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1. Introduction

We construct all 16-dimensional locally compact topological planes of Lenz-
type V whose collineation groups contain a subgroup (locally) isomorphic to
SU2H. If the classical plane over the algebra O of the octonions is put aside,
the collineation group of such a plane will be shown to be a Lie group of
dimension 37. In fact by results of Löwe these are the only 16-dimensional
locally compact translation planes whose collineation groups have this dimen-
sion (see H. Löwe, Sixteen-dimensional locally compact translation planes with
automorphism groups of dimension at least 36, Preprint, 2019). Note that
the sixteen-dimensional locally compact translation planes with collineation
groups of dimension at least 38 have been classified in [9], cf. [11, 82.26].

The planes which we determine here fall into three families, which are related
among each other by dualization and transposition. The planes of one of these
families are self-dual; this invites for further study of their polarities and their
unitals, which however will not be pursued here.

1.1. Basic information

Basic facts about 16-dimensional locally compact translation planes in general
and about the Lenz-type V planes among them are collected in [11, 81.0]. We
make free use of them.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00022-020-00561-4&domain=pdf
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The translation line is unique and, hence, fixed by every collineation except
if the plane is isomorphic to the classical plane over the algebra O of the
octonions (in the latter plane, every line is a translation line). We represent
such a translation plane as an affine plane, the translation line playing the rôle
of the line L∞ at infinity. Let G be the group of all affine collineations, that
is, of the collineations fixing L∞; it comprises all collineations except for the
classical octonion plane, as we have already remarked.

The space of affine points is a 16-dimensional real vector space, the lines
through the origin o are certain 8-dimensional R-linear subspaces, and the
other affine lines are the images of these under the (vector space) translations.
The group G is the semidirect product of the normal subgroup T consisting
of these translations by the stabilizer Go of o:

G = Go · T.

In a plane of Lenz type (at least) V, there is a point s at infinity such that
for the line S joining o and s the group G[s,S] of collineations with center s
and axis S (shears) is sharply transitive on L∞\{s}. If the plane is not the
classical plane over the octonions, the point s is unique; it will be called the
shear center. It is then fixed by every collineation. Hence, the shear group
G[s,S] is a normal subgroup of Go, and for a second line W �= S through o

Go = GS,W · G[s,S].

The action of GS,W on the normal subgroup G[s,S] by conjugation is equivalent
to the action on L∞\{s}, by sharp transitivity of G[s,S] on L∞\{s}.

With respect to W and S as first and second coordinate axis, a 16-dimensional
plane of Lenz type V can be coordinatized by an 8-dimensional (non-associa-
tive) real division algebra (D,+, ◦), see [11, 24.7, 25.8 and 64.14]. (In other
terminology, a non-associative division algebra is also called a semifield). Its
multiplication will be denoted by ◦ in order to distinguish it from the classical
multiplication · of the octonions and the quaternions, which will also be used.
In affine coordinates over D, the shear group G[s,S] consists precisely of the
transformations

(x, y) �→ (x, y + d ◦ x) for d ∈ D,

see [11, 24.7 and 25.4]. Hence, G[s,S] is isomorphic to the additive group (R8,+)
of D. In particular, it has no nontrivial compact subgroup, and the same is
true for the translation group T ∼= R

16. Therefore, in view of the semidirect
products noted above, a maximal compact subgroup of GS,W is a maximal
compact subgroup of G (except in the classical octonion plane).

1.2. Actions of SU2H as a collineation group

Now assume that Go has a closed connected subgroup Λ locally isomorphic to
SU2H. By what we have said just now, we may assume that Λ is contained in
GS,W , since maximal compact subgroups are conjugate. The group Λ cannot
act trivially on one of the lines W , S or L∞, since then Λ could be described
by a subgroup of the left nucleus, the middle nucleus, or the kernel of the
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division algebra D, see [11, 25.4], which is impossible by dimension reasons.
Now SU2H is quasisimple, and the central involution ι generates the only
nontrivial normal subgroup. Therefore, on any one of the lines W , S and L∞,
the group Λ acts effectively or as the factor group of SU2H by {id, ι}, which
is isomorphic to SO5R. These actions are R-linear (in the case of the line L∞,
this has to be understood via the action on the shear group G[s,S]

∼= R
8).

A nontrivial action of SO5R on R
8 is the classical action on a 5-dimensional

subspace and leaves a complementary 3-dimensional subspace pointwise fixed.
Therefore, Λ cannot act as SO5R on two of the lines W , S and L∞, since then
Λ would fix a nondegenerate quadrangle and therefore would correspond to a
subgroup of the automorphism group of a coordinatizing division algebra, see
[11, 23.5]. But according to [5, 1.2] the automorphism group of such a division
algebra does not have a subgroup isomorphic to SO5R. Thus, Λ is isomorphic
to SU2H and acts effectively on at least two of the lines W , S and L∞. An
effective linear action of SU2H on R

8 is equivalent to the classical action on H
2,

and in this action, the central involution acts as −id. Therefore, the central
involution ι of Λ is not a Baer involution and hence is a reflection with one of
the lines W , S or L∞ as axis, see [11, 23.17]. On this line, then, Λ induces the
group SO5R. These considerations lead to the following case distinction.

Case 1 Λ acts on W and on S effectively as SU2H and on L∞ as SO5R.
Case 2 Λ acts on S and on L∞ effectively as SU2H and on W as SO5R.
Case 3 Λ acts on W and on L∞ effectively as SU2H and on S as SO5R.

