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Abstract
This article considers one-dimensional random systems of hyperbolic conservation
laws. Existence and uniqueness of random entropy admissible solutions for initial
value problems of conservation laws, which involve random initial data and random
flux functions, are established. Based on these results an a posteriori error analysis for a
numerical approximation of the random entropy solution is presented. For the stochas-
tic discretization, a non-intrusive approach, namely the Stochastic Collocationmethod
is used. The spatio-temporal discretization relies on the Runge–Kutta Discontinuous
Galerkin method. The a posteriori estimator is derived using smooth reconstructions
of the discrete solution. Combined with the relative entropy stability framework this
yields computable error bounds for the entire space-stochastic discretization error.
The estimator admits a splitting into a stochastic and a deterministic (space-time)
part, allowing for a novel residual-based space-stochastic adaptive mesh refinement
algorithm. The scaling properties of the residuals are investigated and the efficiency
of the proposed adaptive algorithms is illustrated in various numerical examples.
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1 Introduction

Quantifying the influence of random model parameters as well as uncertain initial or
boundary conditions has become an important task in computational science and engi-
neering. Uncertainty Quantification (UQ) addresses this issue and provides a variety
of mathematical methods to examine the influence of uncertain input parameters on
numerical solutions and derived quantities of interest.

In this article we study (spatially) one-dimensional systems of random hyperbolic
conservation laws, where the uncertainty stems from random initial data or from ran-
dom flux functions. Based on Kružkov’s work [23], a firm theory for random scalar
conservation laws in several space dimensions has been developed [25,26,31]. Com-
pared to scalar equations, little is known about existence and uniqueness of entropy
solutions for systems of hyperbolic conservation laws, especially in multiple space
dimensions. For one-dimensional systems with initial data with small total variation,
Glimm provided a proof for the global existence of entropy admissible solutions [17].
Later, Bressan and coauthors [5–7] proved that the entropy admissible solutions con-
structed by the Glimm scheme (or equivalently by wave-front tracking) are unique
in the sense that they are the only entropy admissible solutions satisfying additional
stability properties such as certain bounds on the growth of their total variation. Based
on these deterministic results, we prove the existence and uniqueness of so-called ran-
dom entropy admissible solutions for one-dimensional systems of random hyperbolic
conservation laws (Theorem 3.3).

Having established existence and uniqueness we approximate the random entropy
admissible solution numerically. We discretize the random space by the Stochastic
Collocation (SC) method [1,2,37]. The method is non-intrusive, which means that
the underlying deterministic solver does not need to be modified. Moreover, it is
easily parallelizable and it avoids the problem of losing hyperbolicity for nonlinear
hyperbolic systems, a major drawback of many intrusive methods, most notably the
Stochastic Galerkin method [29]. As specific deterministic solver we use the Runge–
Kutta Discontinuous Galerkin method [11].

For nonlinear random hyperbolic conservation laws, discontinuities, both in phys-
ical and stochastic space, may appear in finite time. Due to its non-intrusive nature, it
is straightforward to combine SC with space-time adaptive schemes on each sample.
However, solutions may have localized features, such as discontinuities in stochastic
space which makes it desirable to locally increase not only the spatial but also the
stochastic mesh resolution. Adaptive algorithms for the (Multi-Element) Stochastic
Collocationmethod and for the Simplex Stochastic Collocationmethod have been con-
sidered in [19,34,36]. The refinement criteria for these methods are based on heuristic
considerations, namely the decay of higher-order modes or the difference between
fine grid and coarse grid solutions and are not immediately linked to the true numeri-
cal error. Moreover, they do not consider refinement in physical space. An approach
which combines both, physical and stochastic refinement, has been introduced in [8],

123



A posteriori error analysis and adaptive non-intrusive... 621

where the authors consider random boundary value problems for second order partial
differential equations and use adjoint methods to derive separable error bounds for
linear quantities of interest. They then use the corresponding dual weighted residu-
als for local mesh refinement. For random elliptic problems adaptive mesh refinement
based on a posteriori error estimates has been studied extensively, cf. [18,32] and refer-
ences therein. In contrast, such an analysis seems to be missing for random hyperbolic
conservation laws and we aim at filling this gap.

In this work, we present as the first new contribution an a posteriori error analysis
which is based on the following approach [24]: We view the numerical solution (or,
more precisely, a reconstruction thereof) as the exact solution of a perturbed version
of the original problem. The perturbation is given by a computable residual which acts
as a source term. By using the appropriate stability theory for the problem at hand we
can bound the difference between the exact and the numerical solution in terms of the
residual. The suitable stability theory for systems of hyperbolic conservation laws is
the relative entropy stability framework of Dafermos and DiPerna, see [12, Theorem
5.2.1].

The specific reconstructions that we use are based on reconstructions for determin-
istic problems suggested in [13], see also [16] for a modified reconstruction in terms
of Stochastic Galerkin schemes. Using these reconstructions, we obtain a residual
admitting a decomposition into a spatial and a stochastic part, which enables us to
control the errors arising from spatial and stochastic discretization. Based on the a
posteriori error estimate, we exploit the residuals’ structure and propose as the second
novel contribution of this paper a residual-based space-stochastic adaptive numerical
scheme. While the estimator provides reliable a posteriori error control for smooth
solutions, it blows up undermesh refinement for discontinuous solutions. However, the
residuals precisely capture the positions of rarefaction waves, contact discontinuities
and shocks. Therefore, the residual-based space-stochastic adaptive numerical scheme
leads to a significant error reduction compared to uniform mesh refinement. Due to its
non-intrusive structure our proposed method admits a straightforward parallelization,
the residuals are on-the-fly computable and the resulting adaptive schemes efficiently
decrease the numerical error compared to uniform mesh refinement.

This article is structured as follows: In Sect. 2 we describe our equation of interest.
In Sect. 3 we first review the deterministic well-posedness theory for one-dimensional
systems of hyperbolic conservation laws. We then introduce the notion of random
entropy admissible solutions and establish existence and uniqueness under suitable
assumptions on the random initial data and random flux function. Section 4 describes
the stochastic discretization and we show how to obtain the reconstruction from our
numerical solution. In Sect. 5 we establish the a posteriori estimate and derive the
splittingof the error estimator into a spatio-temporal and a stochastic part. Furthermore,
we describe our space-stochastic adaptive numerical schemes. Finally, in Sect. 6, we
provide various numerical examples for the Euler equations, where on the one handwe
examine the scaling behavior of the corresponding residuals and on the other hand we
compare the error reduction of our adaptive numerical algorithms to that of uniform
mesh refinements and show that our adaptive schemes are indeed more efficient.
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2 Preliminaries and notation

2.1 A primer on probability theory

Let (Ω,F ,P) be a probability space, where Ω is the set of all elementary events
ω ∈ Ω , F is a σ -algebra on Ω and P is a probability measure. In the following
we parametrize the uncertainty with a random vector ξ : Ω → Ξ ⊂ R

N with
independent, absolutely continuous components, i.e. ξ(ω) = (

ξ1(ω), . . . , ξN (ω)
) :

Ω → Ξ ⊂ R
N . This means that for every random variable ξi there exists a density

function wi : R → [0,∞), such that
∫

R

wi (y) dy = 1 and P[ξi ∈ A] = ∫

A
wi (y) dy,

for any A ∈ B(R), for all i = 1, . . . , N . Here B(R) is the Borel σ -algebra on R.
Moreover, the joint density function w of the random vector ξ = (ξ1, . . . , ξN ) can be
written as

w(y) =
N∏

i=1

wi (yi ) ∀ y = (y1, . . . , yN )� ∈ Ξ.

The random vector induces a push-forward probability measure P̃(B) := P(ξ−1(B))

for all B ∈ B(Ξ) on the measurable space (Ξ,B(Ξ)). This measure is called the law
of ξ and in the following we work on the image probability space (Ξ,B(Ξ), P̃).

For a Banach space E and its Borel σ -algebra B(E), we consider the weighted
L p

w-spaces equipped with the norms

‖ f ‖L p
w(Ξ ;E) :=

⎧
⎨

⎩

( ∫

Ξ

‖ f (y)‖p
E w(y)dy

)1/p = E

(
‖ f ‖p

E

)1/p
, 1 � p < ∞

esssupy∈Ξ‖ f (y)‖E , p = ∞.

2.2 Statement of the problem

We start with the following one-dimensional hyperbolic system of m ∈ N (determin-
istic) conservation laws.

{
∂t u(t, x) + ∂x F(u(t, x)) = 0, (t, x) ∈ (0, T ) × R,

u(0, x) = u0(x), x ∈ R.
(IVP)

Here, u(t, x) ∈ U ⊂ R
m is the vector of conserved quantities, F ∈ C2(U;Rm) is

the flux function, and U ⊂ R
m is the state space, which is assumed to be an open set

and T ∈ (0,∞). We make the following assumptions on the initial condition and flux
function.

