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Kurzfassung

Sitzen gilt als ungesund und es gibt einen anhaltenden Trend zu immer längerem Sitzen, ohne dass
ein Ende dieser Entwicklung absehbar ist. Die Forschung legt nahe, dass wir häufige Sitzpausen
einlegen und nicht über längere Zeiträume in derselben Haltung sitzen sollten. Pausen können
bereits von unseren intelligenten Geräten vorgeschlagen werden, aber für ein differenzierteres
Feedback darüber, wie wir sitzen, ist spezielle Hard- und Software erforderlich, zwei Themen zu
denen bereits viel geforscht wurde. Diese Arbeit leistet folgende Beiträge zur aktuellen Forschung:
Erstens wurde eine umfassende Literaturrecherche durchgeführt. In dieser betrachten wir Hardware
zur Erkennung der Sitzhaltung und Feedback, dass den Nutzern helfen soll, sich bewusst zu machen,
wie sie sitzen und wie sie dies gesünder tun könnten. Darüber hinaus haben wir einen Prototyp
eines intelligenten Stuhls gebaut, der das Sitzverhalten des Benutzers mit Sensoren erfasst und
darauf basierend visuelles Feedback gibt.

Unsere Literaturrecherche zeigt, dass das Erkennen von Sitzverhalten und das Bereitstellen von
Feedback dazu auf unterschiedliche Weisen gelöst werden kann. Unser Ziel war es, einen Überblick
über das Forschungsgebiet zu geben, wobei wir einen besonderen Schwerpunkt auf die Drucksensor-
Hardware und auf visuelles Feedback gelegt haben. Basierend darauf schlagen wir vor, bei der
Auswahl der Techniken folgende Faktoren in Betracht zu ziehen: die Umgebung, die Bedenken
hinsichtlich der Privatsphäre; sowie die Kosten, die Portabilität, und Genauigkeit der Hardware.
Des Weiteren sollten die Fähigkeiten und die Vorlieben der Nutzer berücksichtigt werden. Wir
stellten auch fest, dass ein Bedarf an weiteren und umfassenderen Nutzerstudien besteht, welche
die Auswirkungen verschiedener Arten von visuellem Feedback untersuchen. Unser Prototyp
eines intelligenten Stuhls ist mit vier Drucksensoren in der Sitzfläche und drei Sensoren zur
Entfernungsmessung in der Rückenlehne ausgestattet. Wir halten unseren Prototyp für einen
ersten Ausgangspunkt für weitere Arbeiten, die unseren Ansatz erweitern wollen. Eine mögliche
Erweiterung wäre das Hinzufügen eines Algorithmus zur Klassifizierung der Sitzhaltung. Es
könnten auch andere Feedback-Varianten hinzugefügt und durch Nutzerstudien evaluiert werden,
um mehr Erkenntnisse über verschiedene Methoden und ihre Auswirkungen auf das Sitzverhalten
zu gewinnen. Darüber hinaus schlagen wir vor, unsere Literaturrecherche zu erweitern, um ein
breiteres Verständnis über das Erkennen von Sitzverhalten und das Bereitstellen von Feedback dazu
zu erhalten.
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Abstract

Sitting is considered unhealthy, and there is an ongoing trend towards more and longer time spent
seated, with no foreseeable end to this development. Research indicates that we should take frequent
breaks from sitting and not sit in the same posture for extended periods. Our smart gadgets can
already suggest breaks, but for more nuanced feedback about how we sit, special hardware and
software are needed, two topics on which much research has already been done. Our contribution
to this research is two-fold: First, we conducted a literature review of hardware used to recognize
sitting posture and of feedback to help the users be aware of how they sit and suggest ways to do so
healthier. Second, we built a smart chair prototype that uses various sensors to measure how the
user sits and then provides visual feedback about that.

Our literature review shows that recognizing sitting behavior and giving feedback about it can be
solved in different ways. Our aim was to give a broad overview of the research area while putting
additional focus on pressure-sensing hardware and visual feedback. Based on this, we propose to
consider the following factors when selecting techniques: the environment, cost, privacy concerns,
portability, and accuracy. Furthermore, the user’s capabilities and preferences should be taken into
account. We also found a need for additional and more comprehensive user studies that examine
the effects of different types of visual feedback. Our smart chair prototype is equipped with four
pressure sensors in the seat and three distance-measuring sensors in the backrest. We consider
our prototype to be an initial starting point for further work that aims to extend our approach.
One possible extension would be to add a sitting posture classification algorithm. Other feedback
variants could also be added and evaluated through user studies to gain more knowledge about
different methods and their effects on sitting behavior. Furthermore, we suggest future work to
expand upon our literature review to get a broader understanding of sitting posture recognition and
feedback.
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1 Introduction

A lot of time in our lives is spent sitting. We sit during a large part of our commutes to school,
university, or work, places where most of us continue to sit for a substantial part of the day. Back
at home, we also sit a lot while watching TV, movies, and series or browsing social media. How
long we are sitting on average is difficult to evaluate, but multiple studies in the literature found the
average to be around five hours per day [1–3], while it can go up to 12.5 hours per day for some work
sectors [4]. However, the general trend of increased sitting time is evident in long-term data, as can
be seen for the EU between 2002 and 2017 [5], where the number of people sitting for more than
4.5 hours a day expanded from 49.3% to 54.5%. This trend got amplified during the COVID-19
pandemic because of the increase in working from home [6] and the imposed restrictions on public
life, especially lockdowns [7, 8]. The high amount of time we spend sitting and the increase
thereof is concerning, as many studies have shown that prolonged sitting is detrimental to our
health. It can be the cause of exhaustion, musculoskeletal disorder symptoms, and even premature
mortality [9–14]. To mitigate these effects, one could break up sitting time with physical activity [9,
15–24] or by standing up [25–27]. However, there is no clear consensus in the literature on the
optimal frequency and intensity of such breaks [21]. Besides reducing the amount of sitting time,
one can also focus on improving the quality of sitting, namely the sitting posture. Although there
are general guidelines [28] and sitting postures commonly viewed as better than others [10, 29–31],
recent research suggests that the importance lies in the frequent change of sitting postures [21,
28].

Regularly changing our sitting posture or getting up can be difficult, though, especially if we are
engaged in our current task. The straightforward idea for a solution to this problem is the use of
feedback that reminds us of how long we have not been moving. Three things are required to provide
such reminders in any form: 1) a way to measure how someone is sitting, 2) software that analyses
the data, and 3) an approach to inform the user about the current state and suggest a change. A
large amount of research has been conducted on various technologies and techniques for detecting
and classifying sitting postures [32, 33]. Giving someone feedback about their posture has also
been studied extensively, exploring various modalities such as vibration, sound, visualizations, and
hardware that actively corrects the user’s posture. To the best of our knowledge, there do not exist
any comprehensive overviews of such feedback methods for sitting posture.

The goal of this work is to provide an overview of the research on hardware to detect sitting posture
and of different ways to give the user feedback about it, for which we conducted a literature covering
220 papers. Besides giving a broad overview, we will put more focus on pressure-sensing hardware
and visual feedback. Pressure sensors are the most commonly used hardware, while visual feedback
is also widely used and incorporates a wide range of techniques such as charts, sketches, physical
objects, and more. With the gained knowledge, we then aim to build a smart chair prototype that
records sitting posture data, gives visual feedback, and can be used to evaluate such feedback in the
future.
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1 Introduction

Through our informal but extensive literature review, we found that there is a large body of work about
various types of hardware used for sitting posture recognition, with many approaches combining
different sensor types. We concluded that the right hardware depends on cost, privacy concerns,
portability, and accuracy. Many publications report high accuracies for automatically classifying
postures, for reviews of this aspect refer to Kappattanavar et al. [32] and Tlili et al. [33], as it was
out of this work’s scope. Similarly, we found a large body of work exploring feedback about sitting
postures, suggesting advantages for all feedback modalities and various types of visual feedback.
We argue that multiple modalities and types should be provided and combined as their applicability
depends on the environment and the users’ abilities, circumstances, and preferences. Evaluations
of visual feedback show generally positive reception by the users and a positive influence on their
sitting behavior. Yet, further and more comprehensive user studies are needed to understand the
differences between various feedback modalities and types better. Even though our smart chair
prototype has some shortcomings, we believe it to be a good starting point for future research into
sitting posture recognition and sitting posture feedback.

Outline

This thesis is structured as follows:

Chapter 2 — Related Work:
This chapter first gives a brief overview of how much time we spend sitting and the negative
outcomes this has on our health. We then outline suggested strategies to mitigate those effects.

Chapter 3 - Literature Review about Sitting Posture Recognition and Feedback:
Here, we present our literature review that covers hardware used for sitting posture recognition
and different modalities used to give feedback about sitting postures. The first part includes a
closer look at pressure sensors, while we take a more detailed look at the visual modality in the
second part.

Chapter 4 — Smart Chair Prototype Design:
We give a detailed description of our smart chair prototype in this chapter. This includes the
hardware we used and the software we developed to collect, store, and visualize the data.

Chapter 5 — Discussion and Limitations:
In this chapter, we explain and discuss the limitations of our work and give possible directions for
future work. This encompasses the scope of the literature review and the hardware and software
of our smart chair prototype.

Chapter 6 — Conclusion:
In the final chapter, we summarize our work.
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2 Related Work

This chapter presents related publications that serve as a basis for our work. First, we show how
often and how long people sit, how this developed in recent years, and what effect the COVID-19
pandemic had on it. We then show that prolonged sitting has various far-reaching negative effects
on our health. This is followed up by a look at strategies that have been suggested to mitigate
the negative effects of sitting, including the reduction of sitting time, novel office spaces, and
computer-aided approaches.

2.1 Sitting and Its Effects on Health

We first have to take a look at the terminology around sitting as health and activity research usually
explore Sedentary Behavior (SB), a broader term including sitting, reclining, and lying postures
with low energy expenditure [34]. We primarily investigate sitting, but we still include studies
that investigate SB as findings like the importance of reducing time with low energy expenditure
are also applicable to sitting. Whether we are talking about SB or only about sitting, there is a
general development towards more sitting-focused lifestyles, but accessing how much time we
spend sitting each day is difficult. Gathering such data on a large scale depends on self-reporting
of human behavior, which is not as robust and reliable as controlled but size-limited studies.
Nevertheless, multiple studies collected and aggregated such data. Bauman et al. [1] analyzed
data from 20 countries and found that people sit five hours per day on average. However, the
sitting time is influenced by age and education and varies highly between countries. For Germany,
Wallmann-Sperlich et al. [2] found that the median sitting time is also five hours per day. Similarly,
Mclaughlin et al. [3] report a mean daily sitting time of 4.7 hours for 62 countries. However, Kazi
et al. [4] report median sitting times between six and 12.5 hours for workers in education, local
government, retail, telecoms, and the service industry in the UK. Long-term studies evaluating data
gathered in the EU between 2002 and 2017 revealed an increase in the number of days with more
than 4.5 hours spent sitting [5].

The COVID-19 pandemic where we had lockdowns and other restrictions on public life resulted in
a further increase of SB and a decrease in physical activity in recent years [8], as measured by, for
example, daily step counts [7]. McDowell et al. [6] found the reasons for this increase in SB to be
job loss and more time spent working in the home office. Wilms et al. [35] further found, that the
increased work in the home office resulted in an increase of SB by 16%. This might be due to the
absence of commuting to the workplace and the fact, that our homes are generally smaller than
our workplaces, resulting in shorter paths between our workstations and, for example, the fridge or
the toilet. Other restrictions due to the pandemic limited outdoor activities and gatherings of large
groups of people resulting in more leisure time being spent at home. We assume that this is another
reason for the observed increase in time spent sitting during the pandemic. Some of these effects,
such as more home office work, might also carry over to post-pandemic times, as we now know
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2 Related Work

that working from home is not only possible for many jobs but also preferred by some employees
and companies. That the relationship to home-based work has changed is shown by the study of
Rahman Fatmi et al. [36]. They surveyed 17 companies from 12 countries and found that these
companies got more flexible regarding working from outside the office. They further report that
“the option of working from home is converted from an exclusive perk that managers could choose
to give to the few, to a core privilege that all employees feel they are entitled to.” [36] How the
relationship between workers and their offices will develop remains to be seen, but as more people
are now aware of the home office alternative, at least some will likely prefer it over going to the
office in the future.