We shall deal first with Case 1. The other cases will later be derived from Case
1 by dualization and spread transposition, see Sects. 3 and 4.

2. The planes of Case 1

2.1. The action of Λ on the shear group

We may identify R
16 and H

2 ×H
2 as R-vector spaces in such a way that S and

W , considered as affine lines, are described as S = {0}×H
2 and W = H

2×{0},
and that Λ acts on S and W effectively as the group SU2H in its classical action
on H

2. Thus,

Λ = {(x, y) �→ (Ax,Ay);A ∈ SU2H}
for (x, y) ∈ H

2 × H
2.

We now consider an 8-dimensional division algebra (D,+, ◦) coordinatizing
the plane with respect to W and S as first and second coordinate axis and the
point

((
1
0

)
,
(
1
0

))
as unit point. The fact that the shear group G[s,S] is normal

in Go and its description in coordinates given in Sect. 1.1 imply that the
following set of R-linear transformations of D identified with H

2 is invariant
under conjugation by the elements of SU2H:

D = {x �→ d ◦ x; d ∈ D}
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for x ∈ D = H
2, and that this action is equivalent to the action of Λ on

the shear group G[s,S]. Moreover, since W and its point at infinity are fixed
by Λ and since the shear group G[s,S] acts sharply transitively on L∞\{s},
this action is equivalent to the action of Λ on L∞, and hence, by assumption
of Case 1, to a nontrivial linear action as SO5R on R

8. Hence, there is a 5-
dimensional R-linear subspace C of D on which Λ acts as SO5R in its classical
action on R

5, and a complementary 3-dimensional subspace F of D on which
Λ acts trivially. First, we determine the possibilities for the subspace C.

2.2 Lemma. Let C be a 5-dimensional R-linear subspace of the vector space
EndRH

2 of R-linear endomorphisms of H2 (viewed as a real vector space) which
is invariant under conjugation by SU2H and on which this group acts non-
trivially. Then there is a quaternion p ∈ H\{0} of norm 1, pp = 1, such that

C =
{(

x1

x2

)
�→

(
s h
h −s

) (
x1

x2

)
p; s ∈ R, h ∈ H

}
,

where x1, x2 ∈ H.

Proof. The only nontrivial representation of SU2H in dimension 5 is the clas-
sical action as SO5R, the kernel of this representation being generated by the
central involution ι. Consider the subgroup

Ψ =
{(

a
b

)
; a, b ∈ H, aa = 1 = bb

}

of SU2H. Its quotient group by {id, ι} is SO4R. In its action on C by conjuga-
tion, its fixed elements form a 1-dimensional subspace C1. In other words, C1

consists precisely of the endomorphisms in C commuting with all elements of

Ψ, in particular with the matrices
(

a
a

)
, so that the elements of C1 are H-

linear endomorphisms of the left vector space H
2 over H. Furthermore, H×{0}

and {0} × H are the eigenspaces of
(

1
−1

)
∈ Ψ and hence are invariant

under the elements of C1. Thus, there are p, q ∈ H such that

C1 =
{(

x1

x2

)
�→

(
x1p
x2q

)
r; r ∈ R

}
.

The involution
(

1
1

)
∈ SU2H normalizes Ψ and hence leaves C1 invariant,

but not elementwise fixed, because it does not belong to Ψ. Thus, C1 is con-
tained in the eigenspace of this involution with eigenvalue −1, so that, in the
given description of C, we must have q = −p.
All the elements of C are obtained from the elements of C1 by conjugation

with the elements of SU2H. For an element A =
(

a b
c d

)
∈ SU2H one has
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aa + cc = 1 = bb + dd, ab + cd = 0, so that A−1 =
(

a c

b d

)
, which in turn is

equivalent to aa + bb = 1 = cc + dd and ac + bd = 0.

Conjugation of an endomorphism from C1 by A gives the endomorphism
(

x1

x2

)
�→

(
a c

b d

) (
a b

−c −d

)(
x1

x2

)
pr =

(
aa − cc ab − cd

ba − dc bb − dd

)(
x1

x2

)
pr.

From the relations given above, we obtain that bb − dd = −(aa − cc). Thus,
the elements of C have the form stated in the lemma. It is clear that p may be
chosen to be of norm 1. That for all s ∈ R, h ∈ H the endomorphisms given in
the lemma belong to C follows from the fact that they form a 5-dimensional
vector space. �

2.3. Shears which are invariant under Λ
Now we determine the possibilities for a 3-dimensional subspace F of EndRH

2

on which SU2H acts trivially by conjugation, which means that the endo-
morphisms in F commute with the elements of SU2H. According to Schur’s
lemma, the elements of F are given by scalar multiplication from the right
by quaternions; hence there is a 3-dimensional R-linear subspace F of H such
that

F =
{(

x1

x2

)
�→

(
x1

x2

)
q; q ∈ F

}

(for x1, x2 ∈ H). In the sequel, we think of F as the orthogonal space of a unit
quaternion v, vv = 1 with respect to the scalar product 〈a, b〉 = 1/2(ab + ba)
on the R-vector space H:

F = v⊥.

2.4. Lines through the origin

In coordinates over the division algebra D = (H2,+, ◦), the affine lines through
o are the subsets {(x, d ◦ x);x ∈ H

2} for d ∈ D together with the line S =
{0} × H

2. Since the endomorphisms x �→ d ◦ x for d ∈ D constitute the space
D = C +F described in Sects. 2.2 and 2.3, the lines through the origin besides
S are the following subsets of the point space H

2 × H
2:

Ls,q,h =
{((

x1

x2

)
,

(
s h
h −s

)(
x1

x2

)
p +

(
x1

x2

)
q

)
; x1, x2 ∈ H

}

for s ∈ R, h ∈ H, q ∈ F .

