
Sound characteristics of
disordered granular disks:
effects of contact damping

Kuniyasu Saitoh1*, Kianoosh Taghizadeh2,3 and Stefan Luding2

1Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto, Japan, 2Multi-Scale
Mechanics, Thermal and Fluids Engineering, Faculty of Engineering Technology, University of Twente,
Enschede, Netherlands, 3Institute of Applied Mechanics (CE), University of Stuttgart, Stuttgart, Germany

We investigate numerically the sound properties of disordered dense granular
packings in two dimensions. Employing linear equations of motion and excluding
contact changes from our simulations, we demonstrate time evolution of
sinusoidal standing waves of granular disks. We varied the strength of normal
and tangential viscous forces between the disks in contact to explore the
dependence of sound characteristics such as dispersion relations, attenuation
coefficients, and sound speeds on the contact damping. For small wave numbers,
the dispersion relations and sound speeds of acoustic modes are quite insensitive
to the damping. However, a small dip in the phase speed of the transverse mode
decreases as the viscous force in normal direction increases. In addition, the
dispersion relation of the rotational mode differs qualitatively from the theoretical
prediction for granular crystals. Therefore, disordered configurations with energy
dissipation play a prominent role in sound properties of granular materials.
Furthermore, we report how attenuation coefficients depend on the contact
damping and quantify how they differ from the prediction of lattice theory. These
improved relations, based on our numerical results, can in future be compared to
advanced theories and experiments.
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1 Introduction

Granular materials have important sound characteristics for materials research and
engineering [1], including measuring elastic moduli [2–4], geotechnical soil investigation, oil
and gas exploration, and understanding seismic waves and earthquakes [5, 6].

For a better understanding of the sound in granular media, theoretical models
incorporating the rotational degrees of freedom in the microstructure are crucial [7],
e.g., the model of one-dimensional granular chains [8, 9]. In two or three dimensions,
theoretical models of granular crystals have been extensively developed [7, 10–13]. The
theory of granular crystals is based on micromechanics of granular particles on lattice and
well explains the dispersion relations of acoustic sound modes as well as characteristic
“optical-like” dispersion relations of rotational modes. The optical-like dispersion relations
represent wave propagation of micropolar rotations of granular particles, which have been
widely tested by experiments [11] and numerical simulations [10, 12]. Moreover, special
attention has been paid to the influence of material properties of granular particles, such as
the stiffness and viscosity for normal/tangential relative motions between the particles in
contact [13].
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Compared to lattice models, research on sound in amorphous
solids has primarily focused on glass and jamming transitions
[14–21]. Prior studies have investigated the impact of disorder on
sound properties, revealing several anomalies. For instance, the
acoustic sound speeds of amorphous solids are typically at their
lowest at intermediate frequencies (wave numbers) [14–21].
Additionally, sound attenuation, as described by the theory of
Rayleigh scattering [22–25], shows disorder-induced broadening
at high frequencies (wave numbers) [26–35].

Because granular materials in nature are mostly disordered, the
studies of amorphous solids are relevant to the sound in disordered
granular media. However, most of the studies assume that
constituent particles are “frictionless”, where rotational modes are
not considered [14–20]. Recently, we had numerically studied sound
in disordered granular media in two dimensions [36]. We focused
on the influence of tangential stiffness on the dispersion relations
and found that the optical-like dispersion relation deviates from the
prediction of lattice theory [10–12] if the wave number of the initial
standing wave exceeds a critical value. In addition to the influence of
tangential stiffness, the theory of granular crystals predicts how the
viscous forces between the particles in contact affect sound
characteristics [13], which we have not yet examined in our
disordered granular media.

In this paper, we introduce a numerical model of two-
dimensional disordered granular materials to investigate how the
contact damping, i.e., the viscous forces between the particles in
contact, affects the sound characteristics. As the ordinary discrete
element method (DEM) simulations of granular materials [37], the
contact force consists of elastic and viscous forces. The elastic force
includes normal and tangential components, where both are
modeled by linear springs with different spring constants [36].
The viscous force is also decomposed into normal and tangential
components which are characterized by two viscosity coefficients. In
contrast to the theory of granular crystals [10–13], our numerical
model is based on disordered configurations of the particles.
Furthermore, in order to compare our results with the studies of
granular crystals [10–13], we only demonstrate small oscillations of
the particles around their equilibrium positions, where any plastic
deformations due to opening/closing contacts [38, 39] and the
microscopic friction do not occur.