Independent of the pandemic’s influence on our sitting time, the numbers and their upward trend are
concerning, as multiple studies have shown the negative effects of extensive sitting. Dunstan et al.
[9] describe too much sitting as a “health hazard” that is linked to type-2 diabetes and premature
mortality. Further, a meta-analysis by Rezende et al. [11] covering 54 countries found that higher
sitting time increases all-cause mortality. Daneshmandi et al. [12] found that prolonged sitting
is a possible cause of exhaustion, decreased job satisfaction, hypertension, and musculoskeletal
disorder symptoms in office workers’ shoulders, lower back, thighs, and knees. Stamatakis et al.
[22] further found that it is associated with all-cause and cardiovascular disease mortality risk for
the least physically active adults. This shows, that how much we sit is an important factor for our
health and that we have to find ways to either decrease sitting time or lessen its negative effects,
topics we will look at in the next section.

2.2 Mitigation Strategies and Countermeasures

Finding methods and techniques to reduce the negative effects of sitting is a crucial matter as it would
be beneficial to a lot of people worldwide. The most basic approach is to simply reduce the amount
of time we spent sitting, possibly replacing it with physical activity. The benefits of this replacement
were shown by Ekelund et al. [37], who conducted a meta-analysis about the connection between
SB, physical activity, and negative health effects. They found that more physical activity and lower
SB are associated with a reduced risk of premature mortality. This is not surprising, though, as
physical activity is widely known to be healthy, which is also evident in the literature [38–40],
and thus, a widely promoted measure to decrease prolonged sitting is to break it up with physical
activity [9, 15–24] but also with standing up [25–27, 41]. This knowledge is also represented in our
smart devices, like smartphones and smartwatches, as they all have the possibility to count walked
steps and remind us to stand up frequently. However, Stamatakis et al. [22] found that it is unclear
which intensity physical activity in such breaks should have and suggested to “move more at any
intensity” until there is more evidence. Furthermore, Benatti and Ried-Larsen [17], as well as Black
et al. [26], suggest that those factors likely vary from person to person. Additionally, the report by
Biddle et al. [21] of an expert think-tank discussing SB shows that there is currently no consensus in
the literature on how frequent and long such breaks should be. They suggest, however, that taking a
movement break every 30 minutes is likely appropriate despite the lack of clear evidence, while
Wong et al. [20] advocate taking breaks every 20 minutes.

But frequently breaking up sitting time or replacing it is only possible to an extent, depending on the
person, their task, and their environment or workplace, as many of our societies have developed a
focus on sitting for a long time. Many workplaces, for example, are designed to have the operator sit
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2.2 Mitigation Strategies and Countermeasures

for extended periods of time and while it might be possible to take frequent breaks from sitting in a
regular office, truck drivers could risk meeting their deadlines if they take more than the mandatory
breaks, something they would need to do, as they can not stand up and move around while driving.
The best ways to support a reduction of our time spent sitting were explored by Lam et al. [42], who
conducted an umbrella study on how to most effectively reduce SB. They found that interventions
targeting the physical environment reduce SB most effectively, followed by interventions targeting
personal behavior, like consultations or apps. One intervention targeting the physical environment
they mention is the use of sit-stand desks. They are one example of active workstations which also
include less common walking desks or cycling workstations [43]. Sit-stand desks have, however,
the additional benefit of enabling the ergonomic adjustment of workstations and thus supporting
frequent posture shifts, and with some degree of success, also good postures [44].

Another intervention targeting the physical environment of office spaces is The End of Sitting by
Rietveld et al. [45], which combines breaks and regular sitting posture shifts. They present an
office space concept without traditional desks but with various geometric shapes that promote
unique working positions and frequent switching between them, which also introduces small breaks.
Multiple publications have since then studied the effects this approach has on the people that use it.
A study by Withagen and Caljouw [46] found that 83% of 18 participants worked in more than
one position. The participants also reported that The End of Sitting supported their well-being
better than a standard office. Caljouw et al. [47] further found that most positions in the installation
resulted in an energy expenditure that was higher than for sitting but not significantly different
from standing. They could not find a difference in productivity between sitting, standing, and the
positions available at The End of Sitting. Out of 24 participants, 19 experienced at least one position
to be more comfortable or equally comfortable as sitting. A further study by Caljouw et al. [48]
observed 14 participants over ten weeks while they spent one hour each week at The End of Sitting.
The number of position changes during each session was reduced over the weeks but did not reach
zero. However, self-reported measurements about task performance, mood, and comfort stayed
unchanged. A similar approach by Damen et al. [49] targeted meeting rooms by introducing three
furniture pieces for alternative working positions. They conducted a study with 16 participants and
reported that the meetings were more effective but that the participants experienced discomfort
with some of the introduced objects. Such novel workspaces seem to be a promising approach to
increase both well-being and mobility in the offices of the future. It is unlikely, though, that such
approaches can be a quick and broad solution to the acute problem due to their high space and cost
requirements, while other workplaces with high sitting times, such as vehicles or cashier desks,
cannot benefit from this invention.

The second highest rated interventions to reduce SB, according to Lam et al. [42], are those that target
personal behavior. For example, one can focus on improving the quality of sitting, namely the sitting
posture. There are guidelines, such as from the United States National Library of Medicine [28],
suggesting keeping the feet on the floor, not crossing the legs, relaxing the shoulders, keeping the
elbows close to the body, and supporting the back, thighs, and hips. Further, sitting upright, rather
than slumped or forward-leaning, is commonly viewed as a healthier sitting posture [10, 13, 20,
29–31]. However, recent research suggests that the importance lies in the frequent change of sitting
postures [10, 21], which is also reflected in the guideline mentioned above [28]. The idea is not
new, though, as earlier work by Vergara and Page [50] found that such changes in sitting posture are
a good indicator of comfort.
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2 Related Work

Besides spreading this knowledge about sitting postures and healthier sitting behavior to increase
awareness of it, continuous feedback about how we sit might be necessary to enable us to act on
this information. One approach to give someone feedback about their sitting posture or to suggest
breaks is directly from one person to another by manually assessing the sitting posture by someone
knowledgeable who can then provide instructions on what should be changed [51, 52]. For example,
Dib and Sturmey [51] had an instructor observe the sitting behavior of children playing the flute
and give direct feedback in the form of instructions and modeling, which improved their postures
significantly. Although very powerful, this approach is cost-intensive and not viable to be deployed
widely. While spreading information is essential and in-person training is very effective, these
concepts are not countermeasures that can take immediate widespread effect. Further, consistently
acting on the knowledge about the negative effects sitting has, especially during day-to-day work,
might also be difficult.

Another possibility is the detection of one’s sitting posture with sensors and then giving feedback
that gives the user information about how they sit and suggests posture shifts or sitting breaks. Such
approaches can be applied in a wide range of work environments and could thus reach many of the
most affected people, such as office workers or truck drivers that have to sit for long periods each
day. Thus, notifying users about poor sitting posture or prolonged sitting through the use of, for
example, a smart chair could be an effective way to help many people lead healthier lives. For a
large potential user base, costs need to be kept low, while the system should not annoy the user with
too many interruptions of their daily work. For example, notifying users based on a short and fixed
interval would most likely annoy them and lead to the notifications being ignored or disabled. Thus
a more elaborate approach is needed that requires hardware to make informed decisions on when to
notify the user based on their sitting behavior. We take a closer look at sitting posture recognition
and feedback in the following literature review.
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3 Literature Review about Sitting Posture
Recognition and Feedback

This literature review consists of two parts. The first provides an overview of technologies used to
detect different sitting postures with a focus on pressure sensors. In the second part, we present
different modalities used for posture feedback, with a more in-depth exploration of visual approaches
which are the most prevalent. We started our search for related work by manually entering keywords
around the discussed topics, such as prevalence of sitting, sitting posture recognition, and sitting
posture feedback in various databases like Google Scholar1 and Connected Papers2. We extended
this search by looking at referenced publications and citations of the papers we found. We also
include works that studied postures that are related to or a part of sitting postures, for example, the
angle of the head or back and postures while sitting on the floor or while standing. In total, this
review covers 220 publications.

3.1 Sitting Posture Recognition

To remind someone to change their sitting posture and take breaks but not annoy them with too
many notifications, one has to know how and for how long someone is sitting. Manually scoring
sitting postures, as done by Sigurdsson and Austin [53], as well as Sigurdsson et al. [54], or giving
in-person training as Dib and Sturmey [51] did, is not feasible on a large scale because of the
required time and human resources. To make recognizing sitting postures and giving feedback
about them scalable, hardware and automation are required to detect and differentiate between
sitting postures. A large body of research exists in this area, of which the following gives a brief
overview, with a focus on pressure sensors in the second section.

3.1.1 Wearable, Optical, and Rarely Used Setups

One approach is to attach sensors to the user’s body or clothes, such as accelerometers [55–
69], gyroscopes [70–72], or a combination of both [73, 74], see Figure 3.1b for an example.
Others used Inertial Measurement Units (IMUs), which combine accelerometers, gyroscopes, and
magnetometers [75–87]. Further examples are optical-fiber sensors [88–90], strain sensors [91,
92], flex sensors [93, 94], capacitive proximity sensors [95], and an Electromyography (EMG)
setup [96]. Custom sensors that have been studied include a fabric that generates a charge upon
being stretched or compressed [97] and a custom angular displacement sensor [98]. Other methods

1https://scholar.google.com/
2https://www.connectedpapers.com/
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(a) Feng et al. [99] (b) Hong et al. [70]

Figure 3.1: Examples of wearable sensors for sitting posture recognition: RFID tags (a) and a
gyroscope (b).

requiring something to be attached to the user are Radio-Frequency Identification (RFID) tags [99,
100] (see Figure 3.1a for an example), a neckband emitting ultrasound to measure the distance to a
smartphone or computer [101], metallic markers detected by a chair-mounted inductive proximity
sensor [102], and electrodes placed on the user’s back, as well as the backrest, to determine the
contact area between them [103]. Although these sensors can give high-precision values of, for
example, the angle of the user’s back, the fact that they have to be worn may, in our opinion, come
with considerable drawbacks regarding their ease of use, acceptance, and deployability. One has to
consider weight, size, battery capacity, and how to attach the sensors to the user to make it the least
disturbing.

Besides wearable sensors, some publications used stationary optical setups. Several articles
used a Microsoft Kinect [104–120], while others opted for cameras with various approaches to
posture recognition such as face detection [121–124], silhouette extraction [125–127], the use of
OpenPose [128, 129], motion capturing [130], and deep learning [131]. While image processing
is powerful, it might raise concerns about privacy and confidentiality and has comparably high
computational demands. Different optical approaches without those drawbacks include Lidar [132]
and depth sensors [133, 134]. Sensors that have rarely been used for sitting posture recognition in the
literature include ultrasonic sensors [135], temperature sensors [136], not-worn accelerometers [137,
138], not-worn RFID tags [139], and HTC VIVE Pro trackers [123]. Some publications used
combinations of different sensor types, such as accelerometers with a camera [140], a worn tilt sensor
with additional ultrasonic sensors [141], and a mix of sensors for temperature and sound [136].

