
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Automated data validation in
model-driven loT Applications

Christian Müller

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Holger Schwarz

Supervisor: Daniel Del Gaudio, M.Sc.

Commenced: September 2, 2022

Completed: March 2, 2023

Abstract

Building large IoT applications using a model-driven approach, has become an important methodol-
ogy for building such applications. A tool intended to help with this process is the IoT Application
Modelling tool developed at the University of Stuttgart. However, this tool is lacking validation
capabilities. To implement validation in a (semi) automated manner, this work proposes an approach
to assist the modeller with the task of selecting the best suited outlier detection method for a context
model. based on existing or accumulated data. To achieve this a semi-automated wizard, integrated
into the IoT Application Modelling Tool is proposed. Furthermore, concepts on how the resulting
outlier detection can be deployed on the IoT infrastructure are discussed. The provided value and the
usability of the tool are evaluated using a survey on a small set of researchers and IT professionals.
The result of this survey have shown, that the proposed approach does partially automate and
simplify the process of choosing an machine-learning based outlier detection method.

3

Kurzfassung

Die Entwicklung großer IoT-Anwendungen mit Hilfe eines modellgeführten Ansatzes ist zu einer
wichtigen Option für die Entwicklung solcher Anwendungen geworden. Ein Tool, das bei diesem
Prozess helfen soll, ist das an der Universität Stuttgart entwickelte IoT Application Modelling
Tool. Jedoch fehlt es diesem Tool an Validierungsmöglichkeiten, zum Erkennen von unerwarteten
Messwerten. Um die Validierung, sowie deren Konfiguration, möglichst stark zu Automatisieren,
wird in dieser Arbeit ein Ansatz vorgeschlagen, der den Modellierer bei der Auswahl der am besten
geeigneten Erkennungsmethode für unerwartete Messwerte, sogenannte Ausreißer, unterstützt.
Dafür wird ein halbautomatischer Assistent vorgeschlagen, welcher auf basis esistierender Daten
eine passende Erkennungsmethode vorschlägt. Darüber hinaus, werden Konzepte diskutiert, wie
die resultierende Validierung in der IoT-Infrastruktur eingesetzt werden kann. Der vorgestellte
Assistent für Vorschläge wird als Komponente des IoT Application Modelling Tools implementiert.
Der Nutzen und die Benutzerfreundlichkeit des Tools werden anhand einer Umfrage unter einer
kleinen Gruppe unter Forschern und IT-Fachleuten bewertet. Duch diese wurde festgestellt, dass
der vorgeschlagene Ansatz den Prozess der Auswahl einer auf maschinellem Lernen basierenden
Methode zur Ausreißererkennung teilweise automatisiert und vereinfacht.

4

Contents

List of Figures 7

1 Introduction 9

2 Fundamentals 11
2.1 Outlier . 11
2.2 Outlier Detection . 11

2.2.1 Machine-learning based outlier detection 12

3 Introduction to the Tool stack 13
3.1 MBP - Multi-purpose Binding and Provisioning Platform 13
3.2 ME - Messaging Engine . 14
3.3 IoT Application Modelling Tool . 14
3.4 ME Configurator . 14

4 Developing a concept for the integration of automated outlier detection selection 17
4.1 What kinds of data are expected? . 17
4.2 Why Machine Learning based outlier detection? 17
4.3 Finding an approach for recommendations . 18

4.3.1 Finding measurements to compare machine-learning based outlier detections 18
4.3.2 Visualizing the outlier detection method performance 21
4.3.3 How to compare machine-learning based outlier detection methods? . . . 24

4.4 Adding intermediate validation nodes to the modelling tool 25
4.4.1 Collecting data by deploying the model partially 26
4.4.2 Introducing the outlier detection wizard 27

4.5 Choosing and implementing outlier-detection methods 31
4.6 Investigating the implementation of validation capabilities in the tool stack . . . 32

4.6.1 Identifying modelling cases for validation 32
4.6.2 Investigating central vs. decental validation 33
4.6.3 Investigating fully decentralized validation on the operator device 33
4.6.4 Investigating centralized validation . 38
4.6.5 Investigating device selection by the modeller 39
4.6.6 What is the best option to implement validation 39

4.7 Investigating the implementation of the Validation Engine 40
4.8 Investigating changes in the workflow to deploy a model 40

5 Implementation of the suggestion wizard 43
5.1 The tool stack on the technical level . 43

5.1.1 MBP - Multi-purpose Binding and Provisioning Platform 43
5.1.2 IoT Application Modelling Tool . 44

5

5.2 Adding validators to the modelling tool . 44
5.3 Implementing the Backend . 47

5.3.1 Defining the Data Model . 48
5.3.2 Outlining the API . 49
5.3.3 Handling the execution of jobs . 52
5.3.4 Handling python subprocesses . 53
5.3.5 Handling job cancellation . 60
5.3.6 Handling illegal application states and outdated datasets 61
5.3.7 Making the Backend portable . 62

5.4 Frontend Implementation . 64
5.4.1 Adding instantiatable nodes . 64
5.4.2 Implementation of the wizard . 65

5.5 Generating test data . 72

6 Evaluation of the wizard 75
6.1 Drafting the evaluation . 75

6.1.1 How should the evaluation be done? Using a survey or interviews? 76
6.1.2 Providing data for the evaluation . 76
6.1.3 Providing an instance of the wizard . 77

6.2 Designing the survey . 78
6.3 Investigating the results . 79
6.4 Conclusions from the Survey . 81

7 Related Work 83

8 Conclusion and Outlook 85
8.1 Outlook . 86

8.1.1 Improve the wizard based on the suggestions from the evaluation 86
8.1.2 Improving the suggestion mechanism for unlabelled data 87
8.1.3 Collecting data for making a suggestion 87
8.1.4 Implementing the instantiation and runtime of models with validators . . 87
8.1.5 Investigating a semi-supervised approach 87
8.1.6 Adding more outlier detection methods 88
8.1.7 Add an option to choose meta parameters 88
8.1.8 Supporting larger files . 88
8.1.9 Evaluating the usability and usefulness on a larger scale 88

Bibliography 89

A Appendix 95
A.1 Data Collection for temperature measurements on a smart plug 95
A.2 Figures . 96

6

List of Figures

3.1 Illustration of the IoT Lifecycle proposed by Del Gaudio et al. [DH20] 13

4.1 Illustration of the 2-dimensional visualization for both unlabelled and labelled data 22
4.2 Illustration of the 1-dimensional visualization for both unlabelled and labelled data 22
4.3 Conceptual illustration of a one dimensional time series outlier visualization . . . 23
4.4 An example for a derived model . 27
4.5 Graph illustrating the steps (states) and the transitions between them 28
4.6 Wireframe of the results step of the wizard. 30
4.7 The decomposition of a many-to-many validator (left) to two many-to-one validators

(right) . 34
4.8 Visual illustration of the the per device mappings when running one-to-many and

many-to-many validation on an actuator. The left image depicts the modelled many-
to-many modelling case and the right one displays how this model gets deployed,
i.e. every node represents one device . 37

4.9 A chain of one-to-one validators . 37
4.10 Potential topology with more complex chaining and its composition 37
4.11 A sample model to illustrate central validation and the responsibility of the Valida-

tion Engine component . 38

5.1 UML class diagram illustrating the data model of the IoT Application Modelling Tool 45
5.2 An expanded sensor node (left) in comparison to an expanded validator node (right) 46
5.3 UML class diagram illustrating the data model of the IoT Application Modelling

Tool after the validator nodes have been implemented 46
5.4 Simplified data model of the backend for the outlier detection wizard 50
5.5 An uninstantiated validator-node (left) in comparison to an instantiated validator

node (right) . 64
5.6 The first step of the wizard . 67
5.7 The data upload and review step of the wizard (step 2) 68
5.8 The window shown while a job is being processed (step 3) 69
5.9 The result view for a job in supervised mode (step 4) 70
5.10 The detailed results for one task, when running in supervised mode (step 4) . . . 71

6.1 Sample of the real world dataset provided in the evaluation 77

A.1 Wireframe of the IoT Application Modelling Tool, modelling a dual input validator
with one actuator . 96

A.2 Wireframe of the IoT Application Modelling Tool, modelling a dual input validator
with one actuator, with an expanded unconfigured validator 97

A.3 Wireframe of the first, introductory, step of the wizard 97
A.4 Wireframe of the Data Upload step in the wizard 98

7

List of Figures

A.5 Wireframe of the data review step in the wizard 98
A.6 Wireframe of the job running (progress display) step in the wizard 99
A.7 Wireframe of the configured validator . 99
A.8 The tutorial shown as part of the questionaire 100

8

1 Introduction

Over the past decades computing devices and the internet became more and more ubiquitous,
some examples for this are Smartphones and Smartwatches. However such devices, mostly used
for personal computing needs, like browsing the web or chatting with friends, represent just a
small portion in regards to how ubiquitous the internet has become. This development can also
be observed in may other areas, like the Smart home, where small computing devices are used to
interact with devices in the home. One component of the Smart home is home automation, where
special devices can be programmed to perform different actions based upon certain inputs, like time
or temperature measurements. For example, in such an application one may build an automated
system, that automatically opens and closes the window blinds, based on the time of day. Another
example could be a system that automatically turns on the ventilation, if the air quality in a room
gets bad, for example based on the percentage of carbon dioxide in the air. These home automation
use-cases show another huge contribution, to the ubiquitousness of the internet and computation
devices. Since, the devices described beforehand are most likely connected to the internet and
can be controlled remotely. Someone could, for example, open the window blinds while being
thousands of kilometres away from home.

The smart home scenarios can be generalized into other environments, like, industrial or agricultural
environments, such as production lines or greenhouses. In those environments devices that produce
measurements, commonly referred to as sensors, and devices that perform an action upon a request,
commonly referred to as actuators are connected together via the internet. This interconnection
between a lot of different small devices, such as sensors, machines and displays is generally referred
to as Internet of Things (IoT), the context of this work.

In a generalized IoT environment there are sensors, producing data, mostly measurements, and
actuators that perform actions based on the sensor data they receive. Since, building huge IoT
applications can become very confusing, to improve this, researchers at the Institute for Parallel and
Distributed Systems (IPVS) of the University of Stuttgart propose a model driven approach, where
the modeller models the data flow using a modelling program. This data-flow between sensors
and actuators in an IoT environment can be modelled using a modelling tool created by them. The
tool called IoT Application Modelling Tool enables the modeller to model the connections between
sensors and actuators using a browser-based modelling tool. However, the tool does not include a
mean to check whether or not sensor measurements are normal. Investigating, how such abnormal
measurements, also referred to as outliers, can be detected will be investigated in this work.

The causes of abnormal readings are manifold, but often abnormal readings occur due to two causes.
First, it may be due to an unexpected event, such as measurement of very high rainfall triggered by a
thunderstorm or, to look at the industrial context, the failure of a production line because a machine
is defective. Secondly, such abnormal measurements also occur when a sensor is defective, does
not provide measurements for some time due to connection problems, or even fails completely.

9

1 Introduction

The detection of such abnormal measurements, is referred to as outlier detection. This work has the
main goal, to enable the modeller, working with the IoT Application Modelling Tool to also model
validation components, that validate the data generated by sensors. To make sure, the actuators
only receive data, that is valid, i.e., it does not contain any abnormal measurements and invalid
measurement have been filtered out. To achieve this, this work investigates the integration of a
semi-automated mechanism to assist the modeller in the selection of an outlier detection method,
based on a set of existing measurements, which can be used to find valid and invalid measurements.
As well as, a mechanism to deploy the resulting model, extending the IoT Application Modelling
Tool.

At first some fundamentals, regarding some terms within the context will be discussed in Chapter 2.
After that The tool stack around the IoT Application Modelling Tool will be introduced in Chapter 3 a
concept for both making the suggestions and deploying the validations will be discussed in Chapter 4.
The developed concept for the suggestion of outlier detection methods has been implemented
as an extension of the IoT Application Modelling Tool. The problems we encountered and the
architectural decisions we had to make in regards to the implementation the suggestion mechanism
will be discussed in Chapter 5. The implemented solution has undergone an evaluation, of which
the results and conclusions will be discussed after the implementation chapter in Chapter 6. After
that the work is concluded by looking at other publications related to this one (Chapter 7) and, lastly,
the conclusion in Chapter 8.

10

2 Fundamentals

The goal of this work is to integrate the detection of abnormal measurements into the application
stack, described in the next section (??), before investigating how this can be handled some terms
in regards to abnormal measurements have to be introduced. This is done in this chapter.

2.1 Outlier

The term outlier is a statistic term, that is used to name values in a dataset, of which the distance to
other, non-outlier values is higher than normal. As briefly mentioned in the introduction, outliers
values can have several causes, such as, (1) measurement errors, caused by a failed or defective
sensor, (2) processing errors, caused by programs, that have been used to modify the data beforehand,
(3) human errors, caused by humans, misconfiguring devices or entering false input values, the
latter cause is not applicable to the context of this work, as data is most likely to be transmitted
using machine to machine communication, (4) or new behaviour, for example, abnormally high
temperatures during winter times, caused by global warming are an example. The latter kind of
outliers can categorized into a special subcategory: novelties, these are outliers that cannot be
considered errors, since they occur because of new, and previously unseen behaviour [Dev23b;
Eff20; NIS23].

Novelties and outliers can also be considered distinct. If they are considered to be distinct, novelties
usually represent an unknown cluster of values in a relatively small value range, while outliers, do
not necessarily cluster and there are hardly any clusters in small value ranges [Dev23b]. However,
for the context of this work, novelties and outliers are considered to be unexpected values and will
therefore just be referred to as outliers.

This generic definition, in principle, can also be applied to a data stream based environment, which
is encountered in the context of this work. Contrary to the assumption above, the dataset containing
all accumulated measurements is constantly growing. The reason for this is the sensors that regularly
provide sensor data.

A value, that cannot be classified as an outlier, in any way, is referred to as an inlier.

2.2 Outlier Detection

The outlier detection deals with the detection of outliers as described above, so that these values
can be dealt with accordingly. It thereby does not matter if the data comes from a dataset, i.e., a
fixed number of measurements, or a data stream, where the dataset constantly increases, as outlier
detection is done on a row by row, and therefore value by value, basis.

11

2 Fundamentals

A very simple option to detect outliers is a filter, that flags every value, that is not within a certain,
predefined threshold as an outlier. This approach comes with several problems that make it non-
suitable, as a generalized solution. The most obvious one, is that such a filter may only work for
one specific scenario, in one environment. Manual adjustment is therefore mandatory, every time
the scenario or environment changes.

2.2.1 Machine-learning based outlier detection

One common and generic solution to outlier detection, is the use of machine-learning, in order to
detect outliers within a dataset. Such a outlier detection method always needs some sample data in
order to adapt to the data it is expected to receive, during this adaptation, commonly referred to as
training, the algorithm understands the data received and builds an internal model that is later used
to perform predictions on any given dataset, whether or not a row is an outlier.

Such outlier detection methods can be grouped into three groups, that differentiate themselves by
the type of data they need

• Supervised outlier detection methods need fully labelled data in order to be trained, this
means that every row in the dataset used for training must also contain the expected prediction,
i.e., whether or not the given row is expected to be an outlier or not,

• Semi-supervised outlier detection methods also need labelled data, however the data may
only be partially labelled, meaning that only the non-outliers are labelled, and

• Unsupervised outlier detection methods that do not need labelled data in order to identify
outliers, however they still have to be trained in order to make predictions [Eff20].

12

3 Introduction to the Tool stack

Since, this work has the primary goal of expanding an existing tool stack, before taking a look at
how the tools can be improved, a brief introduction of the individual applications in the tool stack
will be given.

The tool stack is based around a lifecycle method for decentralized IoT environments, proposed
by Del Gaudio et al. [DH20] the lifecycle described in their work is based around five stages.
(1) Data-flow modelling, where the flow of data between operators, like sensors and actuators is
modelled, (2) Network Topology creation or modification, where the modeller selects or modifies
the devices on which the sensors and actuators are hosted, (3) Data-flow execution, representing
the main stage of the lifecycle, where the modelled data-flow is executed on the selected devices,
(4) Device redistribution, the stage that is entered, in case the devices involved in the workflow
change, and (5) Data-flow retirement, the final stage of the lifecycle that is entered in case the
data-flow should be retired, for example, if it should get deleted if it is no longer needed [DH20].
The flow between the lifecycle stages is illustrated in Figure 3.1.

The tools introduced in the following sections are all involved in parts of this lifecycle.

3.1 MBP - Multi-purpose Binding and Provisioning Platform

The MBP is an open source tool1 with the purpose to ease the deployment, monitoring and man-
agement of IoT-Devices. It provides a centralized option to orchestrate IoT Devices. It introduces
terminologies, common to the IoT environment into the space of the application. The MBP allows
one to create a Device object that represents a physical device, on such a device a program, referred
to as an Operator, can be deployed using the MBP. For that the application connects to the device
using protocols such as SSH. These operators can either act as a source of data, a sensor or a sink
of data, an actuator [FHS+20].

Figure 3.1: Illustration of the IoT Lifecycle proposed by Del Gaudio et al. [DH20]

1https://github.com/IPVS-AS/MBP

13

https://github.com/IPVS-AS/MBP

3 Introduction to the Tool stack

The MBP itself cannot be associated with one specific stage of the lifecycle, since it is used as a
repository and gateway throughout the whole lifecycle. As it is used to interact with the devices on
which the instantiated workflow is executed on, involving it in all lifecycle stages.

3.2 ME - Messaging Engine

The Messaging Engine, ME for short, is the core component of the third lifecycle stage, data-flow
execution. It is a lightweight communication component that enables the transmission of data
between different nodes in the underlying components of the previously modelled data-flow. It is
responsible for collecting and transmitting the sensor data according to the data-flow, in order to
transmit data between instances of the Messaging Engine, the Constrained Application Protocol
(CoAP) [SHB14], a UDP based protocol that is similar, but more lightweight than HTTP, is used.
From a technical perspective, the Messaging Engine is implemented in Python [DH20].

There are two implementations of the messaging engine, the original messaging engine proposed
by Del Gaudio et al. and the, more modern, reimplementation, also called Messaging Engine 2.

3.3 IoT Application Modelling Tool

The IoT Application Modelling Tool, IAMT for short, is a modelling program that can be used to
model the data-flow between operators sourced from the MBP. This modelling procedure is part of
the first lifecycle stage described above. The modelling of the data-flow is done using a web-based
user interface, where the modeller can visually create a directed graph, representing the intended
data-flow between sensors and actuators. The sensors and actuators that can be used for modelling
within the modelling tool are fetched from the MBP. This modelling represents the first lifecycle
stage.
The tool also acts as a user interface for the second lifecycle stage, because the tool guides the
modeller to the instantiation stage. Where the devices on which the operators, i.e., sensors and
actuators, should be deployed can be selected by the modeller. From there the model can be
instantiated, using the ME-Configuator.
The Modelling tool also supports monitoring of the system while it is in the execution lifecycle
stage, however, since this is not relevant in the context of this work discussing these features is
unnecessary [DABS22; DRH20].

3.4 ME Configurator

The responsibility of the ME Configurator, is to orchestrate the instantiation of the processing flow
that has been modelled using the IoT Application Modelling tool, by connecting to the Nodes that
have been selected in the modelling tool using the SSH protocols. To perform these actions, the tool
first receives a manifest, from the modelling tool. This manifest contains the modelled processing
flow, the devices selected for every node and other configuration parameters such as the location
and the credentials for the MBP, since the MBP itself is used for managing devices.

14

3.4 ME Configurator

Upon receiving the manifest, the configurator ensures that the operators selected for a node in
combination with an instance of the Messaging Engine, are deployed on every device involved in
the modelled processing flow [DRC20]. The tools responsibility within the lifecycle is the transition
between lifecycle stage two, network topology creation or modification, and stage three, data-flow
execution.

In simple terms, the ME Configurator translates the model created in the IoT Application Modelling
Tool into a real world environment.

15

4 Developing a concept for the integration of
automated outlier detection selection

As briefly discussed in the introduction, this work has several goals, including (1) the development
of a (semi) automated mechanism that will suggest an outlier detection method based on existing
data-measurements and the context modelled using the IoT Application Modelling Tool, (2) the pre-
selection of outlier detection methods that will be suggested in the previously described mechanism
and (3) the development of a concept to completely implement the whole flow, from modelling
the context, over the suggestion of outlier detection methods and the deployment of the model
afterwards using the ME-Configurator and the Messaging Engine.

This chapter will describe some concepts that can be used for implementing later.

4.1 What kinds of data are expected?

The type of data the concept presented here generally relies on the measurements of one or more
sensors (measurement dimensions) at a certain timestamp. Over time, this results in a time series
of measurements. However ,timestamps are completely ignored for the analysis in most cases, of
course in some scenarios the usage of the time, or at least parts of it, for example the current hour,
e.g. 14:00, may be mandatory, but these scenarios are special modelling scenarios in which the
time can just be considered as another sensor input. The only important aspect is keeping the order
of the measurements.

For simplicity it is assumed, that all measurement values are numeric and can be stored as floating
point numbers.

4.2 Why Machine Learning based outlier detection?

Conventional outlier detection, such as the detection using predefined rules, can be used to detect
outliers. However, methodologies like these have one huge drawback: The rules are only applicable
to the current context. Reusing it is only possible in some cases, for example, the rules intended to
detect an outlier in outdoor temperature measurements is only applicable in specific geographical
area, e.g., temperatures of 45 ∘C can be considered outliers in Germany, since the highest measured
temperature as of early 2023 was 41.2 ∘C1 while this temperature may be normal during the summer
in other geographical areas. Like Death Valley, where this temperature is roughly the average

1https://www.wetterdienst.de/Klima/Wetterrekorde/Deutschland/Temperatur/Max/

17

https://www.wetterdienst.de/Klima/Wetterrekorde/Deutschland/Temperatur/Max/

4 Developing a concept for the integration of automated outlier detection selection

temperature during July and August2. This example shows, that such a rule based outlier detector
may work in some cases, but may also require rule adjustments in others, doing these rule adjustments
automatically is very complex, brings many difficulties and in the worst case is not even possible.

To resolve this problem, outlier detection methods based on machine learning exist. These methods
take existing sensor measurements, and use them to train a model, that can be used to find out what
is an outlier and what is not. Making the adaptation to a new environment relatively simple, the only
requirement is a reasonably large set of measurements and can then retrain for the new environment.
Greatly reducing the coupling between the context of the IoT application and the outlier detection
method.

According to Bourkerche et al. [BZA20], machine learning based outlier detection methods can be
used in a wide variety of applications and use-cases, including the detection of failures in a sensor,
the detection of failures in an industrial production environment. Those types of applications show
that this type of outlier detection is suitable for the IoT context, important for this work.

However, not every machine learning method performs equally well in every environment, many
different constraints, such as the entropy of the data and the available compute performance may
require the use of another outlier detection method, when adapting to a new environment. This is
exactly the point the approach that is presented in the following is trying to solve.

