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Abstract

Chemical reactions are often described via the motion of an effective particle
on a Born–Oppenheimer potential-energy surface. In this picture, trajectories
typically turn from reactants to products when crossing a rank-1 saddle
on the energy surface. The geometric properties of this bottleneck and
its associated transition state play an important role for the dynamics of
activated trajectories, i. e., trajectories that cross near threshold energy.
Transition-state theory is a well-established framework that can be used
to analyze the dynamics near the rank-1 saddle. It focuses particularly on
the determination of rates via the flux through the transition state, which
has been investigated since the early 20th century and continues to be of
relevance today.

In this work, we focus mainly on the geometrical formulation of transition-
state theory. This description formalizes the distinction between reactants
and products by defining a dividing surface in phase space based on the
hyperbolic dynamics near the saddle. Specifically, a formally exact dividing
surface can be constructed by anchoring it to the saddle’s normally hyperbolic
invariant manifold. This invariant manifold and its associated stable and
unstable manifolds determine the fate of activated trajectories, and so they
are of great interest in the field of chemical reaction kinetics.

This dissertation is concerned with the development and application of
numerical methods in the framework of transition-state theory. We address
the emergent dynamics of time-dependent chemical and physical model
systems under periodic external driving of the transition barrier. In particular,
we focus on the structure of the normally hyperbolic invariant manifold, its
associated decay rates, and whether these rates can somehow be connected
to Kramers’s notion of escape rates. The range of models we investigate
includes two simple but prototypical test cases with one and two driven
saddles as well as the LiCN LiNC isomerization reaction. We further
show how transition-state theory can be applied to celestial-mechanics,
where it can be used to optimize orbits of satellites with respect to fuel
consumption while accounting for time-dependent perturbations from the
moon. The systems are mostly treated deterministically, but we also make
use of the (generalized) Langevin equation when examining the absolute
LiCN isomerization rates. In this context, we ask the fundamental question
of how to define a rate, which is especially important at high temperatures.

iii





Inhaltsangabe in deutscher
Sprache

Chemische Reaktionen werden häufig durch die Bewegung eines effekti-
ven Teilchens auf einer Born-Oppenheimer-Potentialfläche beschrieben. Der
Übergang von Reaktant zu Produkt ist dabei typischerweise mit der Über-
querung eines Rang-1-Sattels auf der Potentialfläche verbunden. Die geome-
trischen Eigenschaften dieses Engpasses und des zugehörigen Übergangszu-
stands spielen eine wichtige Rolle für die Dynamik aktivierter Trajektorien.
Diese Trajektorien überqueren den Sattel mit nur wenig mehr als der Aktivie-
rungsenergie und halten sich daher vergleichsweise lang in dessen Nähe auf.
Für die Analyse der Dynamik nahe dem Rang-1-Sattel hat sich die Theorie
des Übergangszustands (engl. transition state theory) bewährt. Sie beschäf-
tigt sich insbesondere mit der Bestimmung der Raten über den Fluss durch
den Übergangszustand. Die Forschung hierzu begann bereits im späten
19. Jahrhundert und ist auch heute noch von Bedeutung.

Im Zuge dieser Arbeit beschäftigen wir uns primär mit der geometrischen
Formulierung der Theorie. Diese Variante formalisiert die Unterscheidung
zwischen Reaktanten und Produkten durch die Definition einer Trennfläche
im Phasenraum basierend auf der hyperbolischen Dynamik des Systems.
Durch Anheften an der sogenannten normal-hyperbolisch invarianten Man-
nigfaltigkeit des Sattels kann eine formal exakte Trennfläche konstruiert
werden. Die invariante Mannigfaltigkeit bestimmt zusammen mit ihren sta-
bilen und instabilen Mannigfaltigkeiten maßgeblich den Verlauf aktivierter
Trajektorien, und ist daher von großem Interesse für die Reaktionskinetik.

Die vorliegende Dissertation widmet sich der Entwicklung und Anwen-
dung numerischer Methoden im Rahmen der Theorie des Übergangszu-
stands. Wir befassen uns mit der emergenten Dynamik von zeitabhängigen
chemischen und physikalischen Modellsystemen unter dem Einfluss von
externem periodischen Treiben. Im Besonderen konzentrieren wir uns dabei
auf die Struktur der normal-hyperbolisch invarianten Mannigfaltigkeit, die
mit ihr verbundenen Zerfallsraten sowie der Frage, ob diese Raten mit dem
von Kramers geprägten Begriff der Fluchtraten verbunden werden können.
Die Palette der untersuchten Modelle umfasst dabei zwei einfache, aber
prototypische Testsysteme mit ein respektive zwei getriebenen Sätteln sowie
die Isomerisierungsreaktion LiCN LiNC. Wir zeigen außerdem, wie die
Theorie auf die Himmelsmechanik angewandt werden kann. Hier lassen
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sich Umlaufbahnen von Satelliten im Hinblick auf den Treibstoffverbrauch
optimieren, während vom Mond verursachte zeitabhängige Störungen be-
rücksichtigt werden. Die Systeme werden dabei zumeist deterministisch
behandelt. Um die absoluten Isomerisierungsraten von LiCN zu bestimmen,
machen wir jedoch auch von der (verallgemeinerten) Langevin-Gleichung
Gebrauch. In diesem Kontext stellen wir uns die fundamentale Frage nach
der Definition einer Rate, die insbesondere bei hohen Temperaturen eine
große Rolle spielt.
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Introduction 1
Various phenomena in physics and chemistry can be described by the dy-
namics of a system on a potential-energy surface. Local minima on such
surfaces are commonly associated with discrete states like spin up and spin
down in spintronics, or reactant and product in a chemical reaction. To
transition from one state to the other, the system must overcome the barrier
in between. While doing so, the minimum-energy path usually passes over a
rank-1 saddle point.

One of the central aims in the field of physical chemistry is the accurate
determination of a chemical reaction’s rate. Pioneered, amongst others, by
Waage and Guldberg in 1864, [12–15] and later by van ’t Hoff in 1884 [16],
the discipline of chemical kinetics remains highly relevant even after one and
a half centuries. The determination of rates is not just an abstract problem
of academic (or basic) concern [17–20] but also a practical problem with
many potential applications in complex reactions [21–25]. The possibility
of optimizing reaction rates by external driving could perhaps take these
applications further in offering improvements to throughput and efficiency.

Transition-state theory (TST) [19, 20, 26–47] is well established for the
computation of rates in systems with a rank-1 saddle. In these systems, two
different states—viz., reactants and products—are classified and separated
by an appropriately chosen dividing surface (DS). TST uses the flux through
the DS to determine the rate of a chemical reaction or a similar process. This
rate is only formally exact if the DS is recrossing-free, meaning that trajecto-
ries crossing the DS from the reactant side do not return before reaching the
product well. It has been applied to a broad range of problems in a broad
range of fields including atomic physics [48], solid state physics [10, 11, 49–
52], cluster formation [53, 54], diffusion dynamics [55, 56], cosmology [57],
celestial mechanics [6, 58–60], and Bose–Einstein condensates [61–65].

In this work, we focus on a geometrical formulation of TST. In a system
with 𝑑 degrees of freedom (DoFs), the DS embedded in phase space has
dimension 2𝑑−1. It is attached to a (2𝑑−2)-dimensional normally hyperbolic
invariant manifold (NHIM) [66–71], which has the property that every
particle on the NHIMwill never leave this manifold when propagated forward
or backward in time. The importance of the geometric structure of the
NHIM on dynamical systems without driving has been understood for some
time [69] and continues to receive attention [72–74]. For example, the
bifurcation of the periodic-orbit DS in two DoFs upon varying the total
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energy was revealed by Pechukas, Pollak, and Child [75–77]. Li et al. [78]
extended their work to three DoFs, showing that the bath modes’ invariants
of motion can be used to control the bifurcation of the NHIM. In general,
bifurcations of the NHIM give rise to its breakdown leading to switching
between the dominant reaction coordinate as a function of the system’s
total energy [79, 80], and further leads to the possibility of experimental
control [81].

An alternative ansatz for experimental control is the implementation of
a time-dependent driving, e. g., via oscillating external fields [8, 82–87].
Here, the situation becomes more challenging because the NHIM and, hence,
the DS themselves become time-dependent. They depend nontrivially on
the moving saddle of the potential [30, 31], but they can nevertheless be
obtained by time-dependent perturbation theory [88], through a minimiza-
tion procedure based on a Lagrangian descriptor [1, 89–91], and other
approaches [1, 87, 92]. Furthermore, machine learning techniques have
been leveraged recently to construct representations of the time-dependent
NHIM and its dynamical properties [93–99].

In this work, we address the emergent dynamics of chemical and physical
model systems under time-periodic external driving of the transition barrier.
In periodically driven systems with only one degree of freedom, the NHIM
reduces to a point that oscillates with the same period as the driving poten-
tial [30, 31, 100–107]. This periodic orbit is the one-dimensional transition
state (TS) trajectory. In systems with two or more degrees of freedom, the
structure of the NHIM itself and the dynamics of trajectories on it become
nontrivial [2, 3, 5, 6, 108]. These systems commonly show torus structures
with elliptic and hyperbolic fixed points that can bifurcate as a function of
the driving parameters.

Such phenomena raise the fundamental questions [5]: Does the structure
on the NHIM also have an influence on the dynamics off the NHIM? And can
we use our knowledge of the NHIM’s properties to predict the behavior of
trajectories starting in the reactant or product basin? After all, slowly reacting
trajectories cross the DS close to the NHIM and spend a relatively long time in
its vicinity. This issue is closely related to the important distinction between
decay rates [2, 4, 6], which assess the stability of trajectories near the NHIM,
and absolute reaction rates [109–111], where the full path from reactant
to product well is considered. The challenge arises whether these can be
linked in a meaningful way.

We pursue these questions by investigating chemically inspired model
systems. The challenges in a system with multiple DoFs lie in the inner
structure of the NHIM. Metrics like the decay rate can unveil this structure.
Hence, they are a useful tool to investigate whether the reaction geometry
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can be influenced or even controlled via external driving. The case of only
one DoF but multiple saddles, on the other hand, gives rise to a different
type of complexity [4]. Here, the NHIM still only consists of individual points
as discussed above; this time, however, time-dependent driving can cause
the NHIM to develop into a fractal set of disjoint TS trajectories connecting
the barriers. This fractal structure makes it very challenging to determine a
proper DS. To do so, one has to ask whether a dominant TS trajectory can
still be identified in a specific scenario.

Besides these fundamental questions, this thesis also focuses on concrete
applications of TST to systems inspired by the real world. One such system is
the Sun–Earth libration point 𝐿2. Here, the effective potential—generated
by the gravitational forces of Sun and Earth—exhibits a rank-1 saddle in a
rotating frame. This potential is perturbed by the Moon, which serves as the
external driving [6, 60]. The NHIM at 𝐿2 is highly relevant for real-world
space missions. It allows a spacecraft to stay far enough from Earth to mini-
mize electromagnetic interferences but close enough for easy communication.
In addition, a carefully chosen orbit keeps the craft out of Earth’s shadow,
thereby preventing constant heating and cooling of its instruments. It has
therefore been the target of numerous scientific satellite missions [112–115]
in recent years. These missions may have a number of different requirements.
But all of them have in common that the mission duration is ultimately lim-
ited by the amount of fuel available for course corrections. TST can help
to reduce the fuel consumption by providing measures for the stability of
orbits at 𝐿2, i. e., decay rates.

While the stability of the TS as revealed by decay rates can also be inves-
tigated for real chemical molecules [87, 116], the results are much harder
to observe and utilize in practice. Our second real-world example instead
addresses the absolute reaction rate of the lithium-cyanide (LiCN) isomeriza-
tion reaction. This reaction has already been examined by multiple groups
and, thus, a potential-energy surface [117] is readily available. Various rate
methods have been tested and compared previously [7, 116, 118–120] based
on this surface, but they left some questions unanswered. Here, we revisit
the mean first-passage time (MFPT) calculations published in References [7,
116]. In particular, we focus on the partially conflicting results between
MFPT rates on the one hand, and Pollak–Grabert–Hänggi (PGH) and all-atom
molecular dynamics (AAMD) rates from References [7, 116, 118, 119] on the
other hand. The new MFPT results are in better agreement with PGH and
AAMD; they also shed new light upon the influence of solvent memory on
the lithium-cyanide isomerization reaction.

A substantial part of the earlier analysis on LiCN rates focused on high
temperatures, i. e., the regime where the average thermal energy is larger
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than the barrier height. This raises questions about the definition of a reaction
rate, namely: Do trajectories have to only reach the product well to constitute
a reaction? Or do they also have to get captured to prevent correlations
between individual reactions? The way in which ballistic trajectories are
treated can have a significant influence on the rate. One needs to be especially
careful when comparing different methods as they may each make different
assumptions. After all, rates can only be compared in a meaningful way
when everyone agrees on what they deem a rate.

1-1 Outline

This thesis is organized as follows:
In part one we present the theoretical and methodical foundations of

this work. We start off by introducing the geometrical formulation of TST
in Section 2-1 along with a brief overview of Floquet theory in Section 2-4.
Kramers’s notion of escape rates and the important distinction between
reaction and decay rates are subsequently discussed in Section 2-3. Proper
reaction rates usually imply solvent-induced noise and friction; the Langevin
theory, which we use to implement such effects, is summarized in Sec-
tion 2-2. Chapter 3 then presents the methods that are necessary to reveal
the geometric structure described in Section 2-1. This includes the inte-
gration of ordinary differential equations in Section 3-1, the concepts of
Lagrangian descriptors and reactive regions in Section 3-2, and the binary-
contraction method (BCM) in Section 3-3. Based on this, Section 3-4 gives a
short overview of typical structures in dynamical systems and how to reveal
them using Poincaré surfaces of section (PSOSs). More information about
the phase-space structure of the NHIM can be determined from decay rates,
which is why we review three such methods in Section 3-5. The numerical
methods we use to solve the stochastic differential equations resulting from
the Langevin ansatz follow in Section 3-6. Finally, we show in Section 3-7
how Kramers’s escape rates can be calculated using MFPTs.

The second part of this thesis is dedicated to selected examples of ap-
plications in prototypical and real-world models. First, we have a detailed
look at a prototypical 2-DoF model in Chapter 4. We apply the theoretical
and methodical framework developed in Chapters 2 and 3 and show how
the structure on the NHIM can be connected to the dynamics happening far
from the saddle. The challenges that arise in multi-saddle systems are then
discussed in Chapter 5, where we illustrate the complicated fractal structure
that can develop in seemingly simple systems. As demonstrated, a mostly
recrossing-free DS can still be constructed using adapted variants of our
methods. This discussion is continued in Appendix A.
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Next, we turn to more realistic models. Chapter 6 applies TST methods
to celestial mechanics as a concrete example of how decay rates can be
useful in practice. Specifically, we showcase how the methods presented in
Chapter 3 can be used to optimize the fuel consumption of satellites near
the libration point 𝐿2. We conclude part two by investigating MFPT rates
of the lithium-cyanide isomerization reaction in Chapter 7. We focus on
the results that have previously been obtained in References [7, 116] and
how we can improve on them. The new results are compared with rates
determined from PGH theory and via AAMD simulations, and the concept of
rates at high temperatures is discussed. Supplementary information on the
lithium-cyanide potential-energy surface and approximative reaction-rate
formulas can be found in Appendices B and C, respectively.

Parts of the software developed for this thesis has been made open source.
Details hereof are given in Appendix D.
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Part I
Theory & Methods

Transition-state theory has a long history in the field of chemical reaction
kinetics, from its roots in the early 20th century to the modern geometrical
formulations developed in more recent years. In this first part, we summarize
the necessary theoretical background, review existing methods, and present
new developments while staying mostly system-agnostic.
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Transition-State Theory 2
Parts of this chapter have previously been published by the author in
References [3, 4, 6].

A pair of fundamental assumptions in the original construction of transition-
state theory (TST) [19, 20, 26–47] is that chemical reaction kinetics can be
modeled by nuclear motion on a Born–Oppenheimer surface [121], and
that said motion can be described by classical mechanics. In this framework,
the system can be represented as an effective particle in a 𝑑-dimensional
coordinate space. Its evolution is a trajectory on the potential-energy surface
connecting reactant and product regions or valleys. In a typical scenario,
there exists a rank-1 saddle between these regions, i. e., a critical point where
exactly one direction is unstable, and all others are stable. The unstable
direction locally identifies the reaction coordinate 𝑥 [122, 123], which indi-
cates the progress of the reaction. The 𝑑 −1 stable directions are referred to
as the orthogonal modes 𝒚.

The saddle is associated with a dividing surface (DS) that formally sepa-
rates reactant and product states by dividing the phase space into two parts.
Located on the DS is the transition state (TS) [19, 26, 35, 43]—an unstable
set of configurations that are neither reactants nor products. All reactive
trajectory in the system have to cross the DS and, therefore, pass through
the TS. In thermal systems with thermal energies 𝑘B𝑇 well below the barrier
height, trajectories can only cross once they have been activated by the bath.
Hence, the TS is also known as the activated complex. The umbrella term
TST commonly refers to all theories that make use of this concept, especially
when they concern themselves with the calculation of rates (cf. Section 2-3).
Classical TST rates are calculated via the directional flux through the DS
weighted by the (reactant) population [124]. This connection, however, is
exact only if the DS is recrossing-free. Thus, the concept of recrossing-free
DSs is very important for TST in general and the determination of rates in
particular.

A DS is locally recrossing-free [73, 78, 125, 126] if no particle pierces
it more than once before leaving some pre-determined interaction region
around the saddle. In this case, any rates as determined by the DS are locally
exact. We refer to a DS as being globally exact or recrossing-free if the above
is true independent of the choice of the interaction region—as long as said
region does not overlap with the stable reactant or product regions [1, 4].
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Using this definition avoids inherent recrossings caused by reflections in
closed reactant or product basins [127]. Global recrossings, though, may
still occur if closed basins are excluded. Nonlinearities in the potential or
fictitious forces like the Coriolis force, for example, can lead a trajectory to
turn around after leaving the local interaction region, causing the DS to be
crossed again. This distinction between locally and globally recrossing-free
DSs is especially important when a system contains multiple saddles. Here,
every saddle can potentially be associated with its own locally recrossing-free
DS. Yet, none of these DSs might be globally recrossing-free if the dynamics
over all barriers is considered. In this work, we only address transitions over
barriers in series, and we do not address the parallel case in which a reaction
could access more than one distant barrier. The scope of the definitions of
globally exact and recrossing-free is therefore limited accordingly.

Determining a globally exact DS in a static 1-degree of freedom (DoF)
system uncoupled from any other mode (e. g., without thermal bath) is
almost trivial: If and only if a particle crosses the highest barrier, it has
demonstrated to possess enough energy to react over all barriers. A globally
recrossing-free DS can therefore be defined simply via the global maximum of
the potential-energy surface. Additional layers of complexity arise when the
system is multidimensional [128], driven by time-dependent potentials [34],
or includes random noise from a thermal bath [9]. For now, we assume
an isolated system, but we will come back to the issue of random noise in
Section 2-3.

2-1 Geometrical formulation

While it is straightforward to define a recrossing-free DS for a static 1-DoF sys-
tem, differentiating between reactants and products in higher-dimensional
or driven systems requires a more sophisticated mathematical framework.
One way of determining the DS is by means of variational TST [129]. This
variant starts with an arbitrary guess for the DS and variationally optimizes
this surface to minimize the flux through it. In contrast to traditional TST,
the DS may detach from the actual saddle point in this process. As every
crossing of the DS increases the rate, this approach makes sure to exclude
as many recrossings as possible. Although this approach works well in many
cases, it does not allow the construction of the DS from first principles. In-
deed, with variational TST, one only knows what a DS looks like, not why it
looks the way it does. For these reasons, we focus on a different approach in
this thesis, namely, the geometrical formulation of TST.

We begin by considering the time-invariant case of a reactive 1-DoF
system as sketched in Figure 2-1(a) (dark blue potential). An energy barrier
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Figure 2-1: (a) Potential energy 𝑉 as a function of reaction coordinate 𝑥

for a generic example system. A DS associated with the energy barrier
separates the reactant (R) from the product (P) state. The TS is located on
the DS in between reactants and products. The addition of a time-dependent
driving— indicated via faint versions of the potential at different points in
time— leaves the general structure intact. In this case, however, the DS can
detach from the top (see text). (b) The phase space of the model system
shown in panel (a) for fixed time 𝑡0. The bulk of the phase space consists of
four distinct, numbered regions associated with four qualitatively different
classes of trajectories. One example trajectory each is shown as a solid black
line with the forward time direction indicated via an arrow head. These
regions are separated by the stable and unstable manifolds𝒲s and𝒲u, whose
closures intersect in the NHIM. A DS cutting through regions 1 or 2 (gray
dashed line) inevitably leads to recrossings. Higher-dimensional systems can
show the same structure in an 𝑥–𝑝𝑥 section with fixed orthogonal modes 𝒚
and 𝒑𝑦.
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along the reaction coordinate 𝑥 separates reactants (R) from products (P).
Depending on the initial conditions and thus the energy, most particles can
be classified as either

1. nonreactive reactants R→R,
2. nonreactive products P→P,
3. reactive reactants R→P, or
4. reactive products P→R.

This results in four distinct reactive and nonreactive regions in phase space,
as indicated in Figure 2-1(b). In this simple example, all trajectories with a
total energy above the barrier height are reactive (regions 3 and 4), whereas
those below are nonreactive (regions 1 and 2).

The regions are separated by two kinds of critical trajectories. Their
energy equals exactly the barrier height in time-invariant 1-DoF case. The
first kind move towards the barrier top, progressively slowing down while
converting kinetic into potential energy. They approach the barrier top
without reaching it as 𝑡 →+∞, and they leave the barrier’s vicinity when
propagating backward in time. Together, they form the stable manifold 𝒲s.
The reverse, trajectories that reach the top for 𝑡 →−∞, is called the unstable
manifold 𝒲u. Both manifolds are shown as blue lines in Figure 2-1(b).

The closures of the manifolds 𝒲s and 𝒲u intersect in the so-called nor-
mally hyperbolic invariant manifold (NHIM) [66–70, 130] [red diamond in
Figure 2-1(b)]. All trajectories started on this object are bound indefinitely
to the saddle, both forward and backward in time. The NHIM thus com-
bines the properties of 𝒲s and 𝒲u in this regard. Furthermore, it is this
object that trajectories on 𝒲s and 𝒲u converge towards for 𝑡 → +∞ and
−∞, respectively. Its name comes about as follows: Invariant manifolds are
subspaces that cannot be entered or left. A state initialized on a NHIM may
move within that NHIM but may never deviate from it (except for numerical
errors). Similarly, states started off the NHIM may approach it via the stable
manifold, but they may never reach it. Normally hyperbolic roughly means
that the instability or decay away from (normal to) the NHIM dominates
any possible instabilities within the NHIM itself [128]. Thus, the NHIM can
be seen as the generalization of a hyperbolic fixed point to arbitrarily many
DoFs (see below).

Looking at Figure 2-1(b), it becomes clear that all DSs cutting through
regions 1 or 2 (gray dashed line) inevitably lead to recrossings. One can
always find a trajectory with an energy just below the barrier height that
enters the interaction region close to 𝒲s, pierces the DS twice, and leaves the
interaction region close to𝒲u. Any recrossing-free DSs— if they exist—must
therefore be anchored at the NHIM. As shown in previous work [1, 91, 128,

12 2 Transition-State Theory



131, 132], a (locally) recrossing-free DS can indeed often be constructed
by attaching it to the NHIM [128, 131, 133]. In the simplest case, this is
done by extending the NHIM in the 𝑝𝑥 direction, as shown in Figure 2-1(b).
The DS then divides the phase space into a reactant and a product domain.
This ansatz is neither guaranteed to work globally, nor is it necessarily the
only possible choice. In the case of Figure 2-1(b), for example, a slightly
tilted surface could still divide the phase space without cutting through
regions 1 or 2. Such a choice, however, entails increased complexity without
providing additional benefits. Thus, we restrict ourselves to vertical DSs akin
to Figure 2-1(b).

This general geometry of the phase space remains when driven systems
are considered. In the special case of a time-invariant 1-DoF Hamiltonian, the
NHIM is associated with the unstable trajectory for which a particle remains
precariously fixed at the barrier maximum. We can extend this structure to
time-dependently driven systems. Now, the NHIM will be time-dependent as
well, but it detaches from the barrier’s maximum. Its defining property—a
set of unstable trajectories trapped indefinitely in the vicinity of the barrier—
still applies, and it is still a good anchor for a DS. A similar behavior was
mentioned for the variational TST ansatz, although this time, we have a
formal framework that allows us to construct the DS from first principles.

The one-dimensional picture presented above can be extended to systems
with arbitrarily many DoFs. The potential-energy landscape in a 𝑑-DoF
system typically features a rank-1 saddle separating reactants from products.
While there is still a single unstable reaction coordinate 𝑥, we now have
𝑑 −1 additional stable orthogonal modes 𝒚. As a consequence, the stable
and unstable manifolds become hypersurfaces with codimension 1, i. e.,
they are (2𝑑 −1)-dimensional subspaces in 2𝑑-dimensional phase space.
Similarly, the NHIM becomes a codimension-2 manifold (dimension 2𝑑 −2)
located at the intersection of the closures of 𝒲s and 𝒲u. If coordinates are
chosen well, every 𝑥–𝑝𝑥 section of the phase space for a given position 𝒚
and momentum 𝒑𝑦 shows the cross-like structure shown in Figure 2-1(b).
Numerical algorithms computing the NHIM in 1-DoF systems can, therefore,
be used with minimal modifications to compute individual points on the
NHIM in higher-dimensional systems. This can be done on demand for many
applications. Alternatively, an interpolated representation of the NHIM can
be constructed from precalculated points via classical or machine learning
techniques [93–98].

Finally, a word of caution regarding the term transition state: It is com-
monly used in the chemical physics literature to describe the set of configura-
tions in between the reactant and the product state, i. e., those located on the
codimension-1 DS in phase space. Frequently, it is also used as a synonym to
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the 0-dimentional saddle point. The more mathematical literature, however,
uses this phrase to refer to the ensemble of states bound indefinitely to
the saddle region, i. e., those located on the codimension-2 NHIM. This is
effectively a generalization of the saddle-point definition. See footnote 6 of
Reference [33] for a more detailed discussion. In this work, we adopt the
former definition for the TS but use the phrase TS trajectory for trajectories
bound to the NHIM.

2-2 Langevin equation

So far, we have assumed that the systems under investigation are completely
isolated. In practice, however, this is rarely the case for chemical reactions.
Instead, many of them take place in a solution or are connected to a thermal
bath in some other way. Here, energy can transfer between the system and
the bath, typically in the form of collisions with the solvent particles.

The Langevin equation (LE) [134–137] includes such solvent effects by
way of coarse graining via a random-noise term 𝜻 and a friction term −𝛾𝒑.
The resulting stochastic differential equation reads

𝒒̇(𝑡) =𝑴−1𝒑(𝑡)(2-1a)
and 𝒑̇(𝑡) = 𝑭(𝒒(𝑡),𝒑(𝑡), 𝑡)−𝛾𝒑(𝑡)+𝜻(𝑡)(2-1b)

with 𝜻(𝑡) =√2𝛾𝑘B𝑇𝑴
1/2 𝝃(𝑡) ,(2-1c)

where 𝑴 is the system’s mass matrix (diagonal in this work), 𝑭 is the de-
terministic force (e. g., exerted by a potential or external driving), 𝛾 is the
friction coefficient, and 𝝃 is a temporally uncorrelated random variable with
standard normal distribution (white noise). The components of the stochastic
force 𝜁𝑗 satisfy the fluctuation-dissipation theorem [134, 136]

⟨𝜁𝑗(𝑡)𝜁𝑘(𝑡
′)⟩ = 2𝛾𝑘B𝑇𝑀𝑗𝑘 𝛿(𝑡 −𝑡′) .(2-2)

The generalized Langevin equation (GLE) [134, 136–138] extends the
LE, allowing for memory effects to be taken into account (colored noise).
This is achieved by introducing a friction kernel 𝛤 that also considers pre-
vious momenta 𝒑 starting from initial time 𝑡0. The generalized version of
Equation (2-1) then reads

𝒒̇(𝑡) =𝑴−1𝒑(𝑡)(2-3a)
and 𝒑̇(𝑡) = 𝑭(𝒒(𝑡),𝒑(𝑡), 𝑡)−∫

𝑡

𝑡0
d𝑡′𝛤(𝑡 −𝑡′)𝒑(𝑡′)+𝜻(𝑡) .(2-3b)
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for 𝑡 ≥ 𝑡0, and the fluctuation-dissipation theorem (2-2) becomes

⟨𝜁𝑗(𝑡)𝜁𝑘(𝑡
′)⟩ = 𝑘B𝑇𝑀𝑗𝑘𝛤(𝑡 −𝑡′) . (2-4)

In this framework, the LE can be recovered with a Dirac-delta kernel

𝛤(𝑠) = 2𝛾𝛿(𝑠) . (2-5)

Other common choices are so-called Prony-series memory kernels [139, 140].
These are kernels of the form

𝛤(𝑠) =∑
𝑗

𝛾𝑗
𝜏𝑗

exp(−
𝑠
𝜏𝑗
) , (2-6)

where 𝜏𝑗 are the memory timescales of the series components. In this work,
we focus on the simplest variant

𝛤(𝑠) =
1
𝛼
exp(−

𝑠
𝛼𝛾

) (2-7)

with bath parameter 𝛼 and memory timescale 𝜏 = 𝛼𝛾.

The statements above make use of the so-called Stratonovich conven-
tion [141, 142], as is common in this field. This is important to state so as
to assign any meaning at all to certain types of equations. Specifically, the
integral over the infinitesimally-wide Dirac delta distribution 𝛿 is undefined
if one of the integral’s limits coincides with the position of the peak as in

∫
𝑏

𝑎
d𝑥𝑓(𝑥)𝛿(𝑥−𝑏) . (2-8)

Here, it is unclear whether the distribution is still fully within the limits,
which would yield 𝑓(𝑏), or whether the integral stops just before. The latter
interpretation, known as the Itô convention, would assign zero to the same
integral. Stratonovich takes the middle ground by assigning the average
𝑓(𝑏)/2, i. e., it treats half of the Dirac delta distribution to be within the
integral limits. With this convention, the integral in the GLE (2-3b) evaluated
for the LE friction kernel (2-5) yields

∫
𝑡

𝑡0
d𝑡′ 2𝛾𝛿(𝑡 −𝑡′)𝒑(𝑡′) = 𝛾𝒑(𝑡) , (2-9)

which recovers the LE (2-1b). A more detailed discussion about Itô ver-
sus Stratonovich and their physical interpretation can be found in Refer-
ences [141, 142].
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2-3 Rates

In the previous sections, we discussed which requirements we have for an
ideal DS, how the geometric formulation of TST can help to meet these
requirements, and how we can model the solvent for processes such as
a chemical reaction. These concepts form the basis for the determination
of rates. In this section, we present two different types of rates that both
originate from the same fundamental consideration— the normalized flux
through a DS—but lead to vastly different outcomes.

(a) Absolute reaction rates

The original goal of TST—and one that is still pursued today— is the accu-
rate determination of absolute reaction rates [109]. There exists a plethora of
rate theories [110, 111] that has been developed since the early 20th century.
Two such examples, the Polanyi–Wigner equation [143] and the Eyring–
Polanyi rate [26, 110, 144], are presented in Appendix C. Yet, many of these
simpler rate equations are quite limited in their applicability.

An important step towards a more complete description happened in 1940
when Kramers [111] formulated a scenario that is now known as Kramers’s
escape-rate problem. Therein, he describes a simple 1-DoF system featuring
a reactant well separated from a lower-energy product basin by a barrier. He
considers an activated process, i. e., a process where the temperature 𝑘B𝑇 is
small compared to the barrier height 𝐸‡. The flux of particles escaping the
reactant well is therefore assumed to be small and stationary, and the rate
is given by the flux divided by the reactant population. This is commonly
known as a flux-over-population rate.

From these assumptions, Kramers was able to derive the expressions

𝑘(𝛾) =
𝛾𝐸‡

𝑘B𝑇
exp(−

𝐸‡

𝑘B𝑇
)(2-10)

for reaction or escape rates in the low-friction regime and

𝑘(𝛾) = [√(
𝛾

2𝜔‡)
2
+1−

𝛾
2𝜔‡]

𝜔0

2𝜋
exp(−

𝐸‡

𝑘B𝑇
)(2-11)

for rates in the high-friction regime. In these equations, 𝛾 denotes the friction
coefficient,𝜔‡ the inverse barrier frequency, and𝜔0 the vibrational frequency
of the reactant well. In between these limits, his theory predicts a turnover
but fails to specify it quantitatively.
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This theory was later extended by Mel’nikov and Meshkov [145] as
well as by Pollak, Grabert, and Hänggi [146], who were able to connect
Kramers’s limiting cases. Besides fully resolving the turnover, the Pollak–
Grabert–Hänggi (PGH) theory also generalizes Kramers’s ideas to include
memory effects based on the GLE. This generality has led to widespread
adoption within the TST community [27, 147–153]. Ultimately, however,
both theories still involve a number of assumptions that are not always
justified, such as being able to treat the reaction as a one-dimensional pro-
cess [27]. Notably, they are typically only valid for 𝑘B𝑇 ll𝐸‡ and begin to
break down for thermal energies near or above the barrier height.

More universally accurate—but also computationally expensive— results
can be obtained, e. g., from flux-over-population rates in all-atom molecular
dynamics (AAMD) [154–157] or Langevin-based [134–138] ensemble simu-
lations. These types of calculations require the definition of a DS or similar
means to differentiate between reactants and products. As with Kramers, the
idea is to inject a constant flux of reactants into the system. These reactants
will eventually cross the DS on their way towards the product state. At this
point, they are removed from the simulation, which is known as an absorbing
boundary condition [158]. The rate is then given by the flux of new reactants
divided by their equilibrium population.

The geometrical formulation of TST from Section 2-1 could, in principle,
be used to calculate an ideal, recrossing-free DS for these types of calcula-
tions [9, 94]. Such a DS, however, would have to depend on the dynamics of
the solvent particles or the exact noise sequence, depending on how the bath
is modeled. This would make the calculations extremely expensive while
providing limited benefit in terms of accuracy compared to other approaches.
Therefore, simpler approximations are used in practice.