The lines L0,q,0 for q ∈ F are obtained from the endomorphisms in F , which
are precisely the elements of D commuting with SU2H. Thus, together with
the line S = {0} × H

2, they are the fixed lines of the group Λ ∼= SU2H of
collineations. Necessarily, we must have that

p /∈ F, that is 〈p, v〉 �= 0;
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otherwise, the point
((

1
0

)
,
(
p
0

))
would belong to the two different lines L1,0,0

and L0,p,0 through the origin.

The question whether for every pair (v, p) of unit quaternions satisfying these
conditions one obtains in this way the system of lines through the origin of an
affine plane will be postponed until later, see Sect. 2.9.

2.5. Special isomorphisms

The plane for which we have developed this description will be called P. We
now consider a second plane P ′ with unit quaternions v′ and p′ instead of
v and p as defining parameters. The lines through the origin of this plane
described as in Sect. 2.4 will be called L′

s,q,h. We ask under which conditions
on v, p, v′, p′ the map

ϕ :
((

x1

x2

)
,

(
y1
y2

))
�→

((
x1

x2

)
c,

(
y1
y2

)
d

)

(x1, x2, y1, y2 ∈ H) of the affine point space of P onto the affine point space
of P ′ for unit quaternions c and d is an isomorphism between the two planes.
The answer to this question serves two purposes: First, it will allow to restrict
the parameters v and p up to isomorphism, and second, it will later help to
determine all collineations of the planes of this type.

The map ϕ is deliberately chosen so as to commute with the action of the
group Λ ∼= SU2H on both planes. If ϕ is an isomorphism, it therefore must
map fixed lines of Λ to fixed lines. Thus, the line L0,q,0 for q ∈ F must be
mapped to the line L′

0,q′,0 for some q′ ∈ F ′ := v′⊥. Now, ϕ maps L0,q,0 to
{((

x1

x2

)
c,

(
x1

x2

)
qd

)
;x1, x2 ∈ H

}
=

{((
x1

x2

)
,

(
x1

x2

)
c−1qd

)
;x1, x2 ∈ H

}
.

This is a line L′
0,q′,0 if and only if c−1qd = q′ ∈ F ′ = v′⊥. If ϕ is an isomor-

phism, this is true for all q ∈ F = v⊥, which means that

c−1vd = ±v′.

In Sect. 2.4, the lines Ls,0,0 were constructed from the endomorphisms in C1,
the endomorphisms in C which commute with the elements of Ψ, see 2.2. These
lines therefore are fixed lines of the subgroup of Λ ∼= SU2H corresponding to
Ψ. But this subgroup has more fixed lines through o than that. They are given
by endomorphisms in all of D (not only C) which commute with the elements
of Ψ. Now D = C+F , where F consists of the endomorphisms which commute
with the whole group SU2H, so that the endomorphisms in D commuting with
Ψ are the elements of C1 + F . The corresponding lines through o are the lines
Ls,q,0 for s ∈ R, q ∈ F . Now, if ϕ is an isomorphism, it must map L1,0,0 to a
line in P ′ which is also a fixed line of the subgroup of Λ ∼= SU2H corresponding
to Ψ, that is to a line L′

s′,q′,0. The image of L1,0,0 under ϕ is
{((

x1

x2

)
c,

(
1

−1

) (
x1

x2

)
pd

)
;x1, x2 ∈ H

}
=
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{((
x1

x2

)
,

(
1

−1

) (
x1

x2

)
c−1pd

)
;x1, x2 ∈ H

}
.

This is a line L′
s′,q′,0 if and only if c−1pd = s′p′ + q′ and −c−1pd = −s′p′ + q′;

but then q′ = 0 and c−1pd = s′p′. Since c and d are unit quaternions, this
means that

c−1pd = ±p′.

Conversely, it is now easy to verify that if these conditions are fulfilled, ϕ maps
all lines of P to lines of P ′ and thus is an isomorphism of P onto P ′.

2.6. Parameter restriction

The maps H → H : x �→ c−1xd for unit quaternions c, d appearing in the
conditions which have just been obtained describe all elements of SO4R in
its classical action on H ∼= R

4. They allow to transform any pair v, p of unit
quaternions to any other such pair having the same scalar product. By the
result of Sect. 2.5, we therefore may assume, up to isomorphism of planes,
that

p = 1, v = cos α + sinα · i

for α /∈ (Z + 1/2)π (where i, j, k is the usual Hamilton triple of H). The
last restriction comes from the condition that 1 = p /∈ v⊥, see Sect. 2.4.
Furthermore, one obtains an isomorphic plane if one replaces v by cos α −
sin α · i, since this quaternion has the same scalar product with 1 as v. Also, it
is clear from the description of lines in Sect. 2.4 that −v instead of v defines
the same plane. So, finally, we may restrict v further by demanding that

0 ≤ α < π/2.

The plane obtained in this way shall be denoted by Pα.

In the sequel, we shall always use this choice of parameters. (The idea for
this particular choice was given to us by H. Löwe in his preprint cited in the
introduction, although one would have been tempted at first sight to use a
choice with 1 ∈ v⊥ in order to ensure that the diagonal {(x, x);x ∈ H

2} is a
line of the plane, which is not the case with p = 1. This slight disadvantage
will be compensated, however, by far greater advantages.)