4.3 Finding an approach for recommendations

Machine learning based outlier detection mechanisms simplify the problem of building an appropri-
ate outlier detector for a specific model. However, since there are many such methods, it is necessary
to provide a means by which the best method for a particular model can be found. This section
deals with how these methods can be made comparable in order to make the decision easier for the
modeller or even to take it away altogether.

4.3.1 Finding measurements to compare machine-learning based outlier
detections

Choosing the best machine-learning based outlier detection method, for a specific environment is not
easy, especially when considering the huge variety of different methods, that have been developed
over the recent years. To give an impression on how many different machine-learning based outlier
detection methods exist: Han et al. [HHH+22a; HHH+22b] did a performance comparison on many
different outlier detection methods, in this publication alone 30 different outlier detections were
investigated.
Choosing the one that’s best for a specific environment, is therefore no simple task. One option could
be an educated guess by someone with a lot of experience in the field, to determine which of these
methods may suit the model best. Educated guesses are helpful but have some problems, including
the following. Such an educated guess is not 100 per cent objective, as personal preferences can
still be involved in the suggestion, even if only subliminally. In addition, it is difficult to measure

2https://www.nps.gov/deva/learn/nature/weather-and-climate.htm

18

https://www.nps.gov/deva/learn/nature/weather-and-climate.htm

4.3 Finding an approach for recommendations

Actual
Prediction True (Outlier) False (Inlier)

True (Outlier) True Outliers (𝑇𝑃) False Outliers (𝐹𝑃)
False (Inlier) False Inliers (𝐹𝑁) True Inliers (𝑇𝑁)

Table 4.1: Abstract confusion matrix of an outlier detection method.

whether such a guess is actually the best one for the given environment, as there is a lack of objective
metrics to measure the performance, in regards to how well-suited a given method is for the current
environment.

One of most important metrics, that can be measured when working with labelled data, is the
accuracy, i.e, the percentage of values that the method has predicted correctly. It is computed by
calculating the number of correct measurements over all measurements. It is calculated using this
formula: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |𝑀𝐶𝑜𝑟𝑟𝑒𝑐𝑡|

|𝑀𝑇𝑜𝑡𝑎𝑙|
where 𝑀 is the set of all measurements.

With the accuracy calculated, it is possible to determine the most accurate option, that is most
likely the best suited method for any given context. However, making a decision based on accuracy
is difficult, since this metric is not powerful enough. A high accuracy indicates that most of the
predictions made by the given method are correct. But, this metric cannot be used to determine,
whether an outlier detection method tends to classify correct measurements as outliers or outliers as
inliers. Depending on the scenario one of the two can be more severe than the other one, for example,
this could apply, to a production process in which measurements are made on a manufactured product.
If measurements deviate significantly from the norm and do not get filtered out by QA, in our case
the outlier detection method, this can cause great financial or brand damage. A false positive
measurement on the other hand, may only cause minimal damage, since the filtered out products
may be investigated by a person whom may find out that the product marked as an outlier is actually
an inlier and can be redirected to the next production step. Another option is that the product goes
into recycling, resulting in loss of revenue. Depending on the value of the product this may be
considered a more significant problem, then sending out a false negative, highly depending on the
case that gets modelled.

Metrics that can be used to measure the aforementioned behaviour can be calculated from the
number of false predictions, for both positives, sometimes also referred to as type I error and
negatives, sometimes called type II error. Since, the analysis tests for outliers a positive predictions
represents an outlier, where a negative prediction will represent an inlier. With these numbers a
table, like the one illustrated in Table 4.1, can be filled. From this table, the more powerful, metrics
can be calculated including the rates of false outliers (𝐹𝑃

𝐹𝑃+𝑇𝑁) and false inliers (𝐹𝑁
𝐹𝑁+𝑇𝑃). These

metrics help to perform a case by case rating, in modelling cases such as the previously explained
one [Kar22; Sur20]. From this confusion matrix further metrics can be derived, some examples are
discussed next.

With these values, it is also possible to compute further metrics, like the sensitivity (𝑇𝑃
𝐹𝑁+𝑇𝑃),

representing the rate of which a true outlier is detected as such, illustrating how likely the method is
to find an outlier, and to also mark it as a true one and the specificity (𝑇𝑁

𝑇𝑁+𝐹𝑃), represents the rate
of which the outlier detection will detect inliers as such [Gle23].

19

4 Developing a concept for the integration of automated outlier detection selection

In addition, collecting the number of true negatives and true positives makes it possible, to compute
and display the 𝐹1-score. Another important metric that can be used to determine, how suitable
an outlier detection method is for the specific model. This metric is calculated using this formula:
𝐹1 = 2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁 , the 𝐹1-Score is also referred to as Harmonic mean and it is an alternative
accuracy measurement. It is calculated by taking the average from both the sensitivity, sometimes
also referred to as recall, and the precision which is calculated using this formula 𝑇𝑃

𝐹𝑃+𝑇𝑃 . It
represents the ratio between true positive and false negative predictions [Bae22; Kor21; Woo22].

The accuracy can also be calculated based on the table illustrated in Table 4.1 with this formula:
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑃 .

The only main drawback is the need for labelled data, to compute the accuracy and the binary
classification metrics. It does not matter, whether the user only wants to compute the accuracy on
an unsupervised machine-learning based outlier detection method.

When performing an analysis for accuracy, or any derived metric from it, it is also important to
make sure the outlier detection method is executed on some data it has not seen during training, to
achieve this, the input dataset should be split into two smaller datasets, for example, in the ratio of
3 ∶ 1 so that 3

4 of the dataset are used for training and 1
4 is used for testing.

Another important metric, that can be used to compare the methods, is the time needed to perform a
prediction, which is important in an internet of things environment, since computing resources are
generally rather limited on IoT devices. While such performance comparisons are objective, they
are highly influenced by the hardware on which the performance is evaluated. For example, if an
outlier detection method uses machine-learning libraries such as TensorFlow3. It must be ensured
that the accelerations for the graphics card or the machine-learning coprocessor, like graphics cards
supporting Nvidia CUDA4 or computers with support for Apple Metal5, is either (1) supported
by the machines that will perform the analysis in the production environment, for example, the
device performing the compute intensive tasks may have a GPU, or (2) that the program performing
the measurements does not use these accelerators. Metrics to compare the performance of outlier
detection methods may include: (1) the time needed to train the model, (2) the total time the process
of training and computing the accuracy afterwards has taken, (3) the time needed to perform a
prediction on a set of rows or (4) the time needed to perform a single prediction, i.e., one row.
The resulting time measurements indicate, if an outlier detection method is compute intensive,
since methods that take longer to make a prediction, block the processor for longer. However, this
assumption is only true if none of the outlier-detection methods use any of the previously mentioned
accelerators. The prediction time metric is also important, when the modelled system is time critical
and a prediction must be made within a very short time, as it can then be identified which of the
methods meet this criterion.

3https://www.tensorflow.org/
4https://www.tensorflow.org/guide/gpu
5https://developer.apple.com/metal/tensorflow-plugin/

20

https://www.tensorflow.org/
https://www.tensorflow.org/guide/gpu
https://developer.apple.com/metal/tensorflow-plugin/

4.3 Finding an approach for recommendations

4.3.2 Visualizing the outlier detection method performance

The main problem at this point are unlabelled datasets, as the metric of prediction time alone is not
very useful. If any outlier method is trained with a dataset, that is not labelled, the only way to find
out whether or not the method is well suited, in regards to its overall performance. Is the process
of manually going through the results, which is a very tedious, monotonous and time consuming
procedure. One option to improve this process is the visualization of the results. Because, this
will make the differentiation between well suited methods and bad ones much easier, in most cases.
However, the process cannot be completely automated, since a machine cannot visually compare
the produced visualization, to identify the best suited outlier detection method. Also, decisions
made based on visual impressions are not absolutely accurate. Because, it may be mandatory, to
simplify the original output of the methods, for example, by binning values together, potentially
resulting in some inaccuracies. This makes comparing two well suited approaches very hard, but it
makes it possible to identify methods that do not perform good on the given dataset, it also allows
the comparison between two different outlier detection methods. implementing such simplification
measures is important, in order to ensure the data is viewable and outliers can be identified in the
visualization.

However, visualization of the measurements also has some limitations, as it is only possible to
visualize up to three dimensions, due to physical constraints. But how could the outliers get
visualized? To get some ideas, looking at the problem from a mathematical perspective is helpful,
meaning how functions are visualized in mathematics. Since the prediction of an outlier detection
method can be considered a mathematical function, that maps 𝑛 real number inputs, for example, as
an 𝑛-tuple, where every value of the 𝑛 ones is a sensor measurement from a sensor, taken within a
time frame to a binary value, that declares the given tuple, i.e., this combination of measurements is
an outlier, in Equation (4.1) those functions are illustrated for one to three dimensions.

(4.1)
𝐼𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟1𝐷(𝑎) ∶𝑎 ∈ ℝ ⟼ {0, 1}

𝐼𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟2𝐷(𝑎, 𝑏) ∶(𝑎, 𝑏) ∈ ℝ2 ⟼ {0, 1}
𝐼𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟3𝐷(𝑎, 𝑏, 𝑐) ∶(𝑎, 𝑏, 𝑐) ∈ ℝ3 ⟼ {0, 1}

4.3.2.1 Visualization of two dimensional results

In mathematics, functions with two inputs, resulting in one output, i.e. 𝑓 ∶ (𝑥, 𝑦) ↦ 𝑧 can be
visualized using a three dimensional coordinate system. However, the value range of our output
value is not infinite, but limited to two values. Therefore, the number of mandatory dimensions can
be be reduced to two dimensions, because the third dimension (the mapped value), being finite, can be
displayed using different colours or different shapes, for measurement points. Figure 4.16illustrates
this kind of visualization, for an environment with two input dimensions. The illustrated visualization
of such a method can be grouped into four sub graphs, two illustrating the truth values, for both the
training and testing parts of the dataset, if the initial dataset was labelled, otherwise this will just
show all values within the dataset. The other two two plots show which values the method declares

21

4 Developing a concept for the integration of automated outlier detection selection

(a) Unlabelled (b) Labelled

Figure 4.1: Illustration of the 2-dimensional visualization for both unlabelled and labelled data

as inliers and outliers. The visualization shown in Figure 4.1 is created by a Python library called
pyOD7, that provides a huge set of different implementations of machine learning based outlier
detection methods [Zha23; ZNL19].

4.3.2.2 Visualization of one dimensional results

(a) Unlabelled (b) Labelled

Figure 4.2: Illustration of the 1-dimensional visualization for both unlabelled and labelled data

in the one dimensional space the visualization approach, used for two inputs produces an almost
understandable result, as there is only one coordinate dimension instead of two. To illustrate the
values of one dimension must therefore always be one value, for example, zero. The simplest option

7https://pyod.readthedocs.io/en/latest/index.html
7The ellipses in the two-dimensional examples (Figure 4.1) are Lissajous Curves [Wei22] as the data is generated by

two different sine waves for the first and the second sensor input, as described in Section 5.5.

22

https://pyod.readthedocs.io/en/latest/index.html

4.3 Finding an approach for recommendations

Figure 4.3: Conceptual illustration of a one dimensional time series outlier visualization

to visualize one-dimensional values, is to use a number line that runs from the minimum value of
all measured values to the maximum value of all measured values. This is basically identical to the
option of using the two dimensional visualization, for a one dimensional space. However, values
could be illustrated better, by increasing the height of the number line, making it easier to identify
outliers. On this number line, outlier and inlier are then displayed with different colours or dot
shapes. However, displaying data in this manner comes with some problems, for example, the spread
of data along the range between minimum and maximum is rather difficult as most inliers will, most
likely be grouped within one or multiple small ranges within the large range of the global minimum
and maximum of the dataset, to also contain the outliers. making this kind of vizalitzaion hard to
display, especially on relatively small sized display. Therefore, other options may be considered.

One addition to the number line is the histogram, in which the values can be binned into a smaller
number that is easier to render. For example, binning the data range into a 100 buckets. However
this reduces the accuracy of the image, which in turn could make decision-making harder. Another
problem with histograms is the fact that outliers may become very hard to see if the dataset
contains many rows, of whom the measurement values are in a small range, e.g. room temperature
measurements. However, this problem can be resolved by using a logarithmic scale. An example
for a histogram, with a linear scale, is illustrated in Figure 4.2.

Another option could be a time-series diagram, since we assume that the data provided are measure-
ments in the correct time-series order. Assuming the dataset is sorted the data could be printed as
a time-series diagram, in which outliers and inliers are printed using different dot-shapes and/or
colours, as illustrated in Figure 4.3. While this is not performing any binning, it may become
problematic with a large number of rows. Since more rows will unavoidably extent the width of
the image. This is a huge problem, since datasets for the purpose of the analysis should have a
reasonable size, to make sure, the normal range of measurement values is covered and that the dataset
contains some outliers. To achieve this we assume that at least 1000 rows, of sensor measurements,
are needed. To render each point in the dataset at least one pixel of width is needed, this number
probably is higher, to make the differentiation between inliers and outliers, by using different shapes
or colours, possible. However, even with the, unrealistic, assumption of one pixel of image width per
data row, a dataset with 1000 rows must be at least 1000 pixels wide. The size is no problem with
1000 rows, but it quickly becomes a problem with larger datasets such as 10,000 rows. Resulting
in an image width of at least 10,000 pixels in width. Rendering this image on a screen, without
scaling it down, therefore requires at least 10,000 pixels in width. Even on a 8K display, with a

23

4 Developing a concept for the integration of automated outlier detection selection

resolution of 7680�by�4320 pixels8 cannot be used to completely display the resulting visualization,
completely without reducing its size. Making the visualization impossible to render on almost any
display, without shrinking the image size, which in turn may make some detected outliers invisible
due to their small area used in the image.

The most suitable option for one dimensional visualization seems to be the histogram, since most of
its problems can be mitigated, without compromising the accuracy of the images too much. But
both the number line and the time series based visualization are suitable if one considers rendering
them dynamically for example by using a web based charting library, making it possible to zoom
within the diagram, in order to get a better view on important portions of the diagram.

4.3.2.3 Visualizing three dimensional inputs

For the visualization of contexts with three sensor inputs, an implementation similar to the two
dimensional approach in a three-dimensional environment, is theoretically possible. The individual
rows of the dataset are drawn in a three dimensional coordinate system and, as with the two-
dimensional approach, are highlighted in colour based on the prediction or their label.

From a theoretical standpoint this is possible, but in practice there are huge challenges. Especially
if the visualization should be saved in an image file, as it is is the case with both the two and
one dimensional visualization types. To properly visualize the dataset, interaction using a virtual
camera within the 3D environment, comparable to 3D modelling tools such as Blender9 or three
dimensional video games is necessary. To enable this, the visualization must be dynamically
rendered, for example, within a special application or a special view in the web browser. Using third
party dependencies such as a game engine or 3D rendering library, such as Unity10 or Three.js11 is
good idea, to keep the mandatory effort at a minimum. Even with these libraries, mostly handling
the 3D rendering,it is still very challenging and the usability of the visualization is questionable.

Without implementing the 3D visualisation, it is difficult to judge whether moving in three-
dimensional space is possible enough to detect outliers and normal data. Whether and how useful
the form of visualisation is needs to be investigated accordingly.

4.3.3 How to compare machine-learning based outlier detection methods?

In the previous sections, several options to make machine learning based outlier detection meth-
ods comparable, using visualizations and metrics have been introduced. The next step is, the
implementation of a mechanism that allows the automated comparison of several outlier detection
methods.

Generally speaking, the answer to this problem is very simple: Just run all outlier detection methods
using the same input data. While this roughly describes the procedure, there are several important
considerations that have to be taken into account in order to make such a comparison feasible:

8https://ihax.io/display-resolution-explained/
9https://www.blender.org/

10https://unity.com
11https://threejs.org/

24

https://ihax.io/display-resolution-explained/
https://www.blender.org/
https://unity.com
https://threejs.org/

4.4 Adding intermediate validation nodes to the modelling tool

1. Using the same dataset, in the same order, all the time is the most important aspect, since the
measurements are only comparable if this is ensured. While this is relatively simple to achieve
in many cases it can become a challenge if the data should be randomly shuffled. To ensure
the outliers in the dataset are evenly distributed. For that, the randomization option has to be
deterministic, most implementations of a random number generator, mostly pseudo-random
number generators, support this by setting a seed value. The seed also has to be kept identical
for every analysis and it has to be ensured, that the randomization procedure is identical, in
all cases. Because, the seeded number generator will only produce the same output, if the
operations executed, i.e., the number of calls to the random number generator are always
identical. Another option, to get the dataset randomized could be the initial randomization,
executed once on the dataset, before any of the outlier detection methods are invoked for
analysis.

2. Since performance is compared, the environment of execution should be identical during the
whole period while all of the outlier detection methods are analysed. On the one hand, this
means that the analysis for one job should not be performed on multiple machines, ensuring
that all outlier detection methods are executed on the same hardware. To make sure, the
number of available processors and the available memory is always identical. On the other
hand, it should also be ensured, that the system does not experience load from other processes
during the analysis, to achieve that, the number of processes, apart from the analysis itself,
should be kept as low as possible, if the most accurate performance comparisons should be
achieved.

3. While the previous one is only mandatory if the user wants to achieve comparable performance
measurements. The requirement that all parameters, as well as, the procedures used to perform
the analysis should be kept identical for every one of the analysis. Is mandatory in all cases,
not only to make sure the randomization works properly. But, to make sure the number of
potential outside factors influencing the performance is kept to a minimum. The best option
to achieve this, is the usage of a generic implementation, that only receives an instance of an
interface implementing the corresponding outlier detection method.

The list of all outlier detection methods, on which an analysis has been performed on, should be
ordered using a metric that describes it as best suited for the use case. In case the input data is
labelled metrics like the accuracy or the 𝐹1-score can be used for this. From observations it was
determined, that the accuracy is sufficient for sorting the outlier detection methods in most cases,
since a lower 𝐹1-score often implies a lower accuracy. However, a mechanism to select the criteria
to sort on is another option that could be considered.

4.4 Adding intermediate validation nodes to the modelling tool

The IoT Application Modelling Tool used as a basis, to embed the suggestion method, only supports
sensors and actuators that act as a data source or a sink respectively. To perform any kind of
intermediate processing a new type of nodes has to be introduced. We call this node type validator,
since its main purpose in our work is the performing of validation / filtering of input data.

25

4 Developing a concept for the integration of automated outlier detection selection

Unlike, actuators and sensors these validators are not a child type of an operator, since the deployment
behaviour of them differs from actuators and sensors. One significant difference is the origin of the
code that should be executed. Unlike operators the source code for the validation originates from
another source, for example, the messaging engine or the IAMT backend itself, even though the flow
of validation deployment is not implemented in this work, we will discuss multiple options for the
execution of validation methods and where the validator implementation should be stored later.

Some examples for which the validator types can be used, include:

• Rule-based filters, such as an upper or a lower boundary filter.

• Machine-learning based outlier detection, the type this work focusses on.

• Transformation filters, for example a filter that transforms a measurement of volume from
gallons to litres. Generally, such transforming filter operations are not the main purpose of the
validator concept. However, with some adjustments mechanisms like a message transformer
could be introduced.

Adding a validator to a model should work very similar to adding an operator. The modeller should
just select it from a menu in order to place it on the modelling space. However unlike sensors and
actuators, which usually only have outward facing and inward facing edges respectively a validator
is intended to have both inward and outward facing edges.

4.4.1 Collecting data by deploying the model partially

Suggesting an outlier detection method using this analysis method proposed above is possible in
two cases (1) labelled data is available in a sufficient quantity or, (2) unlabelled data is available in a
sufficient quantity. However, by combining the previously described analysis methods with the IoT
Application Modelling Tool introduces a third mode of operation: Collecting unlabelled data and
then performing the analysis.

To achieve this, the question which measurements from which nodes have to be collected in order to
have all the mandatory data available to perform the analysis must be considered first. This can be
achieved by, collecting all the measurement data from all direct and indirect inputs of the validation
node. This collection could be done by creating a model, that only contains the nodes of interest
and their edges and instead of the validation node, a special node is placed there with the task
of collecting the data. When collecting the data must flow through the whole chain of nodes, for
example if the model contains a Sensor (𝑆1) which is intended to send data to a validator (𝑉1) that
then sends the data to an outlier detection validator (𝑉2), the data must from 𝑆1 must still be passed
through 𝑉1 before collecting it. Determining the nodes that have to be included can be achieved by
traversing the graph in reverse direction, starting at the node of interest.

As already mentioned, the outlier detection node must be replaced with a special operator, that
collects the data into a database. Allowing the extraction of the data, once enough data has been
collected.

To make the process understandable, an example model, shown in Figure 4.4 will be used as an
illustrative example. In this particular case the Outlier Detector is the point of interest. In order to
collect data, all nodes that are not a direct or indirect input of the Outlier Detector are not interesting-
Since the data produced by other nodes, in this case Sensor5 are not needed for suggesting an outlier

26

4.4 Adding intermediate validation nodes to the modelling tool

(a) The initial model (b) The derived model for data collection for data to
be used at the ’Outlier Detector’ node

Figure 4.4: An example for a derived model

detection method at the point of interest. Therefore, the graph can be reduced to only include all
inputs of the Outlier Detector, also the detector itself must be replaced with a special data collection
node, that tells the deployment procedure to deploy a program that will collect the incoming data.
This could be a separate program or a component that gets integrated into the messaging engine.

One approach to handle this approach using the IAMT is, by creating a new model, that only contains
the relevant nodes and replaces the outlier detection validator with the collector node, assuming this
is an actuator, which is one possibility, the node will be replaced with an operator, that is intended
to perform the data collection.

Of course, this approach comes with limitations: It is only usable if the model does not contain
any cycles before validation node of interest. Another limitation is the problem that, this process
may only work in certain environments, without causing any damage, since the system is only in
an observing state and will not perform any actuations. This must be considered, and may prevent
the usage of this approach in some use-cases. It also cannot produce labelled data, making the
process semi-automatic. Because, the modeller still has to select the best suited outlier detection
method manually. If this process could also be automated, the complete suggestion could happen
automatically.

4.4.2 Introducing the outlier detection wizard

At the current stage, we identified an approach to find the best suited outlier detection method based
on present data. The next task is the transformation of this (theoretical) concept into something that
is part of the IoT Application Modelling Tool.

27

4 Developing a concept for the integration of automated outlier detection selection

Figure 4.5: Graph illustrating the steps (states) and the transitions between them

With the main goal of making the selection of the best suited outlier detection method as simple
as possible for the user, we decided to build a configuration wizard, that will guide the modeller
through the process, by asking for mandatory information, like the mode of operation and the
data at the point where it is needed. For this we took inspiration from several sources, mainly
installation wizards for both desktop applications like Microsoft Office and web applications such
as NextCloud12, as well as other step based processes like checkout procedures in online shops. An
installation wizard is generally build up into multiple steps, like accepting the license agreement,
choosing the installation location, setting up the database connection and creating an administrator
user account. These steps build on each other and the flow of a wizard can be drawn as a state
machine, illustrating the possible transitions from any given step.

