of the data connector. Finally, condition 7 prohibits
two different data maps from having the same data element as target. As
discussed by Leymann and Roller [LR00], this guarantees the determinism
of the formal model since it avoids conflicts and ambiguity during runtime
when data container instances have to be composed and materialized based
on the specified mappings and potentially multiple data maps could provide
their source data element instances to copy them to the specified target data
element. Therefore, all defined data connectors have to always provide a
clear and conflict free set of data maps.

4.2.6.2 Choreography and Participant Data Connectors

While normal data connector maps specify the data flow within and between
participants of a choreography model, the so-called choreography data con-
nector map introduced in Definition 4.18 allows to specify input and output
data of the choreography model as a whole and its participants. Therefore,
our definition builds on top of the process data connectors introduced by Ley-
mann and Roller [LR00] at the level of PM-Graphs to enable the specification

122 4 | Formal Model for Data-Aware Choreographies

of data flow between defined process inputs and outputs and respective
activities processing or producing them, respectively. In accordance, at the
level of CM-Graphs, choreography data connectors allow the specification of
inputs and outputs of participants as well as the choreography model and
how the data elements of the input containers of the choreography model
or its participants are copied to data elements of data objects or the input
containers of the choreography’s participants, activities or predicates. In
the same way, choreography data connectors allow the specification of how
data elements of data objects or from the output containers of participants
or activities are copied to data elements of the output container of a par-
ticipant or the choreography model. The main purpose of choreography
data connectors is therefore passing of data as an input to an instance of a
choreography model during choreography instantiation as well as providing
the specified result data on the termination of the choreography instance.
Since the message-based invocation of choreography models introduced in
Section 4.2.5 encompasses the passing of input and output data, it can be
seen as a specialized form of providing choreography input data and return-
ing results to an initial requester or another party. However, the concept
of choreography data connectors summarized in Definition 4.18 enables to
specify such input and output data dependencies and their related data map-
pings in an abstract and generic manner and is therefore not bound to any
specific concept nor technology on how the data is provided or transported.
Figure 4.13 shows our visual notation for such choreography data connec-

tors and how they are used to specify input and output data of a choreography
model and its participants. Therefore, they extend the visual notation of
data connectors also shown in Figure 4.13 by adding a black circle to the
source of the arrow connecting either the choreography boundary with a
data object or participant or the participant boundary with a data object,
activity or predicate. For example, to model the data flow from a choreo-
graphy to a participant input, a choreography data connector represented
by the choreography data connector map −→∆C(C ,P1), is added between the
boundary of the choreography and participant P1 as depicted in Figure 4.13.
For copying data elements of the output of participant P1 to a data object

4.2 | Data-Aware Choreography Models 123

 Choreography C

OC

a b

c e

t

Participant P1

-

Activity Ai

IC

OC

Activity Ak

IC

OC

Data Object

d
...
x

∆C (P1,d)
⟶

∆C (C,P1)

Choreography
Data Connector
⟶

Choreography Data Maps

∆C (P1,Ai)
⟶

∆C (Ak,P1)
⟶

∆C (Ai,Ak)
Data Connector

Figure 4.13: Visual representation of choreography data connectors and
their data maps to support forwarding of choreography input
and output data.

124 4 | Formal Model for Data-Aware Choreographies

d, a choreography data connector represented by the choreography data
connector map −→∆C(P1, d), is added between the boundary of the participant
P1 and the data object as depicted on the lower right of Figure 4.13. We
also allow choreography data connectors from data-aware choreography
models and their modeled participants to data objects to support the reading
and writing of data from choreography and participants’ input and output
containers from and to data objects, respectively. The idea behind these spe-
cial type of data connectors is not only to enable the distribution of globally
relevant choreography input or output data, it furthermore enables modelers
to defer the decision which concrete activity is reading or writing data from
or to a data object to the refinement phase (i. e., refinement of generated
abstract process models with process internal data flow between activities)
discussed in Section 3.3.3. By using the input and output containers of
participants as a kind of abstraction layer, modelers can add data elements
to these containers, if they know that corresponding data is required or
produced by a participant without the necessity to specify which activity
is providing or consuming the data. For example, in some cases the corre-
sponding activities are not known or modelers would not like to add them
at the level of the choreography. Therefore, they can introduce a data object
to specify that specific data will be available for other participants without
explicitly stating how this data is consumed or produced. The corresponding
activities and logic is therefore only added to the generated process models
after the transformation of the choreography by each individual party during
the process refinement phase.
Definition 4.18 provides the notion for the specification of such choreo-

graphy data connector maps within our formal model for CM-Graphs.

Definition 4.18 (Choreography Data Connector Map)
Let C ∈ C be a choreography model, let N be the set of all activities of
C , let D(V) be the set of all data objects of C , and let P (N) be the set
of all participants of C . The map

4.2 | Data-Aware Choreography Models 125

−→
∆C : (N ∪D(V)∪P (N)∪ {C })× (N ∪D(V)∪P (N)∪ {C })→

⋃

A∈N , d∈D(V),
R∈P (N)

(℘(ιC(C)× ιC(R))

∪℘(oC(R)× oC(C))

∪℘(ιC(R)× ιC(A))

∪℘(oC(A)× oC(R))

∪℘(d × ιC(R))

∪℘(oC(R)× d)

∪℘(ιC(C)× d)

∪℘(d × oC(C)))

satisfying the conditions

1. ∀R ∈ P (N) :
−→
∆C(C , R) ∈ ℘(ιC(C)× ιC(R)),

2. ∀R ∈ P (N) :
−→
∆C(R,C) ∈ ℘(oC(R)× oC(C)),

3. ∀R ∈ P (N) ∀A∈ R :
−→
∆C(R, A) ∈ ℘(ιC(R)× ιC(A)),

4. ∀R ∈ P (N) ∀A∈ R :
−→
∆C(A, R) ∈ ℘(oC(A)× oC(R),

5. ∀R ∈ P (N) ∀d ∈ D(V) :
−→
∆C(d, R) ∈ ℘(d × ιC(R)),

6. ∀R ∈ P (N) ∀d ∈ D(V) :
−→
∆C(R, d) ∈ ℘(oC(R)× d),

7. ∀d ∈ D(V) :
−→
∆C(C , d) ∈ ℘(ιC(C)× d),

8. ∀d ∈ D(V) :
−→
∆C(d,C) ∈ ℘(d × oC(C)),

9. ∀R ∈ P (N) ∀d ∈ D(V) ∀B ∈ R : (x , z), (y, z) ∈ ℘(ιC(C) ×
ιC(R)) ∪ ℘(ιC(R) × ιC(B)) ∪ ℘(d × ιC(R)) ∪ ℘(ιC(C) × d) ∪
⋃

A∈N∪D(V)
∆C(A, B)⇒ x = y

10. (x , z), (y, z) ∈
⋃

R∈P (N), B∈R
(℘(oC(B)×oC(R)∪℘(oC(R)×oC(C)))∪

⋃

R∈P (N), d∈D(V)
(℘(oC(R)× d)∪℘(d × oC(C)))⇒ x = y

126 4 | Formal Model for Data-Aware Choreographies

is called a choreography data connector map. An element (v1, v2) ∈−→
∆C(C , R) is called a choreography data map. �

The conditions listed in Definition 4.18 are similar to the ones discussed
for data connectors in general in the previous section. Therefore, each
of the conditions is only shortly discussed in the following. Conditions 1
and 2 ensure that a choreography data connector specifies only data maps
between the input containers of the choreography model it originates from
to the input container of the participant it points to or between the output
containers of the participant it originates from to the output container of
the choreography model it points to, respectively. Conditions 3 and 4 do
the same at the level of the participants, there only data maps between
the input container of a participant and of one of its contained activities
or between the output container of a participant’s activity and the output
container of the participant itself are specified as part of a choreography data
connector, respectively. The third group of conditions, condition 5-9, restrict
the specification of choreography data connectors with data objects as source
or target. Therefore, conditions 5 and 6 ensure that a choreography data
connector specifies only data maps between the data object it originates from
to the input container of the participant it points to or between the output
container of the participant it originates from to the data object it points to,
respectively. To ensure that choreography data connectors specify only data
maps between the input container of the choreography they originate from to
the data object they point to or between the data object they originate from
to the output container of the choreography model they point to, respectively,
conditions 7 and 8 are introduced. Finally, conditions 9 and 10 prohibit
two different data maps from having the same data element as target to
avoid conflicts and ambiguity during runtime and therefore guarantee the
determinism of the formal model. In addition, condition 9 enforces that the
specified data maps of a choreography data connector are not in conflict,
i. e., having the same target data element, with the ones defined as part of
the data connectors between the activities within participants.

4.2 | Data-Aware Choreography Models 127

4.2.7 Correlation of Messages and Data Objects

One of the core concepts of Business Process Management (BPM) is the
execution of work according to a specified business process model. Therefore,
BPEs provide capabilities to instantiate available business process models
multiple times and manage their concurrent execution. Each of the process
instances operates on a specific context, i. e., the process data as specified
within the underlying model (cf. Section 4.2.1). While inside a BPE, the
different instances of a process model are technically identified through an
instance identifier (instance id) by default, from the outside world and also
across multiple distributed BPEs a general mechanism is required to somehow
identify the right target process instance, i. e., the context or process data,
to route incoming messages to or read from and write to cross-partner data
objects. For short, a mechanism for the correlation of messages and data
objects to process instances across multiple BPEs is required.
Since within this work, the overall collaboration between multiple, inde-

pendent participants is modeled through a data-aware choreography model,
correlations can and should be modeled as part of the choreography model to
enable both, the correlation of data objects and messages to a choreography
instance as a whole, as well as, correlation of data objects and messages to
process instances within the conversations of the private process models a
choreography model is transformed to. This two-level correlation is required,
because for each created choreography instance, an instance of each of the
interconnected participant process models is created and executed. This
requires to identify a choreography instance as a whole, for example, to
associate data or send messages from the outside to it, i. e., data or messages
being not modeled as part of the private process models, e. g., a choreo-
graphy instantiation request or a data object used as choreography input
(cf. Section 4.2.6.2). We will introduce an example to discuss this in more
detail later in the section.
Established BPM standards such as BPMN and BPEL provide already capa-

bilities and mechanisms for message correlation by introducing correspond-
ing modeling constructs, namely correlation keys (BPMN) or correlation sets

128 4 | Formal Model for Data-Aware Choreographies

(BPEL). We use the term correlation set in the following. The overall idea is
to rely on the available business data specified within the process models
and being part of messages to be exchanged instead of introducing artificial,
implementation-specific correlation tokens. Therefore, modelers can specify
a set of characteristical properties, i. e., a subset of defined process data,
which allows to uniquely identify a matching context, i. e., a process instance
during runtime. Specifying correlation sets can be compared to defining a
primary key for a database table.
To enable the matching of messages and process instances during runtime

using a correlation set, as a second step, modelers have to specify mappings
between messages and a defined correlation set. Therefore, the business
data exchanged as content of a message is mapped to one of the properties of
the target correlation set. During runtime, this mapping allows to extract all
business data relevant for correlation, called correlation data from a message,
combine it to an instance of the modeled correlation set and to compare it
with the correlation set of a process instance. If both correlation set instances
contain the same data and therefore are equal, the message is forwarded to
this process instance. This enables a BPE to route an incoming message to
the right process instance, if multiple instances of the same process model
are running in parallel.
Due to the fact that each process model is often not only interacting with

one other process model and therefore participates in multiple conversations
where different business data are exchanged, often multiple correlation sets
have to be specified together with corresponding mappings to messages. In
the context of this work, we build on top and reuse the existing concepts for
correlation from the BPMN [BPMN] and BPEL [BPEL] standard wherever
possible. While abstracting technology specific parts, e. g., correlation prop-
erty definition using the Web Service Description Language (WSDL) [WSDL]
in BPEL, we focus on the core modeling constructs and mechanisms required
for enabling correlation at a BPE. For the sake of simplicity, we only introduce
correlation sets at the level of the choreography model as a whole. How-
ever, this can be extended in future work when necessary to further allow
the definition of correlation sets at the level of participants, for example,

4.2 | Data-Aware Choreography Models 129

cs

u
x

Figure 4.14: Visual representation of a correlation set.

to support use cases where multiple varying correlation sets are required
only at the level of single participants to enable instance correlation on an
conversation-basis without polluting the overall choreography model with
such details. The visual representation of such a correlation set as part of
our graphical notation is shown in Figure 4.14.
Definition 4.19 gives our definition of a correlation set as a collection of

data elements which represent the underlying correlation properties.

Definition 4.19 (Correlation Sets and Correlation Properties)
Let V be the set of all data elements defined in a choreography model
graph C ∈ C, we denote by CS(V) ⊆ ℘(V) \ ; the set of all correlation
sets defined within C . Each member of CS(V) is given by its name cs
and contains a set of so-called correlation properties, defined through
the referenced data elements. �

To specify the above discussed mappings between messages or data objects
and a defined correlation set, we introduce a corresponding correlation set
property map ∆C P in Definition 4.20.

Definition 4.20 (Correlation Set Property Map)
Let cs ∈ CS(V) be a correlation set, let m ∈M (V) be a message, and
let d ∈ D(V) be a data object. The map

130 4 | Formal Model for Data-Aware Choreographies

∆C P : CS(V)× (M (V)∪D(V))→
⋃

cs∈CS(V), m∈M (V),
d∈D(V)

(℘(cs×m)∪℘(cs× d))

satisfying the conditions

1. ∀cs ∈ CS(V) ∀m ∈M (V) :∆C P(cs, m) ∈ ℘(cs×m),

2. ∀cs ∈ CS(V) ∀d ∈ D(V) :∆C P(cs, d) ∈ ℘(cs× d),

3. ∀x ∈ (M (V)∪D(V)) :

(cp, v1), (cp, v2) ∈
⋃

cs∈CS(V)
∆C P(cs, x)⇒ v1 = v2,

4. ∀cs ∈ CS(V) ∀x ∈ (M (V)∪D(V)) :

∆C P(cs, x) 6= ; ⇒
�

⋃

cp∈cs, v∈x
(cp, v)

�

=∆C P(cs, x)

is called a correlation set property map. An element (cp, v) ∈∆C P(cs, x)
is called a correlation property map. �

Condition 1 and 2 ensure that a correlation set property map specifies
only mappings between the data elements of the correlation set, i. e., its
correlation properties, and the data elements of a message or data object,
respectively. Condition 3 of Definition 4.20 defines that each correlation
property cp of a correlation set cs is mapped to exactly one data element v
of a message or data object within a correlation set property map ∆C P(cs, x).
This avoids data conflicts during runtime and guarantees that a correlation
property has a well-defined value. Condition 4 defines that if there is a
correlation set property map ∆C P(cs, x) specified between a correlation
set cs and a data object or message x , then this map has to contain one
correlation property map for each of the correlation properties cp of the
correlation set cs. This ensures an all or nothing semantics during runtime,
i. e., if a correlation set is initialized, it is guaranteed that all of its correlation
properties have a well-defined value to be used for instance correlation.

4.2 | Data-Aware Choreography Models 131

Finally, a notion for the specification when correlation has to take place
during runtime is required. Therefore, the defined correlation sets have to
be mapped to the activities which provide or consume the business data to
or from messages and data objects to be used for instance correlation which
is reflected through the definition of corresponding correlation set property
maps between the underlying correlation set and respective messages or
data objects. To get a better idea of the overall correlation concept and the
interrelation of the different modeling constructs, Figure 4.15 presents an
example choreography model we will discuss in more detail in the following.
The depicted correlation set cs has a correlation property u defined as

well as respective correlation set property maps which specify which of the
data elements of data object d and message m are used for correlation.
This means the value of which data elements has to be compared to the
values of which correlation properties of the referenced correlation set to
identify the right choreography instance the message or data object belongs
to. The defined correlation set property maps ∆C P(cs, m) and ∆C P(cs, d)
therefore provide the respective mappings between the correlation property
u of the correlation set cs and the data element u of data object d and
message m, respectively. This means, ∆C P(cs, m) = {(u, u)} and ∆C P(cs, d) =
{(u, u)}. Based on that, the correlation set allows to hold all business data
required for instance correlation, i. e., values of defined correlation properties,
and the correlation set property maps specify which data elements of a
message or data object provide the required correlation property values
during runtime. As introduced above, the missing part is when and how a
defined correlation set has to be instantiated during runtime to enable its
use for instance correlation by comparing the data element instances of the
message or data objects referenced in the defined correlation set property
maps to the correlation property values of the created correlation set instance.
Therefore, we introduce a correlation map ∆CS which allows to associate one
or more correlation sets to an activity which is either a sending or receiving
communication activity, i. e., has an outgoing or incoming message connector,
or is reading or writing to a data object, i. e., has an incoming or outgoing
data connector with a data object as source or target.

132 4 | Formal Model for Data-Aware Choreographies

 Choreography C

OC

IC

P1 P2

m

u x
Message

∆M (Ai,Bk,m)

Activity Ai Activity Bk
Message Connector

u

u

Data Object

d
u
x

∆C (Bk,d)
Data Connectorcs

u

Correlation Set

Correlation

∆CS (Ai)

Correlation Set Property Map

∆CP (cs,d)

∆CP (cs,m)

Correlation
Property M

aps ∆CS (Bk)

Figure 4.15: Example for a choreography model with a correlation set and
correlation property maps to correlate messages and data ob-
jects to choreography and process instances.

The underlying operational semantics of such a correlation map are as
discussed above. For example, in Figure 4.15 a correlation map ∆CS(Ai) for
the sending communication activity Ai and a correlation map ∆CS(Bk) for
the receiving communication activity Bk is specified. As soon as the sending
communication activity Ai is scheduled, its input container is materialized
and a copy of the containing data element u is assigned to data element u
of message m. In addition, based on the defined correlation map ∆CS(Ai),
the correlation set cs is initialized by copying the value of data element
u of the message m to the correlation property u of the correlation set

4.2 | Data-Aware Choreography Models 133

according to the defined correlation set property map ∆C P(cs, m) = {(u, u)}
between the correlation set and the message. The instantiated correlation
set cs is then immutable, i. e., all of its correlation property values cannot
be changed anymore and become constant values until the choreography
instance is terminated. This is important to guarantee a correct and reliable
identification of a choreography or process model instance throughout its
whole life time. When participant P2, i. e., the BPE executing the instance
of the private process model representing the participant, receives message
m, instance correlation takes place in order to identify the right process
instance to enable processing message m by activity Bk in the right context.
Therefore, the BPE compares the value of data element u of message m
with the correlation property u of its instance of the correlation set cs to
identify the right process instance to forward the message for processing it.
The same applies for the correlation of data object d, here the correlation
set is mapped to activity Bk which writes data elements from its output
container to the data object as specified through data connector ∆C(Bk, d).
The correlation of data objects and choreography or process instances during
choreography runtime within the TraDE Middleware is discussed in more
detail in Chapter 5. As outlined above, in general a choreography instance
has one or more correlation sets which enable a correct instance correlation
throughout different conversations between the choreography participants
through the specified correlation maps. The discussed example choreography
depicted in Figure 4.15 only presents one example scenario of a conversation
with related correlation to provide a better idea of how the mechanism
or concept of correlation works. However, there exist a huge variety of
different, also way more complex conversation scenarios, e. g., as discussed
by Barros, Dumas, and ter Hofstede [BDH05], which may also have an effect
on instance correlation, e. g., when a correlation set has to be instantiated
or what happens if required data values are missing. Since this is not in
the scope of this work, we refer to the BPMN [BPMN] and BPEL [BPEL]
standard modeling notations which provide further insights on the concept
of correlation as well as possible cases and how to represent them within
a choreography or process model to enable a proper and reliable instance

134 4 | Formal Model for Data-Aware Choreographies

correlation during model execution.
Definition 4.21 summarizes our notion for the specification of mappings

between activities and correlation sets in form of a correlation map ∆CS .

Definition 4.21 (Correlation Map)
Let A, B ∈ N be activities, let cs ∈ CS(V) be a correlation set, let m ∈
M (V) be a message, and let d ∈ D(V) be a data object. The map

∆CS : N → ℘(CS(V))

satisfying the conditions

1. ∀A ∈ Nsend ∀B ∈ Nreceive ∀m ∈ M (V) : ∆M (A, B, m) 6= ; ⇒
∆CS(A) 6= ; ∧∆CS(B) 6= ; ∧ (∆CS(A)∩∆CS(B)) 6= ;,

2. ∀A, B ∈ N ∀d ∈ D(V) : ∆C(A, d) 6= ; ∧ ∆C(d, B)) 6= ; ⇒
∆CS(A) 6= ; ∧∆CS(B) 6= ; ∧ (∆CS(A)∩∆CS(B)) 6= ;,

3. ∀x ∈ (M (V) ∪D(V)) ∀A ∈ N : (
⋃

B∈Ncom

∆M (A, B, x) ∪∆C(A, x) ∪

∆C(x , A)) 6= ; ⇒
⋃

cs∈∆CS(A)

⋃

cp∈cs,
v∈x

(cp, v) ∈∆C P(cs, x)

is called a correlation map which associates one or more correlation
sets to an activity. �

Condition 1 of Definition 4.21 specifies that, if a message connector map
∆M (A, B, m) between a sending communication activity A and a receiving
communication activity B exists, a correlation set property map ∆CS has to
be specified for both activities and both activities have to map at least to
one identical correlation set. The correlation sets to which both activities
are mapped through their correlation set property maps are the ones used
for message correlation in conversations realized by these activities during
choreography runtime. Condition 2 guarantees the same for data objects.
This means, if a data connector map ∆C(A, d) between an activity A and a
data object d (write data) or a data connector map ∆C(d, B) between a data

4.2 | Data-Aware Choreography Models 135

object d and an activity B (read data) exists, a correlation set property map
∆CS has to be specified for both activities. Furthermore, reading and writing
activities pointing to the same data object through their data connectors,
have to contain at least one matching correlation set in their correlation
set property maps. In addition, condition 3 enforces that if a correlation
map ∆CS for an activity A is specified, then all correlation properties cp of
the associated correlation sets (cs ∈∆CS(A)) have to be mapped to a data
element of the message to be send or received or the data object to be read
or written by the activity as part of a correlation property map ∆C P(cs, x).
In other words, condition 3 guarantees that all properties of a correlation set
can be successfully instantiated during runtime by copying the values of the
data elements of a message or data object as referenced in the correlation
set property maps specified for the correlation set.

4.2.8 Choreography Model Graph

The combination of all definitions of the previous sections produces the
overall definition of a CM-Graph shown in Definition 4.22 that represents
the syntax of our formal model of data-aware choreographies. In the scope
of this work we will not present definitions for staff assignment as well as
exit and join conditions and therefore refer to the PM-Graph metamodel
introduced by Leymann and Roller [LR00]. However, these definitions can
be easily transferred one to one into our CM-Graph metamodel.

Definition 4.22 (CM-Graphs)
A tuple

GC = (V, ιC , oC ,M (V), CS(V),D(V),µD ,ρD , N ,Ψ ,P (N),

µP , E,𝒞,∆M ,
−−→
∆M ,∆C ,

−→
∆C ,∆C P ,∆CS)

is called a data-aware choreography model graph, or CM-Graph for
short, representing a choreography model C ∈ C. �

136 4 | Formal Model for Data-Aware Choreographies

Choreography C

Input Containers

Output Containers

+

Choreography C

x

-
y z

a b c

d e

t

Participant P1

+ f

u

Participant P2

+g

w

Participant P3

+
v

Figure 4.16: Visual representation of a choreography model graph and its
participants.

Figure 4.16 depicts our visual representation of a choreography model
graph of a choreography C . On the left of the figure, a collapsed choreo-
graphy shape, indicated by the plus sign at the bottom, with its defined
inputs and outputs in form of respective data containers is shown. The
other shape shows an expanded choreography with a collapsed version of its
participants as well as their input and output data containers as presented
in Section 4.2.3. For example, collapsing all participants of a choreography
model can help to get a better overview of the specified message connectors
and their associated messages without showing all participant-specific de-
tails such as source and target activities, participant internal data flow or
correlation-related definitions. A more detailed visual representation of a
choreography model using our formal model and visual notation is presented
in the initial example depicted in Figure 4.1.
According to the definition of control flow in Section 4.2.4, message flow

in Section 4.2.5, and data flow in Section 4.2.6, a choreography model graph
GC encompasses three graphs, one for each type of specified connectors. The
following list provides a definition for each of those graphs:

4.2 | Data-Aware Choreography Models 137

1. The control flow graph

GCcont rol
= (N , E, V,P (N),µP , ιC , oC ,𝒞).

2. The message flow graph

GCmessage
= (Ncom,P (N),µP , E∆M , V,M (V), CS(V),∆M ,

−−→
∆M ,∆C P ,∆CS),

where the edge set E∆M represents message connectors according to
Section 4.2.5.1.

3. The choreography data flow graph

GCdata
= (N , E∆C

, V,D(V),µD ,ρD ,∆C ,
−→
∆C),

where the edge set E∆C
represents data connectors according to Sec-

tion 4.2.6.1.

4.3 Choreography Data Dependency Graphs

The formal model for CM-Graphs introduced in Section 4.2 enables the
specification of data-aware choreography models with our TraDE concepts
applied in form of cross-partner data objects and cross-partner data flows.
Within this section we introduce the notion of a choreograpyh data model
(CDM) and a choreography data dependency graph (CDDG) as introduced
in Chapter 3 as a prerequisite for the transformation of a CM-Graph to
a collection of PM-Graphs in Section 4.5. Therefore, in Section 4.3.1 we
define a choreography data model based on the specified data objects of a
choreography model. In Section 4.3.2, we introduce how data dependencies
across participants, i. e., cross-partner data flows, specified in form of data
connectors between activities and data objects, are represented in form of a
choreography data dependency graph.

138 4 | Formal Model for Data-Aware Choreographies

4.3.1 Choreography Data Model

Within a CM-Graph data elements are defined to be used at the level of the
choreography, i. e., in form of data objects to be independent of participants,
as well as at the level of participants to define input and output containers
of participants and activities. While the data flow within participants will
be conducted by respective BPEs executing the refined participant process
models, the data flow across participants, i. e., the choreography data flow,
has to be handled from a global perspective, i. e., by our TraDE Middleware,
as described in Section 3.2. Therefore, in Definition 4.23 we introduce a
so-called choreography data model which consists of all defined cross-partner
data objects and the data elements on which they are build on.

Definition 4.23 (Choreography Data Model)
Let C ∈ C be a choreography model, let VD ⊆ V be the subset of all
choreography data elements used as part of a data object definition
within C , let D(V) be the set of all data objects of C , i. e., D(VD) =
D(V), and let µD and ρD the defined data object multiplicity and
deletion maps.
A tuple

CDM (C) = (VD ,D(VD),µD ,ρD)

is called a Choreography Data Model (CDM) representing the data
model of a given choreography model C , where

VD := {v ∈ V | ∃d ∈ D(V) : v ∈ d} �

4.3.2 Choreography Data Dependencies

To represent the data dependencies of a particular choreography model
C ∈ C, we introduce a special kind of directed, edge-labeled multigraph
GCDDG

based on our introduced choreography data model CDM (C), called
Choreography Data Dependency Graph (CDDG). The node set 𝒩 of GCDDG

4.3 | Choreography Data Dependency Graphs 139

consists of dependency nodes which are data objects, activities, conditions,
participants or the overall choreography model itself as shown in Defini-
tion 4.24. To distinguish between data dependency nodes that process
data (data consumers and producers, i. e., activities, conditions, participants,
and choreographies) from the ones that hold data, i. e., data objects, we
introduce the set of data processors Π.

Definition 4.24 (Data Dependency Nodes, Data Processors)
Let C ∈ C be a choreography model, let D(VD) be the set of all data
objects, let N be the set of all activities, let 𝒞 be the set of all conditions,
and let P (N) be the set of all participants of C , we define

• Π = N ∪ 𝒞 ∪P (N) ∪ {C } as the set of all data consumers and
producers of a choreography model C ∈ C, called data processors,
and

• 𝒩 = D(VD)∪Π as the set of all nodes being source or target of
data flow within C , which we call data dependency nodes, and

• VΠ as the set of all data elements being referenced as source or
target of a data connector map between an input or output data
container of a data processor Π and a cross-partner data object
d ∈ D(VD), and

• V̂ = VD ∪VΠ as the set of all data elements associated with a data
dependency node 𝒩 . �

The edge set ECDDG
of the choreography data dependency graph denotes all

identifiable data dependencies within C , specifying their source and target
data elements as edge labels, i. e., the read and write dependencies between
its nodes, as given by Definition 4.25.
Similarly to the choreography data model introduced above, the focus is on

cross-partner data flow and therefore data dependencies across participants
through cross-partner data objects. Participant-internal data flow, i. e., data

140 4 | Formal Model for Data-Aware Choreographies

connectors between activities or conditions, are therefore out of scope.

Definition 4.25 (Data Dependency Edges)
The set ECDDG

⊆𝒩 ×𝒩 × V̂ × V̂ is called the set of data dependency edges
of a choreography data dependency graph GCDDG

. For a data dependency
edge (A, B, s, t) ∈ ECDDG

from a node A to a node B of the node set, s ∈ V̂
is called source data element and t ∈ V̂ is called target data element
and the tuple (s, t) represent the label of the dependency edge. Each
data dependency edge denotes that during runtime the data value of
source data element s of source node A needs to be available at target
data element t of target node B.
Therefore, (A, B, s, t) ∈ ECDDG

:⇔

• A∈ D(V)∧ B ∈ (N ∪ 𝒞)∧ (s, t) ∈∆C(A, B), or

• A∈ N ∧ B ∈ D(V)∧ (s, t) ∈∆C(A, B), or

• A∈ D(V)∧ B ∈ D(V)∧ (s, t) ∈∆C(A, B), or

• A∈ D(V)∧ B ∈ (P (N)∪ {C })∧ (s, t) ∈
−→
∆C(A, B), or

• A∈ (P (N)∪ {C })∧ B ∈ D(V)∧ (s, t) ∈
−→
∆C(A, B). �

However, if participant-internal data flow is relevant, for example, when
analyzing potential optimizations for data placement, it can be easily added
by simply enriching the choreography data depencency graph with addi-
tional data dependency edges without changing anything else at the level of
the metamodel. The same applies for message-based data flow, i. e., data
elements passed through the exchange of messages between communication
activities of different participants. This can be an interesting topic for future
work, e. g., to evaluate collections of choreography models regarding their
data exchange through message flows towards identifying modeling best
practices in which scenarios the exchange of data across participants should
be modeled through cross-partner data flows or message flows.
According to Definition 4.25, each edge of the choreography data depen-

4.3 | Choreography Data Dependency Graphs 141

Choreography Data Dependency GraphChoreography
Data Model

d
a
b

Ai Bi

d
(vm,a) (a,vn)

 Choreography C

OC

IC

P1

P2

Activity A1

Activity Bk

Activity Ak

Activity B1

n

Ai
vm

Bi

vn

m

o

d
a
b

Figure 4.17: Example data-aware choreography model and its choreography
data dependency graph.

dency graph denotes a data dependency, i. e., read or write access, between
a data processor and a data element of a cross-partner data object specified
through a corresponding data connector or choreography data connector
within a CM-Graph. Therefore, for each data map of a data connector a
corresponding data dependency edge is constructed following the rules listed
in Definition 4.25. We denote data elements as sources and targets of a data
dependency edge since their instances contain the actual data values during

142 4 | Formal Model for Data-Aware Choreographies

runtime of an activities’ data container or a data object. Therefore, the data
maps of the specified data connectors are rolled out in order to identify and
represent all data dependencies defined within a data-aware choreography
model during transformation which we will further look into in Section 4.5.
This results in the directed multigraph GCDDG

shown in Definition 4.26
where potentially multiple directed edges between the dependency nodes
of the graph can exist, while each edge reflects another data map of a data
connector from or to a data object, i. e., a choreography data dependency.
Figure 4.17 shows an example choreography model and its respective

choreography data depencency graph. The choreography model contains
cross-partner data flows between participants P1 and P2 which is modeled
through the two data connectors between activities Ai , Bi and data object
d. The data maps underlying the two data connectors define that data
element vm is copied from the output container of activity Ai to data element
a of data object d and from there data element a is copied to data element
vn of the input container of activity Bi. The data dependencies between
the two participants are reflected via respective data dependency nodes
(cf. Definition 4.24) and data dependency edges (cf. Definition 4.25). The
resulting data dependency graph is shown at the bottom of Figure 4.17.

Definition 4.26 (Choreography Data Dependency Graph)
The tuple

GCDDG
= (Π, ECDDG

, VΠ ,

CDM (C)
︷ ︸︸ ︷

VD ,D(VD),µD ,ρD)

is called a Choreography Data Dependency Graph, or CDDG for short,
representing all data dependencies and the data model CDM (C) of a
choreography model C ∈ C, where GCDDG

is a directed multigraph with
node set 𝒩 =Π ∪D(VD) and edge set ECDDG

. �

4.3 | Choreography Data Dependency Graphs 143

4.4 Process Model Graphs and Staging Elements

The last prerequisite to introduce the transformation of a CM-Graph to a
collection of PM-Graphs in Section 4.5 is to shortly introduce the PM-Graphs
metamodel defined by Leymann and Roller [LR00] as well as required
extensions. The main focus is here on the staging elements outlined in
Section 3.3.3 to represent cross-partner data flows and references to the
related cross-partner data objects at the level of a PM-Graph to provide
the required runtime support for conducting cross-partner data flows via
the TraDE Middleware as outlined in Section 3.2.2. Therefore, within this
section we first introduce the notion of staging elements within our formal
model in Section 4.4.1 and based on that provide a summary of the extended
PM-Graph metamodel in Section 4.4.2.