In the following, we explain our numerical method in Section 2
and summarize all the details of our model in Supplementary
Material S1 (SM). We show our numerical results in Section 3
and provide additional data in SM. Lastly, we discuss and conclude
our findings in Section 4.

2 Numerical method

In this section, we explain our numerical method for the analysis
of sound in disordered granular media. First, we introduce our
numerical model and define dimensionless parameters to represent
the strength of forces between the granular particles in contact
(Section 2.1). Next, we show how to prepare disordered
configurations of the particles by numerical simulations (Section
2.2). To examine sound in the prepared granular media, we
introduce linear equations of motion (Section 2.3). Then, we

numerically solve the linear equations of motion with initial
velocities (Section 2.4).

2.1 Contact model

Our numerical model of granular materials is the aggregate of
two-dimensional disks. We introduce the force between the two
disks, i and j, in contact as the sum of elastic and viscous forces. The
elastic force consists of normal and tangential parts as knξij and ktξ

⊥
ij,

respectively, where kn (kt) is the normal (tangential) stiffness. Here,
ξij ≡ Ri + Rj − rij > 0 with the disk radii, Ri and Rj, and center-to-
center distance, rij, represents an overlap between the particles, while
ξ⊥ij is the relative tangential displacement at contact. On the other
hand, the viscous force consists of normal and tangential parts as
ηn

_ξij and ηt
_ξ
⊥
ij, respectively, where ηn (ηt) is the viscosity in the

normal (tangential) direction.
In our numerical model, the strength of contact forces is

determined by the microscopic stiffness and viscosity, i.e., kn, kt,
ηn, and ηt. To control the strength of contact forces, we introduce the
following dimensionless parameters [13],

ρK ≡
kt
kn

, ρD ≡
ηt
ηn

, ϵn ≡
ηn����
mkn

√ . (1)

Here, the stiffness ratio ρK quantifies the strength of tangential elastic
forces, while the damping ratio ρD represents the relative magnitude
of tangential viscous forces. In addition, the damping factor ϵn,
together with ρD, controls the strength of energy dissipation.

The dimensionless parameters, Eq. 1, were suggested by Kruyt
[13] to quantify the influence of microscopic properties on the
sound in granular crystals. In Ref. [36], we have studied the role of ρK
in the sound characteristics of two-dimensional “disordered”
granular disks, where the contact damping was absent, i.e., ρD =
ϵn = 0. In this paper, we will focus on the effects of ρD and ϵn on the
sound properties of disordered granular disks. Note that we do not
introduce the tangential elastic force and viscous forces, i.e., ρK =
ρD = ϵn = 0, when we prepare disordered configurations of the disks
(Section 2.2). However, we introduce these forces when we simulate
small oscillations of the disks around their equilibrium positions,
where ρK is fixed to unity (Section 2.3).

2.2 Disordered configurations

We prepare disordered configurations of granular disks by the
same method as in Refs. [36, 40]. Our system is a 50:50 binary
mixture of N = 32,768 disks, where every disk has the same mass m
and different diameters, dS and dL = 1.4dS. A repulsive force between
the disks, i and j, in contact is given by the elastic force in normal
direction, fij = knξij. We randomly distribute the N disks in a L × L
square periodic box and fully minimize elastic energy of the system
with the FIRE algorithm [41]. We stop the energy minimization if
the maximum acceleration of the disks becomes less than 10−9d0/t20
with the mean disk diameter, d0 ≡ (dS + dL)/2, and time unit,
t0 ≡

�����
m/kn

√
. In the following, we scale every length and time by d0

and t0, respectively. Since our system is bi-dispersed, disk positions
after the energy minimization are disordered, where we denote their
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disordered configurations as {ri (0)} (i = 1, . . ., N). Note that the
packing fraction of the disks is fixed to 0.9 and thus our system is far
above the jamming transition [42–44]. Nevertheless, there are
typically 0.2% of rattlers that do not contribute to the mechanical
contact network.