(D1) The initial condition satisfies u0 ∈ L1(R;U).

(D2) The Jacobian DF has m distinct real eigenvalues, with each characteristic field
being either genuinely nonlinear or linearly degenerate [12, Def. 3.1.1, Def.
7.5.1].
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For our probabilistic equation of interest we admit in (IVP) random variations in
the flux and initial datum, leading to the following one-dimensional system of m ∈ N

random conservation laws.
{

∂t u(t, x, y) + ∂x F(u(t, x, y), y) = 0, (t, x, y) ∈ (0, T ) × R × Ξ,

u(0, x, y) = u0(x, y), (x, y) ∈ R × Ξ.
(RIVP)

Here, u(t, x, y) ∈ U ⊂ R
m is the random vector of conserved quantities and F(·, y) ∈

C2(U;Rm), P̃-a.s. y ∈ Ξ is the random flux function.
For the sake of simplicity we keep the same notation for the solution and for the flux

as in (IVP) and make the following assumptions on the random initial condition and
on the random flux function. Note that these assumption are the probabilistic versions
of assumptions (D1) and (D2).

(R1) The uncertain initial condition satisfies u0 ∈ L1
w(Ξ ; L1(R;U)).

(R2) For almost every realization y ∈ Ξ , the Jacobian DF(·, y) has m distinct
real eigenvalues, and each characteristic field is either linearly degenerate or
genuinely nonlinear. Moreover, we assume that F ∈ L2

w(Ξ ;C2(U;Rm)).

3 Well-posedness: deterministic vs. random hyperbolic conservation
laws

In this section we first review some classical results for deterministic one-dimensional
hyperbolic conservation laws. We then introduce the notion of a random entropy
solution for (RIVP) and establish its existence and uniqueness based on the results for
the deterministic hyperbolic conservation law (IVP).

3.1 Deterministic hyperbolic conservation laws

Let us consider the deterministic initial value problem (IVP). We say that a strictly
convex function η ∈ C2(U;R) and a function q ∈ C2(U;R) form an entropy/entropy-
flux pair, if they satisfy DηDF = Dq. We assume that the system (IVP) is endowed
with at least one entropy/entropy-flux pair.We then define entropy admissible solutions
in the following way.

Definition 3.1 (Entropy admissible solution) A function u ∈ L1((0, T ) × R;U) is
called an entropy admissible solution of (IVP), if it satisfies the following conditions:

1. It is a weak solution, i.e.

T∫

0

∫

R

(
u(t, x) · ∂tφ(t, x) + F(u(t, x)) · ∂xφ(t, x)

)
dxdt

= −
∫

R

u0(x) · φ(0, x) dx, (3.1)
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for all φ ∈ C∞
c ([0, T ) × R;Rm).

2. It satisfies the weak entropy inequality:

T∫

0

∫

R

(
η(u(t, x))∂tΦ(t, x) + q(u(t, x))∂xΦ(t, x)

)
dxdt

� −
∫

R

η(u0(x))Φ(0, x) dx, (3.2)

for all Φ ∈ C∞
c ([0, T ) × R;R+).

Theorem 3.1 ([6], Theorem 2) Provided (D2) holds, there exists a non-empty closed
domain D ⊂ L1(R;U) of integrable functions with small total variation and a semi-
group S(t) : [0,∞) × D → D, called Standard Riemann Semigroup (SRS), that is
unique (up to its domain) and which has in particular the following properties:

(i) There exists a constant L > 0, such that

‖S(s)u−S(t)v‖L1(R;Rm ) � L
(
|s − t | + ‖u − v‖L1(R;Rm)

)
,

for all u, v ∈ D and for all s, t � 0.
(ii) For u ∈ D the function u(t, x) := (S(t)u)(x) is an entropy admissible solution

of (IVP). It is the unique entropy admissible solution that is obtained as L1-limit
of the wave-front tracking algorithm.

Remark 3.1 (Uniqueness)While (IVP) may have several entropy admissible solutions
there is one and only one entropy admissible solution induced by the SRS; in this sense
entropy admissible solutions induced by SRS are unique. It was proven in [6] that
the SRS-induced entropy admissible solution is the only entropy admissible solution
satisfying certain additional stability properties, cf. [6, (A2),(A3)].

Additionally, we will use the following result on the stability of the SRS. In partic-
ular, it allows us to quantify how much the SRS-induced entropy admissible solution
varies if the flux is changed.

Theorem 3.2 ([4], Corollary 2.5) Let the flux function F satisfy (D2) and assume

D(F) ⊆ {u ∈ L1(R, C) | T V (u) � M}, (3.3)

for some suitable positive M ∈ R and some compact set C ⊂ R
m. For t > 0we denote

by S(t, F) the SRS from Theorem 3.1, associated with the flux function F.
Then, there exists a constant C > 0, such that for any flux function F̃, satisfying

(D2) and D(F̃) ⊆ D(F), it holds that

‖S(t, F)u − S(t, F̃)u‖L1(R,Rm) � Ct‖DF − DF̃‖C0(C,Rm ), (3.4)

for all u ∈ D(F̃).
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Remark 3.2 (Domain of SRS) The domain of the SRS is discussed in [6, equation
(1.3)]. Note that it can always be replaced by a smaller set in order to make sure that
additional conditions (such as (3.3)) hold.

3.2 Existence and uniqueness of random entropy solutions

We now consider the random hyperbolic conservation law (RIVP) and introduce
the notion of a random entropy admissible solution for (RIVP). We say that η ∈
L1

w(Ξ ;C2(U;Rm)), q ∈ L1
w(Ξ ;C2(U;Rm)) form a random entropy/entropy-flux

pair if η(·, y) is strictly convex P̃-a.s. y ∈ Ξ and if η and q satisfy Dη(·, y)DF(·, y) =
Dq(·, y), P̃-a.s. y ∈ Ξ . We assume that the random conservation law (RIVP) is
equipped with at least one random entropy/entropy-flux pair.

We define random entropy admissible solutions as path-wise (w.r.t. y) entropy
admissible solutions of (RIVP). In this sense the notion of random entropy admissible
solutions generalizes the notion of entropy admissible solutions in a similar way as the
notion of randomentropy solutions, introduced bySchwab andMishra [26] generalizes
the notion of entropy solutions according to Kružkov [23].

Definition 3.2 (Random entropy admissible solution) A function u ∈ L1
w(Ξ ;

L1((0, T ))×R;U) is called a random entropy admissible solution of (RIVP), if it
satisfies the following conditions:

1. It is a weak solution:

T∫

0

∫

R

(
u(t, x, y) · ∂tφ(t, x) + F(u(t, x, y), y) · ∂xφ(t, x)

)
dxdt

= −
∫

R

u0(x, y) · φ(0, x) dx, (3.5)

P̃-a.s. y ∈ Ξ and for all φ ∈ C∞
c ([0, T ) × R;Rm).

2. It satisfies the weak entropy inequality:

T∫

0

∫

R

(
η(u(t, x, y), y)∂tΦ(t, x) + q(u(t, x, y), y)∂xΦ(t, x)

)
dxdt

� −
∫

R

η(u0(x, y), y)Φ(0, x) dx, (3.6)

P̃-a.s. y ∈ Ξ and for all Φ ∈ C∞
c ([0, T ) × R;R+).

Remark 3.3 (i) Let u be a random entropy admissible solution, then for almost any
fixed realization ỹ ∈ Ξ , the function u(·, ·, ỹ) is an entropy admissible solution
of the deterministic version of (RIVP) in the sense of Sect. 3.1.
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(ii) The function u(t, x, y) := (
S(t, F(·, y))u0(·, y))(x), where {S(t, F(·, y))}t�0

is the SRS from Theorem 3.1 associated with the flux-function F(·, y), obviously
satisfies (3.5) and (3.6) P̃-a.s. y ∈ Ξ . Theorem 3.3 below discusses the regularity
of u w.r.t. y, i.e. under which conditions u is indeed a random entropy admissible
solution of (RIVP).

To ensure the existence of a randomentropy admissible solution of (RIVP) by apply-
ing Theorem 3.1 and Theorem 3.2 path-wise inΞ wemake the following assumptions:

(R3) We define D := ⋂
y∈Ξ D(F(·, y)), where D(F(·, y)) is the domain of the

SRS from (3.3) in Theorem 3.2. We assume that D 
= Ø and u0(·, y) ∈ D,
P̃-a.s. y ∈ Ξ .