3.1.2 Pressure Sensors

The most commonly used hardware to detect sitting posture is pressure sensors. While we found
one instance where a pressure sensor is worn [142], they are generally attached to a chair. Some
publications used simple mechanical switches [143–147] and systems that record the shape of the
user’s buttocks [148, 149], while others used sensors that change their resistance or charge through
deformation due to effects called piezoresistiveness and piezoelectricity, respectively. We will focus

22



3.1 Sitting Posture Recognition

(a) Micro load cell by GALOCE3. (b) A sensor matrix stitched onto fabric for pants
by Skach et al. [142].

Figure 3.2: Examples of a Hard-PS load cell (a) and a Soft-PS textile sensor (b).

on the latter as they have been used widely in the literature to build posture-detecting smart chairs.
The terms used to describe them are, unfortunately, inconsistent. We, therefore, introduce two
categories to simplify this heterogeneous use of names and to group physically similar sensors.

We call the first category Hard-PS and include all sensors with a rigid and rather large body, such
as force transducers that can measure positive and negative force, but mainly load cells which are
typically used for scales. One example is shown in Figure 3.2a. These use piezo effects by attaching
flexible sensors to rigid metal parts, resulting in more force needed to deform them and thus allowing
larger weights to be measured. They are, however, uncomfortable when sitting directly on them and
are, therefore, usually placed under a plate if they are used for smart chairs. They have been used in
smart chairs solely [150–155] or in combination with other sensors, such as inclinometers [156] or
sensors for temperature, blood pressure, and pulse [157]. Another type of setup in this category
uses sensors that measure air pressure inside bladders on which the user sits [158–162].

The second category we define is Soft-PS and includes all sensors that we identified as thin and
flexible, such as flex-, textile-, or fabric pressure sensors and Force Sensitive Resistors (FSRs). See
Figure 3.2b for an example. They are very thin in contrast to sensors of the Hard-PS category and
can thus be placed anywhere without being noticed by the user. The sensors in this category are the
most commonly used sensors for smart chairs, with typical placement options being a chair’s seat or
backrest, where they can be placed on top, below, or on the inside of the cushioning. They can
also be integrated into a portable pad that does not bind the setup to a specific chair. Some papers
we found followed this approach and put such a pad on the backrest of a chair [163–167]. They
report promising accuracies for posture classification, while some also observe a limitation due
to the necessary contact between the user’s back and the backrest [164, 165]. A more common
placement for pressure sensors is the seat of a chair [168–199], for which high accuracies have also
been reported. However, most work we found placed them on the seat and the backrest to receive
more complete data about the pressure distribution [200–240]. In one case, sensors were placed

3https://www.galoce.com/products/micro-load-cell/GML670A_Half_Bridge_Micro_Load_Cell.html
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on the seat, backrest, and, additionally, the chair’s armrests [241]. Cheng et al. [242] followed a
different approach by placing pressure sensors below a chair’s legs. We see the most potential in the
placement on a chair’s seat, and while very detailed information can be gathered by adding sensors
on the backrest, this can only detect postures if the user is in contact with it. Thus, we believe that,
depending on the use case, other sensor types could also be used to gather more information about
the user’s upper-body posture.

As for the previous sensor types combining Soft-PS with other types of sensors has also been
studied. Li and Aissaoui [243] combined an FSR mat on the seat with a shape-sensing array below
it to reconstruct three-dimensional deformation. Some combined them with optical setups, such as
a Microsoft Kinect, such as Ishimatsu and Ueoka [244] who used FSRs under a seat cushion to
determine the user’s left-right balance and a Kinect to the side of the user to approximate the back
angle. Similarly, Murata and Shibuya [245] used FSRs with a low activation force of 50g together
with a Kinect to ensure an ergonomic posture. The Kinect measured if the user’s eyes were at the
correct height and the head at an appropriate distance from the monitor. The FSRs were used to
detect if the feet touched the ground and the lower and upper back touched the backrest of the chair.
One optical approach that did not use a Kinect was followed by Bagalkot et al. [246], who equipped
a motorcycle with FSRs and a marker-detecting camera to determine a rider’s weight distribution
and upper body posture.

Others combined FSRs with sensors to measure acceleration or displacement, such as Zemp et al.
[247], who put FSRs in the seat, backrest, and armrests with an IMU in the backrest, while Ma et al.
[248] placed both FSRs and an IMU in the seat of a chair. Benocci et al. [249] combined FSRs
with an accelerometer, magnetometer, altimeter, and temperature sensor to determine the weight
distribution, workload, stress, and the transition between sitting postures. In addition to FSRs on the
seat and backrest for sitting posture detection, Hu et al. [250] attached an accelerometer to a chair to
measure vibrations that might cause back pain. Another was followed by Ren et al. [251], who
added polyvinylidene fluoride film sensors to measure the user’s heart rate variability. Four sensor
types were combined by Hong et al. [252]. They attached a gyroscope and an accelerometer to
the user’s back to determine if the user leans forward, placed FSRs on the chair’s seat for presence
detection, and an infrared sensor on the computer monitor to measure the distance to the user’s
head.

Multiple publications used sensors to measure the distance between the user’s back and the backrest
to differentiate upper body postures such as leaning forward or sitting upright. For example, multiple
papers attached an infrared sensor to the backrest in addition to FSRs on the seat [253, 254] and
both the seat and backrest [255]. Others used ultrasonic sensors on the backrest with FSRs on a
chair’s seat to differentiate different sitting postures [256–258]. This approach is supported by the
analysis of Ordean et al. [259] and has also been applied to a wheelchair by Rosero-Montalvo et al.
[260]. Further, Li et al. [261] used multiple ultrasonic sensors at different heights on the backrest
while also deploying FSRs on a chair’s seat.

3.1.3 Evaluation

While many of the above-mentioned publications report considerably high accuracy, comparing
them is outside the scope of this work and, so we believe, will prove to be a difficult task nonetheless,
as many fundamental aspects of these systems are very heterogeneous. This is evident in the various

24



3.2 Sitting Posture Feedback

types and amounts of defined postures, as they range from the differentiation between good and
bad (e.g., [86]) to the definition of 30 individual postures [116]. A great variation can also be seen
in the means to classify sitting postures. They range from comparing sensor values to thresholds
(e.g., [257]) to various machine learning approaches (e.g., [192, 195]). For an extensive review of
sitting posture monitoring systems and different classification approaches, we would like to refer
the interested reader to the reviews by Tlili et al. [33] and Kappattanavar et al. [32].

3.1.4 Conclusion

Our overview demonstrates the large variety of approaches and sensors that have been studied in
the context of sitting posture recognition. This not only reflects the interest of governments and
scientists in the topic and its importance to public health but also that there is room for various
concepts to co-exist. We conclude that depending on requirements on cost, privacy, portability,
and accuracy, all the different hardware approaches are more or less applicable. Wearable sensors
offer great portability and are thus not bound to a specific setup or chair. But as they have to be
attached to the user’s body or clothes, one has to consider factors such as the sensors’ size, weight,
and the method of attachment, to not disturb the user. Optical setups can utilize the possibilities
of image processing, but these come with comparably high computational costs, while the use of
cameras might raise privacy concerns. For other approaches like the use of temperature sensors,
HTC VIVE Pro trackers, or combinations like tilt and ultrasonic sensors, more research is needed,
in our opinion, to gain knowledge about their usability and performance. Pressure sensors are the
most used technology in the literature, with flat and unobtrusive types, which we called Soft-PS,
being the most prevalent. Other types we referred to as Hard-PS include load cells and sensors
that measure the pressure inside air bladders. Sensors of the Soft-PS category, like FSRs can be
deployed on a chair’s seat, backrest, and armrests or in a separate pad that can be used with different
chairs. We see the greatest potential in combining pressure sensors in a chair’s seat with other
sensor types, such as ultrasonic distance sensors, to capture the user’s upper-body posture.

3.2 Sitting Posture Feedback

As the previous section shows, a large body of research has been conducted on various technologies
and techniques to detect and classify sitting postures. Giving users feedback about their posture has
also been studied extensively. Researchers explored hardware that actively adjusts itself to directly
or indirectly correct the user’s posture, electrical stimulation, as well as vibrotactile, aural, and
visual modalities. While all of these approaches have their advantages, visual feedback is the most
prevalent and varied approach in the publications we found. However, non-visual modalities could,
according to the multiple resource theory by Wickens [262], actually be beneficial for scenarios
where the main task of the user is highly visual, such as most office work. Furthermore, people with
decreased mobility might benefit more from systems that can actively change their sitting posture.

This review will cover all of these approaches to map the research on sitting posture feedback.
We will, however, focus more on visual feedback, especially regarding user studies, because of
the already mentioned prevalence and variety of this modality and the authors’ expertise with
visualizations.
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(a) Shen et al. [238] (b) Shin et al. [123] (c) Fujita et al. [191]

Figure 3.3: Examples of actively correcting the user’s sitting posture: inflatable bladders (a),
self-adjusting computer display (b), and self-adjusting chair and desk (c).

3.2.1 Active Correction, Aural, and Vibrotactile Feedback

Besides giving visual feedback about sitting posture, which we will discuss later, other modalities
than visuals have also been studied, such as aural (e.g., [85, 130]), vibrotactile (e.g., [74, 194]), and
feedback physically influencing the users’ sitting posture (e.g., [123, 238]). See Tables A.1 and A.2
in Appendix A for a complete list of publications that explored such approaches.

One example of feedback that actively corrects the user’s posture is that of Kiran et al. [85], who used
Electrical muscle stimulation (EMS) to cause involuntary muscle contraction. Another approach by
Ishimatsu and Ueoka [107] consists of a system that gives physical feedback by pushing wooden
beads attached to sticks up the user’s back. Both these publications include studies comparing their
feedback methods to visual feedback, which are explained in more detail in Section 3.2.2.5. A
further approach for active sitting posture correction is the use of bladders that can be inflated or
deflated to improve the user’s posture [147, 158, 159, 200, 238, 257], of which one example is
shown in Figure 3.3a. Other researchers built systems that adjust the user’s workstation to influence
their posture directly or indirectly. One approach is to move the computer monitor [123, 263] (see
Figure 3.3b for one example) or the content in a Virtual Reality (VR) environment [264] to get the
user to adjust their posture. Fujita et al. [191] followed a different approach and built a chair that
can change the angle of its seat, shown in Figure 3.3c. Wu et al. [115] used a Microsoft Kinect to
measure the user’s dimensions and calculate the optimal chair and desk height and optimal positions
for the keyboard, chair, and monitor. Using additional hardware that can actively change how
someone is sitting is, in our opinion, the most elaborate approach to giving feedback about sitting
posture. We assume that such methods have disadvantages due to cost and size when compared to
other methods, while we also see a great advantage of them because they can improve the user’s
posture without their attention. This might be crucial, for example, if the user needs to keep focused
on their current task, such as driving a vehicle.

Other non-visual feedback modalities are the use of sound and the use of vibration, namely aural and
vibrotactile, respectively. We assume the possibility of other people hearing the generated sound by
such systems to be a potential drawback. This is possible if aural feedback is given through speakers
or if the actuators generating vibrotactile feedback are mounted in a way that they also produce
audible sound, for example, to the wooden board of a chair. We assume that these sounds might
disturb other people, such as coworkers, or that the user could be uncomfortable if other people
know of their need for feedback about sitting. Regarding the publications we found, most aural
feedback was provided through simple sounds (e.g., [73, 86]), while others gave verbal instructions
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or warnings in person [51, 130, 265] or via recordings [65, 85, 184, 207]. Vibrotactile feedback
was given through a single actuator (e.g., [57, 92]) or with multiple actuators to be able to focus the
area where a deviation from a good posture was detected (e.g., [164, 165, 209, 255]).