2.3 Linear equations of motion

To simulate sound in the disordered granular media, we
introduce linear equations of motion of the granular disks [45,
46]. Now, we introduce the tangential elastic force and viscous forces
between the disks in contact. Because the disordered configurations,
{ri (0)} (Section 2.2), are mechanically stable, we describe small
oscillations of the disks around {ri (0)} by the following equation [36,
40, 47],

M€q t( ) � −Dq t( ) − B _q t( ) . (2)
Here, t denotes time and

q t( ) ≡ ui t( ), θi t( ){ }( )T (3)
is a 3N-dimensional displacement vector which consists of
translational displacement in the xy-plane, ui(t) ≡ ri(t) − ri (0),
and angular displacement of each disk, θi(t). In the linear equations
of motion (Eq. 2),M,D, and B are 3N × 3Nmass matrix, dynamical
matrix, and damping matrix, respectively [36, 40]. The mass matrix
is diagonal and consists of mass and moment of inertia of each disk.
The dynamical matrix is defined by second derivatives of elastic
energy [47–51], whereas the damping matrix is given by second
derivatives of dissipation function [40, 52]. In SM, we derive Eq. 2
and show explicit forms of M, D, and B.

In Eq. 2, the elastic forces between the disks in contact are
given by −Dq(t). To calculate each element of D, we define the
elastic energy as the sum of harmonic potentials stored in normal
and tangential directions (see SM). Note that the initial
configurations, {ri (0)}, are mechanically stable even if we
introduce the tangential component of elastic energy [36]. The
normal (tangential) component of elastic energy is characterized
by the normal (tangential) stiffness, kn (kt). On the other hand,
the viscous forces between the disks in contact are given by
−B _q(t), where

_q t( ) ≡ _ui t( ), _θi t( ){ }( )T (4)

is the time derivative of the 3N-dimensional displacement vector,
q(t). Each element of B is defined by the dissipation function [40],
which is also decomposed into normal and tangential components
(see SM). As in the case of the elastic energy, the normal (tangential)
component of the dissipation function is characterized by the
normal (tangential) viscosity, ηn (ηt).

The linear equations of motion (Eq. 2) are equivalent to the so-
called “spring-dashpot model”, i.e., a canonical model of granular
materials for DEM simulations [36]. However, the matrices, D and
B, are given by the initial equilibrium positions, {ri (0)}, such that the
interactions, −Dq(t) and −B _q(t), are calculated based on the initial
contact network. Since the displacements, q(t), are so small, such
harmonic approximations of the elastic energy and dissipation
function are valid (SM) [45, 46]. Note that the static friction

between the disks in contact is modeled by the tangential elastic
force, ktξ

⊥
ij. The static friction coefficient is infinite, i.e., the

dynamical (Coulomb) friction is not implemented, because our
dynamical matrix is given by the elastic energies and cannot
describe the dynamical friction.

2.4 Initial velocities

To examine sound properties of the granular disks, we employ a
similar method as in Refs. [36, 40, 47]. We numerically integrate the
linear equations of motion, Eq. 2, under periodic boundary
conditions. Initial velocities of the disks are given by a sinusoidal
standing wave,

_q 0( ) � A sin k · ri 0( )( ){ }( )T , (5)
where A and k are amplitude and wave vectors, respectively [37, 40,
47]. As shown in SM, we use different amplitude and wave vectors to
demonstrate three different types of elastic wave, i.e., longitudinal
(L), transverse (T), and rotational (R) modes. The latter (R mode)
represents micropolar rotations of the disks [36], which are not
relevant in frictionless systems [40, 47].

3 Results

In this section, we show our numerical results of sound in
disordered granular media. First, we explain time evolution of
sinusoidal standing waves (Section 3.1) and analyze velocity auto-
correlation functions (VAFs) of the granular disks (Section 3.2).
We extract sound characteristics, i.e., dispersion relations (Section
3.3) and attenuation coefficients (Section 3.4), from numerical data
of VAFs. We also examine how sound speeds are affected by the
strength of contact damping (Section 3.5). Lastly, we compare our
numerical results with theoretical predictions of granular crystals
(Section 3.6) to figure out the influence of disordered
configurations.