(R4) There exists a compact and convex set C ⊂ U , s.t. S(t, F(·, y))u0(·, y)(x) ∈ C,
a.e. (t, x, y) ∈ (0, T ) × R × Ξ and u0(x, y) ∈ C, a.e. (x, y) ∈ R × Ξ .

Theorem 3.3 Let the assumptions (R1)-(R4) hold. For P̃-a.s. y ∈ Ξ we define
u(t, x, y) := S(t, F(·, y))u0(·, y)(x), where {S(t, F(·, y))}t�0 is the SRS from The-
orem 3.1 associated with the flux-function F(·, y).

Then u is a random entropy admissible solution of (RIVP). It is unique in the sense
that it is the only random entropy admissible solution that coincides path-wise with
the SRS-induced entropy admissible solution of the deterministic version of (RIVP).

Proof The function u is path-wise the unique SRS-induced entropy solution of (RIVP)
by construction. Note that we have assumed u0(·, y) ∈ D ⊂ D(·, F(·, y)), P̃-a.s. y ∈
Ξ . It remains to show, that u is a random variable, i.e.

(
Ξ,B(Ξ)

)
� y �→ u(·, ·, y) ∈

(
L1((0, T ) × R;Rm),B((L1((0, T ) × R;Rm)))

)

is a measurable map. To this end we define the Banach space

E1 := L1(R;Rm) × C2(C;Rm),

equipped with the norm

‖(u, F)‖E1 := ‖u‖L1(R;Rm) + ‖F‖C2(C;Rm ).

Using Theorem 3.1 (i) and Theorem 3.2, which we can apply due to assumptions (R3)
and (R4), we deduce

‖S(t, F(·, y))u0(·, y) − S(t, F(·, ỹ))u0(·, ỹ)‖L1(R;Rm)

� ‖S(t, F(·, y))u0(·, y) − S(t, F(·, ỹ))u0(·, y)‖L1(R;Rm)

+ ‖S(t, F(·, ỹ))u0(·, y) − S(t, F(·, ỹ))u0(·, ỹ)‖L1(R;Rm)
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� Ct‖DF(·, y) − DF(·, ỹ)‖C0(C,Rm ) + L‖u0(·, y) − u0(·, ỹ)‖L1(R;Rm)

� Ct‖F(·, y) − F(·, ỹ)‖C2(C;Rm ) + L‖u0(·, y) − u0(·, ỹ)‖L1(R;Rm ),

for P̃-a.s. y, ỹ ∈ Ξ .
Hence, the mapping S(t) : (u, F) � E1 → L1(R;Rm), S(t)(u, F) := S(t, F)u(·)

is continuous for all t > 0. Due to the finite time horizon we immediately deduce that
the mapping

S : E1 → L1((0, T ) × R;Rm), S(u, F) := S(·, F)u(·)

is also continuous. Finally, it follows fromassumptions (R1) and (R2) that themapping

S0 :
(
Ξ,B(Ξ)

)
→

(
E1,B(E1)

)
, S0(y) := (u0(·, y), F(·, y))

is measurable. Thus, y �→ u(·, ·, y) = S(·, F(·, y))u0(·, y) = S ◦ S0(y) is a compo-
sition of measurable mappings and hence measurable itself. ��

4 Space-time stochastic discretization and reconstructions

One major goal of this paper is to prove an a posteriori estimate for a large class of
numerical approximations of (RIVP). In particular, we consider numerical schemes
that combine Stochastic Collocation (SC) with Runge–Kutta Discontinuous Galerkin
(RKDG) schemes. To this end, we recapitulate the SC method for the (non-intrusive)
discretization of the random space Ξ as for example in [1,37]. Additionally, we recall
the Multi-Element method which decomposes the random space Ξ into smaller ele-
ments to allow for a local interpolation in the random space [35]. Finally, we describe
a reconstruction of the numerical solution as a Lipschitz continuous function. The
reconstruction will be used in the a posteriori error estimate in Sect. 5.

4.1 The stochastic collocationmethod

The idea of the SC method is to approximate the random entropy admissible solution
of (RIVP) by a polynomial interpolant in the random space, where the interpolant is
supposed to satisfy (RIVP) at collocation points {yi }Mi=0 ⊂ R, M ∈ N. The exact
solution u(·, ·, yi ) at a given collocation point yi , i = 0, . . . , M , is then approximated
by a discrete solution uh(·, ·, yi ) using any suitable numerical method.

For amulti-dimensional random spaceΞ ⊂ R
N , we defineΞi := ξi (Ω) and follow

[2] to first define the space Pq(Ξ) of tensor product polynomials of maximal degree
q ∈ N0 by

Pq(Ξ) :=
N⊗

i=1

Pq(Ξi ), Pq(Ξi ) := {p : Ξi → R | p is a polynomial of degree q}.
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Remark 4.1 Our analysis does not depend on the structure of the approximating space,
i.e. instead of considering a fixed polynomial degree q ∈ N0 for every random dimen-
sion we could also consider variable polynomial degrees qi ∈ N, i = 1, . . . , N .
Moreover, we could also consider complete polynomial spaces, cf. [37] or sparse
grids, cf. [9,28], instead of using tensor product spaces. As a rule of thumb, one might
say that tensor-products are feasible for up to five random dimensions, while more
than five dimensions require sparse grids, cf. [37].

We letK := {k = (k1, . . . , kN )� ∈ N
N
0 : ki � q, i = 1 . . . , N } be the correspond-

ing multi-index set and define the collocation points yk = (y1,k1 , . . . , yN ,kN ) ∈ Ξ ,
k ∈ K. As a basis of Pq(Ξi ) we choose the Lagrange basis {li,k}qk=0 associated with
the collocation points {yi,k}qk=0, such that

li,k(yi, j ) = δk, j , ∀ j, k = 0, . . . , q,

for all i = 1, . . . , N . We then define the multivariate Lagrange polynomials via

lk(y) := l1,k1(y1) · . . . · lN ,kN (yN ), y ∈ Ξ, k ∈ K.

Using the collocation points {yk}k∈K as input parameters in (RIVP) yields card(K) =
(q + 1)N (uncoupled) collocated initial value problems:

{
∂t u(t, x, yk) + ∂x F(u(t, x, yk), yk) = 0, (t, x) ∈ (0, T ) × Λ,

u(0, x, yk) = u0(x, yk), Λ ∈ R.
(CIVP)

Here and in the following we consider Λ ∈ {[0, 1]per ,R}.
Remark 4.2 The well-posedness result in Theorem 3.3 only covers Λ = R. However,
the deterministicwell-posedness results are based on local estimates andwe, therefore,
believe that it can be extended to cover the case Λ = [0, 1]per , as well.
Each of the deterministic hyperbolic systems in (CIVP) can be solved using the RKDG
method described in Appendix A. For every collocation point yk we denote the corre-
sponding numerical approximation at time tn = tn(yk) by unh(·, yk) := uh(tn, ·, yk).
Let us assume that the time-partition {tn}Nt

n=0 is the same for every collocation point
{yk}k∈K. The numerical approximation of (RIVP) at time t = tn can then be written
as

unh(x, y) :=
∑

k∈K
unh(x, yk)lk(y). (4.1)

An important aspect of the SC method is the choice of collocation points {yi,k}qk=0 ⊂
Ξi . Depending on the distribution of the random variable ξi we choose the collocation
points as zeros of the corresponding (orthogonal) chaos polynomials [38]. For example,
if ξi ∼ U(a, b) is uniformly distributed, we choose {yi,k}qk=0 to be the roots of the
(q + 1)-th Legendre polynomial. For a Gaussian distribution we use the roots of the
Hermite polynomials accordingly.

123



A posteriori error analysis and adaptive non-intrusive... 629

One can then approximate the mean of unh(x, ·) via numerical quadrature, i.e.

E

(
unh(x, ·)

)
=

∫

Ξ

unh(x, y) w(y)dy ≈
∑

k∈K
unh(x, yk)wk.

Here wk are products of the corresponding one-dimensional weights.

4.2 Themulti-element stochastic collocationmethod

A major drawback of any global approximation approach in Ξ for hyperbolic con-
servation laws is that, due to the Gibbs phenomenon, the interpolant may oscillate
for discontinuous solutions, cf. [29,34]. To overcome this issue, we employ the Multi-
Element (ME) approach as presented in [35], i.e. we subdivideΞ into disjoint elements
and consider a local approximation of (RIVP) on every element in random space.

