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Abstract: At present, the condition assessment of transformer winding based on frequency response
analysis (FRA) measurements demands skilled personnel. Despite many research efforts in the last
decade, there is still no definitive methodology for the interpretation and condition assessment of
transformer winding based on FRA results, and this is a major challenge for the industrial application of
the FRA method. To overcome this challenge, this paper proposes a transformer condition assessment
(TCA) algorithm, which is based on numerical indices, and a supervised machine learning technique
to develop a method for the automatic interpretation of FRA results. For this purpose, random forest
(RF) classifiers were developed for the first time to identify the condition of transformer winding and
classify different faults in the transformer windings. Mainly, six common states of the transformer
were classified in this research, i.e., healthy transformer, healthy transformer with saturated core,
mechanically damaged winding, short-circuited winding, open-circuited winding, and repeatability
issues. In this research, the data from 139 FRA measurements performed in more than 80 power
transformers were used. The database belongs to the transformers having different ratings, sizes,
designs, and manufacturers. The results reveal that the proposed TCA algorithm can effectively assess
the transformer winding condition with up to 93% accuracy without much human intervention.

Keywords: condition assessment; decision tree (DT); frequency response analysis (FRA); machine learn-
ing; numerical indices; power transformer; random forest (RF)

1. Introduction

Power systems depend heavily on transformers, which play a crucial role in the
transmission and distribution of electric power. Although transformers are generally
reliable pieces of equipment, the increasing power demand and continuous exposure of
power transformers to various system faults result in elevated electrical and mechanical
stresses that increase the likelihood of failures. Many failure mechanisms ultimately limit
the useful operating life of the transformer. Anticipating different failure modes and taking
pre-emptive measures are the key to extending the life of the transformer [1–3].

Accordingly, different condition assessments and diagnostic techniques have been de-
veloped to identify faults within power transformers [4]. Among these methods, frequency
response analysis (FRA) is a non-intrusive and non-destructive diagnostic tool to identify
a variety of faults in the transformer’s active part [5,6]. The FRA measurement process
has been standardized through research in the past, as documented in IEC and IEEE stan-
dards [7,8]; however, there is still no globally accepted methodology for interpreting FRA
results. Consequently, transformer condition assessment using the FRA method demands
skilled personnel. Therefore, the interpretation of FRA has become a leading topic with
different research bodies, i.e., IEEE, IEC, and CIGRE. Recently, CIGRE WG A2.53 drafted a
technical brochure containing interpretation guidelines for FRA [9].

Energies 2023, 16, 3714. https://doi.org/10.3390/en16093714 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16093714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7168-8725
https://orcid.org/0000-0001-6610-6965
https://doi.org/10.3390/en16093714
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16093714?type=check_update&version=2


Energies 2023, 16, 3714 2 of 16

The numerical indices method is the most widely used approach for FRA interpreta-
tion [10,11]. These indices quantify changes between two FRA signatures, and the condition
of the transformer, healthy/deformed, is decided based on the value of the index. Currently,
indices are calculated in the fixed-frequency ranges. However, standards [7,8] state that
the frequency sub-bands vary with the transformer size and rating, and no general range
can be determined. Moreover, the threshold values of the indices to differentiate between
the transformer’s healthy and faulted conditions are not defined yet. Due to the absence
of an effective diagnosis procedure, all commercial FRA equipment computes numerical
indices based on fixed-frequency sub-bands. Moreover, at this stage, fault classification is
also not possible [9]. An effective assessment method should provide both features, i.e.,
identification of the condition of the transformer and classification of the fault type, so that
necessary remedial measures can be initiated.