3.1 Time evolution of standing waves

By using numerical solutions of the linear equations of motion
(Eq. 2), we visualize time evolution of the sinusoidal standing wave.
Figure 1 displays snapshots of our numerical simulation at t/t0 =
(A) 0, (B) 2, (C) 4, and (D) 6. Each disk (circle) is colored according
to its angular velocity, _θi(t) (i = 1, . . ., N), where _θi(t) increases
from −Aθ (blue) to Aθ (red). In this figure, the wave vector is k = (k,
0) (as indicated by the arrow) with the wave number, k ≃ 0.29d−10 ,
where the dimensionless parameters are given by ρK = 1, ρD = 0.2,
and ϵn = 0.1. As can be seen, the initial standing wave (Figure 1A) is
attenuated with time (Figures 1B, C) and eventually vanishes in a
long time limit (Figure 1D). Such the wave attenuation is caused
not only by scattering (due to the disordered configuration of the
disks) [36, 47] but also by energy dissipation (due to the viscous
forces between the disks in contact) [40]. We can also observe
similar wave attenuation when we visualize the time evolution of
translational velocities of the disks, _ui(t) (i = 1, . . .,N) (data are not
shown).
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3.2 Velocity auto-correlation functions

From numerical solutions of Eq. 2, we obtain the data of disk
velocities, _q(t) (Eq. 4). We apply Fourier transforms to the
velocities as

_uk t( ), _θk t( ){ } � ∑N
i�1

_ui t( ), _θi t( ){ }e−Ik·ri t( ) (6)

with the imaginary unit I, where the disk position ri(t) is also
obtained from the numerical solutions of Eq. 2. Then, we
introduce the L and T modes as

_u‖
k t( ) ≡ _uk t( ) · k̂{ }k̂ , (7)

_u⊥
k t( ) ≡ _uk t( ) − _u‖

k t( ) , (8)
respectively, where k̂ ≡ k/k is a unit vector parallel to the wave
vector.

The normalized VAFs of L, T, and R modes are defined as

CL k, t( ) � 〈 _u‖
k t( ) · _u‖

−k 0( )〉
〈| _u‖

k 0( )|2〉 , (9)

CT k, t( ) � 〈 _u⊥
k t( ) · _u⊥

−k 0( )〉
〈| _u⊥

k 0( )|2〉 , (10)

CR k, t( ) � 〈 _θk t( ) _θ−k 0( )〉
〈| _θk 0( )|2〉 , (11)

respectively. Figure 2 shows the time evolution of (A) CL (k, t), (B) CT

(k, t), and (C) CR (k, t), where the dimensionless parameters, ρK, ρD,
and ϵn, are as in Figure 1. To calculate each VAF, we use two different
wave vectors (as listed in Table 1 in the SM) and average each VAF
over the two samples (wave vectors). As can be seen, the oscillation of
Lmode is faster than that of Tmode (Figures 2A, B). Furthermore, the
oscillation of R mode is much faster than those of L and T modes
(note the different horizontal scale in Figure 2C), meaning that the
sound speed of micropolar rotations of the disks is much larger than
acoustic sound speeds. In addition, the R mode decays much faster
than the acoustic L and T modes, implying stronger scattering and
energy dissipation of rotational motions. Notice that the VAFs are
entirely damped (“overdamped”) without oscillations if the
parameters, ρD and ϵn, are sufficiently large.

To extract sound characteristics of the granular disks, we fit a
damped oscillation,

Cα k, t( ) � e−γα k( )t cosωα k( )t , (12)
to the data of normalized VAFs (α = L, T, R) [36, 40, 47]. In Eq. 12,
the frequency ωα(k) represents the dispersion relation, while the

FIGURE 1
Time evolution of a standing wave of which wave vector k (kd0≃0.29) is indicated by the horizontal arrow. The angular velocities, _θi(t) (i =1,. . ., N),
evolve as t/t0= (A) 0, (B) 2, (C) 4, and (D) 6, where the gray scale (color bar) represents each angular velocity, i.e., _θi(t) increases from −Aθ (blue) to Aθ (red).
The dimensionless parameters are given by ρK =1, ρD =0.2, and ϵn =0.1. A small system size (with N =2048) is used for visualization.
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coefficient γα(k) quantifies the sound attenuation of each mode. For
each wave number k, we adjust the fitting parameters, ωα(k) and
γα(k), to see perfect agreement between the data of normalized VAFs
and damped oscillations. The solid lines in Figure 2 are the damped
oscillations; Eq. 12, fitted to the data of normalized VAFs (circles).
We also confirm perfect agreement between the data and Eq. 12 for
all the dimensionless parameters, ρK, ρD, and ϵn, used in simulations
(data are not shown).