For the ease of presentation we assume that Ξ = [0, 1]N , and let 0 = d1 <

d2 < · · · < dNΞ +1 = 1 be a decomposition of [0, 1]. We define Dn :=
[dn, dn+1), for n = 1, . . . , NΞ − 1, and DNΞ := [dNΞ , dNΞ +1]. Introducing the
set M := {m = (m1, . . . ,mN )� ∈ N

N
0 : mi � NΞ, i = 1 . . . , N } allows us

to define for m ∈ M, the Multi-Element Dm := N×
i=1

Dmi . Hence, we consider a

new local random variable ξm : ξ−1(Dm) → Dm on the local probability space
(ξ−1(Dm),F ∩ ξ−1(Dm),P(·|ξ−1(Dm))). Using Bayes’ rule we can compute the
local probability density function of ξm via

wξm := wξ(y
m|ξ−1(Dm)) = wξ(ym)

P(ξ−1(Dm))
, ym ∈ Dm, (4.2)

where P(ξ−1(Dm)) > 0 for m ∈ M can be assumed w.l.o.g., due to the independence
of the corresponding random variables. We parametrize the uncertain input in (RIVP)
using the local random variable ξm and consider a local approximation on every Dm
at time t = tn , n = 0, . . . , Nt ,

umh (tn, x, y) =
∑

k∈K
uh(tn, x, y

m
k )lmk (y), (4.3)

for all m ∈ M. Here, {ymk }k∈K ⊂ Dm are the local collocation points in Dm, m ∈ M
and the {lmk }k∈K are the corresponding Lagrange polynomials on Dm. The global
Multi-Element Stochastic Collocation (ME-SC) approximation at time t = tn , can
then be written as

uh(tn, x, y) =
∑

m∈M
umh (tn, x, y)χDm (y) =

∑

m∈M

∑

k∈K
uh(tn, x, y

m
k )lmk (y)χDm (y),

(4.4)

where χDm is the indicator function of Dm.

123



630 J. Giesselmann et al.

4.3 Space-time-stochastic reconstructions

For the space-time discretization of (CIVP) we use the RKDG framework from [10].
For ease of presentation, we move the description of the RKDG scheme and the
computation of its space-time reconstruction to Appendix A.

As discussed in Appendix A, we have for each collocation point yk, k ∈ K, a
computable space-time reconstruction ûst (yk) = ûst (·, ·, yk) ∈ W 1∞((0, T ); V s

p+1 ∩
C0(Λ)) of the numerical approximation uh(·, ·, yk), where V s

p+1 denotes the space
of piece-wise polynomials of degree p + 1 on a triangulation of Λ. This allows us to
define the space-time residual as follows.

Definition 4.1 (Space-time residual) We call the function Rst (yk) := Rst (·, ·, yk) ∈
L2((0, T ) × Λ;Rm), defined by

Rst (t, x, yk) := ∂t û
st (t, x, yk) + ∂x F(ûst (t, x, yk), yk), (4.5)

the space-time residual associated with the collocation point yk, for all k ∈ K.

This residual is required in the subsequent analysis. In the next step we expand the
space-time reconstruction into the corresponding random basis, i.e. in the Lagrange
basis, to obtain the so-called space-time-stochastic reconstruction.

Definition 4.2 (Space-time-stochastic reconstruction) We call the function ûsts ∈
Pq(Ξ) ⊗ (

W 1∞(0, T ); V s
p+1 ∩ C0(Λ)

)
defined by

ûsts(t, x, y) :=
∑

k∈K
ûst (t, x, yk)lk(y),

the space-time-stochastic reconstruction of the numerical approximation uh of (RIVP)
(see (4.1)).

Similar to the space-time reconstruction, we may plug ûsts into the random conserva-
tion law (RIVP) to obtain the so called space-time-stochastic residual.

Definition 4.3 (Space-time-stochastic residual) We define the space-time-stochastic
residual Rsts ∈ L2

w(Ξ ; L2((0, T ) × Λ;Rm)) by

Rsts(t, x, y) := ∂t û
sts(t, x, y) + ∂x F(ûsts(t, x, y), y). (4.6)

We also need this residual for the upcoming error analysis.

5 A posteriori error estimate and adaptive algorithms

As already mentioned in the introduction, our a posteriori error estimate relies on
the relative entropy stability framework of Dafermos and DiPerna, see [12] and ref-
erences therein. The relative entropy method allows to measure the L2-distance of
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two functions, one of them required to be Lipschitz continuous in space and time.
This is the reason why we reconstructed the numerical solution and computed the
space-time-stochastic reconstruction as a Lipschitz function.

Before stating the main a posteriori error estimate, we establish bounds on the
derivatives of the flux function and the entropy, as they enter the upper bounds in the
main estimate. Due to Assumption (R4) from Sect. 3.2 and the compactness of C, there
exist P̃-a.s. y ∈ Ξ constants 0 < CF (y) < ∞ and 0 < Cη(y) < Cη(y) < ∞, such
that,

|v�HuF(u, y)v| � CF (y)|v|2, Cη(y)|v|2 � v�Huη(u, y)v � Cη(y)|v|2,
∀v ∈ R

m,∀u ∈ C.

Here, for a generic function f , Hu f denotes its Hessian matrix which contains all
second order derivatives with respect to u.

5.1 A posteriori error estimate and error splitting

We now have all ingredients together to state the following main a posteriori error
estimate that can be directly derived from Theorem 5.5 in [15].

Theorem 5.1 (A posteriori error bound for the numerical solution) Let u be a random
entropy admissible solution of (RIVP). Let the reconstruction ûsts only take values in
C. Then, the difference between u and the numerical solution unh from (4.1) satisfies

‖u(tn, ·, ·) − unh(·, ·)‖2L2
w(Ξ̃ ;L2(Λ))

� 2‖ûsts(tn, ·, ·) − unh(·, ·)‖2L2
w(Ξ̃ ;L2(Λ))

+ 2
∫

Ξ̃

[(
C−1

η (y)
(
E sts(tn, y) + Cη(y)E sts

0 (y)
))

× exp
( tn∫

0

Cη(y)CF (y)‖∂x ûsts(t, ·, y)‖L∞(Λ) + C2
η(y)

Cη(y)
dt

)]
w(y)dy,

for all n = 0, . . . , Nt and for any P̃-measurable set Ξ̃ ⊆ Ξ . Here

E sts(tn, y) := ‖Rsts(·, ·, y)‖2L2((0,tn)×Λ)
, (5.1)

E sts
0 (y) := ‖u0(·, y) − ûsts(0, ·, y)‖2L2(Λ)

. (5.2)

Proof Thanks to the path-wise structure we can apply the deterministic setting from
[15, Theorem 5.5 ] for almost any y ∈ Ξ̃ ⊆ Ξ . Integrating over Ξ̃ gives the desired
estimate directly. ��

In Theorem 5.1, the error between the numerical solution and the random entropy
admissible solution is bounded by the error in the initial condition, the difference
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between the numerical solution and its reconstruction, and the contribution of the
space-time stochastic residual Rsts from Definition 4.3, quantified by E sts . However,
we still cannot distinguish between errors that arise fromdiscretizing the random space
and the physical space. We, thus, are going to describe a splitting of the space-time-
stochastic residual Rsts into a spatial and a stochastic residual.

Lemma 5.1 (Splitting of the space-time-stochastic residual)The space-time-stochastic
residual Rsts admits the decomposition

Rsts = Rdet + Rstoch, (5.3)

with

Rdet :=
∑

k∈K
Rst (yk)lk and (5.4)

Rstoch :=
(
∂x F

( ∑

k∈K
ûst (yk)lk, ·

)
−

∑

k∈K
∂x F(ûst (yk), yk)lk

)
, (5.5)

where Rst (yk) is defined in (4.5), Rdet and Rstoch are called the deterministic and
stochastic residual.

Proof For every collocation point yk, k ∈ K, we compute in Appendix A the space-
time reconstruction ûst (·, ·, yk) which fulfills

Rst (yk) = ∂t û
st (yk) + ∂x F(ûst (yk), yk). (5.6)

Moreover, we know from (4.6) that the space-time-stochastic reconstruction ûsts =∑

k∈K
ûst (t, x, yk)lk(y) satisfies the relation

Rsts = ∂t û
sts + ∂x F(ûsts, ·) = ∂t

( ∑

k∈K
ûst (yk)lk

)
+ ∂x F

( ∑

k∈K
ûst (yk)lk, ·

)
. (5.7)

Multiplying (5.6) by lk and summing over k ∈ K yields

∑

k∈K
Rst (yk)lk =

∑

k∈K
∂t û

st (yk)lk +
∑

k∈K
∂x F(ûst (yk), yk)lk. (5.8)

Inserting (5.8) into (5.7) yields

Rsts = ∂t

( ∑

k∈K
ûst (yk)lk

)
+ ∂x F

( ∑

k∈K
ûst (yk)lk, ·

)

+
∑

k∈K
Rst (yk)lk −

( ∑

k∈K
∂t û

st (yk)lk +
∑

k∈K
∂x F(ûst (yk), yk)lk

)
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=
∑

k∈K
Rst (yk)lk +

(
∂x F

( ∑

k∈K
ûst (yk)lk, ·

)
−

∑

k∈K
∂x F(ûst (yk), yk)lk

)

=Rdet + Rstoch .