Artificial intelligence (AI) and machine learning techniques have been of great interest
lately for transformer condition assessment and diagnosing faults [12–14]. However, in
FRA, very few attempts have been made using such techniques. Velasquez et al. (2011) [15]
employed a decision tree model to classify low-frequency and high-frequency faults. Data
from 500 transformers were employed for time-based comparison. Bigdeli et al. (2012) [16]
employed a support vector machine (SVM) model to discriminate between different me-
chanical fault types. In this work, only two types of transformers were employed, a classic
20 kV transformer and a model transformer. Ghanizadeh et al. (2014) [17] employed an
artificial neural network (ANN) to identify electrical and mechanical faults with good
accuracy. However, a single 1.2 MVA transformer model was employed in this research.
Gandhi et al. (2014) [18] used nine statistical indices and 90 FRA cases to develop a three-
layer ANN. The main disadvantage of this work is that only a single transformer model
was employed to generate the database. Aljohani et al. (2016) [12] employed digital image
processing to automate fault identification; however, only two transformers of different
ratings were simulated for this purpose. Luo et al. (2017) [19] employed ANN to recognize
simulative winding deformation faults to different extents. In this contribution, transfer
function, zeros, and poles were considered to be the features of ANN; however, the faults
were simulated only in a transformer simulation model. Liu et al. (2019) [20] used the SVM
model to diagnose three different types of faults, i.e., disk space variation, radial defor-
mation, and inter-turn fault. Numerical indices were employed to extract eight features
from FRA data. An accuracy rate of 96.3% was obtained in this contribution. Zhao et al.
(2019) [21] introduced a winding deformation fault detection method. The method is based
on the analysis of binary images extracted from FRA traces to improve FRA interpreta-
tion. The digital image processing technique is used to process the binary image and the
outcome of this method is a fault detection indicator. Duan et al. (2019) [22] proposed
a deep learning algorithm to detect inter-turn faults in transformers with an accuracy of
99.34%. However, the feasibility of this classification algorithm was assessed only with
simulated and preliminary experimental data. Mao et al. (2020) [14] proposed a support
vector machine (SVM) model to identify the winding type, which is critically important
from an asset management point of view. However, with the changes in the transformer
rating, the dominated frequency region also changes, which makes it difficult to generalize
this model.

The results of these reports show the potential of AI and machine learning algorithms
for fault diagnosis and classification. However, the performance of some classifiers, e.g.,
decision trees, can be further improved by using ensembled machine learning models.
Most of these studies employed small datasets. Additionally, fixed-frequency sub-bands
are considered to calculate the numerical indices, whereas standards state that the ranges
of frequency sub-bands cannot be fixed as they depend on transformer ratings. Moreover,
only a few faults are classified and a small number of transformers are employed, which
decreases the diversity of fault patterns. Hence, a diverse dataset of various faults from the
field is necessary to settle the criteria for using AI and ML methods.

The innovative contributions of this paper, if compared to previous studies, are as follows:
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1. Mainly six common conditions of the transformers are identified which cover a variety
of transformer faults, i.e., radial deformation, axial collapse, disk space variation,
conductor tilting/twisting, short-circuited windings, open circuit, etc. Moreover, the
effect of different oils, temperatures, and saturations on the core is also identified.

2. Features are extracted using an adaptive frequency division algorithm. In previous
studies, fixed-frequency sub-bands are considered to calculate the numerical indices,
whereas standards state that the ranges of frequency sub-bands cannot be fixed as
they depend on transformer ratings.

3. A state-of-the-art transformer condition assessment (TCA) algorithm is proposed
which is based on the numerical indices, as well as a supervised machine learning
technique to develop a method for the automatic assessment of FRA measurements.
Random forest (RF) classifiers were developed for the first time to identify the six
common states/conditions of transformer windings.

4. A comparison of the performance of different numerical indices to propose more
suitable ones.

5. The application of the TCA algorithm to a variety of real transformers, i.e., generator
step-up unit, distribution, transmission, GIS connector, shunt reactor, dry type, etc.,
which are faulty during operation.

2. Random Forest Classification Model

A random forest (RF) algorithm is among the most effective algorithms for classifi-
cation. RF classifiers are simple, fast, robust, and have proven to be successful in various
fields [23]. RF classifiers fall under the umbrella of ensemble-based machine learning mod-
els, which use an ensemble of decision trees (DTs). DTs classify patterns using a sequence
of well-defined rules. It is a tree-like classification algorithm, where attributes of the dataset
are represented by internal nodes, decision rules are represented by branches, and the
result of the cumulative decisions is represented by leaf nodes as shown in Figure 1. The
leaf node contains cases belonging to a single class (pure node).

Figure 1. Flow chart representation of decision tree.

In RF, several decision trees are trained by randomly chosen subsets of the dataset
that has the same size as the original training set. A final class for the test object is then
determined by combining the votes from the various decision trees. It supports the basic
concept that a combination of weak learners can build a strong learner [24].
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DTs are grown by splitting the data recursively. To determine the best features as
splitters, mainly three measures are commonly used, i.e., Gini index (GI), information gain
ratio (IGR), and information gain (IG). In this research, the C4.5 algorithm is employed,
which is based on the information gain ratio [23].