4.4.1 Staging Elements

When transforming a data-aware choreography model to a collection of
private process models as introduced in Chapter 3, we have to translate
and represent the specified cross-partner data objects and the cross-partner
data flow at the level of the resulting process models. Therefore, we have to
extend the PM-Graph metamodel defined by Leymann and Roller [LR00] to
reflect the defined cross-partner data flows at the level of a process model.
As described in Chapter 3, the execution of the defined cross-partner data
flows is handled together by the TraDE Middleware and the BPE executing
the participant process models. To enable the BPEs to do so, the provided
participant process models need to contain required information about the
source or target data objects provided by the TraDE Middleware to exchange
data with. In the following, we therefore extent the PM-Graph metamodel
with so-called staging elements as outlined in Section 3.3.2 in the context of
the transformation phase of the choreography management life cycle. These
staging elements allow to specify required metadata within process models
to conduct the modeled cross-partner data flows.
Definition 4.27 summarizes the notion of staging elements. The set of all

144 4 | Formal Model for Data-Aware Choreographies

staging elements is denoted as Σ. Each staging element has to specify the
source or target data object of the cross-partner data flow it represents. In
addition, the mapping between the data elements of the referenced data
object and the data elements of the activities’ input or output container, the
staging element is associated to, has to be specified. If data should be pulled
from a data object at the TraDE Middleware to the associated activity’s input
container or data from the activity’s output container should be pushed to a
data object at the TraDE Middleware, is represented as staging method. To
enable the correlation of the underlying data object instances at the TraDE
Middleware and process instances at a BPE during choreography runtime,
as discussed in Section 4.2.7, corresponding correlation information in form
of a correlation set property map has to be specified as part of the staging
element. Furthermore, a staging element should support the specification
of a trigger condition and a fault handling strategy. The former allow to
specify under which conditions the data staging should take place, e. g.,
depending on the status of other activities or local data containers. The
latter enables the specification of fault handling behavior in cases where the
data staging, i. e., copying data element values between data objects and
activity data containers is not successful. In summary, a staging element
s ∈Σ is a 6-tuple comprising a reference to a data object d ∈ D(V), a set of
data maps (v1, v2) ∈ ℘(V × V), a staging method p ∈ ΣΨ , a correlation set
property map (see Definition 4.20), and an optional trigger condition t ∈ 𝒞T

and fault handling strategy f ∈ F .

Definition 4.27 (Staging Elements)
Let D(V) be the set of all data objects and V be the set of data elements
defined within a choreography model C , let ΣΨ be the set of staging
methods, let C P ⊆ ∆C P be the map of correlation set properties for
a referenced data object, let 𝒞T ⊆ 𝒞 be the set of trigger conditions,
and let F be the set of fault handling strategies with FM as the set of
fault handling strategy names and FV as the set of corresponding fault
handling strategy values, we denote Σ as the set of all staging elements

4.4 | Process Model Graphs and Staging Elements 145

Staging Element

Trigger Condition

Reference to Data Object

Fault Handling Strategies

Map to Data Container

Method

Correlation set prop. map

Figure 4.18: Visual representation of a Staging Element.

Σ ⊆ D(V)×℘(V × V)× C P ×ΣΨ × (𝒞T ∪⊥)× (F ∪⊥)

where

1. ΣΨ := {push,pull},

2. each trigger condition t ∈ 𝒞T is considered as a Boolean function
in its input container ιC(t) ⊆ V :

t : ×
v∈ιC (t)

DOM(v)→ {0, 1}

or the bottom symbol ⊥, if the trigger condition is undefined,

3. F ⊆ (FM × FV)∪⊥, using the bottom symbol ⊥ to represent an
undefined fault handling strategy. �

Figure 4.18 shows the visual representation of a staging element based
on which we introduce its different parts. The reference to a data object
d uniquely identifies one of the cross-partner data objects defined within
the choreography model as a source or target for data staging. The map to

146 4 | Formal Model for Data-Aware Choreographies

a data container is a set of data maps, i. e., a set of corresponding tuples
(v1, v2) ∈ ℘(V × V) which specify a mapping of the data elements of an
activity’s input or output container to the data elements of a data object
to read from or write to, respectively. To enable the correlation of data
object instances as described in Section 4.2.7, the staging element contains
the required correlation set property map. This map defines how the data
elements of the referenced data object relate to the correlation properties of
a defined correlation set.
With data elements of the data containers of an activity are copied from

or to a data object is specified via the staging method p ∈ΣΨ . As presented
in Definition 4.27 the set of staging methods comprises two methods: push
and pull. These methods specify how the staging between the referenced
data object and the input or output container of an activity should take
place during process execution. While push enables to copy values of a data
element value from an activity’s data container to a data object, pull supports
the copying of data element values from a data object to an activity’s data
container. As already mentioned, it is possible that multiple staging elements
can be associated to the same activity. This provides the ability to specify
reading and writing from or to different data objects and in addition enables
different data exchange and staging strategies by specifying corresponding
trigger conditions to support more complex scenarios.
A trigger condition t ∈ 𝒞T provides the means to define conditions that can

be evaluated to true or false and therefore to specify under which condition
a staging element should be scheduled during runtime. The underlying
Boolean expression can therefore refer to a variety of input sources, e. g.,
activity data containers, data objects or even the execution state of activities.
For example, a possible data-related trigger condition can be an expression
that checks if the value of a data element of an activity’s output container is
above a certain threshold and only if this is the case the respective staging
element is triggered which copies the value of the data element to the
referenced data object. An example for a control-related trigger condition
could be an expression that incorporates the state of other activities, e. g.,
activity B is completed. Trigger conditions may also introduce optimization

4.4 | Process Model Graphs and Staging Elements 147

potentials for future work, since they provide an entry point to introduce
the anticipatory and therefore proactive staging of data during runtime.
Furthermore, monitoring data from previous choreography executions may
be used to automatically generate or refine existing trigger conditions of
corresponding staging elements. If the trigger condition is undefined, i. e.,
t =⊥, by default the staging element is scheduled on every value change of
the referenced source data elements during runtime.
A fault handling strategy f ∈ F provides the means to specify how the BPE

or the TraDE Middleware should react if an exception or fault occurs during
data staging. Since fault handling of cross-partner data flow is not in the
scope of this work, we introduce in Definition 4.27 only how fault handling
strategies and respective values can be specified as part of a staging element.
To still get an idea how concrete fault handling strategies may look like, we
introduce FM := {retry,manual,handle} to informally describe an initial set
of strategies in the following. The retry strategy allows to specify a simple
retry counter that defines how often the staging should be retried until the
fault has to be escalated to the process level. Therefore, a fault handling
strategy based on retry may look like the following: f = (retry, 3).
By specifying a manual fault handling strategy for a staging element s, the

BPE will contact an agent or human user for the resolution of the fault or
a potentially underlying problem. To specify the target audience that may
be contacted in terms of a fault, a so-called staff query introduced within
the PM-Graph metamodel by Leymann and Roller [LR00] can be used as a
value. While the selected agent, e. g., an administrator, tries to identify, and
if possible solve, the underlying problem causing the fault, e. g., a problem
with the surrounding infrastructure so that maybe the TraDE Middleware
is not reachable by the BPE, the process instance is suspended and can be
continued after the problem is solved. A resulting fault handling strategy f
with a manual strategy may then look like the following: f = (manual, q).
Where q denotes a staff query which will return at any point in time i ∈ N a
set of agents q(i) ∈ ℘(A) with A as the set of all agents [LR00].
The handle strategy allows to reference complex fault handling logic that,

e. g., tries to rerun one or more activities which produce the required data

148 4 | Formal Model for Data-Aware Choreographies

or to resolve the underlying problems based on which the fault occurs. Such
complex fault handling logic can be specified, for example, in form of a
subprocess [KELU10], i. e., a process model with respective activities and
control flow specified as part of the parent process representing the cho-
reography participant. Therefore, the process modeling and fault handling
capabilities of corresponding process modeling languages and the related
BPE, e. g., using the fault handling mechanisms of BPMN [BPMN] or BPEL
[BPEL], respectively, can be used to specify data fault handlers providing
customized fault handling logic. An overview of fault handling within the
different layers of the web service stack is provided by [Kop+10]. In terms
of BPEL, Kopp et al. [Kop+11a] present a classification of a variety of BPEL
extensions which may be used to specify such complex fault handling logic
to associate it as a fault handling strategy value to a staging element. A
resulting fault handling strategy f with a handle strategy may then look like
the following: f = (handle, P), where P ∈ 𝒫 is a process model specified
using the PM-Graph metamodel which defines respective fault handling
logic. If the fault handling strategy is undefined, i. e., f =⊥, by default no
explicit staging-related fault handling takes place during runtime. Therefore,
staging-related faults will be propagated to the level of the process instance,
e. g., if the BPE tries to read from uninitialized data elements which should
have been initialized during staging by copying values from a data object,
the BPE may terminate the overall process instance with status faulted.
After introducing staging elements in Definition 4.27, they have to be

associated to respective data consumers or producers, i. e., activities, condi-
tions, or participants as a whole, as already outlined above. Therefore, we
introduce a staging element map σ which allows to associate one or multiple
defined staging elements to respective data consumers or producers. The
reason that more than one staging element can be associated is that cases
where data from one or more data objects is copied from or to a data con-
tainer of a data consumer or producer have to be supported accordingly. For
example, activity B3 of the choreography model shown in Figure 4.1 has a
reading data dependency and a writing data dependency to data object d.
Therefore, two staging elements with a reference to data object d and respec-

4.4 | Process Model Graphs and Staging Elements 149

tive data maps (α, m) and (t,β) are created and associated to the activity
during the transformation of the CM-Graph to a collection of PM-Graphs.
Before we have a closer look into the translation of data dependencies from
the level of a choreography model to a set of staging elements within the
resulting process models, we provide and discuss the definition of the above
introduced staging element map σ presented in Definition 4.28.

Definition 4.28 (Staging Element Map)
Let Π = N ∪ 𝒞 ∪ P (N) ∪ {C } be the set of all data consumers and
producers of a choreography (cf. Definition 4.24), and let Σ be the set
of all staging elements. The map

σ :Π→ ℘(Σ)

satisfying the condition

∀A∈Π :

�

⋃

d∈D(V)
∆C(A, d)∪∆C(d, A)

�

6= ; ⇒ σ(A) 6= ;

is called staging element map and associates with each activity
A ∈ N , condition p ∈ 𝒞, or participant R ∈ P (N) its data
staging elements, where a staging element has the following form:
(d, {(v1, v2)},pull, t, f) ∈Σ. �

The condition in Definition 4.28 guarantees that if a data consumer or
producer node at the level of the choreography model has an incoming or
outgoing data connector with a data object on the other end, a corresponding
staging element has to be associated to this node. The translation of data
connectors to staging elements will be discussed in Section 4.5 in detail.
Figure 4.19 shows a concrete example of a resulting staging element

associated to an activity Ai based on the respective data connector ∆C(d, Ai)
specified at the level of the choreography model depicted on the left of
the figure. Following the conditions of Definition 4.28 described above, the

150 4 | Formal Model for Data-Aware Choreographies

PM-Graph of Participant P1CM-Graph

P1

Data Object

d
u
x

∆C (d,Ai)
Data Connector

Activity Ai

OC

a b
Activity Ai

OC

a b

Staging Element

Trigger Condition

Ref. to Data Object: d

Fault Handling Strategies

Map to Data Cont.: {(u,b)}

Method: pull

Correlation set prop. map

Figure 4.19: Example of a Staging Element and its association to an activity
within a process model based on data connectors defined at
the level of the choreography model.

staging element references data object d and contains the specified data map
(u, b) of the data connector as well as indicates via the pull staging method
that data element values have to be requested at the TraDE Middleware to
copy them to the activities input container. Further details and dependencies
will be discussed in detail in the context of the transformation algorithm
presented in Section 4.5.

4.4.2 Process Model Graphs

Before the transformation is described in detail in Section 4.5, we first provide
a short summary of the adapted version of the formal model for PM-Graphs
defined by Leymann and Roller [LR00]. To reflect cross-partner data flow as
well as message exchanges across participants at the level of the resulting
process models, we add the respective elements introduced in the previous
sections to the PM-Graph model. Since we have not introduced definitions

4.4 | Process Model Graphs and Staging Elements 151

for staff assignment as well as exit and join conditions at the level of CM-
Graphs, they are also omitted from the compressed PM-Graph definition
presented in the following. Therefore, we refer to the work of Leymann and
Roller [LR00] for further details as well as the complete PM-Graph definition.
The PM-Graph definition shown in Definition 4.29 is reduced to only those
elements also used or introduced within this work.

Definition 4.29 (PM-Graph)
A tuple

G = (V, ι, o,M (V), CS(V),∆C P ,∆CS , N ,Ψ ,𝒞, E,∆,
−→
∆ ,Σ,σ)

is called a process model graph, or PM-Graph for short, representing a
process model P ∈ 𝒫 :⇔

1. V is a finite set of data elements (see Definition 4.1).

2. ι : N ∪ 𝒞 ∪ {G} → ℘(V) is called an input container map (cf. Defi-
nition 4.3).

3. o : N ∪ {G} → ℘(V) is called an output container map (cf. Defini-
tion 4.3).

4. M (V) is a finite set of messages send or received by the process
model (see Definition 4.4).

5. CS(V) is a finite set of correlation sets (see Definition 4.19).

6. ∆C P is the correlation set property map (see Definition 4.20).

7. ∆CS is the correlation map (see Definition 4.21).

8. N is a finite set of activities (cf. Definition 4.8).

9. Ψ : N → ℰ is called an activity implementation map (cf. Defini-
tion 4.9).

10. 𝒞 is a finite set of conditions, where each condition p is a map:
×

v∈ι(p)
DOM(v)→ {0,1}.

152 4 | Formal Model for Data-Aware Choreographies

11. E ⊆ N × N × 𝒞 is a set of control connectors (cf. Definition 4.12)
with the following properties:

a) E is unified, i. e., ∀e, e′ ∈ E : π1,2(e) = π1,2(e′)⇒ π3(e) =
π3(e′),

b) (N,E) is acyclic.

12. ∆ : N × (N ∪ 𝒞)→
⋃

A∈N , B∈N∪𝒞
℘(o(A)× ι(B)) is the data connector

map (cf. Definition 4.17), where

a) ∆(A, B) ∈ ℘(o(A)× ι(B)),

b) ∆(A, B) 6= ; ⇒ B is reachable from A,

c) ∀B ∈ N : (x , z), (y, z) ∈
⋃

A∈N
∆(A, B)⇒ x = y.

13. −→∆ : N →
⋃

A∈N
(℘(ι(P)× ι(A))∪℘(o(A)× o(P))) is the process data

connector map (cf. Definition 4.18), where

a) ∀A∈ N :
−→
∆ (A) ∈ ℘(ι(P)× ι(A))∪℘(o(A)× o(P)),

b) ∀B ∈ N : (x , z), (y, z) ∈ ℘(ι(P)×ι(B)∪
⋃

A∈N
∆(A, B)⇒ x = y,

c) (x , z), (y, z) ∈
⋃

B∈N
℘(o(B)× o(P))⇒ x = y.

14. Σ is a finite set of staging elements (see Definition 4.27).

15. σ : N →Σ is the staging element map (see Definition 4.28). �

4.5 Transformation of a CM-Graph to a Collection of
interconnected PM-Graphs

Based on our formal model for CM-Graphs introduced in Section 4.2 as well
as the extended PM-Graph metamodel presented in Section 4.4, we are now
able to specify the transformation of a data-aware choreography model to a
collection of interconnected process models to support the transformation

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 153

phase of the choreography management life cycle introduced in Section 3.3.
Before we go into details of the different steps of the overall transformation
process, we first describe the process as a whole as well as its source and
resulting artifacts. Figure 4.20 shows an example choreography model C
used as input to the transformation. Our goal regarding the transformation
is that data-related aspects specified at the level of a choreography model
are utilized wherever possible to generate and enrich the resulting process
models to reduce manual refinement efforts and avoid error-prone manual
translations between models. While within this work the application of
correctness checks, or model verification approaches in general, are out of
scope, such techniques may be applied in future work as a quality gate before
transformation. For example, [FMW22] introduce an approach for checking
the soundness of data-aware processes based on data petri nets which takes
the interplay of data and control flow into account. Such data-aware model
verification approaches can help to further reduce manual efforts and detect
errors as early as possible within the choreography management life cycle.
The transformation itself is performed in three steps as described in Sec-

tion 3.3. First, all cross-partner data flows, i. e., data objects and data con-
nectors, modeled within a choreography model are analyzed and distilled
into a corresponding choreography data model (see Definition 4.23) and a
choreography data dependency graph (see Definition 4.26) as shown at the
top right of Figure 4.20. The generated CDDG provides a straight-forward
representation of all data dependencies between choreography participants
and is therefore used later to enrich the generated process models regarding
their data perspective. For example, the data dependencies between activity
Ai of participant P1 and data object d specified through a corresponding
data connector between them is represented within the generated CDDG.
Therefore, for each of the data maps of the data connector a corresponding
data dependency edge between respective dependency nodes is added to the
graph. For the example shown in Figure 4.20, a data dependency between
the source data element vm of the output container of activity Ai and the
target data element a of data object b is added in form of a labeled edge
between the activity and data object node (cf. Section 4.3.2).

154 4 | Formal Model for Data-Aware Choreographies

Transformation

Choreography Data Dependency Graph

Process Model Graphs

Choreography
Data Model

d
a
b

Ai Bi

d
(vm,a) (a,vn)

P2

Activity Bk

Activity B1

Bi

Staging Element
Data Object:

d

Data Element Map:

(a,vn)
Method:

pull

P1

Activity A1

Activity Ak

Ai

Staging Element
Data Object:

d

Data Element Map:

(vm,a)
Method:

push

 Choreography C

OC

IC

P1

P2

Activity A1

Activity Bk

Activity Ak

Activity B1

n

Ai
vm

Bi

vn

m

o

d
a
b

vm

vn

Figure 4.20: Transformation of an example data-aware choreography model to a collection of private process
models and a choreography data dependency graph.

4.5
|Transform

ation
ofa

C
M

-G
raph

to
a

C
ollection

ofinterconnected
P

M
-G

raphs
155

In the second step, for each participant of the choreography model a new
PM-Graph is generated and the modeled control and message flows, e. g.,
activities, conditions, messages or control connectors, are copied from the
choreography model into the respective participant process model repre-
sented by a PM-Graph. For the choreography shown in Figure 4.20, a process
model P1 for choreography participant P1 and a process model P2 based
on participant P2 are generated. From the perspective of the underlying
metamodels, this can be seen as some kind of a view transformation since the
actual data remains the same, only the viewpoint of the definition changes.
On the level of the choreography model, the focus is on the global collab-

oration and interconnection of the modeled participants and at the level of
the process models, the focus changes to how an individual process model in-
teracts with external black-box entities (e. g., process models, services, etc.)
only specifying its internal control flow and based on that which messages
have to be sent to or received from other parties.
Finally, within the last step, all data dependencies to cross-partner data

objects collected in the CDDG are incorporated into the generated PM-
Graphs by enriching them with respective staging elements as described
in Section 4.4.1. Therefore, as shown in Figure 4.20 one staging element
is added to each of the activities Ai and Bi to represent their respective
data dependencies to data object d according to the generated CDDG of the
choreography model. In the following three sections, each of the introduced
steps is defined and presented in more detail.

4.5.1 Generating a Choreography Data Dependency Graph for a CM-Graph

Within the first step of the transformation process the cross-partner data
flows, i. e., data objects and data connectors, specified within a choreography
model are analyzed and distilled into a corresponding choreography data
model and a choreography data dependency graph. Therefore, Algorithm 4.1
defines how a choreography data model is generated from a CM-Graph of
an underlying choreography model.
As described in Section 4.3.1, a choreography data model CDM of a given

156 4 | Formal Model for Data-Aware Choreographies

Algorithm 4.1 Generating a choreography data model CDM for a given CM-
Graph GC representing a choreography model C
1: procedure GenerateCDM(GC)

2: VD ← {v ∈
V

π1(GC) | ∃d ∈
D(V)

π6(GC) : v ∈ d}
3: D(VD)← π6(GC)

4: µD ←
µD

π7(GC)

5: ρD ←
ρD

π8(GC)
6: CDM (GC)← (VD ,D(VD),µD ,ρD)
7: return CDM (GC) . The choreography data model
8: end procedure

CM-Graph GC consists of all defined cross-partner data objects and the data
elements they contain. This results in a very straight-forward algorithm for
the generation of such a CDM for a choreography model. First, in line 2 of
Algorithm 4.1 the set of data elements which are used as part of a data object
definition are identified and collected in the set VD . Therefore, we collect
all data elements from the set V which are used as part of a data object
definition, i. e., v ∈ d, with d ∈ D(V). To get the respective sets V and D(V)
of the CM-Graph GC we use the projection πi(GC) to get the i-th element
of the underlying CM-Graph tuple. In addition, to improve the readability
and ease the understanding to which set or map a projection refers to, we
add a bracket on top of each projection with the respective target set or map
throughout all algorithms in the following. The set of data objects can just
be used as is by extracting it via the projection π6(GC) from the tuple of the
CM-Graph GC passed as input to the algorithm.

The same applies for the defined data object multiplicity and deletion maps
which are also extracted via projection on lines 4 and 5 of the algorithm.
Finally, in line 6, the resulting choreography data model can be created
by wrapping the collected sets and maps into a respective 4-tuple CDM (GC)
which is then returned as a result.

Based on that, we can then define how a choreography data dependency

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 157

Algorithm 4.2 Generating a choreography data dependency graph GCDDG
for

a given CM-Graph GC representing a choreography model C
1: procedure GenerateCDDG(GC)
2: CDM (GC)← GenerateCDM(GC)
3: VΠ , ECDDG

← ; . Initialize required sets

4:
Πread := {A∈ (

N

π9(GC)∪
𝒞

π14(GC)∪
P (N)

π11(GC)∪{C })

| ∃d ∈
D(V)

π6(GC) :∆C(d, A)∪
−→
∆C(d, A) 6= ;}

. Data processors reading from a data object

5:
Πwrite := {B ∈ (π9(GC)∪π11(GC)∪ {C })

| ∃d ∈ π6(GC) :∆C(B, d)∪
−→
∆C(B, d) 6= ;}

. Data processors writing to a data object
6: ∆C = π17(GC) . Data connector map of GC

7:
−→
∆C = π18(GC) . Choreography data connector map of GC

8: for all A∈Πread ; d ∈ π6(GC) do . Extract read data dependencies
9: for all (u, x) ∈∆C(d, A)∪

−→
∆C(d, A) do

10: VΠ ← VΠ ∪ {x} . Add data elements of data processors to VΠ
11: ECDDG

← ECDDG
∪ {(d, A, u, x)} . Add a data dependency edge

12: end for
13: end for
14: for all B ∈Πwrite; d ∈ π6(GC) do . Extract write data dependencies
15: for all (y, v) ∈∆C(B, d)∪

−→
∆C(B, d) do

16: VΠ ← VΠ ∪ {y}
17: ECDDG

← ECDDG
∪ {(B, d, y, v)}

18: end for
19: end for
20: for all d, e ∈ π6(GC) do . Extract read/write data dependencies
21: for all (w, z) ∈∆C(d, e) do
22: ECDDG

← ECDDG
∪ {(d, e, w, z)}

23: end for
24: end for
25: Π =Πread ∪Πwrite . Set of data processors
26: GCDDG

← (Π, ECDDG
, VΠ , CDM (GC))

27: return GCDDG
. The choreography data dependency graph

28: end procedure

158 4 | Formal Model for Data-Aware Choreographies

graph is generated which comprises the extracted choreography data model
as well as all specified data dependencies as outlined in Section 4.3.2. There-
fore, in line 2 of Algorithm 4.2 the introduced GenerateCDM algorithm
(Algorithm 4.1) is executed to generate the required choreography data
model. Next, in line 3 required sets are defined to incrementally create
and add respective elements to them, i. e., the set of data elements of data
processors VΠ as well as the set of data dependency edges ECDDG

. In line 4
of Algorithm 4.2 all data processors reading from a data object, i. e., being
the target of a data connector or choreography data connector originating
from a data object, are identified and collected in the set Πread . The same
happens for all data processors writing to a data object, i. e., being the
source of a data connector or choreography data connector targeting a data
object, which are identified and collected in the set Πwrite in line 5 of the
algorithm. In line 6 and 7 the respective data connector and choreography
data connector maps are read from the provided CM-Graph GC to extract
respective data dependencies in the following. For a better understanding
and to ease the description, we split the extraction of data dependencies into
three groups: read (lines 8-13), write (lines 14-19) and read/write (lines
20-24) dependencies on data objects.
To extract all read data dependencies, the algorithm iterates over all

identified data processors with a read dependency contained in the set Πread

and all data objects in line 8 and creates for each data map defined between a
data processor and a data object as part of a data connector or choreography
data connector (line 9) a respective data dependency edge in line 11. Each
resulting dependency edge (d, A, u, x) is then added to the edge set ECDDG

. In
addition in line 10, the involved data element x of the data processor being
the target of the underlying data map and therefore also of the resulting
data dependency is added to the set VΠ. The extraction of all write data
dependencies works exactly the same way using the set of all identified data
processors with a write dependency Πwrite as shown in Algorithm 4.2. The
last group of read/write dependencies is somehow special in the sense that
it focuses on the data dependencies between two data objects represented
through corresponding data connectors with a data object as source and

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 159

target. Therefore, in line 20 of Algorithm 4.2, the algorithm iterates over all
defined data objects and creates for each data map defined between two
data objects as part of a corresponding data connector (line 21) a respective
data dependency edge in line 22 which is then added to the edge set ECDDG

.
In line 25 of Algorithm 4.2, the set of all identified data processors Π is
created by composing the sets of reading and writing data processors Πread

and Πwrite, respectively. Finally, all created or extracted sets are combined
into the overall 4-tuple GCDDG

which represents the CDDG of the CM-Graph
GC given as input to the algorithm and is then returned as a result.

4.5.2 Generating PM-Graphs based on a CM-Graph

By introducing the generation of a Choreography Data Model (CDM) and a
CDDG for a given CM-Graph GC , the remaining part of the transformation
results shown in Figure 4.20 is the generation of a process model P in form
of a PM-Graph G for each defined participant of the choreography model
represented by the CM-Graph GC . Therefore, the modeled control flow, data
flow andmessage flow defined in the scope of a participant as well as entering
or leaving the participant has to be extracted from the choreography model
and represented accordingly within the respective participant process models
by adding corresponding modeling constructs to the resulting PM-Graphs.
Finally, all data dependencies collected in the CDDG provided as result of
Algorithm 4.2 are incorporated into the generated PM-Graphs by enriching
them with respective staging elements as described in Section 4.4.1.
In the following, we will discuss both remaining steps in more detail

and present a respective transformation algorithm. Due to the size of the
algorithm it is split into three parts shown in Algorithms 4.3 - Part 1 to 4.3 -
Part 3. Algorithm 4.3 - Part 1 takes the previously generated CDDG GCDDG

and the CM-Graph GC itself as an input. The algorithm starts on line 2
with the initialization of the set of all to be generated PM-Graphs 𝒫C used
during the algorithm to collect all created PM-Graphs and return the final
transformation result at the end of the algorithm.
Next, the actual transformation starts by iterating over the set of specified

160 4 | Formal Model for Data-Aware Choreographies

Algorithm 4.3 - Part 1 Generating PM-Graphs Gi based on the defined
participants Ri of a given CM-Graph GC and its data dependency graph GCDDG

1: procedure GenerateProcessModelGraphs(GC , GCDDG
)

2: 𝒫C ← ; . Initialize set of PM-Graphs

3: for all Ri ∈
P (N)

π11(GC) do . Loop over participants of CM-Graph

4:

M (VGi
)← {m ∈

M (V)

π4(GC) | ∃A∈ Ri , B ∈
N

π9(GC)∪{C } :

(A, B, m) ∈
∆M

π15(GC)∪

−−→
∆M

π16(GC)∨
(B, A, m) ∈ π15(GC)∪π16(GC)}

. Messages

5: NGi
← {A∈ Ri} . Activities

6: ΨGi
←

⋃

A∈NGi

Ψ

π10(GC)(A) . Activity implementations

7: EGi
← {e ∈

E

π13(GC) | π1,2(e) ∈ NGi
× NGi

} . Control connectors
8: 𝒞Gi

←
⋃

e∈EGi

π3(e) . Transition conditions

9: ιGi
←

⋃

A∈NGi
∪ 𝒞Gi

∪ Ri

ιC

π2(GC)(A) . Input containers

10: oGi
←

⋃

B∈NGi
∪ Ri

oC

π3(GC)(A) . Output containers

11: CS(VGi
)←

⋃

A∈NGi

∆CS

π20(GC)(A) . Correlation sets

12: ∆C PGi
←

⋃

cs∈CS(VGi
), m∈M (VGi

)

∆C P

π19(GC)(cs, m) . Correlation set

property map

13: ∆CSGi
← {(A,

∆CS

π20(GC)(A)) | A∈ NGi
∧π20(GC)(A) 6= ;}. Correlation

map

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 161

choreography participants P (N) in line 3. Therefore, within each loop
iteration i ∈ N a new PM-Graph Gi representing the participant Ri is created
and added to the set of PM-Graphs 𝒫C . According to our adapted PM-Graph
metamodel presented in Definition 4.29, a PM-Graph Gi is a 15-tuple for
which we have to extract and define each of the required sets and maps
from the provided CM-Graph GC . Algorithm 4.3 - Part 1 starts on line 4
with the extraction of the set of messagesM (VGi

) relevant in the context
of participant Ri. Where relevant means, that all messages defined at the
level of the choreography within the setM (V) are copied to the setM (VGi

),
if they are associated to an outgoing or incoming message connector or
choreography message connector which originates from or points to one of
the participant’s activities.
Next, the set of activities NGi

on line 5 can be simply created by adding
all participant activities being the elements of the participant Ri according
to the participant definition presented in Section 4.2.3. The extraction of
all relevant activity implementation maps ΨGi

in line 6 of Algorithm 4.3
- Part 1 is also straightforward, since just all maps associating an activity
implementation to one of the participant’s activities A ∈ NGi

have to be
copied. Regarding the set of control connectors EGi

of the PM-Graph, the
algorithm extracts all control connectors specified between two participant
activities from the set of all control connectors E specified at the level of
the CM-Graph. Since we do not discuss other types of conditions such
as exit conditions or join conditions, and have only considered transition
conditions, the set of 𝒞Gi

of the PM-Graph is defined by simply adding all the
defined transition conditions from the control connectors to it. If other types
of conditions will be reflected at the level of choreography models in the
future, they also have to be added to the set of conditions of the PM-Graph
accordingly. To create the input container and output container maps at line
9 and 10 of Algorithm 4.3 - Part 1, the relevant maps from the CM-Graph are
copied similar as done for activity implementations. Therefore, all defined
input container maps for the participant itself as well as its activities and
conditions, and all defined output container maps for the participant itself
and its activities are copied, respectively.