��
In order to simplify Theorem 5.1, let us assume that the eigenvalues of the Hessian

Huη(u, y) are bounded from above and below by positive numbers, for any u ∈ C
uniformly in Ξ . We let Cη := ess sup

y∈Ξ

Cη(y) < ∞, Cη := ess inf
y∈Ξ

Cη(y) > 0 and

CF := ess sup
y∈Ξ

CF (y) < ∞.

Computing the constantsCη,Cη,CF means computingmaxima andminimaof con-
tinuous functions on the compact set C × Ξ , provided flux and entropy also depend
continuously on the random variable. These maxima/minima can be approximated
numerically. In case slightly larger (smaller) numbers are used instead of the cor-
rect maxima (minima) the error estimators will become less efficient, i.e. the amount
by which they over-estimate the true error will be increased. However, the scaling
properties of the error estimator will not be affected.

The following corollary is a simple consequence of the splitting in Lemma 5.1.

Corollary 5.1 (A posteriori error bound with error splitting and simplified bounds) Let
u be a random entropy admissible solution of (RIVP). Then, the difference between u
and the numerical solution unh from (4.1) satisfies

‖u(tn, ·, ·) − unh(·, ·)‖2L2
w(Ξ̃ ;L2(Λ))

� 2‖ûsts(tn, ·, ·) − unh(·, ·)‖2L2
w(Ξ̃ ;L2(Λ))

+ 2C−1
η

(
2Edet (tn) + 2E stoch(tn) + CηE sts

0

)

× exp
(
C−1

η

tn∫

0

(
CηCF‖∂x ûsts(t, ·, y)‖L∞

w (Ξ̃ ;L∞(Λ)) + C2
η

)
dt

)

for n = 0, . . . , Nt and for all P̃-measurable sets Ξ̃ ⊆ Ξ . Here,

Edet (tn) := ‖Rdet‖2
L2

w(Ξ̃ ;L2((0,tn)×Λ)
, (5.9)

E stoch(tn) := ‖Rstoch‖2
L2

w(Ξ̃ ;L2((0,tn)×Λ)
, (5.10)

E sts
0 := ‖u0(·, ·) − ûsts(0, ·, ·)‖2

L2
w(Ξ̃ ;Λ)

. (5.11)

Remark 5.1 (i) The residual Rdet in (5.4) interpolates spatio-temporal residuals and
contains information about the discretization error in physical space, i.e. the
space-time resolution of (CIVP) using the RKDG method. In contrast to Rdet ,
the stochastic residual Rstoch in (5.5) indicates the quality of the interpolation in
stochastic space.
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(ii) In order for the upcoming space-stochastic adaptive algorithm based on Edet ,
E stoch to be efficient, we need Edet to depend solely on the space-time discretiza-
tion and to be independent of the stochastic discretization. Similarly, we need
E stoch to decay when the stochastic resolution is increased but to be independent
of the space-time discretization.
In Remark 5.2 we prove that Edet is indeed unaffected by stochastic refinement.
In Remark 5.3 we discuss the independence of the stochastic residual from the
spatial discretization.

(iii) The scaling properties of Edet , resp. Rst (yk), were studied in [13]. Currently
we are not able to prove any of the scaling properties of E stoch w.r.t. to q and
the number of Multi-Elements. However, our numerical experiments show that
E stoch scales as desired, i.e. E stoch shows the same qualitative behavior as the
stochastic interpolation error of the exact solution.

(iv) As described in [13] and [16], Rdet scaleswith 1
h in the vicinity of shocks and con-

tact discontinuities, i.e., it blows up under spatial mesh refinement in these areas,
although the numerical solution converges towards the exact solution. Hence,
we only have efficient a posteriori error control for smooth solutions of (RIVP).
However, as Rdet precisely captures the positions of rarefaction waves, contact
discontinuities and shocks we use Rdet and Rstoch , resp. Edet and E stoch , as local
indicators for our adaptive mesh refinement algorithms described in Sect. 5.2.

Remark 5.2 (Uniformity of the deterministic residual in Ξ ) As noted above, the collo-
cation points yk are chosen to be the zeros of the corresponding orthogonal polynomial
depending on the distribution of ξ . The deterministic residual Rdet from (5.4) consists
of Lagrange polynomials associated with the corresponding collocation points, thus
Gaussian quadrature in Ξ yields

Edet (T ) = ‖Rdet‖L2
w(Ξ ;L2((0,T )×Λ) =

∑

k∈K
‖Rst (yk)‖L2((0,T )×Λ)wk

� max
k∈K

‖Rst (yk)‖L2((0,T )×Λ).

Hence, Edet inherits the convergence order of Rst (yk) and is not affected by the
stochastic discretization.

Remark 5.3 (Decay of stochastic residual) Let us define the SC interpolation operator
via IK(u) := ∑

k∈K
u(yk)lk. Then, the stochastic residual Rstoch from (5.5) can be

written as

Rstoch(t, x, ·) =
(
∂x F

( ∑

k∈K
ûst (t, x, yk)lk(·), ·

)
−

∑

k∈K
∂x F(ûst (t, x, yk), yk)lk(·)

)

= ∂x F(ûsts(t, x, ·), ·) − IK
(
∂x F(ûsts(t, x, ·), ·)

)
,

for a.e. (t, x) ∈ (0, T ) × Λ. Hence, Rstoch corresponds to the stochastic interpola-
tion error, when interpolating ∂x (F ◦ ûsts). As long as the regularity of the mapping
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y �→ ∂x F(ûsts(·, ·, y), y) does not depend on the spatial mesh width h, Rstoch decays
independently of h. We expect that this is indeed the case for smooth solutions, cf. [27,
Remark 6]. Our numerical experiment in Sect. 6.3.1 confirms this assertion and shows
that the convergence of E stoch is unaffected by the spatial resolution. In contrast, the
regularity of y �→ ∂x F(ûsts(·, ·, y), y) may depend on the spatial mesh width h in
non-smooth cases. This is investigated in [27, Sec. 4.2.1], where the authors prove that
in case of a wave equation with discontinuous wave speed, the radius of analyticity of
the discrete solution depends on the spatial mesh width h.

5.2 Adaptive algorithms

The splitting of the space-time-stochastic residual into a deterministic and a stochastic
residual helps us in developing adaptive numerical schemeswherewe use the residuals
as local error indicators for spatial and stochastic mesh refinement. We describe the
deterministic spatially adaptive algorithm, which we use to solve (CIVP) for every
collocation point yk, k ∈ K. We slightly abuse the notation from (5.9) and write for
every physical cell I ∈ Tn , Edet

k (tn, tn+1, I ) := ‖Rst (yk)‖L2((tn ,tn+1)×I ), which is the
cell-wise indicator for the spatial refinement in Λ.

The local physical mesh refinement is achieved by uniformly dividing one cell into
two new children cells or merging two cells into one parent cell. To mark elements
for refinement we compute the deterministic residual Edet

k (tn, tn+1, I ) on every cell
I ∈ Tn and based on the residual we mark a fixed fraction of the cells for refinement.
To coarsen the mesh, we can only merge cells that have the same parent element and
both siblings aremarked for coarsening. For coarseningwe also choose a fixed fraction
of all elements according to the local residual Edet

k (tn, tn+1, I ), cf. [20]. Additionally,
each cell is augmentedwith a variable denoting its current mesh-level which is initially
zero.Wefix amaximummesh-level L ∈ N, to restrict the fineness of the adaptivemesh
and to avoid that the overall numerical error is dominated by the initial discretization
error, we start the computations on the finest mesh. The algorithm reads as follows:

Algorithm 1 Deterministic h-adaptive algorithm
Input: final time T , max mesh-level L , initial mesh TL
1: Compute un+1

h on the current mesh Tn using Algorithm 3 (see Appendix A)

2: Compute Edetk (tn , tn+1, I ) for I ∈ Tn and mark a fixed fraction of the elements for refinement and
coarsening
a: Refinement: If the cell’s mesh-level is L do nothing. Else divide it uniformly into two new cells and
increase the two new cells’ mesh-level by one
b:Coarsening: If the cell’smesh-level is zero donothing.Else check if its sibling ismarked for coarsening.
If yes merge the two cells into one and decrease its mesh-level by one

3: Project un+1
h onto the new mesh Tn+1 using the L2-projection

4: If tn+1 < T go to step 1

Remark 5.4 After every projection step in line three of Algorithm 1 we apply the
TVBM slope limiter ΛΠh from Appendix A.
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Following [20]we set the refinement and coarsening fractions to 20%and 10%, respec-
tively. We restrict the maximal refinement level to L = 3, since the time step size is
linked to the size of the smallest spatial cell (confer (A.2) in the appendix), and allow-
ing for smaller cells would make the time steps infeasibly small. This limitation could
be overcome by local time-stepping.