Information Gain Ratio (IGR)

The information gain ratio (IGR) is used to identify the features that give maximum
information about a class. IGR is derived from information gain, which measures entropy
reduction at each split. If the proportion of samples of class k in dataset D containing C
classes is pk, the information entropy of D is defined as follows:

H(D) =
C

∑
k=1

pklog2 pk (1)

An attribute that provides a maximum reduction in entropy is selected as a splitter at
the current node. Suppose the attribute x with N possible outcomes x1, x2, . . . xn is used to
divide the set D, N nodes are generated, wherein the nth node contains all samples in D
that take the value of xn on attribute x, denoted as Dn. The expected entropy if x is used as
the current root is measured as

Hx(D) =
N

∑
n=1

|Dn|
|D| H(Dn) (2)

The information gained by selecting x to partition data is

Gain(D, x) = H(D)− Hx(D) (3)

However, the information gain is biased toward the attribute with many distinct
values. To overcome this problem, attributes that cause many splits are penalized. Hence,
the extent of partitioning is calculated by Splitinfo. This normalizes the information gain,
resulting in the calculation of the gain ratio.

Split Info =
N

∑
n=1

|Dn|
|D| log2

|Dn|
|D| (4)

Gain ratio =
Gain

Split Info
(5)

Random forests improve predictive accuracy and control high variance and overfitting
in decision trees [25]. During the training process, the bagging technique is used to generate
several subsets of data. Individual trees are trained on these bootstrapped subsets. Each
tree predicts a class and the class with majority voting is assigned to the observation. A
random forest model with N decision trees is shown in Figure 2.
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Figure 2. Flow chart representation of random forest.

3. Methodology

The necessary steps to build the TCA algorithm for a given dataset are illustrated
in Figure 3. The process involves six main steps, i.e., data preparation, generation of
features, training of the classifier, testing of the classifier, validation of results with unseen
data, analysis of performance, and validation of results with selected unseen cases. If
the performance is not satisfactory, it can be mainly due to inaccurate data preparation,
imprecise feature generation, or less diverse traces in different classes. In such cases, the
TCA algorithm suggests redefining the process steps to improve performance.

Figure 3. Workflow for development of TCA algorithm.
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3.1. Data Pre-Processing

Data pre-processing involves two steps: data labeling and noise removal. In this
research, the data from 139 FRA measurements performed in more than 80 power trans-
formers were used. The database was obtained from transformers having different ratings,
sizes, designs, and different manufacturers. These cases were collected in collaboration
with CIGRE WG A2.53 [9]. Additionally, the data of real case studies were collected from
the field from different utilities and diagnosis companies, and FRA measurements where
winding deformations were simulated in different transformers were also used [9]. The
database consists of different types of transformers, i.e., transmission units, distribution
units, generator step-up units, shunt reactors, GIS connectors, dry type, etc. In this paper,
the data of open-circuit FRA measurements were employed for the development of the TCA
algorithm. Moreover, reference data were also obtained for all the cases in the database. In
the database, each FRA measurement belongs to a predefined state of the transformer. Six
transformer conditions are identified which are healthy winding, healthy winding with
core saturation, mechanical faults, shorted turns between conductors, open circuit, and
repeatability issues. Each condition is labeled as a class (A to F). The distribution and
description of classes in the database are presented in Figure 4 and Table 1, respectively.

Figure 4. Distribution of classes in the database.

Table 1. Description of classes in the database.

Classes Description

Class A Healthy transformer with no sign of damage,
without fault

Class B Healthy transformer with core saturation, no
sign of damage

Class C
Mechanically deformed windings: axial

collapse, radial deformation, conductor tilting,
twisting, etc.

Class D
Short-circuited windings: turn to turn short

circuit, low-impedance solid short, high
resistance leakage path

Class E
Open-circuit winding: the loose connection

between conductors, burnt conductors due to
catastrophic thermal failure

Class F Effect of different oils, with and without oils,
effect of temperature

Generally, the data provided may be partly accompanied by noise signals which can
cause several small peaks and valleys at the lower frequencies. This noise was removed
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using a moving average Gaussian filter. An example of the FRA signature before and after
denoising is shown in Figure 5.

Figure 5. Comparison of the FRA signature before (up) and after (down) denoising.

3.2. Feature Generation

Feature generation also involves two steps. Firstly, the entire frequency spectrum of
the FRA is divided into four frequency sub-bands, i.e., two low-frequency sub-bands (LFB1
and LFB2), a medium-frequency sub-band (MFB), and a high-frequency sub-band (HFB).
The adaptive frequency division algorithm is employed, which successfully identifies
low-, medium-, and high-frequency regions in open-circuit FRA measurement depending
upon transformer size, rating, winding type, and connection scheme. The details of the
adaptive frequency division algorithm are described in the author’s previous work [26].
It is important to note that the presented frequency division structure is applicable to
open-circuit FRA measurements.