162 4 | Formal Model for Data-Aware Choreographies

In line 11, we collect all correlation sets CS(VGi
) relevant for the current

participant Ri by aggregating all correlation sets associated to an activity A∈
Ri based on the specified correlation maps ∆CS at the level of the CM-Graph
(see Definition 4.21). Next, in line 12 the respective correlation set property
maps ∆C PGi

for the above collected correlation sets CS(VGi
) can be extracted

from the CM-Graph. Since the data object related correlation set property
maps are added as part of the staging elements as described in Section 4.4.1,
only the message-related property maps have to be added to ∆C PGi

. Finally,
in line 13 the correlation map∆CSGi

can be created by collecting all mappings
between participant activities and respective correlation sets defined at the
level of the CM-Graph.
The second part of the transformation algorithm is presented in Algo-

rithm 4.3 - Part 2 where data-related aspects such as data connectors and
the staging elements are added to the PM-Graph Gi. Therefore, in line 14
of the algorithm the set of data connectors is introduced by extracting all
respective data connector maps between two activities or an activity and a
condition specified within the participant at the level of the CM-Graph GC .
The same applies for the process data connectors in line 15. Since the notion
of a process data connector −→∆ defined at the level of PM-Graphs by Leymann
and Roller [LR00], and shown in the PM-Graph summary in Definition 4.29,
slightly differs to the choreography data connector −→∆C introduced in Sec-
tion 4.2.6.2, we have to translate the mappings into the correct process data
connector format. The difference results from the fact, that at the level of a
PM-Graph there is only one process for which corresponding process data
connectors can be specified, to copy either data elements from the process
input container to an activity input container or from an activity output
container to the process output container. Therefore, the process itself has
not to be reflected within a process data connector at all, since the source
or target activities and the respective data maps are enough to specify all
required information.
On the level of a choreography model, we need to be able to specify data

connectors between choreography as well as participant inputs and outputs
and respective activities, therefore we decided to introduce one consolidated

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 163

Algorithm 4.3 - Part 2 Generating PM-Graphs Gi

14: ∆Gi
←

⋃

A∈NGi
, B∈NGi

∪ 𝒞Gi

∆C

π17(GC)(A, B) . data connector map

15:
−→
∆ Gi

← {(A,
−→
∆ Gi
(A)) | A ∈ NGi

∧
−→
∆ Gi
(A) =

−→
∆C

π19(GC)(Ri , A) ∪
−→
∆C

π19(GC)(A, Ri)} . process data connector map

16:

VGi
← {v ∈

V

π1(GC) | v ∈ (M (VGi
)

⋃

A∈NGi
∪𝒞Gi

∪ Ri

ιGi
(A) ∪

⋃

B∈NGi
∪ Ri

oGi
(B)∪ CS(VGi

))}

. Data elements

17: for all X ∈ (NGi
∪ 𝒞Gi

∪ {Pi}) do. Data processors and consumers

18: for all e ∈

ECDDG

π2(GCDDG
) | π1(e) = X ∨π2(e) = X do

19: if π1(e) = X then .Write dependency: X → d
20: d ← π2(e)

21: δ← (

v1∈oGi
(X)

π3(e) ,

v2∈d

π4(e))
22: sΣΨ ← push
23: else . Read dependency: X ← d
24: d ← π1(e)

25: δ← (
v1∈d

π3(e),

v2∈ιGi
(X)

π4(e))
26: sΣΨ ← pull
27: end if

28: C P ←
⋃

cs∈CS(VGi
)

∆C P

π19(GC)(cs, d)

29: s← (d,δ, C P, sΣΨ ,⊥,⊥) . Create a new staging element
30: ΣGi

←ΣGi
∪ s . Add it to the set of staging elements

31: σGi
(X)← σGi

(X)∪ {s} . Associate it to data consumer X
32: end for
33: end for

164 4 | Formal Model for Data-Aware Choreographies

choreography data connector map which supports all such specifications
by explicitly referring to the source and target elements as introduced in
Section 4.2.6.2. The participants explicitly stated within a choreography
data connector have therefore to be omitted when creating a corresponding
process data connector as shown in line 15 of Algorithm 4.3 - Part 2.
To finalize the second step of the transformation process, in line 16 the set

of data elements VGi
relevant in the context of the participant can be created

by collecting all data elements used as part of a defined message (v ∈ m with
m ∈M (VGi

)), input container map (v ∈ ιGi
), output container map (v ∈ oGi

)
or a correlation set (v ∈ cs with cs ∈ CS(VGi

)). At this point, the generated
PM-Graph Gi fully reflects all the specified control and message flows of
choreography participant Ri .
However, only participant or process internal data flow via the translated

data connectors and process data connectors is represented and therefore
a representation of the specified cross-partner data flow is missing. Within
the last step of the transformation, therefore, the PM-Graph is enriched with
respective staging elements to incorporate and represent all data depen-
dencies to cross-partner data objects collected in the CDDG as described in
Section 4.4.1. As indicated by the conditions in Definition 4.28, we have to
distinguish between read and write dependencies to data objects to set the
correct staging method and data maps. Therefore, in line 17, Algorithm 4.3
- Part 2 iterates over the set of all data consumers and producers which are
part of the participant the generated PM-Graph Gi represents. This comprises
all activities, conditions and the process model Pi itself, since choreography
data connectors support the specification of data dependencies between
data objects and a participant as a whole as described in Section 4.2.6.2.
For the sake of simplicity we generate one staging element for each data

dependency edge defined within the CDDG and associate it to the corre-
sponding activity, condition or process model. Another option is to collect
all read data dependencies and write data dependencies between a specific
activity, condition or process model X and a specific data object d and then
aggregate them into one staging element for the read dependencies and
one for the write dependencies between X and d, respectively. In this case,

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 165

each of the two staging elements contains multiple data maps representing
how to copy the respective data elements between the data containers of
an activity, condition or process model and the data object. However, both
approaches are identical in terms of their semantics and only vary in the
number of staging elements generated and associated for a given activity,
condition or process model with a data dependency to or from a data object.
Therefore, in the for-each loop starting on line 18 of Algorithm 4.3 - Part 2,

staging elements for all data dependencies of a data consumer or producer
X are generated and associated. Since the CDDG is created in a way, so that
for each data dependency one edge within the graph exists, we simply have
to loop over the set of all edges ECDDG

and identify the ones which originate
from or point to the current element X selected within the surrounding
loop. In accordance with the definition of staging elements in Section 4.4.1,
the focus during transformation is on setting the reference to a data object
d, a data map δ = (v1, v2) specifying how to copy data values between
the data object and a data consumer or producer, a map of correlation set
properties C P for the referenced data object, and a staging method sΣΨ ∈ΣΨ .
Corresponding trigger conditions and fault handling strategies can be added
by a modeling expert during process model refinement, therefore, we use
the bottom symbol ⊥ introduced in Definition 4.27 during staging element
generation to mark these elements as undefined. Potentially, this can be
enhanced in future work by enabling the specification of corresponding
aspects already at the level of a choreography model which can then be
used to automatically create or associate related trigger conditions or fault
handling strategies to the generated staging elements.
The if-then-else block starting on line 19 identifies if the current data

dependency edge represents a read or write dependency of X on a data object.
This is relevant since this has an influence on how to extract the related
data from the underlying dependency edge e. For write data dependencies,
the data object can be extracted from the target of the data dependency
edge as shown on line 20. In addition, we can extract the required data
map δ := (v1, v2), which specifies the source and target data element and
therefore which data element value of the data producer’s output container

166 4 | Formal Model for Data-Aware Choreographies

has to be copied to the data object, from the data dependency edge as
shown on line 21 of Algorithm 4.3 - Part 2. Finally, the respective staging
method is set to sΣΨ , i. e., push for write dependencies. Read dependencies
are handled accordingly starting from line 23 as part of the else branch.
Only the projection indices change, since the data object is now the source
of the edge and as staging method pull is set to request the respective data
at the TraDE Middleware at runtime.
The rest of the staging element generation is identical for read and write

dependencies. Therefore, the respective map of correlation set properties
C P for data object d is extracted from the correlation set property map ∆C P

of the CM-Graph GC as shown on line 21 of Algorithm 4.3 - Part 2. Based on
that, a respective staging element s can be created through the combination
of the introduced elements in line 29 and finally associated to the respective
data consumer or producer X via the staging element map σGi

(X). This is
repeated until all data dependencies of the process model Pi are reflected
through a corresponding staging element.

Algorithm 4.3 - Part 3 Generating PM-Graphs Gi

34:
Gi ← (VGi

, ιGi
, oGi

,M (VGi
), CS(VGi

),∆C PGi
,∆CSGi

, NGi
,ΨGi

,𝒞Gi
, EGi

,

∆Gi
,
−→
∆ Gi

,ΣGi
,σGi

)
. Combine elements into a PM-Graph

35: 𝒫C ← 𝒫C ∪ {Gi} . Add PM-Graph to result set
36: end for
37: return 𝒫C . Set of PM-Graphs
38: end procedure

The third and final part of the transformation algorithm is presented in
Algorithm 4.3 - Part 3. There everything is wrapped up by combining the
collected and translated sets and maps from the other parts into an PM-
Graph Gi which specifies the process model Pi implementing choreography
participant Ri in line 34 of Algorithm 4.3 - Part 3. The resulting PM-Graph Gi

is then added in line 35 to the set of PM-Graphs 𝒫C which is returned as the
final result of the algorithm as soon as a process model for each choreography

4.5 | Transformation of a CM-Graph to a Collection of interconnected PM-Graphs 167

participant is generated and therefore the for-each loop ends. Based on that,
the overall transformation process is completed and all artifacts depicted in
Figure 4.20 are available for refinement by corresponding modeling experts
of the stakeholders involved in the choreography as described in Section 3.3.

168 4 | Formal Model for Data-Aware Choreographies

Ch
ap

te
r 5

A Middleware for
Data-Aware Choreography

Models

In Chapter 3, we motivate and introduce our vision for Transparent Data
Exchange (TraDE) in choreographies by introducing the notion of data-aware
choreographies and a respective life cycle reflecting data-related aspects
throughout the complete choreography management life cycle. Based on
that, in Chapter 4 the focus is on the modeling and refinement phases of
the life cycle by introducing Choreography Model Graphs (CM-Graphs) as a
modeling notation for data-aware choreographies with our TraDE concepts
applied. In this chapter, we will further describe how to support the execu-
tion life cycle phase, i. e., executing data-aware choreography models and
their specified cross-partner data flows based on our CM-Graph metamodel.
Therefore, in Section 5.1 we provide a short recap on how the execution of
a data-aware choreography model with the help of the TraDE Middleware
as a data hub looks like based on an example choreography as outlined in

169

Section 3.2.2. Afterwards, we will go into more detail on how the TraDE
Middleware actually conducts the modeled cross-partner data flows together
with respective Business Process Engines (BPEs), e. g., by presenting the
internal conceptual model of the middleware in Section 5.2, its underlying
architecture in Section 5.4 or its integration with BPEs in Section 5.5.

5.1 Overview

Figure 5.1 shows the resulting artifacts of the transformation of the example
data-aware choreography model depicted in Figure 3.1 to a collection of
process models, a Choreography Data Model (CDM) and a Choreography
Data Dependency Graph (CDDG) as described in Section 4.5. The resulting
three participant process models are represented with our formal model and
visual notation as introduced in Chapter 4 where each of the process models
is deployed to a respective BPE. The CDM and the CDDG representing the
modeled cross-partner data objects and data flows are deployed to the TraDE
Middleware as shown on the left of Figure 5.1. The dependencies of activities
on cross-partner data objects are represented within the process models
through corresponding staging elements as introduced in Section 4.4.1 which
are added to each process model as a result of the choreography to process
model transformation described in Section 4.5.2. The resulting staging
elements therefore represent the data dependencies on cross-partner data
objects of the summarized CDDG deployed to the TraDEMiddleware. To keep
the process models as simple as possible, we omitted the process internal
data flow, i. e., the data connectors between the activities.
As soon as BPE 1 receives an incoming request for process model P1,

a new choreography instance is started by creating a new instance of the
process model which consumes the incoming request through its Receive Chor.
Request receiving communication activity. The activity extracts the message
payload and copies the respective data element values to its output container.
Afterwards, BPE 1 conducts the modeled cross-partner data flow represented
through the two staging elements 1a and 1b shown in Figure 5.1. Therefore,

170 5 | A Middleware for Data-Aware Choreography Models

TraDE Middleware

BPE 3
Process Model P3

(PM-Graph G3)

Receive Request
from P2

IC

OC

Activity B

IC

OC

Send Response
to Participant P2

IC

OC

Staging Element
Data Object: input
Data Map: (E,x)

Method: pull

Staging Element
Data Object: output

Data Map: (y,G)
Method: push

4

5

Business Process Engine (BPE) 1
Process Model P1

(PM-Graph G1)

Receive Chor.
Request

IC

OC

Receive
Response
from P2

IC

OC

Send
Request to

Participant P2

IC

OC

Reply Chor.
Response

IC

OC

Staging Element
Data Object: output

Data Map: (F,x)
Method: pull

Staging Element
Data Object: output

Data Map: (G,y)
Method: pull

Staging Element
Data Object: input
Data Map: (x,D)
Method: push

Staging Element
Data Object: input
Data Map: (y,E)
Method: push

1b

1a

6b

6a

BPE 2
Process Model P2

(PM-Graph G2)

Receive
Request
from P1

IC

OC

Activity A

IC

OC

Send
Request to

Participant P3

IC

OC

Send
Response to

Participant P1

IC

OC

Receive
Response
from P3

IC

OC

Staging Element
Data Object: input
Data Map: (D,x)

Method: pull

Staging Element
Data Object: output

Data Map: (y,F)
Method: push

2

3

CDM

input

D
E

output

F
G

CDDG
Receive Chor.

Request

Reply Chor.
Response

input

(x,D) (y,E)

output

Activity AActivity B

(y,G)

(F,x)(G,y)

(y,F)

(D,x)(E,x)

Data Element

Cross-Partner
Data Object

Message Flow

Cross-partner Data Flow

Legend

Figure 5.1: Execution of a data-aware choreography model with its specified
cross-partner data flows using the TraDE Middleware, based on
the choreography presented in Section 3.2.

5.1 | Overview 171

the extracted message payload available at the output container of the receive
activity is pushed by the BPE to the input data object at the TraDEMiddleware
using the middleware’s Application Programming Interface (API). According
to the specified data maps within the staging elements, in step 1a, data
element x of the activity’s output container is copied to data element D of
data object input and data element y is copied from the output container
to data element E of data object input in step 1b, respectively. After the
receive activity completes, data object input is completely initialized and
has respective values set to be used in the following. Next, the Send Request
to Participant P2 sending communication activity is scheduled which invokes
process model P2 by sending a request message to BPE 2. Upon receipt of
the message, a new process instance is created which consumes the request
message through the modeled Receive Request from P1 receive activity. The
Send Request to Participant P3 send activity then directly invokes process
model P3 by sending a request message to BPE 3. There again a new process
instance is created upon receipt of the message which consumes the request
message through the modeled Receive Request from P2 receive activity. In the
following, the process instances of process model P2 and P3 are running in
parallel, executing activities A or B next, respectively. Activity A of process
model P2 therefore pulls data element D from data object input at the TraDE
Middleware to store it to data element x of activity A’s input container as
specified by staging element 2 depicted in Figure 5.1. After the output data
of the executed activity implementation of activity A is materialized in the
activity’s output container, the data value of data element y is pushed to
data element F of data object output to the TraDE Middleware as depicted
by staging element 3 in Figure 5.1. In parallel, activity B of process model
P3 pulls data element E from data object input at the TraDE Middleware
to store it to data element x of activity B’s input container as specified by
staging element 4 depicted in Figure 5.1. Afterwards, the results are pushed
from data element y of the output container of the activity to data element
G of the output data object as specified in staging element 5. By sending
a response message back to participant P2 via the modeled Send Response
to Participant P2 send activity, the process instance of process model P3 is

172 5 | A Middleware for Data-Aware Choreography Models

terminated. The same applies to the process instance of process model P2

which receives the response message from P3 via the Receive Response from
P3 activity and then also terminates after sending its final response to P1 via
the modeled Send Response to Participant P1 send activity. Finally, activity
Receive Response from P2 of process P1 consumes the response message and
then prepares the final response message of the choreography by pulling
the results of activities A and B from the output data object at the TraDE
Middleware. Therefore, according to staging elements 6a and 6b shown in
Figure 5.1, data elements F and G of data object output are requested from
the TraDE Middleware and copied to data elements x and y of the input
container of activity Reply Chor. Response, respectively. From there the values
are wrapped into the final response message which is then send back to the
client who started the choreography instance with its initial request and
then also the instance of process model P1 is terminated which results in the
completion of the overall choreography instance.

5.2 Conceptual Model of the Middleware

Since the middleware and its underlying concepts should not be bound
to any specific choreography and process modeling languages or related
runtime environments, we introduced our formal model for CM-Graphs
and an extended Process Model Graph (PM-Graph) metamodel [LR00]
in Chapter 4. Based on that, the TraDE Middleware comes with its own
internal metamodel shown in Figure 5.2 which represents the choreography
data dependency graphs (CDDG) and choreography data models (CDM)
introduced in Chapter 4 with respective cross-partner data objects and data
elements as well as any related information in a choreography and process
modeling language independent format within the middleware.
The entry point of the conceptual model is the ChoreographyDataDepen-

dencyGraph entity which represents a CDDG as introduced in Section 4.3.2.
To uniquely identify such a CDDG within the middleware it has a name and
namespace attribute associated as depicted in Figure 5.2. Using namespaces

5.2 | Conceptual Model of the Middleware 173

CrossPartnerDataObject DataElement

CrossPartnerDataObjectInstance DataElementInstance

DataValue

ChoreographyDataModel

1..*
1..*1

0..*

1

1 1..*

1

0..*

0..1

0..*

1

name

name name

type

contentType

CorrelationProperty
key

value

1 1

0..*

name type contentType

data

Legend

Entity Attribute

ChoreographyDataDependencyGraph

1

1

DataDependencyEdge
0..*1

0..*

1

1

1

0..* 0..*

source

target

DataTransformation

name

namespace

name

transformerID InputParameter0..* 1
name

value

Processor

1 1

source

target

0..* 0..*

sourceDataElement

targetDataElement

name

contextID

multiplicity

deletion strategies

0..*

Figure 5.2: Metamodel of a Choreography Data Dependency Graph and its
Choreography Data Model within the TraDE Middleware, based
on [HBLW17].

to specify the context for which the underlying model and its contained
elements are defined, is an established approach. For example, namespaces
are heavily used within eXtensible Markup Language (XML) by using XML
namespaces [XML-NS] to uniquely identify models and their elements within
and across XML documents. A namespace itself is represented in form of a
Uniform Resource Identifier (URI) [BFM05] that can be added to a model,
i. e., persisted within its document format, and therefore allows to uniquely
identify the model as well as its contained elements. Therefore, different
models can use the same element names without introducing any conflicts
as long as their respective namespaces are not overlapping or in conflict.
Since both Business Process Model and Notation (BPMN) and BPEL4Chor
are XML-based modeling notations, the namespace specified for the choreo-
graphy model can be simply set also to the CDDG during its generation while

174 5 | A Middleware for Data-Aware Choreography Models

the name can be set constant, e. g., to CDDG or also to the name specified for
the choreography model. This enables us to identify which CDDG deployed
to the TraDE Middleware belongs to which choreography model what is
especially important during runtime in terms of instance correlation, i. e.,
finding the right data object instance to conduct the modeled cross-partner
data flow of a choreography model.
As introduced in Section 4.3.2, a CDDG contains a choreography data

model (CDM) comprising a set of data objects as well as corresponding
data processors and their data dependencies on the data objects. All those
elements are reflected within the conceptual model depicted in Figure 5.2
through corresponding entities and relations between them. Therefore, a
ChoreographyDataDependencyGraph entity refers to zero or more Processor
entities which can be the source or target of a DataDependencyEdge.
To uniquely identify a data processor, e. g., a participant, activity or con-

dition, a Processor entity has a contextID and name attribute. While the
name is simply the name of the data processor as specified in the underlying
choreography model, the contextID specifies the related context in which the
processor is defined. The value of the contextID can therefore be provided
by simply specifying the name of the underlying participant or even an XML
Path Language (XPath) [XPath] for XML-based modeling languages can be
used to provide a reference to the right context. According to the definition
in Section 4.3.2, a DataDependencyEdge is a 4-tuple referring to the source
and target entity as well as representing a data map between a data element
of the source entity and a data element of the target entity which are rep-
resented through the sourceDataElement and targetDataElement attributes
shown in Figure 5.2, respectively.
A special kind of data processors are represented through DataTransfor-

mation entities which allow to specify data transformations between two
cross-partner data objects conducted by the TraDE Middleware as part of the
specified cross-partner data flow. As shown in Figure 5.2, a DataTransforma-
tion entity has a name and transformerID attribute. The former holds the
name of the data transformation specified as part of the choreography model
and the latter contains the specified reference to a corresponding transfor-

5.2 | Conceptual Model of the Middleware 175

mation implementation. Provided input parameters of a data transformation
specified at the level of a choreography model are represented through one
or multiple associated InputParameter entities. An InputParameter has a
unique name and a corresponding value. The whole concept of TraDE data
transformations will be introduced in Chapter 6 in detail.
The collection of cross-partner data objects specified within a choreogra-

phy model is represented by a ChoreographyDataModel entity in accordance
with the definition of a CDM presented in Section 4.3.1. A Choreography-
DataModel has a name attribute for providing its qualified name and contains
one or more CrossPartnerDataObject entities. A CrossPartnerDataObject has
a name, multiplicity and deletion strategies attribute as well as a reference to
its ChoreographyDataModel and contains one or more DataElement entities.
Again the name attribute holds the name of the data object specified at the
level of the choreography model. The multiplicity and deletion strategies
attributes represent the respective property values of the data object as
introduced as part of our formal model for data objects in Section 4.2.1.5.
Therefore, the multiplicity attribute specifies how many instances of the data
object may exist during choreography runtime, ranging from one instance
over a specific upper bound to an unknown, potentially unlimited number of
instances. In addition, the specified deletion strategies define if and at which
point in time the created data object instances and their associated values
should be deleted by the TraDE Middleware in terms of automatic garbage
collection. This information is used by the TraDE Middleware to enforce the
specified properties regarding the number of data object instances and their
deletion during the execution of the underlying choreography.
As outlined above, each DataObject entity contains one or more DataEle-

ment entities. Each DataElement has a name, a type and a contentType
attribute. The name attribute again represents the data element’s name as
specified within the choreography model. The type attribute specifies the
data element’s structure, in accordance with the formal model as described
in Section 4.2.1.1, in a concrete manner for a respective data format, e. g.,
using XML Schema Definition (XSD) [XSD1] for defining XML-based [XML]
data structures or using JavaScript Object Notation (JSON) Schema [JSON

176 5 | A Middleware for Data-Aware Choreography Models

Schema] for defining JSON-based [Bra17] or YAML-based [YAML] data
structures, respectively. In addition, the contentType attribute represents
the kind of data hold by the data element and therefore provides the means
for the interpretation of the data independent of its structure. Based on that,
the middleware can handle arbitrary binary data without parsing it while
still being aware of its content and how to represent it, e. g., to human users.
This allows us to support various types of data, e. g., structured and unstruc-
tured data, videos or pictures, as well as data formats and representations,
e. g., XML, plain text, MPEG, or PNG. Such content type information can be
specified, e. g., using Media Types [IANA].
At this point all model related entities of the conceptual model shown in

Figure 5.2 are introduced and described. However, since multiple instances
of a choreography model can run in parallel, we need corresponding entities
to reflect the data related to each individual choreography instance for con-
ducting the specified cross-partner data flows. To represent and manage the
data of multiple instances of a choreography model referring to the same
CrossPartnerDataObject and DataElement entities during runtime, we apply
the well-known concept of model instances from BPM to our metamodel.
Therefore, we introduce corresponding CrossPartnerDataObjectInstance and
DataElementInstance entities which allow us to represent concrete instances
of cross-partner data objects and their data elements for one specific instance
of a choreography model. The creation of a new CrossPartnerDataObjectIn-
stance also creates all related DataElementInstances according to the relation
between the associated CrossPartnerDataObject and DataElement entities.
In order to correlate the data managed by the TraDE Middleware, i. e.,
CrossPartnerDataObjectInstance and DataElementInstance entities, with a
choreography model instance, corresponding correlation information have
to be supported and provided by the metamodel. Therefore, we associate a
set of CorrelationProperty entities to the DataObjectInstance and DataEle-
mentInstance entities in accordance with the correlation of data objects
introduced as part of our formal model in Section 4.2.7. These Correlation-
Property entities allow to uniquely identify a choreography instance at the
level of a BPE as well as to identify the data that belongs to this instance

5.2 | Conceptual Model of the Middleware 177

at the level of the TraDE Middleware. Since the concept of property-based
correlation is well known in the domain of BPM, we therefore reuse existing
correlation mechanisms as provided, for example, by BPMN [BPMN] or
Business Process Execution Language (BPEL) [BPEL] in order to enable the
instance correlation between BPEs and the TraDE Middleware. To enable
the reuse of data across choreography instances, concrete data should not
be bound directly to one DataElementInstance entity. Therefore, the actual
data is represented and provided by an independent DataValue entity as
shown in Figure 5.2. This allows us to reuse and share DataValue entities
across multiple DataElementInstance entities by referencing them. More-
over, it enables the manual creation of DataValue entities and therefore the
upload of data to the middleware independent of a choreography instance.
A DataValue has a name, a type defining the structure of its data and a con-
tentType definition similarly as for DataElement entities. Furthermore, the
instances of corresponding DataValue entities hold the concrete data values
within the TraDE Middleware. In the Section 5.4, we will have a detailed
look into the architecture of the TraDE Middleware and how it implements
the introduced conceptual model.

5.3 TraDE Event Models

The entities introduced as part of the conceptual model in Section 5.2 reflect
the cross-partner data flows and cross-partner data objects specified at the
level of the underlying data-aware choreography model within the TraDE
Middleware. Corresponding instances of the conceptual model are created
during the deployment of a CDDG of a choreography model to the TraDE
Middleware. The execution of the specified cross-partner data flows of a
choreography results in respective state changes of the involved entities
within the TraDE Middleware. For example, a new instance of a data object
is created and then initialized, i. e., instances of its contained data elements
are created and the provided values are stored to respective data values
which are associated to the data elements, and as soon as it is not required

178 5 | A Middleware for Data-Aware Choreography Models

Deleted

Initial

model is deployed or created / fire event ready

delete model / fire event deleted

ArchivedReady
archive model / fire event archived

unarchive model / fire event ready

delete model / fire event deleted

delete model / fire event deleted

Figure 5.3: Event model underlying to all model entities within the TraDE
Middleware represented as UML state diagram.

anymore the instance is deleted again. For auditing and monitoring purposes
the emitted events during data flow execution can be stored in an audit log
or may be published to a topic via messaging where interested parties can
subscribe for receiving the events for monitoring the data flow execution.
In the following, we introduce the event models of the entities of the

conceptual model used within our TraDE Middleware. We use the BPEL
event model and its underlying syntax introduced by Kopp et al. [Kop+11b]
as a basis for introducing our TraDE event models. Therefore, the event
models are presented in form of Unified Modeling Language (UML) state
diagrams [UML] specifying the possible states and transitions between them.
Each state transition specifies its activating trigger and the event which is
fired on the state change. In general, all entities of the conceptual model
shown in Section 5.2 can be grouped into two categories, namely models
and model instances, each following a common event model which we will
introduce in the following.
Figure 5.3 shows the common event model for all entities being part of

to the models group, i. e., ChoreographyDataDependencyGraph, Choreogra-

5.3 | TraDE Event Models 179

phyDataModel, CrossPartnerDataObject and DataElement. All such model
entities are created within the middleware based on the deployment of a
corresponding CDDG to the TraDE Middleware. Therefore, each model entity
is in an Initial state on creation and as soon as all related entities are ready,
the model entity also changes its state to Ready and a corresponding ready
event is fired. For example, a DataObject entity becomes ready as soon
as all of its contained DataElement entities have reached the Ready state.
All model entities being in the Ready state are fully operational and can
be instantiated. If a model entity, e. g., a CDDG and its contained model
entities, are not actively required anymore, they can be archived or deleted.
This is reflected within the event model shown in Figure 5.3 by the corre-

sponding Archived and Deleted states, respectively. When a model entity is
archived, a corresponding archived event is fired and a ready event if it is
unarchived again. In addition, a model entity can directly change from any
introduced state to the Deleted state, if the respective entity is not required
anymore. On every state change to Deleted a corresponding deleted event is
fired within the middleware.
Figure 5.4 shows the common event model for all entities associated to

the model instances group, i. e., CrossPartnerDataObjectInstance, DataEle-
mentInstance and DataValue. Whenever a new model instance entity for
a CrossPartnerDataObject or DataElement entity or a new DataValue en-
tity is created within the middleware, the state of the resulting instance
entity changes from Initial to Created and a corresponding created event
is fired. The Created state therefore reflects that a new entity is available
which is ready to be used for conducting the modeled cross-partner data
flow. As soon as a model instance entity is fully initialized, it changes its
state to Initialized which is reflected by firing a respective initialized event.
The meaning of fully initialized depends on the underlying type of model
instance entity. As shown in Figure 5.4, a DataValue entity is initialized as
soon as data is set to it. A DataElementInstance is marked as initialized
as soon as the DataValue entity associated to it is initialized or an already
initialized DataValue is directly associated to it. Finally, a DataObjectInstance
is fully initialized if all of its associated DataElementInstance entities are

180 5 | A Middleware for Data-Aware Choreography Models

Deleted

Initial

Initialized

model is instantiated / fire event created

Created

DataObjectInstance: all contained DataElementInstances are initialized / fire event initialized
DataElementInstance: associated DataValue is initialized / fire event initialized
DataValue: data is set / fire event initialized

delete instance / fire event deleted

delete instance / fire event deleted

Archived

delete instance / fire event deleted

archive instance / fire event archived

unarchive instance / fire event initialized

Figure 5.4: Event model underlying to all model instance entities within the
TraDE Middleware represented as UML state diagram.

initialized. Similar to model entities, also model instance entities can be
archived and unarchived again represented through the Archived state and
the firing of respective archived and initialized events. In addition, a model
instance entity can directly change from any introduced state to the Deleted
state, if the respective entity is not required anymore. On every state change
to Deleted a corresponding deleted event is fired within the middleware.
In addition to the two common event models presented above, Figure 5.5

shows the event model for the data held by corresponding DataValue entities,
i. e., concrete data set to a data value during choreography runtime. This
event model builds the basis for reflecting corresponding state changes and
events in result to data changes during choreography runtime. While a
DataValue entity is always in state Unset when being created, it changes
its state to Initialized and fires a corresponding initialized event as soon as
concrete data is set to it. As described above, this initial setting of data

5.3 | TraDE Event Models 181

Unset

data is set to DataValue /
fire event initialized

data is removed from DataValue / fire event deleted

Initialized

data is changed /
fire event data-changed

Figure 5.5: Event model representing the data perspective of DataValue enti-
ties represented as UML state diagram.

to a DataValue entity also changes the state of the DataValue entity to
Initial. In addition, the data of a DataValue entity can change over time,
i. e., depending on the modeled cross-partner data flow, different values
can be set to a data element of a cross-partner data flow throughout the
execution of a choreography. Whenever the data changes it remains in state
Initialized and a data-changed event is fired to indicate that a new value is
set to the DataValue entity. Another possibility for a data change is that the
data is removed from the DataValue entity. This results in a state change
back to the Unset state and firing a deleted event. Corresponding initialized
and data-changed events are also used to realize the above mentioned event-
based triggering of data transformations since a corresponding event is
emitted within the middleware whenever the data of a DataValue changes.
Such changes are the result of a conducted cross-partner data flow, i. e., a
process engine is pushing data for a cross-partner data object to the TraDE
Middleware or if a human user manually changes related data values.

182 5 | A Middleware for Data-Aware Choreography Models

5.4 Architecture of the Middleware

Figure 5.6 presents the architecture of the TraDE Middleware. The over-
all design follows the three layer architecture pattern [Fow02] where we
introduce each of the layers and its components in a top-down manner.
The Presentation layer exposes the functionality of the TraDE Middleware

through a correspondingWeb User Interface (UI) and a Representational State
Transfer (REST) API. Both components enable the interaction with the TraDE
Middleware. While the focus of the REST API is more on the integration of
the middleware with other systems, i. e., machine-to-machine interactions,
the Web UI provides a graphical interface for human users on top of the REST
API to support also human-to-machine interactions. By following the REST
architectural style [Fie00], each entity of our internal TraDE metamodel
presented in Section 5.2 is represented as a resource and can therefore
be easily accessed, referenced, and shared through a respective Uniform
Resource Locator (URL) [BFM05]. For example, BPEs can use the REST
API to integrate with the middleware in order to push or pull data values
to or from data objects, respectively. Modeling tools can use the REST API
to support modelers with the direct deployment of a generated CDDG of a
choreography model to the TraDE Middleware to make the specified data
dependencies and cross-partner data objects available at the middleware, so
that they can be used by BPEs during choreography runtime for conducting
the modeled cross-partner data flows. Best practices and established patterns
for designing such a REST API are presented, for example, by Allamaraju
[All10] or Masse [Mas11]. In addition, human users can access and inspect
the deployed CDDGs and their components as well as available data values
or manually upload their data to the TraDE Middleware via the Web UI to
make it available for use within choreographies, e. g., as input data.
The Business Logic layer provides the core functionality of the middleware

made available through the presentation layer. Figure 5.6 shows the compo-
nents providing the functionality of the middleware which will be introduced
in the following. The TraDE Instance Models component implements the
metamodel of the middleware introduced in Section 5.2 to represent concrete

5.4 | Architecture of the Middleware 183

Resources

DataModels & Metadata

Business Logic

Ex
te

ns
io

nsData Management

Persistence

TraDE Instance Models

Auditing & Monitoring

TraDE Node &
Network Management

Data Transformation

Presentation

REST API

Web UI

Figure 5.6: Architecture of the TraDE Middleware, based on [HBLW17].

instances of the metamodel’s entities, i. e., a deployed CDDG, its contained
CDM with all defined cross-partner data objects and data elements as well
as instances of them and respective data values within the middleware. All
functionality related to data management is provided by the Data Manage-
ment component which is one of the core components of the middleware.
It provides the access and inspection of data associated to corresponding
cross-partner data objects through the REST API. Furthermore, it handles
the upload and retrieval of data for a corresponding DataValue or DataEle-
mentInstance entity. Related to that, it also handles the correlation of the
TraDE-internal metamodel instances with respective choreography instances
in order to enable the BPEs to access and retrieve the correct entity instances
of the metamodel and their associated data as described in detail in Sec-
tion 4.2.7. Moreover, it is responsible for the management of the life cycle
of the TraDE-internal metamodel instances. Therefore, the component uses
the event models and life cycle operations described in Section 5.3 which
are implemented by the Auditing & Monitoring component for each of the

184 5 | A Middleware for Data-Aware Choreography Models

metamodel entities shown in Figure 5.2. The Data Management component
is also responsible to enforce and conduct the specified deletion strategies of
data objects introduced in Section 4.2.1.5 which define at which point in
time the created data object instances and their associated values should be
deleted by the TraDE Middleware.
The TraDE Node & Network Management component is responsible for

enabling a decentralized deployment of multiple middleware nodes and their
connection into networks to allow more efficient data placement and staging
as well as further optimizing the data exchange between the choreography
participants. Within this work, we use a single TraDE Middleware node as
default deployment scenario, i. e., all BPEs participating in the execution
of respective process models implementing an underlying choreography
communicate with one centralized TraDE Middleware. A decentralized,
multi-instance deployment, e. g., having one TraDE Middleware node per
BPE, may introduce new possibilities as well as improvements in terms
of flexibility or further optimizing data staging and transfer between the
interacting parties also during choreography runtime. However, this is not
within the focus of this work, but maybe an interesting topic for future work.
To decouple the life time of the data within the TraDE Middleware from

the choreography instances it belongs to, the Persistence component provides
the required functionality to store both instances of the internal metamodel
of the middleware as well as the managed data in an underlying data source
in order to guarantee its availability for later (re)use. As outlined above, the
Auditing & Monitoring component provides an associated life cycle based on
a respective event model for each of the entities of the middleware’s meta-
model. This enables the auditing and monitoring of all entities by emitting
corresponding events whenever the state of an entity changes. Furthermore,
these internal events can be consumed by any interested component within
the middleware, for example, allowing the Data Management component to
trigger corresponding actions on state changes in order to realize the life
cycle management of all TraDE Instance Models. The whole middleware
is designed to be extensible in order to integrate new or adapt existing
components. Therefore, the Extensions component provides corresponding

5.4 | Architecture of the Middleware 185

logic and mechanisms to plug-in new functionality as well as extensions
or variants of existing components. For example, the default persistence
component can be replaced by a new implementation that uses a different
technology stack by adding it as an extension to the middleware.
To conduct the specified data transformations between cross-partner data

objects outlined as part of the TraDE metamodel in Section 5.2, the Data
Transformation component of the middleware shown in Figure 5.6 provides
required functionality to trigger respective transformation logic in an event-
based manner. Therefore, the component builds on top of the event models
introduced in Section 5.3 in order to transparently trigger the specified
data transformations on respective state changes of the underlying data
element instances or their associated data values, respectively. For example,
as soon as a data value is available, i. e., a value is set to the respective
DataValue instance, the Auditing & Monitoring component of the TraDE
Middleware emits a corresponding initialized state change event. The Data
Transformation component listens to such emitted events and checks if a data
transformation is specified, if so it triggers the specified data transformation
logic. How this exactly looks like and all underlying concepts for themodeling
and execution of TraDE data transformations and their event-based triggering
through the TraDE Middleware will be introduced in Chapter 6 in detail.
The Resources layer contains all required resources used within the Busi-

ness Logic layer. This comprises data sources for the persistence of TraDE
Instance Models and related metadata about nodes and networks as depicted
by the Models & Metadata data source in Figure 5.6 as wells as a data source
for the actual data managed by the TraDE Middleware as presented by the
Data data source in Figure 5.6. Furthermore, all other TraDE Middleware
nodes belonging to the same network can be seen as a resource from the
viewpoint of a single middleware node.