A traditional choice is to construct the DS as follows: We start by approx-
imating the reaction coordinate 𝑥 via the potential’s minimum-energy path.
The rank-1 saddle point then corresponds to the maximum along 𝑥. At this
point, we attach a planar DS such that it is orthogonal to the local direction
of the reaction coordinate [43, 159], i. e., such that the DS’s normal vector
points along the minimum-energy path’s tangent vector. This choice is simple
but has the same drawback as many traditional TST rate formulas [27] in
that its accuracy suffers from recrossings. Notably, a particle could be thrown
back by the solvent just after crossing the DS. Counting these events as
positive flux through the DS may be undesirable. Further recrossings can
be caused by, e. g., nonlinear coupling between the reaction coordinate and
the orthogonal modes.

Luckily, the time it takes a reactant to climb the barrier in an activated
process in many cases vastly exceeds the time it takes to fall down on the
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product side. Pushing the DS some distance to the product side [158] (or the
reactant side for the backward reaction) will thus only have a small impact on
the escape time of recrossing-free trajectories while simultaneously reducing
the likelihood of recrossings. This can filter out many recrossings without
affecting the rate obtained from the recrossing-free sub-ensemble too much.
Alternatively, energy constraints for the DS have been studied [149, 160],
which are especially relevant for cases with slow energy relaxation [149].
Many more schemes have been proposed—variational TST [129, 161] being
a notable one— for which we refer the reader to the literature.

Thus, there are many options available, and the best choice is not obvious
in many cases. What constitutes a good DS and what does not can also
depend significantly on the physical (or chemical) problem to be solved.
This is especially true at high temperatures 𝑘B𝑇 ≳ 𝐸‡ where the barrier is
not much of an obstacle anymore for many trajectories. Such high-energy
trajectories may enter the product well, get reflected at the potential walls,
and immediately react back without getting captured in the product state.
Should such reaction paths be treated as a forward reaction followed by a
backward reaction? Or do we require their capture, e. g., by introducing
an energy constraint for the DS? The answer to these questions can have
a significant influence on the result as shown in Chapter 7 for a concrete
example.

(b) Decay rates

As mentioned above, determining a formally correct DS in a thermal sys-
tem via the geometrical formulation of TST can be unfeasibly expensive.
Hence, to the best knowledge of the author, this formulation is rarely used
in practice to determine absolute reaction rates of real chemical processes.
It does, however, provide useful insights into the reaction geometry and
the dynamics of systems near the TS. As shown in Reference [9], it is even
possible to correlate the deterministic dynamics on the NHIM of a system
without solvent with the stochastic dynamics of that same system in a noisy
environment. Furthermore, such knowledge about the reaction geometry
can be used for limited predictions about the dynamics away from the TS,
as demonstrated in Chapter 4. This, however, requires that trajectories pass
close to the NHIM, and so far has only been demonstrated without noise or
friction.

Now that we have established that the framework presented in Section 2-1
will mostly be useful near the TS, we can reconsider the concept of flux-over-
population rates. Indeed, such a rate can still be defined in this context (cf.
Section 3-5), but it does not represent an absolute reaction rate anymore.
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Instead, this so-called decay rate constitutes a measure for the instability
of the TS. It is discussed in detail in Section 3-5 and Chapters 4 to 6. This
rate is different from the absolute reaction rate in that it only describes
how an ensemble falls down from the saddle and not how it climbs it in the
first place. The latter is what takes far more time in an activated process
and therefore dominates the reaction rate. Thus, if a reaction rate formula
incorporates decay rates in the future, it is possible that they will only be a
small correction in most cases. Chapter 6 shows that the stability properties
revealed by decay rates can nevertheless be useful on their own.

2-4 Floquet theory

It can be useful to linearize the dynamics near the NHIM when investigating
stability properties. The linearized dynamics near a reference trajectory 𝜸0(𝑡)
can be described via the Jacobian matrix 𝑱(𝑡;𝜸0) of the system’s equations
of motion. Given a set of differential equations

𝜸̇(𝑡) = 𝒇(𝜸(𝑡), 𝑡) , (2-12)

the elements of the Jacobian are defined via the partial derivatives

𝐽𝑗𝑘 =
𝜕𝑓𝑗
𝜕𝛾𝑘

. (2-13)

The linearized form of the differential equations (2-12) then reads

d
d𝑡

𝛿𝜸(𝑡) = 𝑱(𝑡;𝜸0)𝛿𝜸(𝑡) , (2-14)

where 𝛿𝜸(𝑡) = 𝜸(𝑡)−𝜸0(𝑡) is the deviation from the reference trajectory 𝜸0.
The effect in the interval from 𝑡0 to 𝑡 can be summarized with the funda-

mental matrix 𝝈(𝑡;𝜸0, 𝑡0). It is calculated by solving the system of differential
equations

𝝈̇(𝑡;𝜸0, 𝑡0) = 𝑱(𝑡;𝜸0)𝝈(𝑡;𝜸0, 𝑡0) with 𝝈(𝑡0;𝜸0, 𝑡0) = 𝟏2𝑑 , (2-15)

where 𝟏2𝑑 is the (2𝑑×2𝑑)-dimensional identity matrix and 𝑑 is the number
of DoFs. The fundamental matrix can then be used as

𝛿𝜸(𝑡) = 𝝈(𝑡;𝜸0, 𝑡0)𝛿𝜸(𝑡0) (2-16)

to propagate the trajectory 𝜸 from time 𝑡0 to a later time 𝑡.
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It seems natural to consider the effect after one period 𝑇 if the reference
trajectory 𝜸0 is periodic. The fundamental matrix 𝝈(𝑡0 +𝑇;𝜸0, 𝑡0) in this
case is known as the monodromy matrix and provides the basis for Floquet
theory [162, 163]. Its eigenvalues 𝑚𝑗 ∈ℂ are called characteristic or Floquet
multipliers. Any value 𝜇𝑗 ∈ ℂ that fulfills exp(𝜇𝑗𝑇) = 𝑚𝑗 is denoted as a
characteristic or Floquet exponent. Generally, these exponents are only unique
up to an additive multiple of 2𝜋i/𝑇 since exp(2𝜋i) = 1. The exponents’ real
parts

𝜆𝑗 = Re(𝜇𝑗) =
1
𝑇
ln|𝑚𝑗|(2-17)

coincide with the Lyapunov exponents 𝜆𝑗 of the system and can thus be used
to shed light upon the stability properties of the reference trajectory 𝜸0.
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Numerical Methods 3
Parts of this chapter have previously been published by the author in
References [3–6].

The geometrical formulation of TST introduced in Section 2-1 provides an
elegant, conceptually simple framework for the investigation of chemical
reaction dynamics. Trying to apply it analytically to specific systems, however,
quickly gets unwieldy, especially if systems are driven time-dependently. One
way of dealing with such systems is by means of perturbative methods [20,
54, 88]. These, however, can only ever yield approximative solutions. In this
work, we instead use numerical methods based on the systems’ full dynamics
in order to achieve results that are exact up to numerical errors. The most
important numerical methods and algorithms used in Chapters 4 to 6 are
presented in Sections 3-1 to 3-5.

The calculation of absolute reaction rates usually implies a coupling
to some kind of thermal bath. The geometrical methods mentioned above
can, in principle, also be used within the context of noise and friction [9].
This, however, is of limited value in the calculation of reaction rates (cf.
Section 2-3), which is why we do not employ them in Chapter 7. Instead, we
rely on the algorithms described in Sections 3-6 and 3-7 for the investigations
in this final chapter. They have been implemented in the open-source library
mfptlib, see Section D-2.

3-1 Integrating ordinary differential equations

The propagation of trajectories forms the core of our analysis. We exclusively
use explicit methods, i. e., methods of the form

𝜸(𝑡 +𝛿𝑡) = 𝑭(𝜸(𝑡), 𝑡) , (3-1)

where 𝜸(𝑡) is the trajectory’s state (position and momentum) at time 𝑡 and
𝑭 is the stepper function implementing a concrete integration scheme for a
particular system. The step length 𝛿𝑡 has to be chosen appropriately for each
system to capture the relevant dynamics. This can, in principle, be done
automatically using so-called adaptive methods, which estimate a step’s error
and dynamically adapt 𝛿𝑡 if necessary. Such adaptive methods, however, are
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not employed in this work to avoid subtle inconsistencies between unstable
trajectories.

In this framework, whole trajectories can be obtained by iteratively ap-
plying 𝑭 to some initial conditions 𝜸(𝑡0). We utilize the following integration
schemes.

(a) Velocity Verlet

We choose the velocity-Verlet scheme [164] in all systems without velocity-
dependent forces, i. e., those investigated primarily in Chapters 4 and 5. In
these systems, the equations of motion can be written as

𝒒̇(𝑡) = 𝒗(𝑡) and 𝒗̇(𝑡) = 𝒂(𝒒(𝑡), 𝑡) ,(3-2)

where 𝒒 is the position, 𝒗 is the velocity, and 𝒂 is the acceleration. The
velocity-Verlet scheme discretizes the time step, resulting in

𝒒(𝑡 +𝛿𝑡) = 𝒒(𝑡)+𝒗(𝑡)𝛿𝑡+
1
2
𝒂(𝑡)𝛿𝑡2+𝒪(𝛿𝑡3)(3-3a)

and 𝒗(𝑡 +𝛿𝑡) = 𝒗(𝑡)+
𝒂(𝑡)+𝒂(𝑡 +𝛿𝑡)

2
𝛿𝑡+𝒪(𝛿𝑡2) .(3-3b)

It is typically implemented using the sequence of operations

𝒗𝑛+1/2 = 𝒗𝑛+𝒂𝑛
𝛿𝑡
2
,(3-4a)

𝒒𝑛+1 =𝒒𝑛+𝒗𝑛+1/2 𝛿𝑡 ,(3-4b)
𝑡𝑛+1 = 𝑡𝑛+𝛿𝑡 ,(3-4c)
𝒂𝑛+1 =𝒂(𝒒𝑛+1, 𝑡𝑛+1) ,(3-4d)

and 𝒗𝑛+1 = 𝒗𝑛+1/2+𝒂𝑛+1
𝛿𝑡
2
,(3-4e)

where the acceleration 𝒂𝑛 is cached between iterations.
A major advantage of the velocity-Verlet scheme is that it conserves

the symplectic structure of Hamiltonian systems. This minimizes long-term
energy drifts caused by the discretization of the time propagation [165].

(b) Runge–Kutta

The velocity-Verlet scheme loses its symplecticity if velocity-dependent forces
— such as the Coriolis force—are at play [166]. We therefore implement a
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classical fourth-order Runge–Kutta scheme [167, 168] for the calculations
performed in Chapter 6.

Runge–Kutta-type steppers can be applied to any first-order system of
ordinary differential equations

𝜸̇(𝑡) = 𝒇(𝜸(𝑡), 𝑡) (3-5)

and, therefore, have less restrictions than the velocity-Verlet algorithm out-
lined in Section 3-1 (a). They enjoy great popularity because of their flex-
ibility and ease of implementation. The classical fourth-order form reads

𝒌(1)
𝑛 = 𝑓(𝜸𝑛, 𝑡𝑛) , (3-6a)

𝒌(2)
𝑛 = 𝑓(𝜸𝑛+𝒌(1)

𝑛
𝛿𝑡
2
,𝑡𝑛+

𝛿𝑡
2
) , (3-6b)

𝒌(3)
𝑛 = 𝑓(𝜸𝑛+𝒌(2)

𝑛
𝛿𝑡
2
,𝑡𝑛+

𝛿𝑡
2
) , (3-6c)

𝒌(4)
𝑛 = 𝑓(𝜸𝑛+𝒌(3)

𝑛 𝛿𝑡, 𝑡𝑛+ 𝛿𝑡) , (3-6d)

𝜸𝑛+1 = 𝜸𝑛+
1
6
[𝒌(1)

𝑛 +2𝒌(2)
𝑛 +2𝒌(3)

𝑛 +𝒌(4)
𝑛 ]𝛿𝑡 , (3-6e)

and 𝑡𝑛+1 = 𝑡𝑛+𝛿𝑡 . (3-6f)

3-2 Revealing the phase-space geometry

Many means of revealing the phase-space structure have been discussed over
the years [1, 89, 90, 169, 170]. Two of them—the Lagrangian descriptor
and the concept of reactive regions—have proven to be particularly useful
for this work. In the following, we give a short review of these methods. We
demonstrate their advantages, drawbacks, and potential use cases by means
of the static example potential

𝑉(𝑥) =
𝑥4

4
−
𝑥2

2
(3-7)

shown in Figure 3-1. Using such a simple 1-DoF model without driving allows
us to focus on the methods without worrying about any difficulties arising
from the model itself. Yet, none of the methods presented in this chapter
rely on these simplifications. On the contrary, they make no assumptions
about the dimensionality or time dependence of the model at all and are
only applied to individual points at once. The methods thus have to be
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Figure 3-1: Quartic double-well potential 𝑉 from Equation (3-7) as a

function of reaction coordinate 𝑥. States in the shaded regions 𝑥 ≤−1 and
𝑥 ≥+1 are unambiguously identified as reactants and products, respectively.
States in the interaction region in between could also be identified analyti-
cally due to the trivial nature of the model. Still, we consider those states to
be ambiguous for the sake of demonstration of the methods.

sampled over the relevant parts of the phase space to resolve extended
structures. Nevertheless, a time dependence or additional DoFs would make
visualization more challenging. Only sections of the full phase space could
be shown in such cases.

(a) Lagrangian descriptors

The geometric structure of the phase space can be revealed using the La-
grangian descriptor [89, 90, 100, 106, 169, 171] defined by

ℒ(𝒒0,𝒗0, 𝑡0) =∫
𝑡0+𝜏

𝑡0−𝜏
d𝑡‖𝒗(𝑡;𝒒0,𝒗0, 𝑡0)‖2(3-8)

for a given initial position 𝒒0, velocity 𝒗0, and time 𝑡0. The classical version
shown here measures the arc length of a trajectory 𝒒(𝑡;𝒒0,𝒗0, 𝑡0) in the
time interval 𝑡0−𝜏 ≤ 𝑡 ≤ 𝑡0+𝜏. Other measures such as the integral of the
modulus of acceleration ‖𝒂(𝑡)‖2 = ‖𝒗̇(𝑡)‖2 have also been investigated [90]
but will not be discussed in this work.

Sampling the Lagrangian descriptor ℒ over the phase space of the exam-
ple potential (3-7) yields Figure 3-2(a). A local minimum in ℒ arises when
the particle covers the minimum distance in the interval 𝑡0−𝜏 ≤ 𝑡 ≤ 𝑡0+𝜏.
It consequently remains longer in the interaction region when integrating
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Figure 3-2: (a) Phase-space structure for the potential (3-7) as revealed by

the Lagrangian descriptor ℒ given in Equation (3-8) with 𝜏 = 8. The stable
and unstable manifolds 𝒲s and 𝒲u —connected to homoclinic orbits—are
clearly visible. Their apparent intersection reveals the position of the NHIM.
The color scale is capped atℒ =13. (b) Reactive regions of the same system.
The manifolds 𝒲s and 𝒲u lie at the borders between the regions. (c) Cut
at 𝑥 ≈ −0.8 through the Lagrangian descriptor ℒ shown by the vertical
line in panel (a). The stable and unstable manifolds 𝒲s and 𝒲u signify their
presence via sharp local minima. The lowest minimum corresponds to the
reactant well. (d) Equivalent cut through the reactive regions in panel (b).
The different regions show as plateaus in the numeric data, and the manifolds
𝒲s and 𝒲u manifest in clean steps between these plateaus.

forward or backward in time, and thus provides a signature for the presence
of a stable or unstable manifold, respectively. Specifically, the manifolds 𝒲s
and 𝒲u manifest as sharp dips in ℒ [cf. Figure 3-2(c)]. The NHIM lies at the
intersection of these low-ℒ lines, which is located at (𝑥 = 0,𝑝𝑥 = 0)T in our
example. We caution the reader that this location as well as any symmetries
inℒ are specific properties of the example system; other models can differ in
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this regard. This is especially true for driven systems, where the phase-space
structure— including the positions of 𝒲s, 𝒲u, and the NHIM— is a function
of the initial time 𝑡0.

Not all minima can generally be attributed to the stable or unstable
manifolds. And even if they can, they might not always be easy to find
numerically. Reference [1], for instance, shows an example where theminima
heralding the existence of the manifolds are accompanied by additional
minima in close proximity for which no relevant phase-space geometry
could be identified.

All in all, the Lagrangian descriptor has the advantage that it is concep-
tually very simple and that it can be applied to practically any system. This
makes it suitable for a first visual inspection. As discussed in Reference [1]
and shown in Figure 3-2(c), however, it features a nontrivial internal struc-
ture. Numerically determining the exact position of stable and unstable
manifolds is therefore difficult.

(b) Reactive regions

A numerically simpler scheme for systems with a rank-1 saddle is based on
the concept of reactive (and nonreactive) regions as described in References [1,
87, 92] and Chapter 2. It discriminates initial conditions by first defining an
interaction region in position space— typically an interval along the reaction
coordinate 𝑥—outside of which the system is clearly in the reactant or
product state. In the example from Figure 3-1, we assume that the interaction
region is given by −1< 𝑥 <+1 (nonshaded). Particles are then propagated
forward and backward in time until they leave said region. In both directions
of time, a particle can end up as either reactant (R) or product (P). This
leads to four possible classifications for a given initial condition as shown in
Figure 3-2(b), namely

1. nonreactive reactants R→R,
2. nonreactive products P→P,
3. reactive reactants R→P, and
4. reactive products P→R.

Similar concepts have been introduced in, e. g., Reference [169].
Using the concept of reactive regions, stable and unstable manifolds can

be revealed as borders between adjacent regions. In the numeric data, these
manifest as clean steps [see Figure 3-2(d)] which can easily be resolved
numerically.
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3-3 Binary-search methods

We can leverage the concept of reactive and nonreactive regions discussed
in the previous section to efficiently determine the precise position of the
stable and unstable manifolds as well as the NHIM. These calculations are
quite straightforward for the manifolds 𝒲s and 𝒲u when based on sections
akin to Figure 3-2(d). Here, we first guess an interval that contains the
relevant manifold, e. g., 0≤ 𝑝𝑥 ≤1 for the 𝒲s. The correctness of the guess
can be verified by checking that the interval limits, 𝑝𝑥 = 0 and 𝑝𝑥 = 1 in
this example, are located in the expected regions [cf. Figure 3-2(b)]. From
here on, a simple binary search [172] can be leveraged to determine the
momentum 𝑝𝑥 of the step and, thus, the manifold. For the NHIM, however,
a more sophisticated ansatz is necessary.

(a) Binary-contraction method

The NHIM can be obtained using several perturbative [20, 54] and direct [40,
91, 171] methods, but we have found that the binary-contraction method
(BCM) introduced in Reference [92] is effective and efficient for systems
such as the ones addressed in this work. A sketch of this algorithm can be
found in Figure 3-3.

The algorithm is initialized by defining a quadrangle with each of its cor-
ners lying exclusively within one of the four regions shown in Figure 3-2(b).
In each iterative step, we first determine an edge’s midpoint. Then, the
adjacent corner corresponding to the same region as that midpoint is moved
to the midpoint’s position, cf. Figure 3-3(a). By repeating this interleaved bi-
section procedure in turn for all edges, the quadrangle successively contracts
and converges towards the NHIM, as shown in Figures 3-3(b) to 3-3(d).

The BCM operates exclusively within an 𝑥–𝑝𝑥 section of phase space,
keeping any orthogonal modes (𝒚,𝒑𝑦)

T fixed (see Section 2-1). Any trajecto-
ries started in this section, however, are propagated in the full phase space.
The calculations can be repeated for various values of (𝒚,𝒑𝑦)

T to sample the
full codimension-2 NHIM.

(b) Finding an initial quadrangle

In order to apply the BCM reliably, it needs to be initialized with four points
in four different reactive regions without human intervention. In many cases,
these regions are clearly located to the left, right, top, and bottom of the
NHIM in a given 𝑥–𝑝𝑥 section of phase space [cf. Figure 3-2(b)]. Here, the
quadrangle can be initialized in the following way [92, 94]: We first guess
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Figure 3-3: Use of the BCM to uncover the NHIM in phase space. (a) The

stable and unstable manifolds 𝒲s and 𝒲u associated with the barrier divide
the phase space into distinct regions labeled 1 through 4. The NHIM is
located at the intersection of the two manifolds’ closures and is marked with
a diamond. To numerically obtain this point, a quadrangle with one corner
in each region is set up. In turn, the midpoint for every edge is determined,
shown as a light blue circle. Depending on which region the midpoint is in,
it subsequently replaces one of the previous corners. (b)–(d) This procedure
is repeated until the quadrangle is sufficiently small.

the NHIM’s position 𝜸‡
guess in the 𝑥–𝑝𝑥 section. Candidates for the quadrangle

corners can then be defined at fixed empirical distances 𝛥𝑥 and 𝛥𝑝𝑥 along a
horizontal and a vertical line through this guess, i. e., at 𝜸‡

guess±𝛥𝑥𝒙̂ and
𝜸‡
guess±𝛥𝑝𝑥 ̂𝒑𝑥 (light gray markers and blue marker 1 in Figure 3-4).
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Figure 3-4: Sketch of an algorithm for finding the inputs to the BCM,

namely, four arbitrary initial phase-space coordinates representative of the
four regions associated with the NHIM. Naively choosing coordinates on two
right-angled axes (light gray circles) would not work in the case shown here
as only regions 3 and 4 would be covered. Instead, an ellipse enclosing the
geometric cross is constructed. The first point (dark blue circle on right-hand
side) is selected arbitrarily at coordinates with angle 𝛼 = 0. Subsequent
coordinates are found by incrementing 𝛼 in steps of 𝛥𝛼=𝜋/4 (solid lines),
and confirming that said point satisfies the condition of a new region. If
a region is skipped—e. g., as shown in the dotted line in step 3—the
increment 𝛥𝛼 is temporarily reduced until a point in the region in between
is found (step 4). The points considered in each step of the example are
numbered sequentially.

These initial guesses may not always be unique, especially in driven
systems. Different strategies can be employed [92] to handle such cases.
One option is to sample multiple positions along the horizontal and vertical
line corresponding to different values for 𝛥𝑥 and 𝛥𝑝𝑥. Appropriate initial
corners can then be chosen from these samples. Other possibilities include
interpolation or extrapolation of the initial guess 𝜸‡

guess from known points
on the NHIM. This is especially useful in systems with many DoFs. These
strategies can also be combined, making the initialization routine even more
robust.
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Since the geometry of the stable and unstable manifolds can be quite
distorted in some systems, the BCM can not always be initialized precisely in
the way described above. In these cases, we still require a guess of the NHIM’s
position. However, instead of choosing the coordinates on a horizontal and
a vertical line, we first define an ellipse centered on the guess. This ellipse
must be large enough to enclose the NHIM in the given section of phase
space. The initial corners of the quadrangle are then selected on the ellipse
according to the algorithm described in Figure 3-4 [4, 173].

3-4 Dynamics on the NHIM

Despite the fact that the NHIM is a mathematically invariant subspace,
trajectories started on it deviate exponentially fast as time goes by because
of limited numerical precision. Therefore, numerically calculated trajectories
have to be stabilized explicitly on the NHIM, e. g., using the BCM. Therein,
after each time interval 𝛥𝑡, the coordinates 𝑥 and 𝑝𝑥 are recalculated to
project the particle back onto the NHIM. A similar projection has been used in
Reference [174]. Care has to be taken to ensure that this projection does not
introduce significant errors. To achieve this, the projected distance in 𝑥 and
𝑝𝑥 is measured. If a maximum distance is exceeded, the projection is rejected
and the particle is reset to an earlier time and position. The propagation is
then repeated with a smaller value of 𝛥𝑡. This procedure effectively reduces
the dimensionality of the subspace traversed by the trajectories from the 2𝑑
dimensions of the full phase space to the 2𝑑−2 dimensions of the NHIM. In
higher dimensions, one could instead take advantage of an artificial neural
network as recently done in Reference [174] to stabilize the trajectories at
the price of some loss in accuracy.

The systems discussed in Chapters 4 and 6 have two DoFs, and conse-
quently a four-dimensional phase space. Although the NHIM in these cases
is only a two-dimensional subspace, visualizing many trajectories on it can
still get confusing quickly. A reliable method for such a task is the Poincaré
map, also known as the Poincaré surface of section (PSOS) [66]. Using this
method, the dimensionality of the phase space is reduced by only showing
intersection points with a given sectional surface instead of the whole trajec-
tory. When the system has a natural period, such as in the present case of a
periodically driven system, one can effect a similar dimensional reduction
using a stroboscopic map capturing periodic sections at corresponding inter-
vals in time. For a time-dependent, effectively two-dimensional system, the
stroboscopic PSOS corresponds to a set 𝛴 given by

𝛴 = {𝜸(𝑡𝑛) ∈ ℝ2 | 𝑡𝑛 = 𝑡0+𝑛𝑇,𝑛 ∈ℕ0} ,(3-9)
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where 𝜸(𝑡) = (𝑦(𝑡),𝑝𝑦(𝑡))
T denotes the phase-space vector of the system

constrained to the NHIM and 𝑇 is the period of the driving. The formerly
continuous trajectory thus becomes discretized under the stroboscopic map.

Using this stroboscopic map, dynamical properties such as the integra-
bility of the system can be determined. Near integrability is revealed by
the existence of torus-like structures in the system’s PSOS. Changes in the
system’s parameters can lead to a transition from near integrable to chaotic
as revealed by the emergence of stochastic structure in the PSOS.

A periodic trajectory with the property

𝜸𝑛 = 𝜸𝑛+1 , where 𝜸𝑛 ≔𝜸(𝑡0+𝑛𝑇) and 𝑛 ∈ℕ0 , (3-10)

manifests as a fixed point with period 𝑇 in the PSOS. Fixed points with
periodicity 𝑠𝑇, where 𝑠 ∈ ℕ0, analogously fulfill 𝜸𝑛 = 𝜸𝑛+𝑠. They appear
as 𝑠-cycles in the PSOS since the stroboscopic map records a point once
per system period 𝑇. The difference 𝜸𝑛+1−𝜸𝑛 is a vector whose length in-
creases monotonically with distance from the fixed point within the fixed
point’s neighborhood. This can be exploited to find fixed points through
a root search algorithm. In the numerical results presented in this work,
the fixed points of the map are found using the modified Powell method,
scipy.optimize.root(method='hybr'), implemented in the Python li-
brary SciPy [175].

There are two kinds of fixed points that must be distinguished: Elliptic
fixed points belong to stable periodic orbits. Trajectories that start in the
vicinity of such an orbit stay in its vicinity indefinitely. In the PSOS, these
show up as concentric, possibly deformed torus-like structures. Hyperbolic
fixed points, on the other hand, correspond to unstable orbits. Trajectories
started in their vicinity act as if they were being repelled by the fixed point,
leading to hyperbola-shaped structures in the PSOS.

When varying a system’s parameters, its dynamics can change qualita-
tively in so-called bifurcations. Local bifurcations are identifiable via the
creation or annihilation of fixed points. Most important for this work is
the saddle-node bifurcation, in which a pair of an elliptic and a hyperbolic
fixed point emerges or vanishes. A typical path from regular to chaotic,
nonintegrable dynamics is via an infinite series of bifurcations.

3-5 Decay rates

The existence of a NHIM of codimension 2 and its role in determining the
chemical reaction rate brings an additional concern. Namely, what is the
degree of instability of the TS as determined by the decay of trajectories that
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start in the proximity of the NHIM? In a time-dependent—e. g., driven—
environment, this instantaneous decay will be time-dependent as well. Nev-
ertheless, it can be assigned a single characteristic decay rate constant when
the time dependence is periodic by taking the average over the period [2,
176].

The stability of the TS near threshold energy can be quantified via the
decay of trajectories near the NHIM. This is equivalent to the rate at which
an ensemble of reactants moves through the DS and can thus be seen as a
local flux-over-population rate as described in Section 2-3. The decay of this
reactant population is exponentially fast because of the hyperbolic nature of
the NHIM. We can therefore define an instantaneous decay rate 𝑘(𝑡) via the
differential equation [2, 4, 8, 176]

𝑘(𝑡) =−
𝑁̇(𝑡)
𝑁(𝑡)

,(3-11)

where 𝑁(𝑡) is the time-dependent size of the reactant population. Com-
pared to other measures of instability, instantaneous decay rates have the
advantage that they can be evaluated for a specific point in time. Floquet
multipliers and Lyapunov exponents, for instance, only yield average values
for a whole period and long-term limits, respectively.

In this work, we implement three different methods, summarized below,
for calculating decay rates:

1. The ensemble rate method [2, 176] yields instantaneous (i. e., time-
resolved) rates 𝑘(𝑡) by propagating a large number of particles. It is
computationally expensive but conceptually simple.

2. The local manifold analysis [2, 6] accelerates the computation of
instantaneous rates by leveraging the linearized dynamics near the
NHIM.

3. If only time-averaged rate constants ⟨𝑘⟩𝑡 are desired, the Floquet rate
method [2, 103] can be used instead, requiring even less computa-
tional resources.

In the cases presented in this work, the three algorithms all generally con-
verge within reasonable time. However, they each involve different assump-
tions which might lead to different results, and which can provide comple-
mentary interpretations about the underlying dynamics of the system. As
shown in Chapters 5 and 6, all three lead to decay rates in excellent agree-
ment. The repetition thus also serves to provide assurance in the reported
values.
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(a) Ensemble rate method

The conceptually simplest method for calculating decay rates 𝑘e is by means
of propagation of an ensemble. The ensemble rate method [2, 4, 8, 87] can be
used to obtain the instantaneous decay rate of a reactant population close to
the NHIM, which anchors the TS. A homogeneous and linear ensemble of 𝑁
reactive trajectories is initialized on the reactant side of the full phase space.
Specifically, they are placed on an 𝑥–𝑝𝑥 cross-sectional surface at a small
distance 𝛿𝑥 from a given position 𝜸‡(𝑡) = (𝑥‡(𝑡),𝒚‡(𝑡),𝑝‡

𝑥(𝑡),𝒑
‡
𝑦(𝑡))

T of an
arbitrarily chosen trajectory on the NHIM (see light blue bullets in Figure 3-5).
After propagating this ensemble for a time 𝛿𝑡, a subdomain will have pierced
the DS and entered the product side (diamonds in Figure 3-5) while the
remainder will still be located on the reactant side (dark blue bullets in
Figure 3-5). As the DS is non-recrossing, the resulting decrease of the reactant
population in a close neighborhood of the NHIM [cf. Equation (3-11)] is
associated with a decay rate

𝑘e(𝒚,𝒑𝑦, 𝑡; 𝑡0) =−
d
d𝑡

ln[𝑁(𝒚,𝒑𝑦, 𝑡; 𝑡0)] . (3-12)

It is referred to as the instantaneous ensemble rate to emphasize that it is
obtained by propagating an ensemble of reactive trajectories according to
the equations of motion. In general, the DS has to be computed individually
for each trajectory of the ensemble and each time step as the ensemble
may turn out of the 𝑥–𝑝𝑥 plane. An analogous definition has been used in
Reference [176] for escape rates over a potential barrier.

As shown in Figure 3-5, we prepare the ensemble parallel to the unsta-
ble manifold 𝒲u; other initial orientations will, in general, entail different
rates 𝑘e. This choice may seem arbitrary but is justified for two reasons.
First, it can be shown analytically and numerically that this ansatz leads
to consistency with the Floquet rate method discussed in Section 3-5 (c).
And second, any ensemble in the linear regime of the NHIM will converge
towards 𝒲u for 𝑡 →∞. Any rates derived from such ensembles thus have to
converge as well.

Finally, the ensemble can be propagated not just for a small time step 𝛿𝑡
but for longer times when computing the time-dependent ensemble rate
according to Equation (3-12). As the reactant population decreases expo-
nentially when propagating the ensemble, a new ensemble can be initialized
close to the corresponding point of the respective trajectory on the NHIM
after an appropriately chosen propagation time. Such technical details are
discussed in Reference [2] and Section 5-4. Although the implementation
of the ensemble method is straightforward, it can be numerically expensive
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1
Figure 3-5: Schematic of instantaneous rate calculations. An equidis-

tant ensemble is initialized parallel to 𝒲u such that it connects 𝒲s on the
reactant side with the DS. Upon time propagation, parts of the ensemble
react through the DS. The resulting ensemble is still equidistant, parallel
to 𝒲u, and connected to 𝒲s. In the general case, ensembles can move out
of the 𝑥–𝑝𝑥 plane during propagation and may therefore pierce the DS at
̃𝑥DS(𝑡 +𝛿𝑡) ≠ 𝑥‡.

because the ensemble consists of many trajectories and the DS is obtained
individually for each reactive trajectory using the BCM [see Section 3-3 (a)].

(b) Local manifold analysis

The accuracy of the ensemble-method decay rates decreases with time be-
cause of the reduction of the density of reactants. However, the inaccuracy
can be reduced at the cost of larger computational expense by starting big-
ger ensembles or starting the ensembles staggered. Alternatively, we can
avoid most of the expensive particle propagation of the ensemble method by
leveraging the geometry of the stable and unstable manifolds to effectively
describe the linearized dynamics near the NHIM. The resulting local mani-
fold analysis (LMA) [2, 6] can thus be seen as an extension to the ensemble
method with the difference that the time when trajectories have reached the
DS can now be determined analytically through the linearization, thereby
avoiding a costly numerical integration. As a result, the computational ef-
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fort required to calculate instantaneous decay rates is significantly reduced
while numerical precision is simultaneously enhanced. Additionally, these
calculations can be trivially parallelized for entire trajectories. Compared to
previous publications, the LMA was extended in Reference [6] to account
for velocity-dependent forces (e. g., the Coriolis force).

As in the ensemble method described in Section 3-5 (a), we consider the
region of phase space close to a reference trajectory 𝜸‡ = (𝑥‡,𝒚‡,𝑝‡

𝑥,𝒑
‡
𝑦)

T

on the NHIM, as shown in Figure 3-5. For simplicity, we choose a moving
coordinate frame in which the origin is at 𝜸‡ =𝟎 for all times 𝑡. The decay
rate is determined by two components:

1. The first contribution 𝑘ens
m arises from the movement of the ensemble

akin to Section 3-5 (a) relative to 𝜸‡. The resulting flux through the
associated DS at 𝑥DS =𝑥‡ = 0 [markers to the right of 𝑥DS(𝑡) = 𝑥‡ in
Figure 3-5] is then obtained via the slopes of the stable and unstable
manifolds defined by the variables 𝑥s =𝑥u, 𝑝s

𝑥, and 𝑝u
𝑥 .