Such a simple state machine is shown in Figure 4.5. The states can be grouped into three stages:
(1) The configuration stage, where the user agrees to the license and selects the install location,
(2) the processing stage, where the installer performs its actions and the progress of these actions
are shown to the user, and lastly (3) the result stage, where the results are presented to the user. In
the case of such an installer this will probably only inform the user that the install was successful.
During the first stage, the user can also go back, to allow the user alteration of the inputs. In the
second stage the installer performs the installation, here cancellation is not possible any more in our
example, whereas the cancellation was still possible before entering this stage. Once the installer is
done a message is shown to the user informing him that the install is done.

In our wizard concept the first and second step will be identical, with regard to their main goals,
getting mandatory inputs and showing progress respectively. The main difference lies in the third
stage, here display the results of the analysis will be displayed, by showing which outlier detection
methods suit the use case best. For example, by showing the resulting accuracy or the visualizations.
At this stage the user also has to choose the desired outlier detection method.

After roughly identifying how the process within the analysis will be displayed to the user in the IoT
Application Modelling Tool, the following options had to be investigated further*:

1. How does the user get to the wizard?

2. How are the results of the wizard stored and displayed in the model?

3. What inputs do we need from the user to perform the analysis?

4. In which sub steps will the wizard be divided and how will they look?

The initial idea how the wizard should look like has been described in wireframe mock ups. Most
of these mock ups can be found in the appendix (Appendix A.2). However, the most important ones
are within this section. The following part will cross-reference to the wireframes accordingly.

12https://nextcloud.com/

28

https://nextcloud.com/

4.4 Adding intermediate validation nodes to the modelling tool

4.4.2.1 How does the user get to the wizard?

To embed the wizard into the application as best as possible, we decided that the user will select a
validator node from the validator menu. The user can then use this node to create the connections to
other nodes (See Figure A.1). Before opening the configuration wizard by expanding the detail view
of the node and clicking a button that will open the wizard as a modal dialogue (See Figure A.2).
While the model contains such unconfigured nodes, the instantiate button should be disabled, since
the model still has to be configured before deploying it.

4.4.2.2 How are the results of the wizard stored and displayed in the model?

In the modelling tool this should just transform the unconfigured node into a configured one, that
contains the selected method, as well as the dataset (See Figure A.7). To make changes in the
decision possible, one should also be able to reopen the configuration wizard somehow.

4.4.2.3 What inputs do we need from the user to perform the analysis?

The two main inputs the suggestion method needs are: the mode of operation and the data-sample,
however the option to add new parameters was still important, since the suggestion method relies
several parameters that may be altered. The following parameters were taken into account: (1) The
percentage of rows that should be used for testing, (2) a list of outlier detection methods that should
be excluded, (3) a boolean option to enable randomization of the dataset before performing analysis
and (4) a seed for use with the randomization, if it is enabled.

4.4.2.3.1 In which sub steps will the wizard be divided and how will they look? The wizard
will be built out of the following steps:

1. The wizard starts in the Opening Screen that has the main goal of setting the mode of
operation for the wizard. Some informational texts, for example, describing the approach and
showing the supported outlier detection methods are included in this step. The wireframe
depicted in Figure A.3 only includes the main goal of selecting the mode of operation. In our
implementation the wizard only allows you to proceed if data is already present. The next steps
for the other two options, having no data but data collection is possible and having no data
and data collection is not possible are not defined here, since they will not be implemented in
this work. Some ideas on the implementation of the data collection based step is discussed in
Section 8.1.3.

2. After one of the two modes of operation have been selected, the modeller can proceed into the
Data Upload step. Here the user has to choose a csv file, in a defined schema, containing the
dataset used for performing the analysis. This step is also intended to configure the additional
parameters. However, they have not been added to the wireframe depicted in Figure A.4.

3. After the data has been uploaded the wizard continues into the Input data review step, here
the modeller can review the uploaded data. To make sure it has been parsed properly. Because,
the dataset will usually contains hundreds or thousands of rows the contents are displayed
in pages, using a paginated view, to improve the performance of the frontend application.

29

4 Developing a concept for the integration of automated outlier detection selection

Another well performing option that is potentially suitable for rendering such a large list
are virtual scroll lists that could be provided by the Angular Material CDK [Goo23]. The
wireframe, based on the paginator, or this step is shown in Figure A.5.

4. The Processing step is self-explanatory, here the backend has started performing the analysis
and the task of the frontend is mainly displaying the current progress by means of a progress
bar. The wireframe of this step is depicted in Figure A.6.

5. The last and most important step is the Result Review step. Here the results of the analysis
will be presented to the user. The results are presented in a list, showing the name of the
method that has been executed as well as the computed accuracy (in case of the supervised
mode of operation). This list is either sorted by the accuracy or the name of the outlier
detection algorithm, if the accuracy is not available.
By clicking on an outlier detection method, a detail view will be shown, that will show
the visualization of the result (if available) and the raw output data, containing each row in
the input dataset, similar to the third step (input data review) the list is going to be using
pagination to ensure the application performs well. The wireframes for both the visualization
and raw data view are depicted in Figure 4.6.
The selection of the algorithm is done by selecting its corresponding checkbox and pressing
the next button afterwards. Configuration of the node is done at this point and the model may
be instantiated now, if there is no other unconfigured node within it.

(a) Result view with data visualization (b) Result view with raw data view

Figure 4.6: Wireframe of the results step of the wizard.

30

4.5 Choosing and implementing outlier-detection methods

4.5 Choosing and implementing outlier-detection methods

There are many different types of ML-based outlier detection methods, that are suitable for use
with the analysis methodology proposed beforehand. However, performing the analysis on all of the
methods can be very time consuming. Because, some of the selected outlier detection methods may
take minutes to perform their analysis each. As a result, a subset of all available outlier detection
methods must be chosen. Some factors that help limiting the set of outlier detection methods are
the type of data that has to be analysed, the environment the analysis is performed in and the degree
of supervision of an outlier detection method.

However, as this work only proposes a mechanism to determine which outlier detection method is
best suited for any given dataset. It must be ensured that new outlier detection methods can be added
reasonably easily to either add new methodologies proposed in new research or outlier detection
methods that already exist but have not yet been added to the set of supported outlier detection
methods.

The following machine learning based outlier detection methods have been selected to be part of
the initial set of supported outlier detection methods:

• 𝑘-nearest Neighbors (kNN) [AP02; RRS00]

• Local outlier factor (LOF) [BKNS00]

• Clustering-Based Local Outlier Factor (CBLOF) [HXD03]

• Isolation Forest (IForest) [LTZ08; LTZ12]

• Angle based outlier detection (ABOD) [KSZ08]

• Connectivity-Based Outlier Factor (COF) [TCFC02]

• Principal Component Analysis (PCA) [SCSC03]

• Deep One-Class Classification (DeepSVDD) [RVG+18]

All these methods do not need labelled data and therefore use unsupervised learning. In order to
also have an outlier detection method that is not based on unsupervised learning Extreme Boosting
Based Outlier Detection (XGBOD) [ZH18] has been chosen, since there was an implementation of
this one on hand. In fact XGBOD uses a semi-supervised learning approach. However, since the
proposed wizard does not support semi-supervised methods it will be used as a supervised-learning
based outlier detection method.

The unsupervised approaches have been selected, because of previous research, for example, by
Jiang et al [JHSG+20] and Al et al. [AMM+21] they investigated the usability of different outlier
detection approaches in the Internet of Things context that use several of the previously mentioned
machine-learning based outlier detection methods as a basis, including, 𝑘-nearest Neighbour, Local
Outlier Factor and Principal Component Analysis.

31

4 Developing a concept for the integration of automated outlier detection selection

4.6 Investigating the implementation of validation capabilities in the
tool stack

The tool stack in its current state is simply unaware of the validator concept introduced in Section 4.4,
considerations on how the mandatory abilities can be implemented have to be investigated, in order
to implement the process of validation. For this, most of the tools have to be modified. This section
will investigate design challenges one may face when implementing the instantiation of validation
nodes.

To achieve this, the following modifications have been identified:

• The modelling tool has to be adjusted to allow the modelling of validation between sensors
and actuators, this has already been covered in Section 4.4.

• It is mandatory to find out where, i.e., on which device, the validation should get executed on.
The general question here is: should the validation for the whole data flow be executed on
one (central) Device or should it be done decentralized, i.e., on the output of a sensor or the
input of an actuator.

• After the approach for the validation is selected the ME-Configurator has to be able to handle
the deployment the validation.

This section covers an architectural investigation on how the validation should be implemented,
mainly focusing on the second challenge described above.

4.6.1 Identifying modelling cases for validation

At the basis, we identified four types of modelling cases that describe how inputs and outputs are
related to a validation node (validator). Such a validation node does not have to implement an outlier
detection method, instead it can be considered a more abstract concept representing intermediate
nodes, comparable to filters in the pipes and filters pattern [MC22]. The taxonomy of the modelling
cases is similar to relationships between entities in relational databases.

The following paragraphs will take an abstract look on the task of one validator. For this we will
call incoming nodes inputs and outgoing nodes outputs. Although this definition is intuitive, it is
important to note that an input or an output can be not only an operator, but also another, chained,
validator. In this first stage of the investigation these cases are considered identical in Section 4.6.2.
The difference between validators and operators in both a centralized and decentralized validation
approach are investigated later.

One to One (1 ∶ 1) The simplest modelling case is the one-to-one relationship. Here the validator
performs the validation based upon one input, produced by the output of a sensor or by another
validator. In this case, the validation is carried out on the basis of an input, which, in the case of a
positive check by the validator, is sent on to an output. An example for this is a filter that checks if
the value is in between a lower and an upper boundary.

32

4.6 Investigating the implementation of validation capabilities in the tool stack

Many to One (𝑛 ∶ 1) In such cases the validation may not be based upon just one input. However
the node still only produces one output. For example, a validator may want ensure the reading of
some sensors is accurate to do this two sensors of the same kind may be used. In case the values
differ severely the validator may not produce an output to prevent the activation of the actuator.

One to Many (1 ∶ 𝑛) and Many to Many (𝑛 ∶ 𝑚) In some cases the validator may not only send
the output to one target node, like we assumed above. However, sometimes a validator may have
to send its result to multiple outputs. For our purpose it is assumed, that every output will receive
the same message and therefore the output will only produce one output value. If a validator may
produce to different outputs, it may be decomposed into two separate validators.

4.6.2 Investigating central vs. decental validation

The Messaging Engine and the associated lifecycle is focussed around decentralization [DH20].
Therefore, the initial idea was designing the validation in a decentralized manner. However, central-
ized validation was also considered an option, due to the reduced effort in more complex modelling
scenario.

To implement validation in the model there are three different approaches, all having pros and cons
that will be evaluated next. The three most reasonably approaches are:

1. The fully centralized approach, here all validation for the whole model is done on one special
device, called the validation device. All messages that go through a validator are sent to this
component for validation.

2. The fully decentralized approach with validation done on the existing devices of the operators
implementing validation without further adding any new devices or (shadowed) operators
to the model. With this approach the user generally is not in charge to find out where the
validation should be implemented. This instead is decided by the model, by applying rules to
it to determine where the validation should be executed.

3. Validators get similar treatment to operators, requiring the user to select the device on which
the validation should be deployed.

In regards to the degree of automation and the reduction of complexity for the modeller, the full
decentralized approach is the most favoured, however it comes with some serious drawbacks that
have to be considered when implementing validation.

4.6.3 Investigating fully decentralized validation on the operator device

For the fully decentralized approach the following basic principles were defined, with the main goal
to prevent violations of them where possible. In order to keep the mandatory computation resources
as low as possible.

• The introduction of a new deployment unit, i.e., a piece of code that is deployed on a device,
like an operator, should be prevented where possible.

33

4 Developing a concept for the integration of automated outlier detection selection

• Duplicate execution of validators should be avoided, to ensure all outputs that use the validator
get the same value. Depending on the type of validator duplicate execution may produce
different results if the implementation is non-deterministic, as it may be the case in some
probabilistic code. Executing the same task multiple times also results in unnecessary use of
computation resources.

The development of an approach that does not violate these two principles can become very
complicated, as shown in the following. First looking at the point of execution in the data flow,
i.e., where the validation should be executed. Tor that the four different relation types will be
discussed.

• Where One to One relationships are executed in a decentralized execution environment does
not matter, since both the source and target node will have the inputs available. In this case
the decision can be delegated to the person instantiating the model. The validator is then
considered a deployment unit in combination with its selected operator.

• The choice of devices gets smaller if a second input is added to the validator, then the modelling
case turns into a Many to One relationship. As validation should be done at a node where all
inputs are present the target node should be chosen to execute the validation.

• In One to Many and Many to Many relationships there is no node at which all inputs are
present, because of that different ideas, like introducing a new node, have to be investigated.
This will be discussed further in Section 4.6.3.1.

4.6.3.1 Handling one-to-many and many-to-many modelling relationships

In one-to-many and many-to-many cases, there is no node through which all inputs and outputs
flow, as a result, the rules described in the previous section are either difficult to comply with or
they must be violated.

Figure 4.7: The decomposition of a many-to-many validator (left) to two many-to-one validators
(right)

If these potential violations of these rules are accepted, the following options are some possible
solutions to the matter.

34

4.6 Investigating the implementation of validation capabilities in the tool stack

• The validator is deployed on every target node, by decomposing a many to many validator
into multiple many to one validators, which can be deployed on the device of the output, as
discussed in the previous section.
A visual illustration of this process is shown in Figure 4.7, here a 2 ∶ 2 validator, named
Validator is internally transformed into two many to one validators Validator (1) and
Validator (2).
One problem of this approach, is the violation of the previously described double execution
rule, which may cause issues depending on the implementation of the validator. Before we
take a deeper look at the problems of this approach we will cover some potential benefits,
these include:

– The system is more fault proof, as no new single point of failure is introduced, in
comparison to the approaches we will present below.

– This approach can be used to model one-to-many and many-to-many validation rela-
tionships even though they are not even supported by the system itself, only the many to
one case must be supported.

– By following this approach the system stays fully decentralized.

On the other hand this approach has a lot of arguments against it, including:

– The, already mentioned, possibility to produce inconsistent behaviour if the implemen-
tation is non-deterministic.

– Long-running or compute-intensive processes are executed multiple times, increasing
resource requirements. Especially, on IoT devices, known for having limited computing
and memory resources, this can become a significant problem.

– This approach has a huge networking overhead when working with many inputs and/or
outputs. Generally the number of packets in the system that occur for every measurement
cycle (for example: every 30 seconds), depend on the number of inputs and outputs.
If we assume that we have a model with many inputs and many outputs, for example
100 each, connected by a validator then the number of packets sent by this approach is
100 ∗ 100 = 10000 since every sensor of the 100 existing ones has to send its reading
to every actuator (𝑛 ∗ 𝑚).

– With this increased network traffic, the probability of having packet loss increases,
which is another cause for inconsistent behaviour within the system.
Looking at the decomposed graph illustrated in Figure 4.7 (right figure), it can be
observed, that both of the decomposed validators are executed on their attached actuators,
the packets originating from Sensor1 and Sensor2 are directly sent to both actuators.
assuming that the message from Sensor1 to Actuator2 is getting lost, then the value
produced by the attached validator (Validator (2)) may differ from the one produced
by the other one or it may not even produce any output due to missing data producing
inconsistent results.

• The validator is deployed separately on a device, that is chosen by the user at the time of
instantiation, causing a violation of the rule that no additional node should be introduced.
Apart from the violation this approach does have a lot of benefits, including:

35

4 Developing a concept for the integration of automated outlier detection selection

– The fact that this approach is applicable to every relationship we described, potentially
allowing the simple implementation of decentralized validation, with the drawback that
new nodes are introduced.

– If an implementation of a validator is resource intensive, this option is the best one for
fully decentralized validation, since someone, probably the person modelling the flow,
has the ability to chose the device on which the validator should be executed and if this
person is aware of the resource requirements a more powerful device can be selected.

– The network traffic is reduced, in comparison to the approach described previously,
since sensor readings are only sent to one node instead of many ones. In contrast to
the previous option this one only needs 100 + 100 = 200 packets (𝑛 + 𝑚) for the
aforementioned example with 100 sensors and actuators each, since every sensor sends
its reading to only one node being the validator, resulting in a total of 100 packets. The
validator then sends its result to the connected actuators which also needs 100 packets.
However there are some limitations to this argument: 1. the effect is less significant
when looking at smaller numbers of inputs and outputs, and 2. the effect is slightly
reversed in the One to Many case here the decomposition needs 𝑛 packets and this
approach needs 𝑛 + 1 packets

• The validator is deployed with one of the outputs as one deployment unit chosen at random,
by the user or by the modelling tool, for example based on conditions, like the number of
available processor cores, this validator will then send the validated result to the other target
nodes, as illustrated in Figure 4.8.
Generally, one can consider this approach to be a combination of the two previous approaches
instead of introducing a new computation unit an existing one is expanded that now also
has to act as a validator. In contrast, to the approaches described before this one does not
introduce a new deployment unit nor does it cause duplicate execution of the validator. But
this approach also has some drawbacks, including the following ones.

– Just like the first approach, this one also introduces a new single point of failure.

– Computation power may be limited, since the validation is done on an IoT device,
however this is a common drawback with decentral validation, affecting every approach
that combines the validation and an operator into a deployment unit.

4.6.3.2 Handling chained validators

In order to follow the pipes and filters concept, validators must also support chaining of validators,
i.e., the inputs of a validator may be operators or another validator. Implementing chaining is
especially challenging when working in a fully decentralized environment, following the two rules
of avoiding the introduction of new computation units and the avoidance of multiple executions for
the same sensor value.

Generally chaining of validators can be mathematically expressed as a composition of multiple
functions, for example, 𝐶(𝐵(𝐴(𝑥))) for the validator flow illustrated in Figure 4.9. Based on this idea,
one option to select the device for execution could be the logical combination of all three validators
into one, with this idea the three validators 𝐴, 𝐵 and 𝐶 into one (𝑉𝐴𝐵𝐶(𝑥) = 𝐶(𝐵(𝐴(𝑥)))).

36

4.6 Investigating the implementation of validation capabilities in the tool stack

Figure 4.8: Visual illustration of the the per device mappings when running one-to-many and many-
to-many validation on an actuator. The left image depicts the modelled many-to-many
modelling case and the right one displays how this model gets deployed, i.e. every node
represents one device

Figure 4.9: A chain of one-to-one validators

Once they are logically combined, the rules for running a single validator in a one-to-one relationship
can be applied.

A similar procedure can also be applied to more complex chains of validators, that point to one
target node, if its points to multiple nodes the graph is more complex, for that the chain must be
split into several parts.

(a) Potential model with complex chain (b) Technical decomposition of the model, before se-
lecting the target operator for deployment.

Figure 4.10: Potential topology with more complex chaining and its composition

As illustrated in Figure 4.10 the validators in the illustrated model cannot be combined into one
validator. Instead, it can only be split into two separate ones. Because, the output of validator 𝐴 is
also consumed by 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟1. From this example some rules can be derived: (1) Validators can be
combined into one, if all source validators only point to another validator, as shown by the validators
𝐵, 𝐶 and 𝐷, in Figure 4.10, since they turn into one combined validator 𝐵𝐶𝐷 and (2) if a validator
points to at least one operator this validator should be considered the end of a validator chain.

37

4 Developing a concept for the integration of automated outlier detection selection

Figure 4.11: A sample model to illustrate central validation and the responsibility of the Validation
Engine component

Following these rules the aforementioned graph can be decomposed into two validators, at first
validator 𝐴, which has to stay as one. As it is, targeting an operator and the combined validator 𝐵𝐶𝐷
that internally composes the following composed function: 𝐵𝐶𝐷(𝐴, 𝑆𝑒𝑛𝑠𝑜𝑟2, 𝑆𝑒𝑛𝑠𝑜𝑟3, 𝑆𝑒𝑛𝑠𝑜𝑟4) =
𝐷(𝐵(𝐴, 𝑆𝑒𝑛𝑠𝑜𝑟2), 𝐶(𝑆𝑒𝑛𝑠𝑜𝑟3, 𝑆𝑒𝑛𝑠𝑜𝑟4)).

After the validators have been combined into logical units, the target device on which the validator
should be deployed can be determined. For that the same rules, as for non-composed validators
apply. In the case shown in Figure 4.10 the validator 𝐴 should be executed on the device of 𝑆𝑒𝑛𝑠𝑜𝑟1,
representing a one-to-many modelling scenario and the composed validator should be executed on
the device of 𝐴𝑐𝑢𝑡𝑎𝑡𝑜𝑟2, as this represents a many-to-one modelling scenario.

4.6.4 Investigating centralized validation

Before looking at the pros and cons of centralized validation, the term centralized validation in the
context of this work will be defined. The centralized validation implements the complete validation
for the whole model on one device, that runs a special application, called the validation engine.

Figure 4.11 illustrates the way this work defines central validation. Every Validator is executed on
the Validation Engine a single component responsible for performing the validation in the given
model. The device on which the validation engine is deployed is chosen by the user at the time of
deployment.

Many of the problems we encountered in the space of decentralized validation are not a problem in
a centralized approach, including the following ones.

• Where the validation should be executed is always clear, even if the model becomes very
complex, for example, by including many chained validators.

• The validation is less constrained in regards to the resource usage, because the device used for
validation has to be selected during the instantiation of the model. Here we could inform the
user about the fact that the validation is resource intensive and therefore recommend selecting
a more powerful device if the user wants to deploy on a low performing machine.

• The same validation is not executed twice, unless this has been explicitly modelled by the
user, reducing the possibility of unexpected behaviour.

38

4.6 Investigating the implementation of validation capabilities in the tool stack

• The network traffic is not significantly increased and is on a comparable level to the decentral
approach, with a new deployment unit for every validator. Theoretically it may be lower than
that case, depending on the model. Because, chained validators could be handled as internal
traffic by the centralized option.

• The deployment on the devices is much simpler. Since the code for the validation only has to
be deployed once, however other parts of the model still have to be deployed decentralized
like the Messaging Engine, making this argument almost irrelevant.

On the other hand the central approach also has one huge drawbacks, as it is a new potential single
point of failure that does not only disable a portion of the model but the whole model, this of course
also is one of the huge benefits of doing these tasks completely decentralized.

4.6.5 Investigating device selection by the modeller

Another option for the implementation of validation is the most intuitive, that on the other hand,
requires more user input in comparison to the other two options. In this mode the modeller always
selects the device on which the validation should be executed.

Without having to consider the aforementioned challenges, the effort of implementation for both the
modelling tool and also the tool stack used to deploy the complete model is less complex.

As a compromise a mix of the fully decentralized approach and this one can be considered, in that
case the system will not decide on the validation device, but will instead make a suggestion where
the validator should be deployed. Therefore, the process can still be automated, but it offers the
maximum flexibility for the modeller. In the case that it is mandatory to change the device, based
on conditions the modelling tool is not aware of, for example, if unmeasurable constraints, such as
the physical location of the device or other quality-of-service requirements.

Depending on the choice of the user the model may either be deployed in a more centralized or
more decentralized manner.

4.6.6 What is the best option to implement validation

After the three potential options have been discussed, the best suited solution for the device selection
is to leave the choice at the user, however the modelling tool should still be able to make suggestions
in an automated manner in most cases. But by only giving suggestions it is no problem if a good
suggestion cannot be made, in case the model context is very complicated.