186 5 | A Middleware for Data-Aware Choreography Models

TraDE
Middleware

REST API

Business Process Engine
TraDE Client

Figure 5.7: TraDE-aware approach for the integration of the TraDE Middle-
ware with a BPE, based on [HBLW17].

5.5 Integration with Process Engines

In the following, we want to briefly discuss how the TraDE Middleware
is integrated with a BPE within this work as shown in Figure 5.7 and in
addition outline an alternative approach shown in Figure 5.8.
The TraDE-aware integration approach depicted in Figure 5.7 follows our

formal model introduced in Chapter 4 where corresponding staging elements
are generated at the level of the process models implementing a choreo-
graphy to represent the modeled cross-partner data flows. Therefore, a
corresponding BPE needs to know when and how to interact with the TraDE
Middleware in order to conduct the specified data exchange based on a
deployed process model. As a result, the implementation of the BPE has
to be extended in two dimensions. First, the TraDE Middleware has to be
integrated by adding a corresponding TraDE Client to the BPE which uses
the REST API of the middleware to integrate the required functionality for
pushing and pulling data values to or from the middleware. In addition, re-
quired logic to parse and conduct the specified staging elements of deployed
process models has to be added to the BPE implementation which then
uses the TraDE Client to communicate with the TraDE Middleware during
process execution. The advantage of this approach is that the BPEs remain
in control of the overall process executions, i. e., the control flow dimension
of the choreography. The main disadvantage is that the BPE implementation

5.5 | Integration with Process Engines 187

TraDE
Middleware

Event API PE Client

Business Process Engine
Control APIEvent Propagation

Figure 5.8: Two-way approach for the integration of the TraDE Middleware
with a BPE, based on [HBLW17].

has to be extended in order to integrate the client and introduce required
functionality to interpret and conduct the specified staging elements to push
and pull data to or from cross-partner data objects at the TraDE Middle-
ware. Especially if the collaborating partners use different BPE solutions
this integration approach requires the same integration effort for each of the
individual BPE implementations.
In contrary, the two-way integration approach depicted in Figure 5.8 in-

tegrates the BPE and the TraDE Middleware in a loosely coupled manner
through corresponding APIs. The basic idea of this integration approach is
to extract any data-related knowledge from the data-aware choreography
models, e. g., in form of a CDDG that represents which participant requires or
produces which cross-partner data objects, to move the control of executing
specified cross-partner data flows completely to the TraDE Middleware. How-
ever, therefore the TraDE Middleware has to be able to control the process
execution, e. g., by blocking the control flow to transfer required data from
a data object to the BPE so that it can be consumed by an activity as input.
Therefore, the BPEs have to expose the execution state of the process model
instances through a corresponding event propagation mechanism, e. g., us-
ing messaging. The emitted state change events can then be consumed by an
Event API at the TraDE Middleware, so that it is always aware of the current
execution state of the overall choreography instances for which it executes
the cross-partner data flows. Furthermore, the BPE implementations have

188 5 | A Middleware for Data-Aware Choreography Models

to expose a Control API which allows external parties, such as the TraDE
Middleware, to control the process execution as well as retrieve and write
data from and to data containers of the process model instances executed by
a BPE. Khalaf, Karastoyanova, and Leymann [KKL07] present a respective
pluggable framework for BPEL-based BPE solutions which supports both
required extensions: emitting the execution status via an event propagation
mechanism as well as enabling the control of a process instance execution
from outside the BPE. The advantage of this integration approach is that
the BPE implementation is not directly coupled with the TraDE Middleware.
Instead it has to be only extended with generic event propagation function-
ality and expose required control as well as data management capabilities
through an API. A respective event model for BPEL is presented by Kopp et al.
[Kop+11b]. A BPE implementation combining the pluggable framework
of Khalaf, Karastoyanova, and Leymann and the event model of Kopp et al.
is introduced by Steinmetz [Ste08]. In any case, the required extensions
are not only bound to the integration of the TraDE Middleware and may be
potentially also useful in other application scenarios. The main disadvan-
tage of this approach is that the TraDE Middleware has to keep track of the
execution state of all choreography instances to fully take over control of
the execution of the cross-partner data flows which increases the complexity
of the TraDE Middleware implementation and requires to a certain extent
control over and access to the BPEs as described above. Therefore, within
this work we follow the TraDE-aware integration approach to integrate our
prototypical implementation of the TraDE Middleware with a corresponding
BPE which will be described in more detail in Chapter 7.

5.5 | Integration with Process Engines 189

Ch
ap

te
r 6

Transparent Data
Transformation in

Data-Aware
Choreographies

In the previous chapters, we introduced our concepts for Transparent Data
Exchange (TraDE) as a means for the modeling and execution of data-aware
choreographies. However, participants in service choreographies often rely
on the composition of already existing business logic and therefore come
up with their own internal data formats and models. These participant
data models have to be integrated and consolidated with the overall cho-
reography data model all participants rely on, i. e., the data contract they
agreed upon choreography modeling time. Therefore, data transformation
capabilities are needed to mediate between the potentially different data
formats, structures and representations of the data used by the collabo-

191

rating parties. For example, one participant requires the aggregated data
of another participant where the data has to be transformed accordingly
before exchanging it. The generic solution is to explicitly model required
data transformations as tasks within the choreography models or rely on
established solutions such as Enterprise Service Buses (ESBs) [Cha04] and
their message transformations capabilities [HW04]. However, an explicit
modeling as tasks is error-prone, time consuming and requires considerable
amount of efforts. Firstly, modelers have to provide transformation imple-
mentations required by the underlying modeling language or execution
environment, e. g., using the XML Query Language (XQuery) [XQuery] or
Extensible Stylesheet Language Transformations (XSLT) [XSLT] for XML-
related data transformations. This requires an extensive level of expertise
in transformation languages, technologies and underlying data modeling
languages and formats. Moreover, such transformations, when modeled
as tasks in possibly multiple participants, pollute the control flow of par-
ticipants with data transformation functionality that is not relevant from
a participant’s business perspective, but technically required to realize the
communication between participants of a choreography. In addition, the
underlying transformation implementations become a part of the resulting
process models implementing the overall choreography. As a consequence,
the same transformation implementations may be spread across multiple
different process models or maybe even choreography models which hinders
their reuse and makes it harder to maintain them in a consistent manner.
This is especially problematic when data formats of choreography partici-
pants change over time, as underlying choreography and process models and
all affected transformation tasks have to be adapted to support these new
data formats. While providing transformation implementations as services
eases the reuse process, modelers must be able to wrap their transformation
implementations as services to make them invocable from their choreography
models. Furthermore, this introduces an entry barrier for data-intensive
application domains such as eScience, where data transformation logic goes
far beyond simple format transformations or data aggregation. Using a
service-based integration approach would require that scientists need to

192 6 | Transparent Data Transformation in Data-Aware Choreographies

manually wrap their data transformations as services and integrate them
to the choreography runtime environment. On the other hand, relying on
established message transformation capabilities such as provided by an ESBs,
instead of explicitly modeling required data transformations as tasks within
the choreography models, has also its limitations if the required data trans-
formation logic goes far beyond simple format transformations or becomes
very domain or use-case specific. For example, as mentioned above in data-
intensive application domains such as eScience, often simulation-specific
data transformation logic implemented by respective experts is required,
e. g., to prepare simulation input data or to visualize results.
Therefore, in this chapter, the focus is on providing an overall, generic

concept regarding the aforementioned data transformation capabilities to
enable the specification of data transformations at the level of data-aware
service choreographies as well as supporting their transparent execution
during choreography runtime. The goal is that the specification of data trans-
formations within choreography models and their binding to a respective
transformation implementation during runtime is only loosely coupled while
supporting and easing reuse. Therefore, an overall concept for TraDE Data
Transformations (TDTs) is introduced. This concept comprises a TraDE Data
Transformation (DT) modeling extension as well as a generic, technology-
independent integration middleware which together enable to provide and
invoke data transformation implementations in an easy and automated man-
ner to realize an end-to-end support for the modeling and execution of data
transformations in service choreographies.
Therefore, in Section 6.1 the TDT approach is outlined and further mo-

tivated. Based on that, in Section 6.2 a DT modeling extension and its
underlying formal model are introduced. Finally, in Section 6.3 the required
runtime support for modeled data transformations is presented by intro-
ducing a data transformation integration middleware and a concept for
providing and invoking data transformation implementations as well as its
integration with the TraDE Middleware described in Chapter 5.

5.5 | Integration with Process Engines 193

6.1 The TraDE Data Transformation Approach

This section introduces the TraDE Data Transformation approach, for short
TDT, which provides the underpinnings for an end-to-end support for the
modeling and execution of data transformations within service choreogra-
phies. An overview and motivation of the approach and its building blocks is
followed by a detailed description of the individual parts in the next sections.

6.1.1 Overview

As depicted by the left model shown in Figure 6.1, applying our TraDE
concepts still forces modelers to manually specify data transformations by
adding transformation tasks to a choreography model. Furthermore, it even
requires modelers to introduce additional cross-partner data flows connect-
ing the transformation tasks and their inputs and outputs represented by
cross-partner data objects leading to more complex models. While the TraDE
concepts allow to decouple data from participants by specifying cross-part-
ner data objects, something similar for data transformations is missing, i. e.,
decoupling data transformations from concrete participants. Therefore, our
goal is to provide an end-to-end support for the modeling and execution of
data transformations in service choreographies independent of participants
directly between modeled cross-partner data objects. The choreography
model on the right of Figure 6.1 presents our idea on modeling data transfor-
mations in service choreographies in a seamless and straightforward manner.
There, the transformation tasks T1 and T2 are replaced by corresponding
cross-partner data flows with associated data transformation logic between
the data objects E and G (for task T1) as well as F and K (for task T2).
The underlying software, e. g., services, scripts or executables, that provide
the data transformation logic and are invoked by the transformation tasks
are called DT Implementations in the following. To enable the reuse and
fully automate the deployment and execution of such DT Implementations
referenced in a choreography model, concepts for their specification and
packaging in so-called DT Bundles are introduced in Section 6.1.2.

194 6 | Transparent Data Transformation in Data-Aware Choreographies

P1
P3

P2

P1

P3

P2

intermediate

K
F
G

TraDE extensions

T1

A

B

T2 C

input

D
E

output
H

dx4

dx3dx2

dx1

Data Element

Cross-Partner Data Object

Message Start
Event

Message End
Event

Message
Receive Event

Message
Send Event Data

Association
Task Message

Flow

Legend

Cross-Partner Data Flow

intermediate

K
F
G

A

B

C

input

D
E

output
H

TraDE Modeling Extensions

T1

T2

Figure 6.1: Comparison of an example data-aware choreography with task-based data transformations (left)
and with TraDE data transformations (right) (based on [HBL+18]).

6.1
|The

TraD
E

D
ata

Transform
ation

A
pproach

195

These concepts should abstract away any specifics of concrete technologies
and standards to allow modelers to easily provide new DT Implementations
without requiring previous knowledge on certain technologies or standards.
The execution of DT Implementations based on the concepts defined in this
chapter is supported through a new DT Integration Middleware presented in
Section 6.1.3. This middleware allows modelers to publish their DT Imple-
mentations to make them available for use within service choreographies.
Therefore, the DT Integration Middleware provides means for the provision-
ing of DT Implementations in form of DT Bundles and enables their uniform
task-based invocation by exposing them through a generic interface.
Based on these concepts, a corresponding TraDE Data Transformation (DT)

modeling extension is introduced in Section 6.2 which supports modelers
with the specification of data transformations by combining DT Implementa-
tions and our TraDE concepts. Since our goal is to enable the transparent
execution of such data transformations, i. e., without the necessity to explic-
itly model corresponding tasks in a choreography that integrate required
logic, the underlying choreography runtime environment has to natively
support the introduced DT modeling extension. The required transformation
logic can be specified through these modeling extension by simply refer-
encing DT Implementations as depicted in the choreography model on the
right of Figure 6.1. For example, the cross-partner data flow between data
elements F and K references transformation T2 that is provided as a DT
Implementation. Finally, in Section 6.3, the execution of modeled data
transformations during choreography runtime based on the presented TDT
approach is described.

6.1.2 Specification and Packaging of DT Implementations

To support the execution of data transformations specified within a choreo-
graphy model, the referenced transformation implementations (DT Imple-
mentation) need to be integrated into the choreography execution environ-
ment somehow. In addition, data transformations are often implemented
in different programming languages or restricted to certain execution en-

196 6 | Transparent Data Transformation in Data-Aware Choreographies

Legend

Entity Attribute

0..*

1

DT Unit

description

name

Configuration Output

Transformation

InputDependency

Description

Invocation

command

version

name

publisher

description

name alias description

name

format

alias

schema

name

format

alias

schema

name

qname

name command

tags

0..*

1

1..*

11

1

1..*
1..*

1..*

1

1

isOptional

Figure 6.2: A conceptual metamodel for specifying DT Units [HBLY18].

vironments. To tackle such heterogeneity, we present concepts for the
technology-agnostic specification and packaging of DT Implementations in
so-called DT Bundles in the following. The goal is to abstract away any con-
crete technologies or tools while automating tedious integration processes
to avoid manual wrapping of software. This allows modelers to easily create
and provide their data transformation implementations as DT Bundles.
Therefore, this section introduces a metamodel for the specification and

packaging of DT Implementations which provides means for storing, search-
ing, provisioning, and automatically executing DT Implementations. Based
on the findings of related work discussed in Chapter 2 and a lack of available
and suitable standards, we introduce our own conceptual model for an easy
and technology-agnostic specification and packaging of data transformation
implementations that fully satisfies our requirements. The resulting model
can be extended and adapted to support various use cases and functionalities.
Figure 6.2 shows our proposal for an extensible conceptual metamodel for

the specification of data transformation units (DT Units). In contrast to the
already introduced DT Bundles, a DT Unit provides a specification of one or
more DT Implementations, e. g., their inputs and outputs, required tools or
execution environments. A DT Bundle represents a concrete materialization

6.1 | The TraDE Data Transformation Approach 197

of a DT Unit by providing also the required concrete resources, e. g., data
transformation implementations in form of executable scripts, configuration
files or installation scripts to setup the required tools or frameworks for
executing respective transformations. As outlined previously, DT Implemen-
tations can vary in different dimensions and can be highly use case specific,
we therefore employ a black-box approach, i. e., considering DT Implemen-
tations as atomic reusable entities. Since DT Implementations should be
usable within service choreographies, we assume that they are runnable in a
fully automated manner and do not rely on any user interactions.
Apart from general information such as name, version, or publisher speci-

fied as Description entity shown in Figure 6.2, a DT Unit has several more
important characteristics. First, any DT Unit might support one or more
transformations, e. g., transforming textual data into several different im-
age formats. This is specified through the Transformation entities shown in
Figure 6.2 which represent DT Implementations. A Transformation has a
name and a unique fully-qualified name (QName) which can be used, e. g.,
for searching transformations at the DT Integration Middleware or to link
them as implementations within our TraDE data transformations modeling
extensions as part of a choreography model. This linking will be described
in detail in see Section 6.2. Each transformation is described by one or more
inputs and one or more outputs specified through corresponding Input and
Output entities depicted in Figure 6.2. Each input or output has a name
and must be uniquely identifiable by some alias, which can later be used for
referencing, e. g., to specify the invocation of a transformation of a DT Unit.
Possible types of inputs or outputs can be messages, data streams, files, pa-
rameters, or data from databases or Representational State Transfer (REST)
resources. The inputs and outputs of a transformation have a specific format
and might provide a schema file describing their data format. Furthermore,
some of the inputs of a transformation can be specified as optional.
Every DT Unit can have a particular set of dependencies that have to be

satisfied to execute their transformations, represented as Dependency entities
in Figure 6.2. For example, a DT Unit can depend on certain software,
libraries, (configuration) files or even Operating System (OS) environment

198 6 | Transparent Data Transformation in Data-Aware Choreographies

variables. Therefore, a proper specification of dependencies is required. Such
dependencies have to be provided or installed in some way, e. g., using an
OS-level package manager’s command or using a set of materialized files
and required installation commands.
Moreover, the execution of some preparation steps or logic before invoking

a DT Unit can be a prerequisite for running a transformation. Hence, a
specification of required configurations in form of Configuration entities can
be provided as shown in Figure 6.2. Finally, every DT Unit has to specify
how to invoke its provided transformations represented through Invocation
entities in Figure 6.2. For example, the underlying transformations can be
invoked by sending a request to an Application Programming Interface (API)
or executing a command using the Command Line Interface (CLI) of an OS.
Such invocation commands might need to reference other model’s entities,
e. g., inputs. Therefore, a predefined format for inserting aliases into the
invocation command has to be used.
To package specified DT Units with their transformation implementations

and related files as DT Bundles based on the introduced conceptual model,
a standardized packaging format is required. Introducing a predefined
structure for packaging and storing DT Units is beneficial as no additional
knowledge is needed to process the DT Bundles within the DT Integration
Middleware later. A packaged DT Unit, i. e., a DT Bundle, consists therefore
of three distinct parts namely unit, dependencies and schemas, and in addition
the DT Unit specification file. The unit part contains all DT Unit-related files,
e. g., DT Implementation artifacts such as scripts or executables. All required
dependencies such as software, libraries or (configuration) files are grouped
into a dependencies part. The schemas part contains all provided schema files
which define the structure of transformation inputs and outputs. Finally, the
DT Unit specification file specifies all entities of the DT Unit and its relations
and therefore provides an instance of the conceptual model presented in
Figure 6.2 for a concrete DT Unit materialized as a file, e. g., as JSON file.

6.1 | The TraDE Data Transformation Approach 199

Resources

Business Logic

DT Bundle
Deployer Task Invoker

Task I/O Handler

Task Monitor

DT Bundle
Manager

Search

DT BundlesDT MetadataProvisioning Layer

Presentation

REST API

Web UI

Figure 6.3: Architecture of the DT Integration Middleware [HBLY18].

6.1.3 Architecture of the DT Integration Middleware

Figure 6.3 presents the architecture of the DT Integration Middleware which
allows providers to publish their DT Bundles to make the contained data
transformation implementations available for consumers, e. g., to use them
within choreographies. The middleware itself acts as a registry between
the providers and consumers of DT Bundles. To allow a broad variety of
implementations of the presented architecture, it is defined in a generic and
technology-independent manner. Therefore, the focus is on the description of
the logical building blocks, their functionality and related user interactions.
Those building blocks can then be combined or implemented, e. g., through
well-established middleware solutions like ESBs [Cha04] known for their
integration and transformation capabilities in the context of Service-oriented
Architectures (SOA). The prototypical implementation developed as part of
this work is presented in Chapter 7.

200 6 | Transparent Data Transformation in Data-Aware Choreographies

In the following, the architecture will be presented in a top-down manner
followed by a more detailed description of its business logic components. The
Presentation layer enables the communication of external user, i. e., providers
as well as consumers of DT Bundles, with the middleware, e. g., through a
Web UI or REST API. The Business Logic layer provides the core functionality
of the middleware. Its components are responsible for the publishing, pro-
visioning, and the execution of transformation implementations provided
by DT Bundles in a task-based manner. The Resources layer provides and
integrates technologies for storing and provisioning of DT Bundles to en-
able the execution of their contained transformation implementations. This
comprises the storage of the actual files of a DT Bundle (see Section 6.1.2)
in the file system (DT Bundles in Figure 6.3). The related metadata of all
managed DT Units and DT Bundles is persisted in a database (DT Meta-
data in Figure 6.3) to simplify access and provide query support on the
metadata. To support the provisioning of published DT Bundles as a pre-
requisite for their execution, the middleware relies on a Provisioning Layer,
e. g., Docker or OpenTOSCA [Bin+13], to setup and provide the specified
runtime environment and software dependencies of a DT Bundle.
Whenever a DT Bundle provider registers a new DT Bundle at the middle-

ware, it has to be prepared for provisioning first to make its specified DT
Implementations invokable for consumers. Since the specification of a DT
Unit contained in a DT Bundle can have references to remote resources, e. g.,
files or software dependencies, these references need to be materialized,
i. e., resolved and persisted locally, to preserve the state and behavior of the
DT Bundle within the middleware, as referenced resources may change over
time leading to different variants of a bundle. For example, if a certain soft-
ware dependency is specified, exactly the version of the software specified
has to be present to guarantee that the underlying data transformations
implementations are working properly. If materialization happens, the DT
Unit specification has to reflect the changes affecting materialized references,
i. e., the references are updated to refer to the resolved and locally persisted
artifacts. Finally, a published DT Bundle needs to be stored, e. g., using a
database, a file system, or a combination of both. The DT Bundle Manager

6.1 | The TraDE Data Transformation Approach 201

shown in Figure 6.3 provides the functionality for reference materialization,
transforming DT Unit specifications of DT Bundles into provisioning-ready
specifications and manages the storage of the resulting refined bundles and
their metadata within the Resources layer. Such a provisioning-ready speci-
fication can be provided in form of, e. g., a Dockerfile or a TOSCA [TOSCA]
topology. Which target format is used is determined by the Provisioning
Layer used by the middleware implementation or if more than one is sup-
ported, the provider or consumer of a DT Bundle may be allowed to specify its
preferences. The Search component allows DT Bundle consumers to search
and identify suitable transformations of available DT Bundles by utilizing
the metadata provided through the available DT Unit specifications. Search
can employ various techniques from a trivial unique name search to the
composition of multiple transformations together to produce a desired output
from the provided input. The former allows consumers to find a specific
transformation via its identifier while the latter allows to search for possible
sequences of transformations to realize the requested data transformation.
For example, if transformation A allows to transform data from XML to JSON
format and transformation B allows to transform data from JSON to PDF
format, the sequence of transformation A and B, in addition, allows to trans-
form data from XML to PDF format. The DT Bundle Deployer is responsible
for deploying DT Bundles of providers to the supported provisioning layer.
Therefore, it uses the provisioning-ready specifications generated by the DT
Bundle Manager and deploys them to the selected Provisioning Layer. The
choice of provisioning technology is not restricted by the architecture, how-
ever, the middleware relies on a default provisioning specification leaving
the possibility to generate other specification types up to pluggable compo-
nents and the provider’s or consumer’s choice. For example, a Dockerfile
can be generated if Docker is the default provisioning specification type.
As potentially multiple provisioning layers can be used together, the DT
Bundle Deployer has to update the metadata of a DT Bundle, e. g., stored in
a database, to reflect its deployment status at the Provision Layer, i. e., if it
is available for executing its contained transformation implementations.
Another important part of the middleware is the task-based execution of

202 6 | Transparent Data Transformation in Data-Aware Choreographies

transformations, i. e., the execution of a transformation implementation of a
DT Bundle invoked on a consumer’s request. Therefore, a consumer issues a
new transformation task by sending a request to the REST API of the middle-
ware. Such a request contains a reference to a DT Bundle, the fully-qualified
name of a Transformation of the specified DT Bundle as well as required
information about retrieving input and placing output data according to the
DT Unit specification of the DT Bundle (see Section 6.1.2). The Task I/O
Handler is responsible for preparing the specified inputs as a prerequisite
to invoke a transformation as well as processing the resulting outputs on
behalf of a consumer’s request. Therefore, inputs can be received in a pull
or push-based manner. In the former case, inputs are provided as references
within a consumer’s requests and need to be downloaded and prepared
for the invocation of a data transformation. In the latter case, inputs are
contained in the request itself. The actual invocation and execution of the
specified transformation is managed by the Task Invoker. Therefore, it uses
the prepared inputs to invoke the transformation as specified within the
related DT Unit specification (Invocation in Section 6.1.2). During the execu-
tion of the transformation, the Task Monitor component allows consumers to
monitor the state of the execution by sending corresponding requests to the
REST API of the middleware. As soon as the transformation is completed, the
Task I/O Handler component is responsible to process the resulting outputs
and pass them back to the consumer.
The DT Integration Middleware has to be capable of handling various

types of inputs and outputs (e. g., files, messages, or data streams) as well
as supporting different invocation mechanisms (e. g., CLI or HTTP) and
monitoring concepts for different types of data transformation. Therefore,
the middleware has to support the integration of various implementations
of the Task I/O Handler, Task Invoker, and Task Monitor components in a
pluggable manner. To automate the execution of data transformations in
choreographies, the middleware is integrated with the TraDE Middleware
which is further discussed in Section 6.3.
The TDT approach enables us to use the introduced DT Bundles and

their contained DT Implementations for the modeling and execution of data

6.1 | The TraDE Data Transformation Approach 203

transformations in service choreographies. Therefore, in the following a
modeling extension for data transformations and its execution based on the
introduced DT Bundles and our TraDE concepts are described.

6.2 Modeling Data Transformations in Service Choreographies

Figure 6.4 depicts our data transformation (DT) modeling extension for the
specification of data transformations in data-aware service choreography
models. Modelers can use the new DT element to specify a required data
transformation directly between a set of cross-partner data objects indepen-
dent of participants. All sources and targets of such a DT element have to be
cross-partner data objects. The rationale behind that restriction is twofold.
On one hand, this guarantees that there always exists an independent con-
tainer (i. e., cross-partner data object) for all input and output data of a data
transformation which will be materialized during runtime. This is required
since the specified cross-partner data objects define the choreography data
in terms of data formats, structures and related properties. Furthermore,
cross-partner data objects represent the data that will be produced and
consumed by the choreography’s tasks and therefore reflect the potential
inputs for data transformations at the level of a choreography. Therefore, a
cross-partner data flow connecting a cross-partner data object and a DT ele-
ment is well-defined, while for a cross-partner data flow between an activity
and a DT element it is unclear what data can be expected as the activities’
output. On the other hand, this allows modelers to graphically specify the
inputs and outputs of a data transformation by simply connecting cross-
partner data objects via cross-partner data flows with them. This restriction
will be also valuable for providing more advanced functionalities in future,
e. g., data provenance, sharing of transformation results, or monitoring of
data exchange and transformations. However, there may be cases where
it will be beneficial to enable the specification of data transformations as
part of a data connector to enable the execution of data transformations in
a transient manner. This means, the specified data transformation logic is

204 6 | Transparent Data Transformation in Data-Aware Choreographies

DOy

...

dei DOz

...

dek

DOx

...

deh
DT

DT Implementation
Input/Output Mappings

Trigger Condition
Input Parameters

Activation Mode

Figure 6.4: Example of a data transformation through a new DT modeling
extension and cross-partner data flows [HBL+18].

executed based on the demand of the data consumer without persisting the
transformation result in a dedicated data object. Introducing this variant for
the specification and execution of data transformations may be an interesting
topic for future work.
Figure 6.4 shows an example for a data transformation defined through

a DT modeling element between the cross-partner data objects DOx , DOy

and DOz connected through corresponding cross-partner data flows. The
DT element contains a reference to the software that provides the related
data transformation logic referred to as DT Implementation. For example,
specifying the fully-qualified name of a Transformation of a DT Bundle avail-
able at the DT Integration Middleware as introduced above. The inputs and
outputs of a data transformation can be specified by adding cross-partner
data flows between a data transformation and one or more cross-partner
data objects. If a data transformation requires or produces several inputs
or outputs, modelers are able to map the connected cross-partner data ob-
jects to respective inputs and outputs of the underlying DT Implementation
through specifying a set of Input/Output Mappings. The definition of such

6.2 | Modeling Data Transformations in Service Choreographies 205

mappings might differ based on the type of the underlying DT Implemen-
tation. Therefore, modelers might be also graphically supported through
the choreography modeling environment by utilizing available knowledge
about required inputs and outputs of a DT Implementation, e. g., by extract-
ing related information from the DT Unit specification of the referenced
DT Implementation. Furthermore, a TraDE data transformation allows to
specify a set of Input Parameters which enables modelers to define input
values for a DT Implementation that are not provided through cross-partner
data objects. For example, to specify constant values for the configuration
or initialization of the underlying DT Implementation, e. g., to select the
output file format if multiple target formats are supported by the DT Imple-
mentation. In addition, an optional Trigger Condition and Activation Mode
can be specified for each data transformation. A trigger condition allows to
specify a Boolean expression which has to be evaluated to true before the
referenced DT Implementation is executed. The activation mode enables
modelers to specify when the data transformation should be conducted:
on-read or on-write. This will be discussed in more detail in the context of
the execution semantics of the DT element in Section 6.3.
The binding of modeled data transformations to concrete logic, specifying

a DT Implementation with a DTmodeling element, is not necessarily required
during choreography modeling and can be deferred to choreography deploy-
ment. The main idea is to enable a separation of concerns, i. e., participants’
business logic and choreography transformation logic is separated from each
other, which introduces more flexibility since required transformations can
be modeled within choreographies in an abstract manner and their actual
binding to concrete DT Implementations can be done at a later point in time
using the specified data transformations within a choreography model and
their properties as a blueprint to identify or provide required DT Implemen-
tations. This allows modelers to focus on the modeling of participants and
their conversations without taking care of how the differences of their data
models can be solved. By supporting the definition of data transformations
independent of choreography participants’ control flow directly between
cross-partner data objects, the open question is how to provide, integrate

206 6 | Transparent Data Transformation in Data-Aware Choreographies

and invoke the underlying data transformation implementations for modeled
data transformations within service choreographies during choreography
execution. Before we discuss the execution of TraDE data transformations
in Section 6.3 in detail, Section 6.2.1 presents the means for the dynamic
definition of data transformation input parameters in form of a TraDE Query
Language and Section 6.2.2 formalizes our data transformation modeling
extension to enable its integration into our formal model for data-aware
choreographies presented in Chapter 4.

6.2.1 A TraDE Query Language

Listing 6.1 shows our proposal of a grammar for a TraDE Query Language
(TQL) that allows to specify transformation parameter values in a dynamic
way. The grammar is provided in a simple Extended Backus-Naur Form
(EBNF) notation as used, for example, in the eXtensible Markup Language
(XML) specification [XML]. The structure of the query language builds on
top of the internal, choreography language independent metamodel of the
TraDE Middleware presented in Section 5.2.