2. The second contribution 𝑘DS
m accounts for the fact that in systems with

more than one degree of freedom, the ensemble can turn out of the
𝑥–𝑝𝑥 plane associated with 𝜸‡. This can happen if the system’s orthog-
onal modes are coupled to the reaction-coordinate momentum 𝑝𝑥 and
leads to an apparent movement of the DS relative to 𝜸‡ (represented
by the top arrow in Figure 3-5). As a result, the instantaneous flux
through the DS is modified. To quantify this effect, we first propagate
the top particle of the ensemble initially located on the DS numerically
by a small time step 𝛿𝑡. The related shift of the DS ̃𝑥DS(𝑡 +𝛿𝑡) can
then be determined by projecting the propagated particle back onto
the NHIM using the BCM.

Combining the two terms, the instantaneous decay rate can be written
as

𝑘m(𝑡;𝜸
‡) = 𝐽𝑥,𝑝𝑥(𝑡)

𝑝u
𝑥 (𝑡)−𝑝s

𝑥(𝑡)
𝑥u(𝑡)

−
̃𝑥DS(𝑡 +𝛿𝑡)
𝑥u(𝑡)𝛿𝑡

, (3-13)

where 𝑱(𝑡) is the Jacobian of the system’s equations of motion evaluated for
the trajectory 𝜸‡ at time 𝑡.

For a more detailed derivation of Equation (3-13) we consider a trajectory
𝜸‡(𝑡) = (𝑥‡,𝒚‡,𝑝‡

𝑥,𝒑
‡
𝑦)

T starting at some arbitrary time 𝑡0 on the NHIM. All
the statements in this section depend implicitly on 𝜸‡ and 𝑡0, which we
neglect in our notation for simplicity. Without loss of generality, we choose
coordinates such that 𝑥‡(𝑡) = 𝑝‡

𝑥(𝑡) = 0 for all times 𝑡.
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Figure 3-5 sketches an 𝑥–𝑝𝑥 section of phase space in close proximity to
𝜸‡(𝑡0). We can assume that the manifold fibers in this section are straight
lines since we only look at the dynamics very close to the NHIM. Therefore,
the stable and unstable manifolds for fixed (𝒚‡,𝒑‡

𝑦)
T can be described using

only two vectors 𝜸s = (𝑥s,𝑝s
𝑥)

T and 𝜸u = (𝑥u,𝑝u
𝑥 )

T. These vectors will be
squeezed and stretched as a function of time if subjected to the equations
of motion. Without loss of generality, we initially choose a small 𝑥s(𝑡0) =
𝑥u(𝑡0) > 0 such that we are in the linear regime.

To obtain a decay rate for 𝜸‡(𝑡0), we now consider a linear, equidistant
ensemble parameterized by

𝜸ens(𝛼,𝑡) =−𝜸s(𝑡)+𝛼𝜸u(𝑡) ,(3-14)

where 𝛼 ∈ [0,1]. The ensemble is constructed parallel to the unstable mani-
fold—see Figure 3-5. The value 𝛼DS(𝑡) where 𝜸ens pierces the DS at time 𝑡
describes the fraction of reactants in the ensemble. Initially, the ensemble
touches the DS at 𝛼DS(𝑡0) = 1. As time goes by, however, the ensemble will
be stretched and 𝛼DS(𝑡) will therefore decay exponentially. More precisely,
𝛼DS is proportional to the number of reactants 𝑁 and therefore leads to a
decay rate

𝑘m(𝑡0) =−
d
d𝑡

ln[𝛼DS(𝑡)]|
𝑡=𝑡0

=−𝛼̇DS(𝑡0)(3-15)

at time 𝑡0 in analogy to Equation (3-12). In this picture, we can now deter-
mine the two contributions

𝑘m(𝑡0) = 𝑘ens
m (𝑡0)+𝑘DS

m (𝑡0)(3-16)

to the total decay rate introduced earlier.

For the first part 𝑘ens
m , we assume that the ensemble stays in the 𝑥–𝑝𝑥

section associated with 𝜸‡(𝑡). As a result, the point where the ensemble
pierces the DS is fixed at 𝑥DS(𝑡) = 0 for all times 𝑡. This is an effectively one-
dimensional model. We start by looking at the linearized dynamics near the
NHIM as described in Section 2-4. With the origin at 𝜸‡ =𝟎, Equation (2-14)
can be written as

d
d𝑡

𝜸(𝑡) = 𝑱(𝑡)𝜸(𝑡) ,(3-17)

where 𝑱(𝑡) is the Jacobian of the system’s equations of motion evaluated
on the trajectory 𝜸‡. The fundamental matrix 𝝈(𝑡) obtained by integrat-
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ing 𝝈̇(𝑡) = 𝑱(𝑡)𝝈(𝑡) with 𝝈(𝑡0) = 𝟏2𝑑 can then be used to propagate the
ensemble from time 𝑡0 to a later time 𝑡 via

𝜸ens(𝛼,𝑡) = 𝝈(𝑡)𝜸ens(𝛼,𝑡0) . (3-18)

We are interested in the point 𝛼DS where 𝜸ens(𝛼,𝑡) pierces the DS at 𝑥DS(𝑡) =
0, i. e.,

𝝈(𝑡)𝜸ens(𝛼DS(𝑡), 𝑡0) ⋅ 𝒙̂
!= 0 . (3-19)

Inserting the ensemble’s parameterization defined in Equation (3-14) yields
the reactant fraction

𝛼DS(𝑡) =
𝜎𝑥,𝑥(𝑡)𝑥

u(𝑡0)+𝜎𝑥,𝑝𝑥
(𝑡)𝑝s

𝑥(𝑡0)

𝜎𝑥,𝑥(𝑡)𝑥u(𝑡0)+𝜎𝑥,𝑝𝑥
(𝑡)𝑝u

𝑥 (𝑡0)
, (3-20)

where we have used 𝑥s(𝑡0) = 𝑥u(𝑡0). This intermediate result can be substi-
tuted into Equation (3-15). Since we are only interested in the instantaneous
rate at 𝑡 = 𝑡0, we can simplify the expression using 𝝈(𝑡0) = 𝟏2𝑑 as well as
𝜎̇𝑥,𝑝𝑥

(𝑡0) = 𝐽𝑥,𝑝𝑥(𝑡0) and arrive at

𝑘ens
m (𝑡0) = 𝐽𝑥,𝑝𝑥

𝑝u
𝑥 (𝑡0)−𝑝s

𝑥(𝑡0)
𝑥u(𝑡0)

. (3-21)

A geometric interpretation of 𝑘ens
m can be found in Reference [2].

The second contribution 𝑘DS
m in Equation (3-16) stems from the fact that

in systems with more than one degree of freedom the ensemble may leave
the 𝑥–𝑝𝑥 section associated with 𝜸‡(𝑡). An ensemble moving out-of-plane
can mostly be treated as described above by projecting it back onto the
𝑥–𝑝𝑥 section. Since the position of the DS 𝑥DS(𝒚,𝒑𝑦) is dependent on the
orthogonal modes, however, this may lead to the ensemble intersecting with
the DS at ̃𝑥DS ≠ 0.

To quantify the effect on 𝑘m, consider a small time step 𝛿𝑡. In the linear
regime, the change 𝛿𝛼 caused by the ensemble drifting out-of-plane can be
written as

𝛿𝛼DS(𝑡0) =
̃𝑥DS(𝑡0+𝛿𝑡)−𝑥DS(𝑡0)

𝑥u(𝑡0)
, (3-22)
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where 𝑥u(𝑡0) accounts for normalization. Using Equation (3-15) and the
fact that 𝑥DS(𝑡0) = 0, we obtain

𝑘DS
m (𝑡0) =−

𝛿𝛼DS(𝑡0)
𝛿𝑡

=−
̃𝑥DS(𝑡0+𝛿𝑡)
𝑥u(𝑡0)𝛿𝑡

.(3-23)

The quantities 𝛿𝑡 and 𝑥u can be freely chosen within certain limits, while
̃𝑥DS(𝑡0 +𝛿𝑡) can be determined numerically by propagating the particle

𝜸ens(1,𝑡0) initially located on the DS for 𝛿𝑡 units of time and projecting
it back onto the NHIM using the BCM [92]. By combining the contribu-
tions (3-21) and (3-23) according to Equation (3-16), we finally arrive at the
instantaneous decay rate 𝑘m(𝑡;𝜸

‡) for a trajectory 𝜸‡ on the NHIM given in
Equation (3-13).

(c) Floquet rate method

The LMA is significantly cheaper to evaluate than a full ensemble propagation.
The numerical effort required, however, can still render it impractical when
analyzing many trajectories. When only time-averaged rate constants of
periodic orbits are sought-after, a more tractable approach is provided by the
Floquet rate method first introduced in Reference [103] and later extended
in References [2, 88, 174]. It determines the rate constant

𝑘F =𝜇u−𝜇s(3-24)

for an orbit on the NHIM with period 𝑇 via the difference between the
Floquet exponents

𝜇u,s =
1
𝑇
ln|𝑚u,s|(3-25)

as described in Section 2-4.
The Floquet multipliers 𝑚s and 𝑚u correspond to the stable and unstable

manifolds of the NHIM. A defining property of a NHIM is that it is normally
hyperbolic (cf. Section 2-1), which means that the decay away from it domi-
nates any eventual internal instabilities [128]. Thus, we can assume that
𝑚s and 𝑚u are the smallest and largest eigenvalues of the monodromy ma-
trix, respectively. Furthermore, the monodromy matrix of any Hamiltonian
system is symplectic, which implies that 𝑚s = 1/𝑚s. In such cases, we can
simplify Equation (3-24) to

𝑘F = 2𝜇u .(3-26)
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The Floquet rate method can be generalized to aperiodic trajectories by
rewriting Equation (3-24) as

𝑘F𝛥𝑡 = ln|𝑚u|− ln|𝑚s| , (3-27)

where the period 𝑇 has been replaced by an arbitrary time 𝛥𝑡. One can then
evaluate the right-hand side of Equation (3-27) for sufficiently long times 𝛥𝑡
and apply a linear regression [2] to determine the average slope 𝑘F.

3-6 Integrating the Langevin equation

We now continue with the algorithms used in systems that are subject to
noise and friction. A wide variety of numerical integration methods for such
systems has been developed over the years [177, 178]. In this work, we
employ the LF-Middle scheme described in Reference [179] for all Langevin-
based calculations (cf. Section 2-2). A single integration step 𝑡 ↦ 𝑡+𝛿𝑡 with
this scheme reads

𝒑′
𝑛+1/2 =𝒑𝑛−1/2+𝑭(𝒒𝑛, 𝑡𝑛)𝛿𝑡 , (3-28a)

𝒒𝑛+1/2 =𝒒𝑛+𝑴−1𝒑′
𝑛+1/2

𝛿𝑡
2
, (3-28b)

𝒑𝑛+1/2 = thermostat𝑛(𝒑
′
𝑛+1/2) , (3-28c)

𝒒𝑛+1 =𝒒𝑛+1/2+𝑴−1𝒑𝑛+1/2
𝛿𝑡
2
, (3-28d)

and 𝑡𝑛+1 = 𝑡𝑛+𝛿𝑡 , (3-28e)

where thermostat𝑛 denotes one of the thermostat steps defined below. LF-
Middle is a leapfrog-type scheme, meaning that the momenta 𝒑 always lag
behind by half a time step between integration steps. This makes it easy and
efficient to implement but requires some care when accurate values for 𝒑
need to be processed.

The thermostat step (3-28c) incorporates both random forces 𝝃 (noise)
and dissipative forces −𝛾𝒑 (friction) from the environment. For memoryless
Langevin baths (LE), this step can be written as [177, 178]

𝒑𝑛+1/2 = e−𝛾𝛿𝑡𝒑′
𝑛+1/2+√𝑘B𝑇(1−e−2𝛾𝛿𝑡)𝑴1/2𝝃𝑛 . (3-29)

The GLE thermostat requires another state variable 𝒔𝑛 with initial value
𝒔0 =𝟎 that serves as the bath’s memory. The thermostat update for friction
kernel (2-7) can then be implemented via the three-step procedure [139,
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140]

𝒑″
𝑛+1/2 =𝒑′

𝑛+1/2+𝒔𝑛
𝛿𝑡
2
,(3-30a)

𝒔𝑛+1 = 𝜃𝒔𝑛−(1−𝜃)𝛾𝒑″
𝑛+1/2+√2𝑘B𝑇𝛾

(1−𝜃)2

𝛿𝑡
𝑴1/2𝝃𝑛 ,(3-30b)

and 𝒑𝑛+1/2 =𝒑″
𝑛+1/2+𝒔𝑛+1

𝛿𝑡
2
,(3-30c)

where 𝜃 = exp(−𝛿𝑡/𝜏).

3-7 Mean first-passage times

In Kramers’s scenario described in Section 2-3, rates are determined via
a classical flux-over-population formula. An alternative ansatz for escape
rates can be derived from mean first-passage times (MFPTs) [180–186]. Here,
we first define a domain associated with the reactant state. Its boundary is
equivalent to the DS in flux-over-population methods. An ensemble of states
is then prepared within this reactant domain and propagated as described
in Section 3-6 until it leaves said domain. The time 𝛥𝑡𝑗 it takes a single state
to do so is called its first-passage time, and its inverse ensemble average

𝑘MFPT =
1

⟨𝛥𝑡𝑗⟩𝑗
=(

1
𝑁

𝑁
∑
𝑗=1

𝛥𝑡𝑗)
−1

(3-31)

constitutes a rate. As shown by Reimann, Schmid, and Hänggi [182], this
ansatz is mathematically equivalent to Kramers’s escape rate provided that
both methods assume the same boundary (or DS) of the reactant domain.
And just like with the flux-over-population rate discussed in Section 2-3, the
boundary has to be chosen carefully to not risk over- or underestimation of
the rate.
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Part II
Applications & Perspective

Versions of transition-state theory can be applied to a wide variety of physical
and chemical systems. In this second part, we present selected examples of
applications in prototypical and real-world models.
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Bifurcations in a
Two-Dimensional Model System

4
Essential parts of this chapter have previously been published by the
author in References [3, 5].

TST was originally developed for the description of chemical reactions. Real-
world chemical systems, however, can be very complex. This complexity
is hindering when one wants to demonstrate the application of certain
numerical methods. And it is not even necessary, as many of the interesting
phenomena that can occur near a chemical reaction’s TS can still be observed
and investigated in simpler systems. Furthermore, many of the methods we
developed or adapted as part of this and previous work [1–3, 5] are not
restricted to chemical physics but can be applied to a variety of systems [6,
10, 11, 87]. For these reasons, we do not start with a real chemical-reaction
model. Instead, we begin by exploring a prototypical model system that
features a nonlinear reaction pathway divided by a rank-1 saddle. Thus, we
include the most important features of a chemical reaction without restricting
ourselves too much.

The aim of this chapter is to uncover and resolve nontrivial structures
and dynamics on the NHIM as revealed below. Although finding the NHIM
in 1-DoF systems may be challenging (cf. Chapter 5), the dynamics on
the NHIM itself is trivial. It only consists of one or more individual points
without internal structure. If the system is time-invariant, even a 2-DoF
system exhibits integrable dynamics on the NHIM because the effective
dynamics is one-dimensional and the energy is conserved. Yet, many real
physical and chemical systems are time-dependent and nonintegrable. In
the following, we therefore investigate a driven 2-DoF system, which is large
enough to exhibit nontrivial behavior but small enough to be visualized.

4-1 Two-dimensional model system

For the investigation of the dynamics on the NHIM and the dependence of the
dynamics on parameters of the external driving, we use a two-dimensional
model system which has already been studied in previous publications [1–3,
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5, 87, 91, 96, 108, 174]. The time-dependent potential

𝑉(𝑥,𝑦,𝑡) = 2exp{−[𝑥− ̂𝑥 sin(𝜔𝑥𝑡)]
2}+2[𝑦−

2
𝜋
arctan(2𝑥)]

2
(4-1)

describes a two-dimensional, periodically oscillating energy landscape in-
cluding a rank-1 saddle. The saddle’s unstable direction is constructed via a
Gaussian barrier along the approximate reaction coordinate 𝑥. This barrier
separates an unbounded reactant from an unbounded product basin. Besides
being physically relevant to chemical reactions, the restriction to unbounded
reactant and product basins is a simplification that avoids the global recross-
ings that would arise if one or both basins were closed. Nevertheless, we
emphasize that the presence of closed reactant and product basins would
not challenge the methods presented here because the important dynamics
is happening in the saddle region. For more information on how to deal with
global recrossings see Reference [127].

To make the saddle time-dependent, the barrier’s position is driven time-
periodically. Such driving may arise by way of coupling between a time-
dependent external field and the dipole associated with the reaction coor-
dinate [83, 105]. Both the driving amplitude ̂𝑥 and frequency 𝜔𝑥 will be
varied in the following sections. In order to expand the system to two DoFs,
a harmonic oscillator is added through an orthogonal mode 𝑦. This new
DoF is coupled via the nonlinear term arctan(2𝑥), resulting in nonseparable
dynamics in the vicinity of the reaction without changing the properties
on the reactant and product regions. Further system parameters, such as
the strength of the harmonic oscillator or the saddle height and width, are
not changed throughout this work and are therefore set to fixed values. For
simplicity, we use dimensionless units.

This prototypical potential, which can be used to describe chemical reac-
tions qualitatively, is depicted in Figure 4-1 at eight different points in time 𝑡.
In the following we investigate the dynamics on the NHIM parameterized
by the orthogonal modes 𝑦, 𝑝𝑦, and time 𝑡. As will be shown, periodic trajec-
tories play a particularly important role here. The aim of this chapter is to
demonstrate how chemical reactions can be controlled by external driving.
We focus on the dependence of the system on the parameters 𝜔𝑥 and ̂𝑥 since
they describe the saddle movement caused by the external driving.

4-2 Overview of phenomena resulting from the driving

Although relatively simple, the model system introduced in the previous
section already exhibits rich dynamics. In the following, we first give an
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Figure 4-1: Snapshots of the time-dependent potential 𝑉(𝑥,𝑦,𝑡) follow-

ing Equation (4-1) with 𝜔𝑥 = 0.77𝜋 and ̂𝑥 = 0.4 over the oscillation period
𝑇 = 2𝜋/𝜔𝑥. Diamond, triangle, and circle markers symbolize the positions
of three particles with trajectories of period 𝑇. Equidistant contour lines
with 𝛥𝑉= 1 are shown in solid gray. A diagonal dotted line per panel serves
as a guide to the eye, elucidating the saddle movement. The color scale
is capped at 𝑉 = 4. In the center, the periodic trajectories are shown in a
three-dimensional subset of the phase space (𝑝𝑥 not shown). Filled markers
symbolize positions at 𝑡 = 0 while positions of the particles at the potential
snapshots are indicated by black arrow heads pointing in the direction of
motion.
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Figure 4-2: Stroboscopic map of selected trajectories (PSOS) started

at time 𝑡0 = 0 for different frequencies 𝜔𝑥. The driving amplitude is fixed
at ̂𝑥 = 0.4. Crosses indicate fixed points. A color gradient is used to help
distinguish neighboring trajectories. (a) With 𝜔𝑥 =𝜋, a single elliptic fixed
point at (𝑦 = 0,𝑝𝑦 ≈−0.72)T exists. (b) When decreasing 𝜔𝑥 to 0.75𝜋, this
fixed point moves down to 𝑝𝑦 ≈−4.10, while a pair of elliptic and hyperbolic
fixed points emerges from a saddle-node bifurcation around 𝜔𝑥 ≈0.802𝜋.

overview of the dynamics on the NHIM before discussing various aspects of
decay rates in more detail.

(a) Saddle-node bifurcations

We start with a set of driving parameters used in some previous work [1–3,
108], 𝜔𝑥 =𝜋 and ̂𝑥 = 0.4. To construct the PSOS, a number of trajectories
are started on a specified domain at 𝑡0 = 0 and are propagated for 100
periods each. It turns out that a reasonable choice for this domain is the
set of points on the 𝑝𝑦 axis at 𝑦 = 0. This choice is enough to map the full
subspace of the NHIM. That is, given 𝑦 and 𝑝𝑦, there exists only one 𝑥 and
𝑝𝑥 which keep the phase-space point on the NHIM. Thus, the trajectories
are fully specified for a given 𝑦, 𝑝𝑦, and 𝑡 and the restriction of 𝑦 = 0 does
not lose any generality in the PSOS shown in Figure 4-2(a).

In the stroboscopic map, we can see a simple structure with a single
elliptic fixed point. The elliptical patterns around it indicate that the sys-
tem’s dynamics on the NHIM is regular and nearly integrable. Therefore,
trajectories in phase space lie on two-dimensional tori, for which one ap-
proximate constant of motion exists [187]. The elliptic fixed point belongs
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to an orbit with period 𝑇 = 2𝜋/𝜔𝑥. In its neighborhood, resonance gaps can
be seen, indicating the existence of periodic orbits with rational winding
numbers, i. e., orbits whose period is a rational multiple of the system’s
period 𝑇. Remaining trajectories are quasiperiodic, meaning they have an
irrational winding number and that for arbitrary long integration times they
would cover the entire torus surface area.

A qualitative change in the system’s dynamics occurs in the PSOS when
the frequency of driving is decreased to 𝜔𝑥 = 0.75𝜋, as can be seen in
Figure 4-2(b): The elliptic fixed point from Figure 4-2(a) moves down in
𝑝𝑦. In addition, a pair of fixed points—one elliptic and one hyperbolic—
emerges from a so-called saddle-node bifurcation [3, 5, 78, 108, 188–190],
as detailed below. As a result, the elliptic structure of the original fixed point
gets deformed significantly. While this changes its appearance, it does not
lead to chaotic behavior.

From Figure 4-2, it seems natural to assume that there is a bifurcation
in the parameter range 0.75𝜋 < 𝜔𝑥 < 𝜋. To confirm this assumption, we
need to examine the fixed points systematically. To do so, fixed points were
tracked using a root search algorithm as described in Section 3-4.

Figure 4-3 displays bifurcation diagrams, where the averaged total energy
⟨𝐸[𝜸‡]⟩𝑡 of trajectories associated with fixed points is shown as a function of
saddle frequency 𝜔𝑥 and driving amplitude ̂𝑥. In Figure 4-3(a), the driving
frequency is varied between 0.71𝜋≤𝜔𝑥 ≤0.85𝜋. One can clearly see the
annihilation of a pair of fixed points—one elliptic and one hyperbolic—
in a saddle-node bifurcation at 𝜔𝑥 ≈ 0.802𝜋. For decreasing frequencies,
the original elliptic fixed point from Figure 4-2(a) gets pushed in the neg-
ative 𝑝𝑦 direction away from the origin, while the new elliptic fixed point
formed in the bifurcation slowly converges towards the origin. By contrast,
the hyperbolic fixed point’s momentum 𝑝𝑦 increases for decreasing driving
frequencies. Thus, distinguishing the elliptic fixed point near the origin for
slow and high driving frequencies must be done with some care.

Bifurcations do not only occur when changing the saddle’s frequency but
also when altering its driving amplitude. This can be seen in Figure 4-3(b).
The saddle frequency was set to 𝜔𝑥 = 0.8𝜋, near the parameter where the
bifurcation occurs in Figure 4-3(a). Changing the saddle amplitude from
0 < ̂𝑥 ≤ 1.47 results in two saddle-node bifurcations, one annihilating a
fixed-point pair at ̂𝑥 ≈ 0.47 and one creating a fixed-point pair at ̂𝑥 ≈ 0.65.

(b) Trajectories in position space

Section 4-2 (a) found and investigated a varying number of fixed points on
the NHIM. The next step in the classification of the dynamics requires the
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1Figure 4-3: (a) Average total energy ⟨𝐸[𝜸‡]⟩𝑡 of periodic trajectories 𝜸
‡

associated with fixed points (cf. Figure 4-2) as a function of driving fre-
quency 𝜔𝑥. The driving amplitude is fixed at ̂𝑥 = 0.4. Around 𝜔𝑥 ≈0.802𝜋,
a pair of elliptic and hyperbolic fixed points annihilate in a saddle-node
bifurcation. (b) Average total energy ⟨𝐸[𝜸‡]⟩𝑡 analogous to panel (a) as a
function of driving amplitude ̂𝑥 for 𝜔𝑥 = 0.8𝜋. The system exhibits two
saddle-node bifurcations around ̂𝑥 ≈ 0.47 and ̂𝑥 ≈ 0.65. At ̂𝑥 = 0, two orbits
have identical potential energies and reversed velocities. Their total energies
are therefore degenerate. Vertical lines indicate where the parameter sets of
panels (a) and (b) intersect.

characterization of the periodic trajectories associated with these points in
position space.

Figure 4-4(a) shows the trajectories associated with the three fixed points
in Figure 4-3(a) just below the bifurcation. All three trajectories follow very
similar paths roughly orthogonal to the minimum-energy path given by the
arctangent in Equation (4-1). The elliptic and hyperbolic fixed points created
in the bifurcation belong to trajectories oscillating in phase. By contrast,
the trajectory associated with the second elliptic fixed point oscillates in
antiphase with a higher amplitude. This is in accordance with its higher
mean energy ⟨𝐸[𝜸‡]⟩𝑡 as shown in Figure 4-3(a). The slight curvature of the
trajectories is caused by the system’s nonlinearity.

The nonlinearity is also likely responsible for the bifurcation at 𝜔𝑥 ≈
0.802𝜋: In the high-energy limit ⟨𝐸[𝜸‡]⟩𝑡 →∞, trajectories mostly see an
effective potential of the form 𝑉(𝑥,𝑦) = 2𝑦2. This potential leads to an
eigenfrequency of 𝜔 = 2 ≈ 0.637𝜋 for oscillations along the orthogonal
mode 𝑦. For lower energies ⟨𝐸[𝜸‡]⟩𝑡, however, the barrier and the nonlinear
coupling (through the arctangent) need to be taken into account. As a
result, the direction of the orthogonal mode changes approximately to 𝑦−𝑥
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1Figure 4-4: Position (𝑥,𝑦)T of periodic orbits on the NHIM for different
frequencies 𝜔𝑥. The driving amplitude is fixed at ̂𝑥 = 0.4. The minimum-
energy path is shown as a thick, light gray line. (a) With a frequency
𝜔𝑥 = 0.8𝜋 just below the bifurcation, all three fixed-point trajectories per-
form a single oscillation per period roughly orthogonal to the minimum-
energy path. (b) Decreasing the frequency to 𝜔𝑥 = 0.75𝜋 leads to the same
configuration in principle, although with significant changes to the oscilla-
tion amplitudes. (c) With 𝜔𝑥 = 0.2𝜋 the situation changes fundamentally.
The trajectory associated with the central elliptic fixed point now roughly
follows the reaction coordinate approximated by the minimum-energy path.
In doing so, the trajectory always stays near the saddle point. Trajectories
belonging to the fixed-point torus, on the other hand, oscillate in direction of
the orthogonal mode. Furthermore, these trajectories oscillate many times
per driving period and fan out instead of following the same path back and
forth.

with an increased eigenfrequency. The system therefore supports a range
of frequencies as a function of energy. Driving the system with a specific
frequency 𝜔𝑥 within this range selects the corresponding trajectory and
associated fixed point.

In Figure 4-3(a), two branches show a strong increase of the fixed-point
energies ⟨𝐸[𝜸‡]⟩𝑡 when the driving frequency 𝜔𝑥 is lowered, quickly rising
beyond the limits of numerical feasibility. This diverging behavior can also
be explained by the aforementioned mechanism since the approximation
𝑉(𝑥,𝑦) = 2𝑦2 is only valid for ⟨𝐸[𝜸‡]⟩𝑡 →∞. The sensitivity of the oscillation
amplitude is visible in the dramatic change in the amplitude of the periodic
orbits in Figures 4-4(a) and 4-4(b) resulting from the slight reduction in 𝜔𝑥
from 0.8𝜋 to 0.75𝜋. The fact that the oscillation of the smaller-amplitude
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orbit decreases between the cases in Figures 4-4(a) and 4-4(b) can be at-
tributed to its antiphase oscillation.

Upon lowering the frequency to 𝜔𝑥 = 0.2𝜋 [cf. Figure 4-4(c)], only the
antiphase fixed point remains. In contrast to Figures 4-4(a) and 4-4(b), its
motion now oscillates in phase along the minimum-energy path. In addition,
a torus with infinitely many fixed points has emerged. A typical trajectory
associated with one fixed point on the torus is shown in Figure 4-4(c).
Contrary to all the trajectories shown so far, it oscillates multiple times per
period and fans out instead of remaining on a single periodic path. These
fixed points can be attributed to a sign change in the torus’s winding number.

(c) Resonant tori

Changing the driving frequency to 𝜔𝑥 = 0.55𝜋 results in the occurrence
of two elliptic fixed points with period 2𝑇. This can be observed in the
PSOS by choosing a proper resolution, as shown in Figure 4-5. Note that the
stroboscopic map still records points every 𝑇 units of time. The fixed point
located at the center of the phase space [cf. Figure 4-5(a)] is the elliptic fixed
point that emerged from the saddle-node bifurcation in Figure 4-3(a).

The fixed points with period 2𝑇 can be understood using the Poincaré–
Birkhoff fixed-point theorem [187, 191]. It allows the use of the PSOS to
predict structural changes of resonant tori when the system is perturbed.
Specifically, a change in the driving frequency can be seen in Figure 4-5 as a
perturbation which causes some tori with rational winding numbers to be
destroyed. It results in an even number of fixed points, alternating between
elliptic and hyperbolic ones. Increasing the perturbation of such a system can
also tear apart the tori in the vicinity of the 2𝑇 elliptic fixed points, forming
new fixed points. Eventually, this leads to self-similar structures. In principle,
one could expect to see such self-similar structures when further zooming
the enlarged panels 4-5(b) and 4-5(c). However, we did not continue such
zooming here because resolution is limited by numerical precision.

4-3 Decay rate enhancement

We continue by investigating two examples in more detail in which the
external driving can be seen to affect the dynamics of the activated complex.

The left column of Figure 4-6 shows the time-averaged total energy
⟨𝐸[𝜸‡]⟩𝑡 of trajectories 𝜸

‡ on the NHIM for two values of 𝜔𝑥. At 𝜔𝑥 = 0.81𝜋,
⟨𝐸[𝜸‡]⟩𝑡 reveals a region in phase space with low-energy trajectories. This
region is accompanied by a local maximum in the decay rate 𝑘F, as can
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Figure 4-5: Stroboscopic map of trajectories (PSOS) started at time 𝑡0 = 0

for driving frequency 𝜔𝑥 = 0.55𝜋 and driving amplitude ̂𝑥 = 0.4. A color
gradient is used to help distinguish neighboring trajectories. (a) From the
overview an elliptic fixed point is clearly visible. (b)–(c) Magnified sections
of panel (a) reveal two more elliptic fixed points. Different magnifications
for the left/right-hand side are used since panel (a) is symmetric under
reflection at 𝑦 = 0.

be seen in the right panel of Figure 4-6(a). The overlaid PSOS highlights
an elliptic fixed point belonging to the associated periodic orbit, similar
to Figure 4-2(a). It can be seen as the dominant trajectory in the sense
that decay rates from this trajectory are also characteristic of neighboring
trajectories.

For decreasing 𝜔𝑥, two new fixed points and, hence, periodic trajectories
emerge again, as can be seen in Figure 4-6(b) at 𝜔𝑥 = 0.77𝜋. These trajecto-
ries are shown in Figure 4-1 for the elliptic (solid blue lines) and hyperbolic
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1Figure 4-6: Average total energy ⟨𝐸[𝜸‡]⟩𝑡 (left column, capped at
⟨𝐸[𝜸‡]⟩𝑡 = 26) and Floquet rate constant 𝑘F (right column) of trajectories 𝜸‡

started at position (𝑦,𝑝𝑦)
T and time 𝑡0 = 0 on the NHIM. Shown are typical

plots at ̂𝑥 = 0.4 (a) before (𝜔𝑥 = 0.81𝜋) and (b) after (𝜔𝑥 = 0.77𝜋) the
bifurcation. To elucidate the structure, a stroboscopic map of selected tra-
jectories (PSOS, white dots) has been overlaid highlighting the existence of
one elliptic fixed point before and two elliptic as well as one hyperbolic fixed
point after the bifurcation (white crosses). While the elliptic fixed points are
always characterized by local minima in ⟨𝐸[𝜸‡]⟩𝑡, they feature either a local
minimum or maximum in 𝑘F.
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(dashed red line) fixed points. This saddle-node bifurcation qualitatively
changes the dynamics on the NHIM. While the new elliptic fixed point is
still characterized by a local minimum in ⟨𝐸[𝜸‡]⟩𝑡, it now also features a
local minimum in 𝑘F instead of a maximum. In addition, its energy ⟨𝐸[𝜸‡]⟩𝑡
is much lower compared to the original elliptic fixed point at momentum
𝑝𝑦 = 𝑦̇ ≈−3.

The second example for the influence of external driving on the dynamics
on the NHIM is illustrated in Figure 4-7. At a fixed 𝜔𝑥 = 𝜋, only a single
periodic trajectory was found in the examined parameter regime. Particles
near this periodic trajectory exhibit a change in their stability that depends
on the system’s driving amplitude ̂𝑥. We illustrate the change in the stability
using the time it takes the particle to reach a distance of |𝛥𝑥| = 0.05 from
the periodic trajectory. When only a small driving is applied, the particle stays
in the saddle region for a relatively long time. This in turn indicates a low
decay rate 𝑘F. When increasing the amplitude, stability initially decreases
for medium driving only to increase again for large driving. As a result, there
must be a local maximum in the system’s decay rate 𝑘F allowing for rate
enhancement through optimization of ̂𝑥.

These two examples demonstrate that the dynamics of trajectories on or
near the NHIM can be drastically altered through modification of the driving
parameters. This is summarized in Figure 4-8 through the calculation of
the decay rates 𝑘F as a function of the driving frequency and amplitude. As
these are only one-dimensional sections through the two-dimensional space
of possible driving parameters, they serve here as examples only. Specifically,
they are not meant to represent an exhaustive or exclusive set. As such, any
extremal values in one of these sections may not necessarily be extremal
in the full parameter space. Nevertheless, the existence of such extrema in
sections of parameter space is enough to demonstrate that these systems are
sensitive to the driving.

