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Abstract

Partitioned simulation or co-simulation allows to simulate complex systems by break-
ing them into smaller, independent subsystems. The Functional Mock-Up Interface FMI
enables co-simulation by defining a framework for simulation models. Models adhering
to the standard interface (FMUs) are executed and coupled by an importer. This frame-
work approach works well for models based on ODEs and DAEs but reaches its limits for
models based on PDEs. Such models require sophisticated, legacy software packages not
compatible with the FMI standard. However, only PDE-based models are able to accu-
rately simulate many physical aspects important in engineering like heat transfer or Fluid-
Structure interactions. A possible solution to this problem is the open-source coupling
library preCICE. preCICE couples PDE-based simulation programs in a black-box fash-
ion to achieve partitioned multi-physics simulations. The coupling of the FMI standard to
preCICE would allow the co-simulation of FMI models with the more than 20 simulation
programs in the preCICE ecosystem.

This thesis is focused on the development of a preCICE-FMI Runner software to couple
FMUs with preCICE. The Runner serves as an importer to execute the FMU and steer the
simulation. Additionally, it calls the preCICE library to communicate and coordinate with
other solvers. The scope is not to develop a general Runner software, but to couple FMUs
that contain control algorithms with PDE-based models as a first step. The software is
written in Python and relies on the Python package FMPy as well as the preCICE Python
bindings.

Two test cases show the functionality of the preCICE-FMI Runner. The coupling of ODE-
based models with FMUs matches the results of a pure Python implementation with an
accuracy of 10−4. The coupling of a PDE-based model to a controller FMU proofs the
working principle, although the results could not be tested against other implementations.
The scope of the implemented abilities restricts the possible simulation scenarios, but does
not prohibit a general use for coupling scenarios beyond control applications.
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Zusammenfassung

Partitionierte Simulation oder Co-Simulation erlaubt es, die Simulation eines komplexen
Systems mit kleineren, unabhängigen Subsystemen durchzuführen. Das Functional Mock-
Up Interface FMI ermöglicht Co-Simulation durch die Definition eines Frameworks für
Simulationsmodelle. Modelle, die diesem Interface-Standard folgen (FMUs), werden von
einem Importer ausgeführt und gekoppelt. Dieser Framework Ansatz zur Co-Simulation
funktioniert gut für Simulationsmodelle die auf ODEs und DAEs beruhen, allerdings nicht
für Modelle mit PDEs. Diese Modelle werden oftmals durch fortgeschrittene Legacy -
Softwarepakete berechnet, die nicht an die normierten Bedingungen des FMI Standards
angepasst werden können. Viele physikalische Aspekte wie Hitzeübertragung oder Fluid-
Struktur Interaktionen, die eine große Bedeutung für Ingenieursanwendungen haben,
können aber nur mit PDE-basierten Modellen präzise berechnet werden. Eine mögliche
Lösung für dieses Problem ist die Open-Source Kopplungsbibliothek preCICE. preCICE
koppelt PDE-basierte Simulationsmodelle, um Multiphysiksimulationen durchzuführen.
Die Kopplung des FMI Standards mit preCICE würde die Co-Simulation von FMUs mit
den mehr als 20 Simulationsprogrammen erlauben, die preCICE derzeit verbindet.

Diese Thesis beschäftigt sich mit der Entwicklung einer ”preCICE-FMI Runner” Software,
um FMUs mit preCICE zu koppeln. Der Runner agiert als Importer für die FMU, um deren
Simulation auszuführen und zu steuern. Gleichzeitig ruft er die preCICE Bibliothek auf,
um mit anderen Simulationsprogrammen zu kommunizieren und die Simulation zu koor-
dinieren. Der Fokus dieser Arbeit liegt nicht darauf, eine allgemeine Runner Software zu
entwickeln. Stattdessen soll eine FMU, die ein Regelungsmodell implementiert, mit einer
PDE-basierten Simulation gekoppelt werden. Die Software wird in Python geschrieben
und nutzt das Python-Paket FMPy sowie die preCICE Python Bindings.
Zwei Testfälle zeigen die Funktionalität des preCICE-FMI Runners. Die Kopplung von
ODE-basierten Modellen mit FMUs zeigt Übereinstimmung mit einer reinen Python - Im-
plementierung bis zu einer Genauigkeit von 10−4. Die Kopplung eines PDE-basierten
Modelles mit einer Controller-FMU bezeugt die prinzipielle Machbarkeit dieser Kopplung.
Die Resultate konnten allerdings nicht mit anderen Implementierungen verglichen wer-
den. Der Umfang der umgesetzten Funktionalitäten begrenzt die möglichen Simulation-
sanwendungen, ermöglicht aber dennoch die Nutzung für unterschiedlichste
Kopplungsszenarien über Regelungsanwendungen hinaus.
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1 Introduction