We shall see that different choices for α yield nonisomorphic planes; indeed
we shall prove in Sect. 2.11 that no other isomorphisms than those already
produced here can be found. With these parameters, the lines through the
origin besides S are the following subsets of the point space H

2 × H
2:

Ls,q,h =
{((

x1

x2

)
,

(
s h
h −s

)(
x1

x2

)
+

(
x1

x2

)
q

)
; x1, x2 ∈ H

}

for s ∈ R, q ∈ F = v⊥, h ∈ H.
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2.7. Special collineations

From Sect. 2.5 applied to v′ = v and p = 1 = p′ we know that in such a
plane the map ϕ considered there is a collineation if the unit quaternions c, d
defining ϕ satisfy c−1vd = ±v and c−1d = ±1, that is d = ±c.

If v = ±1, this means that we obtain a collineation for all unit quaternions c if
and only if d = ±c. These collineations form a group isomorphic to the direct
product of the multiplicative group of unit quaternions (which is Spin3R) and
the group generated by the involutory collineation given by c = 1, d = −1
which is a reflection with the line W as axis and, by the way, is contained in
Λ ∼= SU2H. We shall see in Sect. 2.10 that the plane in this case (v = ±1) is
isomorphic to the classical octonion plane.

If v �= ±1, then under the restrictions of Sect. 2.6 one has R·1+Rv = R·1+Ri.
By the conditions on c and d, this span and the one-dimensional subspaces R·1
and Rv are invariant under the orthogonal map x �→ c−1xd. Since 1 and v are
not orthogonal, this map either fixes both 1 and v or maps both to their
antipodes, so that it induces either the identity or multiplication by −1 on the
plane R · 1 + Ri. The second case may be reduced to the first case again by
composition with the reflection given by c = 1, d = −1, which we have used
just before and which is contained in Λ ∼= SU2H . In the first case c = d and
c−1ic = i which means ic = ci, so that c ∈ R · 1 + Ri. Thus we obtain the
group of collineations

{(x, y) �→ (xc, yc); c ∈ R · 1 + Ri, cc = 1},

a 1-dimensional torus whose intersection with Λ is generated by (x, y) �→
(−x,−y).

2.8. A coordinatizing division algebra

In order to obtain a coordinatizing division algebra (D,+, ◦), we change the
identification of the affine point set with H

2 × H
2 by the map

((
x1
x2

)
,
(
y1
y2

)) �→
((

x1
x2

)
,
(

y1
−y2

))
. In new coordinates, the lines through the origin except S take

the form
{((

x1

x2

)
,

(
s h

−h s

)(
x1

x2

)
+

(
x1

−x2

)
q

)
; x1, x2 ∈ H

}
.

The new coordinates present an advantage for coordinatization, namely that
the diagonal {(x, x);x ∈ H

2} is one of the lines through the origin. There is
a disadvantage however: The introduction of these coordinates deforms the
action of the group Λ and of the torus group described in Sect. 2.7. Therefore
we shall return to the old coordinates after this digression.

In coordinates over D, a line through the origin different from S is given by
{(x, d ◦ x);x ∈ D}. If this is the line described above, then d is obtained in
terms of s, q, h by feeding the unit

(
1
0

)
instead of x =

(
x1
x2

)
into the second

coordinate of this line:
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d =
(

d1
d2

)
=

(
s

−h

)
+

(
q

0

)
,

so that d1 = s + q, d2 = −h. By forming the scalar product of d1 = s + q with
v = cos α + sin α · i and keeping in mind that q ∈ v⊥ and that cos α �= 0 we
obtain conversely that

h = −d2, s = Re d1 + tan α〈d1, i〉, q = d1 − Re d1 − tan α〈d1, i〉.
Thus, the second coordinate of the point on the line described above with first

coordinate
(

x1

x2

)
∈ H

2 is

(
(Re d1 + tan α〈d1, i〉)x1 − d2x2 + x1(d1 − Re d1 − tan α〈d1, i〉)
d2x1 + (Re d1 + tan α〈d1, i〉) x2 − x2(d1 − Re d1 − tan α〈d1, i〉)

)
.

This can be simplified:

d ◦ x =
(

d1
d2

)
◦

(
x1

x2

)
=

(
x1d1 − d2x2

x2d1 + d2x1 + ρ〈d1, i〉x2

)
= xd + ρ〈d1, i〉

(
0
x2

)
,

where xd is the classical octonion product and

ρ = 2 tan α.

2.9. Verification of planarity

We still have to verify that for every parameter α ∈ [0, π/2) we obtain in
this way a division algebra, so that the lines described in Sect. 2.6 are indeed
the lines through the origin of a plane Pα of Lenz type V. According to the
criterion [11, 64.13], which is formulated for a more general situation, it suffices
to prove that for x ∈ D,x �= 0 the map D → D : d �→ d ◦ x is bijective. This
map is R-linear; so by finite dimension it suffices to show that it is injective, or,
in other words, that it has trivial kernel. This means that for x �= 0, d ◦ x = 0
implies d = 0. But this is equivalent to saying that d ◦ x = 0 implies d = 0 or
x = 0. This is what we are going to prove. Indeed, d ◦ x = 0 means

x1d1 − d2x2 = 0
x2(d1 + ρ〈d1, i〉) + d2x1 = 0.

If 〈d1, i〉 = 0 or x2 = 0, then d ◦ x = xd, and our assertion follows from the
fact that the octonion algebra has no zero divisors.