When the VAFs are overdamped, the data of normalized VAFs
cannot be described by the damped oscillation, Eq 12. Therefore,
there is a need to introduce a criterion for the fitting parameters,
ωα(k) and γα(k). Here, we employ the Ioffe-Regel (IR) limit for the
criterion, where Eq. 12 is meaningful only if the condition

πγα k( )
ωα k( ) < 1 (13)

is satisfied [18]. The ratio πγα(k)/ωα(k) is a monotonically increasing
function of the wave number k. Hence Eq. 13 is equivalent to k< kα*,
where the limit wave number kα* is defined as πγα(kα*)/ωα(kα*) � 1.
In SM, we show our results of the limit wave number, kα*. The limit

wave number is a monotonically decreasing function of the strength
of contact damping, ρD and ϵn. In the following, we only show the
results of ωα(k) and γα(k) in k< kα*.

3.3 Dispersion relations

We analyze the dispersion relation of eachmode, ωα(k) (α = L, T,
R), extracted from the data of VAFs and clarify its dependence on
the contact damping. Figure 3A displays ωα(k) as functions of the
scaled wave number kd0, where we control the damping ratio ρD as
listed in the legend (see SM for their dependence on the damping
factor ϵn). In this figure, the dispersion relations of L and T modes
exhibit ordinary acoustic branches, where ωL(k) and ωT(k) increase
from zero with the wave number. The dispersion relation of L mode
is larger than that of T mode, i.e., ωL(k) > ωT(k), over the whole
range of k. This means that the oscillation of the VAF of L mode is
always faster than that of T mode (as shown in Figures 2A, B). In
addition, these dispersion relations are quite insensitive to ρD
(Figure 3A) and ϵn (SM). This trend is consistent with the
theoretical prediction of granular crystals [13] though ωT(k) is
cut-off at the limit wave number kT* which decreases with the
increase of ρD (see SM).

In contrast to the acoustic dispersion relations, the dispersion
relation of the R mode exhibits a characteristic optical-like branch
(Figure 3A) [7]. The influence of contact damping is significant at
large wave number, where ωR(k) dramatically decreases if we
increase either ρD (inset to Figure 3A) or ϵn (SM). It is
interesting that the viscous forces in normal and tangential
directions, characterized by ϵn and ρD, respectively, have a similar
effect on ωR(k) because micropolar rotations of the disks are driven
only by tangential forces. In addition, ωR(k) in Figure 3A is not cut-
off though ωT(k) is at kT* . Therefore, compared with the T mode, the
oscillation of R mode is long-lived, implying that micropolar
rotations are not strongly coupled with transverse motions of the
disks.

3.4 Attenuation coefficients

We examine sound attenuation of each mode by the attenuation
coefficients, γα(k) (α = L, T, R), extracted from the data of VAFs.
Figure 3B displays γα(k) as functions of the scaled wave number,
where we vary ρD as listed in the legend (see SM for the effect of ϵn on
γα(k)). In the continuum limit, k→ 0, the attenuation coefficients of
the L and T modes are quadratic in the wave number, i.e., γL(k),
γT(k) ~ k2, as indicated by the dashed line. The quadratic growth of
the attenuation coefficients is typical of viscoelastic media [40] and is
also predicted by the lattice theory of granular crystals [13]. In
addition, regardless of the wave number, both γL(k) and γT(k)
increase with the increase of strength of contact damping (see
also SM).