Simulation has become the third pillar of scientific discovery, complementing and advanc-
ing experiment and theory. An important subgroup are multi-physics simulation, which
form the basis for many branches of engineering and the sciences. There are two paths
to achieve multi-physics simulations, the monolithic and the partitioned approach. In the
monolithic setup, one software includes all the necessary computations to simulate the
physical phenomena. Contrary to that, the partitioned approach relies on multiple inde-
pendent pieces of software. Each of these solvers covers a specific aspect of the simulation.
The pieces are then coupled to achieve the correct outcome. This setup allows to re-use the
single software components again in different scenarios. The partitioned approach is es-
pecially appealing when dealing with large and complicated systems, which can be split
into individual subsystems. Examples include climate modeling [3 ], but also engineering
applications such as the modeling of wind turbines [4 ].

Partitioned simulations can be realized with two different concepts. The Framework ap-
proach is based on developing a Master Algorithm which executes the participating sim-
ulation programs as needed. The coupled simulation programs will be called participants
or solvers throughout this thesis. The coupling software creates a frame to which the par-
ticipants have to adhere. The Library approach turns this concept around: The participants
are executed individually and call the coupling software as a library. This concept is mini-
mally invasive and requests very few changes to the solvers, which do not have to adhere
to a special coupling framework. It allows the flexible use and re-use of software compo-
nents and a decent time-to-solution.

The open-source software preCICE [1 ] enables partitioned multi-physics simulations using
the library approach. Besides the data exchange, preCICE takes care of data mapping, im-
plements different acceleration schemes and can perform time interpolation. These meth-
ods are implemented in a black-box fasion to be used with any appropriate solver regard-
less of the simulation case. To couple a simulation software with preCICE, an additional
software called adapter is necessary. The adapter is the middle piece between the preCICE
library and the solver.

The Functional Mock-Up Interface (FMI ) [5 ] is an interface standard for the exchange of
simulation models. It is developed by the Modelica Association, an industry consortium
with members from areas like aerospace and automotive. Due to its great use within these
industries, it is currently the de-facto industry standard for the exchange of simulation
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1 Introduction

models. Many tools, both commercial and open-source, support the use of the standard.

The goal of this thesis is to couple FMI models to other simulation programs with pre-
CICE. To this end, a Runner software 1

 was developed. The Runner connects FMI models
and preCICE (see Fig. 1.1 ), similar to the preCICE Adapters that have been written for
simulation programs such as OpenFOAM. A general Runner could be used to couple any
simulation program in the preCICE ecosystem with FMI models.
This would open up many interesting use cases. preCICE could be used as a Master Algo-
rithm to couple multiple FMI models, exploiting the advanced co-simulation capabilities
of the coupling library. The models could be generated from any tool supporting the FMI
standard, including programs commonly used in engineering such as Simulink and Dy-
mola. The key idea behind the FMI standard is interoperability, which means opening
up to the standard enables coupling to very different applications. But probably most in-
teresting is the prospect of coupling FMI models with simulation programs for advanced
physical processes in 3D, such as OpenFOAM or FEniCS, to capture different phenomena
of cyber-physical systems.

Figure 1.1: A sketch of the preCICE-FMI Runner setup. The Runner enables co-simulation
of FMI models by connecting them to preCICE.