3.2.2 Visual Feedback

Visual sitting posture feedback is the most prevalent approach in the publications we found with a
wide range of different types, such as ambient lights, text, sketches, charts, and more. Various studies
were able to show that such feedback can improve users’ sitting posture, while some compared
visual feedback to other modalities. This section gives an overview of previously suggested visual
feedback and their evaluations. We only include publications that provide enough details about
their visual feedback to allow comparison with other approaches.

We identified two main categories in previous work on visual feedback for sitting posture: time and
type. The time of delivery can either be in real-time, giving feedback on the current situation
or as a summary of how the user sat during a certain period. The different types we found were
text messages, sketch-like depictions, charts, images or videos, physical objects such
as ambient lights, and other types we summarized as such. We first take a look at the feedback
given as a summary, then at the use of physical objects, followed by a more in-depth look at
non-physical real-time feedback, as this is the most explored and versatile. See Tables 3.1 and 3.2
for an overview and Table 3.3 for statistics about the publications we found.

3.2.2.1 Summaries

One approach is to give the user feedback about their sitting posture in the form of a summary after
a certain amount of time. The most used method in the literature for this is the use of dashboards
with various types of charts. See Table 3.3 for more details about how often different types of
visual feedback were used for summaries.

Some used bar charts (e.g., [78, 135]), line charts (e.g., [60, 77, 147, 157]), area charts [147],
and pie charts (e.g., [95, 256]), while others used dial charts to show the time spent in different
postures [233] and the health-risk level of the user [106]. Some examples of these chart types can
be found in Figure 3.4. Furthermore, heatmaps were used to visualize the pressure distribution [147,
215], with two cases using LEDs on a sketched chair that were attached to the side of the chair [211,
213], as shown in Figure 3.5a. Bagalkot et al. [246] created a rounded star plot, which is shown
in Figure 3.4c, where each axis represents a characteristic of the sitting posture, such as leaning
left. They describe this as an “amoeba-like blob” with the goal of easy readability at a glance
while riding a motorcycle. Other types than charts were also used, namely text messages and
sketch-like depictions. An example of the prior is by El-Sayed et al. [156], who sent daily textual
reports as emails to the user’s doctor for review. Examples of the use of sketches are the stick
figures by Ribeiro et al. [160] which depict different sitting positions and how much sitting time the
user spent sitting in them, while Yu et al. [145] showed a sketch of a person sitting at a desk with
circles at the sensor positions. Those circles were colored green if the respective sensor value was
scored as being at risk during a certain time frame. Wang et al. [225] followed another approach
and combined sketches with charts by augmenting pie and bar charts with depictions of different
postures.
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(a) Cho et al. [256] (b) Anwary et al. [233] (c) Bagalkot et al. [246]

Figure 3.4: Examples of visual feedback summarizing information about the user’s sitting posture:
using a bar chart for time spent in different postures and pie charts for posture balance
(a), showing time spent in different postures in a dial chart (b), and visualizing multiple
sitting posture parameters as a rounded star plot (c).

3.2.2.2 Physical Objects

Further, visual feedback can also be provided through physical objects other than displays, ranging
from simple LEDs to complex objects that can deform according to the user’s posture. One such
technique is data physicalization, defined by Jansen et al. [266] as “a physical artifact whose
geometry or material properties encode data.” An early approach by Daian et al. [207] introduced
a physical agent on the desk, which turned its back to the user if an inappropriate posture was
detected and moved from side to side to suggest a break. Haller et al. [151] created a physical flower
that can be deformed to imitate the user’s posture or shake itself to motivate them to do a training
session. Later, Hong et al. [252] built upon this approach with a flower, shown in Figure 3.5c,
that can imitate the angle of the user’s back while changing the color of its stem from green to
yellow as an analogy of poor health. Blue LEDs inside the stem light up to represent the sitting
time. This way, the flower slowly becomes the same color as the flower’s pot, which is intended
to look like the flower becoming an inanimate object, a metaphor for the stationary user. LEDs
start blinking to warn the user of a too-short distance to the monitor, with additional sounds being
played if the distance gets even closer. Finally, purple LEDs shine to suggest a short stretching
session. Regarding such approaches’ hardware complexity and visibility to other people, they are
more closely connected to the modalities we presented as non-visual. Nevertheless, the examples
used for sitting posture feedback we found work visually and are thus included in this section.

Other approaches using physical objects we found use ambient light. Most of them attach LEDs
somewhere on the desk, which light up or blink to give feedback about improper posture [106, 135,
141, 257]. Some put LEDs on a sketched chair that was attached to the side of the chair and used
them to display the current pressure values, as shown in Figure 3.5a [211, 213, 220]. Lee et al.
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(a) van der Doelen et al. [211] (b) Soltani Nejad [267] (c) Hong et al. [252]

Figure 3.5: Examples of visual feedback using physical objects: attaching LEDs to a chair (a) or a
shirt (b) and creating a physical flower that mirrors the user’s posture (c).

[254] encased lights in an ambient display shaped like a cloud and moon and placed them next
to the computer display. The two elements glowed dimly if the user sat in a low-risk posture and
flashed red if in a high-risk posture. A different approach was developed by Ren et al. [251], who
put lights on the underside of a monitor stand. Based on the sitting time and the user’s heart rate,
the brightness and saturation of the lights were increased, respectively. They could also pulse to
guide a deep breathing exercise and suggest movement by lighting up partially. The physical flower
of Hong et al. [252] also uses ambient lights, as described above. Others integrated LEDs into the
clothes of the user. Özgül and Patlar Akbulut [74] attached an LED to a vest, while Nishida and
Tsukada [77] sewed LEDs into the sleeves of a sweater and Soltani Nejad [267] into the sleeves
and the front of a shirt, as shown in Figure 3.5b. Another approach was followed by Wölfel [112],
who projected feedback onto a wall in front of the user. They used an anthropomorphic flower that
imitates the user’s posture. Even though they clearly work visually, ambient lights and projections
are, in our opinion, more comparable to aural and vibrotactile feedback in terms of privacy, as their
light could easily be seen by other people around the user.

3.2.2.3 Non-physical and Real-Time

We now turn our focus to the most prevalent combination of real-time feedback that does not
use physical objects besides displays. The most used type of real-time visual feedback was
sketch-like depictions. See Table 3.3 for more details about how often different types of visual
feedback were used for real-time feedback.

Some approaches made use of images and videos to provide visual feedback. For example,
Taieb-Maimon et al. [52] showed the user a picture of their current sitting posture next to a previously
taken reference picture after a fixed time. Sigurdsson and Austin [53] and Sigurdsson et al. [54]
showed the user live video footage of themselves through which they had to score their posture.
Another approach was followed by Taylor et al. [105], who used a large screen to act as a mirror, as
shown in Figure 3.6a. The live video was then augmented by highlighting the parts of the user’s
body that deviated from good posture or, as a more general feedback, by displaying fog. Text
messages have also been used to give prompts, suggesting the user change their posture, take a

29



3 Literature Review about Sitting Posture Recognition and Feedback

(a) Taylor et al. [105] (b) Luna-Perejón et al. [193] (c) Kiran et al. [85]

Figure 3.6: Examples of real-time visual feedback: a smart mirror with body parts highlighted that
deviate from good posture (a), a sketched chair with a heatmap of the pressure (b), and
a desktop notification (c).

break, or exercise (e.g., [85, 135, 199, 217]). One example of this is shown in Figure 3.6c. More
specific suggestions on how to improve the current posture were also given (e.g., [78, 146]), as well
as encouraging messages for sitting with a good posture [104].

Multiple publications explored the use of charts to give real-time feedback, including straightfor-
ward approaches such as bars being colored green or red depending on muscle activation [96, 130]
or lines that are oriented according to the current angle of the user’s lower and upper back [76].
Others used progress bars showing sitting and break time [124], a line chart showing how much the
shoulders are bent [86], and dial charts displaying the asymmetries of the current posture [231].
Jaimes [125] displayed a red and green bar over which a black bar moved, representing the user’s
left-right balance. There is also an instance of a scatterplot being used, where they used scaled circles
representing the pressure values of the sensors [225]. Comparatively often used were heatmaps
of the current pressure values [174, 256], with Wang and Yu [215] creating a three-dimensional
heatmap in the form of the chair.

Many publications used sketch-like depictions to visualize their sitting posture feedback. Kim
et al. [268] displayed a turtle with a bent neck, referring to the "turtle-neck syndrome", which
is how sitting with a forward bent neck is referred to in South Korea. Others used sketches of
chairs with additional information, such as a color-changing background [229], pressure distribution
percentages [233], or at-risk positions [145]. Demmans et al. [269] describe a face icon that is,
depending on the posture, either green and smiling or red and crying, while Lee et al. [254] showed
either a human sitting upright or hunching. Sketches of different postures have also been used, such
as by Breen et al. [56], who showed the user their current posture and a red circle if it was deemed
bad. Zheng and Morrell [255] used sketches to show cues for how to improve the current posture
and sketches of a human back and legs with colored circles where posture errors were detected.
Further, Elsayed et al. [270] explored different three-dimensional models of the human body with
varying accuracy, namely a skeleton, a silhouette, and a 3D avatar. A virtual skeleton has also been
used by Baptista et al. [113], who showed the user their current posture, as well as a suggested
posture with arrows indicating the necessary movements to reach it. Using a digital flower to imitate
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(a) Khurana et al. [271] (b) Hong et al. [70]

Figure 3.7: Examples of real-time visual feedback: an anthropomorphized giraffe with information
and suggestions about the user’s sitting posture (a) and an anthropomorphized flower
enhanced through gamification (b).

a user’s posture was explored by Haller et al. [151] and Hong et al. [70]. Haller et al. [151] also
created a physical variant, as described in Section 3.2.2.2, while the anthropomorphized flower by
Hong et al. [70] is shown in Figure 3.7b and described in Section 3.2.2.4.

Charts with sketch-like depictions were also used in combination, such as a dial chart for
back and head angle, which is, upon reaching a threshold, colored red, and a bell appears to alert
the user [75]. Min et al. [176] combined status bars with a cartoon dog that has different states
depending on the users sitting posture, which is described in more detail in the following section.
Flutur et al. [95] used a sketched human sitting on a chair with circles corresponding to the sensors.
These circles’ colors change based on the sensors’ states, which were inactive, correct, moderate,
and incorrect. Multiple researchers combined a sketch of their chair with a heatmap displaying
pressure distribution [177, 193, 232], of which one example can be seen in Figure 3.6b. Charts
have also been combined with images and videos, and text messages, such as Ishimatsu and
Ueoka [107], Jaimes [125], and Ishimatsu and Ueoka [244], who took the approach of representing
the user’s posture by angled lines that are displayed over live webcam footage. Or like Davis and
Kotowski [272], who showed a progress bar of the user’s idle time and messages reminding them to
adjust their sit-stand desk or to stand up and move around.

Some publications show a combination of sketch-like depictions with text messages. One
example is the approach by Özgül and Patlar Akbulut [74], who showed cartoons about good
and bad postures together with descriptions. Another one by Khurana et al. [271] showed an
anthropomorphized giraffe whose neck angle and facial expression resemble the user’s posture
and posture quality. They, additionally, displayed general information about sitting posture and
suggestions on how the user can improve theirs. While multiple publications showed sketches of a
person on a chair together with some information [90, 93, 245], Murata and Shibuya [245] added
red circles around zones for which a bad posture was detected and provided additional information
on how to correct these. Nizam et al. [93] showed arrows suggesting posture changes together with
a text explanation. The sketched human of Tavares et al. [90] adopted different postures while a text
told the user that their stance was incorrect or suggested taking a break.
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Some publications combined more than two of the visual feedback types we defined, such as Ochoa
et al. [65], who used an image of a human spine and added colored text labels for parts of the spine
if the sensor at the corresponding position detected a bad posture. Further, Shen et al. [238] created
a heatmap of the pressure distribution, a bar chart of the sensors’ pressure values, a sketch of a
human representing the user’s current posture, and a text message that encourages the user to do
exercises or relax. Finally, Speir [217] drew colored circles at the sensor positions on an image of
their chair, using red for sensors that showed a deviation from the reference posture. An additional
text suggested that the user should change their posture.