Remark 5.5 Similarly to [20], our choice of the refinement and coarsening fraction is
rather ad-hoc, in the sense that our choice provides the best error reduction for the
numerical experiments under consideration. For more complex flow problems these
parameters certainly have to be adapted to the problem at hand.

Next, we describe the stochastic adaptive algorithm for the ME-SC method from
Sect. 4.2 using the stochastic residualE stoch as local indicator for stochastic refinement.

Algorithm 2 Stochastic NΞ -Adaptive Algorithm
Input: initial number of Multi-Elements MΞ , max no. of Multi-Elements NΞ , q+1 number of collocation
points in each stochastic dimension
1: For every Multi-Element Dm compute (q + 1)N numerical samples using Algorithm 1
2: Compute Estoch(T ) on every Multi-Element Dm and uniformly subdivide the Multi-Element with the

biggest residual, set MΞ := MΞ + (2N − 1)
3: If MΞ < NΞ compute M samples on every new Multi-Element and go to 2

Remark 5.6 Akey requirement for a posteriori error estimators, is that the error estima-
tor has the same scaling behavior as the true error. Most of our numerical experiments
aim at investigating this property and the space-stochastic splitting properties of the
estimator. Controlling the error or deriving adaptation strategies that drive the error
estimator to zero are currently infeasible, due to the lack of convergence of the deter-
ministic error estimator post-shock. Therefore, we stick with rather basic adaptive
algorithms and our experiments on adaptivity are to be understood as a proof-of-
concept trying to show the splitting of the residuals and to demonstrate the usefulness
of the residuals in the post-shock case.

6 Numerical examples

In this section we present various numerical examples concerning the scaling prop-
erties of the residuals and the performance of the adaptive algorithms. In Sects. 6.1
and 6.3 we examine the scaling properties of Edet and E stoch . Sections 6.2, 6.4 and
6.5 assess the efficiency of our proposed adaptive algorithms.

We use theRKDGCode Flexi [21] to solve the determinstic problems at the stochas-
tic collocation points. The DG polynomial degrees will always be one or two and for
the time-stepping we use the low storage SSP RK-method of order three as in [22].
The time-reconstruction is also of order three. As numerical fluxes we choose either
the Lax–Wendroff numerical flux

G(u, v) := F(w(u, v)), w(u, v) := 1

2

(
(u + v) + Δt

h
(F(v) − F(u))

)
, (6.1)
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or the Lax–Friedrichs numerical flux

G(u, v) := 1

2

(
F(u) + F(v)

)
+ λ(v − u). (6.2)

In our example, the uncertainty is uniformly distributed. Therefore, we use the zeros
of the Gauß–Legendre polynomials as collocation points. Computing Edet , E stoch

requires computing integrals, we approximate them via Gauß–Legendre quadrature
where we use seven points in time, ten points in physical space and ten points in
random space, except for Example 6.3, where for the global interpolation the number
of quadrature points in random space will be 2q.

In the following experimentswe consider as instance of (RIVP) the one-dimensional
compressible Euler equations for the flow of an ideal gas, which are given by

∂tρ + ∂xm = 0,

∂tm + ∂x

(
m2

ρ
+ p

)
= 0,

∂t E + ∂x

(
(E + p)

m

ρ

)
= 0, (6.3)

where ρ denotes mass density,m momentum and E energy of the gas. The constitutive
law for pressure p reads

p = (γ − 1)

(
E − 1

2

m2

ρ

)
,

with the adiabatic constant γ = 1.4 if not specified otherwise. In the following figures
we refer to the quantity ‖m(T , ·, ·)−mNt

h (·, ·)‖L2
w(Ξ ;L2(Λ)) at final computational time

T as numerical error, unless otherwise stated. We also plot the residuals Edet (T ) and
E stoch(T ) as in (5.9) and (5.10) from the momentum equation.

Remark 6.1 Due to the structure of the flux Jacobian for the Euler equations (6.3),

DF(u) =
⎛

⎜
⎝

0 1 0

−0.5(γ − 3)m
2

ρ2 (3 − γ )m
ρ

γ − 1

−γ Em
ρ

+ (γ − 1)m
3

ρ3 γ E
ρ

− 3
2 (γ − 1)m

2

ρ2 γ m
ρ

⎞

⎟
⎠ ,

the first component of the stochastic residual Rstoch from (5.5) vanishes when con-
sidering the Euler equations without source term. We therefore use the residuals for
the momentum and the energy balance as indicators for our space-stochastic mesh
refinements.
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6.1 A deterministic problemwith smooth solution

In this numerical example, we study the scaling properties of the deterministic residual
Edet from (5.9) under uniform spatial mesh refinement. To this end, we construct a
smooth exact solution by introducing an additional source term into the Euler equa-
tions. The exact solution reads as follows

⎛

⎝
ρ(t, x, y)
m(t, x, y)
E(t, x, y)

⎞

⎠ =

⎛

⎜
⎜
⎝

2 + 0.1 cos(4π(x − t))(
2 + 0.1 cos(4π(x − t))

)(
1 + 0.1 sin(4π(x − t))

)

(
2 + 0.1 cos(4π(x − t))

)2

⎞

⎟
⎟
⎠ . (6.4)

The numerical solution is computed on the domain Λ = [0, 1]per up to T = 0.5 and
we use the Lax–Wendroff numerical flux (6.1).

In Table 1 we present the numerical error and the residual Edet from (5.9) for the
smooth solution (6.4) for DG polynomial degrees one and two. We can see that the
error and the residual converge with the correct order of convergence, which is p+ 1,
where p is the DG polynomial degree.

6.2 Deterministic adaptivity: Sod shock tube problem

In this numerical experiment we apply the adaptive spatial mesh refinement from
Algorithm 1 to the Sod shock tube problem. The Riemann data for this problem is

Table 1 L2-error, residual and
experimental order of
convergence (EOC).
Example 6.1

Ns Error EOC εdet (T ) EOC

p=1

16 1.2771e-02 – 1.1821e-01 –

32 4.5795e-03 1.48 4.5907e-02 1.36

64 1.4193e-03 1.69 1.5947e-02 1.53

128 3.5089e-04 2.02 4.3912e-03 1.86

256 7.9658e-05 2.14 1.3655e-03 1.69

512 1.9625e-05 2.02 3.7220e-04 1.88

1024 4.8984e-06 2.00 1.0804e-04 1.78

p=2

16 2.5172e-04 – 5.3627e-03 –

32 1.606e-05 3.97 5.8275e-04 3.20

64 1.7387e-06 3.21 7.0515e-05 3.05

128 2.1568e-07 3.01 8.8464e-06 2.99

256 2.6614e-08 3.02 1.1316e-06 2.97

512 3.3226e-09 3.00 1.4746e-07 2.94

1024 4.1489e-10 3.00 1.9320e-08 2.93

123



A posteriori error analysis and adaptive non-intrusive... 639

(a) (b)

Fig. 1 Error plot for the deterministic Sod shock tube problem. Example 6.2

given by

ρ(t = 0, x, y) =
{
1, x < 0.5

0.125, x � 0.5,

m(t = 0, x, y) = 0,

E(t = 0, x, y) =
{
2.5, x < 0.5,

0.25, x � 0.5.

The numerical solution is computed on the domain Λ = [0, 1] up to T = 0.2 using
the Lax–Friedrichs flux (6.2) and a DG polynomial degree of two. In this example we
use exact boundary conditions. In Fig. 1a we compare the L1(Λ)- and L2(Λ)-error
at time T between the numerical solution and the exact solution obtained with an
exact Riemann solver [3]. We can see that for the same number of spatial cells Ns ,
the numerical error obtained with the adaptive numerical algorithm is smaller than for
the uniform mesh refinement. The adaptive algorithm is also computationally more
efficient than the uniform algorithm, which can be seen in the error vs. cpu time plot
in Fig. 1b.

Remark 6.2 As discussed in Remark 5.1 (iv), Rdet scales with 1
h in the vicinity of

shocks and contact discontinuities, i.e., it blows up under spatial mesh refinement
in these areas. Thus, if we view the residual as an error indicator, it severely over-
estimates the error so that it is to be called “inefficient” in these areas, according
to the nomenclature of e.g. [33]. From the point of view of mesh adaptation how-
ever, refinement based on Rdet leads to a reasonable refinement strategy that yields
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Fig. 2 Error plot for stochastic smooth problem. Example 6.3.1

a considerable improvement in error decay compared to uniform mesh refinement
(cf. Fig. 1). In particular, Rdet precisely captures the positions of rarefaction waves,
contact discontinuities and shocks.