Secondly, six numerical indices, i.e., LCC, CCF, SD, SDA CSD, and SE, were employed
to quantify the changes between reference and current FRA signatures in each frequency
sub-band. The detailed definition and equations can be found in the author’s previous
work [10]. Thus, each index gives 4 features from a single FRA measurement which will
serve as features for the TCA algorithm. An example of frequency sub-band division
and feature generation from a typical FRA measurement is presented in Figure 6. After
frequency division and feature generation, it is possible to generate deviation patterns
for the given six conditions of the transformer as shown in Table 2. These patterns of
deviations are based on the case studies in the database containing 139 FRA measurements
from 80 power transformers. A similar kind of trend can be found in various case studies
presented in the literature, especially in IEEE and IEC standards [7,8]. These deviation
patterns will serve as a basis for the TCA algorithm.
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Table 2. Deviation patterns for different transformer conditions.

Transformer Conditions Affected Sub-Bands
Healthy winding No deviation

Healthy winding core saturated LFB1, LFB2
Mechanical faults MFB, HFB
Shorted turn fault LFB1, LFB2
Open circuit fault LFB1, LFB2, MFB, HFB

Effect of oil and temperature LFB2, MFB, HFB

Figure 6. Graphical representation of frequency sub-band division and feature generation in a typical
FRA measurement.

3.3. Training and Testing of Random Forest

In this step, RF was trained with 133 FRA measurements while 6 cases were reserved
for case studies. The input provided is a feature matrix (133 × 4) and the label matrix
(133 × 1). The label matrix is the class of each case, such as class A to F. The model learns
from the training data and predicts the output (the class of the test data).

To ensure that every observation from the dataset appears in the train and test sets, the
K-fold cross-validation technique was employed. K-fold cross-validation is a resampling
procedure used to evaluate the ML model on a limited database. In this method, data
are divided into K subsets (folds), then the model is trained using K-1 folds and tested
on the Kth fold. This procedure is repeated K times so that every fold is tested once as
illustrated in Figure 7. This procedure results in K different models fitted on different yet
partly overlapping training sets and tested on non-overlapping test sets.

Finally, the cross-validation performance was computed as the arithmetic means over
the K performance estimates. The choice of K is arbitrary and there is a bias–variance
tradeoff associated with it. Usually, 5 or 10 is an ideal choice [27]. Taking into account the
small dataset, 5-fold stratified cross-validation was used in this research. StratifiedKfold
ensures stratified folds, i.e., the percentage of samples from each of the target classes is
roughly equal in each fold. This implies that during each iteration the model is trained
with a feature matrix (106 × 4) and the label matrix (106 × 1), while it is tested with a feature
matrix (27 × 4). This process is repeated five times. After five iterations, the arithmetic
mean of the performance is computed. In this way, the model is tested on each set of data
and the variance of results is reduced.
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Figure 7. Representation of 5-fold cross-validation technique.

3.4. Performance Analysis

At this stage, the performance of the algorithm was evaluated via performance evalu-
ation metrics. Mainly, five performance evaluation metrics, i.e., accuracy, precision, recall,
F-score, and confusion matrix, were employed in this research, which provide the general
and detailed (per class) performance of the algorithm. The performance evaluation metrics
used in this work are described below:

Accuracy (%) =
No of correctly classified instances

Total instances in the data set
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score = 2× precision× recall
precision + recall

(9)

where
True Positive (TP): transformer is healthy (positive), and is predicted to be healthy (positive).
False Negative (FN): transformer is healthy (positive), but is predicted to be faulty (negative).
False Positive (FP): transformer is faulty (negative), but is predicted to be healthy (positive).

The predictive performance of the TCA algorithm trained with different numerical
indices is summarized using confusion matrices as illustrated in Figure 8. The confusion
matrices were obtained using the 5-fold cross-validation method in Python. The diagonal
cells show the number of correctly classified cases for each class, while off-diagonal cells
represent the number of misclassified cases. The classification performance of the TCA
algorithm trained with different numerical indices is briefly described as follows:

TCA trained with LCC (Figure 8a): The performance of TCA for class A is excellent, as
100% of the cases are correctly identified. The performance for classes B and E is good, as
only one case is misclassified in each class. The performance of class D is acceptable, as only
two cases are misclassified. The performance of classes C and F is poor as three cases in each
class are misclassified. The reason behind this is that the FRA traces of a slight mechanical
change for a power transformer are similar to the FRA traces of a normal transformer.