For a better understanding, we provide a brief recap of it before introduc-
ing the TQL on top of it. All cross-partner data objects and their contained
data elements are represented through corresponding CrossPartnerDataOb-
ject and DataElement entities at the TraDE Middleware. A DataElement can
refer to a single or a collection of data values. In addition to the model per-
spective, the metamodel of the TraDE Middleware provides related entities to
represent instances of cross-partner data objects and data elements to reflect
the runtime perspective of data-aware choreographies, i. e., manage the data
of choreography instances. For each choreography instance corresponding
CrossPartnerDataObjectInstance and DataElementInstance entities will be cre-
ated at the TraDE Middleware with associated CorrelationProperty entities
that enable to uniquely identify to which choreography instance the data ob-
ject and data element instances belong. The actual data is provided through
DataValue entities which are referenced by one or more DataElementInstance
entities. A DataElementInstance entity associated to a multi-instance data

6.2 | Modeling Data Transformations in Service Choreographies 207

object always refers to a collection of DataValue entities.
As shown in Listing 6.1, a query always starts with a $ character to enable

the TraDE Middleware to distinguish between constant input parameter
values and queries. After that, two possible types of query strings that fol-
low an Uniform Resource Locator (URL)-like structure can be specified. A
DataElementQuery enables modelers to refer to a property of a data element.
Therefore, it contains a reference to a data object (DataObjectRef) followed by
a reference to a data element (DataElementRef) and a selection of a property
(PropertyName) as shown in Listing 6.1 (line 3-4). While the queries are spec-
ified at the level of the choreography models, i. e., referencing data objects
and data elements in the modeling tool, they will be evaluated during run-
time for each individual choreography instance at the TraDE Middleware. All
specified references to data objects and data elements within the queries will
be resolved to corresponding DataObjectsInstance, DataElementInstance and
DataValue entities at the TraDE Middleware during choreography runtime.
This will be discussed in more detail in Section 6.3. Valid property names
are size and url at the moment while this list can be extended in future (cf.
line 10 in Listing 6.1). A query like $dataObjectx/dataElementi?size
returns the number of data values associated to an instance of dataElementi
of dataObjectx. If the referenced data element is defined as part of a multi-
instance data object (see Section 4.2.1.5), the current number of associated
data values is returned, else the size is always one. The url property returns
the URL under which the DataElementInstance entity can be retrieved at the
REST API of the TraDE Middleware. This allows to easily share and distribute
the resolved URLs as a means to provide references to data objects and the
data values they contain.

1 Query ::= ’$’ (DataElementQuery |

DataValueQuery)

DataElementQuery ::= DataObjectRef ’/’ DataElementRef

’?’ PropertyName

3 DataValueQuery ::= DataObjectRef ’/’ DataElementRef

’/’ DataValueRef (’?’ PropertyName)?

DataObjectRef ::= ReferenceName

208 6 | Transparent Data Transformation in Data-Aware Choreographies

5 DataElementRef ::= ReferenceName

DataValueRef ::= ’/value’ (’[’ Index ’]’)?

7 PropertyName ::= ’size’ | ’url’

Index ::= [1-9] Number* | ’first ’ | ’last’

9 Number ::= [0-9]

ReferenceName ::= StartCharacter Character*

11 StartCharacter ::= [a-zA -Z]

Character ::= StartCharacter | Number | ’_’ |

’-’ | ’[]’ | ’#’

Listing 6.1: EBNF-like grammar of the TraDE Query Language (TQL).

A DataValueQuery enables modelers to refer to an actual data value associ-
ated to an instance of a data element (cf. line 5-6 in Listing 6.1). Therefore,
again a data object and a data element are referenced followed by a refer-
ence to a data value (DataValueRef) and an optional property selection as
shown in Listing 6.1 (line 9). A DataValueRef always starts with a /value
string which specifies that the remaining part of the query is evaluated
against a data value. Furthermore, an optional index value can be speci-
fied by adding a number larger than one or the fixed index values first
or last surrounded by square brackets (cf. line 11 in Listing 6.1). The
index only has an effect on the query evaluation if the referenced data
element is defined as part of a multi-instance data object, i. e., has prob-
ably more than one associated data value during runtime. A query like
$dataObjectx/dataElementi/value[last] returns the data of the last
data value associated to an instance of dataElementi of dataObjectx. The
use of the property selector introduced in Listing 6.1 is similar as for the
DataElementQuery. The url property will return an URL referring to the data
value and the size property will by default always return one for data values.

6.2.2 Formal Model for TraDE Data Transformations

This section presents the formal model for the data transformation (DT)
modeling element introduced above by extending our formal model for
data-aware service choreographies introduced in Chapter 4.

6.2 | Modeling Data Transformations in Service Choreographies 209

i

IC

OC

Data Object

d
u
x

e

w

f

z

∆C (τi,f)
Data Connector

Data Maps

Figure 6.5: Visual representation of a data transformation and corresponding
data connectors to source and target data objects.

From a conceptual viewpoint, we introduce data transformations within
our formal model as a special kind of data-driven activity which is not bound
nor part of the control flow of the choreography model. Instead, data
transformations are only connected to data objects via corresponding data
connectors and the referenced transformation logic is triggered as part of the
data flow conducted by the TraDE Middleware during choreography runtime.
Following this approach, a data transformation also has an associated imple-
mentation (cf. Definition 4.9) as well as input and output data containers
(cf. Definition 4.3) specifying the inputs and outputs of the associated data
transformation implementation. Therefore, the required extensions of the
related definitions introduced in Chapter 4 together with new definitions
for data transformations are introduced in the following. This allows us to
reflect all the required properties of the DT modeling extension depicted in
Figure 6.4 based on our formal model. Before required extensions of existing
definitions are discussed, the notion of data transformations is introduced in
Definition 6.1. The visual representation of a data transformation as part of
our graphical notation is shown in Figure 6.5.
Based on this definition, we are now able to associate DT Implementations

as outlined in Figure 6.4 to a modeled data transformation. Therefore,
Definition 6.2 introduces a data transformation implementation map which

210 6 | Transparent Data Transformation in Data-Aware Choreographies

is aligned to the activity implementation map introduced in Definition 4.9.

Definition 6.1 (Data Transformations)
Let V be the set of data elements defined within a choreography model
C , let 𝒞T ⊆ 𝒞 be the set of trigger conditions, and let A be the set of
activation modes, we denote τ as the set of all data transformations

τ ⊆ 𝒞T ×A

where

1. a trigger condition t ∈ 𝒞T is considered as a Boolean function in
its input container ιC(t) ⊆ V :

t : ×
v∈ιC (t)

DOM(v)→ {0, 1}

to define a Trigger Condition as depicted in Figure 6.4,

2. and A := {on-read,on-write} allows to specify the Activation
Mode shown in Figure 6.4. �

To represent the remaining properties shown in Figure 6.4 for data trans-
formations, namely specifying Input Parameters and their values, Input/Out-
put Mappings as well as connecting data objects as source and target of a
data transformation, corresponding extensions of the related definitions
provided in Chapter 4 are discussed in the following. To avoid redundancy,
we try to keep the updated definitions as short as possible and only present
the extended definition as well as potentially new restrictions or specifics
introduced through the extension.

Definition 6.2 (Data Transformation Implementations)
Let ℰτ denote the set of all possible implementations of all data trans-

6.2 | Modeling Data Transformations in Service Choreographies 211

formations, that means a member of ℰτ can be a program, script, web
service or even build-in data transformation functionality of a process
engine. The map Ψτ : τ→ ℰτ associates with each data transformation
T its activity implementation Ψτ(T). A data transformation implemen-
tation itself is perceived as a map:

Ψτ(T) : ×
v∈ιC (T)

DOM(v)→ ×
v∈oC (T)

DOM(v)
�

As already outlined above, the inputs and outputs of data transformations
and their underlying implementations will be specified using data containers
as shown in Figure 6.5. Therefore, we have to extend the set ℋC introduced
in Section 4.2.1.3 accordingly, which is used as a basis for the definition
of data containers in Definition 4.3. That means, data transformations are
added to the set, so that ℋC = N ∪τ∪P (N)∪ C. This directly allows us to
specify input and output data containers for data transformations based on
Definition 4.3 without requiring any extensions of the definition itself.
To enable the specification of Input Parameters and related input values for

a data transformation which cannot be provided through cross-partner data
objects directly as outlined in Section 6.2, Definition 6.3 is introduced. This
enables modelers to specify data values for specific data elements within
a data transformation’s input container, i. e., input parameters, in form of
constant values or a TraDE query using the above introduced TQL.

Definition 6.3 (Input Parameter Map)
Let V be the set of data elements defined within a choreography model
C , let T ∈ τ be a data transformation, let v ∈ ιC(T) ⊆ V be a data
element within the input container of T , let DOM(v) be the domain of
valid values of v, and let 𝒞TQL be a finite set of TQL expressions according

212 6 | Transparent Data Transformation in Data-Aware Choreographies

to Listing 6.1. The map

χτ : τ× V →
�

⋃

v∈V

DOM(v) ∪ 𝒞TQL

�

satisfying the conditions

1. ∀T ∈ τ,∀v ∈ V : χτ(T, v) 6= ; ⇒ v ∈ ιC(T),

2. ∀T ∈ τ,∀v ∈ ιC(T) : χτ(T, v) ∈ (DOM(v)∪ 𝒞TQL),

3. ∀T ∈ τ,∀v ∈ ιC(T) : χτ(T, v) = x ∧ x ∈ 𝒞TQL⇒ x evaluates to a
value y ∈ DOM(v)

is called an input parameter map. �

Condition 1 of Definition 6.3 enforces that an input parameter map for a
data transformation can only refer to data elements being defined as part of
the transformation’s input container. Conditions 2 and 3 enforce that the
domain of the specified constant value or the evaluated TQL expression is
identical to the one specified for the targeted data element. For example, if an
input parameter map χτ(T, v) = x is specified, and the data element is of type
integer, i. e., DOM(v) = domain(Integer), then x has to be either an integer
value or the specified TQL expression has to evaluate to an integer value. The
TQL expression $dataObjectx/dataElementi?size introduced above as
an example, fulfills this requirement by returning the number of data values
associated to a data element of a multi-instance data object during runtime.
Finally, the specification of data connectors between data objects and

data transformations will be supported by extending Definition 4.18 in
the following. Definition 6.4 presents the extended data connector map.
The association of data containers to data transformations as well as the
extended data connector map realize the Input/Output Mappings shown
in Figure 6.4 and enable to specify the related data flow to finally support
data transformations within Choreography Model Graphs (CM-Graphs) as
depicted in Figure 6.5.

6.2 | Modeling Data Transformations in Service Choreographies 213

Definition 6.4 (Data Connector Map - extended)
Let A∈ N ∪τ be an activity or data transformation, let B ∈ N ∪ 𝒞 ∪τ
be an activity, a predicate or data transformation, and let d, e ∈ D(V)
be data objects. The map

∆C : (N ∪τ∪D(V))× (N ∪ 𝒞 ∪τ∪D(V))→

⋃

A∈N∪τ, B∈N∪𝒞∪τ,
d,e∈D(V)

(℘(oC(A)× ιC(B))∪℘(d × ιC(B))

∪℘(oC(A)× d)∪℘(d × e))

satisfying the conditions

1. ∀d ∈ D(V) ∀B ∈ (N ∪ 𝒞 ∪τ) :∆C(d, B) ∈ ℘(d × ιC(B)),

2. ∀A∈ N ∪τ ∀d ∈ D(V) :∆C(A, d) ∈ ℘(oC(A)× d),

3. ∀A2 ∈ N ∪ τ ∪ D(V) : (x , z), (y, z) ∈
⋃

A1∈N∪τ∪D(V)
∆C(A1, A2) ⇒

x = y,

4. ∀A∈ (N ∪τ∪D(V)) ∀T ∈ τ :∆C(A, T) 6= ; ⇒ A∈ D(V),

5. ∀T ∈ τ ∀B ∈ (N ∪ 𝒞 ∪τ∪D(V)) :∆C(T, B) 6= ; ⇒ B ∈ D(V)

is called a data connector map. �

Conditions 1-3 are just extended versions of the conditions presented in
Definition 4.18 taking data transformations into account. The conditions 4
and 5 guarantee that data connectors ending or originating at a data trans-
formation are always only connected to data objects and no other modeling
elements. This restriction is required to decouple the data transformations
from the participants control flow as outlined in Section 6.2. Since all the
sources and targets of a data transformation are either cross-partner data ob-
jects or specified via an input parameter map, and are therefore not bound
to a participant and its runtime environment, data transformations can
be executed as part of the cross-partner data flow managed by the TraDE
Middleware in an independent and flexible manner.

214 6 | Transparent Data Transformation in Data-Aware Choreographies

The introduced and extended definitions for data transformations have to
be reflected at the level of CM-Graphs as summarized in Definition 6.5.

Definition 6.5 (CM-Graphs - extended)
A tuple

GC = (V, ιC , oC ,M (V), CS(V),D(V),µD ,ρD , N ,Ψ ,P (N),

µP , E,𝒞,∆M ,
−−→
∆M ,∆C ,

−→
∆C ,∆C P ,∆CS ,τ,Ψτ,χτ)

is called a data-aware choreography model graph, or CM-Graph for
short, representing a choreography model C ∈ C. �

To reflect the above formalized data transformations (cf. Definition 6.1) as
part of the Choreography Data Dependency Graph (CDDG) of a choreography
model C ∈ C introduced in Section 4.3, we have to extend the node set 𝒩
of GCDDG

. In addition to data objects, activities, conditions, participants or an
overall choreography model, data transformations are also valid dependency
nodes. Since they actually process data, they can be added to the set of data
processors as summarized in Definition 6.6.

Definition 6.6 (Data Dependency Nodes - extended)
Based on Definition 4.24, let C ∈ C be a choreography model, let D(VD)
be the set of all data objects, let N be the set of all activities, let 𝒞 be the
set of all conditions, let τ be the set of all data transformations, and let
P (N) be the set of all participants of C , we define

• Π = N ∪𝒞∪τ∪P (N)∪{C } as the set of all data consumers and
producers of a choreography model C ∈ C, called data processors,
and

• 𝒩 = D(VD)∪Π as the set of all nodes being source or target of
data flow within C , which we call data dependency nodes. �

6.2 | Modeling Data Transformations in Service Choreographies 215

In addition to the node set of a CDDG also its edge set has to be extended
to reflect the data connectors between data objects and data transformations
as summarized in Definition 6.7.

Definition 6.7 (Data Dependency Edges - extended)
The set ECDDG

⊆𝒩 ×𝒩 × V̂ × V̂ is called the set of data dependency edges
of a choreography data dependency graph GCDDG

. For a data dependency
edge (A, B, s, t) ∈ ECDDG

, s ∈ V̂ is called source data element and t ∈ V̂ is
called target data element of the dependency edge.
Each data dependency edge denotes that during runtime the data value
of source data element s of source node A needs to be available at target
data element t of target node B.
Therefore, (A, B, s, t) ∈ ECDDG

:⇔

• A∈ D(V)∧ B ∈ (N ∪ 𝒞 ∪τ)∧ (s, t) ∈∆C(A, B), or

• A∈ (N ∪τ)∧ B ∈ D(V)∧ (s, t) ∈∆C(A, B), or

• A∈ D(V)∧ B ∈ D(V)∧ (s, t) ∈∆C(A, B), or

• A∈ D(V)∧ B ∈ (P (N)∪ {C })∧ (s, t) ∈
−→
∆C(A, B), or

• A∈ (P (N)∪ {C })∧ B ∈ D(V)∧ (s, t) ∈
−→
∆C(A, B). �

Finally, the CDDG generation algorithm introduced in Algorithm 4.2 has
to be extended to extract all data dependencies between data objects and
data transformations from a CM-Graph.
Based on the generated CDDG, the modeled data transformations can then

be triggered as part of the cross-partner data flow at the TraDE Middleware
which is discussed in more detail in the following section.

216 6 | Transparent Data Transformation in Data-Aware Choreographies

Algorithm 6.1 Extended version of Algorithm 4.2 taking data transforma-
tions into account
1: procedure GenerateCDDG(GC)
2: CDM (GC)← GenerateCDM(GC)
3: VΠ , ECDDG

← ; . Initialize required sets

4:
Πread := {A∈ (

N

π9(GC)∪
𝒞

π14(GC)∪
τ

π21(GC)∪
P (N)

π11(GC)∪{C })

| ∃d ∈
D(V)

π6(GC) :∆C(d, A)∪
−→
∆C(d, A) 6= ;}

. Data processors reading from a data object

5:
Πwrite := {B ∈ (π9(GC)∪π21(GC)∪π11(GC)∪ {C })

| ∃d ∈ π6(GC) :∆C(B, d)∪
−→
∆C(B, d) 6= ;}

. Data processors writing to a data object
6: ∆C = π17(GC) . Data connector map of GC

7:
−→
∆C = π18(GC) . Choreography data connector map of GC

8: for all A∈Πread ; d ∈ π6(GC) do . Extract read data dependencies
9: for all (u, x) ∈∆C(d, A)∪

−→
∆C(d, A) do

10: VΠ ← VΠ ∪ {x} . Add data elements of data processors to VΠ
11: ECDDG

← ECDDG
∪ {(d, A, u, x)} . Add a data dependency edge

12: end for
13: end for
14: for all B ∈Πwrite; d ∈ π6(GC) do . Extract write data dependencies
15: for all (y, v) ∈∆C(B, d)∪

−→
∆C(B, d) do

16: VΠ ← VΠ ∪ {y}
17: ECDDG

← ECDDG
∪ {(B, d, y, v)}

18: end for
19: end for
20: for all d, e ∈ π6(GC) do . Extract read/write data dependencies
21: for all (w, z) ∈∆C(d, e) do
22: ECDDG

← ECDDG
∪ {(d, e, w, z)}

23: end for
24: end for
25: Π =Πread ∪Πwrite . Set of data processors
26: GCDDG

← (Π, ECDDG
, VΠ , CDM (GC))

27: return GCDDG
. The choreography data dependency graph

28: end procedure

6.2 | Modeling Data Transformations in Service Choreographies 217

6.3 Transparent Execution of Data Transformations

Before we describe how the modeled data transformations are actually exe-
cuted during choreography runtime, we first have a short look on the deploy-
ment artifacts of a data-aware choreography and how they are distributed
and utilized by the different components of the overall TraDE ecosystem
shown in Figure 6.6. As described in Section 6.1.2 the actual transformation
logic of a DT Implementation is provided in form of a DT Bundle which
comprises one or more transformations, an optional set of dependencies
and schema definitions, as well as a DT Unit specification file. Defined DT
Bundles are published to the DT Integration Middleware to make them avail-
able within the TraDE ecosystem. The TraDE data transformation modeling
extension introduced in Section 6.2 then allows to specify a reference to the
software that provides the underlying data transformation implementation.
By following the TDT approach, such references to transformation software,
i. e., transformation implementations can now be provided and integrated to
choreography models by referencing corresponding DT Bundles with their
QName (see Section 6.1.2). This allows the TraDE Middleware to trigger a
new transformation task at the DT Integration Middleware in a generic task-
based manner as means to conduct a modeled transformation by executing
the referenced transformation implementation of a DT Bundle.
The Data-aware Choreography & Orchestration Modeling Environment en-

ables modelers to specify data-aware service choreographies by modeling
cross-partner data objects, cross-partner data flows and data transformations.
Following the public-to-private approach [AW01], the resulting data-aware
choreography models are then transformed into a collection of private pro-
cess models to enable the execution of the choreography (see Section 4.5).
During the transformation process, the cross-partner data objects will be
translated to respective staging elements at the level of the private process
models as discussed in Section 5.1. The resulting private process models can
then be manually refined by adding corresponding internal logic for each
participant. The refined private process models are finally packaged together
with related files, e. g., process engine deployment descriptors, or interface

218 6 | Transparent Data Transformation in Data-Aware Choreographies

Data-aware Choreography & Orchestration
Modeling Environment

Choreography Model

P1

P2

P n

DT Integration
Middleware

REST API

Cross-partner
Data Object

Deployment

Data Flow

Message Flow

Legend

Process Model Pn

Process Model P2
Process Model P1

...
...

TraDE
Middleware

DT Integration
Middleware Client

REST API

Process
Engine B

TraDE
Client

Process
Engine A

TraDE
Client

Process
Engine X

TraDE
Client

Deployment
Descriptor

DT Bundles Private Process
Bundles P1,…, Pn

Figure 6.6: Integrated system architecture and deployment artifacts of the
TraDE ecosystem [HBLY18].

and schema definitions, as Private Process Bundles for the deployment on
respective Process Engines as depicted in Figure 6.6. Furthermore, the CDDG
introduced in Section 4.3.2 including the choreography data model, i. e.,
all modeled cross-partner data objects, as well as all data dependencies
originating from the modeled cross-partner data flows, are exported to
a TraDE Deployment Descriptor file. This also includes the modeled data
transformations. They are exported together with their specified properties
to the deployment descriptor. This comprises all the information outlined
in Section 6.2, i. e., the QName of a DT Implementation available at the DT
Integration Middleware and mappings of cross-partner data objects to inputs
and outputs of such a DT Implementation as well as input partameters and
an optional trigger condition and activation mode. The exported deployment

6.3 | Transparent Execution of Data Transformations 219

descriptor is uploaded to the TraDE Middleware to make all these informa-
tion accessible there. On upload, the deployment descriptor is compiled
into the middleware’s internal metamodel presented in Section 5.2. As a
result, the middleware provides and exposes all specified cross-partner data
objects and data elements as resources through its REST API as described in
Chapter 5 as well as supports the triggering of specified data transformations
when conducting the cross-partner data flow of a choreography model. This
separation of concerns, i. e., the participants’ business logic is specified in
private process models and the transformation logic is referenced within
the TraDE Deployment Descriptor, allows more flexibility since transfor-
mations can be provided and specified as DT Bundles independent of the
choreography/private process models and therefore also be easily changed
without affecting the private process models. This allows modelers to focus
on the modeling of choreography participants and their conversations with-
out taking care of how the differences of their data models can be solved.
The actual binding of concrete transformation logic, i. e., transformation
implementations being part of a DT Bundle, can be delayed to choreography
deployment since this binding information is provided as part of the TraDE
Deployment Descriptor and does not require any changes at the level of the
private process models of a choreography.
Since the realization of the data exchange across participants, i. e., be-

tween their private process models, through integrating the TraDE Middle-
ware with the underlying process engines is described already in detail in
Chapter 5, in the following, our focus is on the interactions between the DT
Integration Middleware and the TraDE Middleware to conduct the modeled
data transformations. Therefore, we first want to have a closer look on
the internal representations and behavior of the TraDE Middleware. The
TraDE Middleware comes with its own internal, choreography language
independent metamodel as presented in Chapter 5. For the sake of con-
ciseness, we only provide a brief recap of it. All cross-partner data objects
and their contained data elements are represented through corresponding
CrossPartnerDataObject and DataElement entities at the TraDE Middleware.
In addition to the model perspective, the metamodel of the TraDE Middle-

220 6 | Transparent Data Transformation in Data-Aware Choreographies

ware provides further entities to represent instances of cross-partner data
objects and data elements to reflect the runtime perspective of data-aware
choreographies, i. e., manage the data of choreography instances. For each
choreography instance corresponding CrossPartnerDataObjectInstance and
DataElementInstance entities will be created at the TraDE Middleware with
associated CorrelationProperty entities that enable to uniquely identify to
which choreography instance the data object and data element instances
belong. The actual data is provided through DataValue entities which are
referenced by one or more DataElementInstance entities.
The TraDE Middleware provides an event model for each of the introduced

entity types, i. e., a life cycle with states and transitions, introduced in
Section 5.3. This allows firing an event whenever an entity changes its state,
e. g., a DataValue is initialized, i. e., an initial value is set. Based on these
event models, the TraDE Middleware supports an event-based mechanism
to trigger actions on respective events. This event-based mechanism is used
to transparently execute data transformations specified in choreography
models by triggering the invocation of referenced transformations provided
as DT Bundles at the DT Integration Middleware and handling the underlying
data exchange. Based on the example shown on the right of Figure 6.1,
this means that transformation T1 is triggered as soon as data element E
of cross-partner data object input is initialized or whenever it is modified.
While this is the default trigger behavior of the TraDE Middleware, this can
be influenced by the specification of more fine-grained trigger conditions
under which a data transformation should be executed.
The invocation of the respective DT Bundle’s transformation itself is real-

ized in a straightforward manner. First, all required information are collected
to execute a specified DT Bundle’s transformation by sending an invocation
request to the DT Integration Middleware that triggers the task-based execu-
tion of the transformation. This comprises the resolution of corresponding
DataValue entities for a specific choreography instance that hold the input
data for the transformation. For the example depicted in Figure 6.1, this
means that the TraDE Middleware has to first identify the DataElementIn-
stance entity of data element E related to the running choreography instance

6.3 | Transparent Execution of Data Transformations 221

based on its correlation properties. Based on that, the DataValue entity asso-
ciated to the resulting data element instance can be resolved to get the actual
data to transform. Instead of passing the data by value within the invocation
request to the DT Integration Middleware, the data is passed by reference.
Therefore, the URL pointing to the respective resource exposing the required
DataValue entity at the TraDE Middleware’s REST API is added to the re-
quest for each transformation input based on the specified Input Mappings.
The same applies for the transformation outputs. Instead of retrieving the
transformation output in a response message, a DataValue resource URL is
added to the invocation request for each transformation output based on
the specified Output Mappings. After all inputs are resolved the specified
DT Bundle’s transformation is invoked by sending the prepared invocation
request to the DT Integration Middleware. As soon as the transformation is
completed, the DT Integration Middleware then uploads all results to the
TraDE Middleware by pushing them to the DataValue resources specified as
output in form of respective URLs in the invocation request, making the data
available at the TraDE Middleware.
As outlined above, by default a data transformation is triggered whenever

data is written to a DataValue associated to one of the transformation’s input
cross-partner data objects. The trigger condition and activation mode intro-
duced in Section 6.2 enable modelers to influence the underlying behavior of
the TraDEMiddleware during choreography execution. By default, the TraDE
Middleware applies the on-write activation mode. There, the TraDE Middle-
ware first waits until all input data for a data transformation is available,
i. e., the DataValue entities associated to cross-partner data objects specified
as inputs are successfully initialized, and then triggers a DT Bundle’s trans-
formation implementation at the DT Integration Middleware. Furthermore,
whenever one or more of the specified transformation inputs are modified,
the TraDE Middleware invokes the DT Bundle’s transformation again. Based
on that, the specified outputs of a data transformation are always up-to-date.
In on-read activation mode, the TraDEMiddleware triggers a data transforma-
tion whenever one of its output cross-partner data objects or data elements
are requested. For example, data transformation T1 in Figure 6.1 will be

222 6 | Transparent Data Transformation in Data-Aware Choreographies

triggered whenever data element G of cross-partner data object intermediate
is read. Since reads and writes of cross-partner data objects are decoupled
from choreography execution, the TraDE Middleware has to wait until all
the required input cross-partner data objects are available before triggering
the invocation of a DT Bundle’s transformation. Further fine tuning of the
data transformation triggering behavior at the TraDE Middleware is possible
through the specification of a trigger condition. It allows to define a Boolean
expression that is evaluated by the TraDE Middleware to check if a data
transformation should be triggered or not. For example, this can be used
to trigger a transformation only if the value of an input cross-partner data
object is within certain margins. However, this is not in the focus of this
work and therefore not further detailed.

6.3 | Transparent Execution of Data Transformations 223

Ch
ap

te
r 7

System Architecture and
Implementation

To prove the technical feasibility of the concepts introduced in this work, we
prototypically implemented them as part of our TraDE ecosystem. Within
this chapter, we therefore describe the underlying system architecture of the
TraDE ecosystem and the implementation of its components.
Section 7.1 presents the system architecture and provides an overview

of the ecosystem components as well as their interrelations. Based on that,
the prototypical implementation of the individual components is shortly
summarized in Section 7.2.

7.1 System Architecture of the TraDE Ecosystem

Figure 7.1 shows the system architecture of the complete TraDE ecosystem.
The goal of the TraDE ecosystem and its individual components is to provide
an end-to-end support for the TraDE concepts introduced in this work, namely
transparent data exchange via cross-partner data objects and cross-partner

225

Data-aware Choreography & Orchestration
Modeling Environment

DT Integration
Middleware

Deployment
Descriptor

Process
Engine

TraDE
Middleware Services

Cross-partner
Data Object

Deployment

Data Flow

Message Flow

Legend:

Private Process
Bundles

DT Bundles

TraDE Web UI

Figure 7.1: System Architecture of the complete TraDE ecosystem and its
components, based on [HBKL17; HBLY18].

data flows as well as transparent data transformations. Therefore, the
ecosystem components support the phases of the data-aware choreography
management life cycle introduced in Section 3.3.
The Data-aware Choreography & Orchestration Modeling Environment at

the top of Figure 7.1 implements the modeling, refinement and partially
the deployment phase of the data-aware choreography management life
cycle introduced in Section 3.3. Therefore, new data-aware choreography
models can be specified and automatically transformed to a set of private
process models and a TraDE deployment descriptor. The generated process
models directly reflect all data-related aspects specified at the level of the
choreography model as a result of the transformation process as defined
in Section 4.5.2. With the help of the orchestration-part of the modeling
environment, modelers can then refine the generated process models to make
them executable and directly package and deploy them from the modeling
environment to a connected process engine in form of private process bundles.
The TraDE deployment descriptor is an eXtensible Markup Language (XML)

226 7 | System Architecture and Implementation

document which represents all defined cross-partner data objects and related
data flows and therefore reflects the Choreography Data Model (CDM) and
Choreography Data Dependency Graph (CDDG) introduced in Section 4.3 in
a machine-readable format. The Data-aware Choreography & Orchestration
Modeling Environment provides corresponding functionality to automatically
generate such TraDE deployment descriptors from a specified data-aware
choreography model as defined in Section 4.5.1. Furthermore, the modeling
environment allows to directly deploy such descriptor files to the TraDE
Middleware using its Representational State Transfer (REST) API.
As described in detail in Chapter 6, defined DT Bundles providing data

transformation logic which can be referenced in a data-aware choreography
model using our TraDE modeling extensions, can be deployed to the DT
Integration Middleware to make them invocable from the TraDE Middleware
to conduct the modeled data transformations on cross-partner data objects.
Therefore, the TraDE Middleware and the DT Integration Middleware are
integrated to exchange the cross-partner data objects which have to be
transformed in an efficient manner. The TraDE Middleware triggers a data
transformation by sending an invocation request with all required informa-
tion to the DT Integration Middleware that starts the task-based execution
of the transformation using the specified DT Bundle. Instead of passing the
actual data within the invocation request to the DT Integration Middleware,
a Uniform Resource Locator (URL) is added for each required transformation
input which points to the respective cross-partner data object at the TraDE
Middleware. The same applies for the transformation results, the invocation
request contains one or more predefined URLs reflecting the cross-partner
data object(s) at the TraDE Middleware to push the result data to.
On the other side, the TraDE Middleware is integrated with the process

engines that are responsible for executing the private process models imple-
menting an underlying data-aware choreography. There the process engines
and the TraDE Middleware together realize and conduct the modeled cross-
partner data flows by pushing and pulling data to and from the defined
cross-partner data objects managed by the TraDE Middleware. In addition,
services being invoked by the private process models can be also connected

7.1 | System Architecture of the TraDE Ecosystem 227

to the TraDE Middleware to improve the data exchange by passing references
to cross-partner data objects available at the TraDE Middleware instead of
embedding potentially large data values in requests and responses between
the process engines and invoked services.
To further support users in providing and uploading their data into the

ecosystem and provide some initial monitoring support, we implemented a
TraDE Web UI. The web UI is connected to the Application Programming In-
terfaces (APIs) of the TraDE Middleware and the DT Integration Middleware
and allows, e. g., to manually upload TraDE deployment descriptors and DT
bundles, inspect registered deployment descriptors as well as their defined
data objects and data elements or to upload, download or even preview the
data values of available cross-partner data objects. This feature is especially
interesting in the context of eScience simulations since it allows to inspect
intermediary simulation results while the simulation is still running and
therefore allows to take appropriate action, e. g., by utilizingModel-as-you-go
concepts [Son16; Wei18]. For example, changing data of a cross-partner
data object and rewinding the simulation execution to re-execute parts of it
using the updated data.

7.2 Prototypical Implementation

For the modeling of data-aware choreographies based on our TraDE con-
cepts, the choreography modeling language BPEL4Chor [DKLW09; Kop16]
is used and extended accordingly based on our formal model for data-aware
choreographies introduced in Chapter 4. However, BPMN 2.0 collaboration
models with respective TraDE modeling extensions can be also used instead
of BPEL4Chor as shown by the different data-aware choreography model
examples throughout the document. Since we want to build on existing
works and prototypes, we decided to use BPEL4Chor for choreography mod-
eling and the Business Process Execution Language (BPEL) for the modeling
and execution of the resulting private process models conducting the over-
all choreography model. Based on the system architecture of the TraDE

228 7 | System Architecture and Implementation

Data-aware Choreography & Orchestration Modeling Environment

TraDE Extensions & Utililities

Chor Designer Chor2Process
Transformation BPEL Designer

Figure 7.2: Overview of the TraDE Modeling Environment

ecosystem introduced in the previous section, we want to provide a short
overview of the prototypical implementation of each individual component
in the following.

