Synthese und Struktur von Lithium-tris(trimethylsilyl)silanid · 1,5 DME

G. BECKER*, H.-M. HARTMANN, A. MÜNCH und H. RIFFEL

Stuttgart, Institut für Anorganische Chemie der Universität

Professor Max Schmidt zum 60. Geburtstage am 13. Oktober 1985 gewidmet

Inhaltsübersicht. Das aus Tetrakis(trimethylsilyl)silan 1 [6] und Lithiummethyl in 1,2-Dimethoxyethan¹) zugängliche Lithium-tris(trimethylsilyl)silanid \cdot 1,5 DME 2a kristallisiert monoklin in der Raumgruppe P2₁/c mit folgenden, bei einer Meßtemperatur von -120 ± 2 °C bestimmten Parametern der Elementarzelle: a = 1072,9(3); b = 1408,3(4); c = 1775,1(5) pm; $\beta = 107,74(2)^{\circ}$; 4 Formeleinheiten (Z = 2). Nach den Ergebnissen der Röntgenstrukturanalyse (R_w = 0,040) baut sich die Verbindung aus zwei [Lithium-tris(trimethylsilyl)silanid]-Einheiten auf, die über ein DME-Molekül verbunden und deren vierfach koordinierte Lithiumatome von je einem weiteren DME-Liganden chelatartig umgeben sind. Mit 263 pm ist der Li-Si-Abstand wesentlich länger als die Summe der kovalenten Radien; weitere charakteristische mittlere Bindungslängen und -winkel sind: Si-Si 234, Li-O 200, O-C 144, O···O (BiB) 264 pm; Si-Si-Si 104°, Li-Si-Si 107° bis 126°, O-Li-O (im Chelatring) 83°. Das aus Di(*tert*-butyl)dichlorsilan 15, Chlortrimethylsilan und Lithium dargestellte Di(*tert*-butyl)bis(trimethylsilyl)silan 17 konnte bisher nicht in das analoge Silanid überführt werden.

Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME

Abstract. Lithium tris(trimethylsilyl)silanide \cdot 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane¹), crystallizes in the monoclinic space group P2₁/c with following dimensions of the unit cell determined at a temperature of measurement of -120 ± 2 °C: a = 1072.9(3); b = 1408.3(4); c = 1775.1(5) pm; $\beta = 107.74(2)^{\circ}$; 4 formula units (Z = 2). An X-ray structure determination (R_w = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li-Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si-Si 234, Li-O 200, O-C 144, O···O (bite) 264 pm; Si-Si-Si 104^{\circ}, Li-Si-Si 107^{\circ} to 126°; O-Li-O (inside the chelate ring) 83°. Unfortunately, di(*tert*-butyl)bis(trimethylsilyl)silane 17 prepared from di(*tert*-butyl)dichlorsilane 15, chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.

¹) 1, 2-Dimethoxyethan (DME); Tetrahydrofuran (THF); 1, 2-Bis(dimethylamino)methan (TMEDA); Octamethylcyclotetrasiloxan (OMCT)

Einleitung und Synthese des Etherats 2a

Aufgrund ihrer reaktiven Si-E-Bindung stellen die aus Phosphor [1], Arsen [2], Antimon [3] oder Bismut [4] sowie Tellur [5], Natrium-Kalium-Legierung und Chlortrimethylsilan mit hohen Ausbeuten leicht zugänglichen Tris- bzw. Bis(trimethylsilyl)-Verbindungen der Hauptgruppenelemente wertvolle Edukte für weiterführende Synthesen dar (Gl. (1)). Unsere Bemühungen, auch Tetrakis-(trimethylsilyl)silan 1 auf analogem Weg aus pulverisiertem Silicium darzustellen, waren allerdings

$$E \frac{Na/K-Leg.}{} Na_{X}E/K_{X}E \xrightarrow{+ x (H_{a}C)_{3}Si - Cl}{- x NaCl/- x KCl} \models [(H_{a}C)_{3}Si -]_{X}E$$
(1)

$$E = P, As, Sb, Bi; x = 3$$

$$E = Te; x = 2$$

nicht erfolgreich. Die gesuchte Verbindung konnte aber bereits vor mehreren Jahren von GILMAN und SMITH [6] aus Lithium, Tetrachlor- und Chlortrimethylsilan erhalten werden; erfahrungsgemäß führt dabei nur die Verwendung von Lithiumdraht zu besonders guten Ausbeuten von über 70%. Wie bei den Trimethylsilyl-Derivaten der Pnikogene [7, 2-4] und Chalkogene [5, 8] wird auch hier mit Lithiummethyl die Spaltung nur einer E-Si-Bindung beobachtet (Gl. (2)) [9, 10]; Reaktionen mit dem aus solchen Ansätzen isolierten Etherat Lithium-tris(trimethylsilyl)silanid \cdot 3 THF 2b führten in den zurückliegenden Jahren zu einer Reihe bemerkenswerter Folgeprodukte [11-13].

$$[(H_{3}C)_{3}Si -]_{4}Si \xrightarrow{+1/4(LiCH_{3})_{4}; }{-(H_{3}C)_{4}Si} \models [(H_{3}C)_{3}Si -]_{3}Si - Li \cdot x OR_{2}$$
(2)

$$1 \qquad 2$$

2a x OR₂ = 1,5 DME; 2b x OR₂ = 3 THF

Nachdem in unserem Arbeitskreis bereits die Strukturen der kristallinen Lithium-bis(trimethylsilyl)pniktide \cdot DME des Arsens 3 [14], Antimons 4 [3] und Bismuts 5 [15] bestimmt worden sind und inzwischen mit entsprechenden Untersuchungen am Lithium-trimethylsilyltellurid [5] begonnen wurde, sollte auch Lithium-tris(trimethylsilyl)silanid 2 in diese Arbeiten einbezogen werden. Allerdings isolierten wir beim leichter verwitternden THF-Etherat 2b bisher nur mikrokristalline Pulver. Das bei einer in 1,2-Dimethoxyethan durchgeführten Spaltungsreaktion (GI. (2)) gebildete Lithium-tris(trimethylsilyl)silanid \cdot 1,5 DME 2a scheidet sich aber beim Umkristallisieren ($+20 \,^{\circ}\text{C}/-20 \,^{\circ}\text{C}$) aus einem Lösungsmittelgemisch von viel n-Pentan und sehr wenig 1,2-Dimethoxyethan in gut ausgebildeten, verhältnismäßig beständigen, farblosen und für eine Strukturbestimmung geeigneten Kristallen ab; beim Evakuieren jedoch neigten auch sie des öfteren zur Verwitterung.

Das DME-Etherat 2a wurde zunächst mit den gängigen spektroskopischen Methoden charakterisiert (Präp. Teil). In diesem Zusammenhang ist besonders auf das mit -186 ppm zu sehr hohem Feld verschobene ²⁹Si-NMR-Signal des an Lithium gebundenen Siliciumatoms hinzuweisen, wie es mit -187 ppm ähnlich auch von NöTH u. Mitarb. [13] am THF-Etherat 2b beobachtet wurde. Überraschenderweise liefern die mit Kristallen aus verschiedenen Ansätzen kryoskopisch in Benzol ermittelten Molmassen den für eine "monomere" Einheit der Zusammensetzung $[(H_3C)_3Si-]_3Si-Li \cdot 1,5$ DME berechneten Wert, während nach den Ergebnissen der Röntgenstrukturanalyse im Festkörper ein "Dimeres" vorliegt.