In contrast, the attenuation coefficient of the R mode remains
constant, γR(k) ~const., in the continuum limit and is much larger
than those of acoustic modes, i.e., γR(k) ≫ γL(k), γT(k), for small
wave numbers. Therefore, the decay of the normalized VAF of R
mode is much faster than those of L and T modes (as shown in
Figure 2). However, if the damping ratio is relatively small (ρD < 0.4),

FIGURE 2
Normalized VAFs of (A) L, (B) T, and (C) R modes as functions of
the scaled time t/t0, where the scaled wave number is kd0≃0.40 and
dimensionless parameters, ρK, ρD, and ϵn, are as in Figure 1. The solid
lines are the damped oscillations (Eq. 12) fitted to the numerical
results (circles). Note that the horizontal scale in (C) is an order smaller
than those in (A, B).
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the attenuation coefficient of the R mode becomes smaller than
those of acoustic modes, i.e., γR(k) < γL(k), γT(k), at large wave
number. We also observe this phenomenon if the damping factor ϵn
is small enough (SM). Because the lattice theory of granular crystals
implies that the attenuation of R mode is always stronger than those
of acoustic modes [13], our results suggest that the weak attenuation
of R mode at large wave number is specific to disordered granular
disks. Similar to the acoustic modes, γR(k) significantly increases
with the increase of strength of contact damping regardless of the
wave number (see also SM).

3.5 Phase speeds

We quantify sound speed of eachmode by phase speed defined as
cα(k) ≡ ωα(k)/k (α = L, T, R). Figure 3C shows cL(k) and cT(k) as
functions of the scaled wave number, where we vary the parameter
ρD as listed in the legend (see SM for different values of ϵn). As can be
seen, the phase speeds of acoustic L and T modes converge to
constants (horizontal lines) in the continuum limit, k → 0. The
continuum limit, cα(0) (α = L, T), is insensitive to the strength of
contact damping, ρD and ϵn. Therefore, the viscous forces between
the disks in contact do not affect macroscopic speeds of sound [40].

The phase speed of L mode, cL(k), is a monotonically decreasing
function of the wave number, meaning that the dispersion relation,
ωL(k), becomes sub-linear at large wave number (see Figure 3A). The
phase speed of T mode, cT(k), also decreases from the continuum limit,
cT (0), when the wave number k increases from zero. However, further
increasing k, we observe that cT(k) starts increasing and generates a small
“dip” at intermediate wave number (as indicated by the arrow in
Figure 3C). Such a small dip in the phase speed is characteristic of
(energy conserving) disordered media [47, 53] and has been considered
to be a sign of the boson peak in vibrational density of states [54–58]. It
is believed that the boson peak is a consequence of elastic heterogeneities
in disordered materials [59–61]. Therefore, the small dip in cT(k) is
unique to our study on disordered granular disks, i.e., is not expected to
exist in cT(k) of granular crystals [7, 10–13]. Note that cL(k) exhibits no
dip, which is in sharp contrast with the results of disordered frictionless
disks [40]. Moreover, cL(k) is relatively insensitive to the strength of
contact damping, ρD and ϵn. Similarly, cT(k) is not affected by the
damping ratio ρD, though it is cut-off at kT* which decreases with the
increase of ρD (see SM). In addition, the magnitude of small dip in cT(k)
decreases with the increase of damping factor ϵn (see SM) as previously
found in the model of disordered frictionless disks [40].

As shown in Figure 3D, the phase speed of the R mode, cR(k),
exhibits asymptotic behavior, i.e., cR(k) ~ k−1 (dashed lines), in the

FIGURE 3
(A)Dispersion relations, ωα(k) (α= L, T, R), as functions of the scaled wave number, kd0. The inset shows a zoom-in to the range between 9π/10≤ kd0≤
π. (B) Double logarithmic plots of attenuation coefficients, γα(k) (α = L, T, R), and kd0, where the dashed line has the slope 2. (C) Semi-logarithmic plots of
the phase speeds, cα(k) (α = L, T), and kd0, where the horizontal lines represent macroscopic speeds of sound (in the limit, k →0). The orange arrow
indicates a small dip in cT(k). (D) Double logarithmic plots of the phase speed, cR(k), and kd0, where the dashed lines have the slope −1. The inset
shows a zoom-in to the range between 2≤ kd0≤ π. In (A–D), the damping factor is given by ϵn=0.08, whereas the damping ratio ρD increases as listed in the
legends and indicated by the black arrows.
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continuum limit, k → 0. Thus, the optical-like branch in the
dispersion relations becomes flat, ωR(k) ~const., when the wave
number is small enough, Figure 3A. The influence of contact
damping is significant at large wave number, where cR(k) is
lowered with the increase of contact damping (see the inset).