So assume 〈d1, i〉 �= 0 and x2 �= 0. From the first of the two equations above,
we then obtain that d2 = x2

−1d1x1. Inserting this into the second equation
and multiplying by x2 gives x2x2d1 + x2x2ρ〈d1, i〉 + d1x1x1 = 0. But then d1
would be real, in contradiction to 〈d1, i〉 �= 0.

2.10. The classical case

In order to decide isomorphism questions, we first have to determine for which
admissible parameters α the plane Pα described in Sect. 2.6 is isomorphic to
the classical octonion plane, or equivalently, the division algebra in Sect. 2.8
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is isomorphic to the classical octonion algebra. The latter is biassociative; so
we test biassociativity of the multiplication ◦.
(

i
0

) ◦ ((
i
0

) ◦ (
0
1

))
=

(
0

−1−ρi

)
and

((
i
0

) ◦ (
i
0

)) ◦ (
0
1

)
=

(
0

−1

)
.

If (H2,+, ◦) is isomorphic to the classical octonion algebra, the result has to
be the same, so that ρ = 0, which by definition of ρ = 2 tan α means α = 0
and v = 1.

Conversely, it is clear that for ρ = 0 the division algebra (H2,+, ◦) is iso-
morphic to the octonion algebra (by octonion conjugation). We formulate the
result:

Proposition. The division algebra constructed in Sect. 2.8 for 0 ≤ α < π/2
is isomorphic to the classical octonion algebra if and only if α = 0. This
is equivalent to the plane Pα described in Sect. 2.6 being isomorphic to the
classical octonion plane.

2.11. Isomorphisms and collineations

We now return to the question of isomorphisms between two such planes in
the case they are nonclassical.

First, since the translation line L∞ and the shear center s are unique, see
Sect. 1.1, an isomorphism between two such planes P = Pα and P ′ = Pα′

maps the translation line to the translation line and the shear center to the
shear center. It can be modified by a translation in such a way that the origin
o is mapped to the origin. Such an isomorphism is a semilinear transformation
of the affine plane of P onto the affine plane of P ′ when the two affine planes
are viewed as vector spaces over the respective kernels, see [1], [10, Theorem
1.18]. Now the kernel of such a plane can be obtained from the kernel of the
coordinatizing division algebra D, which in the case of an 8-dimensional real
division algebra consists of the real multiples of 1 only, see [2, Theorem 1].
Thus, an isomorphism ϕ mapping o to o is R-linear.

As second coordinate axis in P, we have used the line S through o having the
shear center s as point at infinity; the isomorphism ϕ therefore maps S to the
corresponding line of P ′. By the transitivity properties of the shear group, ϕ
can be further modified by a shear so as to map the first coordinate axis W
in P to the first coordinate axis in P ′, as well. We now represent both affine
planes in the same real vector space H

2 ×H
2; then ϕ may be thought of as an

R-linear transformation leaving W = H
2 × {0} and S = {0} × H

2 invariant.

In both planes, the group Λ ∼= SU2H is a subgroup of the stabilizer GS,W of
W and S in the collineation group. We assert that in the nonclassical case it
is a characteristic subgroup. Since D is a real division algebra, GS,W contains
the subgroup

Z = {(x, y) �→ (rx, ty); 0 < r, t ∈ R}.

By [4, 4.2], see also [11, 81.8], GS,W has a largest compact subgroup M, and
GS,W is the product of M and Z. The group Λ ∼= SU2H is contained in M.
Since it acts irreducibly on W and on S, the same is true for the connected
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component M1 of M. Thus, M1 induces on W ∼= R
8 and S ∼= R

8 an irreducible
compact connected subgroup of GL8R of dimension at least 10. Using infor-
mation about representations of compact Lie groups in low dimensions these
can easily be determined, see e.g. the list in [6, 2.8], from which the irreducible
ones can be extracted. Up to conjugation, these are the groups SO8R, Spin7R,
U4C, SU4C, SU2H · Spin3R, SU2H · SO2R, and SU2H.

Now according to [7, 3.6 and 3.7] if M1 induces on S and W the group SO8R

or the group Spin7R, the plane is the classical octonion plane, which we do not
consider here. The same is true by [8, 3.1] if a subgroup of M induces the group
SU4C on W and on S and if the group of shears with axis S has dimension
at least 3. In the remaining groups, SU2H is a characteristic subgroup. This is
what we have claimed.

As a consequence, conjugation by the isomorphism ϕ maps the group Λ ∼=
SU2H onto itself and induces an automorphism on Λ. Since SU2H has only
inner automorphisms, ϕ can be modified by composition with an element of
Λ such that conjugation by ϕ induces the identity on Λ, in other words, ϕ
commutes with the elements of Λ. By Schur’s lemma, ϕ is of the form (x, y) �→
(xc, yd) for x, y ∈ H

2 and some c, d ∈ H\{0}. By composition with one of the
collineations in Z, we may assume that c and d are unit quaternions. But then,
ϕ is just one of the special isomorphisms considered in Sect. 2.5. This means
that we will not find any other isomorphisms and, in particular, collineations
than those which we know already from Sects. 2.5 and 2.7.
We summarize our findings:

2.12 Theorem. Up to isomorphism, the non-classical sixteen-dimensional locally
compact planes of Lenz type V whose collineation groups contain a subgroup
Λ ∼= SU2H acting according to Sect. 1.2 Case 1 are the planes Pα whose lines
through the origin are described in Sect. 2.6 for v = cos α + sin α · i, where
0 < α < π/2. For different choices of α, one obtains non-isomorphic planes.