Röntgenstrukturanalyse vom Etherat 2a

Meßtechnik und Strukturbestimmung. Die nach dem Umkristallisieren des Etherats 2a isolierten Kristalle zersetzen sich bei Zimmertemperatur im Röntgenlicht, so daß Filmaufnahmen an einer Weißenberg-Kamera erst nach hinreichend starker Kühlung (-70 ± 2 °C) erhalten werden konnten. Sie zeigen die Symmetrie m und weisen mit ihren systematischen Auslöschungen (h0l l = 2n+1; 0k0 k = 2n+1) eindeutig auf die Raumgruppe P2₁/c hin. Die Berechnung der Raumerfüllung über Volumeninkremente [16a] führt zu vier Formeleinheiten in der Elementarzelle. Die mit den 2 Θ -Werten von 24 Reflexen im Bereich ($21^{\circ} \leq 2\Theta \leq 30^{\circ}$) am Vierkreisdiffraktometer bei $-120 \pm 2^{\circ}$ C ermittelten und verfeinerten Gitterkonstanten sind in Tab. 1 zusammengestellt; Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung können Tab. 2 entnommen werden. In Tab. 3 und 4 sind die Ortskoordinaten und die isotropen sowie anisotropen Temperaturfaktoren aufgeführt; Abstände und Winkel finden sich in Tab. 5 bis 9.

Tabelle 1 Kristalldaten des μ -1,2-Dimethoxyethan-bis[(1,2-dimethoxyethan-0,0')lithium-tris-(trimethylsilyl)silanid]s **2a**

Monoklin, Raumgruppe P2₁/c; $\mathbf{Z} = 2$; Meßtemperatur -120 ± 2 °C; Raumerfüllung nach KITAIGORODSKII [16a] 66%^a); Zersp. +74 °C (im abgeschmolzenen Röhrchen unter Argon)

a = 1072,9(3) pm	b = 1408,3(4) pm	c = 1775,1(5) pm
$\beta = 107,74(2)^{\circ}$	$V = 2,555 \cdot 10^{-27} \text{ m}^3$	$d_{ber} = 1,013 \cdot 10^{6} \text{ g} \cdot \text{m}^{-3}$

^a) Der Berechnung liegen die mittleren Bindungslängen aus Tab. 5 und folgende Werte für die intermolekularen Radien zugrunde: Si 210; Li 180; C 170; O 150; H 120 pm [16b].

Tabelle 2 Angaben zur Messung der Reflexintensitäten und zur Strukturbestimmung Automatisch gesteuertes Vierkreisdiffraktometer P2₁ der Firma Syntex, Cupertino (USA); MoK α -Strahlung mit Graphitmonochromator; Aufbereitung der Daten und Ermittlung der Struktur mit den Programmsystemen MULTAN 77 [16c] und X-Ray 76 [16d]; keine Absorptionskorrektur; Atomformfaktoren der neutralen Atome Li, C, O und Si nach CROMER und MANN [16e], des H-Atoms nach STEWART u. Mitarb. [16f]; jeweils mehrere Verfeinerungszyklen mit vollständiger Matrix und anschließenden Differenz-Fouriersynthesen; Minimalisierung der Funktion $\Sigma w(|F_0| - |F_c|)^2$; Gewichtung nach dem statistischen Fehler der Messung; Ende der Verfeinerung mit isotropen Temperaturfaktoren bei { $R_w = 0,114$ }; Lokalisierung aller Wasserstoffatome bei { $R_w = 0,075$ }.

ungefähre Kristallabmessungen	$0,3 \times 0,3 \times 0,4$ mm; quaderförmige Gestalt
Meßbereich und -temperatur	$2^{\circ} \leq 2\Theta \leq 50^{\circ}; -120 \pm 2^{\circ}C$
gemessener Bereich des reziproken Raumes	$0 \leq h \leq +12; \ 0 \leq k \leq +16;$
	$-20 \le l \le +20$
Scanmodus und -breite	ω -Scan; 2,0° ^a)
obere Grenze der variablen Meßzeit	60 s pro Reflex
Intervall zwischen zwei Gruppen von je zwei	
Orientierungs- bzw. Intensitätskontrollreflexen	98 Reflexe
symmetrieunabhängige Reflexe	4498
Meßwerte mit { $\mathbf{F}_{0} < 2\sigma(\mathbf{F}_{0})$ }	833 ^b)
linearer Absorptionskoeffizient μ	$2,382 \cdot 10^2 \text{ m}^{-1} \text{ [16g]}$
Konvergenz bei einem R_w -Wert von	0,040 ^c)
maximale Restelektronendichte	$0.3 \cdot 10^{30} \mathrm{e} \cdot \mathrm{m}^{-3}$

^a) Registrierung des Untergrundes zu Beginn und am Ende der Messung mit einer der Meßzeit entsprechenden Dauer. ^b) 659 Meßwerte aus dieser Gruppe genügten nicht dem Kriterium ($\mathbf{F}_{o} < \mathbf{F}_{c}$)- und blieben bei den Verfeinerungszyklen unbeachtet. ^c) $\mathbf{R}_{w} = \Sigma [\sqrt{w}(|\mathbf{F}_{o}| - |\mathbf{F}_{c}|)]/\Sigma(\sqrt{w}|\mathbf{F}_{o}|)$.

Tabelle 3 Ortskoordinaten und Parameter B (10^{-20} m^2) des Debye-Waller-Faktors für die Atome der asymmetrischen Einheit.

Die	Numerier	ing de	er Atome	ist im	Text	erläutert	oder	Abb. 1	zu	entnehmen.	Die	anisotropen	Temperatu	ırfakt	oren
aus	Tab. 4 wu	rden 1	nach HAN	ILTON	[16j]	in die iso	troper	1 Werte	uI	ngerechnet.	Den	Wasserstoff	atomen au	3 den	Tri-
me	thylsilylgru	ppen o	ordneten	wir de	n um 1	1,5 erhöht	ten Pa	rameter	в	des jeweilig	en K	ohlenstoffato	oms zu.		