The bifurcation observed in Figures 4-2 and 4-6 is visible in Figure 4-8(a).
At larger driving frequencies, there exists a single elliptic fixed point. When
lowering 𝜔𝑥, its rate constant 𝑘F steadily increases. Around 𝜔𝑥 = 0.80𝜋, two
new fixed points with lower values of 𝑘F emerge in a saddle-node bifurcation.
Furthermore, a comparison with the trajectories from Figure 4-1 suggests
that high rates are accompanied by large motion in the orthogonal mode
(𝑦,𝑝𝑦)

T.
We demonstrated through Figure 4-7 that there exists a minimum in

stability for medium driving. This manifests itself in Figure 4-8(b) by means
of a maximum in 𝑘F. When varying 𝜔𝑥, this extremum persists qualitatively
the same, differing mainly in position and height. The varying height of
the extremum for different 𝜔𝑥 can be connected to the slope of the upper
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Figure 4-7: Position 𝑥 over time 𝑡 of trajectories in systems with (a) small

( ̂𝑥 = 0.1), (b) medium ( ̂𝑥 = 0.6), and (c) large ( ̂𝑥 = 1.6) driving. Driving
frequency in all cases is 𝜔𝑥 =𝜋. For each parameter set, the periodic trajec-
tory on the NHIM (black solid) as well as a trajectory offset by 𝛥𝑝𝑥 = 10−3 at
𝑡0 = 0 (red dash-dotted/blue dashed) are shown. The style change indicates
where the offset trajectories cross from the reactant to the product side. The
stability of these trajectories is indicated in the right column by the time
interval (vertical lines) where the deviation 𝛥𝑥 from the TS is less than 0.05
(nonshaded region). Stability is minimal for medium driving.

curve in Figure 4-8(a). Note that all curves, independent of 𝜔𝑥, must meet
at 𝑘F( ̂𝑥 = 0) ≈ 2.762 since a vanishing amplitude is equivalent to the static
case.
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Figure 4-8: (a) Floquet rate 𝑘F as a function of driving frequency 𝜔𝑥

for two elliptic and one hyperbolic fixed point, each corresponding to a
periodic trajectory. At 𝜔𝑥 ≈ 0.802𝜋, two fixed points vanish in a saddle-
node bifurcation (cf. Section 4-2). The three markers correspond to the
trajectories shown in Figure 4-1. (b) Floquet rate 𝑘F as a function of driving
amplitude ̂𝑥 for three different driving frequencies 𝜔𝑥. Only a single fixed
point (i. e., periodic trajectory) was found per set of parameters considered
here. Green circle markers indicate the parameter sets used in Figure 4-7
while diamonds mark each curve’s maximum. The vertical gray line acts as
a guide to the eye.

4-4 Reaction geometry

The results reported in the previous sections relate only to the dynamics
on the NHIM. Making predictions about real chemical reactions, however,
requires us to connect to the dynamics off the NHIM. More specifically, we
need to address when and how the NHIM can influence reactive trajectories,
i. e., those connecting the reactant to the product basins.

The NHIM represents—by construction— the minimum energy a trajec-
tory needs while crossing the DS at a given value of the orthogonal modes
(𝑦,𝑝𝑦)

T. It is therefore natural to assume that a significant portion of re-
actants in a thermally distributed ensemble would pass close to the NHIM
while reacting. Additionally, for reasons of continuity, we can expect these
trajectories to behave similarly to those on the NHIM for some finite time.
This provides a possible connection between the dynamics on and off the
NHIM.

In a driven system, reactants may gain or lose energy while climbing
the potential barrier. A trajectory’s energy 𝐸[𝜸] very close to the NHIM can
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1Figure 4-9: Local threshold energy 𝐸b = lim𝑡→−∞𝐸[𝜸](𝑡) of trajecto-
ries 𝜸(𝑡) started from position (𝑦,𝑝𝑦)

T close to the NHIM at crossing time
𝑡0 = 0 and propagated back to the initial time 𝑡 → −∞. A PSOS showing
the NHIM’s structure is overlaid for comparison. White crosses mark the
positions of elliptic fixed points. The diamond marker in each panel is placed
at the global spatial minimum 𝐸b

th(𝑡0) = min𝑦,𝑝𝑦
𝐸b(𝑦,𝑝𝑦, 𝑡0). The panels

were calculated for different driving frequencies (a) 𝜔𝑥 = 0.73𝜋, (b) 𝜔𝑥 =
0.77𝜋, (c) 𝜔𝑥 = 0.81𝜋, and (d) 𝜔𝑥 =𝜋 as indicated above each panel. The
driving amplitude is ̂𝑥 = 0.4 for all panels. The color scale is capped at
𝐸b = 12.
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thus differ from its initial energy 𝐸b = lim𝑡→−∞𝐸[𝜸](𝑡) in the reactant basin.
The structure of the NHIM can be connected to the reactant basins through
propagation back in time. For each fixed orthogonal mode (𝑦,𝑝𝑦)

T and
time 𝑡0, we first obtain the position (𝑥,𝑝𝑥)

T of the NHIM. A shift of this point
by 𝛥𝑝𝑥 =+10−5 yields a point on a reactive trajectory which closely passes
the NHIM. We then propagate the trajectory backward in time until we are
sufficiently far away from the moving barrier. The trajectory’s energy 𝐸b at
this early time—which we refer to as the local threshold energy—will then
be approximately conserved. Through sampling (𝑦,𝑝𝑦)

T, we then obtain the
distribution of local threshold energies and the corresponding initial points
in phase space of the reactive trajectories. Figure 4-9 reports the results
of this calculation for crossing time 𝑡0 = 0 at four driving frequencies 𝜔𝑥
around the bifurcation shown in Figure 4-8(a). For comparison, the structure
of the NHIM as revealed by a PSOS has been overlaid in each case.

The PSOS reveals two elliptic fixed points on the NHIM at the driving
frequencies below the bifurcation [cf. Figures 4-9(a) and 4-9(b)]. Although
the lower one cannot be seen in the structure of the local threshold energy,
there is a correlation between 𝐸b and the upper fixed point. This is consistent
with the fact that the lower fixed point is associated with higher decay rates
and higher average trajectory energies as shown in Figures 4-3(a), 4-6(b)
and 4-8(a). Trajectories consequently spend less time near the NHIM, and
we expect less correlation with the dynamics on the NHIM. Conversely, there
is a very good match between the global threshold energy

𝐸b
th(𝑡0) =min

𝑦,𝑝𝑦
𝐸b(𝑦,𝑝𝑦, 𝑡0) (4-2)

and the position of the upper fixed point, i. e., the trajectory on the NHIM
with the least average energy [cf. Figure 4-6(b)].

Closer to the bifurcation, we find the structure of 𝐸b starting to change [cf.
Figures 4-9(b) and 4-9(c)]. Low-energy regions seem to flow out in a counter-
clockwise spiral-like structure. The minimum 𝐸b

th, however, stays near the
upper fixed point. It only starts to move once this fixed point disappears
in the bifurcation. Following a counter-clockwise trajectory itself, it moves
down towards the remaining fixed point, slowly converging for increasing
driving frequency 𝜔𝑥 [cf. Figure 4-9(d)].

If we assume initial energies of a reactant ensemble to be thermally
distributed, then we can expect most of these reactants to react via paths
related to low-𝐸b regions at the crossing time 𝑡0. The bifurcation, therefore,
should change the geometry of the reaction dynamics at least qualitatively.
This change, as indicated by the movement of the global spatial minimum of
the threshold energy 𝐸b

th, appears to be smooth across the bifurcation. As a
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consequence, we can anticipate that the reaction rates to be presented in
the next section will not exhibit a discontinuity around the bifurcation.

4-5 Reaction probability

We now address the degree to which reaction rates—not just decay rates—
can be obtained from the structure of the NHIM. Following Farkas and
Kramers [27, 111, 182, 192], the reaction rate is determined by the ratio of
the reactive flux across a DS divided by the reactant population at steady-
state conditions. This presumes a boundary condition in which the reactants
are continuously populated at the well according to an equilibrium condition.
Here we assume that the reactants are initially thermally distributed, and set
the initial distribution in velocities to be that of Boltzmann at temperature 𝑇
and located in the reactant basin far from the NHIM. The system is then
propagated semi-microcanonically—viz., including external driving but
neglecting friction and noise. This corresponds to a system which is very
weakly coupled to an external bath. The rates that one would obtain in this
way are therefore good approximations in cases in which the rate is fast
compared to the dissipation.

For numerical expedience, here we obtain the reaction fraction rather than
the rates using the flux over population approach. The reactant fraction is
the fraction of particles that react—without being reflected and returning to
the reactant basin— to products given the initial distribution. The reference
ensemble simulation is constructed as follows. For every set of parameters,
we initialize an ensemble of 107 reactants at position (𝑥 = −8,𝑦 = −1)T,
that is, far from the saddle on the minimum-energy path. Velocities 𝑝𝑥 and
𝑝𝑦 are chosen according to a Maxwell–Boltzmann distribution of temper-
ature 𝑘B𝑇 = 0.4ll 𝐸‡, where 𝐸‡ = 2 is the potential energy of the saddle
point. Negative velocities result in trajectories that cannot react because the
reactant basin is unbounded. We thus include only positive velocities 𝑝𝑥 ≥0
by taking the absolute value. The initial time is chosen based on a uniform
random distribution. Each reactant is then propagated forward in time until
it leaves the reaction region. Trajectories passing 𝑥 < −8 are classified as
nonreactive and those passing 𝑥 > +4 as reactive. Besides the fraction of
reactive trajectories 𝜒e

r , we additionally record the minimal initial energy 𝐸e
th

of the reactive subensemble, referred to as the ensemble threshold energy.
The results for various values of the driving parameters 𝜔𝑥 and ̂𝑥 are shown
as circle and diamond markers in Figures 4-10 and 4-11.

Alternatively, we can consider the dynamics on the NHIM directly us-
ing the spatial minimum 𝐸b

th as the effective minimum barrier height; see
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Section 4-4. We employ modern global minimization routines to make the
determination of 𝐸b

th as efficient as possible. Specifically, we use simplicial
homology global optimization [193] with Sobol’ sampling [194] and the
Nelder–Mead simplex method [195] for local optimization as implemented
in the Python library SciPy [175]. The resulting 𝐸b

th is still dependent on the
crossing time 𝑡0. To account for this fact, we consider both the average ⟨𝐸b

th⟩𝑡0
and the minimummin𝑡0

𝐸b
th in 𝑡0 going forward. Both quantities are shown in

the left axes of Figures 4-10 and 4-11 for multiple driving-parameter ranges.
Unsurprisingly, the minimum ensemble energy 𝐸e

th is close to but always
larger than min𝑡0

𝐸b
th.

The most straightforward way to obtain a reaction probability from
a barrier height is by evaluating the ensemble’s complementary cumula-
tive distribution function—also known as the survival function. In energy
space, Maxwell–Boltzmann ensembles follow a 𝜒2 distribution with argu-
ment 2𝐸/(𝑘B𝑇). Here, we report the survival probability SF(2)𝐸 according to
the energy distribution over the two-dimensional configuration space 𝑥–𝑦.
Curiously, the agreement in the reactive probability (not shown here) was
better in the cases reported in Figure 4-11 when we evaluated the survival
probability using only the distribution over the reactive degree of freedom 𝑥.
For reactive trajectories, this circumstance suggests that the nonlinear cou-
pling between 𝑥 and 𝑦 is not strong enough to lead to a significant energy
exchange between the reaction coordinate and the orthogonal mode. The
dynamics on the NHIM, however, is definitely affected by the nonlinear
coupling as shown by the bifurcation in Figure 4-8. Finally, we calibrate the
resulting curve by linearly scaling it to match the first value of the ensemble
calculation. The result is shown in the right axes of Figures 4-10 and 4-11.
There is a clear correlation between 𝜒e

r and the survival function ofmin𝑡0
𝐸b
th

with very good agreement for ̂𝑥 ≲ 0.8. The average ⟨𝐸b
th⟩𝑡0 , on the other

hand, yields worse results in most cases. It can only slightly beat min𝑡0
𝐸b
th

for very high driving amplitudes ̂𝑥. That is, it appears that the deviations in
the reactive percentage between the use of the global reactive flux and the
NHIM-based approaches arise because the globality presumed in the latter
begins to break down as the particles are driven harder and farther away
from the reactive region.

4-6 Conclusion and outlook

We have investigated the constrained dynamics on the NHIM in a time-
dependent two-dimensional system. Using PSOSs, we demonstrated the
occurrence of structural changes of the dynamics, viz., bifurcations of pe-
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1Figure 4-10: Ensemble threshold energy 𝐸e
th (diamond markers) and

fraction of reactive trajectories 𝜒e
r (circle markers) for the ensemble calcu-

lation described in Section 4-5. Each of the two panels varies driving fre-
quency𝜔𝑥 while driving amplitude is kept fixed at (a) ̂𝑥 = 0.4 or (b) ̂𝑥 = 0.8,
respectively. For comparison, calculations based on the global minimum
𝐸b
th(𝑡0) =min𝑦,𝑝𝑦

𝐸b(𝑦,𝑝𝑦, 𝑡0) of the local threshold energy 𝐸b akin to Fig-
ure 4-9 are shown. Specifically, the average ⟨𝐸b

th⟩𝑡0 and minimum min𝑡0
𝐸b
th in

crossing time 𝑡0 are shownwith solid and dash-dotted lines, respectively. Eval-
uating the survival function SF(1)𝐸 of a one-dimensional Maxwell–Boltzmann
distribution in energy space and scaling the results to fit the first ensemble
data point yields the dashed and dotted lines, respectively. Parameter ranges
differ due to numerical stability.
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1Figure 4-11: Ensemble threshold energy 𝐸e
th (diamond markers) and

fraction of reactive trajectories 𝜒e
r (circle markers) for the ensemble calcula-

tion described in Section 4-5. Each of the two panels varies driving ampli-
tude ̂𝑥 while driving frequency is kept fixed at (a) 𝜔𝑥 = 0.8𝜋 or (b) 𝜔𝑥 =𝜋,
respectively. For comparison, calculations based on the global minimum
𝐸b
th(𝑡0) =min𝑦,𝑝𝑦

𝐸b(𝑦,𝑝𝑦, 𝑡0) of the local threshold energy 𝐸b akin to Fig-
ure 4-9 are shown. Specifically, the average ⟨𝐸b

th⟩𝑡0 and minimum min𝑡0
𝐸b
th in

crossing time 𝑡0 are shownwith solid and dash-dotted lines, respectively. Eval-
uating the survival function SF(1)𝐸 of a one-dimensional Maxwell–Boltzmann
distribution in energy space and scaling the results to fit the first ensemble
data point yields the dashed and dotted lines, respectively. Parameter ranges
differ due to numerical stability.
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riodic TS trajectories when changing the amplitude or frequency of the
external driving. In particular, periodic TS trajectories with the same pe-
riod as the external driving but significantly different parameters such as
mean energy compared to the ordinary TS trajectory can be created in a
saddle-node bifurcation.

The model system investigated in this chapter, featuring a periodically
driven rank-1 saddle, is paradigmatic of many chemical reactions in which
the reaction takes place along a reaction path which is in turn affected by
the mode to which it is most strongly coupled to. We characterized the de-
pendence of the system’s dynamics on the parameters of the periodic driving
at the saddle, i. e., through its frequency and amplitude. The dynamics of
trajectories on the NHIM is unstable because of its proximity to the rank-1
saddle, but it can nevertheless be obtained numerically through the use of
stabilizing techniques as shown here. The resulting dynamics was analyzed
through stroboscopic maps, and observed to be regular for all parameter
sets which have been investigated. At low driving frequencies of the saddle,
a fixed point with a period twice that of the driving was observed. At higher
frequencies, it was also possible to track the fixed points and observe the
creation and annihilation of pairs of fixed points in saddle-node bifurcations.
The behavior of the periodic trajectories was also projected onto position
space leading to the observation that the saddle frequency has a significant
influence on the oscillation direction of the trajectories.

We have further demonstrated that decay rates and the reaction geometry
can be manipulated by external driving. Based on this, we have found a
connection between properties of the NHIM and properties of reacting
trajectories. This, in turn, has allowed us to predict reaction probabilities
without having to propagate large ensembles for each set of parameters,
providing further insights into the dynamics of chemical reactions. In the
future, these results could be used to control and optimize the reaction
rate of chemical reactions. To achieve this goal, however, it is required to
extend the methods discussed here to models explicitly describing particular
chemical reactions. Promising candidates include the isomerization reactions
of LiCN [118–120, 196]—which will be discussed using different methods
in Chapter 7—KCN [197, 198], and ketene [169, 199–202]. Additionally,
the results have to be extended to include noise and friction (i. e., Langevin
dynamics) in order to be applicable to real chemical reactions.

These results lead to a better understanding of the reaction dynamics
of driven reactions. Changes in the parameters of the driving have a huge
impact on the system’s dynamics and have been seen here and recently [3, 5,
174] to lead to changes in mean energies and decay rates. Indeed, it suggests
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that one could control rate constants within a limited range by adjusting
the driving of the system.

It remains to characterize the behavior of driven chemical reaction dy-
namics as a function of other system parameters, including the height and
width of the saddle or the various parameters associated with the orthogonal
mode. Changing these parameters could lead to further bifurcations, paving
the way for the possible observation of a chaotic regime.
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Self-Similarity in a Driven
Two-Saddle System

5
Essential parts of this chapter have previously been published by the
author in Reference [4].

The focus so far has been on single-barrier reactions. Many complex reac-
tions [21–25], however, have to overcome multiple bottlenecks along the
reaction pathway. Such multi-barrier reactions were considered early [203,
204] in the context of quantum-mechanical tunneling through barriers at
constant energy. In this so-called M-problem, (quasi-)periodic orbits between
the barriers give rise to the possibility of an infinite number of returns to
the turning point from which tunneling can proceed. The return times are
usually not commensurate with the period, either because of coupling to
other degrees of freedom—such as from the bath—or because of variations
in the potential. In such cases, the coherence in the returns is altered, with
return times being sensitive to the exact initial conditions. In this work, we
address the ways in which this sensitivity of classical orbits changes the
nature of the dynamics.

Problems involving fluctuating [205, 206] or oscillating [176, 207, 208]
barriers have also received significant attention leading to, for example,
the identification of the phenomenon of resonant activation [209, 210].
While the approaches originally focused on the overdamped regime [176,
205], underdamped systems were later examined [208, 211]. For example,
mean first-passage times have been employed to calculate (diffusion) rates
in spatially periodic multi-barrier potentials. Therein, various static [185]
as well as stochastically driven [212, 213] cases have been characterized
primarily through numerical methods.

In the current context, the main challenge in a multi-saddle system comes
from the unpredictability of states in the intermediate basin. A reactant
entering this region may leave either as a reactant or product depending on
the exact initial conditions [77, 214–216]. Historically, this challenge has
been approached by categorizing reactions into two classes [43, 215, 217]:
Direct reactions exhibit a single TS. Complex reactions, on the other hand,
have two clearly separated TSs. The potential well between those barriers
is assumed to be sufficiently deep that it gives rise to a long-lived collision
complex. Trajectories passing through one TS enter this collision complex
and hence cannot be correlated to trajectories passing through the other TS.
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In reality, however, a reaction cannot always be uniquely classified. These
concerns were addressed in a unified theory by Miller [215], and later refined
by Pollak and Pechukas [218] so as to address shallow potential wells. While
an important advancement, this theory still treats the saddle’s interactions
statistically, thereby neglecting dynamical effects like resonances. Moreover,
they considered multistep reactions in which the positions and heights of
the barriers are time-independent. Last, there are numerous publications on
valley-ridge inflection points, which are typically described by a normal TS
followed by a shared one [216, 219, 220].

Craven and Hernandez [169] recently examined a four-saddle model of
ketene isomerization influenced by a time-dependent external field. They
encountered complicated phase-space structures similar to those in systems
with closed reactant or product basins [127]. As a result, their analysis
was limited to local DSs and no reaction rates were calculated. Moreover,
successfully calculating instantaneous rates based on a globally recrossing-
free DS attached to the NHIM of a time-dependent multi-saddle system has
— to our knowledge—not yet been reported.

In this chapter, we address the challenge of determining the instantaneous
TS decay rate for systems that not only feature multiple barriers along the
reaction path but that are also time-dependent [4].

5-1 Two-saddle model system

We investigate the properties of multi-barrier systems by considering an
open 1-DoF model potential featuring two Gaussian barriers whose saddle
points are centered at 𝑥 =±1. Initially, both barriers are placed at the same
level. As we are interested in considering the time-dependent case, however,
we drive the barrier’s heights 𝐵𝜑(𝑡) sinusoidally in opposite phases. That is,
we use the same amplitude and frequency 𝜔 for both saddles but opposite
initial phases 𝜑∈ {0,𝜋}. This leads to the potential [173]

𝑉(𝑥,𝑡) = 𝐵0(𝑡)e
−(𝑥+1)

2

+𝐵𝜋(𝑡)e
−(𝑥−1)

2

(5-1a)

with 𝐵𝜑(𝑡) =
7
4
+
1
4
sin(𝜔𝑡+𝜑) .(5-1b)

The oscillation frequency 𝜔 is a free parameter that can be varied relative to
the other natural timescales of the system at a given fixed total energy. At an
arbitrary time, one of the barriers will be larger than the other. For example,
when the second barrier is larger, the potential takes a shape such as that
shown at the top of Figure 5-1(b). Throughout this chapter, dimensionless
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Figure 5-1: Typical structures of static potentials 𝑉(𝑥) and their corre-

sponding phase spaces 𝑥–𝑝𝑥 with (a) one and (b) two barriers. The potential
barriers separate reactant (R) and product (P) states. The two-barrier case
features an additional intermediate (I) state in between. The maxima are
associated with a hyperbolic fixed point (diamonds) and a dividing surface
(indicated by dashed vertical lines) each. The corresponding manifolds di-
vide the phase space into four distinct, numbered regions in panel (a) and
six regions in panel (b). See Sections 5-1 and 5-2 (a) for details.

units are used to explore the range of phenomena that can arise from varying
the relative timescales of the system and the driving.

Section 3-2 (b) introduced the concept of reactive and nonreactive regions.
Given a suitable interaction region around the saddle, it can be used to divide
the phase space into four distinct regions depending on the state trajectories
originate from and the state they end up in. Such a classification for the
initial conditions has to be extended to include the consequences of a local
minimum between the saddles of the reacting system of Equation (5-1).
A low-energy particle trapped near this local minimum [cf. Figure 5-1(b)]
would lead to diverging computation times because it may never leave the
interaction region. To solve this problem, an additional termination condition
is introduced, whereby any particle that crosses the potential minimum a
specified number of times 𝑛∗ is classified as an intermediate (I) particle. This
now leads to three different outcomes per time direction instead of two.
Consequently, up to nine different regions in phase space can be distinguished
for any given value of 𝑛∗.
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5-2 Fractal phase space

The phase-space structure of the model system introduced in Section 5-1 is
highly dependent on the driving frequency 𝜔. In the following, we give a
qualitative overview of the behavior the system can exhibit.

(a) Limiting cases

A static or quasistatic two-saddle system akin to Equation (5-1) with 𝜔→
0 exhibits the phase-space structure shown in Figure 5-1(b). The saddle
tops are associated with hyperbolic fixed points whose stable and unstable
manifolds each form a cross. If the first saddle is smaller than the second one,
two of its manifolds constitute a so-called homoclinic orbit. This orbit starts
as part of 𝒲u and ends as part of 𝒲s, thereby connecting the saddle’s fixed
point with itself. In this case, the phase space is composed of six regions [173],
namely

1. nonreactive reactants R→R,
2. nonreactive products P→P,
3. reactive reactants R→P,
4. reactive products P→R,
5. particles that react over the first saddle but get reflected at the second

R→ I→R, and
6. intermediate particles that are trapped between the saddles I→ I.

Likewise, if the driving frequency is sufficiently large (𝜔 → ∞), the
particle will effectively see an average static potential in which it must cross
two similar static barriers of equal height. As the energy is conserved, once
the particle crosses the first barrier, it necessarily crosses the second barrier.
This results in a phase-space structure similar to that for the static case of
Figure 5-1(b)—although with so-called heteroclinic orbits that connect the
hyperbolic fixed points mutually.

In such (effectively) static cases, it is straightforward to define a global
recrossing-free DS. In a 1-DoF constant-energy system, if (and only if) a par-
ticle crosses the highest saddle, it has demonstrated to have enough energy
to react over all saddles. Since the largest barrier therefore unambiguously
determines whether a particle reacts or not, its associated local DS becomes
the global (recrossing-free) DS.

While this holds true for static systems, dynamically driven systems may
exhibit much richer dynamics. For example, in the case of an alternating
pair of dominant barriers, as in the model of Equation (5-1), the naive DS
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jumps discontinuously from one side to the other twice per period. As a
result there exist reactive trajectories that never cross the DS. Instead, the
latter jumps over the former leading to an inconsistent description of the
reaction. Addressing this issue by defining particles between the local DSs
as reacting the moment the dominant saddle changes would lead to more
problems, e. g., unphysical Dirac delta peaks in the reaction rate. To solve
this issue, the system has to be treated as a whole.

(b) Intermediate driving frequency

The limiting cases discussed so far result in effectively static systems. Since
we are interested in novel and nontrivial behavior, however, we will now
turn to intermediate driving frequencies. These can exhibit varying degrees
of complexity as a function of the driving frequency 𝜔. An example of such
nontrivial behavior with a highly complex phase space is shown in Figure 5-2.
We use the Lagrangian descriptor defined in Section 3-2 (a) for visualization
since it is very general and requires little knowledge about the system.

The geometric structure was obtained for the driven potential 𝑉(𝑥,𝑡)
of Equation (5-1) at an intermediate driving frequency 𝜔 =𝜋. The general
shape of the boundaries separating reactive and nonreactive regions [cf.
Figure 5-1(b)] is still vaguely visible. However, the precise position of the
crossing points between the stable and unstable manifolds can no longer
be determined. This family of crossing points together with the associated
stable and unstable manifolds within their vicinity appears as a cross that has
arisen from all of these geometric considerations. For simplicity, we define it
as a geometric cross throughout this work. Note that this term is not meant
to be a precise mathematical structure but rather an illustrative concept for
describing the complex phase space of the system under study.

The fractal-like geometric crosses seen in the series of Figures 5-2(b)
to 5-2(d) for a finite 𝜏 suggests a fractal structure at all scales for 𝜏 →∞.
This structure emerges from particles trapped between the two saddles. For
example, a reactant can enter the intermediate region over the left saddle,
be reflected multiple times at both saddles, and finally leave the interaction
region over the right saddle as a product. The number of reflections is in this
case highly dependent on the particular initial conditions as a result of the
system being chaotic. In turn, this leads to a discontinuity in the Lagrangian
descriptor, and eventually to the self-recurring patterns of a fractal structure.

Figure 5-2 also supports the observation of geometric structures at a
given time that are thinner near the dominant saddle compared to the lower
energy saddle. In Figure 5-2(a), when the right barrier is dominant, particles
initialized near the higher saddle start with higher potential energy and
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Figure 5-2: Phase-space structure for the time-dependent potential (5-1)

with 𝜔 = 𝜋 at 𝑡0 = 3/2 as revealed by the Lagrangian descriptor ℒ given
in Equation (3-8) with 𝜏 = 16. (a) Although the two geometric crosses
seen in Figure 5-1(b) are still present, they now exhibit a complicated
substructure involving a vast number of homoclinic and heteroclinic points
as well as homoclinic and heteroclinic orbits. The potential at time 𝑡0 is
indicated in the top right inset. (b)–(d) The progressively zoomed cutouts
exhibit self-recurring structures. Labels in the top right corners indicate the
corresponding enlargement from the previous zoom level.

therefore have a lower chance of being reflected. As a result, fewer of these
particles linger in the interaction region and the phase-space structures
are thinner. While this may be an interesting observation, the geometric
cross near the dominant barrier is still highly fractal. There are no isolated,
weakly fractal geometric crosses that could reasonably be tracked numerically.
Consequently, we cannot make meaningful statements about a globally
recrossing-free DS.
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(c) Slow driving frequency

The previous sections have shown the range of complexity the model sys-
tem (5-1) can exhibit. We now need to move from the aesthetically pleas-
ing structures of Figure 5-2 to a more rigorous identification of the glob-
ally recrossing-free DS. To do so, we switch to a lower driving frequency
𝜔 =𝜋/10, which is simpler to analyze but still exhibits nontrivial behavior.
Additionally, we employ the concept of reactive regions as described in Sec-
tions 3-2 (b) and 5-1 instead of the Lagrangian descriptor. The partitioning
of the phase space into nine distinct regions allows us to make quantitative
assessments more easily.

Application of this analysis to 𝑉(𝑥,𝑡) with 𝜔 =𝜋/10 leads to the time-
dependent regions shown in Figure 5-3. Although fractal-like structures still
remain, they are less pronounced and mostly concentrated around whichever
saddle happens to be the lower saddle at a given instance. The higher saddle,
on the other hand, is accompanied by a clearly visible geometric cross where
the four regions known from the one-saddle case (no intermediate states)
meet. The regions are also arranged in the same way: R→P on top, R→R
to the left, P→P to the right, and P→R below. In the following, we refer to
this geometric cross as the primary geometric cross.

5-3 Geometric cross

We will now analyze the primary geometric cross and its associated TS
trajectory in more detail. Its time-dependent position can be tracked precisely
over a full period using the algorithms described in Section 3-3. Interestingly,
even a given geometric cross is not entirely free of substructures. Instead, it
features a fractal-like set of crossing manifolds in its close proximity. Since
these additional structures are extremely thin, however, they do not hinder
the BCM from finding the desired geometric-cross coordinates up to the
desired precision which may be even smaller than the width of some of the
substructures. The result is marked as a series of black dots in Figure 5-3.
The corresponding trajectory connecting those dots is indicated as a black
dashed line.

(a) Global transition-state trajectory

The primary geometric cross associated with the instantaneously higher
saddle in Figure 5-3 remains on the barrier nearly as long as the barrier
remains dominant. However, when the barriers’ heights approach each other,
the geometric cross quickly moves from one barrier to the other in the
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Figure 5-3: Reactive regions for potential (5-1) with 𝜔 =𝜋/10 as a func-

tion of time 𝑡0 (cf. center panel). Trajectories that cross the minimum 𝑛∗ = 8
times are assumed to be captured between the barriers. The color legend
at the top indicates whether a particle starts or ends in the reactant (R),
intermediate (I), or product (P) state. The position of the point on the NHIM
associated with the primary geometric cross (black dot) is tracked across a
full period (TS trajectory, black dashed line). The insets in the upper right
corner of each panel illustrate the potential at the corresponding initial
time 𝑡0.
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Figure 5-4: Examples of typical periodic trajectories 𝑥(𝑡) with periods

𝑇2 = 40 (blue) and 𝑇3 = 60 (red) for potential (5-1) with 𝜔 = 𝜋/10. The
primary TS trajectory from Figure 5-3 with period 𝑇1 = 20 (black dashed
line) is shown for comparison.

following way. The geometric cross begins to rapidly accelerate towards the
middle (𝑥 = 0). It crosses the local potential minimum exactly when both
saddle points are level (e. g., 𝑡0 = 10) and continues in the same direction
until it is located near the now higher saddle (e. g., 𝑡0 = 15). The reverse
happens in the following half period, thereby forming a closed trajectory with
the same period 𝑇1 = 20 as the potential 𝑉(𝑥,𝑡) (dashed line in Figure 5-3).

This primary geometric cross marks the position of a particle on an
unstable periodic trajectory trapped in the interaction region. The particle
on this trajectory oscillates between the saddles with a period of 𝑇1 = 20
so that it is always located near the higher saddle. Many other unstable
periodic trajectories associated with geometric crosses— i. e., hyperbolic
fixed points— in phase space have also been found for particles in the
interaction region. Two such trajectories are shown in Figure 5-4. They
are typical of an increased degree of structure relative to the primary TS
trajectory. All such trajectories together form the system’s disjoint, fractal-
like time-dependent NHIM. In contrast to the primary TS trajectory, however,
all other trajectories have periods larger than 𝑇1. The only exceptions to
this observation are the local TS trajectories in the vicinities of the saddle
maxima, which are also part of the global NHIM. These trajectories have the
same period 𝑇1 as the potential by construction.

The complex dynamics that arises from themoving barriers is also affected
by the degree to which a given trajectory is decoupled from the barriers as
it traverses the well between them. Although the energy of the minimum
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1Figure 5-5: (a) Position 𝑥DS and (b) percentage of trajectories with
recrossings or classification errors as a function of time 𝑡0 for various choices
of their assignment as reactive or nonreactive. The assignment is performed
according to the crossing of a specified DS associated with either the local
(solid) or global (thick dashed) TS trajectories, the instantaneous potential
minimum between the saddles (dotted), or the discontinuous TS trajectory
jumping between the local ones (dash-dotted). For every 𝑡0, an ensemble
of 106 particles with uniformly distributed velocities 1.7 ≤ 𝑝𝑥(𝑡0) ≤ 2.1 is
initialized at 𝑥(𝑡0) =−3 and propagated for 𝛥𝑡 = 80 time units. The attached
DS is parallel to 𝑝𝑥 for all times. The right local DS is recrossing-free by
construction since particles are started solely to the left of the saddles and is
therefore not shown in panel (b). This specific choice for the ensemble is
also the reason for the graph’s asymmetry.

stays roughly constant, as indicated in Figure 5-3, its position moves back
and forth between the barriers as shown in Figure 5-5(a) so that it is always
closer to the lower barrier. This can be seen as a manifestation of Hammond’s
postulate [221] applied to the intermediate state and the local TSs. Hammond
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conjectured that two consecutive states with similar energy content will
likely have a similar molecular structure. We can thus assume that the
driving in a corresponding real chemical reaction will time-dependently
morph the molecular structure of the intermediate state towards the TS of
the instantaneously lower barrier.

When the first (left) barrier dominates the dynamics, a locally nonrecross-
ing DS associated with it identifies the trajectories with sufficient energy to
cross it, and those continue unabated across the well and the second barrier.
As a consequence, a DS located at the central well identifies the reactive
trajectories equally well (or badly) in this regime. This is demonstrated in
Figure 5-5(b) by good identification when the activated particle continues
past the second barrier and by rising error quotients when misidentification
of trajectories begins to be reflected across both. When the second (right)
barrier dominates the dynamics, identifying reactive trajectories at a DS
at the well allows the evolving trajectories to be reflected by the barrier
leading to recrossings. Thus, we find that the reaction dynamics in between
the barriers—e. g., at the well—does not go through a single identifiable
doorway. In turn, this points to the need for describing the dynamics—even
in a local sense— through a geometric picture that spans the two barriers,
i. e., the global NHIM.