3.2.2.4 Other Methods

Other methods of non-physical real-time feedback were studied by Duffy and Smeaton [104],
who dimmed the monitor’s brightness if the users sat in a bad posture, while oOthers flashed the
computer- [107] or smartphone- [60, 63] display to alert the user of a bad sitting posture. Another
approach by Shin et al. [61] introduces “Relational Norm Intervention”, which uses negative
reinforcement and the desire not to disturb others. They, therefore, introduce a second person
they call a “helper”. If the user sits in a bad posture and does not change their posture after
receiving a vibrotactile notification, the helper’s phone gets blocked. The helper can then send a
push notification to the user, optionally with a text message.

A different method that has been used in some cases to enhance the effects of sitting posture feedback
for the user is gamification. Blohm and Leimeister [273] described gamification as “enriching
products, services, and information systems with game-design elements in order to positively
influence motivation, productivity, and behavior of users”, which is being used in many areas such
as education [274] and retail [275]. Khurana et al. [271] used gamification in the form of badges
that can be earned, such as “exercise your neck for 3 minutes”, visible in Figure 3.7a. Murata and
Shibuya [245] used a posture score, i.e., the proportion of time spent in a good sitting posture in
the last hour, and a ranking comparing this score with that of others. Min et al. [176] show the
user a cartoon dog that is influenced by the user’s sitting behavior and has to be kept healthy. They
use status bars that visualize parameters of the user’s sitting posture, such as a bar for the dog’s
hunger, which decreases if the user leans to the right side too much. If these bars decrease to a
critical level, the dog either blinks, rotates its head, or pants, depending on the decreased bar. While
the user is performing countermeasures, the dog is animated accordingly. In the above example,
leaning left after leaning to the right side and decreasing the hunger bar starts a feeding animation
of the dog. Hong et al. [70] used gamification in the form of points that can be used to customize
an anthropomorphized flower, badges that can be earned, and levels. Some of these features can
be seen in Figure 3.7b. The system lets the user take care of the flower through proper sitting.
Additionally, suggestive missions unrelated to sitting, such as cleaning the room or drinking water,
were integrated. Finally, users can put fully grown flowers into a garden where they show statistics,
and the user can start a new flower.

3.2.2.5 User Studies

In this section, we give an overview of publications evaluating visual sitting posture feedback. We
want to outline findings in the area, but also the types and sample sizes of conducted studies. Our
goal is to provide a guide to possible future work by identifying aspects that need to be investigated
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Publication Year Time Type

RT SUM IV TM CH SL PO Other

Jaimes [125] 2005 × × ×
Demmans et al. [269] 2007 × ×
Daian et al. [207] 2007 × ×
Sigurdsson and Austin [53] 2008 × ×
Breen et al. [56] 2009 × ×
Mu et al. [121] 2010 × ×
van der Doelen et al. [211] 2011 × × ⊗
El-Sayed et al. [156] 2011 × × ⊗
Goossens et al. [213] 2012 × × ⊗
Haller et al. [151] 2011 × × ×
Sigurdsson et al. [54] 2011 × ×
Park and Yoo [96] 2012 × ×
Taieb-Maimon et al. [52] 2012 × ×
Duffy and Smeaton [104] 2013 × × ×
Moon and Oah [146] 2013 × ×
Taylor et al. [105] 2013 × ×
Wang and Yu [215] 2013 × × × ⊗
Xu et al. [174] 2013 × ×
Yu et al. [145] 2013 × × ⊗
Zheng and Morrell [255] 2013 × ×
Alattas and Elleithy [135] 2014 × × × # ×
Davis and Kotowski [272] 2014 × × ×
Ishimatsu and Ueoka [244] 2014 × × ×
Khurana et al. [271] 2014 × × × # × #
Paliyawan et al. [106] 2014 × × × # ×
van Almkerk et al. [147] 2015 × #
Hong et al. [70] 2015 × × ×
Hong et al. [252] 2015 × ×
Ishimatsu and Ueoka [107] 2015 × × × ×
Min et al. [176] 2015 × × ⊗ × ⊗
Ribeiro et al. [160] 2015 × #
Speir [217] 2015 × × × ×
Wang et al. [75] 2015 × × ×
Gaffney et al. [130] 2016 × ×
Kim et al. [268] 2016 × ×

Table 3.1: Overview of publications containing visual feedback for sitting postures. The time of
delivery is separated into real-time (RT) and summary (SUM). The visual types are
images or videos (IV), text messages (TM), charts (CH), sketch-like depictions
(SL), physical objects (PO), and other types, such as gamification. For the types, ×
denotes their use for real-time, # for summary, and ⊗ for both times of delivery. See
Table 3.3 for statistics about these publications.
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Publication Year Time Type

RT SUM IV TM CH SL PO Other

Liao [60] 2016 × × # ×
Murata and Shibuya [245] 2016 × × × # × #
Park et al. [177] 2016 × × ×
Shin et al. [61] 2016 × ×
Baptista et al. [113] 2017 × ×
Liao [63] 2017 × × # ×
Nishida and Tsukada [77] 2017 × × # ×
Petropoulos et al. [76] 2017 × × ⊗
Roossien et al. [220] 2017 × × ⊗
Wölfel [112] 2017 × ×
Ochoa et al. [65] 2018 × × ×
Soltani Nejad [267] 2018 × ×
Wang et al. [225] 2018 × × ⊗
Anwary et al. [231] 2019 × ×
Bagalkot et al. [246] 2019 × #
Bootsman et al. [78] 2019 × × × #
Cho et al. [256] 2019 × × ⊗
Flutur et al. [95] 2019 × × ⊗ ×
Prueksanusak et al. [229] 2019 × × # ×
Ren et al. [251] 2019 × ×
Wang and Reiterer [124] 2019 × × ×
Anwary et al. [233] 2020 × × # ×
Lee et al. [254] 2020 × × ×
Matuska et al. [232] 2020 × × ×
Nizam et al. [93] 2020 × × ×
Elsayed et al. [270] 2021 × ×
Kiran et al. [85] 2021 × ×
Kumar and Sridhar [157] 2021 × ×
Lee et al. [257] 2021 × ×
Luna-Perejón et al. [193] 2021 × × ×
Ramalingam et al. [141] 2021 × ×
Shen et al. [238] 2021 × × × ×
Tavares et al. [90] 2022 × × ×
Tlili et al. [86] 2022 × × ×
Lamberti et al. [199] 2022 × ×
Özgül and Patlar Akbulut [74] 2022 × × × ×

Table 3.2: (Cont.) Overview of publications containing visual feedback for sitting postures. The
time of delivery is separated into real-time (RT) and summary (SUM). The visual
types are images or videos (IV), text messages (TM), charts (CH), sketch-like
depictions (SL), physical objects (PO), and other types, such as gamification. For
the types, × denotes their use for real-time, # for summary, and ⊗ for both times of
delivery. See Table 3.3 for statistics about these publications.
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Type Number of times used for

Real-Time Summary

Images or Videos 9 0
Text Messages 20 1
Charts 22 18
Sketch-like Depictions 26 2
Physical Objects 16 3
Other 7 3

Table 3.3: The number of times different visual types were for sitting posture feedback by the
publications listed in Tables 3.1 and 3.2.

in more detail. We, therefore, order this section according to the number of participants and the
duration of the studies. We also excluded four publications due to a lack of quality in the description
of the study or the analysis of the results.

Less than 24 participants and a duration of less than one day Daian et al. [207] conducted a
user study over five to six hours with six participants about their combination of a physical agent
and recorded aural recommendations. Although there is no statistical analysis, the authors report
some findings based on video recordings and semi-structured interviews. The participants had
an overall positive perception of the chair and responded quickly to the feedback by changing
their sitting posture. Sigurdsson and Austin [53] gave eight participants information about sitting
posture and live video footage of themselves, based on which they had to rate their own sitting
posture during the day. While they found the intervention, which happened every 55 seconds, to
improve their posture, they also noted a mean decrease in productivity by 11%. Ishimatsu and
Ueoka [244] carried out a study with eight participants to test their sitting posture feedback. When
the participants’ posture deviated from a previously recorded reference posture, a pop-up window
appeared. In this window, a live video of the participant is shown with two lines overlaid, one
representing their current and one the reference posture. They compared their feedback with a
baseline condition where no feedback was given, both lasting 30 minutes. The participants showed
a significant decrease in instances of bad posture for the feedback condition.

Ishimatsu and Ueoka [107] invited 12 participants to a user study comparing visual feedback in the
form of flashing the screen to pushing a wooden bead on a stick up the participants’ backs. During
both conditions, which lasted 30 minutes each, a window in the corner of the screen showed a live
video of the participant with two lines that represented the current and the reference posture. They
report that the flashing of the screen was not noticed every time and that some participants reported
that they adjusted their posture involuntarily based on the physical feedback instead of the lines
displayed over their video. Haller et al. [151] conducted a study over 1.5 hours with 12 participants
to compare vibrotactile feedback with a physical flower imitating the user’s posture and a graphical
representation of the flower on the computer display. While the users performed one of three tasks
with different difficulties, the feedback prompted them to start a training session. This was repeated
every 30 seconds if they did not start it within 15 seconds. They found that the graphical feedback
resulted in a longer time needed to start the training and to resume the main task. The participants
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reported that the physical flower interrupted their workflow the least. Vibrotactile feedback got
rated as the most disturbing for continuous feedback and the physical flower as the least disturbing
for training reminders.

Park and Yoo [96] conducted a study with 14 participants to compare the effect of visualizing the
activation of different muscles on head and back angles as an indication of good posture. Values
of four different muscles were visualized, resulting in four conditions of which each lasted 15
minutes. They visualized values below or above a threshold with a bar being colored green or
red, respectively. The baseline without feedback resulted in significantly worse angles of the head
compared to all conditions with visualizations and for two out of three in the case of the back.
Wölfel [112] let 16 participants experience their system that projected an orchid on the wall next
to the computer display. The orchid imitated the user’s posture by moving its leaves and bending
or leaning the stem. The flower’s “face” would turn “sad” if the user was sitting in a bad posture.
The participants used the system for three hours while researching something on Wikipedia, after
which they filled out a questionnaire. The responses indicated that the participants understood
and liked the visualization, while the responses were mixed about their desire to use the system
regularly. Bootsman et al. [78] tested their system of a sensor-equipped shirt targeted at nurses.
It gives either aural and vibrotactile feedback or additional smartphone notifications, which ask
the user to add information about their current activity with the goal of increasing awareness over
time. In an initial study, 15 nurses wore the shirt for one hour per feedback condition and found it
comfortable. However, no differences were found between feedback types in terms of perceived
credibility and motivation. They conducted a second study over 3.5 hours with 13 different female
nurses to gauge the system’s effectiveness in improving posture. They found improvements for both
feedback conditions, but could, however, not discern a superior method.