With some optimizations, the combination can be used to reduce, the mandatory number of packets
to send to other nodes and also the number of instances of which the validator may be implemented.
Some ideas, how this could be handled will be discussed next.

39

4 Developing a concept for the integration of automated outlier detection selection

4.7 Investigating the implementation of the Validation Engine

As previously discussed leaving the choice of the device to deploy the validator on to the used, with
some assistance by the application is the most reasonable approach. In order to implement validation
using this approach, a new component, that is either a separate application or an extension of the
Messaging Engine is introduced, with the main responsibility of performing the validation, meaning
that the validation engine must perform the following task for every instance of the validator.

Including the Validation component within the messaging engine, is the simplest option, because
this way, it is made sure that running validation is possible on every device that runs the messaging
engine. In case a device does only have one or more validator attached and no operators selected for
execution, it must be ensured an instance of the validation-enabled messaging engine is deployed
on the node.

During deployment (instantiation) it should be made sure, that only one instance of the messaging
engine is deployed on a device, to reduce the resource usage of the application on the device, since
all messages and validations are handled within one central process, potentially invoking subprocess
if mandatory.

In order, to reduce the network traffic some optimizations in this extended messaging engine should
be implemented. Assuming there are two nodes that should be instantiated on the same device, one
validator, that will transmit its results to an operator, the engine should not send the values to the
network. Instead, it should internally pass the message from the validator to the operator.

To further keep the memory resources needed, as low as possible a mechanism to only instantiate
the validators if they are assigned to the specific device, because only then the instantiated version
will be used.

4.8 Investigating changes in the workflow to deploy a model

How validation must be deployed is depending on the validation approach that is chosen, the main
commonality of all options is that the ME-Configurator and the Messaging engine in all cases have
to be modified, in case of the decentralized approaches more significantly than in the centralized
approach.

In all cases the input payload of the ME-Configurator must be adjusted to consume information
about how and where the validation should be performed. However, just like the differences with
the overall workflow this differs by the approach of implementation chosen.

The simplest approach to implement the validation is the centralized one, where the ME-Configurator
has to receive a list of all validators including their connections as well as the location (Device) the
validation engine should be deployed on, and all the other parameters required for instantiation of
the model. At the time of deployment the ME-Configurator, just hast to make sure the centralized
validation-engine is deployed on the selected device and that the deployed instance of the validation
engine has received a configuration file telling the validation engine which validation tasks it has to
perform and on what endpoints it has to listen for input data.

40

4.8 Investigating changes in the workflow to deploy a model

In both of the proposed decentralized options the validation component is expected to be be a part,
or an extension, of the messaging engine, that can then in turn handle the validation. In both of these
cases the deployment workflow must not get modified significantly, since the ME-Configurator just
has to roll out the validation aware messaging engine on the specified nodes, with the appropriate
configuration that then also contains information about the validation.

The main changes, in that case, have to be made in the messaging engine, where the validation is
either added as an extension or a separate application, that gets deployed if needed. These changes,
again differ based upon the option, that has been chosen in regards to decentralization. However,
the general procedure to initialize the outlier detection based validator is always identical, even
when implementing the centralized option. To achieve this, the validation component must receive a
configuration, containing the location of either the input data, to retrain the model, or the serialized
version of the trained model, that has been created during the analysis process.

41

5 Implementation of the suggestion wizard

This chapter covers the technical details, behind the implementation of the wizard that has been
proposed in the previous chapter. At first, the relevant components of the tool stack are described
on a more technical level. Next, validator nodes will be introduced into the modelling tool. After,
that the technical details on the implementation of the wizard in both the backend and the frontend,
before finally investigating options to randomly generate sensor data, that can be used to test the
functionality of the wizard.

5.1 The tool stack on the technical level

The tools and their functions within the tool stack have already been discussed. However, before
going into the technical details of the implementation of the outlier detection wizard a brief in-
troduction on how these tools are implemented, will be provided, in order to better understand
the reasoning behind certain decisions. The Messaging Engine and the ME-Configurator are not
covered here, since they are not mandatory for the implementation of the wizard, interaction with
these is mandatory once the instantiation should be implemented.

5.1.1 MBP - Multi-purpose Binding and Provisioning Platform

The MBP is an open source tool1 with the purpose to ease the deployment, monitoring and manage-
ment of IoT-Devices. It provides a centralized option to orchestrate IoT Devices. From a technical
standpoint the MBP is a Spring Framework based Java application running either as a Java Servlet
running on a Servlet server, such as Apache Tomcat2, or as a stand-alone Java Executable (.jar file).
The application state is stored in a MongoDB3 for communication between IoT devices and the
MBP the MQTT protocol is used. To use MQTT a broker software is needed, the broker Mosquitto4

is used to serve this purpose [FHS+20]. Running the application is usually done using Docker5

Containers and Docker Compose6.

1https://github.com/IPVS-AS/MBP
2https://tomcat.apache.org/
3https://www.mongodb.com/
4https://mosquitto.org/
5https://www.docker.com/
6https://github.com/docker/compose

43

https://github.com/IPVS-AS/MBP
https://tomcat.apache.org/
https://www.mongodb.com/
https://mosquitto.org/
https://www.docker.com/
https://github.com/docker/compose

5 Implementation of the suggestion wizard

5.1.2 IoT Application Modelling Tool

The main focus of this work is the IoT Application Modelling Tool, it is the basis for the previously
proposed outlier detection method suggestion wizard, this tool consists out of three components, all
using different programming languages and frameworks: (1) the backend, that is used to persist the
models created in a document based database (MongoDB), it is implemented in Kotlin7 and uses
the Spring Framework8 as a basis, (2) the frontend, implemented as an Angular9 application, this is
the main part of the application, it gets loaded in the users browser and accesses the stored models,
and (3) lastly the gateway, it acts as a middleware implemented in Node.js10 between the backend
and the frontend and is used to perform authentication using the user and permission management
from the MBP.

In order to run the application tools like Docker and Docker Compose are used, to ease the process
of deployment on any device.

5.1.2.1 Looking at the data model

The data model of the modelling tool is relatively simple, on a persistence level there is only one
document, for every Model instance: the Model class. It stores all information about one specific
model, like its identifier and name, as well as the Nodes contained by it. The array of the contained
Node objects contain the whole model, apart from the model name and the model identifier. Each
node stores an identifier, that is defined by the frontend application and must be unique in the context
of the model, a name, its type and a list of the identifiers of other nodes that the node connects to
(outbound edges).
A node also stores data about the operator it is associated with, this data is retrieved and copied
from the MBP. The copy will contain the values of the parameters associated with the operator,
making it possible to use them for instantiation later.

The data model of the modelling tool is illustrated in Figure 5.1 as an UML class diagram. In its
implementation there are more attributes, that describe the visual state of the model, for example, if
a node should be extended or the icon that is associated with it. However, these have been omitted
in these class diagrams, to prevent the class diagram from becoming bloated with attributes, that do
not serve a purpose for the overall functionality. All of these fields only have impact on how the
nodes are visualized in the frontend.

5.2 Adding validators to the modelling tool

One of the most important things that have to be implemented are the validator nodes, that act
as middleware nodes in the data flow between sensors and actuators. These nodes are referred to
as validators and they are mandatory in order to integrate validation, in our specific case outlier
detection, into the IoT Application Modelling Tool.

7https://kotlinlang.org/
8https://spring.io/
9https://angular.io/

10https://nodejs.org/en/

44

https://kotlinlang.org/
https://spring.io/
https://angular.io/
https://nodejs.org/en/

5.2 Adding validators to the modelling tool

Figure 5.1: UML class diagram illustrating the data model of the IoT Application Modelling Tool

In order to make validators addable to the modelling space, the sidebar used to add operators has
been extended to have a separate tab, containing all available validators. These validator types
should be fetched from an external data source that is aware of what is supported by the rest of
the system. However, as this work only implements the suggestion wizard without handling the
instantiation, this has been omitted- Instead this list, which should only contain the type of the
suggestion wizard, is provided by a statically implemented list within the frontend.

Placing a validation node is also similar to the process used for placing an operator, there are
some minor differences, including the lack of (sub)-type selection, since the implementation does
not differentiate between the types of validators. Unlike operators, where there are sensors and
actuators.

Once the validator has ben instantiated, it is displayed in the modelling space, just like an operator
node. As illustrated in Figure 5.2 the major differences are some missing attributes in the validator,
like the unit and the modification time. These attributes are omitted, since they are not used in a
validator.

Implementing this feature also made some changes in the data model mandatory. The most important
change is the creation of a new parent class for the definition of operator and validator types. This
class, called ModelNode has the same attributes as the Operator class in the initial data model,
illustrated in Figure 5.1. The operator class and the newly introduced validator class inherit from
this class, these classes do not introduce any new attributes and are only used to make differentiation

45

5 Implementation of the suggestion wizard

Figure 5.2: An expanded sensor node (left) in comparison to an expanded validator node (right)

Figure 5.3: UML class diagram illustrating the data model of the IoT Application Modelling Tool
after the validator nodes have been implemented

between them easier. Two further modifications of the model took place: 1. A Validator object
has been added to the NodeType enum, used for simple differentiation between the types, and
2. An attribute to store the validator object associated to the node has been added to the node class.
By design this validator attribute and the operator attribute in the Node class mutually exclude
themselves, meaning, that only one of the should be set while the other one is null.

The changes to the model are also illustrated in a class diagram, shown in Figure 5.3.

46

5.3 Implementing the Backend

5.3 Implementing the Backend

Before starting the implementation of the frontend of the wizard, we had to investigate how the actual
analysis will be implemented. From a design perspective there are multiple options to implement
this. At first, it was mandatory to decide where the analysis should be implemented, either in the
frontend or the backend. Followed by the decision how the outlier detection methods should be
implemented.

To make sure the analysis and the validation can use the same implementation of the outlier detection
algorithms, it was mandatory to find a programming language that can be used in both scenarios.
Because the validation in the instantiated model is most likely an extension of the Messaging
Engine the Python programming language seems to be the perfect fit for the implementation
of the outlier detection methods. This is supported by the availability of an extensive Python
library (pyOD [ZNL19]), which implements various outlier detection methods.

The decision to use Python for the implementation of the validation eliminated the consideration of
implementing the analysis in the frontend. As we could not find any maintained implementations of
Python in JavaScript, one of the unmaintained implementations is PyPy.js [PyP15; PyP19] which
only seems to support the deprecated Python 2.7.
Another option, which is also mentioned by the authors of the PyPy.js library, could be the We-
bAssembly based pyodide library [pyo23]. Pyodide, according to the authors, also supports libraries
that use native C implementations, such as the NumPy library, an elementary component of the
pyOD library [Zha23]. Making pyodide the best suited option to run validation in the frontend.
Even with this option, there are some factors that point against executing the validation in the
frontend, especially the potential performance problems, the lack of similarity to the execution of
the instantiated validation and the associated additional effort to implement the training procedure.

To run the validation in a backend it had to be investigated, how the backend for the wizard will
be built. Either as an extension of the existing Kotlin based Spring Boot backend used by the IoT
Application Modelling Tool to store the models in a MongoDB instance, or as a stand-alone backend,
completely written in Python.
The implementation as a stand-alone application makes the invocation of validation methods very
simple, as the only step mandatory to do so is a method call. However choosing Python requires the
reimplementation of components that are already provided by the Spring Boot backend, like the
interaction with the database. This means that it is mandatory to establish a means to store the job
data, for example by connecting to the same MongoDB instance that is used by the IAMT backend.
The decision has to be made between a more complex handling of analysis invocation using child
processes, when embedding the wizard backend into the IAMT backend, or by having to rebuild
components that have already been configured in the IAMT backend, potentially introducing
redundancies. Another argument against the full implementation in Python is the personal lack of
familiarity when working with databases and HTTP APIs in the language, potentially increasing
the time needed to complete the implementation.
Therefore, the implementation of the wizards backend was done as a component of the IAMT
Backend, the Python implementations of the outlier detection methods are invoked using child
processes.

After sorting out these fundamentals on how the backend should be implemented, more concrete
aspects like the data model and the API specification had to be created.

47

5 Implementation of the suggestion wizard

5.3.1 Defining the Data Model

The analysis requires a mean to store unstructured data, such as images used for visualizations, text
files like logs and csv files used to store the input and result data. For that a document called Blob is
included. This document is used to store unstructured artefacts, either needed for the analysis or
produced by it. These artefacts are identified by a universally unique identifier (UUID) [LSM05]
like 5d27efe8-3eb0-4d6e-be63-a2ce2553675b and the filename that corresponds to the type of file,
for example, an input csv file may be stored as 5d27efe8-3eb0-4d6e-be63-a2ce2553675b.csv.

Next, a means to link the input file with the node of the model is needed. This entity is called a Job

and represents one usage of the wizard. It links the input file, which is stored as a Blob document
and the node, stored by combining the identifier of the model and the identifier of the node, since
only the combination will point at a specific node. Such a Job also gets a unique identifier, as a
UUID, to allow one Node to have multiple jobs, for example, if an analysis may be rerun with a
different dataset or modified input parameters.
The Job entity also stores all global parameters of the Job, including the mode of operation and the
percentage used for training data.

A job is subdivided into tasks: for each of the implemented outlier detection methods, the source
of which we will discuss in the next paragraph, a task is created as a child of the job. The output
artefacts, such as the visualisation and the log files, are stored in a task, as are the measured results,
such as the accuracy, the 𝐹1-score and the runtime of the task. Due to the fact that the task is highly
coupled to the job, the tasks are stored in an array of tasks within the Job object. In the database they
are stored as one document. Implementing Job and Task this tightly coupled, had some unexpected
consequences, we will discuss later.

The Outlier Detection Methods (ODMethods) are stored statically, in a JSON file, within the Java
applications jar file. The ODMethod contains an identifier that must be unique, within the list of
all implemented outlier detection methods, since it is used to identify the specific outlier detection
method. In order to show the user a more in depth description of the outlier detection method,
further attributes have been added storing the display name, a description to give a brief overview
as well as links for further reading about the outlier detection method. To find the scripts associated
with the outlier detection method the paths to them, within the jar file, are also stored in this
definition file, by defining the entry point file, which is called to start the analysis as well as its
dependencies. These files are also stored in the jar file, the root directory (/) therefore represents the
root of the jar-archive. How one outlier detection method is defined in the JSON file is illustrated
in Listing 5.1. The JSON file just contains an array of objects, following the same scheme as the
one shown in the listing.

Both Jobs and Tasks have a state, that describes their current state of execution, the following
possible states exist:

• Pending: The execution of the job or task has not started yet.

• Running: The execution of this job or task is currently in progress.

• Done: This job or task has been executed without any errors.

• Failed: Here we have to differentiate between jobs and tasks, since the state has different
meaning for each of these entity types. A tasks state is set to failed, if the execution of the
task has failed with an exception, whereas the state of a Job is set to failed if there is at least

48

5.3 Implementing the Backend

Listing 5.1 Simplified JSON object defining the k-Nearest Neighbour algorithm

{

"identifier": "knn",

"name": "k-nearest Neighbor",

"description": "REMOVED for readabliity",

"furtherInformation": [

"https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm"

],

"isSupervised": false,

"scriptLocation": "/od-wizard/python/knn.py",

"dependencies": [

"/od-wizard/python/base.py",

"/od-wizard/python/benchmark.py"

]

}

one task that has turned into the failed state. If the job consisted of multiple tasks and one
of them has failed the state of the job will become failed too. However, there will still be a
usable result, assuming all other analysis tasks did not fail.

• Cancelled: This state is mainly relevant for jobs, it is meant for jobs that have been terminated
upon user request, for example, by calling a cancel endpoint.

Figure 5.4 illustrates the core of the data model of the IAMT Backend including the wizard itself, it
shows the relationships described above. However, some classes have been excluded to improve
readability. The two excluded classes TrainingResult and BenchmarkResult are used to store the
metrics, for both the analysis and the benchmark respectively. For benchmarks this includes the
number of times it has been executed, the total time to perform the predictions, the average time
for a prediction and the time needed for initialization. The analysis result contains much more
information, such as the sized of the testing and training datasets, the convolutional matrices and
binary classification metrics, including the accuracy and the 𝐹1-score for the whole dataset, as well
as for the testing and training portion. Additionally, it stores the time needed to perform the whole
operation.

5.3.2 Outlining the API

Before creating API mappings, an investigation on what actions are mandatory to build the UI, as
described in the wireframes, has taken place. As a result, the following operations turned out to be
mandatory:

1. Upload / Retrieve unstructured data (Blobs)

2. Retrieving a list of the supported outlier detection methods, including their display names
and description.

3. Creating a job

4. Retrieving a job object, including its current status

49

5 Implementation of the suggestion wizard

Figure 5.4: Simplified data model of the backend for the outlier detection wizard

50

5.3 Implementing the Backend

5. Cancelling a job or task

6. Listing jobs based on several attributes e.g., for a node of a model or based on their state

7. Deleting a job

The API can be grouped into three sub-components, in the terminology of the Spring framework
often referred to as Controllers [VMW23]:

• A blob controller, handling the upload, retrieval and deletion of blobs,

• a controller that provides the list of outlier detection methods, either as list or just the single
element, referred to as the method controller and

• the main controller, responsible for handling all interactions with jobs, such as creation, status
retrieval and cancellation.

Most of these operations, apart from creating or cancelling a job, are simple CRUD (Create, Read,
Update, Delete) operations, that check the input for validity and then either store, retrieve or delete
the data in the database. As shown in the list of operations above, there are no real update operations,
apart from the job cancellation, which has to be handled differently. Because, it has to terminate
running processes if the job is in progress. How cancellation has been implemented will be discussed
in ??. Because these implementations did not come with any technical challenges or questions
regarding the system architecture, they will not be discussed further.

Apart from Job creation and cancellation, there is another API function, that may need more complex
implementation: How will the frontend get notified about job status changes if it is in the Processing
step of the wizard?
In order to make a reasonable decision, a quick investigation on how the frontend should update
the status of the job had to be done. There were two options to retrieve the status of a job, either
by using a push or a pull approach. In the push approach, the WebSocket technology, supported
by almost all modern browsers would be used, as it allows the server to send data to a client, even
without a prior request. Of course, it is still mandatory to open the WebSocket connection, to clarify
who is listening for messages [Moz23].
The other suitable option is pull-based. Here, the frontend application queries the server in a
recurring interval e.g., every five seconds, to determine whether or not the status has changed. Both
of these approaches have pros and cons. However, the decision on what to choose is also dependant
on the use-case.

Some pros (+) and cons (-) of the WebSocket based solution include:

+ Provides almost instant status updates, making sure the frontend is never outdated. The only
factor limiting this is the network connection, which may introduce latencies.

+ Less susceptible to high server load or even overload when many users use the application at
the same time, since the backend will notify connected frontend applications once a change
for their job has occurred.

- Implementing the WebSocket based mechanism is relatively complex, as new controller
mappings and means of notification, within the backend have to be introduced.

51

5 Implementation of the suggestion wizard

- May cause issues in combination with the IAMT-Gateway, requiring adjustments in it, to also
forward WebSocket connections

The polling approach, on the other hand, is much easier to implement, as is does not need any
further additions to the backend apart from the Retrieving a job object, including its current status
mapping. Because, our design intends this mapping to also be used to build the result step of the
wizard, this endpoint would also be needed for the WebSocket based implementation, reducing the
implementation effort of the poll based approach in the backend to zero.
This tool is intended to be used by a small user base at the same time, which reduces the risk for
high server load significantly. In combination with a decent time interval, the increased server
load, does not represent a huge issue for our use-case. To give a small example, we assume there
are 10 users, a relatively high number for one instance the IoT Application Modelling Tool, each
submitting a job at roughly the same time. With an update interval of five seconds, this results in
10 ∗ 60

5 = 120 requests per minute, a number that should not cause any issues on most host systems.
Another option to mitigate the risk of high server load, is increasing the wait duration between
requests. Doubling the interval to ten seconds will halve the number of requests per minute, with
the drawback that the user may get the information that the job has been completed after a short
delay. However, the analysis process can be considered a comparably long running task that at least
takes several minutes to finish. With this in mind the potential delay of ten, or even five, seconds to
get the status update, becomes negligible.
For these reasons the decision was made on the polling based status update approach.

5.3.3 Handling the execution of jobs

Jobs are considered long running tasks, meaning that they will not be executed directly upon
submission. Instead, they are executed asynchronously, in a separate thread. How this is handled
and what kind of restrictions this introduces will be discussed in this section.

The reasons behind this asynchronous approach is simple: a job may need several minutes, if not
hours to complete its analysis. Making synchronous execution, i.e., running the job within the same
thread in which the HTTP request is also processed impractical, because the HTTP request sent
by a client requesting job execution has probably already timed out at this point. For this reason,
we had to implement a processing approach that is asynchronous, implementing long running jobs.
Implementing this concept is usually done in three components, a producer, a queue and one or more
consumers. The producer in our case is the user, at least indirectly, since the user initially triggers
the creation of a Job using the API that will in turn create a job object, stored in the database and
gets enqueued for further processing in the queue component. From there, a consumer, i.e., the job
runner component, takes the enqueued object and starts processing it asynchronously [Sha21].

From a design perspective, the decomposition of these three components into separate small
applications, could be considered. In this case, the consumer and the producer would have to be
implemented and the queue could be handled using an off the shelf message-broker software, like
RabbitMQ11. If the application should be usable for a large user base, with the capability of scaling
out the job execution dynamically, this much more complex implementation approach could be

52

5.3 Implementing the Backend

considered. However, the tool is more likely to be used in many small instances used by a small user
base (≤ 10 Users). On that scale, building the application in such a highly scalable, cloud-native,
fashion seems to be overcomplicating things significantly.

For this reason, the basic idea of producers, consumers and a queue is implemented within the
application using the Java standard API, Instead of using a queue in the fashion described above, we
use a ThreadPool that is used to schedule the execution of jobs. This ThreadPool represents the queue
and parts of the consumer, since it keeps a queue of Java Callable objects, that in turn implement the
execution of jobs and their corresponding tasks. The pool then consumes as many Callable objects
from its queue as it has threads available. For example, a single threaded ThreadPool processes only
one job at a time. If the pool has four available threads it can process four Callable objects at the
same time. The producers, in the terminology of Java also referred to as submitters, they submit an
instantiated Callable object to the ThreadPool in order to schedule it [Eug22; Ora14].

The execution of a job works as follows:

1. The user invokes the Create Job API endpoint.

2. The backend creates a new Job object, stores it in the database, creates an instance of the
Callable responsible for the processing of the job and submits this Callable to the ThreadPool,
queueing it for execution.

3. Once compute resources are available, the ThreadPool schedules the job, to be more specific
the Callable responsible for the processing of the job, on one of its available threads.