Over-estimating the error at discontinuities leads to maximal refinement at discon-
tinuities and some refinement strategies for hyperbolic conservation laws suggest a
maximal refinement close to shocks [30].

6.3 A stochastic problemwith smooth solution

In this section we focus on the scaling properties of the stochastic residual for a one-
and two-dimensional random space Ξ and a random flux function.

6.3.1 A one-dimensional random space, q-refinement

We modify the exact solution from Sect. 6.1 in the following way,

⎛

⎝
ρ(t, x, y)
m(t, x, y)
E(t, x, y)

⎞

⎠ =

⎛

⎜⎜
⎝

2 + 0.1 cos(4π(x − yt))(
2 + 0.1 cos(4π(x − yt))

)(
1 + 0.1 sin(4π(x − yt))

)

(
2 + 0.1 cos(4π(x − yt))

)2

⎞

⎟⎟
⎠ . (6.5)

The numerical solution is computed onΛ = [0, 1]per up to T = 0.2, the uncertainty y
stems fromanuniformdistribution, i.e. ξ ∼ U(0, 8).Weconsider three different spatial
meshes consisting of Ns = 8, 32, 512 elements, DG polynomial degrees of p = 1, 2
and we use the Lax–Wendroff numerical flux (6.1). In this numerical example we
globally approximate the function (6.5) in Ξ , i.e. we increase the polynomial degree
q and consider one ME.
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Figure 2 shows the behavior of the error and the spatial, resp. stochastic residual,
when we globally interpolate the smooth function (6.5). We see that the stochastic
residual E stoch exhibits spectral convergence for all three spatial discretizations under
consideration. Also, the numerical error exhibits spectral convergence until it starts
to stagnate because of the spatial resolution error. This is the correct behavior of the
stochastic residual as we are globally increasing the polynomial degree in the random
space and, therefore, expect spectral convergence with increasing polynomial degree.
We also observe that the exponential convergence of E stoch is not altered by a finer
or coarser space discretization, even for the very coarse discretization consisting of
8 spatial cells and DG polynomial degree of 1. Moreover, the deterministic residual
Edet is unaffected by the increasing resolution in the random space, which we expect
from the residual’s splitting into a space-time and a stochastic part.

6.3.2 Mesh refinement in4 and random flux function

In this example we examine the scaling properties of E stoch under mesh refinements
for a two-dimensional random space Ξ ⊂ R

2. We consider the same smooth function
as in Sect. 6.3.1,

⎛

⎝
ρ(t, x, y1)
m(t, x, y1)
E(t, x, y1)

⎞

⎠ =

⎛

⎜
⎜
⎝

2 + 0.1 cos(4π(x − y1t))(
2 + 0.1 cos(4π(x − y1t))

)(
1 + 0.1 sin(4π(x − y1t))

)

(
2 + 0.1 cos(4π(x − y1t))

)2

⎞

⎟
⎟
⎠ .

(6.6)

with ξ1 ∼ U(0, 8).Moreover,we consider a randomadiabatic constant.Weassume that
γ = ξ2 ∼ U(1.4, 1.6) and thus the flux function is also random. The randomness of the
adiabatic-constant corresponds to considering a gas mixture of uncertain composition.
The numerical solution is computed on Λ = [0, 1]per up to T = 0.2. We consider
a fixed spatial mesh consisting of Ns = 32 elements. For the ME-SC method we
perform a linear and a quadratic interpolation, i.e. q ∈ {1, 2}.

Figure 3 illustrates the behavior of the stochastic residual E stoch , when we consider
a local interpolation, i.e., whenwe consider theMEmethod fromSect. 4.2.We observe
that for a local linear and quadratic interpolation, i.e. q ∈ {1, 2}, the stochastic residual
converges approximately with the expected rate of convergence, which is (q + 1)/2,
cf. [35]. Like for the q-refinement in Sect. 6.3.1, the deterministic residual Edet stays
constant, when we increase the number of MEs.

6.4 Stochastic adaptivity: stochastic problemwith discontinuous solution

We apply the stochastic adaptive Algorithm 2 without spatial adaptivity to a solution
which has a discontinuity in the random variable and compare the results with uniform
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Fig. 3 Error plot for stochastic smooth problem. Example 6.3.2

space-stochastic mesh refinements.We therefore consider the following discontinuous
function,

⎛

⎝
ρ(t, x, y1, y2)
m(t, x, y1, y2)
E(t, x, y1, y2)

⎞

⎠ =

⎛

⎜⎜
⎝

1 + A(y1, y2) cos(4π(x − y1t))(
1 + A(y1, y2) cos(4π(x − y1t))

)(
1 + 0.1 sin(4π(x − y1t))

)

(
1 + A(y1, y2) cos(4π(x − y1t))

)2

⎞

⎟⎟
⎠ ,

where

A(y1, y2) =
{
0.1, if y21 + y2 � 0.52

0.2, else .

is a discontinuous amplitude. For the spatial domain Λ = [0, 1]per we use Ns = 32
elements and a DG polynomial degree of two. The solution is computed up to T = 0.2
using the Lax–Wendroff numerical flux (6.1) and for the uncertainty we assume that
ξ1, ξ2 ∼ U(0, 1). For the ME-SC method we consider a linear interpolant, i.e. q = 1.

In Fig. 4a we plot the error and the spatial resp. stochastic residual versus the
number of MEs and in Fig. 4b we show the error of the uniform and adaptive method
versus cpu time. In Fig. 4a we can observe that for the uniform stochastic refinement,
both the error and the stochastic residual E stoch converge with a rate of approximately
1/4. This is in accordance with what we expect when interpolating a two-dimensional
discontinuous function. For the adaptive refinement the error and the residual exhibit
a rate of convergence of approximately 1/2. The advantage of the stochastic adaptive
algorithm is also reflected in Fig. 4b, where we reach an error reduction in significantly
less time compared to uniform refinement.
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(a) (b)

Fig. 4 Error plot for discontinuous stochastic problem. Example 6.4

6.5 Space-stochastic adaptivity: an uncertain initial value problem

Finally, we assess the efficiency of the space-stochastic adaptive algorithm by consid-
ering a random Riemann Problem. The initial data for this problem reads as follows

ρ(t = 0, x, y) = 1,

m(t = 0, x, y) =

⎧
⎨

⎩

y1, x � 0.25

y2, x > 0.25 and x � 0.5

y1, x > 0.5

p(t = 0, x, y) = 1,

(6.7)

where ξ1, ξ2 ∼ U(−1, 1) andΛ = [−0.25, 1].We compare the space-stochastic adap-
tive (h-adaptive, NΞ -adaptive) Algorithm 2 with stochastically uniform and spatially
adaptive refinement (h-adaptive, NΞ -uniform) and uniform refinement in physical
and stochastic space. For this problem we use the Lax–Friedrichs numerical flux (6.2)
and for the uniform spatial mesh we consider Ns = 512 spatial elements. As for the
Sod Shock Tube problem in Sect. 6.2 we prescribe exact boundary conditions. For the
adaptive algorithmwe always start on a spatial mesh consisting of Ns = 512 elements.
The DG polynomial degree is two and we consider a linear interpolation in the random
space, i.e. q = 1. The solution is computed up to T = 0.2. The error is measured in
the expected value rather than the L2

w(Ξ ; L2(Λ))-norm. Note that we do not have an
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Fig. 5 Error plot uncertain Riemann problem. Example 6.5

exact solution at hand for this problem, but due to Jensen’s inequality,

‖E(u(T , ·, ·)) − E(uNt
h (·, ·))‖2L2(Λ)

� E‖u(T , ·, ·) − uNt
h (·, ·)‖2L2(Λ)

(6.8)

= ‖u(T , ·, ·) − uNt
h (·, ·)‖2L2

w(Ξ ;L2(Λ))
.

We approximate the expectation E(u(T , ·, ·)) with a numerical reference solution on
NΞ = 104 MEs, a SC polynomial degree of q = 1 and each sample is computed on
a uniform spatial mesh with Ns = 2048 elements using a DG polynomial degree of
two.

In Fig. 5 we show the numerical error as in (6.8) vs. cpu time. We observe that
the space-stochastic adaptive algorithm reaches an absolute error in significantly less
computational time compared to stochastic uniform mesh refinements. For this exam-
ple we also observe that for a uniform stochastic refinement, the h-adaptive algorithm
only slightly increases the efficiency. The major efficiency gain is due to the stochastic
adaptivity. This demonstrates the efficiency of our space-stochastic adaptive algorithm
and the usefulness of the residuals in the post-shock case.