Less than 24 participants and a duration of more than one day Dib and Sturmey [51] studied
three children getting verbal instructions, modeling the correct posture, rehearsal, and feedback
while playing the flute. Video recordings of the training sessions were scored manually and showed
a great improvement in sitting posture, which did not decrease even after a one- to two-month
follow-up. Moon and Oah [146] had three participants from their university administrative staff sit
on a smart chair for four days and measure the time they spent in a reference posture. They first sat
on the chair without receiving feedback, after which they got briefed on safe sitting postures. In
the second session, they were shown text messages explaining which part of their body was not
in line with the reference posture. The third session gave text messages with information about
the risks and benefits of bad and good postures, respectively. They were delivered independent
of the posture with the same frequency as those of the second session. For the fourth and final
session, they received the same feedback as in session two. The authors report that the participants
spent the least amount of time in the safe sitting postures during baseline and the most during the
body-part-specific feedback.

Duffy and Smeaton [104] conducted a study with four participants over four days and compared
three different feedback methods with a baseline where no feedback was given. They either dimmed
the monitor’s brightness, showed a pop-up showing the time spent in different postures, or a pop-up
with encouraging messages. Both pup-up types were shown to the participants once per hour while
the screen was dimmed after a certain amount of time spent in a bad posture. They report that
dimming the screen resulted in the best results for time spent in good posture and for continuous
time spent in good sitting posture. Over the time of the study, all participants showed a decrease in
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continuous time spent in bad postures. Yu et al. [145] conducted a study over 15 days with four
office workers to compare real-time with summary feedback. The feedback had the form of a
pop-up window with a sketch of a human sitting at a desk with circles at the sensor positions, which
were colored green if the sensors indicated the violation of a good posture. The summary feedback
colored all circles with violations during a session and showed their amount. One condition received
only the summary, while the other participants additionally received real-time feedback. They
report an increase in the time spent in good postures for both conditions, with better results for the
combination of feedback methods. They could, however, not isolate the effect of the real-time
feedback due to their study design.

Murata and Shibuya [245] investigated the effect of their feedback on the users’ awareness of bad
posture and their motivation to maintain a good posture through a user study with six participants
that was conducted over four weeks. The feedback showed a sketched person on a chair with
information about how the user’s posture deviated from a good one. Two further conditions included
a leaderboard of multiple users’ posture scores, once visualized through progress bars only and
once with sketched humans for each user. Their results indicate that the base feedback and the
leaderboard with sketches decreased the time spent in bad posture significantly. A questionnaire
revealed that all feedback types made the participants more aware of poor posture and the parts of
the body that deviated from good posture, while they reported no significant difference regarding
interruption. Shin et al. [61] studied their “Relational Norm Intervention” approach with six teams
of two that used the system over two weeks. Each duo had a “helper” whose phones got blocked
and could then send a push notification to the other user if they sat in a bad posture and did not
react to a vibrotactile notification. The user only received the initial notification for the control
condition without incorporating the still-present helper. The researchers found their approach to be
more effective in correcting posture compared to the control intervention. They identified the main
reason to be the users being uncomfortable with disturbing the helpers, who were not bothered by it.
Wang and Reiterer [124] conducted a three-week-long field study with eight participants to compare
text pop-ups suggesting a break with an always-on progress bar showing the remaining time of the
current state, either work or break. The progress bar was more popular with the participants, while
the pop-ups were more effective in reducing sitting time.

At least 24 participants and a duration of less than one day Lee et al. [254] compared a
desktop notification showing a sketched human that either sits upright or hunched with an ambient
display shaped like a cloud and moon that flashes red if a high-risk posture is detected. A study
with 24 participants was conducted comparing the two types of feedback to a baseline without
notifications. Each participant had to solve arithmetic problems for 20 minutes for each condition.
Their results show a significant decrease in high-risk postures for both types of feedback compared
to the baseline while also increasing the number of typed answers. The participants found the
ambient display to be more visible and understandable than the desktop notification. The users had
a more positive attitude toward the ambient display and expected a better performance, while no
difference in expected effort and social influence could be found. Speir [217] compared two visual
feedback methods with different amounts of information through a user study with 34 participants
that lasted for 75 minutes. The feedback either only prompted the participant to adjust their posture
through text or additionally provided an image of their chair with red circles indicating deviation
from good posture. The authors report participants preferred more detailed feedback, while they
could not find a significant difference between the conditions.

37



3 Literature Review about Sitting Posture Recognition and Feedback

Kiran et al. [85] compared text messages and aural feedback to automatic and involuntary correction
of slumped sitting posture through Electrical Muscle Stimulation (EMS) applied through electrodes
attached to the user’s upper back. A user study with 36 participants was conducted over 75 minutes.
The authors report that the time to correct the sitting posture was significantly lower for EMS
while also being more accurate, providing similar levels of comfortability and disruption. Zheng
and Morrell [255] compared visual and vibrotactile feedback in two studies. The visual feedback
showed cues to improve the posture and areas of the body where posture errors were detected. The
first study measured the adoption compliance of a reference sitting posture of 25 participants during
two 45-minute sessions for vibrotactile feedback and one 45-minute session for visual feedback.
The second study focused on cognitive load with 41 participants, measured during four five-minute
long sessions. Both studies showed no significant differences between the two types of feedback.

At least 24 participants and a duration of more than one day Davis and Kotowski [272]
studied 37 call center employees’ discomfort, postural variability, and productivity between four
conditions over four weeks. The workers either had a conventional workstation or a sit-stand desk,
either with or without reminder software. The software showed a progress bar of the participants’
idle time and a message telling them to switch between sitting and standing or that they should
get up and move around. The researchers found that both interventions and their combination
increased movement and decreased comfort at the end of the day while not impacting productivity.
Taieb-Maimon et al. [52] studied 50 university and university hospital employees. They compared
sitting posture development over six weeks between a baseline group with one that was provided
training and workstation adjustments and one that also received visual feedback. Sitting postures
were semi-automatically scored based on images. At regular intervals, the participants in the
feedback group were shown an image of themselves and one where they sat in a reference posture.
Their analysis shows improvements for both conditions in the beginning, with only the visual
feedback group maintaining this improvement until the end of the study. The authors, therefore,
suggest the need for repeated reminders.

3.2.3 Conclusion

We found that researchers explored various modalities for sitting posture feedback, including sounds,
vibration, visual feedback through displays, physical agents, or blinking lights, and hardware or
furniture that moves to directly or indirectly influence the user’s posture. We believe that all these
approaches have possible application areas and situations, while their applicability depends on
the environment and the users’ abilities, circumstances, and preferences. Physical agents could
be appealing to a younger user group, while sound might be beneficial for people who can wear
headphones but have limited desk and screen space. Visual feedback provided through displays can
be shown on various kinds of devices, from computers to smartphones, and can deliver a lot of
information. On the other hand, vibrotactile and aural feedback might be beneficial if users tend to
miss visual feedback due to other visual stimuli overburdening them, as suggested by the multiple
resource theory by Wickens [262]. The presence of other people that might get disturbed by sounds
or flashing lights can limit the possibilities, as can hearing impairment or privacy concerns of the
user. While more expensive solutions, such as self-adjusting computer displays, might be financially
unfeasible in many cases, people with decreased mobility could benefit from active systems such as
self-inflating bladders (e.g. [238]). To develop a successful system, one should factor in all this
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information to provide a system that fits the targeted user group. We think that giving users the
ability to choose and combine multiple modalities according to their preferences is necessary to
create a satisfying and motivating experience.

Focusing more on visual feedback, we identified two times of delivery and five different types.
Most works focused on giving the users feedback about their sitting postures in real-time, while
some provided summaries after different periods. The types we identified are text messages,
sketch-like depictions, charts, images or videos, physical objects, and other methods like
gamification, as shown in Tables 3.1 and 3.2. For summaries, charts are the most prevalent type
by far, with no papers using images or videos and only a few for each of the other types. Real-time
feedback we found was in most cases of the sketch-like depictions type, with images or videos
and other types being the least used ones. The exact statistics can be found in Table 3.3. As for
the different feedback modalities, we believe that all types of visual feedback have the potential
to be useful and effective depending on the specific use case and the users’ preferences. Many
publications combined different types, such as bar charts with a cartoon dog [176]. We think such
approaches are the most promising, as they can combine the benefits of multiple types, such as
visual appeal and information density. While gamification elements are typically presented visually
through scores, badges, or leaderboards, we see potential independent of the modalities of other
provided feedback and think it and other additional methods should be considered.

Looking at user studies conducted to evaluate visual sitting posture feedback, we found that out
of 23 studies, seven included at least 24 participants, and nine were conducted over an extended
period, i.e., more than one day. Only two had at least 24 participants and a run-time of more
than one day. Most studies report positive results for various implementations of visual feedback,
showing the general viability of such approaches. However, some studies revealed disadvantages
or showed differences between feedback modalities or visualization types. One study found a
decrease in productivity through the use of visual feedback [53] while flashing the computer display
went unnoticed by the participants of another study [107]. Two studies compared visual feedback
presented on a computer display with the use of physical objects, one finding the physical object to
be less interrupting and disturbing [151]. The participants of the other study preferred the physical
object and found it more visible and understandable while also expecting a better performance while
using it Lee et al. [254]. Two studies comparing visual to vibrotactile feedback were not able to
show significant differences in adoption compliance or cognitive load [255]. Two studies compared
feedback with varying details, one reporting better results by providing more details [146], while
the other could not find a significant improvement in the participants sitting posture even though
they preferred more details [217].

3.3 Summary and Findings

Our literature review shows a large variety of approaches to sitting posture recognition and sitting
posture feedback. Although pressure sensors are the most used hardware, we find that combining
different types of sensors and other approaches like image processing are applicable as well. We
found that there are multiple factors one has to consider when choosing an approach, like cost,
privacy, portability, and accuracy. The second part of our review highlights that there is more
research needed to better understand the differences between visual feedback and other modalities,
as well as between various types of visual feedback. The overall positive influence of visual sitting
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posture feedback should be encouraging to further the research in this area, as it gives a clear
indication that such feedback can be effective. Even though this work focuses on visual feedback,
we think that future research should not only consider various types and styles of visual feedback but
also other modalities, such as sound or vibration. This way, users’ acceptance, which we presume to
influence the effectiveness of feedback as well, is not limited by personal preferences or limitations.
We further think that future studies should include a larger number of participants and run over
extended periods of time to learn more about the long-term effects of sitting posture feedback.
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This chapter details the hardware and software components we used to build our smart chair
prototype for sitting posture detection and visual feedback, which can be seen in Figure 4.1. We
first list, explain, and show the hardware components we used and describe their positioning on the
chair, as well as the build process. Then we describe all the software components necessary for
collecting, processing, storing, and visualizing the data. Finally, we present our three examples of
visual feedback.

4.1 Hardware

The base for our chair is an office chair by Interstuhl1, which we outfitted with four Force Sensitive
Resistors (FSRs), three Time of Flight (ToF) sensors, and an ESP32 Microcontroller. We chose
FSRs mainly due to their low profile, which makes them easy to install and unobtrusive, but also
due to the lack of privacy concerns and their prevalence in related work. This reasoning is in line
with Ordean et al. [259], who analyzed different methods for sitting postures with the Analytic
Hierarchy Process (AHP) method. They found that one should find the user’s center of mass through
FSRs and the upper-body tilt with ultrasonic sensors to optimize accuracy and avoid discomfort
in a privacy-preserving way. We also chose to 3D print plates to increase the surface area of the
FSRs, similar to Lamberti et al. [199], whose plates can be seen in Figure 4.2b. After initial tests,
we introduced multiple laser-based Time of Flight (ToF) sensors at the backrest of the chair for
better recognition of the user’s back posture. Our placement of both sensor types is similar to that
of Li et al. [261], as shown in Figure 4.2a. We opted against ultrasonic distance sensors due to their
comparatively larger build. Our goal is not to be able to differentiate a wide range of postures but,
in concordance with current research, to support a user to frequently break up sitting time with
postural shifts or low-intensity physical activity.