Meanwhile, since the NHIM now consists of more than one trajectory, it
is not necessarily obvious which of these is most suited for attaching a global
DS. We can, however, set conditions the global TS trajectory should fulfill.
First, for symmetry reasons, the trajectory should have the same period
𝑇1 = 20 as the potential. Second, the global TS trajectory should approach
the higher saddle’s local TS trajectory in the (quasi-)static limit 𝜔→0 [cf.
Section 5-2 (a)]. The only trajectory found that matches both criteria is the
primary TS trajectory introduced previously, see Figure 5-5(a). The large
featureless regions surrounding the trajectory in phase space additionally
suggest that it affects a significant fraction of the system’s dynamics. We will
therefore refer to this trajectory as the global TS trajectory.

(b) Comparison of dividing surfaces

The next task is to determine the degree to which the global TS trajectory
gives rise to a recrossing-free DS. Numerically, this can be tested by attaching
a DS to it as specified in the caption of Figure 5-5, propagating an ensemble
initialized near it, and recording the number and direction of DS crossings (or
not) that transpire thereafter in the propagated trajectories. For simplicity,
we consider only the most challenging cases in which the ensemble’s initial
energies are chosen to be between the saddles’ minimum and maximum
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heights. The usual error in the DS is signaled by the existence of more than
one crossing for the trajectories, and the fraction of such recrossings is used
below as a measure for the DS’s quality.

For simplicity, we limit ourselves to DSs defined by 𝑥 = 𝑥DS(𝑡), i. e.,
parallel to 𝑝𝑥. The results of this analysis are shown in Figure 5-5(b). As
can be seen, the global DS associated with the time-dependent geometric
cross features error rates that are significantly reduced compared to the
local DS fixed at the left barrier. One possible DS could be constructed by
placing it at the instantaneous potential minimum—shown as the dotted
curve in Figure 5-5(a). It would be expected to be ineffective given that rates
are usually determined by rate-limiting barriers, not valleys, in between
reactants and products. Indeed, the recrossing errors found for this DS,
shown in Figure 5-5(b), were high and even worse than those from the use
of the DS fixed at the left barrier. But the highest error rate comes from the
naive attempt to treat the DS associated with the instantaneously higher
saddle point as the global one. In this case, errors can arise from events
beyond the recrossing of the DS. That is, there now exists the possibility that
the discontinuous instantaneous DS can jump over the trajectory. It is the
combination of recrossing and classification errors that leads to the jagged
and large deviations in the % error seen for the naive discontinuous DS. As
discussed in Appendix A, this can lead to misclassification of the reactivity of
the trajectory.

Finally, we consider a local DS fixed at the right barrier. This choice would
lead to no recrossing or classification errors for trajectories moving in the
forward direction (from reactants to products). However, it would fail badly
for trajectories moving in the backward direction by symmetry with our
finding for the forward trajectories crossing the DS at the left barrier. Thus,
the use of the global DS associated with the TS trajectory best captures the
time-dependent geometry of the reaction.

Although this TS-trajectory DS is much better than any alternatives con-
sidered so far, it still exhibits an amount of recrossings that cannot be
explained by numerical imprecision alone. Instead, recrossings are caused
by the fractal-like phase-space structure of the system: Figure 5-6(a), for
example, shows the phase-space structure at time 𝑡0 = 0.25. We can see a
relatively large patch of nonreactive reactants (labeled R→R, light blue)
to the right of the DS. Particles in this patch leave the interaction region
to the reactant (left) side forward and backward in time. Consequently,
they need to cross the DS at least twice, which counts as a recrossing. An
analogous argument can be applied to P→ P regions to the left of the DS.
The fractal-like phase-space structure thus leads to numerous problematic
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Figure 5-6: Reactive regions analogous to Figure 5-3 at 𝑡0 = 0.25 with the

addition of the DS (solid black line). (a) The simplest choice of a DS parallel
to 𝑝𝑥 leads inevitably to recrossings as indicated. (b) The immediate region
of the TS trajectory [shown as a dot in panel (a)] is enlarged to reveal the
geometry of the ensemble (densely dotted) used in the rate calculations of
Section 5-4. The ensemble is sampled equidistantly on a line parallel to the
unstable manifold 𝒲u at distance 𝑥−𝑥‡ =−1×10−3 from the TS trajectory
at 𝑥‡(𝑡0). The manifolds 𝒲u and 𝒲s are given by the boundaries between
reactive and nonreactive regions. The differential of 𝒲u is indicated by the
sides 𝛥𝑥 and 𝛥𝑝u

𝑥 of the slope.

patches of vastly different sizes. Hence, two distinct peaks appear in the
classification error reported in Figure 5-5(b).

A totally recrossing-free DS, by contrast, would necessarily have to divide
the phase space such that R→ R regions are always on the reactant side,
and P → P regions always on the product side. This is not possible with
a planar DS of any orientation due to the system’s fractal-like nature. A
globally recrossing-free DS— if it exists—would have to curve as time
passes because the entirety of the phase space between the saddle points has
a clockwise rotating structure (including periodic trajectories on the NHIM,
cf. Figures 5-3 and 5-4). The periodicity of this system would then result in a
fractal, spiral-like DS. Thus, the next step in generalizing this theory would
require the identification of a nonplanar DS anchored at the TS trajectory
which we leave as a challenge to future work.
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5-4 Decay rates

We can now calculate decay rates 𝑘 for the activated complex using the global
TS-trajectory DS defined in Section 5-3. The patches leading to recrossing [cf.
Section 5-3 (b)] are unproblematic in this case because the ensemble was
selected close to the NHIM and thereby necessarily far from them, as can be
seen in Figure 5-6. The few recrossings that do still occur are artifacts from
the numerical error in the propagation, and are sufficiently small in number
that their effect is smaller than the numerical precision of the calculation.

In the following, we consider the three different possible approaches
defined in Section 3-5 in order to demonstrate their equivalence in multi-
saddle systems. An example for the initial reactant ensemble and manifold
geometry can be found in Figure 5-6(b). While the application of the LMA
and the Floquet method to our model system are straightforward, applying
the ensemble rate method poses a challenge: A finite ensemble of reactants
—e. g., of size 105 as implemented here—will mostly react within a short
time—e. g., 2 to 5 units of time in the case shown here—compared to the
period of driving 𝑇1 = 20. Resolving the whole period with a single ensemble
would therefore require an exponentially growing ensemble size. This would
not be numerically feasible. Instead, multiple ensembles have been started at
times 𝑡𝑗 incremented at equal intervals 𝛥𝑡 = 1. An instantaneous rate 𝑘e(𝑡; 𝑡𝑗)
can be obtained for each ensemble 𝑗. The instantaneous rate for the whole
period 𝑘e(𝑡)—independent of 𝑡𝑗 —can then be recovered by concatenating
the segments of each 𝑘e(𝑡; 𝑡𝑗) for 𝑡 from 𝑡𝑗 to 𝑡𝑗+1. Compared to the first
option, this approach scales linearly with the system’s period instead of
exponentially leading to vastly decreased computing times and increased
numerical stability.

The results are shown in Figure 5-7. Since the ensemble and manifold
rates 𝑘e(𝑡) and 𝑘m(𝑡) are not constant in time, we additionally show the
average

⟨𝑘⟩𝑡 =
1
𝑇1

∫
𝑇1

0
d𝑡𝑘(𝑡)(5-2)

over one period 𝑇1 of the TS trajectory.
Figure 5-7 shows a large variation in the instantaneous reaction rate

in the interval 0.13 ≲ 𝑘(𝑡) ≲ 3.85. Two features are distinctive. First, the
rate 𝑘(𝑡) shows mostly flat plateaus during the time the TS trajectory is
located near a saddle. This can be explained using Figure 5-3: Although the
phase-space structure as a whole is undergoing significant changes during,
e. g., 2.5 ≤ 𝑡 ≤ 7.5, the local vicinity around the TS trajectory stays almost
unaffected. Second, there are deep dips in 𝑘(𝑡) while the TS trajectory
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Figure 5-7: Various instantaneous reaction rates 𝑘 parameterized by

time 𝑡 and associated with the global TS trajectory of the potential (5-1)
with 𝜔 =𝜋/10, and driving period 𝑇1 = 20. The ensemble rate 𝑘e(𝑡) (blue
solid) is obtained by propagation of 20 ensembles of 105 particles each as
described in Section 3-5 (a). The manifold rate 𝑘m(𝑡) (yellow dashed) is
obtained using Equation (3-13). The Floquet rate constant 𝑘F (green dotted)
is obtained from Equation (3-24). The mean rates ⟨𝑘e⟩𝑡 and ⟨𝑘m⟩𝑡 (thick
horizontal lines) are averaged over the period as defined in Equation (5-2).
For comparison, the Floquet rate constant 𝑘loc

F (red dash-dotted) of a single
barrier’s local TS trajectory is also shown.

moves between the saddles (as seen at around 𝑡 ∈ {10𝑗| 𝑗 ∈ ℤ}). As can be
seen in Figures 5-3 and 5-6, these times are characterized by much more
shallow geometric crosses with a low difference in the slopes of the stable
and unstable manifolds. This effect is particularly apparent in Figure 5-6(b).

The same observations can also be interpreted another way. By comparing
Figure 5-7 to Figure 5-5(a), we can see a clear correlation between the
velocity of the TS trajectory and the instantaneous rate 𝑘(𝑡): the faster the
TS trajectory moves, the lower the rate drops.

As can be seen in Figure 5-7 and Table 5-1, ⟨𝑘e⟩𝑡, ⟨𝑘m⟩𝑡, and 𝑘F are in
excellent agreement, which illustrates the equivalence of all three methods.
The local Floquet rate constant 𝑘loc

F of a single saddle, on the other hand,
differs significantly from 𝑘F, even though both saddles are identical. While
the local rate constant can thus be used as an upper limit for the overall rate
constant, there is no straightforward way to derive a global rate constant
from it. Thus, global methods employing the full TS trajectory are necessary
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Table 5-1: Values of the decay rate constants discussed in Figure 5-7.
The averaged ensemble and LMA rate constants ⟨𝑘e⟩𝑡 and ⟨𝑘m⟩𝑡 match the
Floquet rate constant to within less than +0.1%. The local (single barrier)
Floquet rate constant, however, differs by +27%.

Description Symbol Value
Global TS trajectory

ensemble propagation ⟨𝑘e⟩𝑡 2.7055
manifold geometry (LMA) ⟨𝑘m⟩𝑡 2.7062
Floquet stability analysis 𝑘F 2.7036

Local TS trajectory
Floquet stability analysis 𝑘loc

F 3.4384

if accurate rates for multi-saddle systems are desired. All three methods in
this section satisfy this requirement, and are consequently in agreement.

5-5 Conclusion and outlook

In this chapter, we have characterized the reaction geometry and determined
the associated decay rates in an oscillatory (or time-dependent) two-saddle
system.

The first set of central results of this work lies in revealing the phase-space
structure of the two-saddle model system. While the structure of stable and
unstable manifolds is straightforward for (quasi-)static (𝜔→0) or very fast
(𝜔 → ∞) oscillating systems, intermediate frequencies lead to a fractal-
like phase space. In this case, the existence of a completely recrossing-free
DS is questionable. For lower oscillation frequencies, however, an isolated
geometric cross with negligible substructure—referred to as the primary
geometric cross—emerges. This structure is part of the NHIM and can
now be referred to as a global TS trajectory in contrast to the local TS
trajectories associated with the respective single barriers. The global TS
trajectory oscillates between the two local TS trajectories with the same
frequency as the potential and can be used to attach a mostly recrossing-free
DS.

The second set of central results of this work involves the determination
of the decay rates of the oscillatory (or time-dependent) two-saddle model
system. Using the DS acquired in the first part, we can propagate ensembles
of particles, record a time-dependent reactant population, and finally derive
an instantaneous reaction rate parameterized by time according to Refer-
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ence [2]. Alternatively, the same result can be achieved purely by analyzing
the time-dependent phase-space geometry. For comparison, a rate constant
can be obtained from the global TS trajectory by means of Floquet stability
analysis. This method is in excellent agreement with the average of each
instantaneous rate.

While these results mark an important step in the treatment of time-
dependent multi-saddle systems, many questions still remain unanswered:
First, we restricted ourselves to two-saddle systems with one DoF. To be
applicable to real-world systems, however, the methods presented here will
have to be generalized at least to more DoFs because few chemical reactions
can be treated accurately when reduced to just one coordinate. Second, it
will be important to investigate the influence of minor manifold crossings on
the rate constant. This is particularly necessary for cases of time-dependent
barriers found here in which there is no longer an equivalent to the primary
geometric cross. This is even more challenging when the alternation between
barriers is driven at high frequencies (cf. Figure 5-2).

The applicability of our results to real-world systems also remains to be
demonstrated. It remains unclear whether it is possible to treat systems with-
out a primary geometric cross. That chemical reactions can be represented
with potentials exhibiting the challenges discussed here, is illustrated by
the isomerization of ketene via formylmethylene and oxirene which has
been modeled via a four-saddle potential [169, 199–202]. The isomerization
reaction of triangular KCN via a metastable linear K C N configuration can
similarly be described by a two-saddle system [197, 198]. Thus, the analysis
of time-dependent driven potentials resolved here, when applied to these
and other chemical reactions, should provide new predictive rates for driven
chemical reactions of interest.
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The Moon’s Influence on
Stability near Sun–Earth L₂

6
Essential parts of this chapter have previously been published by the
author in Reference [6].

It is well known that a balance of forces between bodies in space can lead
to stable or unstable fixed points in which a small body, such as a craft
or satellite, experiences no net forces in a particular moving frame. The
geostationary points arising from the cancellation of the gravitational force
of the Earth and a satellite’s centrifugal force is a well-known example. At
these fixed points, the satellite remains forever fixed above a particular
point on the Earth’s surface as both rotate in tandem. Five fixed points
are known to exist in the circular restricted three-body problem (CR3BP),
where a probe of negligible mass is considered moving under the influence
of two primary bodies such as the Sun and the Earth. These fixed points are
called the libration or Lagrange points 𝐿1 to 𝐿5 [222, 223], as schematically
illustrated in Figure 6-1(a). The three collinear libration points 𝐿1 to 𝐿3 are
unstable because small deviations from the exact position increase with time
leading to the decay of the satellite away from them. However, the other two
triangular libration points 𝐿4 and 𝐿5 can be stable because of the effects of
the Coriolis force if the ratio of the masses of the two primaries is sufficiently
large [222, 224]—as is the case for our Solar System.

The dynamics of planetary systems becomes much more complicated as
soon as a third primary such as the Moon is considered [225–229]. In this
case, the stability and position of the libration points in the rotating frame
are influenced by the Moon’s gravitational force. That is, the Moon’s rotation
around the Earth causes a time-dependent periodic driving of the satellite,
and it is a nontrivial question whether or not the satellite can still stay
forever in the local vicinity of a libration point. In this chapter, we address
this question with respect to the libration point 𝐿2. We characterize the
dynamics and stability of a satellite near this point in a generic star–planet
system while explicitly considering the effects from a moon’s rotation around
the planet. The dynamics near the unstable libration points is determined
by a rank-1 saddle of the potential. Therefore, to investigate the dynamics
close to the saddle we again resort to the use of TST [19, 26, 35, 38, 40, 43].
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Figure 6-1: (a) Schematic of a generic solar system in the CR3BP.

A star and its planet are on circular orbits about their mutual barycen-
ter. (b) Schematic of a generic solar system in the BCR4BP. A planet and its
moon are on circular orbits about their mutual barycenter. This planet–moon
barycenter and the star both move around the total center of mass. In both
cases, (a) and (b), other bodies—e. g., satellites or asteroids—are assumed
to have negligible mass. All orbits are coplanar. Without the moon, the system
is known to give rise to the five libration points, marked 𝐿1 to 𝐿5, associated
with the stability of additional objects such as a satellite or asteroid. The
unstable point 𝐿2 is the focus of this work. In the special case of our Solar
System, these bodies refer to the Sun, the Earth and the Moon. Here, we
consider a broader range of cases and list the corresponding parameters in
Table 6-1.

6-1 Solar system model

We focus on planetary systems with three primary bodies to illustrate the
use of TST in celestial mechanics [6, 60]. Unfortunately, there does not
exist a general closed-form solution for such three-body problems [230] that
would provide a rigorous benchmark. We therefore base our calculations
on the well-known bicircular restricted four-body problem (BCR4BP) which
models three primaries on fixed circular orbits in the same two-dimensional
plane [225–228]. The two lighter primaries— referred to as planet and
moon—orbit their mutual barycenter in an inner nested two-body problem.
In turn, this planet–moon barycenter and the heaviest primary— the star—
orbit the total system’s center of mass as shown in Figure 6-1(b). Although
this center of mass is itself a barycenter for the whole system, we will avoid
referring to it as such through the text to avoid confusion. In the outer nested
two-body problem, the planet and moon are treated as a single body located
at their barycenter. The dynamics of the probe body (for example an asteroid
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or satellite) is governed by the primaries’ gravitational forces. Its mass is
assumed to be so small that its gravitational force on other bodies can be
neglected.

(a) Libration points in the star–planet system

A system consisting of two bodies interacting via gravitational forces— in
our case a star and a planet— features five points where the gravitational
forces and the centrifugal force on a probe mass nullify each other. These
equilibrium points are called the libration or Lagrange points 𝐿1 to 𝐿5. Fig-
ure 6-1 schematically shows the position of 𝐿1 to 𝐿5 relative to the celestial
bodies. The libration points rotate with the same frequency as the primaries,
and therefore the probe mass’ position relative to the bodies is constant. This
makes them very interesting for space exploration and research [231–233].
Adding a lighter third primary— i. e., a moon orbiting the planet—causes
a time-dependent perturbation of the libration points. See Section 6-3 for a
more detailed discussion.

The libration points differ by their stability properties. The local potentials
near 𝐿1 to 𝐿3 are rank-1 saddles with one unstable DoF in the radial direction
and one stable DoF perpendicular to the radial direction. Trajectories near
𝐿1 to 𝐿3 are therefore unstable. The libration points 𝐿4 and 𝐿5 show as rank-2
saddles with two unstable directions. Contrary to first intuition, however,
trajectories near 𝐿4 and 𝐿5 are Lyapunov stable for sufficiently large star–
planet mass ratios [222, 224] because of the contributions from the velocity-
dependent Coriolis force [224, 234]. However, trajectories near the collinear
libration points 𝐿1 to 𝐿3 are not stabilized in similar fashion despite the
effects from the Coriolis force.

In this chapter we focus on the stability of satellites near 𝐿2 and how they
are influenced by a moon. In our Solar System, 𝐿2 is especially interesting
for astrophysics since it is located far enough from Sun, Earth, and Moon to
minimize noise but still close enough to Earth for communication. It has been
the target of multiple past and present space missions, e. g., the Wilkinson
Microwave Anisotropy Probe [112], the Herschel mission [113], the James
Webb Space Telescope [114], and the Planck spacecraft [115]. In addition, it
features a rank-1 saddle which can be readily described using the framework
of TST as summarized in Chapter 2.

(b) Parameters and model variants

We use dimensionless units derived from a synodic reference frame with
respect to the star and the planet–moon barycenter. The star–barycenter
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Table 6-1: Summary of the configuration parameters and derived values
used in the strong-driving and Solar System models considered here. We use
dimensionless units derived from a synodic coordinate system with respect
to the star and the planet–moon barycenter. The star–barycenter distance,
star–barycenter angular frequency, and total mass of all primaries are used
as units for length, frequency, and mass, respectively. The satellite is assumed
to be an infinitesimal mass point. Its mass gets canceled from the equations
of motion, and there is no need to specify it. See Section 6-1 (c) for further
details.

Description Symbol Strong driv. Solar System

planet–moon distance 𝑎 0.1 2.570×10−3

primary mass param. 𝜇 0.1 3.040×10−6

secondary mass param. 𝜇̃ 0.1 1.215×10−2

star mass 𝑀S = 1−𝜇 0.9 0.999997
barycenter mass 𝑀B =𝜇 0.1 3.040×10−6

planet mass 𝑀P =𝜇(1− 𝜇̃) 0.09 3.003×10−6

moon mass 𝑀M =𝜇𝜇̃ 0.01 3.695×10−8

synodic moon frequency 𝜔 =√𝜇/𝑎3−1 9 12.387

distance, the star–barycenter angular frequency, and the total mass of all
primaries act as units for length, frequency (inverse time), and mass, respec-
tively. The gravitational constant follows as 𝐺 = 1. In this coordinate system,
the total center of mass is at the origin with the star and the barycenter
located at (−𝜇,0)T and (1−𝜇,0)T, respectively. The primary mass param-
eter 𝜇 is defined as the barycenter mass (i. e., sum of planet and moon
mass) in units of the system’s total mass. The planet and moon orbit with
distance 𝑎 and angular frequency 𝜔 around their barycenter. The secondary
mass parameter 𝜇̃ is defined analogously as the moon mass divided by the
barycenter mass, cf. Table 6-1.

The BCR4BP is only an approximation to the real dynamics. We can
recover strict Newtonian motion of the primaries by removing the moon,
i. e., by setting 𝜇̃ = 0. This limiting case is equivalent to the CR3BP and will
be referred to as the time-invariant or static system because the resulting
potential is time-independent in the synodic frame. In contrast, models with
𝜇̃ ≠ 0 will be called driven. Although the star’s position can still be fixed,
the moon now perturbs the potential time-dependently even in the synodic
frame; the planet moves as well to balance the moon’s motion.
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In this work, we consider two parameterizations of the BCR4BP listed in
Table 6-1:

1. In the strong-driving model, the mass parameters are taken as 𝜇 = 𝜇̃ =
0.1 and the planet–moon distance as 𝑎 = 0.1. The chosen values lead
to a stronger perturbation of 𝐿2 and allow for easier visualization. This
parameter set is characteristic of the more extreme mass ratios that
have been observed in extrasolar systems. An example is the brown
dwarf 2M1207A and its companion planet 2M1207b [235] located in
the constellation Centaurus with masses around 60𝑀J and 5𝑀J (𝑀J
being the Jovian mass), respectively. Therein the mass parameter is
𝜇 ≈ 0.077, which is comparable to the value in our parameter set.

2. In our Solar System, the masses of the Sun, the Earth, the Moon, and
the relative distances between them are well known. It provides a
comparison to the strong-driving model, and demonstrates the appli-
cability of our methods.

(c) Potential and equations of motion

The bodies have normalized masses

𝑀S = 1−𝜇 , 𝑀B =𝜇 , 𝑀P =𝜇(1− 𝜇̃) , and 𝑀M =𝜇𝜇̃ , (6-1)

where

0≤ 𝜇, 𝜇̃ ≤ 1 and 𝑀S+𝑀B =𝑀S+𝑀P+𝑀M = 1 . (6-2)

They are located at positions

𝑹S =−𝜇𝒙̂ , 𝑹B = (1−𝜇)𝒙̂ ,
𝑹P =𝑹B−𝑎𝜇̃𝜽̂ , and 𝑹M =𝑹B+𝑎(1− 𝜇̃)𝜽̂ ,

(6-3)

where

𝜽̂ =(cos𝜃
sin𝜃) with 𝜃 =𝜔𝑡 and 𝜔 =√𝜇/𝑎3−1 , (6-4)

in the synodic coordinate system. Using the position of the satellite 𝒓 relative
to the primaries

𝒓𝑘 = 𝒓 −𝑹𝑘 for 𝑘 ∈ {S,P,M} , (6-5)
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Figure 6-2: Effective potential 𝑉eff(𝑥,𝑦,𝑡) according to Equation (6-6) at

𝑡 = 3𝑇/8 for the strong-driving model. The color map is capped at 𝑉eff =−12
since the potential is divergent at the positions of the system’s star, planet,
and moon (filled yellow circles). A cross indicates the dynamical position
of the saddle point near 𝐿2. We caution the reader that this point does not
necessarily correspond to an equilibrium position due to the potential’s time
dependence. More equipotential lines are shown near 𝐿2 to elucidate the
saddle structure.

the effective potential can be written as

−𝑉eff =𝛺=
𝑟2

2
+
1−𝜇
𝑟S

+
𝜇(1− 𝜇̃)

𝑟P
+
𝜇𝜇̃
𝑟M

.(6-6)

This potential for the parameters of the strong-driving model is shown in
Figure 6-2.

The equations of motion for 𝒓 = (𝑥,𝑦)T can be derived from the effective
potential as

𝑝̇𝑥 = ̈𝑥−2𝑦̇ =
𝜕𝛺
𝜕𝑥

and 𝑝̇𝑦 = 𝑦̈+2𝑥̇ =
𝜕𝛺
𝜕𝑦

,(6-7)
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where

𝜕𝛺
𝜕𝑗

= 𝑗 −∑
𝑘∈{S,P,M}

𝑀𝑘

𝑟3𝑘
𝒓𝑘 ⋅ ̂𝒋 for 𝑗 ∈ {𝑥,𝑦} . (6-8)

The terms −2𝑦̇ and +2𝑥̇ in the equations of motion (6-7) account for the
Coriolis force.

The second-order equations of motion can be reformulated as a first-order
system

𝑥̇ = 𝑣𝑥 , 𝑦̇ = 𝑣𝑦 , 𝑣̇𝑥 = ̈𝑥 , and 𝑣̇𝑦 = 𝑦̈ (6-9)

with ̈𝑥 and 𝑦̈ given in Equation (6-7). The Jacobian 𝑱 of this first-order
system reads

𝑱 =
⎛⎜⎜⎜

⎝

0 0 1 0
0 0 0 1

𝐽𝑣𝑥,𝑥 𝐽𝑣𝑥,𝑦 0 2
𝐽𝑣𝑦,𝑥 𝐽𝑣𝑦,𝑦 −2 0

⎞⎟⎟⎟

⎠

(6-10)

with

𝐽𝑣𝑗,𝑗 =
𝜕 𝑣̇𝑗
𝜕𝑗

= 1+∑
𝑘∈{S,P,M}

[
3𝑀𝑘

𝑟5𝑘
(𝒓𝑘 ⋅ ̂𝒋)2−

𝑀𝑘

𝑟3𝑘
] for 𝑗 ∈ {𝑥,𝑦} (6-11a)

and

𝐽𝑣𝑥,𝑦 = 𝐽𝑣𝑦,𝑥 =
𝜕 𝑣̇𝑥
𝜕𝑦

= ∑
𝑘∈{S,P,M}

3𝑀𝐾

𝑟5𝑘
(𝒓𝑘 ⋅ 𝒙̂)(𝒓𝑘 ⋅ 𝒚̂) . (6-11b)

It describes the linearizedmotion of satellites relative to a reference trajectory
as required for decay rate calculations (cf. Section 3-5).

6-2 Reframing TST in terms of celestial mechanics

The star–planet–moon system—described by the effective potential (6-6)—
features a rank-1 saddle point at 𝐿2, as shown in Figure 6-2, which can
act as bottleneck of the dynamics. This makes it a prime candidate for the
application of TST models (see, e. g., References [58, 59, 236]). It may seem
strange at first to apply a framework developed in the context of chemical
reactions to an astrophysical problem. Many concepts from the geometrical
formulation of TST, however, bear a striking resemblance to those used in
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celestial mechanics. It is merely a matter of rephrasing the concepts of one
theory in the context of the other.

In typical scenarios for a chemical reaction, a rank-1 saddle point sep-
arates reactants from products, and can be used to characterize the flux
and associated reaction rate. In the planetary system, reactants roughly
correspond to satellites or asteroids inside the planet’s Hill sphere [223,
236], and the reaction corresponds to the escape from this sphere, or vice
versa. The unstable states between reactants and products form the TS.
Thus, geometrically, the TS is a boundary (or DS) between the reactant and
product regions which in the current context corresponds to the DS between
incoming or outgoing directions of the satellite. In planetary systems, this
includes all libration point orbits.

In the context of libration points, the terms reactive and nonreactive
can be reframed as transit and nontransit orbits, respectively [227, 237].
Trajectories on the stable manifold 𝒲s are bound to the saddle’s vicinity for
𝑡 →∞ while trajectories on the unstable manifold𝒲u are bound for 𝑡 →−∞.
These properties play an important role in the determination of efficient
transfer orbits for spacecrafts [227, 228, 237–239]. Even the concept of the
NHIM has previously been employed in celestial mechanics [226], although
not under that name. It plays an important role in determining whether a
given state is considered a reactant or product—viz., pre- or post-escape in
the present celestial models [58, 59, 236].

As usual, the reaction coordinate 𝑥 (in the rotating frame) describes
the saddle’s unstable direction and indicates the progress of the reaction.
Similarly, the stable direction 𝑦 is referred to as the orthogonal mode.

6-3 Dynamics on the NHIM and the L₂ orbit

The dynamics on the NHIM of the periodically driven model system takes
place in an effectively two-dimensional phase space. An established method
for the visualization of such systems is the stroboscopic map, a special case
of the PSOS. We propagate satellites on the NHIM. Instead of recording the
whole trajectory, however, we only record one point every system period 𝑇 =
2𝜋/𝜔. Trajectories with period 𝑇 therefore manifest as fixed points in the
PSOS (cf. Section 3-4).

Figure 6-3(a) shows the stroboscopic PSOS of the driven model system’s
NHIM around 𝐿2. One can see concentric toroidal structures, suggesting
regular behavior. Trajectories associated with these tori are mostly quasiperi-
odic. The tori surround an elliptic fixed point, whose associated periodic
trajectory is shown in Figure 6-4(a). This orbit has the same period as the
moon’s synodic orbit. It can be seen as the generalization of the static 𝐿2 point
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Figure 6-3: (a) Stroboscopic PSOS of the strong-driving model with

trajectories propagated over 100 periods on the NHIM starting at initial time
𝑡0 = 0. The system exhibits regular dynamics as shown by the concentric tori.
In its center, an elliptic fixed point (cross marker) reveals the existence of a
periodic orbit with the system’s period 𝑇. This periodic orbit replaces the
static 𝐿2 point from the CR3BP. Floquet rates 𝑘F of trajectories 𝜸

‡ started at 𝑡0
are underlaid. Their maximum coincides with the fixed point. (b) The Solar
System model exhibits the same qualitative behavior. The second-outermost
torus is highlighted in cyan; its trajectory is discussed further in Figure 6-4.

from the CR3BP. Similar observations have been made before, e. g., in Ref-
erence [226] for the triangular libration points. In the following, we will
therefore refer to this trajectory as the 𝐿2 orbit. It has been shown previ-
ously [2, 8, 87] that elliptic fixed points are typically associated with extrema
in the averaged decay rate. Consequently, there exists a region around the
fixed points with similar decay rates. Thus, to characterize the escape of
satellites in the present time-dependent system, we must first determine
the 𝐿2 orbit and then calculate the decay from it as we do in the following
section.

An analogous PSOS for the Solar System model is shown in Figure 6-3(b),
with the 𝐿2 orbit being shown in Figure 6-4(c). Both exhibit the same struc-
ture as the strong-driving model but with a much lower orbit diameter of
𝛥𝑥 ≈ 2.6×10−7 simulation units. This roughly corresponds to 40 km in
SI units, which is rather small considering the usual scales between bodies in
our Solar System. For comparison, Figure 6-4(e) shows the same 𝐿2 orbit but
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Figure 6-4: Selected orbits in position space 𝑥–𝑦 and their associated

decay rates 𝑘(𝑡). The orbits shown here correspond to the fixed points or are
highlighted in color in Figure 6-3. The positions at 𝑡0 = 0 are marked, with
satellites moving clockwise from there on. (a) The periodic orbit associated
with the 𝐿2 in the strong-driving model. Positions 𝑥−𝑥𝐿2

are relative to the
location of the 𝐿2 point in the CR3BP. (b) Instantaneous decay rate 𝑘m as a
function of time 𝑡 and averaged rate ⟨𝑘m⟩𝑡 for the trajectory from panel (a)
(solid and dashed dark blue). The decay rate constant 𝑘F of the corresponding
CR3BP is shown in light blue. (c) The periodic orbit in the Solar Systemmodel
analogous to panel (a). (d) Decay rates for the Solar Systemmodel analogous
to panel (b). (e) The quasiperiodic orbit highlighted in Figure 6-3(b). In
addition, the Solar System’s 𝐿2 orbit from panel (c) is shown as a small dot to
illustrate the vastly differing scales. (f) Analogous decay rates for panel (e).
The average decay rate (red dashed) for this orbit is lower than the rate for
the periodic orbit in panel (d). A longer time 𝑡 is shown as the rate, just like
its orbit, is quasiperiodic, even though the effect is hardly visible.
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Table 6-2: Numeric values for the averaged rate constants shown in
Figure 6-4 for the corresponding orbits shown in Figure 6-3. Not all possible
combinations of system, orbit, and method are listed because they were not
calculated so as to avoid the unnecessary computational expense.

Description Symbol Strong driv. Solar System (d−1)
𝐿2 orbit

ensemble propagation ⟨𝑘e⟩𝑡 3.628145
manifold geometry (LMA) ⟨𝑘m⟩𝑡 3.628115 8.549482×10−2

Floquet stability analysis 𝑘F 3.628116 8.549479×10−2

𝐿2 orbit, static system (𝜇̃ = 0)
Floquet stability analysis 𝑘F 3.618910 8.547117×10−2

Quasiperiodic orbit
manifold geometry (LMA) ⟨𝑘m⟩𝑡 8.228925×10−2

with the addition of the quasiperiodic orbit associated with the highlighted
torus from Figure 6-3(b). Two differences stand out: First, the diameter
of the quasiperiodic orbit is more than four orders of magnitude greater.
Specifically, it is about 382100 km wide in 𝑥 direction, which is very close
to the Earth–Moon distance of 384400 km in our model. Second, this orbit
does not feature a loop in its left half. Instead, it is merely oblate on the left
and prolate on the right-hand side of Figure 6-4(e), similar to the shape of
an egg.

6-4 Stability of satellites

At this point, we are able to analyze the stability of satellites close to the
𝐿2 in our system. For this purpose, we calculate decay rates of satellites
following the 𝐿2 orbit with the three methods presented in Section 3-5. The
ensemble rate method has been configured to propagate 32 ensembles of
1024 satellites each. The ensembles are initialized at a maximum distance
of 𝛿𝑥 = 2×10−4 simulation units from the 𝐿2 orbit. We use 𝛿𝑥 = 10−5 when
determining the slopes of the stable and unstable manifolds for the LMA.

The instability of the 𝐿2 orbits as determined by the decay rate is shown
in Figures 6-4(b) and 6-4(d). Numeric values for the averaged rate constants
are summarized in Table 6-2. As can be seen, all methods are in excellent
agreement. The relative deviation between mean rates in the driven system
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is

|
𝑘𝑎−𝑘𝑏
𝑘𝑏

| < 10−5 , where 𝑘𝑎,𝑘𝑏 ∈ {⟨𝑘e⟩𝑡, ⟨𝑘m⟩𝑡,𝑘F} .(6-12)

This confirms the accuracy of the results since all three methods have vastly
different numerical implementations.