7.2.1 Data-aware Choreography & Orchestration Modeling Environment

The Data-aware Choreography & Orchestration Modeling Environment
shown in Figure 7.2 builds on established tools and prototypes developed
and used within several projects at the Institute of Architecture of Application
Systems (IAAS) at the University of Stuttgart together with our TraDE exten-
sions. To enable the modeling of data-aware choreographies with our TraDE
concepts, we extended the Chor Designer [WAG+13] — an Eclipse-based
BPEL4Chor modeling tool.
Figure 7.3 shows a screenshot of the resulting TraDE-aware Chor Designer

with a data-aware choreography model. The palette on the right provides
all introduced TraDE modeling constructs such as cross-partner data objects
(Data Object and Data Element) as well as cross-partner data flows (Data
Connector). Furthermore, we added a Data Dependency Graph Viewer to
automatically visualize the data dependencies while modeling data flows
within the choreography model and provide further utilities to support
modelers, e. g., automatic generation of a TraDE deployment descriptor of a
data-aware choreography model.
The transformation of data-aware BPEL4Chor choreography models to a

collection of BPEL process models is also provided through the modeling
environment by a TraDE-aware version of the Chor2Process Transformation

7.2 | Prototypical Implementation 229

Figure 7.3: Overview of the TraDE ChorDesigner.

module shown in Figure 7.2 which is based on the work of Reimann, Kopp,
et al. [RK+08]. For the prototypical implementation we followed the sim-
ple mapping of process data containers and cross-partner data objects as
presented in Section 3.2. Therefore, the transformation generates a set
of BPEL variables representing corresponding cross-partner data objects at
the level of the process models based on the CDDG. This means, for each
cross-partner data object read or written by the participant represented
through the process model, a respective BPEL variable with a reference to
the cross-partner data object it represents is added. These references are
specified through corresponding TraDE annotations which provide the means
to specify the data element of a cross-partner data object the underlying
variable represents. The TraDE annotations are added to respective BPEL
variable elements by using BPEL’s extensibility feature.
For process modeling and especially the refinement of the generated

private process models the modeling environment provides an extended

230 7 | System Architecture and Implementation

Figure 7.4: Overview of the TraDE BPEL Designer.

version of the Eclipse BPEL Designer1. There each of the generated process
models can be refined to an executable BPEL process model, e. g., by adding
additional activities from the palette or provide missing technical details
for the generated activities. Furthermore, the mapping of BPEL variables to
cross-partner data objects created during transformation, as outlined above,
can be inspected and also missing or further details can be specified as
shown in Figure 7.4. For example, a BPEL correlation set can be associated
which is used during runtime to correlate the right data object instances at
the TraDE Middleware to a process instance execution, if multiple instances
of the choreography model will be run in parallel.
The complete Data-aware Choreography & Orchestration Modeling Envi-

ronment is available on GitHub2 in form of an Eclipse Update Site containing
all Eclipse plug-ins for installing the TraDE-aware ChorDesigner and BPEL

1BPEL Designer: https://www.eclipse.org/bpel/
2TraDE: https://github.com/traDE4chor/trade-chordesigner

7.2 | Prototypical Implementation 231

https://www.eclipse.org/bpel/
https://github.com/traDE4chor/trade-chordesigner

Designer.

7.2.2 TraDE Middleware

The main component of the TraDE ecosystem is the TraDE Middleware intro-
duced in detail in Chapter 5. It is responsible for providing cross-partner data
objects defined during choreography modeling and to execute the specified
cross-partner data flows together with the connected process engines. The
TraDE Middleware itself is implemented as a Java-based web application that
exposes its functionality through a REST API which is specified using Ope-
nAPI1 and implemented with the Jersey RESTful Web Services framework2.
The TraDE internal representations and the actual data processed within
the choreographies, can be persisted either using MongoDB or the local file
system. To support the event-based triggering of DT Bundles, the TraDE
Middleware is extended with corresponding functionality implemented us-
ing Apache Camel3 to send requests to the REST API of the DT Integration
Middleware. For basic concurrency control a simple pessimistic locking ap-
proach is applied to block concurrent requests on cross-partner data objects
already at the level of the process engines.
The TraDE Middleware is accessible as open source on GitHub4.

7.2.3 TraDE-aware Process Engine

As Process Engine an extended version of the open source BPEL engine
Apache Orchestration Director Engine (ODE)5 is used. To enable the execu-
tion of cross-partner data flows, i. e., pushing and pulling data to or from
cross-partner data objects at the TraDE Middleware, the middleware has to
be integrated into Apache ODE. Therefore, we followed the TraDE-aware
integration approach introduced in Section 5.5 by adding and integrating a

1OpenAPI Initiative: https://www.openapis.org/
2Eclipse Jersey: https://eclipse-ee4j.github.io/jersey/
3Apache Camel: https://camel.apache.org/
4TraDE: https://github.com/traDE4chor/trade-core
5Apache ODE: https://ode.apache.org/

232 7 | System Architecture and Implementation

https://www.openapis.org/
https://eclipse-ee4j.github.io/jersey/
https://camel.apache.org/
https://github.com/traDE4chor/trade-core
https://ode.apache.org/

respective REST API client to Apache ODE. Based on this client, Apache ODE
is now able to interact with the TraDE Middleware. Moreover, the logic for
reading and writing data from or to BPEL variables is extended to support
the reading and writing of cross-partner data objects using the specified
mappings of BPEL variables to cross-partner data objects created during
the choreography to process model transformation. This means, whenever
Apache ODE tries to read or write data from or to a BPEL variable, it has
to be checked if the variable refers to a cross-partner data object or not.
If the latter is the case, a corresponding request to the REST API of the
TraDE Middleware is sent instead of using the default variable handling
mechanism of Apache ODE. Therefore, Apache ODE is extended to support
the introduced TraDE annotations at the level of BPEL variables, i. e., enable
their identification and interpretation to support the reading and writing of
data to the referenced cross-partner data objects. The TraDE-aware Apache
ODE process engine is provided as open source on GitHub1.

7.2.4 DT Integration Middleware

The DT Integration Middleware, introduced in detail in Chapter 6, is im-
plemented as a web application using Python Flask2 and also exposes its
functionality through a REST API. The REST API is again specified using
OpenAPI. For storing DT Bundles a combination of MongoDB and the local
file system is used. The former stores metadata derived from the provided
DT Unit specifications, whereas the latter is used for storing the files of
DT Bundles. The prototype supports file-based DT Implementations which
rely on files and parameters as input and output types and can be invoked
through CLI commands.
To provision DT Bundles, Docker is used as provisioning layer and inte-

grated to the middleware through a Docker SDK for Python. More complex
DT Implementations and DT Bundles requiring other invocation mechanisms
as well as input and output types might be supported using TOSCA [TOSCA]

1TraDE-aware Apache ODE: https://github.com/traDE4chor/ode
2Pallets Flask: https://palletsprojects.com/p/flask/

7.2 | Prototypical Implementation 233

https://github.com/traDE4chor/ode
https://palletsprojects.com/p/flask/

Figure 7.5: Entry page of the TraDE Web UI.

and OpenTOSCA [Bin+13] as provisioning layer in the future.
The DT Integration Middleware is accessible as open source on GitHub1.

7.2.5 TraDE Web UI

To support the interaction of human users with both the TraDE Middleware
as well as the DT Integration Middleware a TraDE Web UI is provided. The
web UI is implemented as a single-page web application using the Angular2

framework. It connects to the REST APIs of bothmiddleware components and
allows to query and inspect any available data as well as to manually upload
data or register new artifacts, e. g., new TraDE deployment descriptors or
DT bundles. Figure 7.5 shows a screenshot of the entry page of the web
UI. The menu on the left allows to navigate to different views comprising
all available choreography data models and their content (data objects and
data elements) registered through uploaded TraDE deployment descriptors,
instances of data objects and data elements created during choreography
executions, as well as actual data reflected by data values associated to a

1DT Middleware: https://github.com/traDE4chor/hdtapps-prototype
2Angular: https://angular.io/

234 7 | System Architecture and Implementation

https://github.com/traDE4chor/hdtapps-prototype
https://angular.io/

Figure 7.6: Preview of data values using the TraDE Web UI.

data object instance and registered transformations in form of DT bundles
available at the DT Integration Middleware. The dashboard in the middle of
the page provides three direct entry points to the data dependency graphs,
i. e., the TraDE Middleware representation of the data contained in a TraDE
deployment descriptor, data values as well as data transformations. From
there all other resources can be found by dynamically traversing through
the web UI via the provided links in the details pages.
Figure 7.6 shows such a details page for data values which allows to inspect

the underlying metadata (e. g., media-type, status or size of the data), the
related data object instance where the data value is used or originates from
or provides the ability to download or even show an inline preview of the
current data. This preview is possible for a predefined collection of media-
types such as PDFs, videos, images or XML and plain text, for which the web

7.2 | Prototypical Implementation 235

UI is able to directly render an inline preview as shown for the video data in
Figure 7.6. The TraDE Web UI is accessible as open source on GitHub1.

1TraDE Web UI: https://github.com/traDE4chor/trade-web-ui

236 7 | System Architecture and Implementation

https://github.com/traDE4chor/trade-web-ui

Ch
ap

te
r 8

Validation and Evaluation

This chapter provides an validation and evaluation of the TraDE concepts
and their prototypical implementation introduced in this work. Therefore,
we first present a case study from the eScience domain, where we applied
our TraDE concepts to a simulation choreography to ease modeling and
provide additional runtime support regarding data-related aspects such
as data exchange and data transformations. In addition, we validate and
evaluate the prototypical implementation of the overall TraDE environment
described in Chapter 7 through a performance evaluation comparing the
execution of a choreography model with and without our TraDE concepts
applied. The individual results are already published as part of different
publications [HBKL17; HBLW17; HBLY18] based on the research conducted
in the context of this thesis as outlined in Section 1.3.

8.1 OPAL Case Study

Figure 8.1 shows a choreography model of a Kinetic Monte Carlo (KMC)
simulation using the custom-made simulation software Ostwald ripening of
Precipitates on an Atomic Lattice (OPAL) [BS03] presented in Section 1.1.

237

O
pa

lX
YZ

R

O
pa

lM
C

O
pa

lC
LU

S

O
pa

lV
isu

al

Process
Snapshot

Search
Atom

Clusters

Determine
Position
and Size

clusterssnapshot posSize

plot

video

Create
Plot

Create
Video

lattice

Run
Opal MC

Simulation

saturation

snapshotsopal_in

clusters

#clusters

#snapshot

#clusters,
#posSize

Visualize
Results

#snapshots,
#saturation

#video,
#plot

saturation

snapshots

plot

video

allPosSizes

allClusters

Service
Task

Data Object
Collection

Parallel
Gateway

#DO

Message
Flow

Exchanged
Data Object

Legend

Prepare
Input Files

energy

params

Message
Start Event

Message End
Event

Data
Association

Data Object

Figure 8.1: Opal simulation choreography model specifying a thermal aging simulation from material science
domain (based on Hahn et al. [HBKL17]).

238
8

|Validation
and

E
valuation

OPAL simulates the formation of copper precipitates, i. e., the development
of atom clusters, within a lattice due to thermal aging. The simulation
consists of four major building blocks which are reflected as participants
of the choreography depicted in form of an BPMN 2.0 collaboration model
in Figure 8.1. Before we describe the details of each of the choreography
participants and how they together conduct an OPAL simulation run, we
shortly introduce their purpose towards implementing the OPAL simulation.
The OpalMC participant reflects the underlying three phases of the OPAL

simulation: pre-processing, simulation, post-processing. In the pre-process-
ing phase, all data required for the simulation is collected and prepared in
the required simulation input format by the Prepare Input Files task. Based on
that, a Kinetic Monte Carlo simulation is conducted as part of the simulation
phase reflected by the Run Opal MC Simulation task. Finally, in the post-
processing phase, the simulation results are analyzed to identify formed
clusters as part of the OpalCLUS participant, their positions and sizes as part
of the OpalXYZR participant, as well as visualize the simulation results as part
of the OpalVisual participant. Following the choreography paradigm, the
conversations between the four participants are specified in a peer-to-peer
manner through the exchange of messages. The consumed and produced
data is represented through BPMN data objects, abbreviated with DO in
the following. To exchange data between participants corresponding mes-
sage flows are specified. The labels on the message flows in Figure 8.1 are
added to visualize which data objects of a participant are exchanged during
a conversation as part of the underlying message. The invocations of the
different modules of the OPAL simulation software are modeled through
corresponding service tasks within the participants. Since the OPAL simula-
tion software is implemented in Fortran, where data between the modules
is exchanged via files on the local file system, the software is provided as a
set of executables. To provide these executables as services, corresponding
service wrappers are manually implemented to enable their service-based
invocation [SHK+11] and therefore enable their composition via the defined
choreography model as described in the following.
Whenever the OpalMC participant receives a new request message, a new

8.1 | OPAL Case Study 239

OPAL simulation instance is created. The initial request contains an atom
lattice (lattice DO), the initial energy configuration (energy DO) of the atoms,
as well as a set of parameters (params DO), e. g., the number of snapshots
of the lattice to create during the simulation. These snapshots are later used
during the post-processing phase to identify and calculate clusters and their
variation over time. The Prepare Input Files service task sends the parameters
and the energy configuration to a service which takes the data to consolidate
and transform it into the right input format (opal_in DO) for starting the
Kinetic Monte Carlo (KMC) simulation.
The Run Opal MC Simulation service task invokes the provided service

wrapper for the underlying Fortran executable which conducts the KMC sim-
ulation based on the available input data hold by the respective data objects.
According to the specified number of snapshots in params, the service saves
the current state of the atom lattice at a particular point in time as a snapshot
and replies all snapshots together (snapshots collection DO) as well as cluster
saturation data (saturation DO). After that, the snapshots are analyzed and
visualized in parallel. Based on the number of snapshots, multiple instances
of the OpalCLUS and OpalXYZR participants are created through the Process
Snapshots service task. Each instance of the two participants is analyzing
one particular snapshot, i. e., the position and size of clusters formed so
far. The OpalCLUS participant takes a snapshot and its Search Atom Clusters
service task invokes the provided service wrapper for the underlying Fortran
executable which calculates and finally replies a list of identified clusters
(clusters DO) of the snapshot. This cluster information is then forwarded
to the OpalXYZR participant via a message exchange where the Determine
Position and Size service task invokes the respective service wrapper for the
underlying Fortran executable which is capable of calculating the position
and size of each previously identified cluster (posSize DO). After that, the
resulting cluster and position data is replied back to the Process Snapshot
task of the OpalMC participant which collects the snapshot-related results
within the collection data objects allClusters and allPosSizes.
In parallel to analyzing the snapshots, the Visualize Results service task

triggers the visualization of the snapshot and saturation data through the

240 8 | Validation and Evaluation

OpalVisual participant. The required data is passed through a message
and then used by the Create Video and Create Plot service tasks to invoke
corresponding visualization services. Based on the collection of snapshots,
a video of animated 3D scatter plots (Create Video task) is created and the
saturation data is used to create a 2D plot of the saturation function of the
precipitation process (Create Plot task). Finally, the resulting media data is
replied back to the OpalMC participant which then completes the execution
of the OPAL simulation instance. The overall result data, i. e., the content of
the data objects allClusters and allPosSizes as well as plot and video, is then
replied to the requestor as part of the response message.
Based on the introduced OPAL simulation choreography model, in the

following two sections, we discuss how the application our TraDE concepts
for data-aware choroegraphies enable an easier modeling and execution of
data-related aspects.

8.1.1 OPAL Simulation Choreography with TraDE Concepts

Figure 8.2 presents the OPAL simulation choreography model with our
TraDE concepts applied. All data relevant for the choreography model is
specified independent of any participant and in a shared and reusable manner
through cross-partner data objects (DO) defined in Section 4.2.1.5. This
makes the data required and produced by the choreography and each of its
participants visible and therefore potentially easier to identify by human
readers. Furthermore, data objects relevant for more than one participant
do not have to be specified on the level of each individual participant which
reduces the amount of data object definitions and participant internal data
flow. The grouping of data elements into cross-partner data objects directly
allows modelers to visually reflect that data is semantically related, as for
example the sim_input DO contains all data elements providing required
simulation input data. Another benefit of this grouping is that the whole
collection of data elements can be specified as the source or target of a data
flow. For example, the data flow between the start activity of the OpalMC
participant and the sim_input DO specifies that the request message contains

8.1 | OPAL Case Study 241

O
pa

lX
YZ

R

O
pa

lM
C

O
pa

lC
LU

S

O
pa

lV
isu

al

Process
Snapshot

Search
Atom

Clusters

Determine
Position
and Size

allClusters[i]

Create
Plot

Create
Video

Run
Opal MC

Simulation
Visualize
Results

saturation

snapshots allPosSizesallClusters

snapshots[i] allClusters[i] allPosSizes[i]

sim_input

energy
params
lattice
opal_in

vis_results

video
plot

Legend

query

Cross-Partner Data Flow

Selective
Query

Prepare
Input Files

Data
Element

Cross-Partner
Data Object

Figure 8.2: Data-aware OPAL simulation choreography model after applying
our TraDE concepts (based on Hahn et al. [HBKL17]).

data for multiple data elements. The data flow therefore specifies a set of
mappings how the data received via the message should be copied to the
respective data elements. Furthermore, selective queries can be attached
to the cross-partner data flow in order to specify that only parts of a cross-
partner data object are required as defined in Section 4.2.6.1. For example,
each instance of the OpalCLUS participant processes one snapshot from the
whole collection of snapshots (snapshots cross-partner DO) which is specified
through the selective query attached to the data flow (snapshots[i]).
The routing of data through consecutive participants is improved com-

pared to the classical version of the model shown in Figure 8.1. Instead of
routing cluster data from the OpalCLUS participant through the OpalXYZR
participant to the OpalMC participant, with the TraDE approach such data
can be directly stored in the globally accessible allClusters cross-partner data
object. The advantage is that other services requiring this data can directly
retrieve it from the cross-partner data object instead of waiting for a corre-

242 8 | Validation and Evaluation

sponding message. Furthermore, by using the introduced capabilities of the
TraDE approach, scientists are able to inspect each of the identified clusters
as soon as they are added to the allClusters data object while the processing
of the remaining snapshots is still running. For example, to inspect interme-
diary simulation results via the TraDE Web UI as presented in Section 7.2.5.
Instead of sending all required input data encapsulated in the initial request
message to trigger a new simulation instance, scientists are also able to
upload data such as the initial lattice to the TraDE Middleware beforehand
and then only pass a reference to this data within the request message. This
is especially useful if the same data is used for multiple simulation runs, i. e.,
choreography instances executed in parallel. For example, in the context
of a parameter study where it does not make sense to send the same data
multiple times over the network, if this is not really required in terms of
other reasons. The same applies the other way around, e. g., for the resulting
video. Instead of routing data through several participants, the video will be
directly stored from the OpalVisual participant to the shared vis_results DO
from where it is directly accessible or downloadable at the TraDE Middleware
even after the simulation instance itself is already completed.

8.1.2 OPAL Simulation Choreography with TraDE Data Transformations

Finally, we apply our TraDE Data Transformation (TDT) approach introduced
in Chapter 6 to the Opal simulation choreography model as an example for
easier modeling of data transformations and enabling their provisioning
and execution in a technology-independent and transparent manner. The
resulting model is depicted in Figure 8.3.
Compared to the TraDE-aware version of the model depicted in Figure 8.2,

data transformations are modeled using the TraDE data transformation
modeling extension introduced Section 6.2. Therefore, required data trans-
formations can be modeled between cross-partner data objects instead of
specifying them through respective transformation tasks, e. g., service tasks
invoking transformation logic provided as a service. The service tasks Pre-
pare Input Files, Create Video and Create Plot depicted in the TraDE-aware

8.1 | OPAL Case Study 243

O
pa

lX
YZ

R

O
pa

lM
C

O
pa

lC
LU

S
Process

Snapshot

Search
Atom

Clusters

Determine
Position
and Size

allClusters[i]

Run
Opal MC

Simulation

saturation

snapshots

allPosSizes

allClusters
snapshots[i]

allClusters[i] allPosSizes[i]

sim_input

energy
params
lattice
opal_in

vis_results

video
plot

t1

t3

t2

Legend

query

Cross-Partner Data Flow

Selective
Query

Data
Element

Cross-Partner
Data Object

T
Data

Transformation

Figure 8.3: Opal simulation choreography model with TraDE data trans-
formation modeling extension applied (based on Hahn et al.
[HBLY18]).

model in Figure 8.2 are such transformation tasks since they invoke related
transformation services using the specified data objects as input values. For
example, the Create Video service task takes the collection of snapshots and
transforms them into a video of animated 3D scatter plots.
According to our motivation for introducing data transformation capa-

bilities on top of our TraDE concepts, as discussed in Chapter 6, the Opal
simulation choreography model shown in Figure 8.2 contains three transfor-
mation tasks that are not a relevant part of the simulation, but technically
required for pre-processing (sim_input DO) and post-processing (vis_results)
of simulation data. Moreover, the simulation specific transformation imple-
mentations have to be manually wrapped as services to enable their invo-
cation from the choreography. This requires expertise and additional effort
since the transformation implementations required for the OPAL simulation
are provided in form of a shell script (Prepare Input Files) or Python (Create
Video) and Gnuplot scripts (Create Plot).
Figure 8.3 depicts the resulting OPAL choreography model with our TraDE

244 8 | Validation and Evaluation

Data Transformation (TDT) approach applied. The definition of data transfor-
mations between cross-partner data objects allows to substitute the explicitly
modeled transformations tasks: Prepare Input Files, Create Video and Create
Plot. Instead, TraDE data transformations t1, t2, t3 are defined to transform
the simulation data as required. This contributes to our goal of specify-
ing data and its transformations independent of any participants in service
choreographies directly between cross-partner data objects. Furthermore,
the transformation implementations have no longer to be provided as ser-
vices to enable their integration and invocation through tasks (e. g., Prepare
Input Files) or in a way the underlying process engine enforces. Modelers
are now able to specify and integrate their transformation implementations
without manual wrapping effort, in the form of DT Bundles to enable their
transparent execution within the TraDE ecosystem as presented in Chapter 6.
With the help of the TDT approach, the original scripts can be automatically
wrapped and integrated into the TraDE ecosystem to enable their invocation.
Only respective DT Unit specifications have to be created for each of the
scripts to enable their packaging together with related files as DT Bundles.
Finally, these bundles have to be published to the DT Integration Middle-
ware to enable their use by the TraDE Middleware to conduct the specified
transformation of cross-partner data objects.
The complete case study and any related artifacts to instantly run the case

study in a dockerized environment, e. g., BPEL process models, a Docker
Compose file and a JMeter test plan, are available on GitHub1.

8.2 Evaluation

In the following, we introduce a performance evaluation comparing cross-
partner data flows with the classical exchange of data through messages
within service choreographies. Therefore, we first present the underlying
evaluation methodology we apply, followed by a description of the experi-
mental setup and finally a discussion of the evaluation results.

1TraDE Opal Case Study: https://github.com/traDE4chor/
trade-core-evaluation/tree/master/opal-case-study

8.2 | Evaluation 245

https://github.com/traDE4chor/trade-core-evaluation/tree/master/opal-case-study
https://github.com/traDE4chor/trade-core-evaluation/tree/master/opal-case-study

P1
P3

P2
c1

mx1

B

D

E

F

E

G

G

DE F
A

G

Data Object

Message
Start Event

Message
End Event

Message
Receive Event

Message
Send Event

Data
Association

Task

Legend

Message
Flow

Figure 8.4: Choreography model used as baseline without our TraDE con-
cepts applied (based on [HBLW17]).

8.2.1 Evaluation Methodology and Experimental Setup

The focus of the evaluation is at analyzing the performance variation when
introducing our TraDE concepts, i. e., cross-partner data objects and cross-
partner data flows. Therefore, two versions of a simple choreography model
are used to measure variations of the response time perceived by a user
triggering the execution of the choreography. Response time here refers to
the time between sending the initial request and receiving the final response
message from the choreography.
Figure 8.4 depicts the standards-based choreography model used as base-

line for the evaluation in form of an BPMN 2.0 collaboration model. The
conversations between the participants are modeled by BPMN message in-
termediate events and message flows, e. g., mx1 in Figure 8.4. Each of the
participants is instantiated through a corresponding BPMN message start
event, e. g., c1 in P1, which consumes an incoming request message and
extracts the contained data for processing it within the choreography. Fol-
lowing the standards-based approach of modeling data and data exchange
between participants, required data is modeled in form of BPMN data objects

246 8 | Validation and Evaluation

P1
P3

P2

B

A

dx1

input

D
E

dx2

output

F
G

dx3

Cross-Partner
Data Flow

Data Element

Cross-Partner
Data Object

Legend

Figure 8.5: Choreography model with our TraDE concepts applied: cross-
partner data objects and cross-partner data flow.

and their exchange is handled via message flows. For example, BPMN data
objects D and E are passed from participants P1 to P2 via message flow
mx1, i. e., the data contained in the data objects is put into a message and
send to participant P2 where the data is extracted again and stored into
related BPMN data objects D and E of participant P2. To introduce some
actual data processing load at the level of the participants, the BPMN tasks
A and B duplicate their input data by its concatenation and store the result
in respective BPMN data objects.
Figure 8.5 depicts the data-aware choreography model with our TraDE

concepts applied which is compared against the baseline choreography
model introduced above. Choreography data is modeled through our cross-
partner data objects, e. g., input in Figure 8.5, and the reading and writing
of the cross-partner data objects from tasks and events is specified through
cross-partner data flows, e. g., dx1 or dx3 in Figure 8.5.
While in the standards-based choreography model, data between partici-

pants is transferred through the exchange of messages within conversations,
the notion of cross-partner data objects and cross-partner data flows allows
us to decouple the exchange of data from the exchange of messages. For
example, instead of forwarding the data of the initial request from partici-

8.2 | Evaluation 247

pant P1 to participant P2 through message flow mx1, we can directly specify
a cross-partner data flow to task A of participant P2 where the data is pro-
cessed. The same applies to the result data of task A, instead of forwarding it
to other participants through the exchange of messages, it is directly stored
in cross-partner data object output via the specified cross-partner data flow
dx3 as shown in Figure 8.5.
To conduct the evaluation, both choreographies are modeled as BPEL4Chor

[DKLW09] choreography models using the Data-aware Choreography & Or-
chestration Modeling Environment presented in Section 7.2.1. The resulting
choreography models are transformed [RK+08] to three private process
models implemented using the Business Process Execution Language (BPEL).
Finally, each of the generated process models is manually refined, result-
ing in three executable BPEL process models which provide the basis to
conduct the evaluation scenarios. To avoid confusion between BPMN data
objects as language-specific constructs and cross-partner data objects as a
general concept, in the following, we use the generic term data container
for modeling constructs that allow the specification of data at the level of
a specific modeling language, e. g., BPMN data objects or BPEL variables.
The BPMN tasks A and B of participant P2 and P3 shown in Figure 8.5 are
therefore refined to BPEL assign activities. Each of them contains respec-
tive assignment expressions which duplicate the random data contained in
data containers D and E by its concatenation and store the result in data
containers F and G. To guarantee that for both scenarios, baseline as well
as TraDE, the underlying data has to be actually transferred through the
exchange of messages or by uploading or downloading it from the TraDE
Middleware, respectively, we deploy each of the resulting executable private
process models to a separate process engine instance. As process engine
the TraDE-aware version of Apache ODE introduced in Section 7.2.3 with
its default configuration is used. As described in Section 7.2.1, the BPEL
process models generated for the data-aware choreography model shown in
Figure 8.5 are extended with TraDE annotations during the transformation,
so that the process engine is aware of the linking of the BPEL variables with
the cross-partner data objects managed by the TraDE Middleware.

248 8 | Validation and Evaluation

To also measure a potential impact of the size of the data being processed,
we introduce three scenarios with increasing data size for each of the input
data elements (data object input, data elements D and E): 1KB, 128KB and
256KB. While for the baseline scenarios all data is stored locally in corre-
sponding data containers at the process engines, in the TraDE evaluation
scenarios the data are uploaded once to the cross-partner data objects man-
aged by the TraDE Middleware and retrieved directly from there only when
required by the process engines as outlined in Section 5.1. For each of the
six scenarios summarized in Table 8.1, a workload consisting of randomly
generated request messages with the above mentioned data element sizes is
created. Based on previous experience from the experiments presented in
[HSA+14; SASL13], the workload is distributed among a warm-up phase
(w(t0)) with 10 requests followed by an experimental phase with a total of
310 requests. Performing a warm-up phase prior to conducting the actual
measurement is intended to reduce outliers during the initialization phase of
the system under test. The requests are sent concurrently in five load bursts
(i) to the process engine, to which the private process model of participant
P1 is deployed, according to the following function over time:

m(t i) = w(to) +
5
∑

i=1

2i−1 · k | k = 10, w(t0) = 10

The idea behind splitting the total load of 310 requests into five load bursts
is to steadily increase the load on the system while measuring the variation
of the user-perceived performance (average response time) based on the
introduced load. Therefore, each of the load bursts follows an exponential
function of base 2, with an initial burst of 10 followed by bursts with 20, 40,
80, and 160 concurrent requests.
The experimental environment is set up in an on-premise private cloud

infrastructure on two virtual machines (VM) as shown in Figure 8.6. The
evaluation VM is configured with 8 virtual CPUs, Intel® Xeon® CPU E5-
2690 v2 3.00GHz, 32GB RAM, 120GB disk space, and is running an Ubuntu

8.2 | Evaluation 249

Virtual Machine
Docker

PE-1 (ODE)

PE-2 (ODE)

PE-3 (ODE)

TraDE

Virtual Machine
Load Driver

(JMeter)

Figure 8.6: Experimental Setup.

14.04.4 64bit server distribution. We use Docker1 within this VM to deploy
the three separate instances of Apache ODE and in addition one TraDE
Middleware instance in the TraDE scenarios. The idea behind this level of
nesting and using Docker for the deployment of the evaluation environment
is that we want to have a clean and therefore identical setup for each of the
conducted experiments towards creating reproducible evaluation results.
To setup the evaluation environment and to conduct the workload for

each of the defined evaluation scenarios, we use Apache JMeter 3.22 as load
driver which is deployed in a separate VM, with the following configuration:
2 virtual CPUs, Intel® Xeon® CPU E5-2690 v2 3.00GHz, 4GB RAM, 40GB
disk space, running an Ubuntu 14.04.2 64bit desktop distribution.
We created a JMeter test plan for each of the defined six scenarios, i. e.,

three baseline scenarios and three TraDE scenarios with data sizes of 1KB,
128KB and 256KB each, which concurrently sends the above defined work-
load for five concurrent users to the endpoint of the BPEL process model
implementing participant P1. To alleviate the effect of outliers in the ex-
perimental results, we execute ten rounds of each scenario and calculate
the average response time for each load burst while excluding the samples

1Docker Container Runtime:
https://www.docker.com/products/container-runtime

2Apache JMeter: http://jmeter.apache.org/

250 8 | Validation and Evaluation

https://www.docker.com/products/container-runtime
http://jmeter.apache.org/

5000

10000
Data Element Size: 1KB

Baseline
TraDE

5000

10000

Av
er

ag
e

re
sp

on
se

 ti
m

e
(in

 m
s)

Data Element Size: 128KB

Burst 1 Burst 2 Burst 3 Burst 4 Burst 5

10000

20000

Data Element Size: 256KB

Figure 8.7: Evaluation results comparing the average response time in mil-
liseconds (ms) for the five load bursts of all scenarios [HBLW17].

which are timed-out at the process engine.

8.2.2 Experimental Results

Figure 8.7 shows the experimental results comparing the user-perceived
performance (average response time) of the load bursts of all scenarios. If
we compare the baseline with the TraDE scenarios, there exists an overall
beneficial impact to the user-perceived performance when introducing cross-
partner data flows. However, this impact greatly varies on the size of the data
being exchanged as well as on the workload applied throughout the load
bursts. Comparing the scenarios with 256KB data size as shown in Figure 8.8,
the performance is improved by approximately 90% in total. When we

8.2 | Evaluation 251

have a look at the different load bursts in detail depicted in the last row
of Figure 8.7, this improvement decreases from approximately 136% in
burst 1 to approximately 32% in the last load burst. Therefore, we can assume
that when increasing the load on the middleware, the improvement will
further degrade and actually convert to an overall performance deterioration.
This is also underpinned when comparing the 128KB scenarios shown

in Figure 8.8 where the performance is still improved by approximately
56% in total. However, again the performance alters from an improvement
of approximately 117% in burst 1 to a small performance degradation of
approximately 1% in the last load burst as shown in the second row of Fig-
ure 8.7. Comparing the scenarios with 1KB data size shown in Figure 8.8,
the performance is degraded by approximately 66% in total when introduc-
ing the middleware and cross-partner data flows. There the overhead of
introducing additional communication between the process engines and the
TraDE Middleware to conduct the cross-partner data flows is higher than the
improvements gained by reducing the amount of data to be exchanged.
Furthermore, Figure 8.7 shows that for the baseline scenarios with mes-

sage-based data exchange, the performance maintains quite stable in terms
of increasing the workload across the load bursts but decreases significantly
when increasing data element sizes. This fact is also underpinned when
comparing the overall average response time among all load bursts of the six
scenarios based on the processed data element sizes as shown in Figure 8.8.
In contrast, for the TraDE-based scenarios with cross-partner data flows, the
performance maintains quite stable in terms of data element sizes as shown
in Figure 8.8, but decreases significantly when increasing the workload
throughout the five load bursts as shown in Figure 8.7.
Both types of scenarios are not fully able to process the complete workload

in all load bursts without having a set of samples that timeout at the process
engine. By default, Apache ODE is configured to timeout incoming requests
after 120 seconds. For the baseline scenarios this is especially the case in
the third scenario with a data element size of 256KB, where about 30%
of the samples in load burst 5 result in timeouts, after approximately 556
successful samples are processed. A reason for this behavior might be the

252 8 | Validation and Evaluation

0 50 100 150 200 250
Data Element Size (in KB)

2500

5000

7500

10000

12500

15000

17500

20000
Av

er
ag

e
re

sp
on

se
 ti

m
e

(in
 m

s)
Baseline
TraDE

Figure 8.8: Evaluation results comparing the average response time in
milliseconds (ms) based on the data element size (based on
[HBLW17]).

large amount of data (1550 instances∗3840KB≈ 5.9GB) ODE is not capable
of handling in its default configuration at a certain point in time. For the
TraDE scenarios such samples causing timeouts are randomly distributed
across nearly all scenarios and load bursts, but also with a peak in load burst 5.
The reason for such an unpredictable behavior is most probably related to the
resolution of required data from the TraDE Middleware through the process
engine. To correlate process instances and data object instances and to
finally retrieve data element values, the process engines poll the middlewares’
Representational State Transfer (REST) API by sending repeated requests
every second as long as the process instance is not timed-out. These requests
are queued up at the TraDE Middleware while throttling its performance
for a certain amount of time which again results in timeouts at the process
engines. The average amount of timed-out samples as well as a summary of
the scenarios and their average response times is shown in Table 8.1.
In summary, the evaluation results show that introducing a TraDE Middle-

8.2 | Evaluation 253

Table 8.1: Summary of the experimental evaluation scenarios and their re-
sults.