3.6 Comparison with lattice theory

We compare our numerical results with theoretical predictions
of granular crystals. In particular, we focus on the dependence of
sound characteristics on the strength of contact damping, ρD and ϵn.

The lattice theory of granular crystals [13] predicts that, in the
continuum limit, k → 0, the dispersion relations of the L and T
modes depend on the stiffness ratio as ωL(k)t0 ≃ ������

1 + ρK
√

kd0 and
ωT(k)t0 ≃

���������(1 + ρK)/2
√

kd0, respectively. Our results of ωL(k) and
ωT(k) are consistent with this prediction, except for 25%–30%
smaller prefactors. In SM, we show our results of ωL(k) and
ωT(k) at the smallest wave number, Δk ≡ 2π/L, where both are
insensitive to ρD and ϵn, i.e., as in Figure 3A, and are described as
ωL(Δk)t0 � ωd

L

������
1 + ρK

√
Δkd0 and ωT(Δk)t0 � ωd

T

���������(1 + ρK)/2
√

Δkd0
with the prefactors, ωd

L ≃ 0.741 and ωd
T ≃ 0.712.

The lattice theory also predicts that, in the continuum limit, the
dispersion relation of the R mode is controlled by the dimensionless
parameters according to

ωR k( )∝
������������
ρK − a0 ρDϵn( )2√

, (14)
where a0 is a dimensionless constant [13]. To examine the
theoretical prediction, we plot our numerical results of the
dispersion relation at the smallest wave number, ωR (Δk), as a
function of the damping ratio ρD in Figure 4A. In this figure, the
dashed line is the theoretical prediction; Eq. 14, approximated to the
data of ωR (Δk) for ϵn = 0.02 (where a0 ≃ 1.3 × 10−2 with a prefactor,
4.59). It is apparent that our results are qualitatively different from
the theoretical prediction; Eq. 14 is convex upward, while the data
are convex downward. Our findings suggest that the influence of
disordered disk configurations on the R mode cannot be neglected
even in the continuum limit.

In the continuum limit, the attenuation coefficients of the L and
T modes are predicted to be quadratic in the wave number as
γL(k)t0 ≃ ϵn(1 + 4ρD)(kd0)2 and γT(k)t0 ≃ ϵn{(1 + ρD)/2}(kd0)2,
respectively [13]. Furthermore, the attenuation coefficient of the
R mode is predicted to be proportional to the strength of contact
damping as γR(k) ∝ϵnρD in the continuum limit [13]. Therefore, all
the attenuation coefficients predicted by the lattice theory are
proportional to ϵn and are linear in ρD, meaning that the sound
is not attenuated if the contact damping is absent, i.e., γα(k) = 0 if
ϵn = ρD = 0 (α = L, T, R). However, in disordered media, the sound is
also attenuated by scattering even if the contact damping does not
exist, i.e., γα(k) > 0 even if ϵn = ρD = 0 [40]. The scattering of the

FIGURE 4
(A)Continuum limits of the dispersion relation of the Rmode, ωR (Δk), as functions of the damping ratio ρD, where the damping factor ϵn increases as
listed in the legend. The dashed line is a prediction by the lattice theory of granular crystals. (B–D): Continuum limits of the dimensionless functions, fα(Δk),
of (B) α = L, (C) T, and (D) R modes as functions of ρD, where ϵn increases as listed in the legend of (B). The dashed lines indicate Eqs 15–17.
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acoustic L and T modes is represented by the scaling, γα(k) ∝ k3,
i.e., like Rayleigh scattering in two dimensions [1]. Assuming that
the attenuation coefficient of the R mode is also finite, γR(k) > 0, in
the limit, ϵn = ρD = 0, we modify the theoretical predictions to take
the influence of disorder into account as

γL k( )t0 � γdLϵn 1 + rLρD( ) kd0( )2 + qL kd0( )3 , (15)
γT k( )t0 � γdTϵn 1 + rTρD( ) kd0( )2 + qT kd0( )3 , (16)

γR k( )t0 � γdRϵn 1 + rRρD( ) + qR , (17)
where γdα, rα, and qα (α = L, T, R) are introduced as fitting parameters.