However, to develop a general Runner that captures all the different simulation cases
is complex and beyond the scope of this thesis. This thesis is focused on developing a
Runner with a specific application in mind, which can serve as a starting point for gen-
eralization. This application is the coupling of a control algorithm written in the FMI
standard with a solver based on Partial Differential Equations (PDE ). An example would
be a Fluid-Structure Interaction with the controller optimizing a system parameter. Many
applications of this type can be found in the engineering sciences. For example, in the field
of Wind Energy one might want to simulate the air flow around a wind turbine rotor blade
and control the pitch angle of the blade to reduce fatigue or maximize lift. This idea is es-
pecially interesting because many control algorithms in Wind Energy are currently being
developed in Simulink, a tool that supports the FMI standard.

1https://github.com/precice/fmi-runner (accessed: 2023-04-13)
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In order to understand how preCICE and the FMI standard can be coupled, chapters 2 and
3 give an overview of the two software components. I then continue to describe the newly
developed Runner software in chapter 4 . The concept behind the Runner is explained, as
well as it’s interface, abilities and limitations. Chapter 5 takes the reader through two test
cases: First, the partitioned simulation of a mass-spring oscillator system compares the
results of the Runner with those of a Python implementation, giving confidence that the
Runner works correctly. The second case considers the coupling of the Runner to the simu-
lation of a Fluid-Structure Interaction. Finally, Chapter 6 provides a summary and outlines
further possible developments. I conclude if the Runner can be used in a generalized way
or if it remains a software for specialized applications.
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2 Functional Mock-up Interface

The Functional Mock-up Interface (FMI) [6 ] is a framework for model exchange and co-
simulation. The aim of this interface standard is to “simplify the creation, storage, ex-
change and (re-) use of dynamic system models”1

 . Models created after the FMI standard
can be run black-box in a black-box fashion, independent of their content. The origins of
the framework stem back to the MODELISAR project2

 in 2008, an industry cooperation
which set out to improve the design of systems and embedded software in vehicles. Since
then, the standard has evolved to become the de-facto industry standard for co-simulation.
Today, the development of the Functional Mock-up Interface is organized within the Mod-
elica Association3

 .

As a framework, the FMI standard sets out to define rules and regulations to standard-
ize the way simulation models are structured, simulated, and coupled. It is not a software
in itself, but regulates how a class of software tools is being developed and used. The FMI
standard is implemented via so called Funcional Mock-up Units (FMU). These units serve
as structured containers for simulation models and will be examined in section 2.1 . FMUs
are the building blocks for the co-simulation setup, but they need another external tool to
run and steer the simulation (see section 2.2 ). Over time, many software tools (commercial
and open-source) have been adapted to be able to simulate FMUs or export their internal
models to the FMU format. A selected list of tools is presented in section 2.3 .

1https://fmi-standard.org/about/ (accessed: 2023-04-13)
2https://itea4.org/project/modelisar.html (accessed: 2023-04-13)
3https://modelica.org/ (accessed: 2023-04-13)
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2 Functional Mock-up Interface

2.1 Functional Mock-up Units

Within the FMI standard, Functional Mock-Up Units (FMU ) serve the purpose of encapsu-
lating simulation models, code, and functionalities. Because these FMUs are standardized,
they make interoperability possible: All FMUs share a similar structure and many common
functions. However, three different types of FMUs have been developed to satisfy differ-
ent demands. This section will explore the common structure and types of FMUs, before
moving on to their simulation in the next section.

Structure

On the highest level, a FMU is a zip archive that contains specific files and binaries (see
Fig. 2.1 ). The zip folder is unpacked before the simulation gets access to the internal files.
The FMU folder always contains binaries that encode the model functions. Depending on
the operating system, this code will come in the form of a shared object (*.so) or dynami-
cally linked library (*.dll or *.dylib). Crucially, the FMU does not contain any executables.
Instead, it always depends on an ”importer” program to call and run the binaries (see 2.2 ).
Another mandatory item is the ModelDescription file. This XML file contains a high level
overview of the simulation model. It introduces the parameters used within the model,
gives insight into the implementation by providing capability flags, and defines a default
simulation case.
Next to these mandatory items, more information can be added to the zip archive volun-
tarily to simplify the use of the FMU. For example, a detailed documentation of the model
formulas or reference data may be included. Sometimes, it is also desirable to share the
source code alongside the binaries. However, in many cases the source code is omitted to
protect intellectual property. It is still possible to use the binaries without constraints as
the interface is standardized and independent of the model content.