We show results for both the 𝐿2 orbit of the driven system (with moon,
𝜇̃ > 0) and the 𝐿2 point of the static system (without moon, 𝜇̃ = 0) as defined
in Section 6-1. In the latter case, we restrict our analysis to the Floquet rate
method as the instantaneous rate in static systems is constant in time and
does not yield additional information.

In the comparison to the static system (𝜇̃ = 0) in Figure 6-4(b), we find a
+0.3% increase in the average decay rate of the driven system. That is, the
moon generally destabilizes satellites close to the 𝐿2 orbit. During one period
of the orbit, 𝐿2 is most stable around 𝑡 mod 𝑇 ∈ {0,𝑇/2}, i. e., when the
planet, moon and 𝐿2 are collinear. At these points in time, either the planet or
the moon are at their point of minimal distance from 𝐿2, therefore exerting
the strongest forces on satellites near 𝐿2. Stronger forces push the position
of 𝐿2 further out. This is consistent with the course of the 𝐿2 orbit shown in
Figure 6-4(a), which reaches maxima in 𝑥 around 𝑡 mod 𝑇 ∈ {0,𝑇/2}. The
lower decay rates entail that satellites near but not on the NHIM depart
slower from 𝐿2. Consequently, fewer course corrections are needed around
these points in time.

The limiting case that merges the planet and moon into a single effective
body can be achieved by setting 𝜇̃ = 0. This keeps the system’s total mass
fixed and only changes the mass distribution between planet and moon.
Alternatively, we can consider the case in which the star–planet mass ratio
𝑀S/𝑀P is kept fixed by setting the mass parameter 𝜇 = 0.09/0.99. The
resulting Floquet rate constant now reads 𝑘F ≈ 3.665. In this case, the
addition of a moon leads to a −1.0% decrease of the rate constant. Hence,
the effect of the moon is similar to a static system with an increased planet
mass. The resulting stronger forces being exerted on satellites push the 𝐿2
further out.

The calculations of the LMA rates and the Floquet rate constants were also
performed for the Solar System model. The results for the 𝐿2 orbit, shown
in Figure 6-4(d), are qualitatively identical to those of the strong-driving
model discussed above. The decay rate oscillations and the relative devia-
tion between the static and the driven systems, however, are quantitatively
smaller by an order of magnitude. In comparison, the quasiperiodic orbit
shown in Figure 6-4(e) exhibits two interesting properties: First, its decay
rate features much larger oscillations. This is consistent with the larger orbit
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diameter as a larger part of the phase space is traversed, and so more varied
structures may be taken into account. Second, the average decay rate is
about −3.7% lower compared to the 𝐿2 orbit which is large enough to have
significant influence on the stability of real-world satellites. This effect is
even more apparent in Figure 6-3, where colored backgrounds show the
average decay rates behind the PSOSs. The increased stability suggests that
the number and/or size of course correction maneuvers could be reduced by
parking satellites on one of the outer orbits around 𝐿2 instead of one close
to the 𝐿2 orbit.

6-5 Conclusion and outlook

In summary, we have demonstrated that the methods from TST can be used
to analyze the dynamics of satellites in planetary systems. Specifically, we
analyzed a generic solar system model based on the BCR4BP. We showed
how TST approaches can be used to elucidate the dynamics of satellites in
the vicinity of the star–planet libration point 𝐿2, and to determine the extent
to which they are influenced by the presence of a moon.

Two sets of parameters were investigated. The first was chosen to show a
more significant effect while still resembling real, experimentally observed
extrasolar systems. Although there has not yet been a confirmed moon
observed around exoplanets [240, 241], this work provides a basis for de-
scribing the 𝐿2 of such systems in the future. For comparison, the calculations
were repeated for parameters resembling our Solar System. Our calculations
revealed that—contrary to first intuition— the 𝐿2 orbit is not the most stable
configuration. In fact, orbits on the NHIM get less unstable the farther away
from the 𝐿2 orbit they are. We further found that a moon has a destabilizing
effect on satellites near 𝐿2 when compared to a system in which planet and
moon are merged into a single body. Interestingly, the decay rate when the
planet and moon are collinear with the star and 𝐿2 is lower than the average
rate, suggesting a reduced need for stabilization by a satellite at that instant.

The rate of instability calculated in this chapter describes how fast trajec-
tories depart from the invariant manifold at 𝐿2 when they are not located
exactly on said manifold. In principle, this rate therefore relates to the
amount of fuel needed to actively stabilize a satellite on a specific orbit.
When using system parameters typical of our Solar System, the methods
presented here could be used to optimize the orbits of satellites with respect
to fuel consumption.
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Kramers Rates of
Lithium-Cyanide Isomerization

7
This chapter is based on Reference [7] but provides additional data and
other enhancements to augment the analysis of the original publication.

We now return from our excursion to celestial mechanics in Chapter 6 and
turn towards chemistry again. Specifically, we look at the isomerization of
lithium cyanide as it has been the subject of previous studies [7, 116, 118–
120, 196] and thus allows us to compare our results. The lithium-cyanide
molecule consists of a lithium cation Li+ revolving around a cyanide anion
CN–. The ionic bond between Li and CN is fluxional, meaning that the lithium
can orbit the cyanide relatively easily [242]. This leads to two linear isomer
configurations

C N Li Li C N, (7-1)

where the lithium cation is bound to either the carbon or the nitrogen atom,
connected by a bridged form with the Li connected to both C and N.

In the following, we do not only consider the LiCN system in isolation,
but we account for an external argon bath [118, 119, 196] using the LE and
GLE formalisms described in Section 2-2. This is in contrast to References [8,
87], where the dynamics of an isolated lithium-cyanide molecule was inves-
tigated. References [8, 87] particularly focused on the stability of the TS as
revealed by decay rates and how they are influenced by an external driving.
Here, we instead focus on Kramers-style reaction rates, the difference of
which is discussed in detail in Section 2-3. Such rates have previously been
calculated by García-Müller et al. [118, 119, 196] using PGH theory and
AAMD simulations (cf. Section 2-3), by Junginger et al. [120] using LE and
GLE reactive-flux calculation, and by Schleeh et al. [7, 116] using MFPT [cf.
Equation (3-31)] rates based on the LE. However, some questions remained,
especially in the latter references; these will be taken up again below.

In this chapter, we investigate the MFPT reaction rate of lithium-cyanide
isomerization. Specifically, we focus on the backward reaction LiCN
LiNC. We make extensive use of Hartree atomic units, which are based on the
reduced Planck constant ℏ, the elementary charge 𝑒, the Bohr radius 𝑎0, and
the electron rest mass𝑚e. Units for energy and time follow as 𝐸h = ℏ2𝑚−1

e 𝑎−2
0

and ℏ𝐸−1
h , respectively.
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7-1 Lithium-cyanide model

The mathematical model this chapter is based on goes back to the work of Es-
sers, Tennyson, and Wormer [117, 243]. They performed self-consistent-field
calculations [244–246] to obtain the potential-energy surface 𝑉 for a 2-DoF
model of the LiCN molecule (cf. Appendix B). The following simplifications
were made:

• The center-of-mass motion is decoupled, which reduces the DoFs from
nine to six.

• The total angular momentum is assumed to be zero, reducing the
description to four DoFs.

• The resulting model is restricted to a two-dimensional plane, leaving
three DoFs.

• The triple bond of the cyanide compound C N is very rigid. Assuming
that its length is fixed to 𝑟NC = 2.186𝑎0 leads us to the final 2-DoF
model.

Figure 7-1 shows the resulting configuration. The coordinate system’s
origin in this model is placed at the cyanide compound’s center of mass.
The molecule’s state is then fully determined by the orientation 𝜗 of the
cyanide CN relative to the lithium atom and the distance 𝑅 of Li from the
origin. In these coordinates, the noiseless Hamiltonian reads

ℋ=
𝑝2
𝑅

2𝜇1
+

𝑝2
𝜗

2𝑚𝜗(𝑅)
+𝑉(𝑅,𝜗)(7-2)

with the canonical mass (moment of inertia)

𝑚𝜗(𝑅) =(
1

𝜇1𝑅2 +
1

𝜇2𝑟2NC
)

−1

(7-3)

and the reduced masses

𝜇1 =(
1
𝑀Li

+
1

𝑀C+𝑀N
)

−1

and 𝜇2 =(
1
𝑀C

+
1
𝑀N

)
−1

.(7-4)

In our calculations we assume pure 7Li, 12C, and 14N isotopes with atomic
masses [247] 𝑀Li = 7.016003u, 𝑀C = 12u, and 𝑀N = 14.003074u, respec-
tively.
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Figure 7-1: The LiNC LiCN isomerization model in Jacobi coor-

dinates. The origin of the space-fixed Cartesian coordinate system 𝑥–𝑧 is
placed at the cyanide compound’s center of mass. A body-fixed Cartesian
coordinate system 𝑥′–𝑧′ can be defined by rotating the space-fixed axes by
angle 𝛼 such that 𝑧′ is aligned with 𝑹. The bond between N and C is so rigid
that 𝑟NC = |𝒓NC| is constant in good approximation. In this body-fixed frame,
the Jacobi coordinates 𝜗 =∡(𝒓NC,𝑹) and 𝑅 = |𝑹| are sufficient to describe
the system’s configuration. The angles 𝛼 and 𝜗 are mutually dependent due
to angular momentum conservation.

The equations of motion follow from the Hamiltonian (7-2) as

𝜗̇ =
𝑝𝜗

𝑚𝜗(𝑅)
, 𝑝̇𝜗 =−

d𝑉(𝑅,𝜗)
d𝜗

+𝛯𝜗 ,

𝑅̇ =
𝑝𝑅
𝜇1

, and 𝑝̇𝑅 =
𝑝2
𝜗

𝜇1𝑅3 −
d𝑉(𝑅,𝜗)

d𝑅
+𝛯𝑅 ,

(7-5)

where 𝛯𝜗 and 𝛯𝑅 represent the appropriate noise and friction terms from
Equation (2-1) for the LE or Equation (2-3) for the GLE formalism. The
system’s mass matrix, which is required for the definition of 𝜩 = (𝛯𝜗,𝛯𝑅)

T,
reads 𝑴 = diag(𝑚𝜗,𝜇1).

Readers interested in a more in-depth description of the system, in-
cluding a derivation of the noiseless equations of motion, are referred to
Reference [87].
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Figure 7-2: Potential-energy surface 𝑉(𝜗,𝑅) as defined in Appendix B.

The system consists of two isomer configurations separated by a saddle
point at 𝑉(0.2922𝜋,4.2197𝑎0) = −0.22886𝐸h (cyan cross). The LiNC
configuration at 𝑉(𝜋,4.3487𝑎0) = −0.24461𝐸h is energetically favorable
while the LiCN configuration lies significantly higher at 𝑉(0,4.7947𝑎0) =
−0.23421𝐸h. The configurations for LiCN at 𝜗 = 0, an intermediate state
at 𝜗 = 𝜋/2, and LiNC at 𝜗 = 𝜋 are sketched in space-fixed coordinates
on the left-hand side. Their orientation 𝛼 changes depending on 𝜗 due to
conservation of total angular momentum.

The self-consistent-field potential 𝑉 [117] is shown in Figure 7-2. Two
local minima reveal the linear isomer configurations LiNC and LiCN, whereas
the saddle in between (cyan cross) corresponds roughly to the bridged
form. The LiNC configuration is the stable ground state. While preparing
Reference [7], we found that we were unable to exactly reproduce the figures
published in Reference [117] using the numeric parameters from the same
article. However, consensus could be achieved by adapting two parameters
that seemed to be misprinted. These findings—along with a reproduction
of the potential’s analytic form—are discussed in Appendix B.
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7-2 Summary of previous results

Initial investigations of MFPT rates in the LiNC LiCN system have pre-
viously been published in References [7, 116]. Therein, MFPT rates for the
backward reaction were calculated using memoryless LE simulations. The
results were compared against PGH calculations (cf. Section 2-3) with and
without memory [119] as well as reactive-flux calculations based on LE,
GLE [120], and AAMD [119] thermostats. All PGH rates [119] were based
on the GLE [cf. Equation (2-3)], but they used two different values for the
bath parameter 𝛼. Specifically, 𝛼 = 1.323×106 ℏ2𝐸−2

h was used to match
the memory observed in the AAMD simulations and 𝛼 = 1.5625ℏ2𝐸−2

h to
emulate a memoryless bath. The latter setting corresponds to a memory
timescale 𝜏 = 𝛼𝛾 = 7.8125×10−3 ℏ𝐸−1

h that is very short even for the high-
est friction 𝛾 = 5×10−3𝐸h ℏ

−1 considered here. For comparison, typical
first-passage times are 𝛥𝑡≫103 ℏ𝐸−1

h for all investigated parameter sets.
The results from Reference [7] are reproduced in Figure 7-3. First, the

PGH and MFPT rates 𝑘 parameterized by the friction 𝛾 were compared.
Figure 7-3(a) shows 𝑘(𝛾) for a memoryless solvent at temperatures between
300K and 600K. Both the PGH and the MFPT method manage to resolve
the turnovers. Their general shape matches very well; their scale, however,
differs significantly. Hence, the MFPT rates had to be divided by a factor of
5 in References [7, 116] and Figure 7-3(a) to compare the shapes. A similar
behavior can be observed at higher temperatures.

Figure 7-3(b) summarizes the temperature dependence of the maximal
rate at the turnover for the various methods mentioned above. As can be seen,
the PGH rates with and without memory match very well throughout the
temperature range, suggesting that memory effects do not play an important
role. They are also in good agreement with the AAMD rates, which indicates
that PGH theory may still be applicable in this system at temperatures well
above the barrier height [118]. The reactive-flux rates from Reference [120],
however, behave differently. Whereas GLE-based simulations yield reasonable
agreement with PGH and AAMD calculations, the usage of a memoryless
LE thermostat results in rates that are roughly half an order to an order
of magnitude too large. Reference [120] thus scaled them by a factor of
5, which inspired References [7, 116] to do the same for some of their LE
MFPT rates (cf. Figure 7-3(a)). While these MFPT rates—shown unscaled
in Figure 7-3(b)—mark an improvement over the LE reactive-flux rates,
they still deviate significantly from both the PGH and the AAMD rates. Thus,
it was suspected in References [7, 116, 120] that the missing treatment of
memory effects in the LE framework was responsible for this discrepancy
after all. PGH theory does not directly propagate ensembles of trajectories,
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Figure 7-3: Reproduction of the data from Figures 4 and 5 of Refer-

ence [7]. (a) Reaction rate 𝑘 of LiCN LiNC parameterized by friction 𝛾.
Markers show results from the MFPT/LE calculations. These rates have been
divided by 5 as in the original publication. Lines indicate unscaled rates
obtained from PGH theory with bath parameter 𝛼 = 1.5625ℏ2𝐸−2

h (almost
memoryless). (b) Rate maxima 𝑘 of LiCN LiNC as a function of temper-
ature 𝑇. The abbreviation “RF” means reactive flux. The PGH calculations use
𝛼 = 1.5625ℏ2𝐸−2

h for rates without and 𝛼 = 1.323×106 ℏ2𝐸−2
h for rates with

memory. See main text for more information on the different rate methods.
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Table 7-1: Influence of the potential of mean force on the PGH rate. The
rates based on the bare potential 𝑘bare [248] are higher than those based on
the potential of mean force 𝑘PMF [119] for all temperatures 𝑇 investigated
here. In all cases, we compare the rate at the Kramers turnover with bath
parameter 𝛼 = 1.323×106 ℏ2𝐸−2

h .

𝑇/K 𝑘bare/𝐸h ℏ
−1 𝑘PMF/𝐸h ℏ

−1

2500 4.448×10−5 3.947×10−5

3500 4.634×10−5 3.824×10−5

5500 4.145×10−5 2.887×10−5

so it might behave differently in this regard. Ultimately, we lacked the data
to proof or disproof this conjecture in Reference [7].

In addition to the discrepancy discussed above, Schleeh et al. [7] also
glossed over the fact that there are two types of potential-energy surfaces on
which LE and GLE calculations can be based. The basic surface as described
in Appendix B is known as the bare potential. It is determined purely from
self-consistent field calculations or similar methods and forms the basis for
our MFPT simulations, both old and new, as it is readily available. This
surface, however, neglects the effects of the solvent on the free energy, i. e., it
neglects how the presence of a solvent changes the effective potential-energy
surface [119]. To compensate, a so-called potential of mean force [249, 250]
can be used. This surface would be more accurate, but requires full AAMD
simulations to determine. Unfortunately, References [7, 116] are not clear
about this issue. They use the original PGH data from Reference [119], which
is based on the potential of mean force, for the high-temperature regime
with memory. Simultaneously, they add new PGH data at lower temperatures
and data without memory based on the bare potential. The impact of this
mishap is quantified in Table 7-1. Rates 𝑘PMF based on the potential of mean
force are clearly lower than their bare-potential equivalents 𝑘bare. Yet, this
difference is not nearly enough to explain the discrepancies seen in Figure 7-3.
So although this is a relatively minor issue with no qualitative impact on
the results and conclusions, the inconsistency should still be resolved. The
following sections will therefore only compare with bare-potential PGH
rates [248] to match the MFPT calculations.

A peculiar behavior in the low- to mid-temperature regime provokes
further suspicion: Figure 7-3(b) shows that the PGH rates closely follow the
Polanyi–Wigner rate [cf. Equation (C-2) in Section C-1] for temperatures 𝑘B𝑇
below the barrier height 𝐸‡. Meanwhile, the MFPT rates rise much earlier

7-2 Summary of previous results 103



0 1 2 3 4 5𝐸
‡
fit
𝑘B

𝐸
‡

𝑘B T / 103 K

0.0

0.5

1.0

1.5

2.0

2.5

𝑘/
10

−
4
𝐸 h

ℏ−
1

1
Figure 7-4:MFPT rate 𝑘 from Figure 7-3(b) as a function of temperature 𝑇

(markers). The modified Arrhenius equation is in excellent agreement when
using the tuned parameters 𝑛fit = 0.473 and 𝐸‡

fit/𝑘B = 619.5K (solid line).
The fitted value 𝐸‡

fit/𝑘B is far lower than the barrier height 𝐸‡/𝑘B = 1689.3K
as indicated via the dotted vertical lines,

and faster. We can model this temperature dependence using the empirical
modified Arrhenius equation [251]

𝑘(𝑇) = 𝐴𝑇𝑛 exp(−
𝐸‡

𝑘B𝑇
) ,(7-6)

where the parameters 𝐴 and 𝑛 are commonly determined via fitting proce-
dures. The Polanyi–Wigner rate can be seen as a special case of this more
general expression; it can be recovered by setting 𝐴 to the reactant well’s
vibrational frequency and 𝑛 = 0.

We can now fit Equation (7-6) to the MFPT data from Figure 7-3(b) by
tuning 𝐴, 𝑛, and 𝐸‡. A function optimization with the Levenberg–Marquardt
algorithm scipy.optimize.curve_fit(method='lm') from SciPy [175]
yields the solid curve shown in Figure 7-4 with parameters 𝑛fit = 0.473
and 𝐸‡

fit/𝑘B = 619.5K. (The pre-exponential 𝐴 is of little interest for our
argument.) The fit reveals two relevant clues. First, we can approximate the
rate at high temperatures with

𝑘(𝑇) ∝√𝑇 for 𝑘B𝑇 ≫𝐸‡ ,(7-7)
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implying that the system behaves ballistically in this regime. This is not
surprising and was already conjectured in References [7, 116]. Indeed sur-
prising, though, is the alleged barrier height of only 𝐸‡

fit/𝑘B = 619.5K, which
is far lower than the expected 𝐸‡/𝑘B = 1689.3K. Such a big deviation sug-
gests a problem with the implementation of either the equations of motion
or the stochastic integration algorithm.

Last but not least, the way in which the GLE bath parameters were
chosen is inconsistent between the reactive-flux and the PGH simulations.
The friction 𝛾 is varied in both cases. But whereas reactive-flux fixes 𝜏 leaving
𝛼 = 𝜏/𝛾 to vary, PGH fixes 𝛼 and leaves 𝜏 = 𝛼𝛾 varying. This issue has already
been present in Reference [120], where the Langevin-based reactive-flux
rates were published for the first time. Hence, we will neglect these rates
from here on.

The deviations and problems mentioned above motivate to revisit the
problem. This chapter is dedicated to addressing the mentioned issues by
means of new MFPT simulations. For this task, a new software package sup-
porting LE and GLE thermostats was written. This package does not inherit
any components from the previous in-house code used in References [7,
116] so as to provide an independent view on the problem at hand. Read-
ers interested in the open-source code of the new package are referred to
Section D-2 in the appendix.

7-3 Kramers turnover

In his seminal paper [111], Kramers showed that the reaction rate rises
linearly with 𝛾 in the low-friction regime while it decays towards zero for
moderate-to-high friction [27] (cf. Section 2-3). Consequently, there must
be a turnover in between these limits as discussed in Section 2-3. We begin
by resolving this Kramers turnover, as we did in Reference [7]. All MFPT
calculations that follow are based on the numerical methods presented in
Sections 3-6 and 3-7, and use integration steps of size 𝛿𝑡 = 0.1ℏ𝐸−1

h
Our simulations are based on ensembles of 2048 states initially located

at the LiCN minimum. As detailed in Section 3-7, the MFPT method requires
us to define a condition that specifies when the propagation of states is to
be stopped. We refer to this condition as the absorbing boundary. Here, we
define that a reactant has definitively turned into a product once it reaches
𝜗 ≥ 0.6𝜋. This boundary is indicated as a dashed line in Figure 7-5. By
placing it so far on the product side, we ensure that a reacting state is
unlikely to return to the reactant well before reaching the LiNC state. With
the absorbing boundary in place, we can finally calculate MFPT rates. An
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Figure 7-5: Example trajectory for the LiCN LiNC reaction in a mem-

oryless bath with temperature 𝑇 = 600K and friction 𝛾 = 3.25×10−4𝐸h ℏ
−1.

For reference, the potential-energy surface 𝑉(𝜗,𝑅) from Figure 7-2 is under-
laid. The trajectory dwells in the LiCN basin for a relatively long time before
escaping over the saddle. Propagation in MFPT calculations is stopped once
the absorbing boundary 𝜗 = 0.6𝜋, indicated by a horizontal dashed line, is
reached.

example for a typical trajectory at 𝑇 = 600K is also shown in Figure 7-5.
Trajectories at this temperature are usually activated, meaning that the
thermal energy is lower than the activation energy. The trajectory therefore
dwells in the reactant basin for a relatively long time before escaping to the
product well. Repeating such calculations for the whole ensemble yields a
single rate according to Equation (3-31). The Kramers turnover can then be
resolved by propagating one ensemble for each value of the friction 𝛾.

The results are shown in Figure 7-6. As can be seen in Figure 7-6(a), we
have excellent agreement between PGH and MFPT rates based on the LE
at 𝑇 = 300K. The turnover peak is slightly shifted to higher 𝛾 for increasing
temperatures, but the methods are still in very good agreement. Impor-
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tantly, this consensus does not rely on any rescaling of the rate. By contrast,
References [7, 116, 120] had to divide some of their rates by a factor of 5
to achieve a satisfying match with the PGH and AAMD rates, as shown in
Figure 7-3(a).

The situation is rather similar if memory effects are considered, see
Figure 7-6(b). Rates for 𝑇 = 300K are still in excellent agreement, and
turnovers are still slightly shifted to higher 𝛾 for larger 𝑇. But whereas
the height of turnovers stays almost the same, the rate drops much slower
for increasing friction 𝛾 compared to the memoryless case. This effect is
more pronounced for the PGH rates, leading to a noticeable deviation in the
decreasing slope at 𝑇 = 600K. Importantly, this difference does not imply
that there is a problem with the MFPT calculations. Indeed, PGH theory
as applied here makes a number of assumptions that simplify the problem
—e. g., approximating the minimum-energy path using parabolas—so our
MFPT calculations could very well be more accurate. Overall, the good
agreement between both methods is remarkable.

7-4 Temperature dependence

Now that we have verified that MFPT and PGH rates are in good agreement
at low temperatures, we can consider higher temperatures. This allows
us to compare our MFPT calculations with the AAMD results introduced
earlier. Specifically, we do so by studying the temperature dependence of the
Kramers-turnover rates. Looking only at the turnover has one big advantage:
AAMD simulations do not have a coarse-gained friction parameter 𝛾. Instead,
a friction effect is caused by collisions with solvent particles, i. e., argon
atoms [118, 119, 196]. A higher argon density leads to more collisions and,
hence, a higher effective friction. By only looking at the maximal rate, we
remove the need to find exact relations between solvent density and friction
parameter, making the comparison less error-prone.

MFPT rates are calculated by sampling and averaging first-passage times.
This is a stochastic process, and so the rate is only exact for an infinitely
sized ensemble, which is not realizable in practice. Thus, the rate fluctuates,
as can be seen in Figure 7-6. There are two options to prevent overestimation
of the rate maximum caused by these fluctuations. First, the ensemble size
could be increased. This would yield ideal results but may not be feasible
because of the increased computational cost. Alternatively, we can smooth
𝑘(𝛾) numerically. Here, we employ Savitzky–Golay filters [252] with window
size 9 and polynomial degree 3 to correct for outliers. This type of filter
operates on windows [𝑗 −𝑛,𝑗 +𝑛] containing the sample to be smoothed
at index 𝑗 plus 𝑛 samples before and after, for a total of 2𝑛+1 samples
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Figure 7-6: MFPT rates 𝑘 of LiCN LiNC parameterized by fric-

tion 𝛾 (markers). The absorbing boundary is defined as 𝜗 ≥ 0.6𝜋. The
interaction with the solvent is modeled using (a) the LE—corresponds
to 𝛼 = 0—and (b) the GLE with 𝛼 = 1.313× 106 ℏ2𝐸−2

h . For compari-
son, lines show PGH rates based on the GLE with 𝛼 = 1.5625ℏ2𝐸−2

h and
𝛼 = 1.323×106 ℏ2𝐸−2

h in panels (a) and (b), respectively. The friction 𝛾
is sampled logarithmically. Contrary to Figure 7-3(a), the values have not
been divided by 5. Despite this, there is very good agreement between both
methods (see text).
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Figure 7-7: MFPT rate 𝑘 of the LiCN LiNC isomerization reaction

parameterized by friction 𝛾 at 𝑇 = 600K without memory [light blue dots,
cf. Figure 7-6(a)]. The rate 𝑘(𝛾) is noisy because finite ensembles have to be
used in numerical calculations. This, however, can lead to an overestimation
of the rate. To compensate, we first apply a Savitzky–Golay filter [252] with
window size 9 and polynomial degree 3 (blue solid line, see Section 7-4).
The maximum (red dashed line) then evaluates to 𝑘 = 1.02×10−5𝐸h ℏ

−1 at
𝛾 = 3.25×10−4𝐸h ℏ

−1 in this example.

(𝑛 = 4 in our case). The new value is produced by fitting a polynomial of
degree 𝑑 < 2𝑛+1 to those samples, and by evaluating the fitted polynomial
at the location of sample 𝑗. This procedure can be repeated by shifting the
window sample by sample to filter the whole input. The result is illustrated
in Figure 7-7. Although not perfect, the Savitzky–Golay filter still reduces the
overestimation significantly. This filtering is performed for all turnovers 𝑘(𝛾),
and thus forms the foundation for the following analysis.

(a) Comparison of MFPT with PGH and AAMD rates

The filtered MFPT rate maxima for the LE and the GLE are shown in Fig-
ures 7-8(a) and 7-9 along with the corresponding (unfiltered) PGH and
AAMD rates. The new MFPT rates improve significantly on the previous
results from Figure 7-3. They match very well with the PGH rates at low
temperatures (cf. Figure 7-9) and deviate much less from PGH and AAMD
rates at high temperatures [cf. Figure 7-8(a)]. In addition, the new calcu-
lations show only small differences between LE and GLE baths, which is
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(b) MFPT: 𝜗 ≥ 0.6𝜋∧𝐸[𝜸] ≤ 𝐸LiCN
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Figure 7-8: Rate maxima 𝑘 of LiCN LiNC parameterized by temper-

ature 𝑇. The data presented here is akin to Figure 7-3(b) but uses the new
MFPT calculations (cf. Figure 7-6). The abbreviation “RF” means reactive
flux. (a) The absorbing boundary is defined via the termination condition
𝜗 ≥ 0.6𝜋. (b) MFPT trajectories additionally have to satisfy the termination
condition 𝐸[𝜸] ≤ 𝐸LiCN, i. e., their total energy has to drop below the LiCN
minimum before propagation is allowed to stop.
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Figure 7-9: Rate maxima 𝑘 of LiCN LiNC parameterized by temper-

ature 𝑇. Shown is an enlarged excerpt from the low-temperature region of
Figure 7-8(a). PGH and MFPT results are in very good agreement, and lie
mostly between the Eyring–Polanyi and Polanyi–Wigner rates.

consistent with the PGH behavior. So far, this challenges the conjecture
about the missing solvent memory being responsible for overlarge rates, and
further hints towards implementation issues in some of the previous work [7,
116].

For comparison, TST rates determined from the Eyring–Polanyi and
Polanyi–Wigner expressions have also been added (cf. Appendix C). While
both fit very well at low temperatures, Eyring–Polanyi rates diverge quickly
for rising 𝑇. Indeed, typical TST rate theories are only valid for 𝑘B𝑇 ll𝐸‡ and
begin to break down for thermal energies near or above the barrier height,
which is particularly apparent here. This makes it all the more surprising
that the PGH rates still seem to work so well for the high temperatures
considered here. There is good agreement with AAMD for all but the highest-
temperature sample. Meanwhile, the Polanyi–Wigner expression provides
reasonable rates as well, always staying between the MFPT and the PGH
rates at higher temperatures. The rate converges towards the reactant well’s
vibrational frequency 𝜔0/2𝜋 ≈ 1.28×10−4𝐸h ℏ

−1 ≈5.29×1012THz in the
high-temperature limit. (This value is valid for small to medium oscillations;
larger oscillations have a slightly lower frequency because of the well’s
anharmonicity.)

There are numerous possible sources for the deviations at high tempera-
tures. Perhaps most obvious is the fact that our MFPT calculations are based
on the bare potential. This neglects the effects of the solvent on the free
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energy, as detailed in Section 7-2. Calculating the potential of mean force,
however, would increase computational cost and complexity significantly as
it relies on full AAMD simulations. In our case, this would defeat the purpose
of using the cheaper LE and GLE frameworks in the first place.

A second source is given by statistical errors, which affect both MFPT
and AAMD calculations. MFPT calculations are sufficiently cheap so as to
minimize these effects (cf. Figure 7-7). The AAMD simulation, though, rely
on much fewer ensembles with fewer trajectories per ensemble, hence we
can expect larger statistical fluctuations.

Finally, the value of the GLE memory parameter 𝛼 may not be ideal.
This issue again relates to the observation that Reference [120] fixed the
memory timescale 𝜏 = 𝛼𝛾 while References [7, 116, 118, 119, 196] fixed 𝛼.
Investigating the influence of these parameters on the MFPT rates will be a
worthwhile future task.

The deviations observed at high temperatures raise another issue. Namely,
how do we define a rate? So far, our MFPT calculations simply used an
absorbing boundary in position space. This definition does not discriminate
between ballistic and activated trajectories, which may or may not be desired.
Meanwhile, the exact details of the AAMD reactive-flux calculations—how
is the DS chosen; are ballistic trajectories filtered out?—are not clear from
the original publications [118, 119]. This makes it harder to compare the
results with our MFPT simulations.

(b) Influence of ballistic trajectories

The occurrence of ballistic trajectories in rate calculations is not a new
problem. There is significant precedence in literature [158, 185, 211] of
using a state’s total energy to constrain the absorbing boundary. Specifically,
the first passage is only considered to be complete once, in addition to any
other criteria, the total energy falls below a prescribed threshold energy.
Figure 7-8(b) repeats the calculations from Figure 7-8(a) taking such a
total-energy constraint into account.

The MFPT rates can clearly be seen to drop with both thermostats. This is
to be expected since the additional termination condition can only increase
first-passage times, and so 𝑘 goes down. This time, however, a significant
difference between LE and GLE solvents emerges. For the LE, the energy
threshold only causes the rate growth to slow down, but it is not able to halt
it. Systems with memory, on the other hand, seem to be affected much more
strongly. Here, the rate of reaction reaches a maximum around 𝑇 = 2500K
before decreasing again for even higher temperatures. This can be explained
by the increasing number of ballistic trajectories at higher temperatures in
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combination with the periodic reaction coordinate 𝜗. At these temperatures,
average trajectories are so fast that they do not only surmount the barrier
once, but they instead circle around multiple times before getting caught
again in one of the wells. Memory in the GLE formalism effectively reduces
the friction of such trajectories, which helps to keepmomentum and amplifies
the effect. In principle, this could explain at least part of the differences
between GLE or AAMD rates and the overlarge LE rates from References [7,
120]. For all the reasons mentioned above, however, it is unlikely to be the
sole cause.

The GLE MFPT results shown in Figure 7-8(b) reproduce the behavior
of PGH theory well. Both the low-𝛼 and high-𝛼 PGH rates reach a maxi-
mum around 2500K and 3500K, respectively, although the effect is less
pronounced. This consensus is surprising as PGH theory does not explicitly
include any energy constraint as we did for the MFPT calculations. Then
again, we are seriously stretching the limits of PGH theory’s validity at these
high temperatures, so this agreement may just be a coincidence.

7-5 Conclusion and outlook

In this chapter, we revisited the calculation of MFPT escape rates for the
LiCN LiNC isomerization reaction.Wewere able to significantly improve
on our earlier results [7] using new in-house simulation software developed
recently (cf. Section D-2).

At low temperatures, the new results match very well with PGH theory
as well as with the Eyring–Polanyi and Polanyi–Wigner expressions. This
is important evidence for the new implementation working correctly. Yet,
rates at high temperatures are still higher than those determined via PGH
theory and AAMD simulations. Deviations from PGH theory are not very
surprising in this regime. Pollak, Grabert, and Hänggi assumed that the
thermal energy 𝑘B𝑇 is small compared to the barrier height 𝐸‡, and so their
theory is outside its range of validity. Indeed surprising, however, is that
the PGH rates do match the AAMD rates well. Whether this is by chance or
whether PGH theory is still applicable in this regime will have to be answered
through future research.