4. The Callable performs the analysis and stores the result.

The Job execution is implemented in such a way that the current state is always persisted in the
database, enabling the ability to always get the current progress using the Get Status API Endpoint,
ensuring the frontend can be updated with the current state by using polling, as discussed before.
The job execution iterates over the tasks of the jobs, runs them, in a manner we will discuss in
Section 5.3.4, and retrieves the artefacts produced by the subprocess. Depending on the result of
the task, its state will be set accordingly. Once all tasks have been executed the state is either set
to Done, if all tasks have ended without any issues, or Failed, if at least one of the tasks did not
terminate successfully.

Next, the task execution procedure and the implementation of outlier detection methods will be
discussed.

5.3.4 Handling python subprocesses

In order to use the implementations provided by the pyOD library, to perform the outlier detection
and our previous decision to extend the already existing backend of the IoT Application Modelling
Tool, implementing a mechanism that allows us to run both Python code and Kotlin code, to
perform the job execution was necessary. The solution for this problem are child processes of the
Python programs that get invoked using the ProcessBuilder, which is part of the Java standard
library [Jon19; Ora14].

11https://www.rabbitmq.com/

53

https://www.rabbitmq.com/

5 Implementation of the suggestion wizard

Listing 5.2 Reduced output of the env command on a Linux machine before activating the virtual
environment

PWD=/home/chris/venv-demo

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin

A task will execute two child processes in a row, the first one is responsible for performing the
main analysis, i.e., training the model and performing the predictions on the test portion of the data
set, in order to compute the metrics for binary classification, if possible, like the 𝐹-score and the
accuracy, and draw the visualizations. The second one performs a prediction benchmark, measuring
the runtime of the outlier detection method for loading the trained model from the previous task
and running the prediction on a predefined number of rows. In order, to get an average processing
speed per row.

With this very rough idea how the implementation will be handled, there are still many open
questions that needed further clarification in order to implement the execution.

5.3.4.1 How do we provide a runtime environment for Python scripts?

Since Python is a requirement for the execution of Jobs, it is assumed that it is already installed.
But even with Python available there are still many dependencies of the pyOD library that have
to be installed and provided somehow. The virtual environment module which is part of Python
itself is the perfect solution for this. Since it allows the creation of an environment that is specific to
one application. Instead of installing all dependencies globally, which would be the other option to
provide the dependencies [Pyt23].

Which option should be chosen has to be decided by the person that is in charge of deploying the
application in the end. This is not a decision that can be made in general, it has to be decided in
a case to case basis. For example, if the IAMT Backend application is running on a developer
machine, without Docker, the use of a virtual environment makes a lot of sense. In order, to isolate
the dependencies from other project on which the person may work. If the application on the other
hand is deployed on a virtual machine, or within a Docker container, with the sole purpose of
running the IAMT backend installing the dependencies globally does not cause any issues. The
application must therefore support both virtual environments and globally installed dependencies.
To understand how this could be implemented in the application, it is mandatory to understand how
virtual environments work.

To use a virtual environment in Python, it has to be activated by running an activation script. As
illustrated in the simplified outputs of the env Linux command, which prints the current environment
variables to standard output, shown in Listing 5.2 and Listing 5.3, this activation script alters
the PATH variable and adds other environment variables that point to the location of the virtual
environment [Pyt23].

With the functionality of virtual environments figured out, it was mandatory to find out how the
virtual environment could be used within a process that is invoked by the Java ProcessBuilder.
The answer to this problem is very simple: it is just necessary to ensure the environment variables

54

5.3 Implementing the Backend

Listing 5.3 Reduced output of the env command on a Linux machine after activating a virtual
environment called env

PWD=/home/chris/venv-demo

VIRTUAL_ENV=/home/chris/venv-demo/env

VIRTUAL_ENV_PROMPT=(env)

_OLD_FISH_PROMPT_OVERRIDE=/home/chris/venv-demo/env

_OLD_VIRTUAL_PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/bin

PATH=/home/chris/venv-demo/env/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/

bin:/snap/bin

with which the Java application have been launched are passed through to the child-processes. The
default implementation of the ProcessBuilder already handles environment variables this way by
default, making no implementation changes necessary [Ora14].

To use a virtual environment with the application it is therefore only mandatory to start the Java
application from within a shell-session that has the corresponding virtual environment activated.

The capability of running the script is only one portion of having a suitable runtime environment. It
is also necessary to make sure every task has a working directory, it can perform its actions in. To
avoid any conflicts, for example, caused by identical file names, it should also be made sure the
directory is unique.
To implement those unique working directories, it is initially necessary to create a directory in the
systems temporary directory or a location chosen by changing a configuration option. Within this
directory a child directory for every Job is created. Which, in turn, will contain a child directory for
every task of the job. An example of the format used to generate these unique working directories
is /tmp/iamt-od-wizard/<JobID>/<TaskName>. This directory gets created for every task that gets
processed, after the task is terminated and the artefacts have been saved the temporary working
directory is removed, to save space.

With the working directory clarified, there is one more important thing that has to be done to build
a suitable runtime environment: providing the script files. This is very basic, as discussed before
the script files are contained within the Java resource folder, that becomes part of the .jar file
during the build process using Maven. The script files needed by each outlier detection method are
declared in the definition file.Listing 5.1 is an example, showing a snippet that is used to define the
𝑘-nearest neighbour algorithm. To build the runtime environment, when a task is getting executed,
the backend copies the files defined in the dependencies and scriptLocation to the previously
created working directory, using the Java ClassLoaders getResourceAsStream(String path) method.
In order, to retrieve the content from the resources folder or .jar file.

After copying it is not necessary to set the executable flag on these files using the chmod +x

<Filename> command since these scripts can also be invoked using the python3 <Filename> com-
mand instead. Invoking a program using this command tells the python program to read and execute
the file, while the process is much more complicated if the script should be made executable. In
this case, the entry point files must contain a shebang, e.g. #!/bin/bash line, that tells the operating
system, which program should be used to run the code that follows [FOL23; Mas01]. Apart from
the requirement that a file must start with a shebang, the use of this mechanism comes with dome
more drawbacks that can be avoided, by invoking the Python runtime directly. These include, the

55

5 Implementation of the suggestion wizard

requirement that files must be made executable before invoking them and the potential platform
incompatibility, as the shebang is only generally supported by UNIX-like operating systems. On
Windows, support can be added by using tools like Cygwin12, introducing further, unnecessary,
dependencies.

5.3.4.2 How are parameters and input data passed to the Python scripts?

After the runtime environment has been created, the task is almost ready to be launched, only the
input parameters have to be passed into the script and the input dataset has to be stored in the
working directory for processing.

Providing the input dataset file is very simple, here we just copy the contents of the input dataset
from the database into the working directory, with a common filename, like input.csv, that the
analysis and benchmark script will then read as basis to get data.

The more sophisticated question is how input parameters, such as the testing percentage, or the flag
that the is set if the input file should be randomized before performing the analysis, are passed into
the scripts. There are many options to do this, such as creating a configuration file, with a unique
name or using command line arguments to get these parameters into the application. However the
simplest option that is also very failure proof is the use of environment variables to do this. Using
environments variables does not come with any requirements in regards to libraries, as the use of
custom environment variables is supported by both the ProcessBuilder and the Python standard
library. The only requirement to ensure environment variables are working properly is the declaration
of names. The names of environment variables must be identical in both the Python script and
the backend implementation. This introduces redundancies in the code, that may eventually cause
problems if the names are only altered in one part of the application, during a refactoring of the
source code at a later point in time. There are solutions to resolve this, such as using a shared
configuration file. However, implementing such a mechanism was decided against because this
seemed to make the system overcomplicated, as most developers are often aware of those kinds of
problems.

Using environment variables also allows the setting of default values, that will be used if the
environment variables are not set, easing the development of the Python scripts, as they can be
invoked directly, without tediously setting the environment variables before invoking the script.

5.3.4.3 How is the result of the process returned to the parent process?

We previously discussed how parameters are passed into the python application. To make sure the
two processes can interact it is also mandatory that parameters can be retrieved from the Python
child process. For parameter output there are just as many options to handle them as there were
with the input handling. The traditional error code is not sufficient, for the type of interaction that is
needed in our use case. Since the exit code is only one integer value, not sufficient for the amount
of data that has to be transferred back to the parent process. The potentially most feasible options
are: (1) an output file, with a predefined name, that contains a serialized object with the return

12https://cygwin.com/

56

https://cygwin.com/

5.3 Implementing the Backend

values, for example in JSON format, or (2) passing the return values to the parent program using
the standard output or standard error streams, for example by writing a non-human-readable JSON
object, i.e., a JSON object printed without any line breaks, between key-value pairs. This makes it
possible to look for JSON objects by performing a line by line analysis of the standard output or
standard error streams, looking for opening brackets at the start of the line and closing brackets at
the end of the line.

Because both standard output and standard output have to get processed anyway, to store their
outputs as a logfile, that can be used for debugging, in case something goes wrong, the second
option is chosen. To be more precise the Kotlin backend expects a JSON object in one line of the
standard output. The backend searches for such an object, if none is present an error message is
thrown. Since that is a clear indication, that something has gone wrong.

The object that is written to standard output is expected to follow a predefined schema. In order to
be parsed by the ObjectMapper, provided by the Spring framework, to convert it to a Java object.
For the training part of the task, this object also contains a list of the files the script has produced.
After termination, the backend copies these files into the database and stores their corresponding
identifiers within the object instead of the original filenames, to keep the files beyond the duration
of the task, after the working directory has been cleaned up. The files are mapped by key and value,
the key is used to identify the purpose of the file, of which the path is set in the value, an example
for the key is visual which represents the visualization.

5.3.4.4 What is implemented in the training script?

As briefly discussed there are two scripts for every task, the training and the benchmark script.
The training script is performing the initial analysis, which will result in visualizations and the
binary classification metrics. To achieve this the training scripts performs the following steps, it is
important to note that some of these steps may only be executed if one or more preconditions are
fulfilled.

1. In the initial Data Loading step the, script reads the dataset, randomizes it with a preset seed,
if the user enabled this feature for the job and splits the dataset into training and testing
portions based on the split percentage provided.

2. After loading the data, the model is trained, by invoking the train method in combination with
the training dataset. The training also produces predictions for the training dataset. These
predictions are only useful for further analysis if the outlier detection method is unsupervised.
In that case, these predictions illustrate what the outlier detection method thinks are outliers
in the training dataset. In case of a supervised outlier detection method, these predictions are
of no value, as the model has already been taught what the value should be in those cases.

3. At this point the prediction can take place, by performing a prediction on the testing dataset.

4. If the input data is labelled, so that rows are declared as an outlier or an inlier, the expected
value for the row is available, the numbers of false and true inliers and outliers can be collected
in order to build a convolution matrix for the testing dataset. We also compute the latter for
the training dataset, however the result of this is only providing useful information if the

57

5 Implementation of the suggestion wizard

implemented outlier detection method is based on unsupervised-learning. For completeness
this process is also done for the complete dataset, the accuracy and 𝑓-score of this dataset,
represent the weighted average of the two datasets.

5. If the outlier detection consists of either one or two dimensions, the visualization is drawn,
visually illustrating which value is considered an outlier and which one is not. The types of
visualizations has been discussed in Section 4.3.2, the visualizations have been implemented
using the pyplot13 library. To visualize two dimensional datasets, the implementation to
perform the visualization provided by the pyOD library is used. For one dimensional datasets
histograms with bins, if the value range exceeds 250, have been added. A visualization for three
dimensional datasets is not provided due to potential lack of usefulness and the the significant
challenges that would be faced when implementing it, as discussed in Section 4.3.2.3.

6. Finally, all result data files are stored within the working directory, including, the visualiza-
tion, a list of mismatches, the predictions the program has made, and the instance of the
outlier detection algorithm implementation that is exported using the joblib library. As
recommended by the developers of pyOD to make trained models persistent [Job23; Zha23].

The training script, for an outlier detection method, consists of two files, a file specific to the outlier
detection method and another, generic file, that contains the generalized implementation of the
whole procedure. In the method specific implementation, it is only mandatory to instantiate the
outlier detection method, provided by the pyOD library, and to call the generalized method to
perform the analysis. This is possible, because all implementations of outlier detection methods
provided by the pyOD library are derived from the same base class.

5.3.4.5 What is implemented in the benchmark script?

The process of benchmarking is only implemented in a generic manner, since the previously stored
joblib object is loaded, this instantiates the outlier detection method in an instance that is identical
to the object created during the training process. Doing this also makes sure, the created joblib file
can be used to reopen the model, a task that becomes very important if the outlier detection method
has to be instantiated on an IoT Device.

The benchmarking process loads the model and the initial dataset from the working directory. After
loading, a random sample of 100 rows is selected from the original input dataset. At this point, a
time measurement is started and then every one of the rows is predicted by invoking the predict
method for every one of these rows. After the predictions are done, the time is stopped as a result
the average computation time for 100 rows can be calculated. This is the main metric derived from
the benchmark.
The result is then returned in the same manner as the training process.

In case of failure of the benchmark process the execution of the task is not marked as failed, it is
instead marked as succeeded, however the benchmarking results, which do not exist, will not be
displayed in the frontend. Instead a warning that the benchmark has failed is shown.

13https://matplotlib.org/stable/tutorials/introductory/pyplot.html

58

https://matplotlib.org/stable/tutorials/introductory/pyplot.html

5.3 Implementing the Backend

Listing 5.4 Outlier detection method specific implementation for python of the 𝑘-nearest Neighbour
algorithm

Import the implementation of the outlier detection method

from pyod.models.knn import KNN

Import the generic implementation

import base

Instantiate the outlier detection method

inst = KNN()

Run the training procedure

base.run_od_method(inst, "knn", False, base.DEFAULT_FILE_NAME)

5.3.4.6 How can new Outlier Detection methods get added?

The addition of outlier methods is simple, assuming the method is implement by the pyOD library,
or the implementation is derived from the same base class as the implementations part of the pyOD
library. The addition is done in two steps: (1) The creation of a method specific script file and
(2) the addition of the method to the list of implemented methods.

The method specific implementation is very simple, it is only mandatory to import the common
library and the implementation of the outlier detection method. Then the implementation must
be instantiated and the analysis must be launched. By calling a method from the common file
called base as illustrated in Listing 5.4. Calling the base.run_od_method requires some parameters,
including the instance of the outlier detection method, the name used to identify the outlier detection
method, this name, preferably, is identical to the unique identifier defined in the list of the outlier
detection methods. The third parameter is a boolean that is set to true if the implemented outlier
detection needs the result for training, i.e., this value must be true if a supervised outlier detection
method is implemented. The last parameter defines the filename of the initial dataset, which should
always be identical, as it is stored in a constant.

The base script also needs more parameters, for example whether or not the input dataset is labelled,
referred to as Has 𝑦-data, those parameters are not constant and depend on the current task they
should process. For this reason, these values are passed through the script using environment
variables, as discussed before, the implementation of this is completely handled within the base
script itself.

In the second step, the method must be added to the file defining all implemented outlier detection
methods. Here, an object like the one illustrated in Listing 5.1 has to be added. To support a new
method the values must be changed accordingly, the script location should point to the script created
in the previous step within the resources folder of the applications source code. The dependencies
must include the base.py and benchmark.py, as they are used for the benchmark and as a library,
used both during the benchmark and training.

59

5 Implementation of the suggestion wizard

5.3.5 Handling job cancellation

Job cancellation can be divided into three types of cancellation: (1) The cancellation of a job that
is still in the Pending state, (2) the cancellation of a running job, that is already performing the
analysis or is running the benchmark and (3) the termination of the currently running task, to break
out of a dead locked process without completely terminating the Of course the cancellation of jobs
that already completed the execution, either successful, unsuccessful or upon cancellation cannot
be cancelled. As they have already terminated. The latter two of these options are the challenging
ones, as there are child processes that have to be terminated, too. Before looking into those types of
cancellation, the cancellation of pending jobs will be discussed.

Cancelling a non-running job is rather simple, only the removal from the list of scheduled jobs,
and the modification of the jobs state to Cancelled have to take place. Due to the asynchronous
implementation and the lack of atomicity in the cancel operation it is theoretically possible, that
the execution of a job starts at the exact same time as the job gets cancelled, which may result in a
delayed termination of the job, i.e., the first task may be launched. But after its termination the job
will also cancel itself, since it is marked for cancellation and this marking is checked every time a
new task should be started. A lock or mutual exclusion (mutex) can resolve this problem. However,
the scenario is very unlikely and even if it occurs the job will still get cancelled with a bit of a time
delay. For that reason, the more complex locking mechanism was not implemented.

The termination of running jobs and also just terminating the currently running task is more
complicated. Since the cancel request is sent asynchronously, i.e., in a different thread than the
one orchestrating the job execution. The main problem with this type of cancellation are the child
processes that are created by the callable responsible for the job execution. As it is waiting on the
completion of one of these child processes most of the time. In case a job gets cancelled, these child
processes have to be terminated, before the job can be marked as cancelled, to make sure the job
document does not get turned into an illegal state, caused by a lost update scenario.

For the implementation of this termination mechanism multiple options have been investigated:

• In a UNIX-based environment, there is always a kill command that can be used to terminate
a process, assuming one is permitted to do so. This is a very primitive version of the
implementation, that was initially used to terminate some tasks during development, for
example because an outlier detection implementation has deadlocked. Here manually invoking
the kill command with the corresponding process id (pid) which gets logged by the backend,
in a Terminal, allowed the quick and easy termination of tasks. Since termination using kill

usually results in a non-zero return code of the child process, the callable thinks the process
has failed, marking the corresponding task as failed, however the rest of the job will continue
to execute just like before.
With these observations, a potential implementation of the cancel approach can be derived.
For this the process ids (pid) of the currently running child-process have to be stored in a
thread-safe Map that maps the job id to the associated process ids. Every time a new child-
process gets invoked the resulting pid must be stored in this map to allow the termination
from a separate thread. If the user now invokes the cancel endpoint another child-process of
the kill command will be launched, terminating the child process, currently running in the
callable.
This procedure to this point, only terminates the currently running task, while this is one
of the types of cancellations that is offered, the cancellations of whole jobs is not possible

60

5.3 Implementing the Backend

yet. To achieve that, further modifications have to take place. In order to avoid lost updates,
the job should be marked as cancelled within the running callable, that will then terminate
upon marking the job and the remaining tasks as cancelled. To make that possible another
thread-safe collection, specifically a set, has to be created, If the user requests the termination
of a running job this job id will be added to this set, and afterwards the child-process will be
terminated, just as discussed previously. Once the job executable wants to run the next task it
ensures the job it is currently processing is not in this set, if it is present it will not run the next
task, instead it marks the job and all pending tasks as cancelled before terminating [Lin22;
Neg20].

• The previously described approach, relies on system binaries to perform the termination, this
may cause issues, based on the operating systems, another, more platform independent option
is the use of Java API to terminate the process. One solution in this case could be: the use of
the Callables cancel() method, which will in turn cause the corresponding thread to interrupt
when waiting for the child-process to terminate, by catching the InterruptException while
waiting for the process to complete. In case this exception gets thrown, the process could
then be terminated using the destroy() or destroyForcibly() methods. After terminating
the child process, the callable must mark the job or task as cancelled respectively [Ora14].

At the current stage of the implementation, the backend uses the first approach to cancel jobs,
the main reason is the reduced implementation effort, coming from the initial non-cancellable
implementation.

As briefly mentioned, there are two different types of cancellation, the termination of the whole job
and the termination of just the one, currently running task. The task termination option is intended
to be an emergency switch to kill a child-process that has locked up or just takes too long. Because
the dataset is too large. Unlike the cancellation of jobs, the termination of tasks is only possible if a
child-process is running, otherwise this action will not do anything.

5.3.6 Handling illegal application states and outdated datasets

Our concept comes with several caveats, caused by the loose enforcement of relationships and
the implementation of the job scheduling mechanism. In order to mitigate these problems, some
measures have been implemented to perform a clean-up on the database and to handle jobs that
were running, when the application was terminated.

5.3.6.1 Database clean-up

The relationships in our data model are not enforced by constraints within the database. The reason
for this is the intended looseness of the relations. For example: a csv Blob may not be associated
with any Job or Task, if someone wants to reuse the data without uploading it again14.

Since those loose relations may result in orphan objects, such as jobs or blobs a clean-up mechanism
has been implemented to get rid of these unused elements. The clean-up service is implemented as
a cron job that is executed every 12 hours. Orphan documents also still have a timeout, to make sure
they are kept at least seven days before they get removed. This is particularly important to ensure
that a blob could not possibly still be used in a job that has not yet been created.

61

5 Implementation of the suggestion wizard

These clean-up mechanisms can be disabled by a config option, in the applications.properties file
or by any other mean supported by the Spring Framework to alter these values, such as command
line arguments [VMW23].

5.3.6.2 Job cancellation on startup

The implemented mechanism of execution is not failure tolerant, which in consequence could cause
jobs to be running, even tough they are not running any more. This occurs if there are jobs in
execution, when the main application crashes or gets terminated. At that point, the jobs are stored
with the state Running in the database, when the application is restarted they would stay in this state
forever (unless manually cancelled), because there is no mechanism to reschedule the jobs after the
application crashed.
To avoid this, a method that is invoked, once every time the application launches, marking all jobs
that are stored as running in the database as cancelled.

Another option could be the rescheduling of the jobs with Running state on startup, however due
to the possibility of the still running task being the cause for the crash, for example by causing an
OutOfMemoryError, we decided against this option to prevent potential cash loops that could only get
resolved by manual intervention.

5.3.7 Making the Backend portable

Since the IAMT backend has a lot of runtime dependencies, like libraries, after the wizard has been
implemented, a means to make the distribution easy, especially to make the process of deployment
as simple and deterministic as possible during the evaluation, has to be implemented. To fulfil this
the backend has been dockerized.

In the previous implementation of the Dockerfile the application was built outside of Docker and
the produced artefacts (jar files) were copied in the Docker image. Depending on the complexity
of the build process this may be a good option, however the build process of the application is not
complex, i.e., it does not consist of many child projects and closed source dependencies that may
need special credentials to build. The project can be built by running mvn clean package, making
the compilation process very simple. For this reason, the benefits of building the Docker image
over weigh the downsides, as the building of the application using docker build always creates
an identical base environment, which in turn ensures a consistent build environment. Building
the application for the Docker image is therefore done in the first stage of the Dockerfile, after the
application is built the second stage is initiated, here all dependencies fetchable from the package
manager, like Java and Python are installed. After the installation of the base dependencies the
python dependencies like pyOD, Tensorflow and xgboost are installed. To reduce the size of the
output image the cached package files get removed, all of the previous steps are executed in one
RUN statement, to make sure all the dependencies are added in one layer of the docker image, this

14The frontend design does not have this feature in mind, however it may be implemented later or the backend application
may be used with another frontend supporting this.

62

5.3 Implementing the Backend

Listing 5.5 Commented dockerfile of the backend

FROM eclipse-temurin:11 AS builder

WORKDIR /iamt-backend-build

Copy sources

COPY . .

Build application, excluding any tests

RUN ./mvnw package -DskipTests

Output Image

FROM ubuntu:latest

Ensure install passes, without failures due to missing input from the user

ARG DEBIAN_FRONTEND=noninteractive

Install Dependencies and remove cached files

RUN apt-get update && \

apt-get install -y openjdk-11-jre-headless python3.10 python3-pip && \

python3 -m pip install pyod tensorflow xgboost && \

rm -rf ~/.cache/pip/* && \

apt-get clean

Expose application port

EXPOSE 8080

Set the copy target directory

WORKDIR /iamt-backend

Copy artifact from build stage

COPY --from=builder /iamt-backend-build/target/*.jar .