The collineation group of such a plane is the product of the group of trans-
lations, the group of shears with axis S, the group Z given in Sect. 2.11, the
group Λ ∼= SU2H consisting of the collineations

H
2 × H

2 → H
2 × H

2 : (x, y) �→ (Ax,Ay) for A ∈ SU2H,

and the 1-dimensional torus group consisting of the collineations

H
2 × H

2 → H
2 × H

2 : (x, y) �→ (xc, yc) for c ∈ R · 1 + Ri, cc = 1.

The group of collineations is therefore connected and has dimension 37.

3. The planes of Case 2

These are obtained from the planes of Case 1 by passing to the dual planes.
Indeed, the line at infinity L∞ of a plane Pα of Case 1 plays the rôle of the
pencil of lines through the shear center in the dual plane P∗

α, so that the
group Λ ∼= SU2H acts on this pencil as SO5R, and this action corresponds to
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the action on the first coordinate axis. It is well known and easy to see that
the dual plane of a plane of Lenz type V is again of Lenz type V.

3.1. Dualization

The affine points of P∗
α are the affine lines of Pα which do not pass through

the shear center s, that is which are not parallel to S. According to Sect. 2.6,
these are the lines

[s, q, h; t] :=
{((

x1

x2

)
,

(
s h
h −s

)(
x1

x2

)
+

(
x1

x2

)
q +

(
t1
t2

)
; x1, x2 ∈ H

}

for s ∈ R, q ∈ v⊥ where v = cos α + sinα · i, h ∈ H, and

t =
(

t1
t2

)
∈ H

2.

Now R · 1 + v⊥ = H, since 1 /∈ v⊥. Therefore, we have an identification

[s, q, h; t] �→
((

s + q

h

)
,

(
t1
t2

))

of the affine point set of the dual plane P∗
α with H

2 × H
2, which we shall use

in the sequel.

3.2. The division algebra for the dual plane

The first coordinate axis of P∗
α consists of the lines [s, q, h; 0] of Pα, the second

coordinate axis carries the dual points [0, 0, 0; t]. We will use [1, 0, 0; 0] as unit
element. The lines of the dual plane are the points of Pα. The line in P∗

α

incident with the origin [0, 0, 0; 0] and the point [1, 0, 0; d] for d =
(
d1
d2

)
is the

point
((−d1

d2

)
, 0

)
of Pα. We now determine the dual points [s, q, h; t] which are

incident with this dual line. They satisfy
(

s h
h −s

) (−d1
d2

)
+

(−d1
d2

)
q +

(
t1
t2

)
= 0.

Thus, the dual points lying on the dual line through the origin [0, 0, 0; 0] and
the dual point [1, 0, 0; d] are the dual points [s, q, h; t] satisfying

(
t1
t2

)
=

(
d1(s + q) − hd2
d2(s − q) + hd1

)
.

In order to express s − q in terms of s + q, recall that q ∈ v⊥ and that
v = cos α + sinα · i. Thus, with the real part Re q of q, one has 0 = 〈q, v〉 =
Re q · cos α + 〈q, i〉 sin α = Re q · cos α + 〈s + q, i〉 sin α, so that

Re q = − tan α〈s + q, i〉.
Furthermore, s − q = s + q − 2Re q = s + q + ρ〈s + q, i〉, where ρ = 2 tan α.
Passing to coordinates from H

2 × H
2, one thus obtains that the dual point

with coordinates x =
(
x1
x2

)
=

(
s+q
h

)
and y =

(
y1
y2

)
=

(
t1
t2

)
lies on the dual line

through the dual points with coordinates
(
0
0

)
and

(
1
d

)
if and only if

(
y1
y2

)
=

(
d1x1 − x2d2

d2x1 + x2d1 + ρ〈x1, i〉d2
)

.
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The coordinatizing division algebra for the dual plane thus has multiplication
(

d1
d2

)
∗

(
x1

x2

)
=

(
d1x1 − x2d2

d2x1 + x2d1 + ρ〈x1, i〉d2
)

= dx + ρ〈x1, i〉
(

0
d2

)

where dx is the classical octonion product.

In preparation for Sect. 4, where we will use transposition to produce the
planes of Case 3, we rewrite the multiplication ∗ by the real 8 × 8-matrix Md

of the endomorphism x �→ d ∗ x of the 8-dimensional real vector space H
2.

With respect to the R-basis 1, i, j, k of H, the matrices

K =

⎛

⎜
⎜
⎝

1
− 1

− 1
− 1

⎞

⎟
⎟
⎠ and T =

⎛

⎜
⎜
⎝

0 1
0

0
0

⎞

⎟
⎟
⎠ ,

when applied to a quaternion q, give Kq = q and Tq = 〈q, i〉. Furthermore, let
La and Ra for a ∈ H be the real 4 × 4-matrices describing the endomorphisms
q �→ aq and q �→ qa (q ∈ H) of the real vector space H given by the classical
multiplication of quaternions. With these matrices

(
d1
d2

)
∗

(
x1

x2

)
= Md

(
x1

x2

)
, where Md =

(
Ld1 −Rd2K

Ld2(K + ρT ) Rd1

)
.

3.3. Collineations

Next, we shall have to determine how the group Λ ∼= SU2H given in Sect. 2.12
acts on the affine points of P∗

α. The line [s, q, h; t] (see Sect. 3.1) of Pα is
mapped by the collineation corresponding to A ∈ SU2H to

{(
Ax,A

(
s h
h −s

)
x + Axq + At

)
; x ∈ H

2

}

=
{(

x,A

(
s h
h −s

)
A−1x + AA−1xq + At

)
; x ∈ H

2

}

=
{(

x,A

(
s h
h −s

)
A−1x + xq + At

)
; x ∈ H

2

}
.