	x•10 ⁴	y.10 ⁴	z.10 ⁴	В		x.10 ³	y•10 ³	z.10 ³	в
Si1	2774,3(7)	7451,0(5)	5971,3(4)	1,68(4)	н311	99(4)	946(3)	468(2)	7,2
Si2	2140,3(8)	6175;7(6)	6607,1(5)	2,10(4)	Н312	197(4)	889(3)	425(2)	
C21	1967(6)	5078(3)	6000(3)	6,7(4)	Н313	50(4)	890(3)	381(2)	
C22	597(4)	6255(3)	6883(3)	6,1(3)	H321	-86(4)	699(3)	502(2)	6,8
C23	3444(5)	5896 (4)	7547(3)	7,3(4)	Н322	-77(4)	796(2)	535(2)	
Si3	1026,9(8)	7683,4(6)	4824,7(4)	2,16(4)	н323	-137(4)	786(2)	439(2)	
C31	1146(5)	8867(3)	4358(3)	5,7(3)	н331	172(4)	676(3)	391(2)	5,5
C32	-667(4)	7660(4)	4927(2)	5,3(3)	H332	82(3)	620(2)	426(2)	
C33	1041(4)	6777(3)	4056 (2)	4,0(2)	Н333	29(3)	692(2)	355(2)	
Si4	2632,4(8)	8755 , 7(6)	6749,3(5)	2,12(4)	H411	360(4)	810(3)	808(3)	6,1
C41	3832(4)	8657(3)	7766(2)	4,6(2)	H412	474(4)	855(3)	776(2)	
C42	1008(3)	9028(3)	6905(2)	3,8(2)	H413	385(3)	928(2)	808(2)	
C43	3083(5)	9868(3)	6315(3)	4,9(3)	н421	36(3)	924(2)	635(2)	5,3
т.і 1	5219(4)	7167(3)	6039(3)	2 1 (2)	H422	74(3)	851(2)	719(2)	
01	5732(2)	5872(1)	5789(1)	2,1(2) 2,0(1)	H423	102(3)	958(2)	723(2)	
C1	5040(3)	5536(2)	5014(2).	2,0(1)	H431	386(5)	981(3)	624 (3)	6,4
C2	7127(3)	5751(3)	5977(2)	3 0(2)	н432	247(5)	1003(3)	578(3)	
011	6034(2)	7958(1)	5388(1)	2,5(1)	H433	315(3)	1042(2)	666(2)	
C11	6732(3)	8716(2)	5865(2)	2.9(2)	1 11	418(3)	594 (2)	100/11	2 2/61
012	6606(2)	7758(1)	6927(1)	2.4(1)	H12	544(3)	578(2)	459(2)	2,2(0)
c12	7495 (3)	8297(2)	6640(2)	2.8(2)	H21	742(3)	508(2)	500(2)	2,0(0)
C13	5293(5)	8266(3)	4613(2)	4.6(3)	121	745(3)	611(2)	560(2)	4,0(0)
C14	7176(4)	7437(3)	7717(2)	3.6(2)	H23	744(3)	600(2)	500(2)	4,5(8)
0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 10, (0)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0(2)	H111	730(3)	904(2)	558(2)	4,2(8)
					H112	614(2)	922(2)	593(1)	1 7(6)
	$x \cdot 10^{3}$	$v.10^{3}$	$z.10^{3}$	в	H121	789(3)	880(2)	700(2)	3 4(7)
		1.10			H122	816(3)	785(2)	655(2)	2 9 (7)
					H131	471(3)	883(2)	467(2)	5 6(10)
H211	150(4)	515(3)	550(2)	8,2	H132	590(3)	848(2)	435(2)	5,2(10)
H212	281 (4)	488(3)	594(2)		н133	483(4)	770(2)	432(2)	6,5(10)
H213	178(4)	454(3)	630(2)		H141	793(3)	705(2)	775(2)	2 9(7)
н221	-9(3)	647(2)	640(2)	7,6	H142	745(3)	793(2)	809(2)	$\frac{2}{3} \cdot 6(7)$
H222	61(4)	679(2)	724(2)		H143	652(3)	703(2)	787(2)	4 9 (9)
H223	36(4)	567(3)	706(2)		*****	002(0)	/05(2)	101(2)	4,9(9)
H231	324(4)	538(3)	778(2)	8,8 (
H232	335(5)	640(3)	791 (2)						
н233	414(4)	600(3)	753(3)						

Molekülstruktur. Wie Abb. 1 in stereoskopischer Darstellung zeigt, liegen im Festkörper zentrosymmetrische Moleküle vor. Sie bauen sich aus jeweils zwei [Lithium-tris(trimethylsilyl)silanid]-Einheiten auf, die über eine (1,2-Dimethoxyethan)-Brücke miteinander verbunden sind. Da die beiden restlichen Koordinationsstellen des Lithiums durch je einen weiteren (1,2-Dimethoxyethan)-Liganden abgesättigt werden, erklärt sich zwanglos der durch Integration der ¹H-NMR-Spektren ermittelte Gehalt von annähernd 1,5 Molekülen 1,2-Dimethoxyethan pro Lithium-tris(trimethylsilyl)silanid. Der korrekte Name der im Festkörper vorliegenden Verbindung **2a** ist deshalb mit μ -1,2-Dimethoxyethan-bis[(1,2-dimethoxyethan-0,0')lithium-tris(trimethylsilyl)silanid] anzugeben.

Im Gegensatz zu den homologen Alkyl- oder Arylderivaten [17] wurden bisher nur wenige elementorganische Lithiumsilyl-Verbindungen untersucht. Das seit längerem bekannte Lithium-trimethylsilanid 6 liegt im Festkörper und in unpolaren Solventien hexamer vor [18]. Die Lithium-

	U11	U ₂₂	U ₃₃	U ₁₂	U 13	U ₂₃
Si1	1,72(4)	2,20(4)	2,39(4)	0,01(3)	0,53(3)	0,08(3)
Si2	2,22(4)	2,47(4)	3,16(4)	-0,08(4)	0,59(3)	0,65(4)
C21	15,1(5)	3,2(2)	8,7(3)	-1,9(3)	6,3(4)	-0,6(2)
C22	5,9(3)	6,6(3)	12,6(4)	1,3(3)	5,9(3)	4,3(3)
C23	8,0(4)	8,9(4)	7,6(3)	-3,4(3)	-2,3(3)	5,4(3)
Si3	2,59(4)	3,31(5)	2,19(4)	0,73(4)	0,52(3)	0,05(4)
C31	8,9(3)	5,7(3)	5,3(3)	0,2(3)	-0,8(2)	2,5(2)
C32	2,7(2)	13,8(4)	3,3(2)	2,0(3)	0,2(2)	-1,4(3)
C33	4,9(2)	6,4(3)	3,4(2)	0,9(2)	0,6(2)	-1,1(2)
Si4	2,46(4)	2,58(4)	2,93(4)	-0,01(4)	0,70(3)	-0,38(4)
C41	5,3(2)	7,1(3)	4,1(2)	1,7(2)	-0,2(2)	-1,9(2)
C42	3,8(2)	5,2(2)	5,6(2)	0,8(2)	1,8(2)	-1,8(2)
C43	8,6(3)	3,0(2)	7,8(3)	-1,6(2)	3,4(3)	-0,9(2)
Li1	1,9(2)	2,6(3)	3,4(3)	-0,2(2)	0,8(2)	0,2(2)
01	1,9(1)	2,4(1)	3,3(1)	-0,1(1)	0,4(1)	-0,8(1)
C1	2,8(2)	2,6(2)	3,1(2)	-0,0(1)	0,4(1)	-0,4(1)
C2_	2,7(2)	3,6(2)	4,9(2)	0,3(2)	0,6(2)	-1,4(2)
011	3,4(1)	3,0(1)	3,2(1)	-0,7(1)	1,1(1)	0,2(1)
C11	3,8(2)	2,6(2)	5,1(2)	-0,6(2)	2,0(2)	-0,5(2)
012	2,4(1)	3,5(1)	2,8(1)	-0,4(1)	0,2(1)	-0,2(1)
C12	2,5(2)	3,2(2)	4,6(2)	-0,7(2)	0,6(2)	-0,9(2)
C13	8,3(3)	5,4(3)	3,4(2)	-1,4(3)	1,1(2)	1,4(2)
C14	4,6(2)	5,0(2)	3,2(2)	0,0(2)	-0,2(2)	-0,4(2)

Tabelle 4 Daten zur Anisotropie der thermischen Schwingung mit Ausnahme der Wasserstoffatome Von den Parametern U_{jj} (m²) des Temperaturfaktors exp $[-2\pi(U_{11} \cdot h^2 \cdot a^{*2} + ... + 2 \cdot U_{23} \cdot k \cdot l \cdot b^* \cdot c^*)]$ sind die 10²²-fachen Werte aufgeführt.

atome bilden einen extrem gefalteten, sechsgliedrigen Ring bzw. ein stark verzerrtes Oktaeder, über dessen Flächen sich sechs Trimethylsilyl-Gruppen anordnen. Das Addukt der Zusammensetzung LiSi($(CH_3)_3 \cdot 1,5$ TMEDA¹) 7 [19] weist eine große strukturelle Ähnlichkeit zur hier untersuchten Verbindung 2a auf. Dem Molekül fehlt allerdings das Inversionszentrum; außerdem ist einer der beiden chelatierenden [1, 2-Bis(dimethylamino)ethan]-Liganden fehlgeordnet. Das kürzlich publizierte, zum Etherat 2a homologe Lithium tris(trimethylsilyl)methanid · 2 THF 8 zeigt als ungewöhnliches Strukturelement ein Bis[tris(trimethylsilyl)methano]lithiat-Anion [20]. In diesem Zusammenhang sei auch auf die von WEISS u. Mitarb. publizierten Strukturen der Alkalimetall-silanide hingewiesen [21].