Disregarding PGH theory, there are a number of possible reasons for why
our MFPT results could differ from the AAMD ones. First, our calculations
coarse-grained the solvent via the GLE. This approximation may have been
too coarse to sufficiently capture the interaction with the argon solvent as
implemented in the AAMD simulations. Related to this, we were only able
to use a bare potential-energy surface in this work. More accurate results
could have been obtained using a potential of mean force. Approximating
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the 9-DoF LiCN molecule via a 2-DoF model may have introduced further
errors. All of these points could be improved upon in future work.

Another possible reason is the treatment of ballistic trajectories. Excluding
them, which we achieve by limiting the total energy of product states in
the MFPT formalism, can partially correct the observed deviations. The
resulting rates agree much better with the reference data. Whether this
correction is physically sensible depends on the question one seeks to answer
and, therefore, on what one defines as the rate. The original AAMD-rate
publications [118, 119] are not very detailed regarding the reactive-flux
calculations. Although this is less important for activated trajectories, it can
have very significant effects for ballistic ones. So while AAMD does have a
credit of trust— it is the most fundamental method after all—neither the
MFPT nor the AAMD results can definitively be considered right or wrong
without specifying the problem to be solved.
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Review and Future Perspective 8
In this thesis, we used the advanced framework of TST as described in
Part I to investigate a selection of systems with rank-1 saddle. Specifically,
we explore two driven model systems with one two-dimensional saddle or
two one-dimensional saddles, a celestial-mechanics system, and a simple
chemical reaction in Part II. These systems have in common that they are
low-dimensional, featuring at most two DoFs. This facilitates visualization,
but is still enough to allow for complex dynamics. Most of the methods
used in this work can, in principle, be applied to systems with arbitrarily
many DoFs. Yet, doing so may get a lot more difficult. To become feasible,
methods like the BCM might need modifications or extensions making them
more robust. Developing these methods further could open the door to novel
applications in more complex systems.

Our investigations focused on the construction of a recrossing-free DS
from the dynamical properties of the saddle, the properties of the associated
NHIM and TS, and the rate of trajectories passing through this TS. We
were able to define two qualitatively different types of rates depending on
whether only the vicinity of the NHIM or the whole potential landscape was
considered.

8-1 Decay rates in driven systems

Decay rates describe the stability of trajectories near the NHIM (cf. Sec-
tion 3-5). They can be used to map the NHIM’s structure, which is especially
interesting in driven scenarios. We have shown in Chapter 4 that variations
of the driving parameters can alter the NHIM significantly through, e. g.,
saddle-node bifurcations of fixed points. These results lead to a better under-
standing of the reaction dynamics in these systems. Indeed, it suggests that
one could control reaction pathways and, thus, reaction rates within a lim-
ited range by adjusting the driving of the system. For these results to become
applicable to real chemical reactions, though, they must be generalized to
include effects like noise and friction as caused, for instance, by a solvent.
This will not be an easy task for these effects will cause the NHIM to collapse
to a single trajectory over time [9, 116]. Hence, future research will be
well-advised to focus initially on the limit of weak noise and friction. It will
be even more challenging to incorporate the results from the multi-saddle
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system discussed in Chapter 5. This, however, will be an important task since
many—even very simple—chemical reactions like the isomerizations of
ketene [169, 199–202] and triangular potassium cyanide [197, 198] can be
described by potential-energy surfaces with multiple saddles.

Besides the generalization of the results to thermal systems, future re-
search should also seek for models where the presented methods can be
applied directly. This complementary approach was pursued in Chapter 6.
Here, the stability revealed by the decay rate allowed us to assess the relative
fuel consumption of satellites on orbits near one of the collinear libration
points 𝐿1 to 𝐿3. This is especially useful near the Sun–Earth point 𝐿2 as it
has been the target of many past and present space probes [112–115].

This example demonstrates how science can be advanced by exchanging
ideas between different disciplines like TST and celestial mechanics. And
celestial mechanics is not the only field where TST methods can be applied
to; spintronics, for instance, has been shown to be amenable as well [10,
11, 50–52]. A unique property of macrospin systems is that the Landau–
Lifshitz–Gilbert equation [253, 254], which describes the time-evolution
of spin states, is a first-order differential equation that does not include
momenta. It can be reduced to a two-dimensional phase space in spherical
coordinates, where one of the angles takes the role of the momentum. Only
the inclusion of inertial effects [255, 256] adds proper momenta back. Yet,
both variants can be treated using TST methods. Such interdisciplinary
work is reminiscent of Haken’s idea of synergetics [257]. To really advance
both TST and the other disciplines, however, it will not be enough to simply
demonstrate our methods in those other fields. Instead, researchers will
have to work together to achieve their full potential.

8-2 Absolute reaction rates in thermal systems

The other type of rate, the absolute reaction rate, describes how fast trajec-
tories move from a reactant well on one side of the DS to a product well on
the other side and vice versa. This concept is usually applied to systems that
are coupled to a thermal bath, chemical reactions being a prime example.

As hinted at in the previous section, we were able to uncover a limited
connection between the structures revealed by decay rates on the one hand
and the dynamics of trajectories linking the reactant to the product well
on the other hand. Still, it is yet unclear whether a method can be devel-
oped that utilizes decay rates in a meaningful way to calculate accurate
reaction rates. This will be especially challenging at higher temperatures
where many trajectories will cross the DS far from the NHIM. Thus, the sta-
bility properties of the NHIM lose significantly in importance in this regime.
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Nevertheless, pursuing this research further may reveal interesting details
about the geometry of reaction pathways, and not just about the rate of a
reaction.

Finally, our investigations shed some light on a handful of open questions
concerning the reaction rate of the LiCN LiNC isomerization reaction.
We exposed a number of inconsistencies between calculations with different
methods [7, 116, 119, 120] that seemed to be caused by either implemen-
tation issues or rates being calculated for effectively different processes,
e. g., by using different sets of parameters. Through new GLE-based MFPT
calculations, we showed how the definition of the DS (or absorbing boundary
condition) can have a massive influence on the resulting rate, especially
when considering solvent memory at high temperatures. This effect might
have contributed to the deviations observed in References [7, 116, 120]. It
led us to debate the question of when a reaction process is actually complete.
Whether it is enough to cross the barrier or whether a trajectory also has to
be captured in the product basin makes for a qualitatively different process,
and the correct choice depends on the physical or chemical question to
be answered. By making sure that equivalent definitions for the DS and
the parameters are used, future work could provide a more meaningful
comparison between the different methods.
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Flaws of Discontinuous Dividing
Surfaces

A
Essential parts of this appendix have previously been published by the
author in Reference [4].

In Chapter 5, a system with two barriers—each associated with a DS—
was discussed. In such a system, it may seem natural to define a global DS
via the local DS associated with the instantaneously higher saddle point, cf.
Figure 5-1(b). This naive DS, however, can jump discontinuously from one
side to the other if the heights of the saddle points vary with time. There are
multiple ways in which such a discontinuous DS can misclassify a trajectory:

• A nonreactive trajectory is classified as reactive (labeled “N as R” in
Figure A-1). This can happen when a reactant enters the central region
between the saddles while the DS is located near the left saddle. If
this happens shortly before the DS jumps to the right, the particle can
get reflected at the right barrier and leave the central region on the
reactant side.

• A reactive trajectory is classified as nonreactive (labeled “R as N” in
Figure A-1). This can happen when a reactant enters the central region
while the DS is located near the right saddle. The DS can then jump
discontinuously over the particle to the left saddle—which is not
counted as a crossing—before the particle leaves the central region
to the right as a product. The classification is thus inconsistent.

• Further inconsistencies are possible (labeled “incons.” in Figure A-1).
This is the case, e. g., when a reactant enters the central region while
the DS is located near the right saddle, and leaves it again to the reac-
tant side while the DS is near the left saddle. As a result, a backward
reaction is recorded even though the particle started as a reactant.
Similarly, it is possible to detect two forward reactions over the same
DS without an intermediate backward reaction. It is unclear which
reaction is to be counted as the real one.

• The trajectory crosses the DSmultiple times, i. e., it exhibits recrossings
(labeled “recross.” in Figure A-1). This can happen when a particle
enters and leaves the central region on the reactant side while the DS
is near the left saddle, resulting in two crossings.
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Figure A-1: Fraction of trajectories with (see text) and without (labeled

“succ.”) errors as a function of time 𝑡0 for the discontinuous DS from Fig-
ure 5-5.

The distributions of these errors in the context of Section 5-3 are shown
in Figure A-1. They sum up to the error reported in Figure 5-5(b) for the
discontinuous DS.
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Lithium-Cyanide
Potential-Energy Surface

B
Essential parts of this appendix have previously been published by the
author in Reference [7].

The LiNC LiCN potential-energy surface used in Chapter 7 was initially
published in Reference [117]. It consists of two parts, a damped long-range
energy plus a short-range energy. Both terms involve several numeric param-
eters, two of which were found to be erroneous [7] in the original publication.
Here, we summarize the potential with the correct parameters.

The long-range part is composed of the electrostatic energy

𝐸el(𝑅,𝜗) =
∞
∑
𝐿=0

𝑅−𝐿−1𝑃𝐿(cos𝜗)⟨𝑄𝐿,0⟩ (B-1)

and the induction energy

𝐸ind(𝑅,𝜗) =
∞
∑

𝑙1,𝑙2=0
𝑅−𝑙1−𝑙2−2

𝑙1+𝑙2
∑

𝐿=|𝑙1−𝑙2|
𝑃𝐿(cos𝜗)𝐶𝑙1,𝑙2,𝐿

. (B-2)

Table B-1: Expectation values ⟨𝑄𝐿,0⟩ of the CN– multipole moments used
in Equation (B-1) and induction energy coefficients 𝐶𝑙1,𝑙2,𝐿

used in Equa-
tion (B-2). Originally published in Reference [117] and (partially) Refer-
ence [243]. The bold value 𝐶2,1,3 differs from the original publication. All
values are given in Hartree atomic units.

𝐿 ⟨𝑄𝐿,0⟩ 𝐶1,1,𝐿 𝐶2,1,𝐿 𝐶2,2,𝐿 𝐶3,1,𝐿 𝐶3,2,𝐿 𝐶3,3,𝐿

0 −1.000 −10.53 −57.49 −458.2
1 −0.2151 −10.31 −101.45
2 −3.414 −3.17 −35.71 −35.56 −353.7
3 −3.819 1.866 −37.62
4 −15.84 5.23 5.95 −112.6
5 −14.29 −14.23
6 −43.82 −108.3
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Table B-2: Parameters 𝐴𝐿, 𝐵𝐿, and 𝐶𝐿 found for the analytical expression
of the short-range interaction in Equation (B-5). The bold value 𝐶2 differs
from that in the original publication in Reference [117], but all the other
values are the same. All values are given in Hartree atomic units.

𝐿 𝐴𝐿 𝐵𝐿 𝐶𝐿

0 −1.38321 0.14001 0.207892
1 −2.95791 1.47977 −0.011613
2 −4.74203 1.81199 −0.017181
3 −1.88853 1.28750 0.027728
4 −4.41433 2.32297 −0.070693
5 −4.02565 2.77538 −0.137720
6 −5.84259 3.48085 −0.186331
7 −2.61681 2.65559 −0.005882
8 −6.34466 4.34498 −0.152914
9 15.2023 −6.54925 1.302568

Here, 𝑃𝐿 is the Legendre polynomial of order 𝐿, ⟨𝑄𝐿,0⟩ denotes the expectation
value of the order-𝐿 CN– multipole moment, and 𝐶𝑙1,𝑙2,𝐿

are the induction
coefficients. Numeric values for ⟨𝑄𝐿,0⟩ and 𝐶𝑙1,𝑙2,𝐿

are given in Table B-1. The
damping is represented by

𝐹(𝑅) = 1−exp[−𝑎(𝑅 −𝑅0)
2](B-3)

with fit parameters 𝑎 = 1.5156𝑎−2
0 and 𝑅0 = 1.9008𝑎0, where 𝑎0 is the Bohr

radius.

The short-range term can be written as

𝐸SR(𝑅,𝜗) =
∞
∑
𝐿=0

𝐷𝐿(𝑅)𝑃𝐿(cos𝜗) ,(B-4)

where the analytic form

𝐷𝐿(𝑅) = exp(−𝐴𝐿−𝐵𝐿𝑅 −𝐶𝐿𝑅
2)(B-5)

has been fitted to self-consistent field calculations. Numeric values for the fit
parameters 𝐴𝐿, 𝐵𝐿, and 𝐶𝐿 are given in Table B-2.
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Figure B-1: Potential energy 𝑉 as a function of angle 𝜗 on the minimum-

energy path of the LiNC LiCN isomerization reaction. Plotting the po-
tential (B-6) using the parameters published in Reference [117] yields the
dashed curve. This curve differs visibly from the one shown in Figure 2 of the
same article, reproduced here as the dotted line. Modifying the parameters
as detailed in the text results in much better agreement, as illustrated by
the solid line.

Combining long- and short-range energies, the final potential-energy
surface reads

𝑉(𝑅,𝜗) = [𝐸el(𝑅,𝜗)+𝐸ind(𝑅,𝜗)]𝐹(𝑅)+𝐸SR(𝑅,𝜗) . (B-6)

We noticed a discrepancy [7] while comparing the minimum-energy path
calculated using the parameters published in Reference [117] with Figure 2
of the same article. As shown in Figure B-1, the two curves differ visibly.
Two parameters in the original source code [258], 𝐶2,1,3 in Equation (B-2)
and 𝐶2 in Equation (B-5), differ significantly from the originally published
values [117], possibly due to errors introduced during the paper’s production
process. The correct values— shown in bold in Tables B-1 and B-2—yield a
much better agreement with Figure 2 from Reference [117].

An implementation of the potential in the Python programming lan-
guage [259] using the same parameters as the original source code [258]
can be found on GitHub [260]. See also Section D-3.
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Approximative Reaction-Rate
Formulas

C
Essential parts of this appendix have previously been published by the
author in Reference [7].

Most approximative reaction-rate formulas follow the Arrhenius form [27,
109]

𝑘(𝑇) = 𝜈(𝑇) exp(−
𝐸‡

𝑘B𝑇
) , (C-1)

where 𝜈 is a possibly temperature-dependent prefactor, 𝐸‡ is the reaction’s
barrier height or activation energy, 𝑘B is the Boltzmann constant, and 𝑇 is
the temperature. In the following we present two important TST variants of
this equation.

C-1 Polanyi–Wigner rate

One of the earliest results of TST is the unimolecular rate equation derived,
among others, by Polanyi and Wigner in 1928 [143]. It follows the Arrhenius
rate law (C-1) with the pre-exponential factor 𝜈(𝑇) given by the vibrational
frequency 𝜔0/2𝜋 of the reactant well [27]

𝑘(𝑇) =
𝜔0

2𝜋
exp(−

𝐸‡

𝑘B𝑇
) , (C-2)

where 𝐸‡ is the internal energy difference between the barrier and the
reactant of the isolated system. This equation has been derived in vari-
ous contexts. It can, e. g., be recovered from the underdamped regime
𝜔‡𝑘B𝑇/𝐸

‡ ll𝛾ll𝜔‡ of Kramers’s medium-to-high-viscosity rate [111, 145]

𝑘(𝑇) = [√(
𝛾

2𝜔‡)
2
+1−

𝛾
2𝜔‡]

𝜔0

2𝜋
exp(−

𝐸‡

𝑘B𝑇
) , (C-3)
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where 𝛾 is the friction and 𝜔‡ is the inverse barrier frequency. Equation (C-2)
can therefore be seen as an upper bound for the rate at the turnover in
Kramers’s original theory for a solvated reaction [27].

C-2 Eyring–Polanyi rate

The usual (or modern) form for the classical TST rate equation is given by
the Eyring–Polanyi equation [26, 110, 144]

𝑘(𝑇) =
𝜅𝑘B𝑇
ℎ

exp(−
𝛥𝐺‡

𝑘B𝑇
)(C-4)

with 𝜅 = 1, where 𝜅 is the transmission coefficient, ℎ is Planck’s constant,
and 𝛥𝐺‡ is the Gibbs energy of activation in the context of a solvent.

The Gibbs energy of activation can be approximately determined from
the enthalpy of activation 𝛥𝐻‡ via

𝛥𝐺‡ =𝛥𝐻‡−𝑇𝛥𝑆‡ ,(C-5)

where 𝛥𝑆‡ is the entropy of activation. In turn, the enthalpy of activation
for an unimolecular gas-phase reaction can be written as

𝛥𝐻‡ =𝐸‡−𝑘B𝑇 .(C-6)

The energy of activation 𝐸‡ and the entropy of activation 𝛥𝑆‡ can finally be
determined from the minimum-energy path and the potential of mean force
of the reaction [118, 119] by equating the latter with the Gibbs energy.

The transmission coefficient 𝜅 in the Eyring–Polanyi equation describes
the fraction of states that cross the DS between reactants and products at
most once, i. e., those that do not recross. This quantity cannot be deter-
mined from straightforward statistical mechanics and is therefore of great
interest [110] in the general case. In TST, it is assumed to be approximately
one [27]. This approximation is valid if the temperature is not too high or if
the friction is sufficiently strong.
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Software D
All results in this thesis have been obtained using software libraries developed
in-house at the Institute for Theoretical Physics I. These libraries are either
written directly in Python [259] or at least provide Python bindings. The
in-house libraries are combined with renown third-party libraries such as
NumPy [261], SciPy [175], and Matplotlib [262] to achieve the final results.

Parts of the software developed by the author have been made open-
source. The following sections introduce these projects briefly.

D-1 RODEO

The RODEO project is a closed-source library that has been developed inter-
nally at the Institute for Theoretical Physics I. It was initiated by Matthias
Feldmaier and further advanced with Robin Bardakcioglu and this thesis’
author. Variants of this project provided the basis for Chapters 4 to 6 as well
as various publications and theses [1–11, 51, 52, 60, 87, 94–96, 98, 99, 108,
116, 173].

RODEO is implemented as a Python library with a CUDA-enabled [263]
C++ [264] backend. This allows it to be fast and efficient in many scenarios
while still being relatively easy to use. However, this comes at the cost of
high complexity, making it difficult to showcase algorithms and procedures.
Thus, a simplified reimplementation of the most important parts has been
published on GitHub [265]. It is written purely in Python, giving us a lot
of freedom for code design and enabling anyone to play around with the
implemented algorithms.

Researchers interested in using this project are invited to have a look at
the documentation and the sample scripts included in Reference [265].

D-2 mfptlib

The focus of the MFPT calculations in Chapter 7 differs quite a lot from
most of our earlier research. For example, all core algorithms in RODEO (cf.
Section D-1) need to be able to propagate trajectories backward in time. This
requirement is fundamentally incompatible with the idea of solvent-induced
memory, where the friction at time 𝑡0 may depend on momenta at previous
times 𝑡 < 𝑡0.
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To solve this conflict, the mfptlib project was devised. This library is
split into a Python frontend and a C++ backend just like RODEO but does
not include CUDA support. It implements different integration algorithms
as well as thermostats with and without memory to efficiently propagate
ensembles of trajectories in the GLE framework. With mfptlib, first-passage
times of whole ensembles can be calculated with few lines of simple Python
code. The architecture is flexible enough so that new physical systems,
numerical integrators, and thermal baths can be implemented easily in the
C++ backend.

The project’s source code can be found on GitHub [266].

D-3 Lithium-cyanide isomerization potential

An optimized C++ implementation of the LiNC LiCN isomerization
potential [117] with parameters from Reference [258] (cf. Appendix B) is
provided with the mfptlib project (cf. Section D-2). The focus on run-time
performance in this project entails that the implementation is not always as
clear as it could be. Therefore, an additional Python-only implementation has
been written that closely follows the equations from the original publication
so as to minimize the chance for implementation errors. This reference
implementation is used inside the test suite of mfptlib to verify the optimized
implementation. A standalone version has been published on GitHub [260]
as supplemental material for Reference [7].
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Symbols and Notation

The following sections summarize the symbols that are used repeatedly
throughout this thesis or that are common in the literature. We separate the
list into symbols used in thermal contexts—e. g., Section 2-2 and Chapter 7—
and those used in nonthermal or deterministic contexts.

General notation

The following conventions are used throughout this work:

𝑋 scalar
𝑿 vector or matrix
𝑿̂ unit vector in 𝑋 direction
𝛥𝑋 difference in variable 𝑋
𝛿𝑋 very small difference in variable 𝑋
⟨𝑋⟩𝑡 average of quantity 𝑋(𝑡) over variable 𝑡
𝑋̇ time-derivative of variable 𝑋

Symbols in nonthermal contexts

The following symbols are relevant in deterministic contexts:

𝐸 energy
𝑘 decay rate
𝑘e decay rate (ensemble method)
𝑘F decay rate (Floquet method)
𝑘m decay rate (LMA)
ℒ Lagrangian descriptor
𝑁 number of reactants
𝑝 momentum

𝑝‡ momentum of (a trajectory on) the NHIM
𝑞 general position, i. e., 𝑥 or 𝒚
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𝑇 driving period
𝑡 time
𝑉 potential energy
𝑣 velocity
𝒲s stable manifold
𝒲u unstable manifold
𝑥 reaction coordinate

𝑥‡ 𝑥 position of (a trajectory on) the NHIM

𝑥DS 𝑥 position of the DS
𝑦 orthogonal mode

𝑦‡ 𝑦 position of (a trajectory on) the NHIM

𝜸 trajectory, i. e., (𝒒,𝒑)𝑇 or (𝑥,𝒚,𝑝𝑥,𝒑𝑦)
T

𝜸‡ trajectory on the NHIM
𝜏 integration time for the Lagrangian descriptor [cf. Equation (3-8)]

Symbols in thermal contexts

The following symbols are relevant in thermal contexts with noise and
friction:

𝑎0 Bohr radius

𝐸‡ energy of activation
𝐸h Hartree energy

𝛥𝐺‡ Gibbs energy of activation
ℎ Planck constant
ℏ reduced Planck constant (= ℎ/2𝜋)

𝛥𝐻‡ enthalpy of activation
𝑘 reaction rate
𝑘B Boltzmann constant

𝛥𝑆‡ entropy of activation
𝑇 temperature
𝑉 potential energy
𝛼 bath parameter
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𝛤 friction kernel
𝛾 friction coefficient
𝜅 transmission coefficient
𝜈 pre-exponential factor in TST rate equations (cf. Appendix C)
𝜏 memory timescale (=𝛼𝛾)
𝜔0 vibrational frequency of the reactant well

𝜔‡ inverse barrier frequency
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Glossary

all-atom molecular dynamics (AAMD)

A numerical ansatz for the simulation of a molecule in a solvent. AAMD
does not coarse-grain the molecule or the solvent (as in the LE), but
instead simulates the motion of and interaction with every single
atom.

bicircular restricted four-body problem (BCR4BP)

An extension of the CR3BP featuring a third primary body. Analytical
solvability is maintained by introducing a hierarchy of circular two-
body problems. See Figure 6-1 for more details.

binary-contraction method (BCM)

A numerical method determining the position of the NHIM based on
four interleaved bisection procedures. See Section 3-3 (a) for more
details.

circular restricted three-body problem (CR3BP)

A simplification of the classical three-body problem that recovers
analytical solvability by assuming that one of the three bodies has
negligible mass. This probe body has no influence on the motion of the
two primary bodies. The circular version further restricts the primary
bodies to circular orbits. See Figure 6-1 for more details.

degree of freedom (DoF)

An independent variable or coordinate of a mathematical model. Usu-
ally used to describe the number of independent position coordinates,
i. e., the dimensionality of the configuration space.

dividing surface (DS)

A surface dividing the phase space into a reactant and a product region
according to some predefined criterion. Theremay be (infinitely) many
valid choices for any given system. See Chapter 2 for more details.

generalized Langevin equation (GLE)

A generalized version of the LE that allows for non-Gaussian noise
and friction with memory. See Section 2-2 for more details.
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Langevin equation (LE)

A stochastic equation of motion describing a system coupled to a
thermal bath. It incorporates Gaussian noise and memoryless friction.
See Section 2-2 for more details.

local manifold analysis (LMA)

A numerical method to calculate the decay rate of trajectories near
the NHIM using the geometry of the stable and unstable manifolds.
See Section 3-5 (b) for more details.

mean first-passage time (MFPT)

The first-passage time is the duration it takes some initial state to
reach a predefined condition for the first time. The condition can be
arbitrary but typically involves the reaction coordinate 𝑥 in chemical
systems. Averaging the first-passage time over an ensemble of initial
states yields the MFPT. Its inverse constitutes a reaction rate. See
Section 3-7 for more details.

normally hyperbolic invariant manifold (NHIM)

The generalization of a hyperbolic fixed point— including stable and
unstable manifolds— to arbitrarily many DoFs. Invariant manifolds
are subspaces that cannot be entered or left. A state initialized on
a NHIM may move within that NHIM but may never deviate from it
(except for numerical errors). Similarly, states started off the NHIM
may approach it via the stable manifold, but they may never reach
it. Normally hyperbolic roughly means that the instability or decay
away from (normal to) the NHIM dominates any possible instabilities
within the NHIM itself [128]. See Section 2-1 for more details.

Poincaré surface of section (PSOS)

A technique that can be used to visualize regular and chaotic behavior
of higher-dimensional systems in a two-dimensional plane. A spe-
cial case, the stroboscopic map, is used throughout this work. See
Section 3-4 for more details.

Pollak–Grabert–Hänggi (PGH)

In 1940, Kramers [111] published a theory that provides expressions
for reaction rates in the low- and high-friction limits, and predicts an
unspecified turnover in between. Pollak, Grabert, and Hänggi [146]
later connected Kramers’s limiting cases, fully resolving the turnover,
and generalized his ideas to include memory effects based on the GLE.
See Section 2-3 for more details.
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transition state (TS)

Traditionally used to describe the set of configurations in between the
reactant and the product state, i. e., those located on the codimen-
sion-1 DS in phase space. The more mathematical literature, however,
uses this phrase to refer to the ensemble of states bound indefinitely
to the saddle region, i. e., those located on the codimension-2 NHIM.
See footnote 6 of Reference [33] for a more detailed discussion. In this
work, we adapt the former definition for the TS but use the phrase TS
trajectory for trajectories bound to the NHIM.

transition-state theory (TST)

The framework of theories revolving around the TS.
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Zusammenfassung in deutscher
Sprache
Ein zentrales Ziel der Reaktionskinetik ist die akkurate Bestimmung chemi-
scher Reaktionsraten. Hierbei handelt es sich nicht nur um eine abstrakte
Fragestellung aus der Grundlagenforschung [17–20], sondern auch um ein
Problem mit praktischer Relevanz für reale Reaktionsprozesse [21–25]. Die
Optimierung von Raten durch äußeres Treiben bietet ein großes Potenzial
für zukünftige technische Anwendungen.

Um diesem Ziel ein Stück näherzukommen, beschäftigt sich die vorlie-
gende Arbeit mit verschiedenen Aspekten des Ratenbegriffs im Kontext der
Theorie des Übergangszustands (engl. transition-state theory, TST) [19, 20,
26–47]. Wir nehmen dafür ein System an, in dem ein Rang-1-Sattel einen
Reaktant- von einem Produktzustand trennt. Der Fokus liegt auf der Ent-
wicklung und Anwendung von Methoden auf unterschiedliche physikalische
wie chemische Systeme.

Insbesondere beschäftigen wir uns mit der geometrischen Formulierung
der TST [66–71], mit deren Hilfe beispielsweise die Stabilität von Trajektori-
en auf dem Sattel bestimmt werden kann. Die zugehörige Metrik bezeichnen
wir als Zerfallsrate [2, 4, 6]. Diese Rate kann in der Raumfahrt genutzt
werden, um die Orbits von Satelliten nahe der Lagrange-Punkte 𝐿1 bis 𝐿3
im Hinblick auf den Treibstoffverbrauch zu optimieren [6, 60]. Zerfallsraten
erlauben darüber hinaus, die Struktur der instabilen Dynamik auf dem Sat-
tel aufzuzeigen [3, 5, 108]. Diese Struktur kann wiederum im begrenzten
Maße mit der Dynamik zwischen Reaktant- und Produktbassin korreliert
werden [5].

Zerfallsraten können prinzipiell auch für chemische Systeme berechnet
werden [87, 116]. Allerdings sind die Ergebnisse hier deutlich schwerer zu
interpretieren und experimentell zu validieren. Stattdessen untersuchen wir
in diesem Kontext absolute Reaktionsraten, speziell die Isomerisierungsrate
von Lithiumcyanid [117]. Diese Reaktion wurde bereits zuvor von verschie-
denen Gruppen untersucht, wobei jedoch teils widersprüchliche Ergebnisse
erzielt wurden [7, 116, 118–120]. Hier greifen wir die Berechnungen aus Re-
ferenzen [7, 116] wieder auf. Die neuen Ergebnisse passen deutlich besser zu
den Referenzwerten aus Referenzen [7, 118, 119], selbst bei Temperaturen,
bei denen die thermische Energie die Barrierenhöhe übersteigt. In diesem
Regime stellt sich jedoch generell die Frage, wie genau die Reaktionsrate de-
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finiert wird. Die Antwort kann einen signifikanten Einfluss auf das Ergebnis
haben, was es erschwert, mittels verschiedener Methoden bestimmte Raten
miteinander zu vergleichen.

Teil I: Theorie & Methoden

Die TST [19, 20, 26–47] hat sich bewährt, um Aspekte der Reaktionskinetik
in Systemen mit Rang-1-Sattel zu beschreiben. Die Berechnung von Reak-
tionsraten in solchen Systemen basiert dabei auf der Unterscheidung von
zwei unterschiedlichen Zuständen – Reaktant und Produkt – auf einer Poten-
tialfläche [121], die durch eine Trennfläche (engl. dividing surface, DS) nahe
dem Sattel separiert werden. Der normierte Fluss durch diese Fläche [124]
gibt die Rate wieder. Methoden der TST können vielseitig eingesetzt wer-
den, beispielsweise in der Atomphysik [48], in der Festkörperphysik [10,
11, 49], zur Beschreibung von Cluster-Bildung [53, 54] und Diffusion [55,
56], im Kontext von Kosmologie [57] und Himmelsmechanik [6, 58–60]
sowie bei Bose-Einstein-Kondensaten [61–65]. Die Beschreibung zeitlich
getriebener Systeme ist dabei erheblich anspruchsvoller, da die DS hier eben-
falls zeitabhängig wird [30, 31, 34]. Dennoch kann die DS auch hier mittels
verschiedener Methoden [1, 87–92] bestimmt werden.

Kapitel 2: Theorie des Übergangszustands

Die Methode, die wir in dieser Arbeit einsetzen wollen, basiert dabei auf der
geometrischen Formulierung der TST [40]. Diese Variante nutzt Konzepte aus
der Theorie dynamischer Systeme, um formal exakte DSs zu konstruieren, die
höchstens einmal von jeder Trajektorie gekreuzt werden. Diese Eigenschaft
ist wichtig, um Reaktionsraten nicht zu überschätzen.

Betrachten wir zunächst das System aus Abbildung 2-1(a). Gezeigt ist
die Umgebung eines typischen Rang-1-Sattels in einem System mit einem
Freiheitsgrad (engl. degree of freedom, DoF). Reaktanten (R) sind dabei von
Produkten (P) durch den auf der DS lokalisierten Übergangszustand (engl.
transition state, TS) [19, 26, 35, 43] getrennt. Die meisten Trajektorien
eines solchen Systems lassen sich in eine von vier Klassen einteilen, näm-
lich nichtreaktive Reaktanten und Produkte unterhalb [Bereiche 1 und 2 in
Abbildung 2-1(b)] sowie vor- und rückreaktive Trajektorien oberhalb der
Aktivierungsenergie [Bereiche 3 und 4 in Abbildung 2-1(b)]. Im Phasenraum
werden diese vier Bereiche durch die sogenannten stabilen und instabilen
Mannigfaltigkeiten 𝒲s und 𝒲u getrennt. Hierbei handelt es sich um kriti-
sche Trajektorien, die sich für 𝑡 →+∞ respektive 𝑡 →−∞ dem Sattelpunkt

162 Zusammenfassung in deutscher Sprache



annähern, ohne diesen jemals zu erreichen. Sie gehören zu einem hyperboli-
schen Fixpunkt, der normal-hyperbolisch invarianten Mannigfaltigkeit (engl.
normally hyperbolic invariant manifold, NHIM) [66–70, 130]. Alle formal
exakten DSs müssen an diesem Fixpunkt verankert werden [128, 131, 133],
andernfalls sind Mehrfachkreuzungen von Trajektorien [73, 78, 125, 126]
unausweichlich [siehe graue DS in Abbildung 2-1(b)].

In statischen Systemen beschreibt die NHIM die Trajektorie eine Teilchens,
das exakt auf dem Sattelpunkt bzw. der Spitze der Barriere ruht und bei der
kleinsten Störung herunterfallen würde. Analoge Betrachtungen können
auch für zeitlich getriebene Systeme angestellt werden, wobei sich die nun
ebenfalls zeitabhängige NHIM im Allgemeinen jedoch vom Sattelpunkt löst.
Dennoch behält sie ihre Funktion in der Konstruktion von DSs bei.

Das hier gezeichnete Bild lässt sich problemlos auf Systeme mit 𝑑 DoFs
erweitern. Die instabile Richtung des Sattels wird dann als Reaktionsko-
ordinate 𝑥 bezeichnet, während die anderen (stabilen) Richtungen unter
dem Begriff der orthogonalen Moden 𝒚 zusammengefasst werden. Eine DS
im 2𝑑-dimensionalen Phasenraum ist hier (2𝑑 −1)-dimensional, hat also
Kodimension 1. Die NHIM ist entsprechend (2𝑑 −2)-dimensional mit Ko-
dimension 2. Mit gut gewählten Koordinaten zeigt jeder Schnitt 𝑥–𝑝𝑥 bei
fixierten orthogonalen Moden 𝒚 und Impulsen 𝒑𝑦 die in Abbildung 2-1(b)
gezeigte Struktur.

Die geometrische Formulierung der TST eignet sich hervorragend, um
die Dynamik eines Systems auf dem Sattel zu beschreiben. Eine klassische
Berechnung des Flusses durch die zugehörige DS führt dabei auf das Kon-
zept von Zerfallsraten [6, 8, 87, 103], die ein Maß für die Instabilität von
Trajektorien darstellen. Diese müssen unterschieden werden von absoluten
Reaktionsraten [109–111, 146], bei denen zusätzlich berücksichtigt wird,
dass Trajektorien zunächst einmal überhaupt den Sattel erklimmen müssen,
bevor sie die DS kreuzen können. Zudem beruhen Letztere in der Regel
auf der Kopplung des Systems mit einem thermischen Bad. In dieser Arbeit
beschäftigen wir uns mit Zerfallsraten in Kapitel 4 bis 6 und mit absoluten
Reaktionsraten in Kapitel 7.