7 Conclusions and outlook

In this work we established the existence and uniqueness of random entropy admissi-
ble solutions of one-dimensional random hyperbolic conservation laws. We derived a
rigorous a posteriori error estimate for numerical approximations of random entropy
admissible solutions,which rely on the StochasticCollocationmethod in randomspace
and use the Runge–Kutta Discontinuous Galerkin method for the spatio-temporal dis-
cretization. Moreover, based on a splitting of the error estimator into a spatio-temporal
and a stochastic part, we formulated a novel residual-based space-stochastic adaptive
numerical algorithm. Our numerical experiments confirmed that both residuals are
independent of each other and decay with the correct order of convergence. Further-
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more, the adaptive numerical scheme based on the a posteriori error estimator yields
significant computational gains compared to uniform mesh refinement and to space-
time adaptivity only.

Future work will focus on deriving convergent a posteriori error estimators post-
shock which will make error control and adaptive schemes driving the numerical
error below some prescribed threshold possible. Additionally, we plan to extend the
space-time reconstruction to two and three spatial dimensions and we will examine
how to combine the a posteriori error estimator with sparse grids to use the estimate
for sensitivity analysis for identifying the most important directions for stochastic
refinement.
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A RKDGmethod and space-time reconstructions

In the following we describe the space-time discretization of (CIVP) that we use and
the space-time reconstruction of the numerical solution.

A.1 The RKDGmethod

For the space-time discretization of (CIVP) we use a Runge–Kutta DG method
(RKDG). We recall the DG spatial discretization as for example in [10]. For the
ease of presentation we neglect the dependence of the flux F , the spatial mesh and the
DG spaces on the collocation points {yk}k∈K.

Let T := {Ik}Ns−1
k=0 , Ik := (xk, xk+1) be a quasi-uniform triangulation of Λ =

[0, 1]per. We set hk = (xk+1 − xk), hmax = max
k

hk , hmin = min
k

hk for the spatial

mesh and identify x0 = xNs to account for periodic boundary conditions. Further let
0 = t0 < t1 < . . . < tNt = T be a temporal decomposition of [0, T ] and define
Δtn := (tn+1 − tn), Δt = max

n
Δtn . With each time-interval (tn, tn+1] we associate a

(possibly different) partition Tn and associated DG space

V s
p,n := {v : Λ → R

m | v |I∈ Pp(I ,R
m), for all I ∈ Tn}.

With LV s
p,n

we denote the L2-projection mapping into the DG space V s
p,n .

Following [14] we call the function uh a generalized semi-discrete DG approxima-
tion of (CIVP) if it satisfies for u−1

h := LV s
p,0
u0 the following equations. For every

n = 0, . . . , Nt , unh |[tn ,tn+1]∈ C1((tn, tn+1); V s
p,n) ∩ C0([tn, tn+1]; V s

p,n),
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unh(t
n) = LV s

p,n
un−1
h (tn),

Ns−1∑

i=0

xi+1∫

xi

∂t u
n
h · ψh dx =

Ns−1∑

i=0

xi+1∫

xi

Ln
h(u

n
h) · ψh dx ∀ψh ∈ V s

p,n,
(DG)

where Ln
h : V s

p,n → V s
p,n is defined by

Ns−1∑

i=0

xi+1∫

xi

Ln
h(v) · ψh dx =

Ns−1∑

i=0

xi+1∫

xi

F(v) · ∂xψh dx

−
Ns−1∑

i=0

G(v(x−
i ), v(x+

i )) · [[ψh]]i , ∀v,ψh ∈ V s
p,n . (A.1)

The numerical solution uh is defined through uh(0) := u−1
h and uh |(tn ,tn+1]:=

unh |(tn ,tn+1].
Here, G : Rm ×R

m → R
m denotes a numerical flux, the spatial traces are defined

as ψ(x±) := lim
h↘0

ψ(x ± h) and [[ψh]]i := (ψh(x
−
i ) − ψh(x

+
i )) are jumps.

The initial-value problem (DG) can now be solved numerically by any single- or
multi-step method. We focus on K -th order Runge-Kutta time-step methods as in
[11,22]. In order to ensure stability, the explicit time-stepping scheme has to obey the
following CFL-type condition

Δt � C
hmin

λmax(2p + 1)
, (A.2)

where λmax is the biggest eigenvalue of the flux Jacobian DF and C ∈ (0, 1]. Fur-
thermore, ΛΠh : Rm → R

m is the TVBM minmod slope limiter from [11].
Then, the complete S-stage time-marching algorithm for given n-th time-iterate

unh(tn) ∈ V s
p,n reads as follows:

Algorithm 3 TVBM Runge–Kutta Time-Step

1: Set u(0)
h = unh(tn).

2: for j = 1, . . . , S do

3: Compute: u( j)
h = ΛΠh

( j−1∑

l=0
α jlw

jl
h

)
, w

jl
h = u(l)

h + β jl
α jl

Δtn Lnh(u(l)
h ).

4: end for
5: Set unh(tn+1) = u(S)

h .

The parameters α jl satisfy the conditions α jl � 0,
j−1∑

l=0
α jl = 1 , and if β jl 
= 0,

then α jl 
= 0 for all j = 1, . . . , S, l = 0, . . . , j .
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A.2 Space-time reconstruction

Our analysis relies on reconstructing the numerical solution {unh}Nt
n=0 to a Lipschitz

continuous function in space and time. We structure the reconstruction process as
follows:

1. Computation of a temporal reconstruction ût

We first compute the temporal reconstruction as proposed in [13].
Let {u0h, . . . , uNt

h } be a sequence of approximate solutions of (DG) at points {tn}Nt
n=0

in time, where we assume that all approximate solutions are interpolated onto a
reference mesh T , which is a common refinement of all meshes. With V s

p we
denote the DG space associated with T , hence uh(tn) ∈ V s

p for all n = 0, . . . , Nt .
For the reconstruction in time we define the spaces of piecewise polynomials in
time of degree r by

V t
r ((0, T ); V s

p) := {w : [0, T ] → V s
p | w |(tn ,tn+1)∈ Pr ((tn, tn+1), V

s
p)}.

Using Hermite interpolation on each time interval [tn, tn+1], we construct the
temporal reconstruction ût ∈ V t

r ((0, T ); V s
p).

2. Computation of a space-time reconstruction ûst using the time reconstruction ût

With the temporal reconstruction ût at hand, we define the space-time reconstruc-
tion ûst of theDG-solutions of (DG). The analysis in [13] requires numerical fluxes
G which admit a special representation. In particular, there needs to exist a locally
Lipschitz function w : U × U → U , with the additional property w(u, u) = u,
such that G can either be expressed as

G(u, v) = F(w(u, v)), ∀u, v ∈ U . (A.3)

or as

G(u, v) = F(w(u, v)) − μ(u, v; h)hν(v − u), ∀u, v ∈ U , (A.4)

whereν ∈ N and for somematrix-valued functionμ,whichhas the property that for
any compact K ⊂ U there exists aμK > 0, such that |μ(u, v; h)| � μK (1+|v−u|

h ),
for h small enough.

Remark 7.1 For our numerical computations we consider the following numerical
fluxes.

– The Lax–Wendroff flux:G(u, v) = F(w(u, v))withw(u, v) = u+v
2 − Δt

2h (F(u)−
F(v)), satisfies (A.3).

– The Lax–Friedrichs flux: G(u, v) = 1
2

(
F(u)+ F(w)

)
+λ(w−u) satisfies (A.4),

with ν = 0, w(u, v) := 1
2 (u + v) and μ(u, v; h) := λI − F(u)−2F(w(u,v))+F(v)

2|v−u|2 ⊗
(u − v).

We define the spatial reconstruction which is applied to the temporal reconstruction
ût (t, ·) for each t ∈ (0, T ) using the function w (cf. [13,15]).
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Definition A.1 (Space-time reconstruction) Let ût be the temporal reconstruction of a
sequence {unh}Nt

n=0 of solutions of the fully discrete scheme of (DG) using a numerical
flux satisfying (A.3) or (A.4). The space-time reconstruction ûst (t, ·) ∈ V s

p+1 is defined
as the solution of

Ns−1∑

i=0

xi+1∫

xi

(ûst (t, ·) − ût (t, ·)) · ψ dx = 0 ∀ψ ∈ V s
p−1,

ûst (t, x±
k ) = w(ût (t, x−

k ), ût (t, x+
k )) ∀ k = 0, . . . , Ns .

We have the following property of the space-time reconstruction.

Lemma A.1 ([13], Lemma24)Let ûst be the space-time reconstruction fromDefinition
A.1. For each t ∈ (0, T ), the function ûst (t, ·) is well defined. Moreover,

ûst ∈ W 1∞((0, T ); V s
p+1 ∩ C0(Λ)).
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