Der Li-Si-Abstand ist mit 263,0 pm (Tab. 5) wesentlich länger als die unkorrigierte Summe der beiden kovalenten Radien (Li 134, Si 118 pm [16b]), gleicht aber den an anderen Lithiumsilyl-Verbindungen beobachteten Werten (Tab. 6). Allerdings ist das hexamere Lithium-trimethylsilanid 6 mit Siliciumatomen der Koordinationszahl (5+1) für einen Vergleich weniger geeignet als das hinsichtlich der Ligandenanordnung zu Verbindung 2a sehr ähnliche TMEDA-Addukt 7. Offenbar führt ein gegenüber der Methoxy- und der Tris(trimethylsilyl)silanid-Gruppe größerer sterischer Anspruch des Dimethylamino- und des kompakteren Trimethylsilanid-Restes zu einer Verlängerung der Li-Si-Bindung auf 269 bzw. 270 pm. Erstaunlicherweise reihen sich aber auch die Zintl-Phasen Li₁₂Si₇ [22], Li₁₄Si₆ [23] und Li₂ZnSi [24] sowie Dilithium-tetrakis(trimethylsilano)mercurat(II) 9 [25] mit ihren kürzesten Li-Si-Abständen von 269 bis 270 pm hier sehr gut ein. Dilithium-tetrakis(dimethylphenylsilano)mercurat(II) 10 [25] hingegen weist keine entsprechenden Werte auf. Die mittlere Si-Si-Bin-

Tabelle 5 Intramolekulare Bindungslängen (pm) und -winkel (°)

Die in Klammern angegebenen Standardabweichungen berücksichtigen außer den Koordinatenungenauigkeiten (Tab. 3) auch den Fehlereinfluß der Gitterkonstanten (Tab. 1). Die beobachteten C-H-Abstände liegen zwischen 77 und 105 pm, die Si-C-H- und H-C-H-Winkel aus den Trimethylsilylgruppen sowie die O-C-H-, C-C-H- und H-C-H-Werte aus den (1,2-Dimethoxyethan)-Liganden zwischen 104° und 120°. Die Mittelwerte (MW) berechnen sich aus den Einzelwerten der jeweiligen Gruppe.

n	2	3	4	MW					MW
Si1-Sin	233,8(2)	234,7(4)	234,0(2)	234	Li1-Si1	263,0(5)	Li1-01	200,3(5)	
Sin-Cn1	187,0(5)	189,0(5)	188,7(4)	188	Li1-011	199,3(6)	Li1-012	200,3(5)	200
Sin-Cn2	187,2(6)	188,8(4)	189,1(4)		O1-C1	143,7(4)	01-C2	144,8(4)	144
Sin-Cn3	187,5(5)	187,9(4)	188,1(5)		011-C11	143,4(4)	011-C13	143,8(5)	
					012-C12	143,3(4)	012-C14	142,7(4)	
					C1-C1'	151,9(4)	C11-C12	150,0(5)	15İ

a) Bindungslängen

b) Bindungswinkel

n	2	3	4	MW	m/n	1/2	1/3	}	2/3	MW
Li1-Si1-Sin	107,1(1)	126,3(1)	109,6(1)	114	C2m-Si2-C2n	105,0(3)	105,0)(2)	105,4(3)	105
Si1-Sin-Cn1	110,8(2)	111,3(1)	111,2(2)	113	C3m-Si3-C3n	104,7(2)	105,6	5(2)	106,1(2)	
Si1-Sin-Cn2	119,5(2)	117,4(1)	118,3(1)		C4m-Si4-C4n	105,8(2)	105,6	5(2)	104,7(2)	
Si1-Sin-Cn3	110,2(2)	111,0(1)	110,3(2)							
								MW		
si2-si1-si3	104,7(1)	Si2-Si	1-Si4	104,0(1)	Si3-Si1	-Si4 103	3,1(1)	104		
Sil-Lil-Ol	117,9(2)	Si1-L:	1-011	119,8(2)	Si1-Li1	-012 118	3,2(2)	119		
01-Li1-011	100,7(3)	01-Li	-012	111,5(2)	011-Li1	-012 83	2,5(2)	-		
Li1-01-C1	114,7(2)	Li1-01	l- c 2	113,1(2)	Li1-011	-C11 10	3,7(2)	-		
1.i1-012-C12	111,2(2)	Li1-Of	1-C13	120,8(3)	Li1-012	-C14 12	9,9(2)			
01-01-01'	111,7(2)	011-C1	1-C12	107,1(3)	012-C12	-C11 10	7,4(2)	-		

Tabelle 6 Charakteristisch kurze Lithium-Silicium-Abstände (pm) in bisher untersuchten Silaniden, Siliciden und Tetrasilanomercuraten $(II)^a$)

[LiSi(Sime ₃) ₃] ₂ · 3 DME 2a (LiSime ₃) ₂ · 3 TMEDA 7 [19] (LiSime ₃) ₆ 6 [18]	263,0 269; 270 263; 264 265; 268	$Li_{12}Si_7$ [22] $Li_{14}Si_6$ [23] Li_2ZnSi [24]	259 bis 267 ^b) 261; 269 ^b) 270; 280 ^b)
Li ₂ [Hg(Sime ₃) ₄] 9 [25] Li ₂ [Hg(Sime ₂ ph) ₄] 10 [25]	269; 287 ^b) 290; 298 ^b)		

^a) CH₃ (me); C₆H₅ (ph); 1,2-Dimethoxyethan (DME); 1,2-Bis(dimethylamino)ethan (TMEDA).

^b) Zur besseren Übersicht sind nur die kürzesten Li-Si-Abstände aufgeführt.

Tabelle 7 Charakteristische Abstände (pm) sowie Bindungs- und Torsionswinkel Φ (°) [16k] in (1, 2-Dimethoxyethan)-Chelaten des Lithiums

Die hie	r für den	Chelat	liganden	gewählte	Kennzei	chnung	der	Atome	\mathbf{durch}	tiefgestellt	e Indices
und die	Strukturf	formeln	der zum	Vergleich	herange	zogenen	Verl	oindung	en sind	l im Anschlu	ıß an die
Tabelle	unter ^a) ı	und ^b) a	aufgeführ	t. Fehlend	le Werte	wurder	n mit	t Hilfe	der pu	blizierten	Ortskoor-
dinaten	berechnet	5.									

Verb.	2a	3 [14]	4 °) [3]	5 °) [15]	11^d) [30]	12^d) [30]	13 [31]	14 [32]	MW
Li-O ₁	200	205	201	210	198	198	215 ^g)	200	205
Li-O ₂		215					210	235 ^e)	
$0_1 - C_1$	143	141	143	145	143	143	140 ^g)	140	142
$O_2 - C_2$		155^{e})		155 ^e)			138	144	
$C_1 - C_2$	150	147	147	137 ^e)	149	148	147	149	148
$O_1 - O_2$	264	271	269	263	265	264	261	272	266
O ₁ -Li-O ₂	82,5	^f)	84,1	78	84,1	83,8	75,6	76,9	81
$Li - O_1 - C_1$	108,7		106,6	109	108,3	108,9	114,7	96,3	109
$Li - O_2 - C_2$	111,2				108,0	108,1	116,8	115,7	
$0_1 - C_1 - C_2$	107,1		107,9	108	107,5	106,8	110,7	108,3	108
$O_2 - C_2 - C_1$	107,4				106,4	106,8	112,6	108,9	
$Li - O_1 - C_3$	120,8		123,9	123	135,2	133,1	127,2	122,9	126
$Li - O_2 - C_4$	129,9				120,1	121,0	129,1	126, 6	
$C_1 - O_1 - C_3$	112,4		112,7	110	115,7	112,8	114,2	112,3	113
$\mathbf{C_2-O_2-C_4}$	112,6				112,6	112,5	112,8	111,6	
$Li - O_1 - C_1 - C_2$	+45,5	^f)	+42,7	+45	+42,4	+43,2	+28,9	+59,1	
$Li - O_2 - C_2 - C_1$	+33,6		+42,7	+45	+41,2	+40,5	+24,5	+18,1	
$0_1 - C_1 - C_2 - O_2$	-51,9		-58,6	-59	-55,8	-55,6	-34,3	-57,4	
$C_1 - O_1 - Li - O_2$	-21,8		-15,4	-15	-15,1	-16,8	-12,8	-38,3	
$C_2 - O_2 - Li - O_1$	7,4		-15,4	-15	-15,6	-14,0	-6,9	+10,6	