Figure 2.1: A FMU model is a zip file containing specific files and binaries.
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2.1 Functional Mock-up Units

Types

Three different interface types are currently available for the Functional Mock-up Units.
They build on a base of common functions and conventions, but extend it for different use
cases. Depending on the type, the interaction with the importer is different.

A Co-Simulation FMU implements the model functions and a the solver algorithm. There-
fore, it has the ability to compute the next timestep. The importer only tells the FMU when
to do so, but doesn’t implement a solver on its own. Fig. 2.2 sketches the interaction of
FMU and importer.

Figure 2.2: Interaction of the FMU type ”Co-Simulation” with the importer. The model
includes the solver algorithm, while the importer steers the Co-Simulation

´

A Model Exchange FMU implements the model functions, but not a solver algorithm.
That means, it can expose the simulation model to another program but not solve the
model equations. Crucially, it cannot advance the time in a numerical simulation. Instead,
this task is delegated to the importer.

A Scheduled Execution FMU differs from the two types above. It is split into several
model partitions, which can be executed by a scheduler provided by the importer. Again,
the FMU implements the solver algorithm, but with a different timing concept. The moti-
vation here lies in the connection to real hardware with individual timing schemes, where
events may occur unpredictably. A more detailed explanation can be found in [5 ].

7



2 Functional Mock-up Interface

2.2 Simulation

To run a simulation with an FMU model, we need an importer. The importer is an external
program that loads, unpacks, and calls the FMU model. It uses the standardized FMI-
API and can therefore work with any FMU. The importer can be a rather sophisticated
tool, such as Mathwork Simulink, or a simple Python script. The latter is possible due to
Python packages that have been developed for this task. The library used for the Runner
development is FMPy4

 . An exemplary script for the simulation flow with FMPy is given
in Fig. 2.3 .

I want to highlight some of the functionalities that FMPy provides and which are impor-
tant for the Runner:

• fmpy.extract("model.fmu") [line 6]: The zip folder of the FMU is extracted
and stored at a local directory. This makes the internal files and the binary model.so
accessible.

• fmpy.fmi3.FMU3Slave(...) [lines 8-11]: Returns an fmu object which is used to
interact with the FMU.

• fmu.instantiate() [line 13]: Instantiates the model. Now model variables and
internal functions can be accessed.

• fmu.setFloat64([vr parameter], [value]) [line 17]: Sets the value of an
internal parameter. Here, a parameter of type Float64 is set, but the same is possi-
ble with other data types. The parameter is not accessed by its name, but by a value
reference number vr parameter. Every internal parameter has a value reference,
but not all parameters are accessible. The value references and names as well as
accessibility can be read from the ModelDescription file.

• fmu.getFMUstate() [line 24]: Returns a snapshot of the full state of the model.
All parameters and internal states are stored.

• fmu.doStep(time, step size) [line 26]: Computes the next time step. This
function calls the doStep()method internal to the FMU. Note that this is only possi-
ble with co-simulation FMUs, because they include the solver algorithm. The results
of the computation are stored internally in the FMU

• fmu.getFloat64([vr result]) [line 28]: Reads the value of the result with value
reference number vr result from the FMU.

• fmu.setFMUstate(state checkpoint) [line 31]: Sets the full state of the model
to an earlier point in time as stored in state checkpoint. This is important for
co-simulation, where a master algorithm decides whether modelConverged is true
or not.

4https://fmpy.readthedocs.io/en/latest/ (accessed: 2023-04-13)
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2.2 Simulation

1 import fmpy
2

3 # read information about model
4 model_description = fmpy.read_model_description("model.fmu")
5 # extract the FMU
6 unzipdir = fmpy.extract("model.fmu")
7 # Simulation object is defined
8 fmu = fmpy.fmi3.FMU3Slave(
9 guid=model_description.guid,

10 unzipDirectory=unzipdir,
11 modelIdentifier=model_description.coSimulation.modelIdentifier)
12 # model is initialized
13 fmu.instantiate()
14 fmu.enterInitializationMode(startTime=start_time)
15 fmu.exitInitializationMode()
16 # Set model parameter
17 fmu.setFloat64([vr_parameter], [value])
18 time = start_time
19 results = []
20