With

A =
(

a b
c d

)
and A−1 =

(
a c

b d

)
one computes

A

(
s h
h −s

)
A−1 =

(
s′ h′
h′ −s′

)
where

s′ = s(aa − bb) + 2Re(bha), h′ = 2sca + dha + ch b

(one uses that ca + db = 0). Thus, in P, the collineation corresponding to A
maps the line

[s, q, h; t] to [s′, q, h′;At].
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In order to express this in quaternal coordinates, that is, in terms of s + q
and h only, we note that s = Re(s + q) − Re q = Re(s + q) + tanα〈s + q, i〉
and q = s + q − s = s + q − Re(s + q) − tan α〈s + q, i〉, so that s′ + q =
(Re(s + q) + tan α〈s + q, i〉)(aa − bb) + s + q − Re(s + q) − tan α〈s + q, i〉 +
2Re(bha) = −2(Re(s + q) + tan α〈s + q, i〉)bb + s + q + 2Re(bha) (one uses
that aa − bb − 1 = aa − bb − (aa + bb) = −2bb). Also, one obtains that
h′ = 2(Re(s + q) + tanα〈s + q, i〉)ca + dha + ch b.

Again, for later use in Sect. 4, we rewrite the result by a real 8 × 8-matrix
using the 4 × 4-blocks defined above and the matrices

S =

⎛

⎜
⎜
⎝

1
0

0
0

⎞

⎟
⎟
⎠ and I =

⎛

⎜
⎜
⎝

1
1

1
1

⎞

⎟
⎟
⎠

(note that for a quaternion q one has Sq = Re q). The collineation correspond-
ing to A maps a dual point with quaternal coordinates

((
s + q

h

)
,

(
t1
t2

))
to

((
s′ + q

h′

)
, A

(
t1
t2

))
=

(
Â

(
s + q

h

)
, A

(
t1
t2

))

where Â =
(

I − bb(2S + ρT ) 2SLbRa

Lca(2S + ρT ) LdRa + LcRbK

)
;

(as above, we have put ρ = 2 tan α).

Finally, we study the action of the torus subgroup of the collineation group
of Pα described in Sect. 2.12 on the dual plane P∗

α. The collineation (x, y) �→
(xc, yc) for c ∈ R · 1+Ri, cc = 1 of Pα belonging to this torus group maps the
line [s, q, h; t] to

{(
xc,

(
s h
h −s

)
xc + xqc + tc

)
; x ∈ H

2

}

=
{(

x,

(
s h
h −s

)
xc−1c + xc−1qc + tc

)
; x ∈ H

2

}

=
{(

x,

(
s h
h −s

)
x + xc−1qc + tc

)
; x ∈ H

2

}
= [s, c−1qc, h; tc].

Thus, since c−1(s + q)c = s + c−1qc, the collineation in question maps a dual
point having quaternal coordinates

((
s + q

h

)
,

(
t1
t2

))
to

((
c−1(s + q)c

h

)
,

(
t1
t2

)
c

)
.

In quaternal coordinates, the result may be summarized as follows.

3.4 Theorem. Up to isomorphism, the non-classical sixteen-dimensional locally
compact planes of Lenz type V whose collineation groups contain a subgroup
Λ ∼= SU2H acting according Sect. 1.2 Case 2 are the planes P∗

α over the division
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algebras (H2,+, ∗) described in Sect. 3.2 for 0 < α < π/2, ρ = 2 tan α. For
different choices of α, one obtains non-isomorphic planes.

The collineation group of such a plane is the product of the group of trans-
lations, the group of shears with axis S, the group Z given in Sect. 2.11, the
group Λ ∼= SU2H consisting of the collineations

H
2 × H

2 → H
2 × H

2 :
((

x1

x2

)
,

(
y1
y2

))
�→

((
x1 − bb(2Re x1 + ρ〈x1, i〉) + 2Re(bx2a)

(2Re x1 + ρ〈x1, i〉)ca + dx2a + cx2b

)
,

(
ay1 + by2
cy1 + dy2

))

for
(

a b
c d

)
∈ SU2H,

and the 1-dimensional torus group consisting of the collineations

H
2 × H

2 → H
2 × H

2 :
((

x1

x2

)
,

(
y1
y2

))
�→

((
c−1x1c

x2

)
,

(
y1
y2

)
c

)

for c ∈ R · 1 + Ri, cc = 1.

The group of collineations is therefore connected and has dimension 37.

4. The planes of Case 3

These are obtained from the planes of Case 2 by spread transposition. It is
proved in [3] (see the proof of Proposition 3 there) that transposition of a plane
of Lenz-type V leads to a plane which is of Lenz type V again. The switch of
the rôles of the first and second coordinate axis W and S as regards the action
of Λ can be obtained from there, as well, but will also become clear in the
sequel.

4.1. Transposition

Using the division algebra (H2,+, ∗) of the dual plane P∗
α obtained in Sect. 3.2

and the matrix Md expressing its multiplication ∗, the lines through the origin
of the dual plane P∗

α (a plane of Case 2) can be described as
{
(x,Md(x));x ∈ H

2
}

for d ∈ H
2

together with the line {(0, y); y ∈ H
2}.