Scenario Data Element Total Data Size Timed-out Avg. Resp.
Size (in KB) (in KB/instance) Req. (in %) Time (in ms)

Baseline
1 15 0.04 1451.58

128 1920 0.32 10272.86
256 3840 6.49 17540.36

TraDE
1 6 0.20 4313.86

128 768 0.47 6560.86
256 1536 0.61 9214.08

ware layer and applying our concept for cross-partner data flows in ser-
vice choreographies provide valuable performance improvements already
for relatively small data sizes above 128KB. To alleviate the performance
degradation when increasing the load at the middleware, the prototypical
implementation and its integration with Apache ODE has to be improved, so
that its performance maintains stable when increasing the workload.
Therefore, further experiments could help to investigate current capacity

limitations of the TraDE Middleware when increasing the data sizes as well
as the number of concurrent users and requests. The complete evaluation
result data and any related material, e. g., BPEL process models and JMeter
test plans, are available on GitHub1.

1TraDE Evaluation: https://github.com/traDE4chor/trade-core-evaluation/
tree/master/initial-evaluation

254 8 | Validation and Evaluation

https://github.com/traDE4chor/trade-core-evaluation/tree/master/initial-evaluation
https://github.com/traDE4chor/trade-core-evaluation/tree/master/initial-evaluation

Ch
ap

te
r 9

Conclusions and Outlook

The motivation underlying to this work is driven by the increasing impor-
tance and business value of data in the fields of business process management
and eScience as a data-intensive domain, all of which profiting from the
recent advances in data science and Big data. As discussed in Chapter 1,
service choreographies provide means to model and conduct collaborations
between multiple parties specifying potentially complex conversations and
interactions from a global perspective and in a technology-agnostic manner.
However, in our opinion the paradigm shift towards data-awareness is not
fully reflected by the state of the art in the domain of service choreographies
at the moment. Therefore, within this work we present respective shortcom-
ings in Chapter 1 which are then translated to the research contributions
defined in Section 1.2 and tackled throughout the rest of the work. In the
following, Section 9.1 summarizes and concludes the presented research con-
tributions and Section 9.2 provides an outlook on potential future research
directions in the context of data-aware service choreographies.

255

9.1 Conclusion

Towards the overall goal of increasing data-awareness in service choreogra-
phies, in Chapter 3, we present our overall methodology for data-aware
service choreographies. The example presented in Section 3.1 further illus-
trates and motivates the need to improve data-awareness and discusses the
shortcomings regarding the modeling and execution of service choreogra-
phies in more detail. For example, that data flow across participants has
to be modeled differently compared to the data flow inside a participant
or that choreography models do not support the definition of a common,
globally consolidated and agreed set of data objects representing the data
contract between the collaborating parties in form of a choreography data
model. Based on that, we introduce our Transparent Data Exchange (TraDE)
approach to mitigate the presented shortcomings and improve data-related
aspects of service choreographies in Section 3.2. Therefore, we present the
notion of cross-partner data objects and cross-partner data flows as well
as required runtime support through the TraDE Middleware. The goal of
the TraDE approach and its underlying concepts is to help to decouple the
data flow, data exchange and management, from the control flow in service
compositions and choreographies. Section 3.3 summarizes our methodology
for data-aware choreographies by presenting how the TraDE approach can
be integrated into the traditional Business Process Management (BPM) life
cycle [Wes12], to increase data-awareness throughout all life cycle phases.
The resulting life cycle for data-aware choreographies represents Contribu-
tion 1 and provides the basis for the rest of the work regarding the modeling
and execution of data-aware choreographies.
Following the life cycle phases, Contribution 2 tackles the modeling and

refinement of data-aware service choreographies. Therefore, in Chapter 4
we introduce a formal model for data-aware service choreographies together
with a graphical notation based on our TraDE approach. The resulting Cho-
reography Model Graph (CM-Graph) metamodel introduced in Section 4.2
supports the modeling of data-aware choreographies through cross-partner
data objects and cross-partner data flows. Therefore, the metamodel follows

256 9 | Conclusions and Outlook

the interconnection modeling approach discussed in Section 2.1.1 which allows
the specification of control flow per participant and interactions between par-
ticipants through message connectors. Beside this decision, the CM-Graph
metamodel is completely independent of any concrete choreography model-
ing notation such as Business Process Model and Notation (BPMN) [BPMN]
collaboration models or BPEL4Chor models [DKLW07]. Following the public-
to-private approach introduced by van der Aalst and Weske [AW01] and
presented in Section 2.1.2, a data-aware choreography will be transformed
to a collection of private process models. The resulting private process
models reflecting the participants of a data-aware choreography model are
then refined and can be finally executed to conduct the data-aware cho-
reography they represent. For representing the private process models and
their data-related aspects we rely on the Process Model Graph (PM-Graph)
metamodel introduced by Leymann and Roller [LR00] and extend it with
the notion of staging elements in Section 4.4. These staging elements specify
the cross-partner data flows and references to the related cross-partner data
objects at the level of the private process models, i. e., a PM-Graph, to pro-
vide the required runtime support for conducting cross-partner data flows
via the TraDE Middleware as outlined in Section 3.2.2. To reflect the data
perspective of a CM-Graph during the execution life cycle phase, i. e., at the
TraDE Middleware, we introduce the notion of a choreograpyh data model
(CDM) and a choreography data dependency graph (CDDG) in Section 4.3.
Finally, the transformation of a CM-Graph to a collection of PM-Graphs is
presented in Section 4.5.
In Chapter 5, we introduce a middleware for transparent data provisioning,

exchange, and access for data-aware service choreographies. The resulting
TraDE Middleware represents Contribution 3 and provides the required
runtime support for the execution life cycle phase, i. e., executing data-
aware choreography models and their specified cross-partner data flows
based on our CM-Graph and extended PM-Graph metamodels. Therefore,
the TraDE Middleware has to expose and manage the defined cross-partner
data objects of a data-aware choreography model as well as actually conduct
the modeled cross-partner data flows together with the Business Process

9.1 | Conclusion 257

Engines (BPEs) executing the private process models representing the data-
aware choreography model. The TraDE Middleware can be therefore seen
as kind of a data hub from the perspective of the individual private process
models. To get a better idea on how this actually looks like, a respective
overview for the execution of a data-aware choreography model is presented
in Section 5.1. This is followed by the definition of the internal conceptual
model of the middleware in Section 5.2, its underlying architecture and
main components in Section 5.4, and its integration with BPEs in Section 5.5.
Based on that, the resulting TraDEMiddleware provides the required runtime
support for data-aware choreographies.
Since participants in service choreographies often rely on the composi-

tion of already existing business logic and therefore come up with their
own internal data formats and models, Contribution 4 is about concepts
for transparent data transformation in data-aware service choreographies.
Chapter 6 introduces an overall TraDE Data Transformation (TDT) concept
where the focus is on providing the aforementioned data transformation
capabilities to enable the specification of data transformations at the level of
data-aware service choreographies as well as supporting their transparent
execution during choreography runtime. Regarding the modeling of data
transformations, a TraDE Data Transformation (DT) modeling extension is
presented in Section 6.2 and its integration into the overall formal model for
data-aware choreography models is defined. The required runtime support
for modeled data transformations is presented in Section 6.3 by introducing
a data transformation integration middleware (DT Integration Middleware),
its integration with the TraDE Middleware and a concept for providing and
invoking data transformation implementations in form of DT Bundles.
The last contribution, Contribution 5, introduces the prototypical imple-

mentation of respective tools and middleware components for data-aware
service choreographies introduced within this work. The resulting TraDE
ecosystem provides an end-to-end support for the modeling and execution
of data-aware choreographies and supports the respective phases of the
data-aware life cycle presented in Section 3.3. Chapter 7 introduces the
ecosystem which is comprised of a modeling environment for data-aware

258 9 | Conclusions and Outlook

choreography and process models as well as the required runtime environ-
ment to execute data-aware choreographies through the TraDE Middleware
and its integration to corresponding BPEs as well as the DT Integration
Middleware. A validation and evaluation of our concepts for data-aware
choreographies and their prototypical implementation through the TraDE
ecosystem is presented in Chapter 8. The validation is provided in form
of a case study from the eScience domain which describes and discussed
the applicability and use of the presented TraDE concepts to ease modeling
and provide additional runtime support regarding data-related aspects such
as data exchange and data transformations. In addition, a performance
evaluation of the prototypical implementation of the TraDE Middleware is
presented which compares the execution of a choreography model with
and without our TraDE concepts applied. This means, comparing TraDE-
based cross-partner data flows to classical message-based data exchange
as discussed in Section 3.1 regarding the shortcomings of the state of the
art in specifying and conducting data exchange in service choreographies.
The evaluation results show some interesting performance improvements
for relatively small data sizes which indicates that introducing a TraDE
Middleware layer and applying our concept for cross-partner data flows in
service choreographies can be beneficial, especially for data-intensive use
cases. However, the current TraDE Middleware prototype shows capacity
limitations when increasing data sizes as well as the number of concurrent
requests for reading or writing data objects.

9.2 Outlook

As already outlined within the different chapters of the work, our goal is to
describe and provide an overall end-to-end support for the modeling and
execution of data-aware choreographies. This required us often to focus
only on the most important core aspects to show the feasibility of the overall
TraDE concepts and our idea of data-aware choreography models within
this work. Therefore, there exist several future research directions for the

9.2 | Outlook 259

concepts presented in this work as well as for the context of data-aware
choreographies in general. Some of them will be outlined in the following.
Weiß et al. [Wei+16] andWeiß [Wei18] introduce the concept ofModel-as-

you-go for choreographies and an underlying ChorSystem middleware which
can be integrated within our TraDE ecosystem. The presented Model-as-you-
go approach together with the middleware allow the exploratory and there-
fore flexible modeling and execution of choreography models. This flexibility
is provided by introducing user-driven control based on concepts for rewind-
ing and repeating choreography logic during choreography runtime. By
combining the Model-as-you-go approach with our TraDE concepts, respec-
tive flexibility support regarding the data flow perspective of choreographies
can be introduced. This will allow modelers to leverage the capabilities of
the Model-as-you-go approach and the ChorSystem middleware to increase
flexibility while modeling and executing data-aware choreographies, and to
ease and improve their deployment and management in the future.
Within this work, we assumed that cross-partner data objects managed by

the TraDE Middleware are either initialized with respective data through a
request sent to the choreography itself or being manually uploaded to the
TraDE Middleware by a human user. For example, in the context of a simula-
tion choreography, e. g., as presented in Section 8.1, a scientist uploads a set
of input data to respective data objects at the TraDE Middleware and then
starts one or more choreography instances operating on that data. Therefore,
another future research direction could be on how to automate such data
provisioning steps, e. g., to upload or even link required data directly from
arbitrary data sources. Especially for such data provisioning tasks within sim-
ulation workflows, Reimann [Rei17] and Reimann et al. [RRS+11] introduce
the so-called SIMPL framework. By integrating the SIMPL framework with
the TraDE Middleware and enabling the modeling of data provisioning for
cross-partner data objects at the level of data-aware choreography models,
required data provisioning steps can be fully automated and transparently
executed by the TraDE Middleware during the execution of a data-aware
choreography model. To integrate data provisioning logic a similar approach
as presented for data transformations in Chapter 6 may be applicable.

260 9 | Conclusions and Outlook

Another future research direction is to introduce and enable distributed,
multi-node deployments of the TraDE Middleware towards the goal of iden-
tifying and enabling further data flow optimization possibilities during cho-
reography runtime as outlined in Chapter 3. For example, event data of
previous choreography executions could be analyzed based on our TraDE
concepts to detect potential modeling issues as well as runtime optimizations
for the cross-partner data flows specified at the level of the choreography
model. Based on such event data the probabilities for each control flow path
of the choreographed process models can be calculated, e. g., to estimate
when and where data of a specific cross-partner data object is required. This
information can be used to predictively start the data staging and exchange
as soon as the data or parts of it are available, so that in the best case, the
data is accessible at the required TraDE node when it is needed without
influencing or even blocking the process execution at all. Therefore, a set
of optimization strategies have to be defined which leverage the available
knowledge to target different optimization goals, e. g., cost, performance or
resource consumption. Since such a distributed TraDE Middleware node net-
work, or TraDE network for short, increases the level of concurrency from a
data perspective, a thorough analysis of potential application cases and their
concurrency issues has to be conducted to identify and define corresponding
synchronization and scheduling mechanisms and related protocols. A future
research direction related to the idea of introducing TraDE networks, is the
use and integration of different data interchange layers to guarantee a robust,
reliable and secure data exchange between the TraDE Middleware nodes
within a network. This is especially interesting in scenarios where different
parties want to collaborate and therefore have to exchange data, however,
do not trust each other. Therefore, distributed ledger technologies such as
blockchains may be used as a data interchange layer to introduce a layer of
trust within TraDE networks or directly between choreography participants.
For the latter, the concepts introduced by Falazi et al. [FHBL19] may be
integrated and mapped to our TraDE concepts to support the transparent
reading and writing of data from or to a distributed ledger directly with
cross-partner data objects and data flows.

9.2 | Outlook 261

Bibliography

[Aal+05] W.M. P. van der Aalst et al. “Case handling: a new paradigm
for business process support.” In: Data & Knowledge Engineering
(2005), pp. 129–162 (Cited on p. 47).

[ABJ+04] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock.
“Kepler: an extensible system for design and execution of scientific
workflows.” In: Proceedings of SSDBM’04. IEEE. 2004, pp. 423–424
(Cited on p. 15).

[Afa+13] A. Afanasiev et al. “MathCloud: publication and reuse of scientific
applications as RESTful web services.” In: Proceedings of PaCT’13.
2013 (Cited on p. 50).

[All10] S. Allamaraju. RESTful Web Services Cookbook. O’Reilly Media,
Inc., 2010 (Cited on p. 183).

[ALM+08] W.M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, K. Wolf.
“Multiparty Contracts: Agreeing and Implementing Interorganiza-
tional Processes.” In: The Computer Journal 53.1 (2008), pp. 90–
106 (Cited on p. 34, 55).

[AW01] W.M. P. van der Aalst, M. Weske. “The P2P Approach to Interorga-
nizational Workflows.” In: Proceedings of CAiSE’01. Ed. by K. R. Dit-
trich, A. Geppert, M. C. Norrie. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 140–156 (Cited on p. 14, 19, 34, 39, 40,
55, 61, 84, 87, 218, 257).

263

[AW13] W.M. P. van der Aalst, M. Weske. “Reflections on a Decade of
Interorganizational Workflow Research.” In: Seminal Contributions
to Information Systems Engineering. Berlin, Heidelberg: Springer,
2013 (Cited on p. 35).

[BCF06] W. Binder, I. Constantinescu, B. Faltings. “Decentralized Orches-
tration of Composite Web Services.” In: Proceedings of ICWS’06.
Sept. 2006, pp. 869–876 (Cited on p. 16, 42).

[BDH+08] M. Bitsaki, O. Danylevych, W.-J. van den Heuvel, G. Koutras, F. Ley-
mann, M. Mancioppi, C. Nikolaou, M. Papazoglou. “An Architec-
ture for Managing the Lifecycle of Business Goals for Partners in a
Service Network.” In: Towards a Service-Based Internet. Vol. 5377.
LNCS. Springer Berlin Heidelberg, 2008, pp. 196–207 (Cited on
p. 80).

[BDH05] A. Barros, M. Dumas, A.H.M. ter Hofstede. “Service Interaction
Patterns.” In: Proceedings of BPM’05. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 302–318 (Cited on p. 14, 30, 134).

[BFM05] T. Berners-Lee, R. T. Fielding, L.M. Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986. Jan. 2005. url: https:
//rfc-editor.org/rfc/rfc3986.txt (Cited on p. 66, 174,
183).

[BG07] R. Barga, D. Gannon. “Workflows for e-Science: Scientific Work-
flows for Grids.” In: Springer London, 2007. Chap. Scientific versus
Business Workflows, pp. 9–16 (Cited on p. 13, 15).

[BHG87] P. A. Bernstein, V. Hadzilacos, N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987 (Cited
on p. 67).

[Bin+13] T. Binz et al. “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications.” In: Proceedings of ICSOC’13. 2013, pp. 692–695
(Cited on p. 78, 201, 234).

[BPEL] OASIS. Web Services Business Process Execution Language Version
2.0. OASIS Standard. Apr. 2007. url: http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html (Cited on p. 14,
30, 35, 49, 129, 134, 149, 178).

264 Bibliography

https://rfc-editor.org/rfc/rfc3986.txt
https://rfc-editor.org/rfc/rfc3986.txt
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[BPMN] Object Management Group (OMG). Business Process Model And
Notation (BPMN) Version 2.0.2. Object Management Group, Inc.
Jan. 2014. url: https://www.omg.org/spec/BPMN/ (Cited on
p. 14, 30, 31, 33, 34, 48, 49, 70, 104, 129, 134, 149, 178, 257).

[Bra17] T. Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC8259. Dec. 2017 (Cited on p. 177).

[BS03] P. Binkele, S. Schmauder. “An atomistic Monte Carlo simulation
of precipitation in a binary system.” In: Zeitschrift für Metallkunde
(2003) (Cited on p. 17, 237).

[BT18] C. Barrett, C. Tinelli. “Satisfiability Modulo Theories.” In: Hand-
book of Model Checking. Ed. by E.M. Clarke, T. A. Henzinger,
H. Veith, R. Bloem. Springer International Publishing, 2018. url:
https://doi.org/10.1007/978-3-319-10575-8_11 (Cited
on p. 45).

[BW+12] A. Barker, J. B. Weissman, et al. “Reducing Data Transfer in Service-
Oriented Architectures: The Circulate Approach.” In: IEEE Trans-
actions on Services Computing 5.3 (2012), pp. 437–449 (Cited on
p. 16, 39).

[BWR09] A. Barker, C. D. Walton, D. Robertson. “Choreographing Web Ser-
vices.” In: IEEE Transactions on Services Computing 2.2 (Apr. 2009),
pp. 152–166 (Cited on p. 15, 38).

[BWV08a] A. Barker, J. B. Weissman, J. Van Hemert. “Eliminating the Mid-
dleman: Peer-to-Peer Dataflow.” In: Proceedings of HPDC’08. ACM.
2008, pp. 55–64 (Cited on p. 78).

[BWV08b] A. Barker, J. B. Weissman, J. Van Hemert. “Orchestrating Data-
Centric Workflows.” In: Proceedings of CCGRID’08. IEEE. 2008,
pp. 210–217 (Cited on p. 16).

[CDL+07] A. Chervenak, E. Deelman, M. Livny, et al. “Data placement for
Scientific Applications in Distributed Environments.” In: Proceed-
ings of Grid’07. IEEE Computer Society. 2007, pp. 267–274 (Cited
on p. 78).

[Cha04] D. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., 2004
(Cited on p. 192, 200).

Bibliography 265

https://www.omg.org/spec/BPMN/
https://doi.org/10.1007/978-3-319-10575-8_11

[DC08] E. Deelman, A. Chervenak. “Data Management Challenges of
Data-Intensive Scientific Workflows.” In: Proceedings of CCGRID’08.
IEEE. 2008, pp. 687–692 (Cited on p. 78).

[Del+05] T. Delaitre et al. “GEMLCA: Running legacy code applications as
grid services.” In: Journal of Grid Computing (2005) (Cited on
p. 50).

[DKB08] G. Decker, O. Kopp, A. Barros. “An Introduction to Service Chore-
ographies.” In: Information Technology 50.2 (2008) (Cited on p. 14,
15, 30, 33, 34, 54, 55, 61, 67, 83, 87).

[DKL+08] G. Decker, O. Kopp, F. Leymann, K. Pfitzner, M. Weske. “Mod-
eling Service Choreographies using BPMN and BPEL4Chor.” In:
Advanced Information Systems Engineering. Springer. 2008, pp. 79–
93 (Cited on p. 14, 34, 104).

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. “BPEL4Chor: Ex-
tending BPEL for Modeling Choreographies.” In: Proceedings of
ICWS’07. IEEE, 2007 (Cited on p. 31, 34, 70, 257).

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. “Interacting Services:
From Specification to Execution.” In: Data & Knowledge Engineer-
ing 68.10 (2009), pp. 946–972 (Cited on p. 14, 31, 34, 55, 228,
248).

[DSS+05] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, et al. “Pegasus: A frame-
work for mapping complex scientific workflows onto distributed
systems.” In: Scientific Programming 13.3 (2005), pp. 219–237
(Cited on p. 15).

[FHBL19] G. Falazi, M. Hahn, U. Breitenbücher, F. Leymann. “Modeling
and execution of blockchain-aware business processes.” In: SICS
Software-Intensive Cyber-Physical Systems 34.2 (2019), pp. 105–
116 (Cited on p. 261).

[Fie00] R. T. Fielding. “Architectural Styles and the Design of Network-
based Software Architectures.” PhD thesis. University of California,
Irvine, 2000 (Cited on p. 183).

266 Bibliography

[FMW22] P. Felli, M. Montali, S. Winkler. Soundness of Data-Aware Processes
with Arithmetic Conditions. 2022. url: https://arxiv.org/
abs/2203.14809 (Cited on p. 154).

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, 2002 (Cited on p. 183).

[GDE+07] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, J. Myers. “Examining the challenges
of scientific workflows.” In: Computer 40.12 (2007), pp. 24–32
(Cited on p. 15).

[GGMR21] S. Ghilardi, A. Gianola, M. Montali, A. Rivkin. “Delta-BPMN: A
Concrete Language and Verifier for Data-Aware BPMN.” In: Pro-
ceedings of BPM’21. Ed. by A. Polyvyanyy, M. T. Wynn, A. Van Looy,
M. Reichert. Springer International Publishing, 2021, pp. 179–196
(Cited on p. 45).

[Gla+08] T. Glatard et al. “A Service-Oriented Architecture enabling dy-
namic service grouping for optimizing distributed workflow exe-
cution.” In: Future Generation Computer Systems (2008) (Cited on
p. 51).

[GSK+11] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, M. Reiter.
“Guide to e-Science: Next Generation Scientific Research and Dis-
covery.” In: Springer London, 2011. Chap. Conventional Workflow
Technology for Scientific Simulation, pp. 323–352 (Cited on p. 15,
20, 45).

[Hab+08] D. Habich et al. “BPELDT - Data-Aware Extension for Data-Intensive
Service Applications.” In: Emerging Web Services Technology. 2008
(Cited on p. 40).

[HBC+16] R. Hull, V. S. Batra, Y.-M. Chen, A. Deutsch, F. F. T. Heath III,
V. Vianu. “Towards a Shared Ledger Business Collaboration Lan-
guage Based on Data-Aware Processes.” In: Proceedings of IC-
SOC’16. Springer International Publishing, 2016, pp. 18–36 (Cited
on p. 47).

Bibliography 267

https://arxiv.org/abs/2203.14809
https://arxiv.org/abs/2203.14809

[HBKL17] M. Hahn, U. Breitenbücher, O. Kopp, F. Leymann. “Modeling
and Execution of Data-Aware Choreographies: An Overview.” In:
Computer Science - Research and Development (2017), pp. 1–12
(Cited on p. 25, 54, 59, 226, 237, 238, 242).

[HBL+18] M. Hahn, U. Breitenbücher, F. Leymann, M. Wurster, V. Yussupov.
“Modeling Data Transformations in Data-Aware Service Chore-
ographies.” In: Proceedings of EDOC’18. IEEE Computer Society,
2018, pp. 28–34 (Cited on p. 25, 195, 205).

[HBLW17] M. Hahn, U. Breitenbücher, F. Leymann, A. Weiß. “TraDE – A Trans-
parent Data Exchange Middleware for Service Choreographies.”
In: Proceedings of OTM 2017 Conferences. Ed. by H. Panetto, C. De-
bruyne, W. Gaaloul, M. Papazoglou, A. Paschke, C. A. Ardagna,
R. Meersman. Vol. 10573. Lecture Notes in Computer Science
(LNCS). Springer International Publishing, 2017, pp. 252–270
(Cited on p. 25, 174, 184, 187, 188, 237, 246, 251, 253).

[HBLY18] M. Hahn, U. Breitenbücher, F. Leymann, V. Yussupov. “Transparent
Execution of Data Transformations in Data-Aware Service Chore-
ographies.” In: Proceedings of OTM 2018 Conferences. Vol. 11230.
Lecture Notes in Computer Science (LNCS). Springer International
Publishing AG, 2018, pp. 117–137 (Cited on p. 25, 197, 200, 219,
226, 237, 244).

[HKL16a] M. Hahn, D. Karastoyanova, F. Leymann. “A Management Life
Cycle for Data-Aware Service Choreographies.” In: Proceedings of
ICWS’16. IEEE Computer Society, 2016, pp. 364–371 (Cited on
p. 25, 70, 73, 76, 78, 79, 81).

[HKL16b] M. Hahn, D. Karastoyanova, F. Leymann. “Data-Aware Service
Choreographies through Transparent Data Exchange.” In: Proceed-
ings of ICWE’16. Vol. 9671. Lecture Notes in Computer Science
(LNCS). Springer International Publishing, 2016, pp. 357–364
(Cited on p. 25, 68).

[Hos+16] A. Hosny et al. “AlgoRun: a Docker-based packaging system for
platform-agnostic implemented algorithms.” In: Bioinformatics
(2016) (Cited on p. 51, 52).

268 Bibliography

[HSA+14] M. Hahn, S. G. Sáez, V. Andrikopoulos, D. Karastoyanova, F. Ley-
mann. “Development and Evaluation of a Multi-tenant Service
Middleware PaaS Solution.” In: Proceedings of the 7th International
Conference on Utility and Cloud Computing, UCC 2014, 8-11 De-
cember 2014, London, United Kingdom. IEEE Computer Society,
2014 (Cited on p. 249).

[HTT+09] T. Hey, S. Tansley, K.M. Tolle, et al. The fourth paradigm: data-
intensive scientific discovery. Vol. 1. Microsoft research Redmond,
WA, 2009 (Cited on p. 13).

[HW04] G. Hohpe, B. Woolf. Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison-Wesley Pro-
fessional, 2004 (Cited on p. 192).

[IANA] Internet Assigned Numbers Authority (IANA). Media Types. url:
https://www.iana.org/assignments/media-types/media-

types.xhtml (Cited on p. 177).

[JSON Schema] JSON Schema. Online. url: https://json-schema.org/ (Cited
on p. 176).

[Juh+09] E. Juhnke et al. “LCDL: an extensible framework for wrapping
legacy code.” In: Proceedings of iiWAS’09. 2009 (Cited on p. 51,
52).

[KEL+11] O. Kopp, L. Engler, T. van Lessen, F. Leymann, J. Nitzsche. “In-
teraction Choreography Models in BPEL: Choreographies on the
Enterprise Service Bus.” In: Proceedings of S-BPM ONE. Vol. 138.
Communications in Computer and Information Science. Springer-
Verlag, 2011, pp. 36–53 (Cited on p. 34, 81).

[KELU10] O. Kopp, H. Eberle, F. Leymann, T. Unger. “The subprocess spec-
trum.” In: Proceedings of ISSS and BPSC. Ed. by W. Abramowicz,
R. Alt, K.-P. Fähnrich, B. Franczyk, L. A. Maciaszek. Gesellschaft
für Informatik e.V., 2010, pp. 267–279 (Cited on p. 149).

[KFE19] J. Köpke, M. Franceschetti, J. Eder. “Optimizing data-flow imple-
mentations for inter-organizational processes.” In: Distributed and
Parallel Databases 37 (2019), pp. 651–695 (Cited on p. 43, 45).

Bibliography 269

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://json-schema.org/

[Kim+17] B. Kim et al. “Bio-Docklets: Virtualization Containers for Single-
Step Execution of NGS Pipelines.” In: bioRxiv (2017) (Cited on
p. 51).

[KKL07] R. Khalaf, D. Karastoyanova, F. Leymann. “Pluggable Framework
for Enabling the Execution of Extended BPEL Behavior.” In: Service-
Oriented Computing - ICSOC 2007 Workshops. Ed. by E. Di Nitto,
M. Ripeanu. Springer Berlin Heidelberg, 2007, pp. 376–387 (Cited
on p. 189).

[KKP+81] D. J. Kuck, R.H. Kuhn, D. A. Padua, B. Leasure, M. Wolfe. “De-
pendence Graphs and Compiler Optimizations.” In: Proceedings of
POPL’81. ACM, 1981, pp. 207–218 (Cited on p. 74).

[KL06] R. Khalaf, F. Leymann. “Role-based Decomposition of Business
Processes using BPEL.” In: International Conference on Web Services
(ICWS 2006). IEEE Computer Society, 2006 (Cited on p. 41).

[KLUW11] O. Kopp, F. Leymann, T. Unger, S. Wagner. “Towards The Essential
Flow Model.” In: Proceedings of ZEUS’11. Ed. by D. Eichhorn,
A. Koschmider, H. Zhang. Vol. 705. CEUR Workshop Proceedings.
CEUR-WS.org, 2011, pp. 26–33 (Cited on p. 45).

[KLW11] O. Kopp, F. Leymann, S.Wagner. “Modeling Choreographies: BPMN
2.0 versus BPEL-based Approaches.” In: Proceedings of EMISA’11.
Lecture Notes in Informatics. GI, Sept. 2011 (Cited on p. 14, 31,
34).

[Kop+10] O. Kopp et al. “Fault handling in the web service stack.” In: Proceed-
ings of ICSOC’10. Springer. 2010, pp. 303–317 (Cited on p. 149).

[Kop+11a] O. Kopp et al. “A Classification of BPEL Extensions.” In: Journal of
Systems Integration 2.4 (2011), pp. 3–28 (Cited on p. 41, 149).

[Kop+11b] O. Kopp et al. An Event Model for WS-BPEL 2.0. Tech. rep. 2011/07.
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, 2011 (Cited
on p. 179, 189).

[Kop16] O. Kopp. “Partnerübergreifende Geschäftsprozesse und ihre Re-
alisierung in BPEL.” Dissertation. University of Stuttgart, 2016
(Cited on p. 31, 70, 228).

270 Bibliography

[KPR12a] D. Knuplesch, R. Pryss, M. Reichert. “Data-aware interaction in
distributed and collaborative workflows: Modeling, semantics,
correctness.” In: Proceedings of CollaborateCom’12. Oct. 2012,
pp. 223–232 (Cited on p. 16, 37).

[KPR12b] D. Knuplesch, R. Pryss, M. Reichert. “A formal framework for data-
aware process interaction models.” In: Open Access Repository of
University Ulm (2012) (Cited on p. 37).

[KV07] J. Koehler, J. Vanhatalo. “Process Anti-Patterns: How to Avoid the
Common Traps of Business Process Modeling.” In: IBM WebSphere
Developer Technical Journal 10.2 (2007), p. 4 (Cited on p. 82).

[Ley09] F. Leymann. “Cloud computing: The next revolution in IT.” In:
Proceedings of the 52nd Photogrammetric Week. Wichmann Verlag,
2009 (Cited on p. 13).

[Lic22] T. Lichtenstein. “Preserving Data Consistency in Process Chore-
ographies by Design.” In: Proceedings of ZEUS’22. Ed. by J. Manner,
D. Lübke, S. Haarmann, S. Kolb, N. Herzberg, O. Kopp. CEUR-
WS.org, 2022 (Cited on p. 57).

[LKP10] F. Leymann, D. Karastoyanova, M. Papazoglou. “Handbook on
Business Process Management 1.” In: International Handbooks
on Information Systems. Springer-Verlag, 2010. Chap. Business
Process Management Standards (Cited on p. 13).

[LLW02] D. Liu, K. H. Law, G. Wiederhold. “Data-flow Distribution in FICAS
Service Composition Infrastructure.” In: Proceedings of ICPDCS’02.
Citeseer. 2002 (Cited on p. 16, 41).

[LN11] N. Lohmann, M. Nyolt. “Artifact-centric modeling using BPMN.”
In: Proceedings of ICSOC’11. Springer. 2011, pp. 54–65 (Cited on
p. 16, 47).