21 # main time loop
22 while time < stop_time:
23 # save current model state
24 state_checkpoint = fmu.getFMUstate()
25 # model computes next time step
26 fmu.doStep(time, step_size)
27 # get results
28 output = fmu.getFloat64([vr_result])
29 # Decide whether to repeat the timestep or not
30 if modelConverged == False:
31 fmu.setFMUstate(state_checkpoint)
32 elif modelConverged == True:
33 time += step_size
34 results.append((time, output))
35

36 fmu.terminate()
37 fmu.freeInstance()

Figure 2.3: An example script for the simulation of a FMU model with the Python package
FMPy
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2 Functional Mock-up Interface

• fmu.terminate() [line 36]: Terminates the simulation.

During co-simulation, multiple FMUs are coupled to simulate a bigger system. Hence,
the functionalities presented for data exchange between FMU and importer as well as the
ability to repeat a time step when convergence criteria are not met become important.
These actions have to be coordinated by a Master Algorithm. One can imagine an importer
that loads multiple FMUs, executes them and handles the data exchange and numerical
stability (see Fig. 2.4 ).

Model1.fmu Model2.fmuImporter

Data A

Data B

Figure 2.4: The importer can include a master algorithm to execute and steer multiple
FMUs.

2.3 Tools

A great benefit of the FMI standard is its interoperability with many established software
tools. Over 170 tools so far have adopted the standard and allow for the import of FMU
models, the export of their internal models to the FMU format or act as master algorithms.
The following list of tools is incomplete, but can serve as a starting point. A complete list
of tools supporting the FMI standard can be found on the FMI website5

 .

PyFMI is a python package for the simulation of coupled dynamic models with the Func-
tional Mock-up Interface [7 ]. Like FMPy, it was written to enable the simulation of FMUs
with Python. Simulation can be done for single and multiple FMUs, as PyFMI includes
a master algorithm. The software is closely linked to another Python package called As-
simulo [8 ]. Assimulo implements a variety of solver algorithms for ordinary differential
equations and unifies them under a high-level interface. For example, Euler’s and Runge
Kutta methods are implemented. From the SUNDIALS suite ([9 ], [10 ]), it wraps the pop-
ular solvers CVODE and IDA. This is very useful when working with Model Exchange

5https://fmi-standard.org/tools/  (accessed: 2023-04-14)
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2.3 Tools

FMUs which don’t contain a solver algorithm, but depend on the importer to solve the
exposed equations. Here lies the strength of PyFMI in combination with Assimulo: One
provides the problem in terms of mathematical equations, one provides the numerical
solver.

Next to these standalone packages for the simulation of FMUs, many existing softwares
have been adapted to include the FMI standard in their ecosystem. One such software
is the OpenModelica Editor, developed in the broader OpenModelica Environment [11 ].
The editor is a graphical user interface for the Modelica programming language. Sim-
ulation models for a variety of engineering and scientific problems can be created and
edited by “drag and drop” elements. Also, a simulation environment with debugging and
post-processing facilities is given, which makes the editor a great tool for fast prototyping.
FMUs can be integrated into such simulations or internal models can be exported as FMUs.
If a terminal-based solution is needed, the OpenModelica Shell can be used. However, the
FMU models exported from Modelica tools lack some functionalities crucial to this thesis
like the ability to reset the state of the FMU to an earlier point in time. The same is true for
FMUs created with Mathwork Simulink. This is unfortunate, as most control applications
in the engineering sciences depend heavily on Simulink for development. However, at this
point, FMU models created with Simulink can only be used in explicit coupling schemes.

An alternative to the aforementioned tools to create FMU models is the direct compila-
tion of C-code. To this end, the Reference-FMUs6

 of the Modelica Association form a
good basis for anyone willing to try it out. This way is the most flexible and gives the most
insight into the implementation as needed for some development processes.