^c) Lithium-bis(trimethylsilyl)antimonid \cdot DME 4 und -bismutid \cdot DME 5 sind im Festkörper polymer. ^d) Verbindung 11 liegt als (Z)-, 12 wahrscheinlich als (E)-Isomer vor. ^e) Nicht zur Mittelwertbildung herangezogen. ^f) Die entsprechenden Daten von Lithium-bis(trimethylsilyl)arsenid \cdot DME 3 sind wegen einer Fehlordnung des (1,2-Dimethoxyethan)-Liganden nicht zum Vergleich geeignet; ^g) in [31a] zum Teil irrtümlich vertauschte Bindungslängen.

Tabelle 8 Beschreibung der Molekülkonformation durch charakteristische Torsionswinkel Φ (°) Das Vorzeichen des Winkels $\Phi(A-B-C-D)$ ist positiv, wenn bei einer Blickrichtung von B nach C die Bindung A-B durch Drehung im Uhrzeigersinn mit der Bindung C-D zur Deckung gebracht wird [16k]. Werte zur Konformation des chelatierenden (1,2-Dimethoxyethan)-Liganden sind in Tab. 7 angegeben.

C22-Si2-Si1-Li1 +166,1	C32 - Si3 - Si1 - Li1 + 169,6	C42-Si4-Si1-Li1 -172,7
C22-Si2-Si1-Si4 +50,1	C32 - Si3 - Si1 - Si2 + 44,9	C42-Si4-Si1-Si3 +50,6
Si2-Si1-Li1-O1 + 45,0	Si3-Si1-Li1-O11 + 44,4	Si4-Si1-Li1-O12 +18,3
Si1-Li1-O1-C1 + 59,0	Si1-Li1-O11-C13 -35,6	Si1-Li1-O12-C14 + 83,1
C2-O1-Li1-O11 + 58,0	C2-O1-Li1-O12 -28,2	01 - Li1 - 012 - C14 - 58,4
C13-O11-Li1-O12-153,9	C14-O12-Li1-O11 -157,0	C13-O11-C11-C12 -178,1
C14-O12-C12-C11-171,3		

Tabelle 9 Charakteristische intramolekulare Kontaktabstände (pm) Die Tabelle enthält nur Kontakte, die kürzer als die um 20 pm erhöhten Summen der van-der-Waals-Radien (Si 210, Li 180, C 170, O 150, H 120 pm [16b]) sind.

Li1 $-$ H23 282 Li1 $-$ H133 305 Li1 $-$ H143 314 Si4 $-$ C31 407 C14 $-$ H23 307 C14 $-$ H412 308 C43 $-$ C31 376 H221 $-$ H321 245 H222 $-$ H422 244 H232 $-$ H411 243 H311 $-$ H432 226 C33 $-$ H21' 313 H212 $-$ H12' 252 H21 $-$ H11' 234	Li1-Si2	400	Li1-Si3	444	Li1-Si4	407	Li1-H11	276	Li1-H22	319
C14-H412 308 C43-C31 376 H221-H321 245 H222-H422 244 H232-H411 243 H311-H432 226 C33-H21' 313 H212-H12' 252 H21-H11' 234	Li1-H23	282	Li1-H133	305	Li1-H143	314	Si4-C31	407	C14-H23	307
H311-H432 226 C33-H21' 313 H212-H12' 252 H21-H11' 234	C14 - H412	308	C43-C31	376	H221-H321	245	H222-H422	244	H232 - H411	243
THE PART AND THE OLD THE TOTAL THE TOTAL THE TOTAL	H311-H432	226	C33-H21'	313	H212-H12'	252	H21-H11'	234		

Abb. 1 Stereoskopische Darstellung eines μ -1,2-Dimethoxyethan-bis[(1,2-dimethoxyethan-0,0')-lithium-tris(trimethylsilyl)silanid]-Moleküls

Die Zeichnung wurde mit dem Programm ORTEP [16h] erstellt. Die Aufenthaltswahrscheinlichkeit der Massenschwerpunkte in den Schwingungsellipsoiden beträgt 50%. Der besseren Übersicht wegen sind die Wasserstoffatome nicht wiedergegeben. Im beschrifteten Molekülteil weist der chelatierende (1, 2-Dimethoxyethan)-Ligand λ -Konformation [16i] auf. dungslänge beträgt 234 pm; nahezu gleiche Abstände wurden beispielsweise am elementaren Silicium (235 pm [26]), an dem mit Elektronenbeugungsmethoden untersuchten Tetrakis(trimethylsilyl)silan (236 pm [27]) oder an dem von BROOK u. Mitarb. publizierten [1-Adamantyl-1-(trimethylsiloxy)methyliden]bis(trimethylsilyl)silan (234,5 pm) [11]) beobachtet. Auch die Si-C-Abstände entsprechen mit einem Mittelwert von 188 pm dem Standard [28].

Von Ausnahmen abgesehen, variieren die in Tab. 7 für (1,2-Dimethoxyethan)-Chelate zusammengestellten $O_{1/2}-C_{1/2}$ und C_1-C_2 -Bindungslängen ebenso wie die Li-O_{1/2} und O₁···O₂-Abstände ("Biß") nur innerhalb geringer Grenzen. Da sich auch bei den Winkeln verhältnismäßig geringe Schwankungen zeigen, ist die Angabe von Mittelwerten gerechtfertigt. Nach ALLMANN [29] können die bei homoatomaren fünfgliedrigen Ringen auftretenden Konformationen am Muster der cyclischen Anordnung ihrer Torsionswinkel Φ unterschieden werden. Die ,,twist"-Form liegt bei der Abfolge ($\Phi_1, \Phi_2, \Phi_3, \Phi_2, \Phi_1$) vor, während "envelope" durch das Schema ($\Phi_1, -\Phi_2, \Phi_3 = 0, \Phi_2, -\Phi_1$) gekennzeichnet ist. Bei Anwendung dieses Konzepts auf die in Tab. 7 zusammengestellten heteroatomaren Beispiele ist eine eindeutige Zuordnung nur bei den Verbindungen 4 und 5 sowie 11 bis 13 möglich; die DME-Addukte 2a und 14 hingegen nehmen eine weder mit "twist" noch mit "envelope" zu beschreibende mittlere Konformation ein. Auch die für Verbindung 2a ermittelten Abweichungen der Atome Li1 (+4,4), O11 (-19,6), O12 (+8,9), C11 (+29,7) und C12 (-23,4 pm) von der Ebene des fünfgliedrigen Ringes erlauben keine eindeutige Zuordnung.

Erwartungsgemäß sind die Winkel im Chelatring kleiner als im verbrückenden (1, 2-Dimethoxyethan)-Liganden. Weitere, geringfügige Unterschiede sowohl in den Bindungs- (Tab. 5) als auch den Torsionswinkeln (Tab. 8), wie sie beispielsweise mit 120,8° und 129,9° zwischen Li1-011-C13 und Li1-012-C14 bzw. mit 113,1° bei Li1-01-C2, mit -153,9° und -157,0° bei $\varPhi(C3-011-Li1-O12)$ und $\varPhi(C14-O12-Li1-O11)$ bzw. mit -178,1° und -171,3° bei $\varPhi(C13-011-C11-C12)$ und $\varPhi(C14-O12-C12-C11)$ auftreten, entziehen sich einer eindeutigen Interpretation.