[LR00] F. Leymann, D. Roller. Production Workflow - Concepts and Tech-
niques. PTR Prentice Hall, Jan. 2000, p. 479 (Cited on p. 14, 30,
40, 69, 80, 82, 84, 86–91, 98–100, 104, 106–109, 112, 113, 116,
118, 119, 122, 136, 144, 148, 151, 152, 163, 173, 257).

Bibliography 271

[LRS02] F. Leymann, D. Roller, M.-T. Schmidt. “Web services and business
process management.” In: IBM Systems Journal: Web services and
business process management (2002) (Cited on p. 13).

[LW10] N. Lohmann, K. Wolf. “Artifact-centric choreographies.” In: Pro-
ceedings of ICSOC’10. Springer. 2010, pp. 32–46 (Cited on p. 47).

[LWW19] J. Ladleif, M.Weske, I. Weber. “Modeling and Enforcing Blockchain-
Based Choreographies.” In: Proceedings of BPM’19. Ed. by T. Hilde-
brandt, B. van Dongen, M. Röglinger, J. Mendling. Vol. 11675.
Springer, Cham, 2019 (Cited on p. 48).

[Mas11] M. Masse. REST API Design Rulebook. O’Reilly Media, Inc., 2011
(Cited on p. 183).

[MMC+12] D. Molnar, R. Mukherjee, A. Choudhury, A. Mora, P. Binkele,
M. Selzer, B. Nestler, S. Schmauder. “Multiscale Simulations on
the Coarsening of Cu-rich Precipitates in a-Fe Using Kinetic Monte
Carlo, Molecular Dynamics and Phase-field Simulations.” In: Acta
Materialia 60.20 (2012), pp. 6961–6971 (Cited on p. 17).

[MPB+13] A. Meyer, L. Pufahl, K. Batoulis, S. Kruse, T. Lindhauer, T. Stoff,
D. Fahland, M. Weske. Data Perspective in Process Choreographies:
Modeling and Execution. Tech. rep. Tech. Rep. BPM-13-29, BPM-
center. org, 2013 (Cited on p. 37, 48).

[MPB+15] A. Meyer, L. Pufahl, K. Batoulis, D. Fahland, M. Weske. “Automat-
ing Data Exchange in Process Choreographies.” In: Information
Systems (2015) (Cited on p. 15, 16, 36, 37, 70).

[MSDC12] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac. “Internet of
things: Vision, applications and research challenges.” In: Ad Hoc
Networks (2012) (Cited on p. 13).

[MSL12] G. Monsieur, M. Snoeck, W. Lemahieu. “Managing data dependen-
cies in service compositions.” In: Journal of Systems and Software
85.11 (2012), pp. 2604–2628 (Cited on p. 43).

[MSMP11] S. Meyer, K. Sperner, C. Magerkurth, J. Pasquier. “Towards Mod-
eling Real-world Aware Business Processes.” In: Proceedings of
WoT’11. ACM, 2011, pp. 1–6 (Cited on p. 15, 46).

272 Bibliography

[MSW11] A. Meyer, S. Smirnov, M. Weske. Data in Business Processes. 50.
Universitätsverlag Potsdam, 2011 (Cited on p. 55, 57).

[NC03] A. Nigam, N. S. Caswell. “Business artifacts: An approach to oper-
ational specification.” In: IBM Systems Journal (2003) (Cited on
p. 47).

[OAF+04] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, et al. “Taverna: a tool
for the composition and enactment of bioinformatics workflows.”
In: Bioinformatics 20.17 (2004), pp. 3045–3054 (Cited on p. 15).

[Ott78] K. J. Ottenstein. “Data-flow Graphs As an Intermediate Program
Form.” PhD thesis. Purdue University, 1978 (Cited on p. 74).

[Pap03] M. P. Papazoglou. “Service-oriented computing: concepts, charac-
teristics and directions.” In: Proceedings of WISE’03. IEEE. 2003,
pp. 3–12 (Cited on p. 13, 30).

[Pel03] C. Peltz. “Web services orchestration and choreography.” In: Com-
puter 36.10 (Oct. 2003), pp. 46–52 (Cited on p. 30).

[QLDG09] L. Qian, Z. Luo, Y. Du, L. Guo. “Cloud Computing: An Overview.”
In: Cloud Computing. Ed. by M.G. Jaatun, G. Zhao, C. Rong.
Springer Berlin Heidelberg, 2009 (Cited on p. 13).

[Rei17] P. Reimann. “Data provisioning in simulation workflows.” PhD
thesis. University of Stuttgart, 2017 (Cited on p. 37, 260).

[RK+08] P. Reimann, O. Kopp, et al. Generating WS-BPEL 2.0 Processes
from a Grounded BPEL4Chor Choreography. Tech. rep. 2008/07.
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, 2008 (Cited
on p. 36, 73, 230, 248).

[RRS+11] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann.
“SIMPL-A Framework for Accessing External Data in Simulation
Workflows.” In: Proceedings of BTW’11. Vol. 11. Citeseer. 2011,
pp. 534–553 (Cited on p. 37, 260).

[SA14] O. Sukhoroslov, A. Afanasiev. “Everest: A Cloud Platform for Com-
putational Web Services.” In: Proceedings of CLOSER’14. 2014
(Cited on p. 50).

Bibliography 273

[SASL13] S. Strauch, V. Andrikopoulos, S. G. Sáez, F. Leymann. “ESBMT: A
Multi-tenant Aware Enterprise Service Bus.” In: International Jour-
nal of Next-Generation Computing 4.3 (2013) (Cited on p. 249).

[SHK+11] M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, S. Schmauder.
“Using Services and Service Compositions to Enable the Distributed
Execution of Legacy Simulation Applications.” In: Proceedings of
ServiceWave’11. Springer, 2011, pp. 1–12 (Cited on p. 18, 239).

[SK10] M. Sonntag, D. Karastoyanova. “Next Generation Interactive Sci-
entific Experimenting Based On The Workflow Technology.” In:
Proceedings of MS’10. Ed. by R. S. Alhajj, V. C.M. Leung, M. Saif,
R. Thring. ACTA Press, July 2010 (Cited on p. 15).

[SK11] M. Sonntag, D. Karastoyanova. “Enforcing the Repeated Execution
of Logic in Workflows.” In: Proceedings of BUSTECH’11. IARIA,
Sept. 2011, pp. 1–6 (Cited on p. 15).

[SK13] M. Sonntag, D. Karastoyanova. “Model-as-you-go: An Approach for
an Advanced Infrastructure for ScientificWorkflows.” In: Journal of
Grid Computing 11.3 (Sept. 2013), pp. 553–583 (Cited on p. 15).

[SKD10] M. Sonntag, D. Karastoyanova, E. Deelman. “Bridging The Gap
Between Business And Scientific Workflows.” In: Proceedings of
e-Science’10. IEEE Computer Society, Dec. 2010, pp. 206–213
(Cited on p. 15).

[Slo07] A. Slominski. “Workflows for e-Science: Scientific Workflows for
Grids.” In: Springer London, 2007. Chap. Adapting BPEL to Scien-
tific Workflows, pp. 208–226 (Cited on p. 15).

[SMM+14] R. Schmidt, M. Möhring, S. Maier, J. Pietsch, R.-C. Härting. “Big
Data as Strategic Enabler - Insights from Central European Enter-
prises.” In: Business Information Systems. Vol. 176. Lecture Notes
in Business Information Processing. Springer International Pub-
lishing, 2014, pp. 50–60 (Cited on p. 15).

[Sne06] H.M. Sneed. “Integrating legacy software into a service oriented
architecture.” In: Proceedings of CSMR’06. 2006 (Cited on p. 50).

274 Bibliography

[Son16] M. Sonntag. “Model-as-you-go - ein Ansatz zur flexiblen Entwick-
lung von wissenschaftlichen Workflows.” Dissertation. University
of Stuttgart, 2016 (Cited on p. 228).

[SSJS20] C. Sturm, J. Szalanczi, S. Jablonski, S. Schönig. “Proceedings of
PoEM’20.” In: The Practice of Enterprise Modeling. Springer Inter-
national Publishing, 2020, pp. 261–276 (Cited on p. 48).

[Ste08] T. Steinmetz. “Ein Event-Modell für WS-BPEL 2.0 und dessen
Realisierung in Apache ODE.” MA thesis. University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Informa-
tion Technology, Germany, 2008 (Cited on p. 189).

[SW22] F. Stiehle, I. Weber. Blockchain for Business Process Enactment: A
Taxonomy and Systematic Literature Review. 2022. url: https:
//arxiv.org/abs/2206.03237 (Cited on p. 49).

[TDGS07] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields, eds. Workflows
for e-Science: Scientific Workflows for Grids. Springer London, 2007
(Cited on p. 13).

[TOSCA] OASIS. Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Version 1.0. OASIS Standard. Nov. 2013. url: http:
//docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.

html (Cited on p. 202, 233).

[TSWH07] I. Taylor, M. Shields, I. Wang, A. Harrison. “The Triana Workflow
Environment: Architecture and Applications.” In: Workflows for
e-Science. Springer, 2007, pp. 320–339 (Cited on p. 15).

[UML] Object Management Group (OMG). Unified Modeling Language
(UML) Version 2.5.1. Object Management Group, Inc. Dec. 2017.
url: https://www.omg.org/spec/UML/ (Cited on p. 179).

[Vuk+16] K. Vukojevic-Haupt et al. “On-demand provisioning of workflow
middleware and services into the cloud: an overview.” In: Com-
puting (Oct. 2016) (Cited on p. 78).

Bibliography 275

https://arxiv.org/abs/2206.03237
https://arxiv.org/abs/2206.03237
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
https://www.omg.org/spec/UML/

[WAG+13] A. Weiß, V. Andrikopoulos, S. Gómez Sáez, D. Karastoyanova,
K. Vukojevic-Haupt.Modeling Choreographies using the BPEL4Chor
Designer: an Evaluation Based on Case Studies. Tech. rep. 2013/03.
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Germany, 2013, p. 23
(Cited on p. 229).

[WAHK15a] A. Weiß, V. Andrikopoulos, M. Hahn, D. Karastoyanova. “Fostering
Reuse in Choreography Modeling Through Choreography Frag-
ments.” In: Proceedings of ICEIS’15. SciTePress, Apr. 2015, pp. 28–
36 (Cited on p. 64, 69).

[WAHK15b] A. Weiß, V. Andrikopoulos, M. Hahn, D. Karastoyanova. “Rewind-
ing and Repeating Scientific Choreographies.” In: Proceedings
of OTM 2015 Conferences. Lecture Notes in Computer Science
(LNCS). Springer-Verlag, 2015, pp. 337–347 (Cited on p. 15).

[WAHK17] A. Weiß, V. Andrikopoulos, M. Hahn, D. Karastoyanova. “Model-as-
you-go for Choreographies: Rewinding and Repeating Scientific
Choreographies.” In: IEEE Transactions on Services Computing
PP.99 (2017) (Cited on p. 84).

[WEB+07] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen,
J. Patel. “Workflows for e-Science: Scientific Workflows for Grids.”
In: Springer London, 2007. Chap. Sedna: A BPEL-Based Environ-
ment for Visual Scientific Workflow Modeling, pp. 428–449 (Cited
on p. 15).

[Wei+16] A. Weiß et al. “ChorSystem: A Message-Based System for the Life
Cycle Management of Choreographies.” In: Proceedings of OTM
2016 Conferences. Ed. by C. Debruyne, H. Panetto, R. Meersman,
T. Dillon, E. Kühn, D. O’Sullivan, C. A. Ardagna. Springer Interna-
tional Publishing, Oct. 2016, pp. 503–521 (Cited on p. 260).

[Wei18] A. Weiß. “Flexible modeling and execution of choreographies.”
Dissertation. University of Stuttgart, 2018 (Cited on p. 84, 228,
260).

[Wes12] M. Weske. Business Process Management: Concepts, Languages,
Architectures. Springer Science & Business Media, 2012 (Cited on
p. 13, 26, 53, 67, 256).

276 Bibliography

[Wet+15] J. Wettinger et al. “Streamlining APIfication by Generating APIs for
Diverse Executables Using Any2API.” In: Proceedings of CLOSER’15.
2015 (Cited on p. 51).

[WK14a] A. Weiß, D. Karastoyanova. “A Life Cycle for Coupled Multi-scale,
Multi-field Experiments Realized through Choreographies.” In:
Proceedings of EDOC’14. Sept. 2014, pp. 234–241 (Cited on p. 15,
67).

[WK14b] A. Weiß, D. Karastoyanova. “Enabling Coupled Multi-scale, Multi-
field Experiments Through Choreographies of Data-Driven Scien-
tific Simulations.” In: Computing (2014), pp. 1–29 (Cited on p. 15,
20).

[WKK+10] B. Wetzstein, D. Karastoyanova, O. Kopp, F. Leymann, D. Zwink.
“Cross-Organizational Process Monitoring Based on Service Chore-
ographies.” In: Proceedings of SAC’10. ACM, 2010, pp. 2485–2490
(Cited on p. 81).

[WKMS14] A. Weiß, D. Karastoyanova, D. Molnar, S. Schmauder. “Coupling
of Existing Simulations using Bottom-up Modeling of Choreogra-
phies.” In: Proceedings of SimTech@GI workshop at INFORMATIK’14.
Gesellschaft für Informatik e.V. (GI), Sept. 2014, pp. 101–112
(Cited on p. 15, 17).

[WS-CDL] World Wide Web Consortium (W3C). Web Services Choreography
Description Language (WS-CDL) Version 1.0. W3C Candidate Rec-
ommendation. Nov. 2005. url: https://www.w3.org/TR/ws-
cdl-10/ (Cited on p. 33, 70).

[WSDL] World Wide Web Consortium (W3C). W3C Web Services Descrip-
tion Language (WSDL) 1.1. W3C Recommendation. Apr. 2001.
url: https://www.w3.org/TR/2001/NOTE-wsdl-20010315
(Cited on p. 129).

[XML] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0 (Fifth Edition). Online. 2008. url: https://www.w3.
org/TR/xml/ (Cited on p. 176, 207).

[XML-NS] World Wide Web Consortium (W3C). Namespaces in XML 1.0
(Third Edition). Online. 2009. url: https://www.w3.org/TR/
xml-names/ (Cited on p. 174).

Bibliography 277

https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml-names/
https://www.w3.org/TR/xml-names/

[XPath] World Wide Web Consortium (W3C). XML Path Language (XPath)
3.1. Online. 2017. url: https://www.w3.org/TR/xpath-31/
(Cited on p. 49, 175).

[XQuery] World Wide Web Consortium (W3C). XQuery 3.1: An XML Query
Language. Online. 2017. url: https://www.w3.org/TR/
xquery-31/ (Cited on p. 37, 49, 192).

[XSD1] World Wide Web Consortium (W3C).W3C XML Schema Definition
Language (XSD) 1.1 Part 1: Structures. W3C Recommendation.
Apr. 2012. url: https://www.w3.org/TR/xmlschema11-1/
(Cited on p. 60, 176).

[XSD2] World Wide Web Consortium (W3C).W3C XML Schema Definition
Language (XSD) 1.1 Part 2: Datatypes. W3C Recommendation.
Apr. 2012. url: https://www.w3.org/TR/xmlschema11-2/
(Cited on p. 98).

[XSLT] World Wide Web Consortium (W3C). XSL Transformations (XSLT)
Version 3.0. Online. 2017. url: https://www.w3.org/TR/
xslt-30/ (Cited on p. 49, 192).

[YAML] YAML: YAML Ain’t Markup Language. Online. url: https://
yaml.org/ (Cited on p. 177).

[YB05] J. Yu, R. Buyya. “A taxonomy of scientific workflow systems for
grid computing.” In: ACM Sigmod Record 34.3 (2005), pp. 44–49
(Cited on p. 15).

[ZBDH06] J.M. Zaha, A. Barros, M. Dumas, A. ter Hofstede. “Let’s Dance: A
Language for Service Behavior Modeling.” In: Proceedings of OTM
2006 Conferences. Vol. 4275. LNCS. Springer Berlin Heidelberg,
2006, pp. 145–162 (Cited on p. 33, 70).

[ZDH+08] J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A. Barros, G. Decker.
“Bridging Global and Local Models of Service-Oriented Systems.”
In: IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 38.3 (2008), pp. 302–318 (Cited on
p. 33).

[Zdu02] U. Zdun. “Reengineering to the web: A reference architecture.”
In: Proceedings of CSMR’02. 2002 (Cited on p. 50).

278 Bibliography

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/
https://yaml.org/
https://yaml.org/

[Zim16] O. Zimmermann. “Microservices tenets.” In: Computer Science -
Research and Development (2016), pp. 1–10 (Cited on p. 13).

All links were last followed on 22nd February 2023.

Bibliography 279

List of Figures

1.1 Example simulation choreography conducting a thermal ag-
ing simulation from material science domain (based on Weiß
et al. [WKMS14]). 17

1.2 Overview of contributions provided in this work. 22

2.1 Visualizing the orchestration and choreography paradigm
based on the eScience simulation example from Section 1.1. 31

2.2 Visualizing the interaction and interconnection choreogra-
phy modeling approaches based on an example specified as
BPMN 2.0 choreography and collaboration model. 33

2.3 The P2P approach translated to choreography models by
example . 35

3.1 Example choreography illustrated as BPMN collaboration
model, based on [HBKL17]. 54

3.2 Example choreography with TraDE concepts applied, based
on [HBKL17]. 59

3.3 Execution of the example choreography from Figure 3.2 based
on its refined private process models. 63

281

3.4 Data-Aware Choreography Management Life Cycle, based on
[HKL16b]. 68

3.5 Detailed view on the Modeling phase, based on [HKL16a]. . . 70
3.6 Detailed view on the Transformation step of the modeling

phase, based on [HKL16a]. 73
3.7 Structure of Pre- and Post-Staging Elements and their associ-

ation to an activity. 75
3.8 Detailed view on the Refinement phase, based on [HKL16a]. 76
3.9 Detailed view on the Deployment phase, based on [HKL16a]. 78
3.10 Detailed view on the Execution phase, based on [HKL16a]. . 79
3.11 Detailed view on the Monitoring phase, based on [HKL16a]. 81

4.1 Example data-aware choreography model with two partici-
pants and a cross-partner data object. 85

4.2 Example use of data elements to define data containers of
activities. 90

4.3 Visual representation of a data container. 91
4.4 Visual representation of a message. 93
4.5 Visual representation of a data object. 94
4.6 Visual representation of a choreography activity. 100
4.7 Visual representation of sending and receiving communica-

tion activities. 104
4.8 Visual representation of a choreography participant. 106
4.9 Visual representation of the control flow between activities

within a choreography through control connectors. 108
4.10 Visual representation of a message connector to define the

exchange of data element values across participants through
a message. 112

4.11 Visual representation of a choreographymessage connector to
define the exchange of messages between the choreography
as a whole and external entities. 114

282 List of Figures

4.12 Visual representation of data connectors to define the ex-
change of data element values between activities and data
objects. 119

4.13 Visual representation of choreography data connectors and
their data maps to support forwarding of choreography input
and output data. 124

4.14 Visual representation of a correlation set. 130
4.15 Example for a choreography model with a correlation set and

correlation property maps to correlate messages and data
objects to choreography and process instances. 133

4.16 Visual representation of a choreography model graph and its
participants. 137

4.17 Example data-aware choreography model and its choreogra-
phy data dependency graph. 142

4.18 Visual representation of a Staging Element. 146
4.19 Example of a Staging Element and its association to an activity

within a process model based on data connectors defined at
the level of the choreography model. 151

4.20 Transformation of an example data-aware choreographymodel
to a collection of private process models and a choreography
data dependency graph. 155

5.1 Execution of a data-aware choreography model with its spec-
ified cross-partner data flows using the TraDE Middleware,
based on the choreography presented in Section 3.2. 171

5.2 Metamodel of a Choreography Data Dependency Graph and
its Choreography Data Model within the TraDE Middleware,
based on [HBLW17]. 174

5.3 Event model underlying to all model entities within the TraDE
Middleware represented as UML state diagram. 179

5.4 Event model underlying to all model instance entities within
the TraDE Middleware represented as UML state diagram. . . 181

List of Figures 283

5.5 Event model representing the data perspective of DataValue
entities represented as UML state diagram. 182

5.6 Architecture of the TraDE Middleware, based on [HBLW17]. 184
5.7 TraDE-aware approach for the integration of the TraDEMiddle-

ware with a BPE, based on [HBLW17]. 187
5.8 Two-way approach for the integration of the TraDE Middle-

ware with a BPE, based on [HBLW17]. 188

6.1 Comparison of an example data-aware choreography with
task-based data transformations (left) and with TraDE data
transformations (right) (based on [HBL+18]). 195

6.2 A conceptual metamodel for specifying DT Units [HBLY18]. . 197
6.3 Architecture of the DT Integration Middleware [HBLY18]. . . 200
6.4 Example of a data transformation through a new DTmodeling

extension and cross-partner data flows [HBL+18]. 205
6.5 Visual representation of a data transformation and corre-

sponding data connectors to source and target data objects. . 210
6.6 Integrated system architecture and deployment artifacts of

the TraDE ecosystem [HBLY18]. 219

7.1 System Architecture of the complete TraDE ecosystem and
its components, based on [HBKL17; HBLY18]. 226

7.2 Overview of the TraDE Modeling Environment 229
7.3 Overview of the TraDE ChorDesigner. 230
7.4 Overview of the TraDE BPEL Designer. 231
7.5 Entry page of the TraDE Web UI. 234
7.6 Preview of data values using the TraDE Web UI. 235

8.1 Opal simulation choreography model specifying a thermal
aging simulation from material science domain (based on
Hahn et al. [HBKL17]). 238

8.2 Data-aware OPAL simulation choreography model after ap-
plying our TraDE concepts (based on Hahn et al. [HBKL17]). 242

284 List of Figures

8.3 Opal simulation choreography model with TraDE data trans-
formation modeling extension applied (based on Hahn et al.
[HBLY18]). 244

8.4 Choreography model used as baseline without our TraDE
concepts applied (based on [HBLW17]). 246

8.5 Choreography model with our TraDE concepts applied: cross-
partner data objects and cross-partner data flow. 247

8.6 Experimental Setup. 250
8.7 Evaluation results comparing the average response time in

milliseconds (ms) for the five load bursts of all scenarios
[HBLW17]. 251

8.8 Evaluation results comparing the average response time in
milliseconds (ms) based on the data element size (based on
[HBLW17]). 253

List of Figures 285

List of Definitions

4.1 Data Elements . 89
4.2 Domains . 90
4.3 Data Containers . 91
4.4 Messages . 93
4.5 Data Objects . 95
4.6 Data Object Multiplicity . 96
4.7 Data Object Deletion . 97
4.8 Choreography Activities . 100
4.9 Activity Implementations . 101
4.10 Communication Activities . 102
4.11 Participants . 104
4.12 Control Connectors . 107
4.13 Message Connector Map . 111
4.14 Choreography Message Connector Map 115
4.15 Choreography Start Activities . 116
4.16 Participant Start Activities . 118
4.17 Data Connector Map . 120
4.18 Choreography Data Connector Map 125
4.19 Correlation Sets and Correlation Properties 130
4.20 Correlation Set Property Map . 130

287

4.21 Correlation Map . 135
4.22 CM-Graphs . 136
4.23 Choreography Data Model . 139
4.24 Data Dependency Nodes, Data Processors 140
4.25 Data Dependency Edges . 141
4.26 Choreography Data Dependency Graph 143
4.27 Staging Elements . 145
4.28 Staging Element Map . 150
4.29 PM-Graph . 152
6.1 Data Transformations . 211
6.2 Data Transformation Implementations 211
6.3 Input Parameter Map . 212
6.4 Data Connector Map - extended . 214
6.5 CM-Graphs - extended . 215
6.6 Data Dependency Nodes - extended 215
6.7 Data Dependency Edges - extended 216

288 List of Figures

List of Algorithms

4.1 Generating a choreography data model CDM for a given
CM-Graph GC representing a choreography model C . . . 157

4.2 Generating a choreography data dependency graph GCDDG

for a given CM-Graph GC representing a choreography
model C . 158

4.3 - Part 1 Generating PM-Graphs Gi based on the defined partici-
pants Ri of a given CM-Graph GC and its data dependency
graph GCDDG

. 161
4.3 - Part 2 Generating PM-Graphs Gi . 164
4.3 - Part 3 Generating PM-Graphs Gi . 167
6.1 Extended version of Algorithm 4.2 taking data transfor-

mations into account . 217

289

List of Symbols

Ψ Map of an activity’s implementation, see Definition 4.9.
−→
∆C Map of choreography data connectors, see Definition 4.18.

GCDDG
Choreography data dependency graph (CDDG), see Defini-
tion 4.26.

ιC Input data container in a choreography, see Definition 4.3.
CDM Choreography data model (CDM), see Definition 4.23.
oC Output data container in a choreography, see Definition 4.3.
−−→
∆M Map of choreography message connectors, see Defini-

tion 4.14.
C Choreography model.
GC CM-Graph.
C Set of all choreography models.
E Set of control connectors, see Definition 4.12.
∆CS Map of correlations between a communication activity and

correlation sets, see Definition 4.21.
∆C P Map of correlation properties of a correlation set to a data

element of a data object or message, see Definition 4.20.
CS(V) Set of all correlation sets, see Definition 4.19.

291

∆C Map of data connectors between twomodel elements, see Def-
inition 4.17.

∆ Map of data connectors within PM-Graphs, see Defini-
tion 4.29.

ρD Map of deletion strategies of a data object, see Definition 4.7.
µD Map of multiplicity of a data object, see Definition 4.6.
D(V) Set of all data objects, see Definition 4.5.
Ψτ Map of a data transformation’s implementation, see Defini-

tion 6.2.
ℰτ Set of all data transformation implementations, see Defini-

tion 6.1.
χτ Map of the input parameters of a data transformation, see Def-

inition 6.3.
τ Set of data transformations, see Definition 6.1.
∆M Map of message connectors between two communication

activities, see Definition 4.13.

M (V) Set of all messages, see Definition 4.4.
P (N) Set of all participants, see Definition 4.11.

−→
∆ Map of process data connectors within PM-Graphs, see Defi-

nition 4.29.
ι Input data container in a process, see Definition 4.29.
o Output data container in a process, see Definition 4.29.
G Process model graph (PM-Graph), see Definition 4.29.
N Set of activities.

ℋC Set of all activities, participants and data-aware choreography
models, see Section 4.2.1.3.

ℰ Set of all activity implementations, see Definition 4.9.
Ncom Set of communication activities, see Definition 4.10.
𝒞 Set of all conditions.

292 List of Symbols

E∆C
Set of all data connectors of a choreography model, see Defi-
nition 4.17.

V Set of all data elements, see Definition 4.1.
E∆M Set of all message connectors of a choreography model,

see Definition 4.13.
ℰreceive Set of all message receiving activity implementations, see Def-

inition 4.10.
ℰsend Set of all message sending activity implementations, see Def-

inition 4.10.
Nreceive Set of receiving communication activities, see Definition 4.10.
Nsend Set of sending communication activities, see Definition 4.10.
N ′ Set of choreography start activities, see Definition 4.15.
Π Set of data consumers and producers, see Definition 4.24.
ECDDG

Set of data dependency edges, see Definition 4.25.
V̂ Set of all data elements associated to a data dependency

node, see Definition 4.24.
𝒩 Set of data dependency nodes, see Definition 4.24.
VΠ Set of all data elements being referenced as source or target

of a data connector map between an input or output data
container of a data processor and a cross-partner data object,
see Definition 4.24.

VD Set of all data elements used as part of a data object definition,
see Definition 4.23.

P Set of data object deletion strategies, see Definition 4.7.
PM Set of data object deletion strategy names, see Definition 4.7.
PV Set of data object deletion strategy values, see Definition 4.7.
F Set of fault handling strategies, see Definition 4.27.
M Set of all names.
N ′(R) Set of participant start activities, see Definition 4.16.
Σ Set of all staging elements, see Definition 4.27.
ΣΨ Set of staging methods, see Definition 4.27.
S Set of all structures.

List of Symbols 293

𝒞T Set of trigger conditions, see Definition 4.27.
σ Map of staging elements, see Definition 4.28.
DOM(v) Domain of well-formed values of a data element, see Defini-

tion 4.2.

294 List of Symbols

Acronyms

API Application Programming Interface.
BPE Business Process Engine.

BPEL Business Process Execution Language.
BPM Business Process Management.
BPMN Business Process Model and Notation.
CDDG Choreography Data Dependency Graph.

CDM Choreography Data Model.
CLI Command Line Interface.
CM-Graph Choreography Model Graph.
DT Data Transformation.

ESB Enterprise Service Bus.

ETL Extract Transform Load.
HTTP Hypertext Transfer Protocol.

IoT Internet of Things.

JSON JavaScript Object Notation.

295

KMC Kinetic Monte Carlo.

KPI Key Performance Indicator.
ODE Apache Orchestration Director Engine.

OPAL Ostwald ripening of Precipitates on an Atomic Lattice.
OS Operating System.
PM-Graph Process Model Graph.

QName Unique fully-qualified name.

REST Representational State Transfer.

SMT Satisfiability Modulo Theories.

SOA Service-oriented Architectures.
sWfMS Scientific Workflow Management System.
TDT TraDE Data Transformation.

TQL TraDE Query Language.
TraDE Transparent Data Exchange.
UML Unified Modeling Language.

URI Uniform Resource Identifier.
URL Uniform Resource Locator.
WS-CDL Web Service Choreography Description Language.

WSDL Web Service Description Language.
XML eXtensible Markup Language.

XPath XML Path Language.
XQuery XML Query Language.
XSD XML Schema Definition.
XSLT Extensible Stylesheet Language Transformations.
YAML YAML Ain’t Markup Language.

296 Acronyms

	1 Introduction
	1.1 Motivation Scenario
	1.2 Research Contributions
	1.3 Scientific Publications
	1.4 Structure of the Document

	2 Background and Related Work
	2.1 Service Compositions: Paradigms, Modeling Languages and Execution Aspects
	2.1.1 Choreography Modeling
	2.1.2 Choreography Execution

	2.2 Data-Awareness in Service Compositions
	2.3 Alternative Modeling and Execution Approaches with Focus on Data
	2.3.1 Artifact-centric Business Process Management
	2.3.2 Modeling and Enforcing Business Collaborations using Shared Ledger Technologies

	2.4 Integrating Heterogeneous Data Transformation Logic into Service Compositions

	3 Data-Aware Choreography Methodology
	3.1 Motivation
	3.2 The TraDE Approach
	3.2.1 Modeling
	3.2.2 Execution

	3.3 Life Cycle of Data-Aware Choreographies
	3.3.1 Modeling
	3.3.2 Transformation
	3.3.3 Refinement
	3.3.4 Deployment
	3.3.5 Execution
	3.3.6 Monitoring
	3.3.7 Analysis

	4 Formal Model for Data-Aware Choreographies
	4.1 Overview
	4.2 Data-Aware Choreography Models
	4.2.1 Choreography Data
	4.2.2 Choreography Activities
	4.2.3 Choreography Participants
	4.2.4 Control Flow
	4.2.5 Message Flow
	4.2.6 Data Flow
	4.2.7 Correlation of Messages and Data Objects
	4.2.8 Choreography Model Graph

	4.3 Choreography Data Dependency Graphs
	4.3.1 Choreography Data Model
	4.3.2 Choreography Data Dependencies

	4.4 Process Model Graphs and Staging Elements
	4.4.1 Staging Elements
	4.4.2 Process Model Graphs

	4.5 Transformation of a CM-Graph to a Collection of interconnected PM-Graphs
	4.5.1 Generating a Choreography Data Dependency Graph for a CM-Graph
	4.5.2 Generating PM-Graphs based on a CM-Graph

	5 A Middleware for Data-Aware Choreography Models
	5.1 Overview
	5.2 Conceptual Model of the Middleware
	5.3 TraDE Event Models
	5.4 Architecture of the Middleware
	5.5 Integration with Process Engines

	6 Transparent Data Transformation in Data-Aware Choreographies
	6.1 The TraDE Data Transformation Approach
	6.1.1 Overview
	6.1.2 Specification and Packaging of DT Implementations
	6.1.3 Architecture of the DT Integration Middleware

	6.2 Modeling Data Transformations in Service Choreographies
	6.2.1 A TraDE Query Language
	6.2.2 Formal Model for TraDE Data Transformations

	6.3 Transparent Execution of Data Transformations

	7 System Architecture and Implementation
	7.1 System Architecture of the TraDE Ecosystem
	7.2 Prototypical Implementation
	7.2.1 Data-aware Choreography & Orchestration Modeling Environment
	7.2.2 TraDE Middleware
	7.2.3 TraDE-aware Process Engine
	7.2.4 DT Integration Middleware
	7.2.5 TraDE Web UI

	8 Validation and Evaluation
	8.1 OPAL Case Study
	8.1.1 OPAL Simulation Choreography with TraDE Concepts
	8.1.2 OPAL Simulation Choreography with TraDE Data Transformations

	8.2 Evaluation
	8.2.1 Evaluation Methodology and Experimental Setup
	8.2.2 Experimental Results

	9 Conclusions and Outlook
	9.1 Conclusion
	9.2 Outlook

	Bibliography
	List of Figures
	List of Definitions
	List of Algorithms
	List of Symbols
	Acronyms