For the pressure sensors in the seat, we used the FSRs model S15-450N2 produced by SingleTact.
They have a circular sensing area with a diameter of 15mm and a weight-sensing range between
90g and 45kg. To be able to connect the FSRs to a microcontroller, we used the electronics board3

by SingleTact. An FSR attached to an electronics board can be seen in Figure 4.3b. We sawed off
the sockets of the electronic boards to ensure the flattest possible installation. We attached the FSRs
with double-sided tape to the wooden board below the cushion of the chair’s seat and added flat
3D-printed circular cones on top of them to increase their weight-detecting surface area. The cones
have a diameter of 15mm at the bottom to match the size of the FSRs and a top diameter of 10cm,
for which we were limited by the dimensions of the chair.

1https://www.interstuhl.com
2https://www.singletact.com/micro-force-sensor/standard-sensors/15mm-standard-sensor/15mm-450newton/
3https://www.singletact.com/micro-force-sensor/singletact-electronics/electronics-board/
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(a) (b)

Figure 4.1: Our smart chair prototype shown from the front, where the Time of Flight (ToF) sensors
can be seen (a), and from the side with the enclosure of the microcontroller and the
power bank visible in the lower right corner (b).

One problem with these cones arose when we re-assembled the chair, as moving horizontally on the
chair caused the cones, and thus the sensors, to be moved around. This resulted in one damaged
sensor, one getting unplugged from the electronics board, and two being removed from its cone. We
then tested the FSR model S15-45N4 with a weight-sensing range between 9g and 4.5kg without
the cones to eliminate this problem. Unfortunately, even with the lower upper bound, they were
not able to detect a person sitting on the chair without the cones, while they were too sensitive
for use with the cones. We thus reverted back to the S15-450N model with cones but also added
double-sided tape to the electronics boards and used electrical tape to further secure the FSRs and
the cables. Figure 4.4a shows the pressure sensors and cones attached to the chair, while the exact
measurements of the sensors’ positions can be seen in Figure A.1 in Appendix A.

Our first approach included only the FSRs on the seat’s surface, as we assumed to be able to infer
the user’s upper body posture from those values. As changes in posture, such as slouching, were
not detectable through the pressure values, we eventually decided to add additional sensors for the
user’s upper body posture. To measure the distance of the user’s back to the chair’s backrest, we
used the laser-based Time of Flight (ToF) sensors model VL53L4CD produced by Adafruit5 with a

4https://www.singletact.com/micro-force-sensor/standard-sensors/15mm-standard-sensor/15mm-45newton/
5https://www.adafruit.com/product/5396

42

https://www.singletact.com/micro-force-sensor/standard-sensors/15mm-standard-sensor/15mm-45newton/
https://www.adafruit.com/product/5396


4.2 Software

(a) Li et al. [261] (b) Lamberti et al. [199]

Figure 4.2: Examples of inspiration for our sensor placement (a) and 3D printed plates to increase
the area of the pressure sensors (b).

detectable range between 1 and 1300 millimeters, shown in Figure 4.3a. We removed some of the
chair’s foam and drilled holes through the wooden backrest to attach the sensors from behind to
ensure they do not cause discomfort to the user and also reduce the chance of someone accidentally
damaging them, as they are very sensitive. Figure 4.4b shows the backrest of the chair from behind
with the attached ToF sensors, while their exact positions viewed from the front can be seen in
Figure A.2 in Appendix A.

We connected all sensors to a NodeMCU ESP32 microcontroller6, as shown in Figure 4.5, and
powered it through a 5000mAh power bank. The ESP32s built-in Analog to Digital Converter
(ADC) converts the analog voltages of the FSRs, while we use its Inter-Integrated Circuit (I2C)
interface to read the output of the ToF sensors. The wiring was done on a stripboard that we screwed
into an aluminum box for electronic projects, out of which we guided the wires through holes. We
used Velcro strips to secure the box to the chair’s underside and to attach the power bank to the box.
To access the values collected by the ESP32, we wrote a python module that wirelessly connects to
it through Bluetooth and receives the data.

4.2 Software

In this section, all the software components we developed for our smart chair prototype are presented.
First, we describe the collection of sensor data on the microcontroller. Then, our python module
SmartChair and its functions, from receiving the data to presenting visual feedback, are described
in detail. All of our code with the assets we used and example data we recorded are provided in a
GitHub repository7.

6https://esphome.io/devices/nodemcu_esp32.html
7https://github.tik.uni-stuttgart.de/VISUSstud/MA-Krauter-SmartChair
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(a) A ToF sensor by Adafruit. (b) An FSR with electronics board by SingleTact.

Figure 4.3: The sensors we used for our prototype: one of three Time of Flight (ToF) sensors (a)
and one of four Force Sensitive Resistors (FSRs) attached to an electronics board (b).

4.2.1 Data Collection on the Microcontroller

We programmed our NodeMCU ESP32 microcontroller with the Arduino Programming Language8.
Our code is based on the examples for controlling the ToF sensors we used by STMicroelectronics9.
We extended this code to be able to connect to our three ToF sensors via the I2C interface. The main
loop of the program is executed every 500 milliseconds, a value we chose because testing showed
instability for more frequent refreshes. For each cycle, it outputs the values of all sensors through
a serial Bluetooth connection. The loop first calls a function for each of the ToF sensors, which
uses the API provided by STMicroelectronics to read the sensors’ data. This API also provides
meta-information about the received data through which we know whether the distance data is
valid or not. If reading the data fails or it is marked as invalid, we return a distance value of −1,
otherwise, we return the received distance value in millimeters. For the FSRs, we read the digital
values provided by the built-in ADC and convert them to voltages.

4.2.2 Python Module for Data Handling and Feedback

We created a python module that can either receive live data from our smart chair or use previously
recorded data from a file to then provide three types of visual feedback. The module comes with a
configuration file in which one has to enter the designated communication (COM) port, as well as
the mapping between the pins of the ESP32 and the sensors’ positions. It accepts Command Line

8https://www.arduino.cc/reference/en/
9https://github.com/stm32duino/VL53L4CD
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(a) (b) (c)

Figure 4.4: Images of the hardware components attached to the chair: The Force Sensitive Resistors
(FSRs) on the chair’s seat with two of the four 3D-printed circular cones that increase
their weight-detecting surface area (a). The laser-based Time of Flight (ToF) sensors
screwed to the chair’s backrest from the back (b). And the ESP32 microcontroller in an
enclosure for protection and easy attachment with a connected power bank (c).

Interface (CLI) arguments to specify its behavior. Start the module with the argument -h or -help to
get a detailed description of how to use these arguments. A simple Graphical User Interface (GUI)
guides the user through the usage of the program.

4.2.2.1 Data Conversion and Storage

Our program can accept data from two different sources, live data from the smart chair or previously
recorded data from a file, both of which are being read with an interval of 500 milliseconds. The
source can be selected through a CLI argument, while the default source is live data. To use mock-up
data, one only has to supply a file upon which the program will replay its data in a loop. This
function can be used to continue development on other parts of the module such as the feedback,
even if the chair is not within reach of the computer. After connecting the ESP32 microcontroller to
a PC via Bluetooth and entering its COM port into the configuration file, the module takes care of
handling and processing the data sent through this wireless serial connection. First, we set all FSR
values below .5V to 0V and all above 2V to 2V, as this is our FSR’s output range of valid pressure
values. Then we calculate an average offset of the FSRs’ values to calibrate them to zero, for which
the user has to sit straight and balanced on the chair for 20 seconds. This is done due to the sensors’
values not being calibrated and varying notably between each other, but also to create a standardized
reading of the user’s straight sitting posture independent of the user’s weight or inherent imbalance.
To counter sporadic problems with the data, such as a ToF value reading −1 as described above, or
no values being received, we implemented a fail-save where we try to use the values of the previous
reading if such a case occurs. After applying the calibration to the FSR values, we convert them to
relative percentages, giving us a distribution of the pressure on the chair. We then store all that data
in one structure to be able to access it to create feedback and, upon pausing or closing the program,
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(a) (b)

Figure 4.5: The wiring between the sensors and the ESP32 microcontroller as a simplified circuit
diagram (a) and as an image (b) where the installation of the microcontroller into its
enclosure can be seen as well.

save it to a file. We include both the calibrated raw FSR values and those converted to percentages.
Additionally, a timestamp and the participant ID are also saved. The participant ID can be supplied
through a CLI argument, a feature aimed at conducting user studies.

4.2.2.2 Visual Feedback

We provide three visualizations of the sensors’ data, text, a notification if slouching is detected, and
a sketch-like visualization. The FSR values in percent and the ToF values in centimeters are always
displayed as text in the main window of the program, which can be minimized. One can choose
one of the other two visualizations through a CLI argument. The notification has the form of a red
circle that is shown on top of all other windows if the user slouches, i.e., the top ToF sensor reports
a distance above 20 centimeters.

Figure 4.6 shows screenshots of the third feedback we call SketchVis, which is also shown on
top of all other windows. The size of this feedback can be set before starting the program by
providing a width in pixels through a CLI argument. The top half shows a sketch of our chair from
the left side with a yellow stick figure representing the user sitting on the chair. The back of the
stick figure is drawn depending on the ToF sensors’ values, with the legs as a static continuation
of this line starting at the position determined by the bottom ToF sensor. The lower half of the
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(a) (b) (c) (d)

Figure 4.6: Screenshots of our SketchVis feedback with a sketch of our chair from the side and top.
A stick figure represents the user sitting on the chair, while colored circles represent
the pressure values. Four different sitting postures are represented: sitting straight and
even (a), hunched forward (b), leaned back (c), and not sitting on the chair (d).

Figure 4.7: A screenshot of our python program’s main window with the displayed sensor values.

visualization shows a top view of the chair with circles representing the FSRs. These circles are
colored depending on their value, with everything below 25% being colored green. Above that,
their percentage value gets mapped proportionally to the color red. If any of the ToF sensors report
a distance greater than 50 centimeters, only the backgrounds are drawn without the stick figure and
the circles to represent the absence of the user, as can be seen in Figure 4.6d.
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5 Discussion and Limitations

In this work, we presented a literature review of sitting posture recognition systems and of sitting
posture feedback. We further built a smart chair prototype based on this review. Our work has
multiple findings and limitations that we want to describe and discuss in this chapter. We first
discuss our literature review, followed by our smart chair prototype.

5.1 Literature Review

We found that many technologies to automatically detect someones sitting posture have been
explored, from sensors that have to be worn, and optical systems, to smart chairs with pressure
sensors. All of these approaches have advantages for different use cases and environments, however,
we also found that combining different sensor types is potentially the most promising approach.
There has also been a lot of research on how to present feedback to the user of such a system,
discussing vibration, sound, visuals, and hardware that actively adjusts itself to directly or indirectly
change the user’s posture. We investigated the use of the visual modality in more detail, finding
that a large variety of visual types have been used, such as text, charts, real-life images and videos,
sketches, physical objects, and other approaches such as gamification. In our opinion, one should
consider multiple modalities and multiple types of visual feedback while designing a sitting posture
feedback system to combine their advantages and cover most users’ preferences. We further looked
at publications evaluating visual feedback and found that the participants’ responses and the effect
on their sitting posture were generally positive, while we also saw the need for more user studies.