TCA trained with CSD (Figure 8b): The performance of TCA for class A is excellent,
as 100% of the cases are correctly classified. The performance of classes B, C, and E is good,
as only one case in each class is misclassified. The performance of class D is acceptable, as
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only two cases are misclassified. However, the performance of class F is poor, as four cases
are misclassified.

TCA trained with SD (Figure 8c): The performance of TCA for class A is excellent,
as 100% of the cases are correctly classified. The performance of classes B and F is good,
as only one case in each class is misclassified. The performance of classes C and D is
acceptable, as only two cases are misclassified. However, the performance of class E is low,
as three cases are misclassified as class D.

TCA trained with SE (Figure 8d): The performance of TCA for class E is excellent, as
100% of the cases are correctly identified. The performance of class A is good, as only one
case is misclassified. The performance of classes B, C, D, and F is acceptable, as only two
cases are misclassified in each class.

TCA trained with CCF (Figure 8e): The performance of classes B and D is good, as
only one case is misclassified in each class. The performance of class A is acceptable, as
only two cases are misclassified as class C. However, the performance of classes C, E, and F
is poor, as three cases in each class are misclassified.

Figure 8. Confusion matrices for 5-fold cross-validation of TCA algorithm trained with different
indices: (a) LCC, (b) CSD, (c) SD, (d) SE, and (e) CCF.

Error identification is performed using error analysis which helps to isolate, observe
and diagnose erroneous predictions, thereby helping to understand pockets of high and low
performance of the TCA algorithm. Table 3 summarizes the results of the error analysis in
different classes. In Table 3, a list of possible hypotheses for error distribution is presented.
Slight mechanical deformations are confused with slight deviations due to the influence
of oil and temperature. Moreover, it can also be seen that some classes have the same
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dominant frequency range, such as shorted turn fault and core saturation. As both types
affect the FRA trace in the low-frequency region, open-circuit/lose connection faults and
short circuit faults also share the same dominant frequency range. It can be seen that
CSD shows the best performance for detecting small mechanical deformations. Moreover,
the CSD feature exhibits the lowest false-positive (predicted healthy, actually faulty) rate.
However, it should be noted that the percentage error is highly dependent on an imbalanced
class distribution.

Under the premise of imbalanced class distribution, a classifier can exhibit good
performance for specific classes (usually majority classes), which does not necessarily imply
that the classification of all classes is good. For this purpose, precision, recall, and F1
score metrics (PRF) are used. Where precision is a measure of the correctness of a positive
prediction, recall is the measure of how many true positives are predicted from all positives
in the dataset, and F1 score is the harmonic mean of recall and precision. A comparison of
PRF trained with different indices along with the number of instances is shown in Figure 9.

Table 3. Error analysis of TCA algorithm.

A Possible Hypothesis for Error
Percentage Error (%)

LCC CSD SD SE CCF

Slight mechanical deformation identified
as a healthy transformer 8.3 4.1 8.3 8.3 8.3

Slight temperature deviations identified
as small mechanical deformation 7.6 15.3 7.6 15.3 15.3

Small deviations due to core saturation
identified as no core saturation 4.7 4.7 4.7 4.7 4.7

Open-circuit winding identified as
shorted winding 0 0 15 0 5

Small mechanical deformation identified
as oil and temperature effect 4.1 0 0 0 0

Short-circuit winding identified as
core saturation 2.5 0 2.5 2.5 0

TCA algorithm trained with LCC: Class A has the lowest precision, which means
that class A has higher false positives (TCA predicts healthy winding but these were not
healthy). Class F has lower recall, which means that class F has higher false negatives (TCA
could not predict some cases to class F but these belonged to class F). However, the average
F1 score for all classes is above 90%.

TCA algorithm trained with CSD: Precision, recall, and F1 score for all classes are
above 90% except for class F, which has the lowest precision and recall, indicating class F
has higher false positives and higher false negatives, respectively. However, the average F1
score for all classes is 91.6%.

TCA algorithm trained with SD: Class A has the lowest precision, indicating class A
has higher false positives, while class E has lower recall, indicating class F has higher false
negatives. However, the average F1 score for all classes is 93%.