Ein wichtiger Schritt in der Bestimmung absoluter Reaktionsraten ge-
lang Kramers im Jahr 1940 [111], als er seine Überlegungen zur Fluchtrate
über einen Sattel veröffentlichte. In dieser wegweisenden Arbeit leitete er
analytische Ausdrücke für die absolute Reaktionsrate her, wobei sich diese
jedoch auf die Grenzfälle kleiner und großer Reibung beschränkten. Bei
mittlerer Reibung sagte Kramers ein Maximum in der Rate vorher, ohne
es jedoch quantifizieren zu können. Diese Lücke wurde später von Pollak,
Grabert und Hänggi (PGH) [146] geschlossen, die Kramers’ Theorie zudem
auf die generalisierte Langevin-Gleichung (engl. generalized Langevin equa-
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tion, GLE) verallgemeinerten (siehe unten). Letztlich stellt aber auch die
PGH-Rate nur eine Näherung dar, da sie unter anderem die Reaktion auf
einen eindimensionalen Prozess reduziert [27].

Allgemeingültiger lassen sich Raten durch Ensemblesimulationen basie-
rend auf Langevin- [134–138] oder atomistischer Molekulardynamik (engl.
all-atom molecular dynamics, AAMD) [154–157] berechnen. Hierfür wird
analog zu Kramers’ Grundidee ein konstanter Fluss an Reaktanten in das
System eingeleitet und der sich einstellende Fluss durch eine DS gemessen.
Sobald eine Trajektorie die DS erreicht und damit zum Produkt wird, wird
diese aus der Simulation entfernt (absorbierende Randbedingungen [158]).
Das Verhältnis aus Fluss und Reaktanten-Gleichgewichtspopulation bildet
die Rate.

Um auf diese Weise akkurat Raten berechnen zu können, ist eine DS
vonnöten, die möglichst wenige Mehrfachkreuzungen aufweist. So würde
beispielsweise eine Trajektorie, die direkt nach dem Kreuzen der DS vom
thermischen Bad zurückgeworfen wird, die Rate verfälschen. Die geometri-
sche Formulierung könnte prinzipiell genutzt werden, um eine ideale DS für
dieses Szenario zu berechnen [9, 94]. Dies wäre jedoch numerisch extrem
aufwendig, da die resultierende DS auch von der exakten Dynamik des
Bads abhängig wäre. In der Praxis werden daher einfachere Näherungen
angewendet [129, 158, 159, 161].

Die Wahl der DS ist insbesondere bei hohen Temperaturen ausschlagge-
bend. Hierbei muss auch die physikalische oder chemische Fragestellung
berücksichtigt werden, die beantwortet werden soll. So kann es je nach
Situation sinnvoll sein, eine Reaktion nur als solche zu werten, wenn die
Trajektorie nach dem Überqueren des Sattels auch im Produktbassin ein-
gefangen wird und nicht unmittelbar wieder zurück reagiert [149, 160].
Abschnitt 7-4 (b) zeigt anhand der Isomerisierung von Lithiumcyanid, dass
eine solche Bedingung einen enormen Effekt auf die beobachtete Reaktions-
rate haben kann.

Die Berechnung absoluter Reaktionsraten setzt typischerweise den Kon-
takt zu einem thermischen Bad voraus, was Effekte wie Rauschen und
Reibung zur Folge haben kann. Im Rahmen dieser Arbeit modellieren wir
derartige Effekte mithilfe der GLE

𝒒̇(𝑡) =𝑴−1𝒑(𝑡)(2-3a)
und 𝒑̇(𝑡) = 𝑭(𝒒(𝑡),𝒑(𝑡), 𝑡)−∫

𝑡

𝑡0
d𝑡′𝛤(𝑡 −𝑡′)𝒑(𝑡′)+𝜻(𝑡) ,(2-3b)

wobei 𝑴 die Massenmatrix, 𝛤 den Reibungs-Kernel und 𝜻 ein zufälliges Rau-
schen darstellen. Reibung und Rauschen hängen dabei über das Fluktuations-
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Dissipations-Theorem [134, 136]

⟨𝜁𝑗(𝑡)𝜁𝑘(𝑡
′)⟩ = 𝑘B𝑇𝑀𝑗𝑘𝛤(𝑡 −𝑡′) (2-4)

zusammen. Im Folgenden beschränken wir uns auf den Kernel [139, 140]

𝛤(𝑠) =
1
𝛼
exp(−

𝑠
𝛼𝛾

) (2-7)

mit Reibungskoeffizient 𝛾 und Badparameter 𝛼. Dieser lässt ein exponentiell
abklingendes Gedächtnis mit charakteristischer Zeitskala 𝜏 = 𝛼𝛾 zu. Im Limes
𝛼 → 0 ergibt sich die gedächtnislose Langevin-Gleichung (engl. Langevin
equation, LE) mit weißem Rauschen und Reibungs-Kernel

𝛤(𝑠) = 2𝛾𝛿(𝑠) . (2-5)

Kapitel 3: Numerische Methoden

Um die in Kapitel 2 vorgestellten Strukturen numerisch aufzulösen, müssen
Trajektorien propagiert werden. Hierfür greifen wir in Kapitel 4 und 5 auf
das Velocity-Verlet-Verfahren [164] zurück und bedienen uns ins in Kapitel 6
dem Runge-Kutta-Algorithmus in vierter Ordnung [167, 168].

Aufbauend hierauf lässt sich beispielsweise der Lagrange-Deskriptor [89,
90, 100, 106, 169, 171]

ℒ(𝒒0,𝒗0, 𝑡0) =∫
𝑡0+𝜏

𝑡0−𝜏
d𝑡‖𝒗(𝑡;𝒒0,𝒗0, 𝑡0)‖2 (3-8)

definieren. Die hier gezeigte klassische Variante misst die Bogenlänge ei-
ner Trajektorie im Zeitintervall 𝑡0−𝜏 ≤ 𝑡 ≤ 𝑡0+𝜏. Weitere Varianten sind
möglich [90], werden in dieser Arbeit jedoch nicht thematisiert. Die stabilen
und instabilen Mannigfaltigkeiten zeigen sich in dieser Metrik als lokale
Minima, wie in Abbildung 3-2(a) zu erkennen ist. Der Lagrange-Deskriptor
lässt sich sehr universell einsetzen; eine genaue numerische Auswertung der
Strukturen in ℒ ist im Allgemeinen jedoch relativ schwierig.

Sehr viel einfacher fällt dies über das Konzept der reaktiven (und nichtre-
aktiven) Bereiche [1, 87, 92]. Hierbei wird der Ortsraum zunächst in einen
Reaktant-, einen Produkt- und einen Zwischenbereich eingeteilt. Trajektori-
en im Zwischenbereich werden daraufhin so lang vorwärts und rückwärts
in der Zeit propagiert, bis sie im Reaktant- oder Produktbereich landen.
Abhängig davon, aus welchem Bereich sie kamen und in welchem sie en-
den, können die Anfangsbedingungen (𝒒0,𝒗0, 𝑡0) im Phasenraum einer von
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vier Klassen zugeordnet werden (siehe Abbildung 3-2(b)). Dies entspricht
wiederum exakt der in Abschnitt 2-1 vorgestellten Klassifizierung.

Diese Klassifizierung lässt sich nun verwenden, ummittels einer einfachen
Bisektion [172] die stabilen und instabilen Mannigfaltigkeiten aufzulösen.
Verknüpft man vier solcher Bisektionsverfahren, so erhält man die in Ab-
bildung 3-3 gezeigte binäre Kontraktionsmethode (engl. binary-contraction
method, BCM) [92], mit deren Hilfe die genaue Position der NHIM bestimmt
werden kann.

Obwohl die NHIM ein mathematisch invarianter Unterraum ist, entfernen
sich Trajektorien in der Praxis exponentiell schnell aufgrund numerischer
Ungenauigkeiten. Die BCM kann dazu verwendet werden, um Trajekto-
rien numerisch zu stabilisieren, indem diese regelmäßig zurück auf die
NHIM projiziert werden. Dies ermöglicht die Untersuchung der Dynamik
auf der NHIM, was ein Schwerpunkt der Kapitel 4 und 6 ist. Zur Visualisie-
rung dieser Dynamik eignet sich dabei insbesondere die stroboskopische
Abbildung—ein Spezialfall eines Poincaré-Schnitts (engl. Poincaré surface of
section, PSOS) [66].

Die Stabilität von Trajektorien auf der NHIM lässt sich schließlich mithilfe
von Zerfallsraten quantifizieren. Zur Berechnung dieser haben sich vor allem
drei Methoden bewährt [2, 4–6, 8–11, 87, 103]:

1. Die Ensemble-Ratenmethode [2, 176] berechnet instantane (d. h. zeit-
aufgelöste) Raten, indem eine große Anzahl von Teilchen nahe der
NHIM propagiert wird. Das Ensemble wird dabei wie in Abbildung 3-5
gezeigt initialisiert, um Konsistenz mit der Floquet-Rate zu gewähr-
leisten. Aus dem zeitlichen Verlauf der Reaktantenpopulation 𝑁 ergibt
sich schließlich die Rate zu

𝑘e(𝒚,𝒑𝑦, 𝑡; 𝑡0) =−
d
d𝑡

ln[𝑁(𝒚,𝒑𝑦, 𝑡; 𝑡0)] .(3-12)

Dieses Verfahren hat den Vorteil, dass es konzeptionell recht einfach
ist und nur wenige Annahmen über die Dynamik enthält. Dafür ist es
jedoch sehr rechenintensiv und weist tendenziell höhere numerische
Ungenauigkeiten auf als die folgenden Methoden.

2. Die lokale Mannigfaltigkeiten-Analyse (engl. local manifold analysis,
LMA) [2, 6] nutzt die linearisierte Dynamik in der Nähe der NHIM aus,
um die Ensemble-Ratenmethode zu beschleunigen und numerische
Fehler zu reduzieren. Anstatt Ensembles zu propagieren, müssen hier
lediglich die Steigungen der stabilen und instabilen Mannigfaltigkei-
ten 𝑝s

𝑥/𝑥
s und 𝑝u

𝑥/𝑥
u berechnet werden. Aus der Differenz ergibt sich
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sodann die Rate

𝑘m(𝑡;𝜸
‡) = 𝐽𝑥,𝑝𝑥(𝑡)

𝑝u
𝑥 (𝑡)−𝑝s

𝑥(𝑡)
𝑥u(𝑡)

−
𝑥DS(𝑡 +𝛿𝑡)
𝑥u(𝑡)𝛿𝑡

, (3-13)

wobei der letzte Term eine mögliche lokale Kopplung von Reakti-
onskoordinate und orthogonalen Moden – beispielsweise durch die
Coriolis-Kraft –berücksichtigt.

3. Gemittelte Raten von periodischen Trajektorien lassen sich noch ef-
fizienter auch mittels Floquet-Theorie berechnen [88, 103]. Hierzu
müssen lediglich die größten und kleinsten Eigenwerte der Monodro-
miematrix bestimmt werden. Die Differenz der zugehörigen Floquet-
Exponenten

𝑘F =𝜇u−𝜇s (3-24)

entspricht der Zerfallsrate der Trajektorie. Diese Betrachtung lässt
sich mittels linearer Regression auch auf quasiperiodische Trajektorien
ausweiten [2, 174].

Bei den in Teil II untersuchten Systemen liefern alle drei Methoden überein-
stimmende Ergebnisse. Dies bestätigt, dass die unterschiedlichen Annahmen,
die für die verschiedenen Methoden gemacht wurden, hier gerechtfertigt
sind.

In Kapitel 7 untersuchen wir die Reaktionsrate einer chemischen Reaktion.
Hierfür wird das System nicht mehr nur in Isolation betrachtet, sondern
zusätzlich die Interaktion mit einem thermischen Bad modelliert (siehe
Abschnitt 2-2). Für die Lösung der resultierenden stochastische Bewegungs-
gleichung greifen wir auf das LF-Middle-Verfahren zurück. Aufbauend hierauf
lassen sich nun Raten berechnen.

Neben Ratengleichungen, die auf dem Fluss durch eine DS basieren, gibt
es noch weitere Ansätze. So zeigten Reimann, Schmid und Hänggi [182]
beispielsweise, dass äquivalente Raten ebenfalls via mittleren Erstdurch-
gangszeiten (engl. mean first-passage time, MFPT) [180–186] berechnet
werden können. Hierzu werden Bedingungen definiert, wann eine Reaktion
abgeschlossen ist, und die Zeiten 𝛥𝑡𝑗 für jede Trajektorie 𝑗 gemessen, bis
diese Bedingungen zum ersten Mal erfüllt sind. Die Rate ergibt sich daraus
zu

𝑘MFPT =
1

⟨𝛥𝑡𝑗⟩𝑗
=(

1
𝑁

𝑁
∑
𝑗=1

𝛥𝑡𝑗)
−1

. (3-31)
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Teil II: Anwendungen & Ausblick

Im zweiten Teil präsentieren wir nun ausgesuchte Beispiele von Anwendun-
gen in prototypischen und von der echten Welt inspirierten Systemen.

Kapitel 4: Bifurkationen in einem zweidimensionalen Modellsystem

Wir beginnen mit einem einfachen, getriebenen Modellsystem mit zwei
nichtlinear gekoppelten DoFs [1–3, 5, 87, 91, 108, 174]

𝑉(𝑥,𝑦,𝑡) = 2exp{−[𝑥− ̂𝑥 sin(𝜔𝑥𝑡)]
2}+2[𝑦−

2
𝜋
arctan(2𝑥)]

2
,(4-1)

wobei ̂𝑥 und 𝜔𝑥 die Amplitude und Frequenz des externen Treibens darstel-
len. Dieses Treiben lässt die Position des Rang-1-Sattels wie in Abbildung 4-1
dargestellt oszillieren, was zu einer reichhaltigen Dynamik in dessen Nähe
führt.

Abbildung 4-2 demonstriert, welchen Einfluss eine Änderung der Fre-
quenz𝜔𝑥 auf die NHIM haben kann. Während bei𝜔𝑥 =𝜋 nur ein elliptischer
Fixpunkt im PSOS zu erkennen ist, weist derselbe Ausschnitt bei 𝜔𝑥 = 0.75𝜋
zusätzlich je einen elliptischen und einen hyperbolischen Fixpunkt auf. Der-
artige Paare können, wie Abbildung 4-3 demonstriert, aus Sattel-Knoten-
Bifurkation [3, 5, 78, 108, 188–190] heraus erzeugt oder vernichtet werden.
Sie haben einen signifikanten Einfluss auf die Stabilität von Trajektorien
innerhalb der NHIM und sind daher von großem Interesse in der Theorie
dynamischer Systeme.

Um den Einfluss solcher Bifurkationen weiter zu verdeutlichen, können
wir den PSOS zusätzlich mit verschiedenen Eigenschaften der Trajektorien
auf der NHIM hinterlegen. Dies wurde in Abbildung 4-6 für die durchschnitt-
liche Energie ⟨𝐸[𝜸‡]⟩𝑡 sowie die Floquet-Zerfallsrate 𝑘F nahe der Bifurkation
umgesetzt. Deutlich zu erkennen spiegeln ⟨𝐸[𝜸‡]⟩𝑡 und 𝑘F die Struktur des
PSOS wider. Zusätzlich lassen sich jedoch auch Plateaus nahe der ellipti-
schen Fixpunkte identifizieren, die auf eine einheitliche Dynamik schließen
lassen. Diese sind mitunter scharf von ihrer Umgebung getrennt, was für
eine schlagartige Änderung der Dynamik spricht. Wenn ein solches Plateau
im Zuge einer Bifurkation entsteht oder verschwindet, so kann dies einen
Sprung in der Stabilität des Systems hervorrufen, wie Abbildung 4-8(a) zeigt.
Dieses Wissen kann genutzt werden, um Systeme hinsichtlich verschiedener
Eigenschaften zu steuern und zu optimieren.

Die bisherige Betrachtung spielte sich ausschließlich auf der NHIM ab.
Für chemische Prozesse ist es jedoch entscheidend, dass die gewonnenen
Erkenntnisse auch auf Trajektorien abseits der NHIM übertragen werden
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können. Hierzu starten wir Trajektorien mit einem Versatz 𝛥𝑝𝑥 =+10−5 zur
NHIM und propagieren diese rückwärts in der Zeit, bis sie im (offenen) Reak-
tantbassin ankommen. Die dort gemessene Anfangsenergie gibt Aufschluss
darüber, wie viel Energie notwendig ist, um den Sattel zu einer bestimmten
Zeit und an einem bestimmten Ort zu überqueren.

Das Ergebnis ist in Abbildung 4-9 für verschiedene Frequenzen des ex-
ternen Treibens dargestellt. Es zeigt sich eine deutliche Korrelation mit der
Struktur der NHIM, hier repräsentiert durch den PSOS. Insbesondere be-
findet sich die Position mit minimaler zugehöriger Anfangsenergie meist
in unmittelbarer Umgebung zum stabilsten elliptischen Fixpunkt, wie ein
Vergleich mit Abbildung 4-6 zeigt. Der Übergang unmittelbar nach der Bifur-
kation verläuft jedoch kontinuierlich und nicht sprunghaft. Mit zunehmender
Entfernung von der NHIM verstärkt sich dieser Effekt – die Strukturen ver-
waschen.

Basierend auf dieser Betrachtung ist es sogar möglich, in eingeschränk-
tem Maße Reaktionswahrscheinlichkeiten vorherzusagen. Hierzu wird ein
Ensemble mit Maxwell-Boltzmann-verteilter Anfangsgeschwindigkeit im
Reaktantbassin initialisiert und der Anteil an Trajektorien 𝜒e

r gemessen,
der die Barriere überwindet. Ein ähnlicher Wert lässt sich aus dem globa-
len (räumlichen und zeitlichen) Minimum der Anfangsenergie abschätzen.
Dieser Schätzwert stimmt, insbesondere bei Variation der Frequenz des
Treibens, erstaunlich gut mit dem simulierten Ergebnis überein (siehe Abbil-
dungen 4-10 und 4-11).

Kapitel 5: Selbstähnlichkeit in einem getriebenen
Zweisattelsystem

Kapitel 4 beschäftigte sich mit nur einem Sattel. In vielen komplexen Reaktio-
nen [21–25] müssen jedoch mehrere Hindernisse entlang des Reaktionspfads
überwunden werden. Die Interaktion zwischen diesen Barrieren [4, 77, 173,
214–216] kann dabei bereits in den einfachsten Systemen eine hochgradig
komplexe Dynamik zur Folge haben. Insbesondere wollen wir uns in diesem
Kapitel mit der Frage beschäftigen, ob – und wenn ja, wie – in solchen
Mehrsattelsystemen eine global exakte DS definiert werden kann.

Diese Fragestellung untersuchen wir anhand des eindimensionalen Po-
tentials [4, 173]

𝑉(𝑥,𝑡) = 𝐵0(𝑡)e
−(𝑥+1)

2

+𝐵𝜋(𝑡)e
−(𝑥−1)

2

(5-1a)

mit 𝐵𝜑(𝑡) =
7
4
+
1
4
sin(𝜔𝑡+𝜑) , (5-1b)
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wobei zwei Gauß-Barrieren mit Frequenz 𝜔 gegenphasig getrieben werden.
Im statischen Fall ergibt sich eine sehr einfache Phasenraumstruktur [siehe
Abbildung 5-1(b)]. Beide Sättel weisen lokal die bekannte Kreuzstruktur
auf. Letzten Endes entscheidet aber stets die höchste Barriere über die
Reaktivität einer Trajektorie; die zugehörige lokale DS wird hier gleichzeitig
zur globalen DS. Die (diskrete) NHIM des Gesamtsystems setzt sich dabei
aus den Sattelpunkten der Einzelsättel zusammen. Ähnlich sieht der Fall
𝜔→∞ aus, da hier effektiv wieder ein statisches Potential wirkt.

Erheblich komplexer ist die Situation, wenn mit einer endlichen Frequenz
getrieben wird. Abbildung 5-2 zeigt dazu die mittels Lagrange-Deskriptor
aufgedeckte Phasenraumstruktur bei 𝜔 =𝜋. Um die Position der Sättel bei
𝑥 ≈±1 sind zwar immer noch kreuzartige Strukturen zu erkennen, welche
wir im Folgenden allgemein als geometrische Kreuze bezeichnen wollen. Diese
weisen jedoch eine detaillierte, fraktale Substruktur auf, was die Bestimmung
der NHIM schwierig macht. Hierbei hilft es auch nicht, dass die NHIM nun
aus unendlich vielen, aber immer noch diskreten, Punkten besteht.

Bemerkenswert ist dennoch, dass das geometrische Kreuz des momen-
tan höheren Sattels dünner ausgeprägt ist. Um den Effekt zu verstärken,
verlangsamen wir das Treiben auf 𝜔 =𝜋/10. Abbildung 5-3 zeigt die zeitab-
hängige Phasenraumstruktur, nun wieder über die reaktiven Bereiche. Hier
sticht erneut der momentan höhere Sattel mit seiner klaren Struktur hervor.
Dieses primäre geometrische Kreuz bewegt sich zwischen den Sätteln, ohne
mit anderen Strukturen in Kontakt zu kommen. Zu diesem Kreuz gehört
eine TS-Trajektorie, die mit genau der Periode des Treibens zwischen den
Sätteln schwingt (siehe Abbildung 5-4). Eine an dieser TS-Trajektorie veran-
kerte DS führt im Vergleich zu erheblich weniger Mehrfachkreuzungen, wie
Abbildung 5-5 zeigt. Ganz ausschließen lassen sich solche Mehrfachkreuzun-
gen bei planaren DSs jedoch nie, was erneut an der fraktalen Struktur des
Phasenraums liegt (siehe Abbildung 5-6).

Berechnet man die Zerfallsrate für die primäre TS-Trajektorie, so fällt
abschließend ein interessantes Detail auf. Gemäß Abbildung 5-7 weist die
Rate immer dann dramatische Einbrüche auf, wenn sich die Trajektorie
gerade vom einen zum anderen Sattel bewegt. Wie in Abschnitt 3-5 (b)
diskutiert wird, hängt dies eng mit der schmalen Form des Kreuzes zu diesen
Zeitpunkten zusammen, was in Abbildung 5-6(b) gut zu sehen ist.

Kapitel 6: Einfluss des Monds auf die Stabilität nahe des
Sonne-Erde-Lagrangepunkts L₂

Eine konkretere Interpretation der Zerfallsrate ist möglich, wenn wir uns der
Himmelsmechanik zuwenden [6, 60]. Betrachten wir dazu die Bewegung
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eines Satelliten in einem Sonnensystem, das neben dem Stern auch noch aus
einem Planeten mit einem Mond besteht. Um in einem solchen System einen
Rang-1-Sattel identifizieren zu können, auf den sich die TST anwenden lässt,
müssen einige Approximationen gemacht werden. Zum einen wird die Masse
des Satelliten vernachlässigt, sodass dessen Bewegung keinen Einfluss auf
die drei Primärkörper hat. Zum anderen werden die Primärkörper in einer
Hierarchie von zirkularen Zweikörperproblemen angeordnet, sodass Mond
und Planet ihren gemeinsamen Schwerpunkt umkreisen. Dieses Baryzen-
trum wiederum bewegt sich zusammen mit dem Stern auf einer Umlaufbahn
um den Gesamtschwerpunkt des Systems. In einem passenden synodischen
Koordinatensystem sind Stern und Baryzentrum fix, während sich Planet
und Mond auf Kreisbahnen bewegen. Ein solches Modell, dargestellt in
Abbildung 6-1, ist in der Literatur als bizirkulares eingeschränktes Vierkör-
perproblem (engl. bicircular restricted four-body problem, BCR4BP) [225–228]
bekannt.

In einem klassischen Zweikörperproblem sind fünf Punkte bekannt, an
denen sich in synodischen Koordinaten alle Kräfte aufheben. Diese sogenann-
ten Librationspunkte 𝐿1 bis 𝐿5 [222, 223, 231–233], auch Lagrange-Punkte
genannt, werden im BCR4BP durch den Mond gestört, sodass Kräfte hier
nicht mehr verschwinden. Dennoch lassen sich auch mit Mond weiterhin
Satelliten in der Nähe parken, was sichmithilfe des effektiven Potentials nach-
vollziehen lässt. Dieses weist dank der Zentrifugalbarriere eine Sattelform
nahe der kollinearen Librationspunkte 𝐿1 bis 𝐿3 auf (siehe Abbildung 6-2).
Folglich existiert eine zugehörige NHIM [226], die sämtliche Orbits enthält,
die sich dauerhaft nahe dem Sattel aufhalten. Die NHIM wird durch die
Bewegung des Monds zwar beeinflusst, aber nicht zerstört.

Hier konzentrieren wir uns auf den Sonne-Erde-𝐿2-Punkt, da dieser von
großer Relevanz für die Astrophysik ist [112–115]. Wir parametrisieren das
Modell mit zwei unterschiedlichen Parametersätzen, einerseits basierend
auf unserer Sonne, der Erde und ihrem Mond, und andererseits mit extre-
meren Testparametern, die aber gerade noch realistisch erscheinen [235].
Genaue Werte für die einzelnen Parameter finden sich in Tabelle 6-1. Bei der
resultierenden Struktur der NHIM – zu sehen in Abbildung 6-4 – zeigen sich
große Ähnlichkeiten zu Kapitel 4, insbesondere Abbildung 4-2(a). Die vom
PSOS aufgedeckten Tori gehören zu größtenteils quasiperiodischen Bahnen
nahe dem 𝐿2. Der Fixpunkt selbst gehört wiederum zu einer periodischen
Bahn, die wir als 𝐿2-Orbit bezeichnen wollen, da sie den 𝐿2-Punkt in diesem
generalisierten Kontext ersetzt; im Grenzfall ohne Mond geht der 𝐿2-Orbit
in den 𝐿2-Punkt über.

Dass Zerfallsraten die Stabilität einer Bahn angeben, lässt sich im Kontext
der Himmelsmechanik schließlich ganz praktisch interpretieren. Künstliche
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oder natürliche Satelliten können in der Praxis niemals exakt auf der NHIM
platziert werden und driften daher exponentiell schnell ab. Sonden, die
nahe 𝐿2 platziert werden sollen, müssen daher regelmäßig Kurskorrekturen
vornehmen. Die Zerfallsrate des Orbits gibt Aufschluss über die Stärke der
Drift und stellt damit letztlich auch ein Maß für den Treibstoffverbrauch
eines Satelliten dar. Durch Optimierung des Orbits können in einer echten
Mission Treibstoff gespart und dadurch Kosten gesenkt und Missionsdauern
verlängert werden.

Kapitel 7: Kramers-Raten der Isomerisierung von Lithiumcyanid

Nach diesem Ausflug in die Astrophysik wenden wir uns erneut der Che-
mie – genauer gesagt der Isomerisierungsrate von Lithiumcyanid – zu. Die
Reaktion

C N Li Li C N(7-1)

in einem Argon-Bad [118, 119, 196] war bereits mehrfach Gegenstand theo-
retischer Untersuchungen [7, 118–120, 196]. Hierbei zeigten sich größere
Abweichungen zwischen verschiedenen Methoden, deren Ursprung nicht
endgültig geklärt werden konnte. In diesem Kapitel legen wir dar, warum
die in Referenz [7] veröffentlichten MFPT-Raten problematisch sind, und
präsentieren neue Ergebnisse, die besser mit denen anderer Methoden [118,
119, 196] übereinstimmen.

Das Modell, das dafür zum Einsatz kommt [117, 243], ist in Abbildung 7-1
zu sehen. Da die Dreifachbindung des Cyanids sehr starr ist, reicht es aus,
die Konfiguration über den Abstand 𝑅 und den Winkel 𝜗 des Lithium-Atoms
relativ zum Cyanid zu beschreiben. Die LiCN- und LiNC-Konfigurationen
bei 𝜗 = 0 und 𝜗 =𝜋 zeigen sich als lokale Minima im zugehörigen Potential
(siehe Abbildung 7-2), wobei LiNC den stabileren Zustand darstellt.

Abbildung 7-3 fasst die Ergebnisse zusammen, die zuvor mit diesem
Modell erzielt wurden. Insbesondere konzentrieren wir uns hier auf die
PGH-Raten aus Referenzen [7, 119, 248] sowie die MFPT-Raten aus Refe-
renz [7]. Zum Vergleich dienen Raten aus AAMD-Simulationen, die ebenfalls
Referenz [119] entstammen.

Im Vergleich wird deutlich, dass sich die Verläufe der Raten 𝑘 als Funktion
der Reibung 𝛾 in ihrer Form sehr ähneln. Die Skalierung, erkennbar an
der Höhe der Maxima, weicht jedoch teilweise stark ab. So mussten die
MFPT-Raten durch einen Faktor 5 geteilt werden, um einigermaßen mit der
PGH-Rate übereinzustimmen. Der Verlauf in Abhängigkeit der Temperatur 𝑇
zeigt ähnliche Abweichungen. Bei genauerem Hinsehen fällt auf, dass sich
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die MFPT-Raten zwar mit einer modifizierten Arrhenius-Gleichung [251]

𝑘(𝑇) = 𝐴𝑇𝑛 exp(−
𝐸‡

𝑘B𝑇
) (7-6)

beschreiben lassen, jedoch nur, wenn eine Aktivierungsenergie von 𝐸‡
fit/𝑘B ≈

619.5K angenommen wird. Dieser Wert steht im deutlichen Widerspruch
zur eigentlichen Barrierenhöhe von 𝐸‡/𝑘B = 1689.3K und lässt ein tiefge-
henderes Problem mit der Implementierung vermuten.

Um dem nachzugehen, wurden sämtliche MFPT-Berechnungen noch-
mals mit einem komplett neuen Simulationsprogramm wiederholt. Wie
Abbildung 7-6(a) zeigt, stimmen die neuen Ergebnisse bei niedrigen Tem-
peraturen sehr gut mit der PGH-Rate überein, auch ohne Reskalierung um
einen Faktor 5. Die Erweiterung auf die GLE-Dynamik mit Gedächtnis liefert
ähnlich vielversprechende Resultate [siehe Abbildung 7-6(b)]. Bei hohen
Temperaturen kommt es jedoch immer noch zu Abweichungen, wie in Ab-
bildung 7-8(a) zu erkennen ist, auch wenn diese bereits erheblich niedriger
ausfallen. Interessanterweise stimmen die PGH-Raten selbst in diesem Re-
gime mit 𝑘B𝑇 > 𝐸‡ noch relativ gut mit den AAMD-Raten überein, obwohl
die PGH-Theorie – wie für TST-Methoden üblich – eigentlich 𝑘B𝑇 ll 𝐸‡

voraussetzt.
Solch hohe Temperaturen werfen jedoch auch die Frage nach der genau-

en Definition der Rate auf. Verlangen wir beispielsweise, dass Trajektorien
im Produktbassin gefangen werden müssen, bevor wir sie als reagiert wer-
ten, so hat dies einen erheblichen Einfluss auf unsere MFPT-Raten [siehe
Abbildung 7-8(b)]. Einerseits führt dies dazu, dass die Raten sinken, da bal-
listische Trajektorien erheblich länger propagiert werden. Andererseits sind
jetzt auch erhebliche Abweichungen zwischen LE- und GLE-basierten Raten
erkennbar, da das Gedächtnis des Bads ballistische Trajektorien begünstigt.
Ob eine solche Modifikation sinnvoll ist, hängt davon ab, welche physikali-
sche Frage beantwortet werden soll, und könnte Gegenstand zukünftiger
Forschung sein.

Kapitel 8: Zusammenfassung und Ausblick

Kernthema dieser Arbeit war die Dynamik von Trajektorien auf einem sowie
über einen Rang-1-Sattel einer Potentialfläche. Die Dynamik auf dem Sattel
führt dabei auf das Konzept der NHIM, worüber sich eine DS definieren
lässt. Betrachtet man den normierten Fluss durch diese DS, so erhält man
Zerfallsraten, die die Stabilität von Trajektorien nahe der NHIM beschreiben.
Dieselbe Grundidee, den normierten Fluss durch die DS zu betrachten, führt
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jedoch auf absolute Reaktionsraten, wenn die komplette Dynamik zwischen
Reaktant- und Produktbassin betrachtet wird. In letzterem Fall wird dabei
für gewöhnlich die Kopplung an ein thermisches Bad berücksichtigt.

Mit Zerfallsraten kann unter anderem die Struktur der NHIM aufgedeckt
werden. Diese Struktur kann zu einem gewissen Grad mit der Dynamik
zwischen Reaktant- und Produktbassin korreliert werden. Es gibt jedoch
noch keinerlei Ansätze, mit denen die Zerfallsrate selbst in die Berechnung
von absoluten Reaktionsraten einbezogen werden könnte; ob dies möglich
ist, ist derzeit offen. Zukünftige Forschung sollte diese Verbindung dennoch
nicht vernachlässigen, da hierdurch interessante Details zu Reaktionspfa-
den aufgezeigt werden könnten. Um für chemische Systeme relevant zu
sein, müssen die Ergebnisse jedoch verallgemeinert werden, um thermische
Effekte zu berücksichtigen.

Wie Kapitel 6 am Beispiel der Astrophysik zeigt, lassen sich Methoden wie
die Zerfallsrate aktuell viel direkter außerhalb der Chemie nutzen. Auch die
Anwendung in der Spintronik wurde bereits demonstriert [10, 11, 50–52].
Es könnte sich daher lohnen, verstärkt nach weiteren derartigen Systemen
Ausschau zu halten. Um die verschiedenen Disziplinen wirklich weiterbrin-
gen zu können, reicht es jedoch nicht aus, TST-Methoden blind auf andere
Systeme anzuwenden. Stattdessen sollte mit Wissenschaftlern der jeweiligen
Fachrichtungen kollaboriert werden, um das volle Potenzial einer solchen
Forschung zu entfalten.

Die erneute Untersuchung der absoluten Reaktionsrate von LiCN
LiNC konnte offene Fragen aus früheren Publikationen [7, 116, 120] teil-
weise beantworten. Durch die Betrachtung von Reaktionsraten bei hohen
Temperaturen wurden Fragen nach der genauen Definition der Rate aufge-
worfen. Um in einer zukünftigen Arbeit einen fairen Vergleich der Raten
zu ermöglichen, muss sichergestellt werden, dass äquivalente Definitionen
für die DS verwendet werden. Welche der möglichen Definitionen dabei am
sinnvollsten ist, hängt von der physikalischen beziehungsweise chemischen
Fragestellung ab, die untersucht wird.
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