Mit durchschnittlich 104° weisen die Si-Si-Si-Winkel einen gegenüber dem regulären Tetraeder deutlich verkleinerten Wert auf; die C-Si-C-Winkel im (Lithium-trimethylsilanid)-Hexameren 6 [18] und im TMEDA-Addukt 7 [19] sowie in den Dilithium-tetrasilanomercuraten 9 und 10 [25] zeigen ähnliche Abweichungen. Offensichtlich wirkt die stark am Siliciumatom lokalisierte, negative Ladung der polaren Li-Si-Bindung im Sinne des GILLESPIE-NYHOLM-Konzeptes [33] verzerrend; den hieraus resultierenden Wechselwirkungen innerhalb der Tris(trimethylsilyl)silyl-Gruppe weichen dann die nach innen weisenden Methylgruppen Cn2 (n = 2 bis 4) durch Aufweitung der Winkel Si1-Sin-Cn2 auf durchschnittlich 118° aus. Im Gegensatz hierzu sind die Si-C-Si-Winkel im Bis[tris(trimethylsilyl)methano]lithiat-Anion von Verbindung 8 auf 115° vergrößert [20]; die Autoren sehen in dieser Aufweitung eine Tendenz zur Ausbildung eines planaren Carbanions. Wie eine sorgfältige Durchsicht der für das Etherat 2a in Tab. 9 zusammengestellten intermolekularen Kontakte zeigt, scheidet der sterische Anspruch der (1,2-Dimethoxyethan)-Liganden am Lithiumatom zur Erklärung der beobachteten Winkeländerungen im Tris(trimethylsilyl)silyl-Teil des Moleküls aus. Dies gilt auch für eine mit dem Abkippen dieses Restes in Richtung auf den Chelatring einhergehende Vergrößerung des Winkels Li1-Si1-Si3 auf 126° und die sich daraus ergebende Verlängerung des Li1-Si3 Abstandes auf 444 pm (Abb. 2).

Abb. 2 Abstände (pm) und Winkel (°) am zentralen Siliciumatom Si1

Abb. 3 Anordnung von Molekülen in der Elementarzelle Zur Verdeutlichung der Packung sind nicht nur die beiden zur Elementarzelle gehörenden, sondern insgesamt fünf Moleküle wiedergegeben. Die Zeichnung wurde mit dem Programm ORTEP [16h] erstellt; auf eine Wiedergabe der Wasserstoffatome haben wir verzichtet.

Kristallstruktur. Abb. 3 zeigt die Anordnung von Molekülen in der Elementarzelle. Die asymmetrische Einheit enthält nur die Formeleinheit; hieraus erzeugen die Symmetrieoperationen der Raumgruppe den inversen Teil sowie ein weiteres Molekül. Das Auftreten der Raumgruppe $P2_1/c$ ist insofern bemerkenswert, als der Kristallstruktur der vom Typ her ähnlichen Verbindung Lithium-trimethylsilanid 1,5 TMEDA 7 Inversionszentrum und Gleitspiegelebene fehlen, so daß nur noch die Raumgruppe $P2_1$ beobachtet wird [19]. Durch die voluminösen Trimethylsilyl-Gruppen ist die zentrale [Lithium-tris(trimethylsilyl)silanid]-Einheit fast vollständig abgeschirmt, so daß mit wenigen Ausnahmen nur intermolekulare Kontakte zu Wasserstoffatomen auftreten. Auf eine Wiedergabe dieser kaum aussagekräftigen Werte haben wir verzichtet.

Di(tert-butyl)bis(trimethylsilyl)silan 17

Im Bemühen um die Synthese weiterer elementorganischer Lithiumsilanide wandten wir uns mit dem Di(*tert*-butyl)bis(trimethylsilyl)silan 17 einem Edukt zu, bei dem die Trimethylsilyl-Reste des Tetrakis(trimethylsilyl)silans 1 teilweise durch die kompakteren, stärker elektronenschiebenden (*tert*-Butyl)-Gruppen ersetzt sind. Die gesuchte Verbindung sollte auf verhältnismäßig einfachem Wege aus Di(*tert*-butyl)dichlorsilan 15 [34, 35], Chlortrimethylsilan und Lithium oder wesentlich schwieriger aus 2,2-Dichlor-1,1,1,3,3,3-hexamethyltrisilan [36] und Lithium(*tert*-butyl) zugänglich sein.

Zur Darstellung des von uns als Ausgangsverbindung gewählten Di(tertbutyl)dichlorsilans 15 wurde zunächst Tetrachlorsilan mit Lithium(tert-butyl) im Molverhältnis 1:2 umgesetzt und das über eine β -Eliminierung stets in beträchtlichen Mengen als Nebenprodukt gebildete, nur schwer abzutrennende Di(tert-butyl)chlorsilan 16 in Analogie zu dem von TROST und CALDWELL [37] angewandten Verfahren mit Chlor quantitativ in das gesuchte Dichlor-Derivat 15 überführt (Gl. (3)). Da Versuche, das nach SAKURAI und KONDO [38] aus Hexa-

$$[(H_{3}C)_{5}C-]_{2}Si \xrightarrow{H} Cl_{2} \rightarrow [(H_{3}C)_{5}C-]_{2}Si \xrightarrow{Cl} + HCl$$

$$Cl \qquad Cl \qquad Cl \qquad (3)$$

$$16 \qquad 15$$

methyldisilan und Kaliummethanolat in Gegenwart des Kronenethers 18-Krone-6 in Tetrahydrofuran intermediär gebildete Kalium-trimethylsilanid mit Di(*tert*butyl)dichlorsilan 15 umzusetzen, bisher keine befriedigenden Ergebnisse zeigten, gingen wir wie bei der Darstellung von Tetrakis(trimethylsilyl)silan 1 [6] vor. Obwohl die Reaktion zwischen Di(*tert*-butyl)dichlorsilan 15, Chlortrimethylsilan und feingeschnittenem Lithium nur sehr langsam abläuft, liefert sie doch Di(*tert*butyl)bis(trimethylsilyl)silan 17 mit über 60proz. Ausbeute. Die Synthese des Lithium-di(*tert*-butyl)trimethylsilylsilanids jedoch ist bisher weder durch Variation der Lithinierungsreagenzien noch durch Wechsel der Lösungsmittel gelungen.

Präparativer Teil

Die verwendeten Lösungsmittel wurden über Natrium in Gegenwart von Benzophenon getrocknet bzw. über Lithiumalanat destilliert oder mit Molekularsieben von Wasserspuren befreit; als Schutzgas diente Reinstargon. In den bei Zimmertemperatur aufgenommenen NMR-Spektren geben positive δ -Werte Verschiebungen zu tieferem Feld an.

Lithium-tris(trimethylsilyl)silanid · 1,5 DME 2a

Darstellung. Zu 20,9 g (65,1 mmol) Tetrakis(trimethylsilyl)silan 1 [6] in 80 ml 1,2-Dimethoxyethan tropft man bei 0 °C unter Rühren eine 1,62 M Lösung (79,4 mmol) von Lithiummethyl in 34 ml Diethylether und 15 ml 1,2-Dimethoxyethan. Nach Erwärmen des Ansatzes auf Zimmertemperatur wird noch 20 h weitergerührt, ein weißer Niederschlag unbekannter Zusammensetzung abfiltriert und das Lösungsmittelgemisch bei +20 °C im Vakuum abdestilliert. Anschließend nimmt man den hellbraunen Rückstand mit n-Pentan auf, setzt bis zur vollständigen Lösung tropfenweise 1,2-Dimethoxyethan zu und läßt bei -20 °C auskristallisieren. Nach vorsichtigem Trocknen des Produktes im Vakuum wird der genaue Ethergehalt durch Integration des ¹H-NMR-Spektrums bestimmt. Ausbeute 18,6 g (46,8 mmol) bei einem Ethergehalt von 1,59 DME pro Formeleinheit; 72%.