Our literature review has some limitations that we want to discuss. First, we only included English
sources, excluding a possibly large body of work published in other languages. It was additionally
conducted informally, meaning we did not follow any procedure such as PRISMA1. Even though
we started our search with multiple keywords in various databases and diligently looked at the
references and citations of all papers we included, we cannot rule out the possibility that we missed
publications that would be relevant to our work. We further limited the coverage of related work
by focusing more on pressure sensors and the visual modality on the recognition and feedback
side, respectively. However, we still believe that we provided a comprehensive overview of both
research areas, as we covered all approaches, albeit more briefly, while we focused on the most
prevalent ones. Reviewing posture classification systems was outside the scope of this work, which
leaves another potential gap in our literature review. We think, however, that a system with the
goal of improving sitting posture does not necessarily need accurate differentiation of postures, as
recent related work on the health impact of sitting suggests that changing one’s sitting posture and
breaking up sitting time is sufficient to decrease the detrimental effects of sitting. Thus, depending

1https://prisma-statement.org//
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on the use case of a posture detection system, a highly accurate classification might not be necessary.
Although our work does not provide an exhaustive overview of the entire field of research due to its
limitations, we hope that our brief inclusion of the other aspects gives a sense of the larger scope of
the issues and encourages further research that builds on our work. We thus think that we were
overall able to give a comprehensive overview nonetheless.

Future work should expand upon our literature review regarding sitting posture recognition hardware
and feedback as we focused on pressure sensors and the visual feedback modality. Further work
could also be done on the topic of posture differentiation and classification technologies, as this was
out of the scope of this work. We also believe that more user studies, especially with high numbers
of participants and long run times are needed. All of these aspects have to be explored further to get
a more comprehensive understanding of the whole research area around sitting posture recognition
and feedback.

5.2 Smart Chair Prototype

As we could not find a sensor-equipped smart chair that is easily attainable and allows access to the
raw sensor values, we built our own prototype. For this, we oriented ourselves on the most used
hardware in the literature and converted a standard office chair with pressure and distance sensors
to build a smart chair. We opted for thin Force Sensitive Resistors (FSRs) in the chair’s seat to
measure the user’s pressure distribution and for Time of Flight (ToF) sensors to measure the distance
between the user’s back and the backrest of the chair. We used an ESP32 microcontroller to read
the sensors’ values and send them wirelessly to a computer where a program receives, processes,
and stores the data. This program is also equipped with three basic ways of visualizing the data for
the user. The user can read the values displayed on the screen, get a visual notification in the form
of a red circle if they are sitting hunched, and see a sketch representation of the values. The latter
shows the chair from the side with a stick figure mimicking the users’ back posture and from above
with colored circles showing the pressure distribution.

Our smart chair prototype also has limitations, regarding both hardware and software, as limited
time and experience and long delivery times due to the COVID-19 pandemic resulted in reduced test
and design iterations. For one, the FSRs we chose to use might not be the most optimal regarding
their weight range, especially considering a broader range of people with different weights. We
tried to counter that limitation by introducing the calibration of our sensor readings for the current
user and converting the values to relative percentages. Of course, this does not increase the range or
accuracy of the sensors, so further testing and comparison with other sensors are required. Similarly,
the placement of the sensors is likely not optimal even though we oriented ourselves after related
approaches we found in the literature. One example is that the attachment of the FSRs to the chair
and the cones to the sensors are not optimal. Presumably, the most severe limitation of our work is
that rough handling could cause the sensors to detach from the electronics board, lose connection to
the cone, or get damaged. We tried to improve the attachment but, unfortunately, could not test
this extensively anymore. Other ways of attaching the sensors to the chair or a different design
to increase their range might be necessary. Another example is the placement of the ToF sensors
that do not measure the same regions of the users’ backs depending on their height. Thus the
measurements between participants are not necessarily comparable, and our SketchVis visualization
might not be accurate.
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We also observed inaccuracies in the received measurements from both types of sensors. Although
we have ideas about possible causes for this, we have not been able to test or eliminate them in time.
The FSRs values are relatively noisy, as can be seen in Figure 4.6a, where one sensor reports an
increased pressure even though the user did not move after the calibration. We believe there are
two possible solutions for this, one targeting the FSRs and the other the ESP32. First, one could
introduce tolerances or use calibrated sensors, such as those by SingleTact2. Second, the ESP32’s
built-in ADC, which has a limited resolution of 12 bits and was not calibrated, could be replaced
with a more accurate and calibrated dedicated ADC, which will likely help to improve the signal
quality. There are also some errors we could not find the cause of or fix. One of these is that the
sensors sometimes report implausible values, such as, for example, a distance being seemingly
stuck. There is also the rare instance of no values being reported by the microcontroller, which we
tried to handle by substituting them with the values stored from the previous reading. We believe
our prototype to be a valuable contribution despite its limitations, as we created a working smart
chair that can be used to record, store and visualize sitting posture data. In our opinion, it is a good
starting point for improving and enhancing both the hardware and the software in the future.

A possible direction for future work is the continuation and improvement of our smart chair prototype
through, for example, an evaluation of the accuracy and usability of the hardware and software.
Another option is to upgrade the sensors with ones that are calibrated or have a wider weight range.
Our solution for increasing the pressure sensors’ weight-detecting area can also be improved, as it is
not optimal in its current state. Regarding the software, tolerances could be introduced to decrease
noise in the readings, while sitting posture classification methods could be introduced. We also see
the development and evaluation of different feedback methods as a possible direction for future
work. We prepared our software for this with a modular structure that is easily expandable with
more types of feedback and automatic data storage.

2https://www.singletact.com/micro-force-sensors/calibrated-usb-sensors/
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6 Conclusion

We spent a lot of time sitting down — in school, the university, the office, during commutes, and
in our leisure time. This is an ongoing trend that has recently been amplified by the COVID-19
pandemic, the effect of which is likely to continue as working from home becomes more popular.
To avoid or counter the negative health effects of increasingly sedentary lifestyles, which are
far-reaching and evident in the literature, we should decrease our sitting time. As many parts of our
modern world are centered around sitting, this is only possible to an extent. Another countermeasure
that researchers suggest is to break up long periods of sitting with standing up or being physically
active. This is, unfortunately, not a universal solution either, as some occupations currently require
long spans of sitting, such as truck driving, and furthermore, some people lack mobility, due to their
disability. Therefore, it is important to consider how we sit, i.e., our sitting posture. We know today
that there is no singular optimal sitting posture, but rather that regularly changing how we sit leads
to more comfort and fewer negative effects. Spreading all of the information above, for example,
through guidelines, is important, but not sufficient. Notifying us about regular posture shifts and
breaks can help with that while also increasing awareness of the time we spend sitting. To make
this scalable to as many people as possible automatic systems for sitting posture recognition and
feedback are needed.

Our work presents a literature review on sitting posture recognition and feedback and a smart chair
prototype as two contributions to this field. The review gives an overview of various types of
hardware that have been used in research to detect sitting postures and of different modalities used
for sitting posture feedback, with a detailed look at the different visual types of feedback. Our smart
chair prototype combines pressure and distance sensors to detect one’s sitting posture and can give
three different types of visual feedback.

There is great potential in the research area of sitting posture recognition and feedback to lessen
the negative health effects of the increasing time we spend sitting, be it voluntary, presupposed by
certain occupations, or necessary due to decreased mobility. We hope that our contribution in the
form of a literature review and a smart chair prototype will stimulate and drive further research in
this area.
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A Appendix

Publication Year Postures/ Objective Feedback

AC AU VIB VIS

Azrin et al. [143] 1968 Slouching ×
O’brien and Azrin [144] 1970 Slouching ×
Ng et al. [200] 1995 Good / bad ×
Yoo et al. [102] 2006 Angles (head, shoulder, trunk) ×
Daian et al. [207] 2007 Good / bad × ×
Dib and Sturmey [51] 2007 4 binary conditions ×
Wong and Wong [73] 2008 Spine angles ×
Breen et al. [56] 2009 Head × × ×
Mu et al. [121] 2010 4 × ×
Zheng and Morrell [209] 2010 10 ×
Zheng and Morrell [210] 2010 4 ×
Johnson et al. [57] 2010 Slouching (not only sitting) ×
van der Doelen et al. [211] 2011 Good / bad × ×
Haller et al. [151] 2011 8 × ×
Sigurdsson et al. [54] 2011 Legs ×
Epstein et al. [265] 2012 Good / bad × ×
Goossens et al. [213] 2012 7 × ×
Zheng and Morrell [255] 2013 4 × ×
Alattas and Elleithy [135] 2014 Good / bad (slouching) × ×
Lee et al. [133] 2014 Head × ×
Martins et al. [158] 2014 5 ×
Paliyawan et al. [106] 2014 Sit / stand / how healthy × ×
Ribeiro et al. [58] 2014 Standing ×
van Almkerk et al. [147] 2015 3 conditions × ×
Hong et al. [252] 2015 Back, screen distance, changes × ×
Ishimatsu and Ueoka [107] 2015 Good / bad (torso-head line) × × ×
Pereira et al. [159] 2015 12 ×
Wang et al. [75] 2015 Back angle, standing × × ×
Gaffney et al. [130] 2016 Head × ×
Ishac and Suzuki [164] 2016 Good / bad (slouching) ×
Liao [60] 2016 Head × × ×
Shin et al. [61] 2016 Good / bad (back angle) × ×
Liao [63] 2017 Head × × ×
Petropoulos et al. [76] 2017 Back angle, duration × ×

Table A.1: Overview of publications containing non-visual sitting posture feedback showing the
use of active (AC), aural (AU), vibrotactile (VIB), and visual (VIS) modalities.



Publication Year Postures/ Objective Feedback

AC AU VIB VIS

Roossien et al. [220] 2017 8 × ×
Ishac and Suzuki [165] 2018 11 ×
Ochoa et al. [65] 2018 Good / bad (back) × ×
Shin et al. [263] 2018 Good / bad ×
Wu et al. [115] 2018 Good / bad ×
Barone et al. [92] 2019 Good / bad (slouching) ×
Bootsman et al. [78] 2019 Good / bad (back), duration × × ×
Bourahmoune and Amagasa [166] 2019 13 ×
Chin et al. [118] 2019 Good / bad ×
Kuo et al. [98] 2019 Upper body ×
Moshnyaga et al. [184] 2019 10 ×
Shin et al. [123] 2019 Good / bad ×
Soenandi et al. [185] 2019 Floor sitting (5) × ×
Anwary et al. [233] 2020 Good / bad (asymmetry), duration × × ×
Li et al. [261] 2020 Back and lateral bending ×
Matuska et al. [232] 2020 9 × ×
Nizam et al. [93] 2020 Good / bad (back) × ×
Petropoulos et al. [82] 2020 Good / bad ×
Shin et al. [264] 2020 Good / bad ×
Wu et al. [81] 2020 Sitting (3 rules), standing, lying ×
Fujita et al. [191] 2021 Good / bad ×
Kuo et al. [69] 2021 Back ×
Lee et al. [257] 2021 Good / bad, duration × × ×
Liu [235] 2021 6 ×
Niijima [101] 2021 Good / bad ×
Ramalingam et al. [141] 2021 Good / bad × ×
Ran et al. [194] 2021 7 ×
Shen et al. [238] 2021 4 × ×
Sun et al. [119] 2021 8 ×
Kiran et al. [85] 2021 Slouching × × ×
Kumar and Sridhar [157] 2021 Good / bad (uneven) × ×
Tlili et al. [86] 2022 Good / bad (back) × ×
Özgül and Patlar Akbulut [74] 2022 Good / bad /back) × × ×

Table A.2: (Cont.) Overview of publications containing non-visual sitting posture feedback showing
the use of active (AC), aural (AU), vibrotactile (VIB), and visual (VIS) modalities.



Figure A.1: Technical sketch showing our smart chair prototype’s seat from the front and above,
where the Force Sensitive Resistors (FSRs) are represented by green circles.



Figure A.2: Technical sketch showing our smart chair prototype’s backrest from the front where
the Time of Flight (ToF) sensors are represented by orange circles.
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