The transposed plane P∗t
α can be obtained just by transposition of the matrices

Md, see [10, Proposition 1.33]. Thus, its affine point set is H
2 × H

2, and its
lines through the origin are

{(x,M t
d(x));x ∈ H

2} for d ∈ H
2

together with the line {(0, y); y ∈ H
2}. To obtain the transpose of Md as

described in Sect. 3.2 by 4 × 4-block matrices, we need to know that Lt
a =
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La, Rt
a = Ra; this is easily established by a little computation with quaternions.

With these block matrices, one obtains

M t
d =

(
Ld1

(K + ρT )tLd2−KRd2
Rd1

)
,

where ρ = 2 tan α. The corresponding line through the origin of the transposed
plane P∗t

α is
{((

x1

x2

)
,

(
d1x1 + x2d2 + ρT t(d2x2)

−d2x1 + x2d1

))
; x1, x2 ∈ H

}
.

For d1 = 1, d2 = 0 this is the diagonal of H2 ×H
2. The line through the origin

and the point
((

1
0

)
,
(
u1
u2

))
is obtained for d1 = u1, d2 = −u2. Therefore the

multiplication of the coordinatizing division algebra is
(

u1

u2

)
�

(
x1

x2

)
=

(
u1x1 − x2u2 − ρT t(u2x2)

u2x1 + x2u1

)

=
(

u1x1 − x2u2 − ρRe(u2x2)i
u2x1 + x2u1

)

= ux − ρRe(u2x2)
(

i

0

)
,

where ux is the classical octonion product.

We note that the transposed plane is self-dual. Indeed, its dual plane is known
to be coordinatized by the converse division algebra, with multiplication

u  x = x � u = xu − ρRe(x2u2)
(

i

0

)
.

There are involutory antiautomorphisms of the octonion algebra which fix i,
leave {0} × H invariant, and commute with conjugation so that they preserve
real parts, and it is readily seen that such an antiautomorphism establishes an
isomorphism beween (H2,+, �) and (H2,+,). For instance,

H
2 → H

2 :
(

x1

x2

)
�→

(−jx1j
−jx2j

)

is such an antiautomorphism.

4.2. Collineations of the transposed plane

We compare collineations fixing the two coordinate axes in the plane P∗
α and

in the transposed plane P∗t
α . For R-linear transformations C,D of H

2, the
transformation

(x, y) �→ (Cx,Dy)

of the affine point set of P∗
α is a collineation if and only if it maps every line

through the origin onto such a line. Now the line {(x,Md(x));x ∈ H
2} is

mapped to {(Cx,DMd(x));x ∈ H
2} = {(x,DMdC

−1(x));x ∈ H
2}, so that we

have a collineation if for every d ∈ H
2 there is d′ ∈ H

2 such that DMdC
−1 =
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Md′ . But then, by transposition, (C−1)tM t
dD

t = M t
d′ , so that, by an analogous

argument, the transformation

(x, y) �→ ((D−1)tx, (C−1)ty)

is a collineation of the transposed plane P∗t
α . Moreover, if C is orthogonal, then

(C−1)t = C. We now apply this to the collineations of P∗
α studied in Sect. 3.3.

The torus subgroup of the collineation group described in Sects. 3.3 and 3.4
acts orthogonally, so its actions on the first and second coordinate axis of P∗

α

and of the transposed plane P∗t
α are interchanged.

The collineation in Λ ∼= SU2H corresponding to A =
(

a b
c d

)
∈ SU2H induces

the natural action of A on the second coordinate axis of P∗
α, and this action is

orthogonal. The corresponding collineation of the transposed plane P∗t
α there-

fore induces A in its natural action on the first coordinate axis.

On the second coordinate axis of P∗
α, this collineation induces the transforma-

tion Â described in Sect. 3.3. Now Â−1 = Â−1 corresponds to A−1 =
(

a c

b d

)

∈ SU2H. Thus, we obtain a collineation of the transposed plane P∗t
α inducing

the natural action of A on the first coordinate axis and acting on the second
coordinate axis by the matrix

(Â−1)t =
(

I − cc(2S + ρT )t (2S + ρT )tLab

2RaLcS RaLd + KRcLb

)
.

In the following theorem, this will be translated into quaternal coordinates.

4.3 Theorem. Up to isomorphism, the non-classical sixteen-dimensional locally
compact planes of Lenz type V whose collineation groups contain a subgroup
Λ ∼= SU2H acting according to Sect. 1.2 Case 3 are the planes P∗t

α over the
division algebra (H2,+, �) described in Sect. 4.1 for 0 < α < π/2, ρ = 2 tan α.
These planes are self-dual. For different choices of α, one obtains non-
isomorphic planes.

The collineation group of such a plane is the product of the group of trans-
lations, the group of shears with axis S, the group Z given in Sect. 2.11, the
group Λ ∼= SU2H consisting of the collineations

H
2 × H

2 → H
2 × H

2 :
((

x1

x2

)
,

(
y1
y2

))
�→

((
ax1 + bx2

cx1 + dx2

)
,

(
y1 − ccRe y1(2 + ρi) + Re(aby2)(2 + ρi)

2Re y1 · ca + dy2a + cy2b

))

for
(

a b
c d

)
∈ SU2H,

and the 1-dimensional torus group consisting of the collineations
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H
2 × H

2 → H
2 × H

2 :
((

x1

x2

)
,

(
y1
y2

))
�→

((
x1

x2

)
c,

(
c−1y1c

y2

))

for c ∈ R · 1 + Ri, cc = 1.

The group of collineations is therefore connected and has dimension 37.
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