Charakterisierung. Zersp. +74 °C (im abgeschmolzenen Röhrchen unter Argon); farblose, oxydations- und hydrolyseempfindliche Kristalle.

Molmasse, kryoskopisch in Benzol: für die Formeleinheit ber. 389,84; gem. 400. Wegen wechselnder Gehalte an 1,2-Dimethoxyethan haben wir auf eine Elementaranalyse verzichtet.

NMR-Spektren. ¹**H** (Meßfr. 60 MHz; int. Stand. TMS; L.M. d₆-Benzol): (H₃C)₃Si $\delta = 0,71$; H₃C(DME) $\delta = 3,05$; H₂C(DME) $\delta = 3,15$ ppm. ¹³C (Meßfr. 75,46 MHz; int. Stand. TMS; L.M. d₆-Benzol): (H₃C)₃Si $\delta = 7,0$; ¹J_{Si-C} = 40; ¹J_{CH} = 114; H₃C(DME) $\delta = 58,7$; ¹J_{CH} = 143; H₂C(DME) $\delta = 70,6$ ppm; ¹J_{CH} = 141 Hz. ²⁹Si{¹H} {Meßfr. 59,62 MHz; ext. Stand. OMCT¹} ($\delta^{29}Si = -19,9$ ppm); L.M. d₆-Benzol): (H₃C)₃Si $\delta = -5,6$; [(H₃C)₃Si]₃Si $\delta = -185,8$ ppm.

Di(tert-butyl)dichlorsilan 15

Darstellung. Zu 300 ml einer 2,01 M Lösung (0,603 mol) von Lithium(tert-butyl) in Hexan tropft man langsam 50,7 g (0,30 mol) Tetrachlorsilan in 50 ml des gleichen Lösungsmittels, erhitzt zur Vervollständigung der Reaktion noch 4 d unter Rückfluß, filtriert das gebildete Lithiumchlorid ab und entfernt das Lösungsmittel bei +20 °C im Vakuum. Anschließend wird der Rückstand aus Di(tert-butyl)chlor- 16 und Di(tert-butyl)dichlorsilan 15 in 70 ml Tetrachlorkohlenstoff mit Chlor bei 0 °C zu Di(tert-butyl)dichlorsilan 15 umgesetzt. Ausbeute 32,0 g (0,15 mol); 50% (bezogen auf SiCl₄).

Kp. +59 °C/6 mbar.

Di(tert-butyl)bis(trimethylsilyl)silan 17

Darstellung. Zu einem Gemisch aus 17,1 g (0,158 mol; 1,3facher Überschuß) Chlortrimethylsilan und 1,5 g (0,210 mol; 1,1facher Überschuß) feingeschnittenem Lithium in 75 ml Tetrahydrofuran tropft man langsam unter Rühren 10,2 g (0,048 mol) Di(tert-butyl)dichlorsilan 15 in 25 ml des gleichen Lösungsmittels und erhitzt den braunen Ansatz 7 d unter Rückfluß. Das Produkt kristallisiert aus der filtrierten und eingeengten Lösung bei $-20 \,^{\circ}$ C weitgehend aus. Zur Erhöhung der Ausbeute wird die Mutterlauge aufgearbeitet und der Rückstand sublimiert. Ausbeute 8,9 g (0,031 mol); 63%.

Aufgrund des gewählten Syntheseweges kann das Produkt geringe Mengen *Tert*-butyltris(trimethylsilyl)silan enthalten.

Charakterisierung. Sublp. etwa +280 °C (im abgeschmolzenen Röhrchen unter Argon); farblose Kristalle.

Molmasse, kryoskopisch in Benzol: ber. 288,75; gem. 292. Elementaranalyse: $C_{14}H_{36}Si_3$; C ber. 58,25 (gef. 57,9); H 12,75 (12,7)%.

Charakteristische Massen aus dem Massenspektrum (Massenspektrometer MAT 711 der Firma Varian; Ionisierungsenergie 70 eV; Quellentemperatur 445 K): $C_{14}H_{36}Si_3$; $M^+ 288,2$ (16); $M^+ - (H_3C)_3C = 231,1$ (18); $M^+ - (H_3C)_3C - (H_3C)_2C = CH_2$ 175,1 (43); 157,1 (24); 143,1 (18); 131,1 (42); 117,0 (13); (H_3C)_3Si 73,0 (100%).

NMR-Spektren. ¹H (Meßfr. 60 MHz; int. Stand. TMS; L.M. Cyclopentan): (H₃C)₃Si $\delta = 0,25$; (H₃C)₃C $\delta = 1,15$ ppm. ¹³C{¹H} (Meßfr. 20,12 MHz; int. Stand. TMS; L.M. d₆-Benzol): (H₃C)₃Si $\delta = +3,0$; (H₃C)₃C $\delta = +22,9$; (H₃C)₃C $\delta = +32,0$ ppm. ²⁹Si{¹H} {Meßfr. 59,62 MHz; ext. Stand. OMCT¹) (δ^{29} Si = -19,9 ppm); L.M. d₆-Benzol}: [(H₃C)₃Si]₂Si $\delta = -17,0$; [(H₃C)₃Si]₂Si $\delta = -17,7$ ppm.

Die Berechnungen wurden am Rechenzentrum der Universität Stuttgart mit der Anlage CYBER 174 durchgeführt. Wir danken Herrn H. DOMNICK, Institut für Anorganische Chemie der Universität Karlsruhe, für die Aufnahme der ²⁹Si-NMR-Spektren und Herrn Dr. E. Hönle, Max-Planck-Institut für Festkörperforschung in Stuttgart-Büsnau für wertvolle Diskussionen. Die Deutsche Forschungsgemeinschaft, der Fonds der Chemischen Industrie sowie die Bayer AG unterstützten uns dankenswerter Weise durch die Bereitstellung von Sach- und Personalmitteln bzw. durch Chemikalienspenden.