Set directory for job workdirs

WORKDIR /iamt-workdir

Set Entrypoint (Simplified)

CMD ["java", "-jar", "/iamt-backend/iamt-backend-0.0.1-SNAPSHOT.jar"]

also has a great effect on the size of the output image. The build is finalized by getting the binary
built in the previous stage and by setting the entry point, for launching the container later [Bib22;
Doc23].

A commented version of the dockerfile is depicted in Listing 5.5. Building a Docker image always
needs some kind of base image. For the backend image, ubuntu15 was chosen as the base image, as it
supports the use of the apt package manager and the names of the packages are identical to the ones
in the Ubuntu operating system, making the setup of the image very simple and understandable,
especially for someone who has used Ubuntu beforehand.
The compilation of the Java binary is done by using a Temurin16 base image. Termurin is one of
the many available OpenJDK runtimes that have been derived since Oracle has announced changes
to the license of the original Java Product. This image also includes Maven17, which is used for
dependency management and compilation of the binary.

15https://hub.docker.com/_/ubuntu/
16https://adoptium.net/temurin/
17https://maven.apache.org/

63

https://hub.docker.com/_/ubuntu/
https://adoptium.net/temurin/
https://maven.apache.org/

5 Implementation of the suggestion wizard

5.4 Frontend Implementation

The backend was developed to suit the needs of the wizard, that has been outlined in the previous
chapter, with the implementation of the backend, a basis has been made, that can be used to implement
the outlier detection wizard in the IoT Application Modelling Tool, derived from the previously
discussed concept. This section will discuss the implementation of the concept, challenges faced
during this process and things that have been altered or added in comparison to the original wizard.

5.4.1 Adding instantiatable nodes

In order to get validators that can be configured after they have been dragged into the modelling
space, a new type of node, currently limited to validators, had to be introduced: the instantiable
validator. Since, the validators introduced in Section 4.4 are not sufficient for this purpose, as they
only can be configured by setting configuration parameters, as we saw in Section 4.4.2.

To make this possible, we have to introduce a placeholder type, that allows the modeller to completely
model the data flow. After the modelling of the data flow is completed the basis for assisting is
available, as we have described in Chapter 4.

Such an instantiable node consists of two node types: 1. The uninstantiated type, that shows a
configure button, is listed in the selection menu on the left and has no input parameters, as well as
2. the instantiated type, which is not shown in the selection menu, and also has a single, read-only
unmodifiable string parameter called config. How this value is set will be discussed next.

To instantiate such a node, the assumption, that there will be some sort of assisting UI guiding
the modeller through the instantiation of the node, such as a wizard. After the completion of this
program we expect a string return value from it. Based on the string returned, we either instantiate
the node or the node stays as is, in case the UI has failed or has been closed. The returned string is
intended to contain the configuration for the instantiated node. At first glance a single string may
not be sufficient. However, the usage of serialized objects, such as a Base64 encoded string or a
single line JSON, is intended to be used to store more complex configurations.

Figure 5.5: An uninstantiated validator-node (left) in comparison to an instantiated validator node
(right)

The process works in the following steps:

1. The user adds an instantiable node, from the selection menu to the model. After doing this
instantiation (deployment) of the model is temporarily disabled.

64

5.4 Frontend Implementation

2. The user models the connections to this node within the model.

3. After expanding the node, the user clicks on the configure button, that will open a wizard, or
a similar UI, to start the instantiation of the node.

4. Once the steps have been completed or the process has been cancelled, the UI has to return
a string value. If the value returned is not null or empty the type of the node is changed to
its instantiated variant and the modeller is allowed to proceed with the instantiation of the
model, assuming, that there is no further uninstantiated node in the model.

The visual difference between an uninstantiated node and its instantiated counterpart are illustrated
in Figure 5.5.

It was also important to introduce a mean to enable the change back to the uninstantiated type,
without having to replace the node. To make this possible the dialog to modify the validator, which is
a simplified version of the dialog used to modify operators, seemed to be the simplest to implement
option. Therefore, the dialog was expanded to support the selection of the uninstantiated type, while
the instantiated type is selected. Since the user should not be able to alter the parameters of the
instantiated validator, as they are set by the configure function. The mechanism that allows the
modification of parameters had to be disabled, if the node is an instantiated validator. To prevent
the instantiation with an empty parameter, the modeller can only change to the uninstantiated type.
If the uninstantiated type has been selected, he cannot select the instantiated version again, without
leaving the dialog, by closing or cancelling, and reopening it again. When the edit procedure is
cancelled or closed, by clicking outside of the dialog, the type is not altered. The modeller must
click the save button to perform the action.

5.4.2 Implementation of the wizard

The implementation of the wizard itself was done as, separate module, in Angular terminology,
within the IoT Application Modelling tool. To keep the coupling between the wizard and the
modelling application as loose as possible. Of course, the wizard is still tightly integrated and
may not be used independently, without significant modifications. However, reducing the coupling
still eases the process of reusing the components, separates concerns within the application and
simplifies the source code, to generally follow best practices [Woz22] The wizard user interface is
opened as a modal dialog, that is intended to be only opened once for every instance of the UI, at
the same time. This is not a limitation, it is a design decision, since the modal dialog will be in
front of any other component in the frontend application.

Before taking a look at how the steps have been implemented, some aspects in regards to the
implementation behind the templates, i.e., what is displayed to the user, will be discussed.

One important task in such a wizard, or any more complex web application, is the management of
the application state. This type of state must not be confused with the different steps in the wizard,
since the flow between them can be modelled as a state machine, as we saw previously. Instead, the
state should be considered something that is used to store information in addition to the wizard state,
in state machine terms, like the node that has been selected or the mode of operation. This data has
to be stored in a way, that makes is persistent within the application instance, like a singleton. To
handle this a singleton service, called the state manger has been introduced, its responsibility is the
centralized state management of the wizard. It also acts as a mechanism for component interaction

65

5 Implementation of the suggestion wizard

across larger hierarchies. Because, this otherwise would have to be handled using inputs and outputs
within the component tree. These interactions are handled by asynchronous Subjects on those a
component can publish a change and another method can subscribe to it. One example of this are
the three subjects that are used to enable/disable the Next, Back and Cancel buttons. Every time the
state should change, here there is a subscription for every one of those subjects, waiting for change
events. We mostly use a specific type of subject: the BehaviorSubject which allows the definition of
an initial value and also stores the current value, also a new subscription is always invoked with the
current value [Bri23; Dev23a; Nya20]. All values provided by the state manager are stored using
BehaviorSubjects. These mechanisms are provided by the RxJS library18.

One important question that had to be investigated, before the implementation of the steps started:
How does the wizard dialog change steps? The Angular router could be used, that allows the
modification of views, based on the current URL, however since the frontend application in its initial
state does not use a lot of routing this option would probably require more effort, in comparison to the
option that was chosen. Instead, the state manager stores the current step using a BehaviorSubject.
The corresponding step component is shown if the current step matches the step identifier using the
ngIf directive. This mechanism is sufficient for this use-case since there are only a small number of
step types that are introduced.

The parent component of the main wizard view also contains three commonly used buttons: Next,
Back and Cancel, that can be enabled using the state manager. The state manager also provides a
mean to change the behaviour of the buttons based on the current step the wizard is in.

Another service introduced interacts with the Backend API, this service wraps the API methods in
TypeScript methods, by calling the HTTP method using the HttpClient provided by Angular.

5.4.2.1 Step 1: Introduction

After the Wizard is opened for the first time, or when no job has been created previously, for the
specific node, the introduction step is shown. Its main purpose, is the selection of the mode of
operation, by informing the user what requirements have to be fulfilled to perform an analysis.
This page also shows, which outlier detection methods are supported for the corresponding mode
of operation, since the unsupervised mode is not able to perform an analysis with supervised
machine-learning based outlier detection methods.

Each outlier detection method is described with a short description and some links for further
reading, that for example point to the publications that have proposed the corresponding outlier
detection method. These informations are shown using expandable panels, If the user wants to
view these informations, the corresponding expansion panel must be opened, by clicking on the
name. Afterwards, the panel expands and the informations related to the outlier detection method is
displayed.

The selection of the mode of operation is also handled by expansion panels: to select the mode of
operation, one must expand the corresponding mode of operation and click the continue button
within the expansion panel. Clicking this button will forward the user into the next step.

18https://github.com/ReactiveX/rxjs

66

https://github.com/ReactiveX/rxjs

5.4 Frontend Implementation

(a) The overview, without any expanded option

(b) The expanded view for the supervised mode of operation

Figure 5.6: The first step of the wizard

5.4.2.2 Step 2: Data Upload and Review

This step combines the Data Upload and Data Review steps initially drawn out in the wireframe
diagrams. At first, the user is prompted to upload a csv file, how the file should look, i.e., what
columns should be displayed is also shown here, to make sure, one can modify the file accordingly
beforehand. It is important to note here that the file will not be transformed by the wizard, since
spreadsheet tools like Microsoft Excel19 or LibreOffice Calc20 can easily be used to perform these
transformations.

File upload, data review and job configuration are part of this step, those subtasks are separated using
a tab view. As long as, no file is uploaded, only the data upload tab is active and can be selected.
Once the file is uploaded, it is checked, whether a file has the expected number of dimensions
and the other tabs get enabled. If the expected number of dimensions mismatches the number of
dimensions in the selected file, a warning is shown, informing the user about the potential problem.
Since, this limitation does not affect the analysis, it only becomes a problem when deploying the
model.

19https://www.microsoft.com/en-us/microsoft-365/excel
20https://www.libreoffice.org

67

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.libreoffice.org

5 Implementation of the suggestion wizard

(a) Selection of the input file

(b) Modification of job parameters (c) Viewing the contents of the selected file

Figure 5.7: The data upload and review step of the wizard (step 2)

After a file is selected, it is analysed by the frontend application and parsed following the same
rules that are used by the Python scripts, performing the analysis, making sure the file can be parsed
accordingly, If the file does not exceed a size threshold, it can be previewed in the preview tab,
showing 15 rows at once, the modeller can move around in the file using next and back buttons.
As well as, the option of specifying an offset from which the rows should be shown. Of course,
mechanisms that prevent the setting of invalid offset values, that would either result in viewing data
of rows that don not exist, because, the starting index is smaller than the wanted one or ones that
would result in a negative starting index, have been implemented. The threshold to view the data in
the browser has been set so one megabyte. This value was chosen, since most devices can process
this file size in a reasonable time frame.

The third tab, is also enabled after the file is selected. It allows the user to explicitly disable several
outlier-detection methods, to enable randomization and to set a seed that should be used in order to
ensure the dataset is always randomized equally. The option to set a seed only becomes visible, if
the data should be shuffled, since this option does not change anything if the data is not shuffled.
The percentage of rows in the dataset that should be used for testing can also be changed on this
page.

68

5.4 Frontend Implementation

All three parts of this step, are illustrated in Figure 5.7, where a job for a one dimensional model,
in the supervised mode of operation, with 5000 rows of randomized sine wave data is about to be
started.

Once the user has selected a file, reviewed the data and modified the parameters, if mandatory. The
job can be started by clicking the Next button. In the background the UI will take the selected file,
upload it to the backend, which returns the file identifier if the upload was successful. This file
identifier is then used by the user interface, to create the job according to the predefined parameters.
The job is put into the processing queue after creation and the progress of it is shown in the next
step, where the user is routed to after the job creation was successful.

5.4.2.3 Step 4: Processing

While the job is pending or in progress, the processing step is shown. It illustrates the current
progress using a progress bar. The processing step also has an expandable panel, that contains
details about the job, for example, which tasks are already done or if one of them has failed, as a
failed task does not automatically result in the termination of the whole job. The detail view also
includes an option to terminate the currently running task. Since the page is usually refreshed every
five seconds there usually is not need to manually perform a refresh, however an option to do this
has been added for the cases, where this may be mandatory. For example if the refresh interval
is increased to 30 seconds. The refreshing based on the interval is implemented using a timer

observable from the RxJS library, that is a core part of the Angular Framework [Dev23a].

(a) The overview, without any expanded option (b) The expanded view for the supervised mode of
operation

Figure 5.8: The window shown while a job is being processed (step 3)

The current job can also be cancelled using the common cancel button. Clicking it will tell the
backend to cancel the job and to close the wizard without instantiating the validator.

69

5 Implementation of the suggestion wizard

Figure 5.9: The result view for a job in supervised mode (step 4)

Once the job is finished, the next button becomes enabled and the user can continue into the next
task. In case the job is long running, for example when working with a large dataset it is also
possible to close the wizard by clicking outside of its modal window, this will not instantiate the
validator but will also not cancel the job. If the Wizard it opened again, one can navigate back to
the in progress step or the results view step, depending on the fact that job is done at the point of
loading.

Both the simplified and the detailed progress view are depicted in Figure 5.8. Those figures show a
job that is currently running and the frontend waits for the completion of the job.

5.4.2.4 Step 5: Result Presentation

The core of the wizard is the result presentation step that displays the result of the analysis. The
view can be split into two sections: (1) the job details and (2) the task details.

The job details shows data that is either identical in every task, like the number of total rows,
the number of rows used for training and testing, the creation timestamp of the job, the mode of
operation and the excluded outlier detection methods. There is also an option to download the input
file. This job detail section is on the top of the results view, above the tasks details. As illustrated in
Figure 5.9.

Figure 5.9 does not include the convolution matrices and the binary classification, however the
binary classification is also available for every supervised job in a separate tab, here the number
of true and false inliers or outliers are illustrated in a two by two table. By hovering over the cells
further values can be displayed. This table is shown three times for the testing and training portion
of the dataset as well as one for the whole dataset. This is illustrated in Figure 5.10.

70

5.4 Frontend Implementation

(a) Overview, showing the most important metrics (b) The Binary classification view

(c) The Visualization (d) The list of mismatches

(e) The log file

Figure 5.10: The detailed results for one task, when running in supervised mode (step 4)

71

5 Implementation of the suggestion wizard

The lower section contains an expandable panel for every task, i.e., every outlier detection method
that was executed. If the job is a supervised job, the expandable panels are sorted based upon the
achieved accuracy for every method, assuming accuracy is the only metric that matters, the best
suited outlier detection method is shown on first and the one with the worst accuracy is at the bottom
of the list, before the failed tasks, which are always at the very bottom of the list. The back end does
not create a task for excluded method and therefore they are not shown in the list of tasks.

The expanded task panel contains a tab panel illustrated in Figure 5.10, of which the initial tab
shows an overview, presenting the metrics for the task, like accuracy and the prediction times. On
this view one is also able to select the expanded method to instantiate the validator, if the model
produced by joblib does not exceed the size of approximately 16 megabytes one can also download
this file, to use this model for further processing or analysis, without having to retrain the model.

The other tabs can be used to view the visualization, the list of the mismatches the list of all
predictions of the input file and the log file produced by the backend, useful to potentially identify
any reasons why a task may fail. The visualization and the mismatches tabs are optional tabs, since
they are only available if certain preconditions have been met. In case of the visualization the
condition is bound to the number of input dimensions, since a visualization is only produced for
one and two dimensions, if one for example performs an analysis on a three dimensional model the
visualization is not shown. The mismatches list is only shown if the analysis was able to compute
the mismatches, i.e., when the job was running in the supervised mode of operation.

If an analysis of an unsupervised job is shown the tasks are not sorted, apart from placing failed
tasks at the very bottom, since there is no metric to compare them against. Of course the accuracy
is also not shown in that case.

5.4.2.5 Job List

The job list step is a step that is only displayed if there is at least one existing job for a node, it
represents a paginated list that allows one look at existing jobs or to create a new one. If a new one
is created the user gets redirected to the first step and if an existing job is opened the user is either
redirected to the results view or the progress view, depending on the current state of the job. One
can view failed, pending/running and done jobs. Cancelled jobs cannot be opened, however they
are still included in the list.

5.5 Generating test data

In order to test the implementation and also to perform an evaluation on the usefulness of the wizard
a method to get data that fulfils the requirements needed for our analysis had to be found. Since
there was almost no real world data available the easiest solution was the implementation of utilities
to generate random data, that contains a predefined percentage of outliers.

72

5.5 Generating test data

To achieve this several types of random data generators have been implemented in Go(lang)21, the
choice of programming language is not based upon any objective criteria, instead the decision to
implement these generators in Go was only based upon personal preference and past experiences
with the language.

All of the generators produce labelled data, however the labels can be easily stripped later using a
simple find and replace procedure, for example by using the Stream Editor (sed)22. The generators
always have at least two ranges,the inlier range (𝑅𝐼𝑛𝑙𝑖𝑒𝑟𝑠 ∈ ℝ) and the outlier range (𝑅𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ∈ ℝ),
in some cases multiple subranges for either outliers or inliers are used, for example the inliers may
be generated in the value range between 0 and 50 as well as 100 to 120, for example. For simplicity
this is still represented as one set. All generators always make sure that an outlier is within the
outlier range but not within the inlier range, even if the inlier range is a subset of the outlier range.
Mathematically speaking the generator makes sure the following condition is fulfilled for any outlier
(𝑣𝑂𝑢𝑡𝑙𝑖𝑒𝑟): 𝑣𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ∈ 𝑅𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ∧ 𝑣𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ∉ 𝑅𝐼𝑛𝑙𝑖𝑒𝑟𝑠. Of course it is also ensured that the opposing
condition 𝑣𝐼𝑛𝑙𝑖𝑒𝑟 ∈ 𝑅𝐼𝑛𝑙𝑖𝑒𝑟𝑠 ∧ 𝑣𝐼𝑛𝑙𝑖𝑒𝑟 ∉ 𝑅𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 is always fulfilled as well.

When working with multiple dimensions, the generated values are based upon the same constraints
for every dimension, however it is made sure that all dimensions get different values. In the
multidimensional mode the tools also generate multiple kinds of outliers, outliers that only affect
one dimension and outliers that affect multiple dimensions. How many dimensions are affected
by the outlier is chosen at random, but can be configured using command line flags, just like other
input parameters, such as the number of rows and dimensions. Generator specific parameters are
also set this way. Every generator has a built-in help command that lists all possible options. If no
parameters are provided a two dimensional file with 10,000 rows is generated. The generated files
are always written to the command line, to either allow further processing, for example to remove
the labels or to store them using stream redirection, assuming a UNIX-like/based operating system
is used to build the dataset.

The following data generators have been implemented:

• The simplest generator is the random generator it generates completely random data, based
upon two predefined ranges: the inlier range and the outlier range. Apart from fulfilling the
aforementioned conditions all values are generated completely at random.

• The sine wave data generator produces inliers using a sine function, of which the amplitude
and the offset is predefined to determine the minimum and maximum value of the function.
To ensure an offset between all dimensions a random offset for the index is chosen for every
dimension, before generating the data. An option to add some distortion, by adding a small
random value to the sine output has also been added. With this generator outliers are also just
generated at random, identical to the random generator.

• The random cluster generates a random amount of value clusters with a random value as a
starting point for every dimension, when a new random inlier is generated first the cluster for
which the data should be generated is chosen then the spread from the base offset is randomly
chosen, resulting in multiple hotspots of data. Outliers are generated at random, identical to
the other options.

21https://go.dev/
22https://pubs.opengroup.org/onlinepubs/009695399/utilities/sed.html

73

https://go.dev/
https://pubs.opengroup.org/onlinepubs/009695399/utilities/sed.html

6 Evaluation of the wizard

To investigate the use of the wizard developed for suggesting outlier detection methods, an evaluation
has been designed and performed, of which the design will be presented and the results get discussed
in this chapter, by first drafting, what the goals of the evaluation are, how it should be conducted.
Afterwards, the final design of the evaluation will be discussed, before investigating the results of
the evaluation.

6.1 Drafting the evaluation

The main goal of the evaluation is to find out how useful the implemented wizard is to people that
represent the intended users of the wizard.

Usefulness in itself is very general, and just considering the question how useful the tool is, is not
specific enough, since we want to find out, which features are useful and what may be improved in
a revised version of the wizard.

The main focus of the evaluation is on the wizard itself, as well as the metrics and visualizations it
uses in order to help the user to make the decision, which outlier detection method is best suited for
a dataset.

With these base goals defined, we identified the the following questions that should be answered by
the subjects of this research:

• How well is the wizard integrated into the IoT Application Modelling Tool?

• Does the tool provide value, when assisting the user on the topic of choosing an outlier
detection method?

• Do the provided visualizations for both one and two dimensional inputs provide a value?

• Are the metrics provided sufficient for making a good decision?

In order to answer these questions, it is mandatory that the subjects are getting familiarized with
the tool. For this, the tool must either be shown to the subject by the use of a presentation or by
actually using it. In order to make sure the subjects get a hands on experience when working with
the tool, it makes more sense that the subjects try the tool out by themselves, in order to make the
experience more hands-on instead of making an assessment by watching a demo, especially with
regard to questions of intuitiveness.

The study conducted will be based upon the procedure described in the following:

75

6 Evaluation of the wizard

1. First, the participant is shown a short instruction on how to get to the assistant and how
to initiate a process. The main intention is to give the candidate a rough overview of the
process. This is done to ensure that the candidate can get to the parts of the wizard that
needed to be looked at in order to assess the above points without further guidance. Keeping
this to a minimum is also an important consideration, to make sure the candidate can rate the
intuitiveness of the wizard.

2. After the brief introduction, the candidate is intended to explore the tool on his own, to take a
look at the capabilities of the wizard. As the wizard requires datasets to be used, a number of
datasets have been provided for one, two and three dimensional setups.

3. The user will be asked to rate his experience in the aforementioned fields using a grading
system.

4. After the rating, the participant is asked to name aspects that he or she thinks should be
improved in regards to the visualization, the metrics and the user experience.

This evaluation design is both suitable for a survey and an interview based evaluation. This is
intentional, since the final decision still had to be made in this early drafting stage of the evaluation.
The decision was later made to conduct the evaluation as a survey.

6.1.1 How should the evaluation be done? Using a survey or interviews?

An important consideration in designing this evaluation is the way it is meant to be performed:
Either as a survey or by performing interviews and either face-to-face or virtually. The decision
was made to conduct the evaluation as a survey, even though an interview-based process would
probably provide better value when investigating the usability and intuitive of the application. Tools
like screen recordings cloud have also been used, in order to measure the time needed to perform
certain tasks like opening the wizard and starting an evaluation.

The main reasons why the decision was mad eagainast an interview-based evaluation are mostly of
organizational kind, the main benefit of a survey is the fact that it can take place in an asynchronous
matter, meaning no one has to perform or supervise the interview, since it is done in a self-service
fashion. A survey has the potential to get more candidates, since a survey, even with the exploration
part, usually does not take as long as an interview. In terms of analysis, a survey is also much more
efficient, as the results can be analysed directly using tools such as Google Forms1 or LimeSurvey2.
It is not necessary to transcribe the interviews in order to analyse them.