Adjusting the parameters, we see good agreements between Eqs.
15–17 and numerical results. Figures 4B–D show dimensionless
functions, (B) fL(k) ≡ γL(k)t0/{ϵn(kd0)2} − qLkd0/ϵn − γdL, (C)
fT(k) ≡ γT(k)t0/{ϵn(kd0)2} − qTkd0/ϵn − γdT, and (D) fR(k) ≡
γR(k)t0/ϵn − qR/ϵn − γdR, at the smallest wave number, Δk. In
these figures, the dashed lines represent (B) γdLrLρD, (C) γ

d
TrTρD,

and (D) γdRrRρD, indicating Eqs 15–17. As can be seen, all the
numerical results are nicely collapsed on the dashed lines though the
data of fR (Δk) in (D) considerably deviate up to 8.1% from γdRrRρD
(dashed line) as the strength of contact damping, ρD and ϵn,
increases. The dimensionless parameters in Eqs. 15–17 are given
by γdL ≃ 0.440, rL ≃ 0.259, qL ≃ 0.104, γdT ≃ 0.155, rT ≃ 0.700, qT ≃
0.061, γdR ≃ 2.16 × 10−2, rR ≃ 5.27 × 102, and qR ≃ 3.72 × 10−2. This
means that, even if we modify the constants in the theoretical
predictions, our numerical results cannot be explained. Therefore,
structural disorder significantly alters the sound attenuation in
granular media and the improved damping relations, Eqs. 15–17,
have to be explained by advanced theory in future.

4 Discussion

In this study, we conducted numerical simulations to investigate
sound in disordered granular media in two dimensions. Our aim is
to clarify the difference between granular crystals and disordered
granular packings, where the special attention has been paid to the
influence of viscous forces between the particles in contact. Our
main findings are summarized as follows.

1. At large wave number, the dispersion relation of the rotational
(R) mode is more sensitive to the contact damping than those of
the acoustic longitudinal (L) and transverse (T) modes.

2. In the continuum limit, the dependence of the dispersion relation
of the R mode on the strength of contact damping qualitatively
differs from the theoretical prediction of granular crystals.

3. The attenuation coefficients in disordered granular packings are
described by Eqs. 15–17 in the continuum limit, which are totally
different from the theoretical predictions of granular crystals.

4. The small dip in the phase speed of the T mode is typical of
disordered systems (does not exist in granular crystals), where its
magnitude decreases with the increase of damping factor.

5. Different fromdisordered “frictionless” systems, there is no dip in the
phase speed of the L mode in disordered granular disks, where the
elastic and viscous forces are introduced in the tangential direction.

Because we found qualitative differences between granular crystals
and disordered granular packings even in the continuum limit (where

microstructures are entirely coarse-grained), our results suggest that
advanced new theory is necessary for describing sound properties of
disordered granular materials.

To compare our results with the previous ones [36, 40], we have
prepared the initial disordered configurations with the packing
fraction, 0.9. However, the packing fraction or confining pressure
strongly affects sound properties [53] and more systematic studies are
needed in future. The eigenmodes are another important aspect of
vibrational properties of disordered particle packings [62]. The
relation between eigenmodes, contact damping or the damping
matrix, dispersion relations, and attenuation coefficients needs to
be clarified. Moreover, the low frequency eigenmodes are directly
related to the elastic moduli [62], which could pave the way to develop
advanced theories for sound in disordered media. In addition to
studying the response of the disordered disk systems to an imposed
standing wave, the response of the system to more general
perturbations or initial conditions will lead to a better
understanding and possibly to fluctuation-dissipation relations for
disordered disk systems. In our numerical model, we used harmonic
potentials for the elastic energy but more realistic non-linear elastic
forces, e.g., the Hertz-Mindlin contact, have not been examined. In
addition, we did not take plastic deformations of the system into
account. In reality, however, contact changes and the Coulomb
friction play an important role in mechanical responses of granular
materials [63]. To implement these plastic deformations, we need to
generalize our numerical model as left to future work. It is also
interesting to examine other contact models, e.g., the rolling resistance
or cohesive interaction due to capillary bridges. Furthermore, the
influence of microstructure such as size distributions and
polydispersity is also important. For practical purposes, numerical
simulations in three dimensions are crucial as an additional degree of
freedom, i.e., the twisting motion of spheres in contact, induces a pure
decoupled rotational mode, which we left for future work.
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