Literatur

- [1] BECKER, G.; HÖLDERICH, W.: Chem. Ber. 108 (1975) 2484.
- [2] BECKER, G.; GUTEKUNST, G.; WESSELY, H. J.: Z. anorg. allg. Chem. 462 (1980) 113.
- [3] BECKER, G.; MÜNCH, A.; WITTHAUER, C.: Z. anorg. allg. Chem. 492 (1982) 15.
- [4] BECKER, G.; RÖSSLER, M.: Z. Naturforsch. 37b (1982) 91.
- [5] BECKER, G.; BARTH, T.; BAUMGARTEN, J.; MUNDT, O.: unveröffentlicht.
- [6] GILMAN, H.; SMITH, C. L.: J. Amer. Chem. Soc. 86 (1964) 1454; s. auch GILMAN, H.; SMITH, C. L.:
 J. Organomet. Chem. 8 (1967) 245; BÜRGER, H.; GOETZE, U.: Angew. Chem. 80 (1968) 192.
- [7] FRITZ, G.; HÖLDERICH, W.: Z. anorg. allg. Chem. 431 (1977) 76.
- [8] BRANDES, D.: Organomet. Chem. Rev. 7 (1979) 257 und dort zit. Lit.
- [9] GILMAN, H.; HOLMES, J. M.; SMITH, C. L.: Chem. Ind. (London) 1965, 848: GILMAN, H.; SMITH C. L.: J. Organomet. Chem. 14 (1968) 91.
- [10] GUTEKUNST, G.; BROOK, A. G.: J. Organomet. Chem. 225 (1982) 1.
- [11] BROOK, A. G.; ABDESAKEN, F.; GUTEKUNST, B.; GUTEKUNST, G.; KALLURY, R. K.: J. Chem. Soc., Chem. Commun. 1981, 191; BROOK, A. G.; ABDESAKEN, F.; GUTEKUNST, B.; GUTEKUNST, G.; KALLURY, R. K.; NYBURG, S. C.; POON, Y. C.; CHANG, Y. M.; WONG-NG, W.: J. Amer. Chem. Soc. 104 (1982) 5667.
- [12] STEWARD, O. W.; HEIDER, G. L.; JOHNSON, J. S.: J. Organomet. Chem. 168 (1979) 33.
- [13] BIFFAR, W.; NÖTH, H.: Z. Naturforsch. 36b (1981) 1509; s. auch: BIFFAR, W.; NÖTH, H.; Schwerthöffer, R.: Liebigs Ann. Chem. 1981, 2067.
- [14] BECKER, G.; WITTHAUER, C.: Z. anorg. allg. Chem. 492 (1982) 28.
- [15] MUNDT, O.; BECKER, G.; RÖSSLER, M.; WITTHAUER, C.: Z. anorg. allg. Chem. 506 (1983) 42.
- [16] a) KITAIGORODSKII, A. I.: Organic Chemical Crystallography, Consultants Bureau, New York 1961; b) HUHEEY, J. E.: Inorganic Chemistry, 3. Aufl., S. 258, Cambridge: Harper International SI Edition 1983; c) MAIN, P.; LESSINGER, L.; WOOLFSON, M. M.: MULTAN 77, Department of Physics, University of York, York 1977; d) STEWART, J. M. (Hrsg.): The X-Ray System, Version of 1976, Technical Report TR-446 of the Computer Science Center, University of Maryland, College Park, Maryland 1976; e) CROMER, D. T.; MANN, J. B.: Acta Crystallogr. A 24 (1968) 321; f) STEWART, R. F.; DAVIDSON, E. R.; SIMPSON, W. T.: J. Chem. Phys. 42 (1965) 3175; g) LONSDALE, K.; MACGILLAVRY, C. H.; RIECK, G. D. (Hrsg.): International Tables for X-Ray Crystallography, Bd. III, S. 157, Birmingham: The Kynoch Press 1968; h) JOHNSON, C. K.: ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structures Illustrations, Oak Ridge National Laboratory, Oak Ridge, Tennessee 1965; i) Deutscher Zentralausschuß für Chemie: Internationale Regeln für die chemische Nomenklatur und Terminologie, Bd. 2, S. 103, Weinheim: Verlag Chemie 1976; j) HAMILTON, W. C.: Acta Crystallogr. 12 (1959) 609; k) CAHN, R. S.; SIR INGOLD, C.; PRELOG, V.: Angew. Chem. 78 (1966) 413.
- [17] WILKINSON, G.; STONE, F. G. A.; ABEL, E. W. (Hrsgg.): Comprehensive Organometallic Chemistry, Vol. 1, S. 64, Oxford: Pergamon Press 1982; v. RAGUÉ SCHLEYER, P.: Pure Appl. Chem. 56 (1984) 151.
- [18] SCHAAF, T. F.; GLICK, M. D.; OLIVER, J. P.; BUTLER, W.: J. Amer. Chem. Soc. 96 (1974)7593;
 ILSLEY, W. H.; SCHAAF, T. F.; GLICK, M. D.; OLIVER, J. P.: J. Amer. Chem. Soc. 102 (1980) 3769.
- [19] TECLÉ, B.; ILSLEY, W. H.; OLIVER, J. P.: Organomet. 1 (1982) 875.
- [20] EABORN, C.; HITCHCOCK, P. B.; SMITH, J. D.; SULLIVAN, A. C.: J. Chem. Soc., Chem. Commun. 1983, 827; s. auch: FJELDBERG, T.; LAPPERT, U. F.; THORNE, A. J.: Mol. Struct. 127 (1985) 95.
- [21] WEISS, E.; HENCKEN, G.; KÜHÅ, H.: Chem. Ber. **103** (1970) 2868; s. auch WIBERG, N.; FISCHER, G.; KARAMPATSES, P.: Angew. Chem. **96** (1984) 58.
- [22] V. SCHNERING, H. G.; NESPER, R.; TEBBE, K. F.; CURDA, J.: Angew. Chem. 92 (1980) 1070;
 BÖHM, M. C.; RAMIREZ, R.; NESPER, R.; V. SCHNERING, H.-G.: Ber. Bunsenges. Phys. Chem. 89 (1985) 465; V. SCHNERING, H. G.; NESPER, R.; RAMIREZ, R.: pers. Mitteilung.

- [23] V. SCHNERING, H. G.; NESPER, R.; TEBBE, K. F.; CURDA, J.: Z. Metallkunde 71 (1980) 357; s. auch: AXEL, H.; SCHÄFER, H.; WEISS, A.: Angew. Chem. 77 (1965) 379.
- [24] SCHÖNEMANN, H.; JACOBS, H.; SCHUSTER, H. U.: Z. anorg. allg. Chem. 382 (1971) 40.
- [25] ILSLEY, W. H.; ALBRIGHT, M. J.; ANDERSON, T. J.; GLICK, M. D.; OLIVER, J. P.: Inorg. Chem. 19 (1980) 3577.
- [26] HULL, A. W.: Phys. Rev. 10 (1917) 661.
- [27] BARTELL, L. S.; CLIPPARD, F. B. jr.; BOATES, T. L.: Inorg. Chem. 9 (1970) 2436.
- [28] WELLS, A. F.: Structural Inorganic Chemistry, 5. Aufl., S. 914, Oxford: Clarendon Press 1984.
- [29] ALLMANN, R. in RHEINGOLD, A. L. (Hrsg.): Homoatomic Rings, Chains and Macromolecules of Main-Group Elements, S. 25, Amsterdam: Elsevier Scient. Publ. Comp. 1977.
- [30] BECKER, G.; SCHWARZ, W.; WESTERHAUSEN, M.: unveröffentlicht.
- [31] a) BECKER, G.; BIRKHAHN, M.; MASSA, W.; UHL, W.: Angew. Chem. 92 (1980) 756; b) BECKER, G.; MASSA, W.; MUNDT, O.; Rössler, M.; UHL, W.: unveröffentlicht.
- [32] HOOZ, J.; AKIYAMA, S.; CEDAR, F. J.; BENNETT, M. J.; TUGGLE, R. M.: J. Amer. Chem. Soc. 96 (1974) 274.
- [33] GILLESPIE, R. J.: Molekülgeometrie, Weinheim: Verlag Chemie 1975.
- [34] TYLER, L. J.; SOMMER, L. H.; WHITMOBE, F. C.: J. Amer. Chem. Soc. 70 (1948) 2876.
- [35] WEIDENBRUCH, M.; PETER, W.; PESEL, H.; STEICHEN, R.: J. Organomet. Chem. 141 (1977) 9.
- [36] GILMAN, H.; HARRELL, R. L.: J. Organomet. Chem. 5 (1966) 199.
- [37] TROST, B. M.; CALDWELL, C. G.: Tetrahedron Lett. 22 (1981) 4999.
- [38] SAKURAI, H.; KONDO, F.: J. Organomet. Chem. 92 (1975) C46.

Bei der Redaktion eingegangen am 15. April 1985.

Anschr. d. Verf.: Prof. Dr. GERD BECKER, Dipl.-Chem. HANS-MARTIN HARTMANN, Stud. Ass. ANGELIKA MÜNCH und Dr. HEINZ RIFFEL, Inst. f. Anorg. Chemie d. Univ., Pfaffenwaldring 55, D-7000 Stuttgart 80 (Vaihingen)