6.1.2 Providing data for the evaluation

As discussed in Step 2 above, datasets are provided to ensure the evaluation focusses on the primary
objective of the wizard: assisting the modeller in the selection of an outlier detection method. Most
of the provided datasets are randomly generated using the data generators discussed in Section 5.5.
However, it was also possible to provide a real-world dataset, derived from indoor temperature

1https://www.google.com/forms/about/
2https://www.limesurvey.org/de

76

https://www.google.com/forms/about/
https://www.limesurvey.org/de

6.1 Drafting the evaluation

Figure 6.1: Sample of the real world dataset provided in the evaluation

measurements collected by a wireless smart home power plug (AVM Fritz!DECT 2003) used
to monitor the activity of an electronically controlled pellet stove. Due to external factors, like
connection losses to the base station due to the relatively large distance between them, empty
readings were read by the collection program4, resulting in a value of zero being collected. These
zero readings are considered outliers in this scenario. A data sample illustrating a comparably large
number of outlier measurements is shown in Figure 6.1.

6.1.3 Providing an instance of the wizard

Getting a hands-on experience with a rather complex deployment process to get the application up
and running is a problem. The best solution for this, is the usage of a pre-deployed instance. To
achieve this, an instance of the IoT Application Modelling Tool was deployed on a virtual machine
provided by the Universtty of Stuttgart. However, this Virtual Machine is only accessible from
within the network of the university. To also allow persons from outside the university to participate,
an option to make the deployment as easy as possible had to be found. As previously discussed,
Docker Compose is intended to be used to make the deployment of tea application as simple and
standardized as possible, making it perfect for this purpose. With Docker Compose the application
can be deployed locally by running one command, assuming the prerequisites, i.e., installing a
Linux capable Docker runtime, are fulfilled. To make this process as simple as possible a quick and
simple set up guide has been written, that is also intended for use if there are problems with the
hosted instance.

Some of the outlier detection methods implemented are quite time consuming. To make sure a job
does not take 15 minutes or more to complete, some time consuming outlier detection methods
have been disabled on the hosted instance.

3https://avm.de/produkte/fritzdect/fritzdect-200/
4How the data for this real world data was collected in detail can be seen in Appendix A.1.

77

https://avm.de/produkte/fritzdect/fritzdect-200/

6 Evaluation of the wizard

For the evaluation, a snapshot of the implementation was taken, on which the evaluation was
performed upon. As a result, some improvements suggested by participants have been implemented
while the survey was in progress. This was done to ensure the results of the evaluation are based
upon a common basis, making the results of the evaluation comparable, even though some things
that may have influenced the ratings by participants have already been implemented, potentially
increasing the ratings.

6.2 Designing the survey

As explained above, surveys can be carried out using an online tool, which also makes the analysis
very fast and effective. The tool used to conduct the survey is Google Forms. Here, the questionnaire
for the survey can be designed using a WYSIWYG Editor (What you see is what you get).

Now that the evaluation has been outlined, a questionnaire can be developed to serve as the basis
for the survey. To make the survey more understandable, some additions to the previously outlined
concept had to be made. The initial tutorial to teach the basic functions of the assistant is displayed
using a text tutorial, after an instruction text, that describes the goal of the survey, who is responsible
for the survey, where the provided instance can be accessed and where the participant can find the
sample data for performing the tutorial. A video tutorial was also an option. However, the decision
was made against it, since most of the steps are illustratable using some pictures. Viewing a video
is likely to take more time than just scrolling through the tutorial. To get an impression on how the
tutorial looked within the survey, it is depicted in Figure A.8.

After the tutorial, the user should open the application and try the wizard. The participant is intended
to rate statements regarding the aspects described above based on six grade scale. The scale goes
from --- (Very bad) to +++ (Very good) over -- (Bad), - (Slightly bad), + (Slightly good) and ++

(Good). An option to rate for neutral has been excluded explicitly, since the participant should still
give a rating to indicate in which direction the participant thinks the rating should go. Another
reason is that a neutral option is often chosen as the dumping option, that gets chosen if someone is
insecure about rating the application, as discussed in a blog article by Chyung [Chy19].

The subject is asked to rate the following statements in the given order:

𝑆1 The wizard is intuitive to use overall.

𝑆2 The wizard in well integrated into the IAMT.

𝑆3 The tool does provide value, when assistance for selecting an outlier detection method is
needed.

𝑆4 The visualization of the data with 1 dimensional inputs is sufficient.

𝑆5 The visualization of the data with 2 dimensional inputs is sufficient.

𝑆6 The provided metrics to determine what’s the best suited method are sufficient.

Since the subject was expected to have worked with the tool, we assume that every aspect can be
rated by the candidate. Therefore, none of these options can be skipped and there is also no option
to express that the participant is not able to answer the question.

78

6.3 Investigating the results

Question +++ ++ + - -- ---

𝑆1 0 0 0 2 3 0
𝑆2 0 0 0 0 1 4
𝑆3 0 0 0 2 3 0
𝑆4 0 1 2 1 1 0
𝑆5 0 0 0 1 4 0
𝑆6 0 2 1 1 1 0

Table 6.1: Survey results of the overall ratings.

After performing the general ratings, the participant is redirected to a new step where the participant
can provide optional comments and improvements regarding the application. The following optional
text fields for suggestions are shown to the participant:

• What do you think could be improved in regards to the user experience?

• What do you think could be improved in regards to metrics provided for decision-making?

• What do you think could be improved in regards the visualization of the results?

• Are there any outlier detection methods, that could be added to the tool?

• Do you have any other suggestions?

After these options to provide suggestions the participant is asked to provide some information about
himself or herself. The main purpose of these questions is to find out how familiar the participant
evaluates him or herself in the topics related to this work.
To achieve that the participant is intended to rate himself on a three level grading scale from No
experience over Some experience to A lot of experience in Internet of Things, Outlier detection, and
the tool stack on which the wizard is built upon, like the MBP and IAMT.

Lastly, the participant is asked to group his profession, in one of these groups of persons: student,
researcher, IT professional, lecturer and an option allowing the user to name his profession if it is
not fitting one of these groups. Overall, this question was included to potentially determine how
valuable the given answers may be, for example, one could expect that a researcher is probably more
familiar with the topics from a scientific perspective, where an IT professional, working in industry
may asses the tools value based upon its practical applicability. However, after the survey has been
conducted this idea turned out to be hard to asses. For that reason this, question was not providing
value to the evaluation overall.

6.3 Investigating the results

The survey was opened for a period of two weeks. Within this period, five participants took part.
Two of the participants declared themselves as IT professionals and three of them as researchers. In
terms of previous experience, all of the participants have had some experience with IoT and three of
the five also stated to have some experience in both the fields of outlier detection and the overall
tool stack. However, the three persons stating to have some experience with outlier detection were
not identical with the ones stating the same about the tool stack.

79

6 Evaluation of the wizard

The overall ratings for the statements are illustrated in Table 6.1. Here, both positives and negatives
of the wizard can already be observed. In regards to the integration of the wizard into the modelling
tool and the overall intuitivity of it (𝑆1 and 𝑆2), the ratings are all positive, with some potential to
further improve. On the other hand it is clear that the provided metrics and the one dimensional
visualization clearly have to be improved, since most of the ratings in these cases are negative, with
the more significant problem being the provided metrics. The two dimensional visualization on the
other hand also received a relatively positive rating and is therefore perceived to be better than the
one dimensional version.

The most interesting thing, in the evaluation are the suggestions and potential problems, that
explicitly get called out by the participants. These will be discussed in the following.

In regards to the user experience, the following aspects were mentioned that could potentially get
improved:

• Small improvements in the the already existing implementation of the modelling tool, these
improvements were:

– The Login function that allows the user to attempt to open a model even though he is
not logged in any more.

– The order of the options in dialog to create and open a model.

– The unlabelled switch to add testing operators.

• The lack of a close button seems unintuitive.

• The back and next buttons should be used, for selecting the mode of operation and the target
outlier detection method, instead of using buttons within the description of the option to
select it.

• Descriptions for outlier detection methods are missing, within the wizard.

• The hyper-parameters for outlier detection methods, like the 𝑘 parameter of the 𝑘-nearest-
neighbour algorithm, are not listed.

• The usage of Is Supervised within the Description of an outlier detection method is confusing.

• The descriptions of the process itself should include more documentation, for example on
how the results can be interpreted.

• The exclusion of outlier detection methods, to only perform the analysis on one method is not
intuitive.

As this shows, the UI still needs some minor pollishments, like adding a close button, using the next
and previous buttons more often and ensuring the algorithm selection is more intuitive. However,
the min problem is the lack of descriptions. In some regards this was an aspect that was clear before
the evaluation was conducted, since the intended descriptions for the outlier detection methods have
not been added. Apart from this known problem some minor things that should be improved have
been discovered through this evaluation.

80

6.4 Conclusions from the Survey

The suggestions regarding the visualizations mostly focus on the one dimensional visualization.
Since this one is, as we saw previously, the more problematic one, to make understandable. How-
ever, the majority of the criticism revolves around the implementation itself and not the kind of
visualization. The suggestions and problems for the one dimensional visualization include;:

• The lack of a legend to label the data and the lacking labels of the 𝑥 and 𝑦 axis.

• Outliers are hard to identify if the range between the minimum and maximum values is very
large and many data are piled up in one place.

These problems were mentioned by three of the five participants, which shows why the one-
dimensional visualisation received such a poor rating. Furthermore, a visualization that compares
all outlier detection methods has been suggested as an improvement as well as a bar chart for the
two-dimensional visualization.

The most criticised aspect was the selection of metrics. Here, the main complain was the lack
of a convolution matrix and the use of the 𝐹1-score to rate outlier detection methods which was
not yet implemented in the version that was used to conduct the evaluation. While the evaluation
was conducted, this was changed. How the convolution matrix and all the corresponding metrics
have been implemented has already been discussed previously. Because this was a major criticism,
in regards to the metrics in the supervised mode of operation, it is likely that the ratings for 𝑆6
may become better overall, if the evaluation would be conducted again, with the newer version.
However, participants also perceived the provided metrics in the unsupervised mode of operation as
insufficient, which could also be the root cause for the bad ratings in regards to 𝑆6. To improve the
metrics in the unsupervised mode of operations, further investigations are mandatory.

Apart from that, only one further suggestion was made: Making the change from an instantiated
outlier detection validator node back to an uninstantiated one easier. For example, to select another
outlier detection method or to perform a new analysis based on another dataset. Currently, this can
only be achieved by opening the edit dialog of the node, the change the type of the node back to
the uninstantiated type. This is unintuitive and may, for example, be improved by adding another
option for faster modification instead.

In terms of the provided outlier detection methods, no suggestions have been made.

The evaluation has shown, that the tool does provide value, but still needs some fine tuning in regards
of its overall usability, the metrics in the unsupervised mode of operation and the one dimensional
visualizations in order to further improve the usability in of the wizard.

6.4 Conclusions from the Survey

From this evaluation we can conclude, that the proposed wizard has been well integrated into the
IoT Application Modelling Tool, since all participants rated this criteria with at least ++ (Good). In
addition, no one has made any additional suggestions or complaints in regards to that. The result
for intuitiveness was slightly worse, with most participants voting for ++ (Good), but the rest only
for + (Sightly good). Also in this respect, suggestions for improvement were made, such as adding
a button to close the wizard or the permanent use of the Next, Back and Cancel buttons, instead of
occasionally resorting to other buttons to get to the next step.

81

6 Evaluation of the wizard

However, the evaluation also showed that there are things that need to be improved. In addition to
the visualizations, especially the 1D visualization, the metrics that are provided were also criticized.
Apart from the metrics, provided in the unsupervised mode of operation, another major point
of criticism was the lack of more expressive metrics, in the supervised mode of operation, were
requested, potentially having a significant influence on the negative ratings of the statement 𝑆6. To
get a real measurement for the newer version, that includes these metrics, the survey would have
to be conducted again. In this case, a larger number of participants should be aimed at in order to
obtain more opinions and to consult further expert groups that may have a different perspective on
the topic.

82

7 Related Work

Both Al et al. [AMM+21] and Jiang et al. [JHSG+20] review and investigate different methodologies
for outlier detection in the context of the Internet of Things, while they do not propose a suggestion
mechanism the approaches reviewed in these publications they do investigate other approaches to
outlier detection in an IoT environment, building on top of the outlier detection methods used in
this work.

The pyOD library proposed in the work by Zhao et al. [Zha23; ZNL19] provides implementations for
roughly 40 different outlier detection methods. The methods have been implemented with attention
to scalability and robustness, through the generic interface of the methods it is also possible to build
abstract systems where the method can vary. Examples of this are the analysis and benchmark steps
we implemented. The library is implemented in Python.

Many of the methods implemented in pyOD are evaluated in a work by Han et al. [HHH+22a;
HHH+22b] with the main goal to investigate a set of 30 outlier detection methods in regards to their
performance1, based on analysing different kinds of anomalies and when working with different
levels of supervision. The analysis done in this benchmark is based on a set of different datasets,
containing different kinds of anomalies. Unlike pyOD, the results of this work are not used in
this work. However, this paper is certainly interesting, when selecting the set of outlier detection
methods. That could be added to the suggestion wizard.

Some outlier detection methods have hyper-parameters that can be adjusted, to potentially improve
the performance of an outlier detection method. However, adjusting these parameters manually is
not an easy task and requires a certain degree of knowledge in regards to the outlier detection method
for which the hyper-parameters shall be modified. To counter this problem Xu et al. [XKC19]
propose an approach that automatically configures the hyper-parameters of the Local Outlier Factor
outlier detection method based on a heuristic method. This work could contribute to an improvement
to the performance of the local outlier factor detection method, within the suggestion algorithm,
since hyper-parameters are currently completely omitted, as the wizard uses the default values from
pyOD.

The MetaOD approach proposed by Zhao et al. [ZRA20] is an automated approach that suggests an
unsupervised outlier detection algorithm, as well as it’s meta-parameters, based on a meta-learning
approach that trying to make a suggestion based upon past performances of outlier detection methods
on other datasets. The goal of the work of Zhao et al. is very similar to the core goal of this work,
i.e., finding a well suited outlier detection method for a given dataset. However, unlike the approach
that is proposed in this work, it can be fully automated, with the drawback that it does not provide

1Unlike in the rest of this work performance in this case does not mean the time needed perform a prediction, instead it
should be considered a much more broad term here.

83

7 Related Work

a lot of transparency on how the decision has been made. Integrating MetaOD into the wizard
proposed in this work, could still represent a large improvement in usefulness of the wizard. Due to
that, the integration of MetaOD into the wizard is discussed in Section 8.1.

Another interesting approach to perform outlier detection in a time-series based environment,
proposed by Lai et al. [LZW+21] called Time-series Outlier Detection System (TODS). TODS
is a platform that handles end-to-end processing of time series datasets in order to detect outliers,
to achieve this the flow of data can be modelled using a directed graph that represents the flow of
data. Similar to the previously mentioned MetaOD it also provides a mechanism to automatically
determine the best suited detection flow for a given dataset.

84

8 Conclusion and Outlook

The main goal of this work was the investigation of automated validation in a model-driven IoT
environment, i.e., filtering out measurements or data, considered abnormal, at a point where the
modeller thinks this is mandatory. In order to achieve this, without having to manually model the
validation, for example by defining rules, which can be used to determine if a value is normal or
abnormal. This work identified, that machine-learning based outlier detection methods are a great
fit for this problem, since they can be trained. In order, to become suited for any environment,
reducing the coupling between the model and the environment, in turn potentially making the
model more reusable. The only drawback, is the requirement of existing sensor data, either labelled,
i.e., declaring if a value is an outlier (an abnormal value) or unlabelled, where this information
is missing. However, it was also shown, that the selection of a suited machine-learning based
outlier detection method is not an easy process, as there are many different approaches attempting
to solve this problem, some better suited for a given scenario than other ones. To find the best suited
outlier detection method, metrics and potential approaches to visualize the predictions of an outlier
detection method have been identified. With the main goal of making the outlier detection methods
comparable, within the context of one model, assisting the modeller in the decision of selecting the
best suited outlier detection method.

From there a wizard with the goal integrating the ability to run and compare outlier detection
methods, in the already existing IoT Application Modelling Tool has been designed. Here we saw
that, a new kind of node had to be introduced to the model: the validator node, that acts as a filter in
the pipes and filters model. We also saw that this new kind of node introduces many new problems,
in regards to how the validation should be executed during runtime, here three different options,
each with a its pros and cons. The methods varied from a completely centralized approach in which
every validation nodes tasks would be executed on just one device to a fully decentralized option
where the tool stack tries to run the validation on existing nodes at all cost, i.e., the validation is
either performed on the source or target device, depending on the model, the introduction of a
new node, that may have to be deployed on another device should be avoided at all cost. Another
approach, that is most likely, the best suited one is a middle-ground between the two, where the
validation can be deployed on any available device, but a suggestion is made, that aims to keep the
number of newly introduced devices as low as possible.

After conceptually evaluating the whole flow, from analysis to aspects of the execution, a portion
of the previously proposed concept has been implemented: the suggestion wizard, which was
implemented as an extension of the IoT Application Modelling Tool, with this extension, the
modeller can now select a outlier detection node, model the data-flow tan and from it. To initiate the
wizard, which will take a given dataset, containing measurements for every inbound edge. This data
is then used to train the outlier detection methods, attempting to make them comparable, so that the
modeller can select the one that seems to be best suited for the model, based on either the metrics
and the visualizations. Depending on the mode of operation, the selection of an outlier detection
method could be done completely automatic, in case the data is labelled and assisted in case of

85

8 Conclusion and Outlook

unlabelled data. The reason for this is the lack of measurable objective metrics on the performance
of an outlier detection method, in case the data is unlabelled, apart from the prediction time, which
cannot be used to determine, whether or not, the predictions made by the outlier detection method
are likely to be correct or not. In case of labelled data, metrics, like the accuracy or the 𝐹1-score
can be used to objectively identify the outlier detection method, that performs best for the given
data, making an automated selection possible. However, the current implementation of the wizard
still requires the modeller to select the outlier detection method he wants to use in both modes of
operation.

The implementation of this wizard has been evaluated, during a survey targeting persons, that are
familiar with the topics, this work is involved in, has shown that the wizard does provide value, is
intuitive to use and has been integrated well into the IoT Application Modelling Tool. However, it
has also shown, that the wizard still has room for improvement, especially in regards to the metrics
of the unsupervised mode of operation. The evaluation has also shown, that the visualizations
provided can also be improved, to further improve the experience.

Overall, this work provides a basis for further improvements, such as the support for more outlier
detection methods, or mechanisms to get better metrics in case the data provided is unlabelled.

8.1 Outlook

While this work presents an approach to choose a well suited outlier detection method, it does
not provide an implementation of the whole flow, to make the instantiation of the selected outlier
detection method possible. This section will therefore investigate further mandatory steps, to allow
this. It will also investigate, how the proposed approach could potentially be further improved.

8.1.1 Improve the wizard based on the suggestions from the evaluation

The evaluation has shown that our wizard works and also has the capability to provide value.
However, it has also shown that there are many things that should be improved upon, such as the
overall documentation during the process and the documentation of the outlier detection methods
themselves.

Furthermore, the visualizations can be improved, by adding labels and a legend to show what
colour represents which portion on the dataset to the one-dimensional visualization. The alternative
approach to visualize the data, based on a time-series diagram could be implemented to also see
outliers in that manner, this would also enable a type of visualization for a arbitrary amount of
dimensions, since the dimensions are split in a time-series diagram. Another option could be a
view that combines all visualizations of all tasks at once, in order to directly compare the produced
results side-by-side.

86

8.1 Outlook

8.1.2 Improving the suggestion mechanism for unlabelled data

One main suggestion in the evaluation was the lack of metrics in the unsupervised mode of operation.
Here one could consider a feature that allows the comparison of the outlier detection methods by
setting one of them as the truth. This would allow the comparison between outlier detection
algorithms.

Another promising idea is the MetaOD approach proposed by Zhao et al [ZRA20], which has been
introduced briefly in Chapter 7. It could be used to get a potentially well suited outlier detection
method for a dataset with unlabelled data. In which the wizard currently only supports the selection
based upon human decision. Furthermore one could investigate the usability of Time-series Outlier
Detection System (TODS) proposed by Lai et al. [LZW+21] for this use-case.

8.1.3 Collecting data for making a suggestion

One of the main goals of this work was the implementation of the wizard based upon existing data.
However, in the concept, an approach has been proposed that would allow the collection of data
by deploying the portion of the model relevant for training the outlier detection model. To achieve
this a more technical concept must be created and implemented, especially investigating how status
information will be transferred from the collector node to the modelling tools backend. To see
progress information and to enable the download of the collected data to perform the analysis.

8.1.4 Implementing the instantiation and runtime of models with validators

This work also investigated how validation nodes can be distributed within the topology of the model.
Three different approaches were proposed: the fully centralized validation, the fully decentralized
validation or a combination of both. It requires the user to determine where the validation should
happen, while giving a suggestion intended to keep the number of newly introduced nodes as low as
possible.

Further work must determine the validation approach and the implementation of the validation com-
ponent as well as the adjustment of the ME-Configurator and the Messaging Engine. The modelling
tool will also require further modification, as the tool itself does not support the instantiation of
validators in its current state.

8.1.5 Investigating a semi-supervised approach

In Section 2.2.1, three different machine-learning based outlier detection methods, have been
identified: Supervised, semi-supervised and unsupervised methods. While most of the outlier
detection methods used by the wizard in this work are based on unsupervised learning, the use of
labelled data is still a better option, since binary-classification-based metrics can be derived from it
using this approach. With the idea of a semi-supervised algorithm in mind, meaning that the input
data is only partially labelled by either identifying inliers or outliers, it may still be possible to find
metrics that allow the comparison of outlier detection methods. For example, the accuracy for the
subset could still be computed, since the number of correct and incorrect predictions can be counted.
By implementing this, a third mode of operation that is based on existing data could be included.

87

8 Conclusion and Outlook

8.1.6 Adding more outlier detection methods

While the set of currently implemented outlier detection methods covers a broad range of different
approaches for machine-learning based outlier detection, there are many more outlier detection
methods that could be implemented. On the one hand, there are outlier detection methods that can
be considered improvements or slight modifications of the already implemented outlier detection
methods such as the median or average based 𝑘-nearest Neighbors algorithm that slightly modify
the original 𝑘-nearest neighbour algorithm [AP02; RRS00]. On the other hand, further outlier
detection methods, that may be considered interesting for the evaluation using the wizard, could be
implemented.

8.1.7 Add an option to choose meta parameters

Some outlier detection methods implemented have meta parameters, like the 𝑘 in the 𝑘-nearest
neighbour outlier detection method. To further improve the suitability of outlier detection methods,
adding an option to either modify this value or to introduce multiple tasks with the same method but
different parametrises could further increase the use of the tool. With this, one should however still
keep it as simple as possible, in case the modeller either does not know what these meta parameters
mean.