TCA algorithm trained with the feature set SE: Class F has the lowest precision and
recall, indicating class F has higher false positives and higher false negatives, respectively.
However, the average F1 score for all classes is 92%.

TCA algorithm trained with SE: Classes A and F have the lowest precision and recall,
indicating these classes have higher false positives and higher false negatives, respec-
tively. However, the average F1 score for all classes is 88%, which is the lowest of the
selected indices.

Figure 10 shows the comparison of the accuracy of the TCA algorithm for different
numerical indices. It can be seen that TCA trained with CSD, SD, and SE shows the highest
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performance. The average overall accuracy for these three indices is 93%. The average
overall accuracy for LCC is 92%. However, the accuracy of the TCA algorithm for CCF is
relatively low, as only 90% of the cases are correctly identified. It can also be observed that
the TCA algorithm trained with CCF feature sets has more misclassified cases than other
numerical indices.

3.5. Case Studies
3.5.1. Case 1: Axial Collapse after Clamping Failure

In case 1, FRA measurements of a three-phase, 240 MVA, 400/132 kV autotransformer
are considered [9]. After the Buchholz alarm, the transformer was switched out of service
for further investigation. FRA open-circuit measurements were performed on common
winding and the results were compared with the reference measurements as shown in
Figure 11.

Figure 9. Comparison of precision, recall, and F1 score of TCA algorithm trained for different indices:
(a) LCC, (b) CSD, (c) SD, (d) SE, and (e) CCF.
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Figure 10. Comparison of accuracy of TCA algorithm trained for different indices.

The visual analysis of the FRA measurements shows significant deviations and shifts
in some resonances in the high-frequency region. After dismantling, it was found that
A-phase LV winding was axially damaged and twisted as shown in Figure 12. The case was
further tested with the TCA algorithm trained with different indicators. The performance
metrics are shown in Table 4. It can be seen that TCA trained with different indicators has
successfully diagnosed this case.

Figure 11. LV winding open-circuit FRA before and after fault.



Energies 2023, 16, 3714 14 of 16

Table 4. Performance analysis of TCA for case 1.

Indicators Actual Class Predicted Class Comments
TCA with LCC C C Pass
TCA with CSD C C Pass
TCA with SD C C C Pass
TCA with SE C C C Pass
TCA with LCC C C Pass

3.5.2. Case 2: Open Circuit Fault

A three-phase, 34 MVA, 237/5.65 kV; the transformer was switched out of service for
investigation. The HV winding open-circuit FRA measurements before and after the fault
are shown in Figure 13 [9]. At low frequencies, an increase in the attenuation accompanied
by a vertical shift downwards can be observed, which indicates that the open circuit does
not completely break the electrical connection of the winding. At high frequencies, the
peaks do not show frequency shifts, but the vertical shifts are a clear indication of the
change in the resistance of the winding. After dismantling, it was confirmed to be an
open-circuit fault. The case was further tested with the TCA algorithm and results are
presented in Table 5. All indicators have predicted the correct fault class.

Table 5. Performance analysis of TCA for case 2.

Indicators Actual Class Predicted Class Comments
TCA with LCC E E Pass
TCA with CSD E E Pass
TCA with SD C E E Pass
TCA with SE C E E Pass
TCA with LCC E E Pass

Figure 12. Axial collapse of LV winding due to clamping failure [9].
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Figure 13. FRA of HV winding before and after the fault.

4. Conclusions

This paper presents a transformer condition assessment algorithm for the automatic
assessment of transformer FRA results. A combined approach of numerical indicators
and a random forest machine learning classification model is used. The six most common
states of transformer windings are considered in this research. The data from 139 FRA
measurements performed in more than 80 power transformers were used. The classification
capabilities of TCA trained with different indices are compared based on accuracy in the
five-fold cross-validation method. It was found that the TCA algorithm exhibits good
performance, as 90% of the cases were correctly identified by TCA trained with different
indicators. However, provided with the feature sets of CSD, SD, and SE, the TCA algorithm
shows excellent performance, as 93% of the cases were correctly classified, indicating
the best numerical indices for the winding fault detection and classification using FRA
measurements. The performance was also validated using selected case studies from real
power transformers with known diagnoses and it was noticed that all cases were correctly
classified by the TCA trained with different feature sets. However, the RF classification
model is used with default parameters, and hyper-parameter tuning should also be tested
on a comparatively larger database. The results obtained in this paper confirm that the
proposed TCA algorithm can effectively assess the condition of transformer winding and
also recognize the type of fault with good accuracy.
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