8.1.8 Supporting larger files

The current implementation of the outlier detection wizard has one huge limitation: the application
currently cannot store files that exceed the maximum document size of MongoDB at roughly 16 MB.
While this is not a significant problem when storing the visualizations and raw data files, it does
become a problem if the joblib Model files should also be stored in the database, for later use, e.g.,
the model instantiation in the Validation Engine [Mon23]. Some options to solve this issue could
be the use of the file system for large files or the use of an object storage, like MinIO1 or OpenStack
Swift2, for files that exceed a certain threshold. Instead of storing it directly in MongoDB as part of
the document, a pointer is stored that can then be used to retrieve the data.

8.1.9 Evaluating the usability and usefulness on a larger scale

The number of things that could be improved can be considered almost endless, if the considerations
are taken into account wide enough. However, apart from the, technical improvements the evaluation
could be performed again on a larger scale. In order to further evaluate the usability of the tool
an experiment could get conducted, where the user has to perform certain tasks, without getting a
guide on how the wizard actually works.

1https://min.io/
2https://wiki.openstack.org/wiki/Swift

88

https://min.io/
https://wiki.openstack.org/wiki/Swift

Bibliography

[AMM+21] R. Al-amri, R. K. Murugesan, M. Man, A. F. Abdulateef, M. A. Al-Sharafi, A. A. Alka-
htani. “A review of machine learning and deep learning techniques for anomaly
detection in IoT data”. In: Applied Sciences 11.12 (2021), p. 5320 (cit. on pp. 31,
83).

[AP02] F. Angiulli, C. Pizzuti. “Fast outlier detection in high dimensional spaces”. In: Euro-
pean conference on principles of data mining and knowledge discovery. Springer.
2002, pp. 15–27 (cit. on pp. 31, 88).

[Bae22] Baeldung. F-1 Score for Multi-Class Classification. https://www.baeldung.com/cs/
multi-class-f1-score. 2022 (cit. on p. 20).

[Bib22] Bibin Wilson and Shishir Khandelwal. How to Reduce Docker Image Size: 6 Opti-
mization Methods. https://devopscube.com/reduce-docker-image-size/. Jan. 2022
(cit. on p. 63).

[BKNS00] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander. “LOF: identifying density-based
local outliers”. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. 2000, pp. 93–104 (cit. on p. 31).

[Bri23] Brian Troncone. Learn RxJS. https://www.learnrxjs.io/. 2023 (cit. on p. 66).
[BZA20] A. Boukerche, L. Zheng, O. Alfandi. “Outlier detection: Methods, models, and

classification”. In: ACM Computing Surveys (CSUR) 53.3 (2020), pp. 1–37 (cit. on
p. 18).

[Chy19] Y. Chyung. Evidence-Based Survey Design: Exclude or Include a Midpoint? https:

//www.td.org/insights/evidence-based-survey-design-exclude-or-include-a-

midpoint. 2019 (cit. on p. 78).
[DABS22] D. Del Gaudio, B. Ariguib, A. Bartenbach, G. Solakis. “A live context model for

semantic reasoning in IoT applications”. In: 2022 IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops). IEEE. 2022, pp. 322–327 (cit. on p. 14).

[Dev23a] R. Developers. RxJS - Documentation. https://rxjs.dev/guide/overview. 2023
(cit. on pp. 66, 69).

[Dev23b] S. L. Developers. 2.7. Novelty and Outlier Detection. https://scikit-learn.org/
stable/modules/outlier_detection.html. 2023 (cit. on p. 11).

[DH20] D. Del Gaudio, P. Hirmer. “A lightweight messaging engine for decentralized data
processing in the internet of things”. In: SICS Software-Intensive Cyber-Physical
Systems 35.1 (2020), pp. 39–48 (cit. on pp. 13, 14, 33).

[Doc23] Docker Inc. Dockerfile reference. https://docs.docker.com/engine/reference/
builder/. 2023 (cit. on p. 63).

89

https://www.baeldung.com/cs/multi-class-f1-score
https://www.baeldung.com/cs/multi-class-f1-score
https://devopscube.com/reduce-docker-image-size/
https://www.learnrxjs.io/
https://www.td.org/insights/evidence-based-survey-design-exclude-or-include-a-midpoint
https://www.td.org/insights/evidence-based-survey-design-exclude-or-include-a-midpoint
https://www.td.org/insights/evidence-based-survey-design-exclude-or-include-a-midpoint
https://rxjs.dev/guide/overview
https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/outlier_detection.html
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Bibliography

[DRC20] D. Del Gaudio, M. Reichel, Contributors. ME Configurator - Source Code. https:
//gitlab-as.informatik.uni-stuttgart.de/delgauda/me-configurator. 2020
(cit. on p. 15).

[DRH20] D. Del Gaudio, M. Reichel, P. Hirmer. “A Life Cycle Method for Device Management
in Dynamic IoT Environments.” In: IoTBDS. 2020, pp. 46–56 (cit. on p. 14).

[Eff20] D. Effrosynidis. Outlier Detection — Theory, Visualizations, and Code. https:
//towardsdatascience.com/outlier-detection-theory-visualizations-and-code-

a4fd39de540c. 2020 (cit. on pp. 11, 12).
[Eug22] Eugen Paraschiv. Baeldung - Introduction to Thread Pools in Java. https://www.

baeldung.com/thread-pool-java-and-guava. 2022 (cit. on p. 53).
[FHS+20] A. C. Franco da Silva, P. Hirmer, J. Schneider, S. Ulusal, M. T. Frigo. “MBP: Not just

an IoT Platform”. In: 2020 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops). 2020, pp. 1–3. doi: 10.1109/
PerComWorkshops48775.2020.9156156 (cit. on pp. 13, 43).

[FOL23] FOLDOC. shebang from FOLDOC. https://foldoc.org/shebang. 2023 (cit. on
p. 55).

[Gle23] S. Glen. Sensitivity vs Specificity and Predictive Value. https://www.statisticshow
to.com/probability-and-statistics/statistics-definitions/sensitivity-vs-

specificity-statistics/. 2023 (cit. on p. 19).
[Goo23] Google. CDK Documentation - Angular Material. https://material.angular.io/

cdk/categories. 2023 (cit. on p. 30).
[HHH+22a] S. Han, X. Hu, H. Huang, M. Jiang, Y. Zhao. “ADBench: Anomaly Detection

Benchmark”. In: Neural Information Processing Systems (NeurIPS). 2022 (cit. on
pp. 18, 83).

[HHH+22b] S. Han, X. Hu, H. Huang, M. Jiang, Y. Zhao. Supplementary Material for ADBench:
Anomaly Detection Benchmark. https://openreview.net/attachment?id=foA_
SFQ9zo0&name=supplementary_material. 2022 (cit. on pp. 18, 83).

[HXD03] Z. He, X. Xu, S. Deng. “Discovering cluster-based local outliers”. In: Pattern recog-
nition letters 24.9-10 (2003), pp. 1641–1650 (cit. on p. 31).

[JHSG+20] J. Jiang, G. Han, L. Shu, M. Guizani, et al. “Outlier detection approaches based on
machine learning in the internet-of-things”. In: IEEE Wireless Communications 27.3
(2020), pp. 53–59 (cit. on pp. 31, 83).

[Job23] Joblib developers. Joblib: running Python functions as pipeline jobs. https://
joblib.readthedocs.io/en/latest/. 2023 (cit. on p. 58).

[Jon19] Jonathan Cook. Baeldung - Guide to java.lang.ProcessBuilder API. https://www.
baeldung.com/java-lang-processbuilder-api. 2019 (cit. on p. 53).

[Kar22] F. Karabiber. Binary Classification. https://www.learndatasci.com/glossary/
binary-classification/. 2022 (cit. on p. 19).

[Kor21] J. Korstanje. The F1 score. https://towardsdatascience.com/the-f1-score-
bec2bbc38aa6. 2021 (cit. on p. 20).

90

https://gitlab-as.informatik.uni-stuttgart.de/delgauda/me-configurator
https://gitlab-as.informatik.uni-stuttgart.de/delgauda/me-configurator
https://towardsdatascience.com/outlier-detection-theory-visualizations-and-code-a4fd39de540c
https://towardsdatascience.com/outlier-detection-theory-visualizations-and-code-a4fd39de540c
https://towardsdatascience.com/outlier-detection-theory-visualizations-and-code-a4fd39de540c
https://www.baeldung.com/thread-pool-java-and-guava
https://www.baeldung.com/thread-pool-java-and-guava
https://doi.org/10.1109/PerComWorkshops48775.2020.9156156
https://doi.org/10.1109/PerComWorkshops48775.2020.9156156
https://foldoc.org/shebang
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/sensitivity-vs-specificity-statistics/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/sensitivity-vs-specificity-statistics/
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/sensitivity-vs-specificity-statistics/
https://material.angular.io/cdk/categories
https://material.angular.io/cdk/categories
https://openreview.net/attachment?id=foA_SFQ9zo0&name=supplementary_material
https://openreview.net/attachment?id=foA_SFQ9zo0&name=supplementary_material
https://joblib.readthedocs.io/en/latest/
https://joblib.readthedocs.io/en/latest/
https://www.baeldung.com/java-lang-processbuilder-api
https://www.baeldung.com/java-lang-processbuilder-api
https://www.learndatasci.com/glossary/binary-classification/
https://www.learndatasci.com/glossary/binary-classification/
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6

Bibliography

[KSZ08] H.-P. Kriegel, M. Schubert, A. Zimek. “Angle-based outlier detection in high-
dimensional data”. In: Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. 2008, pp. 444–452 (cit. on p. 31).

[Lin22] Linux man-pages project. kill(1) — Linux manual page. https://www.man7.org/
linux/man-pages/man1/kill.1.html. Dec. 2022 (cit. on p. 61).

[LSM05] P. J. Leach, R. Salz, M. H. Mealling. A Universally Unique IDentifier (UUID) URN
Namespace. RFC 4122. July 2005. doi: 10.17487/RFC4122. url: https://www.rfc-
editor.org/info/rfc4122 (cit. on p. 48).

[LTZ08] F. T. Liu, K. M. Ting, Z.-H. Zhou. “Isolation forest”. In: 2008 eighth ieee international
conference on data mining. IEEE. 2008, pp. 413–422 (cit. on p. 31).

[LTZ12] F. T. Liu, K. M. Ting, Z.-H. Zhou. “Isolation-based anomaly detection”. In: ACM
Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012), pp. 1–39
(cit. on p. 31).

[LZW+21] K.-H. Lai, D. Zha, G. Wang, J. Xu, Y. Zhao, D. Kumar, Y. Chen, P. Zumkhawaka,
M. Wan, D. Martinez, X. Hu. “TODS: An Automated Time Series Outlier Detection
System”. In: Proceedings of the AAAI Conference on Artificial Intelligence 35.18
(May 2021), pp. 16060–16062 (cit. on pp. 84, 87).

[Mas01] S. Mascheck. The # magic, details about the shebang/hash-bang mechanism on
various Unix flavours. https://www.in-ulm.de/~mascheck/various/shebang/. 2001
(cit. on p. 55).

[MC22] Microsoft, Contributors. Pipes and Filters pattern. https://learn.microsoft.com/
en-us/azure/architecture/patterns/pipes-and-filters. 2022 (cit. on p. 32).

[Mon23] MongoDB. MongoDB Limits and Thresholds. https://www.mongodb.com/docs/
manual/reference/limits/. 2023 (cit. on p. 88).

[Moz23] Mozilla Foundation and Contributors. The WebSocket API (WebSockets). https:
//developer.mozilla.org/en-US/docs/Web/API/WebSockets_API. 2023 (cit. on
p. 51).

[Neg20] C. Negus. Linux Bible - Managing Running Processes. May 2020. doi: 10.1002/
9781119578956.ch6. url: http://dx.doi.org/10.1002/9781119578956.ch6 (cit. on
p. 61).

[NIS23] NIST. 7.1.6. What are outliers in the data? https://www.itl.nist.gov/div898/

handbook/prc/section1/prc16.htm. 2023 (cit. on p. 11).
[Nya20] Nya. RxJS Best Practices. https://dev.to/nyagarcia/rxjs-best-practices-bhb.

2020 (cit. on p. 66).
[Ora14] Oracle. Java Platform SE 8 - Documentation. https://docs.oracle.com/javase/8/

docs/api/. 2014 (cit. on pp. 53, 55, 61).
[pyo23] pyodide Authors and Contributors. pyodide Documentation. https://pyodide.org/

en/stable/. 2023 (cit. on p. 47).
[PyP15] PyPy.js Authors and Contributors. PyPy.js - Website / Documentation. https://

pypyjs.org/. 2015 (cit. on p. 47).
[PyP19] PyPy.js Authors and Contributors. PyPy.js - Source Code. https://github.com/

pypyjs/pypyjs. 2019 (cit. on p. 47).

91

https://www.man7.org/linux/man-pages/man1/kill.1.html
https://www.man7.org/linux/man-pages/man1/kill.1.html
https://doi.org/10.17487/RFC4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.in-ulm.de/~mascheck/various/shebang/
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://learn.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
https://www.mongodb.com/docs/manual/reference/limits/
https://www.mongodb.com/docs/manual/reference/limits/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://doi.org/10.1002/9781119578956.ch6
https://doi.org/10.1002/9781119578956.ch6
http://dx.doi.org/10.1002/9781119578956.ch6
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://dev.to/nyagarcia/rxjs-best-practices-bhb
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/
https://pyodide.org/en/stable/
https://pyodide.org/en/stable/
https://pypyjs.org/
https://pypyjs.org/
https://github.com/pypyjs/pypyjs
https://github.com/pypyjs/pypyjs

Bibliography

[Pyt23] Python Software Foundation and Contributors. Python 3.10 Documentation. https:
//docs.python.org/3.10/. 2023 (cit. on p. 54).

[RRS00] S. Ramaswamy, R. Rastogi, K. Shim. “Efficient algorithms for mining outliers from
large data sets”. In: Proceedings of the 2000 ACM SIGMOD international conference
on Management of data. 2000, pp. 427–438 (cit. on pp. 31, 88).

[RVG+18] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,
E. Müller, M. Kloft. “Deep one-class classification”. In: International conference on
machine learning. PMLR. 2018, pp. 4393–4402 (cit. on p. 31).

[SCSC03] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, L. Chang. A novel anomaly detection
scheme based on principal component classifier. Tech. rep. Miami Univ Coral Gables
Fl Dept of Electrical and Computer Engineering, 2003 (cit. on p. 31).

[Sha21] Shawn Shi. REST API Best Practices — Decouple Long-running Tasks from HTTP
Request Processing. https://medium.com/geekculture/rest-api-best-practices-
decouple-long-running-tasks-from-http-request-processing-9fab2921ace8. 2021
(cit. on p. 52).

[SHB14] Z. Shelby, K. Hartke, C. Bormann. RFC 7252: The constrained application protocol
(CoAP). 2014 (cit. on p. 14).

[Sur20] A. Suresh. What is a confusion matrix? https://medium.com/analytics-vidhya/

what-is-a-confusion-matrix-d1c0f8feda5. 2020 (cit. on p. 19).
[TCFC02] J. Tang, Z. Chen, A. W.-C. Fu, D. W. Cheung. “Enhancing effectiveness of outlier de-

tections for low density patterns”. In: Pacific-Asia conference on knowledge discovery
and data mining. Springer. 2002, pp. 535–548 (cit. on p. 31).

[VMW23] VMWare Tanzu and Contributors. Spring Framework Documentation. https://
docs.spring.io/spring-framework/docs/current/reference/html/index.html.
2023 (cit. on pp. 51, 62).

[Wei22] E. W. Weisstein. Lissajous Curve. From MathWorld–A Wolfram Web Resource. http
s://mathworld.wolfram.com/LissajousCurve.html. 2022 (cit. on p. 22).

[Woo22] T. Wood. DeepAI - F-Score. https://deepai.org/machine-learning-glossary-and-
terms/f-score. 2022 (cit. on p. 20).

[Woz22] D. Wozniak. 24 Angular Best Practices You Shouldn’t Code Without. https://
massivepixel.io/blog/angular-best-practices/. 2022 (cit. on p. 65).

[XKC19] Z. Xu, D. Kakde, A. Chaudhuri. “Automatic hyperparameter tuning method for local
outlier factor, with applications to anomaly detection”. In: 2019 IEEE International
Conference on Big Data (Big Data). IEEE. 2019, pp. 4201–4207 (cit. on p. 83).

[ZH18] Y. Zhao, M. K. Hryniewicki. “XGBOD: improving supervised outlier detection with
unsupervised representation learning”. In: 2018 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2018, pp. 1–8 (cit. on p. 31).

[Zha23] Zhao, Yue and Nasrullah, Zain and Li, Zheng and pyOD Authors. pyOD Documen-
tation. https://pyod.readthedocs.io/en/latest/index.html. 2023 (cit. on pp. 22,
47, 58, 83).

[ZNL19] Y. Zhao, Z. Nasrullah, Z. Li. “PyOD: A Python Toolbox for Scalable Outlier De-
tection”. In: Journal of Machine Learning Research 20.96 (2019), pp. 1–7. url:
http://jmlr.org/papers/v20/19-011.html (cit. on pp. 22, 47, 83).

92

https://docs.python.org/3.10/
https://docs.python.org/3.10/
https://medium.com/geekculture/rest-api-best-practices-decouple-long-running-tasks-from-http-request-processing-9fab2921ace8
https://medium.com/geekculture/rest-api-best-practices-decouple-long-running-tasks-from-http-request-processing-9fab2921ace8
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
https://docs.spring.io/spring-framework/docs/current/reference/html/index.html
https://docs.spring.io/spring-framework/docs/current/reference/html/index.html
https://mathworld.wolfram.com/LissajousCurve.html
https://mathworld.wolfram.com/LissajousCurve.html
https://deepai.org/machine-learning-glossary-and-terms/f-score
https://deepai.org/machine-learning-glossary-and-terms/f-score
https://massivepixel.io/blog/angular-best-practices/
https://massivepixel.io/blog/angular-best-practices/
https://pyod.readthedocs.io/en/latest/index.html
http://jmlr.org/papers/v20/19-011.html

Bibliography

[ZRA20] Y. Zhao, R. Rossi, L. Akoglu. “Automating Outlier Detection via Meta-Learning”.
In: arXiv preprint arXiv:2009.10606 (2020) (cit. on pp. 83, 87).

All links were last followed on March 1, 2023.

93

A Appendix

A.1 Data Collection for temperature measurements on a smart plug

The overall flow of the data collection for the temperature measurements in the real world dataset
works as follows:

1. The measurement is transmitted to the base station (A Fritz!Box 7590) wirelessly1.

2. The base station allows the reading of the current measurement by using an API.

3. A tool called fritzbox_smarthome_exporter2 exposes the measurements from the base station
as a Prometheus3 compatible endpoint.

4. The endpoint is crawled in regular intervals of 15 seconds by telegraf4 that stores the collected
measurements in a PostgreSQL5.

The database can then be queried to extract the data as a time series or a csv file.

1Exact technical details are unknown and do not matter for the data collection
2https://github.com/jayme-github/fritzbox_smarthome_exporter
3https://prometheus.io/
4https://docs.influxdata.com/telegraf/v1.25/
5https://www.postgresql.org/

95

https://github.com/jayme-github/fritzbox_smarthome_exporter
https://prometheus.io/
https://docs.influxdata.com/telegraf/v1.25/
https://www.postgresql.org/

Figure A.1: Wireframe of the IoT Application Modelling Tool, modelling a dual input validator
with one actuator

A.2 Figures

Figure A.2: Wireframe of the IoT Application Modelling Tool, modelling a dual input validator
with one actuator, with an expanded unconfigured validator

Figure A.3: Wireframe of the first, introductory, step of the wizard

Figure A.4: Wireframe of the Data Upload step in the wizard

Figure A.5: Wireframe of the data review step in the wizard

Figure A.6: Wireframe of the job running (progress display) step in the wizard

Figure A.7: Wireframe of the configured validator

(a) Steps 1 to 3 (b) Steps 4 to 6 (c) Steps 7 to 9

Figure A.8: The tutorial shown as part of the questionaire

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	List of Figures
	1 Introduction
	2 Fundamentals
	2.1 Outlier
	2.2 Outlier Detection
	2.2.1 Machine-learning based outlier detection

	3 Introduction to the Tool stack
	3.1 MBP - Multi-purpose Binding and Provisioning Platform
	3.2 ME - Messaging Engine
	3.3 IoT Application Modelling Tool
	3.4 ME Configurator

	4 Developing a concept for the integration of automated outlier detection selection
	4.1 What kinds of data are expected?
	4.2 Why Machine Learning based outlier detection?
	4.3 Finding an approach for recommendations
	4.3.1 Finding measurements to compare machine-learning based outlier detections
	4.3.2 Visualizing the outlier detection method performance
	4.3.3 How to compare machine-learning based outlier detection methods?

	4.4 Adding intermediate validation nodes to the modelling tool
	4.4.1 Collecting data by deploying the model partially
	4.4.2 Introducing the outlier detection wizard

	4.5 Choosing and implementing outlier-detection methods
	4.6 Investigating the implementation of validation capabilities in the tool stack
	4.6.1 Identifying modelling cases for validation
	4.6.2 Investigating central vs. decental validation
	4.6.3 Investigating fully decentralized validation on the operator device
	4.6.4 Investigating centralized validation
	4.6.5 Investigating device selection by the modeller
	4.6.6 What is the best option to implement validation

	4.7 Investigating the implementation of the Validation Engine
	4.8 Investigating changes in the workflow to deploy a model

	5 Implementation of the suggestion wizard
	5.1 The tool stack on the technical level
	5.1.1 MBP - Multi-purpose Binding and Provisioning Platform
	5.1.2 IoT Application Modelling Tool

	5.2 Adding validators to the modelling tool
	5.3 Implementing the Backend
	5.3.1 Defining the Data Model
	5.3.2 Outlining the API
	5.3.3 Handling the execution of jobs
	5.3.4 Handling python subprocesses
	5.3.5 Handling job cancellation
	5.3.6 Handling illegal application states and outdated datasets
	5.3.7 Making the Backend portable

	5.4 Frontend Implementation
	5.4.1 Adding instantiatable nodes
	5.4.2 Implementation of the wizard

	5.5 Generating test data

	6 Evaluation of the wizard
	6.1 Drafting the evaluation
	6.1.1 How should the evaluation be done? Using a survey or interviews?
	6.1.2 Providing data for the evaluation
	6.1.3 Providing an instance of the wizard

	6.2 Designing the survey
	6.3 Investigating the results
	6.4 Conclusions from the Survey

	7 Related Work
	8 Conclusion and Outlook
	8.1 Outlook
	8.1.1 Improve the wizard based on the suggestions from the evaluation
	8.1.2 Improving the suggestion mechanism for unlabelled data
	8.1.3 Collecting data for making a suggestion
	8.1.4 Implementing the instantiation and runtime of models with validators
	8.1.5 Investigating a semi-supervised approach
	8.1.6 Adding more outlier detection methods
	8.1.7 Add an option to choose meta parameters
	8.1.8 Supporting larger files
	8.1.9 Evaluating the usability and usefulness on a larger scale

	Bibliography
	A Appendix
	A.1 Data Collection for temperature measurements on a smart plug
	A.2 Figures