6https://github.com/modelica/Reference-FMUs (accessed: 2023-04-13)
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3 Coupling Library preCICE

The open-source coupling library preCICE [1 ] enables partitioned multi-physics simula-
tions. It makes it possible to couple different simulation softwares to simulate multi-
physics scenarios, for example fluid-structure interactions. Due to the black-box fashion
of the coupling, applications range from aerospace engineering to biomechanics. preCICE
is developed at the Technical University of Munich and the University of Stuttgart. Great
attention is given to the usability, code sustainability and community interaction of pre-
CICE, an important success factor for open source software libraries [12 ].

Figure 3.1: An overview of preCICE [1 ]. The coupling library takes care of the commu-
nication, data mapping, coupling schemes and time interpolation during the
simulation. To interact with the solvers, an additional piece of software called
adapter is necessary.

Figure 3.1 shows an overview of how preCICE achieves co-simulation. The coupling
library is called by the participants at every time step. It takes care of communication,
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3 Coupling Library preCICE

data mapping, coupling schemes and time interpolation. To interact with the solvers, an
additional piece of software called adapter is necessary. This software allows the solver to
remain untouched and acts as an intermediate between preCICE and the solver. Currently,
adapters are available for OpenFOAM, FEniCS and many more simulation tools.

Within the adapter, preCICE is called with a specific API. Although the preCICE core is
written in C++, bindings are available for eg. Matlab and Python to simplify the develop-
ment of adapters. Figure 3.2 shows an exemplary script for coupling a solver in Python.
The functions shown here don’t cover the whole possibilities that preCICE offers but were
selected to introduce the most important functionalities for this project.

• precice.Interface("solver name", "config.xml", ...) [line 3]: Returns
a SolverInterface object for the solver ”solver name” which points to the de-
fined coupling interface. This interface object is from there on used to interact with
preCICE. The coupling is defined in the file ”config.xml”.

• interface.initialize() [line 16]: Initializes preCICE, which includes the set-
up of parallel communication and the exchange of meshes between coupling part-
ners.

• interface.read block vector data(...) [line 23]: Reads vector data from
the coupling partner from one or more mesh vertices.

• interface.write block vector data(...) [line 30]: Sends the write data to
the coupling partner.

• interface.advance(...) [line 32]: Advances preCICE after the solver has com-
puted one timestep.

preCICE implements many methods, the description of which is out of scope for this
thesis. Nevertheless, I want to give a brief glance on the available coupling schemes. Fig-
ure 3.3 shows the serial coupling schemes between two solvers, where solver A is executed
first and the results are then communicated to solver B. In an explicit coupling schemes,
this happens once every time step. Explicit coupling schemes are easy to implement, but
can lead to numerical instabilities during the simulation. Such instabilities can be avoided
with implicit coupling schemes. Implicit schemes iterate over a single time step until a
stability criterium is met. The iteration process can be enhanced by acceleration methods,
which act on the results exchanged between the solvers and can lead to faster convergence.
Beyond this basic coupling scenario, preCICE implements parallel coupling methods and
is able to couple multiple solvers.
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1 solver = Solver() # Coupled participant (not part of preCICE)
2 # Define the coupling interface
3 interface = precice.Interface("solver_name", "config.xml", rank, size)
4 mesh_id = interface.get_mesh_id("coupling_mesh")
5 dimensions = interface.get_dimensions()
6

7 vertices = np.zeros((num_vertices, dimensions))
8 read_data = np.zeros((num_vertices, dimensions))
9 write_data = np.zeros((num_vertices, dimensions))

10 vertex_ids = interface.set_mesh_vertices(mesh_id, vertices)
11 read_data_id = interface.get_data_id("read_variable", mesh_id)
12 write_data_id = interface.get_data_id("write_variable", mesh_id)
13

14 dt = solver.dt # solver timestep size
15 precice_dt = float() # maximum precice timestep size
16 precice_dt = interface.initialize()
17

18 while not interface.is_coupling_ongoing(): # time loop
19 if interface.is_action_required(...):
20 # Save checkpoint for implicit coupling schemes, if needed
21 interface.mark_action_fulfilled(...)
22

23 interface.read_block_vector_data(read_data_id, vertex_ids)
24 solver.set_read_data(read_data)
25 dt = begin_time_step() # compute adaptive time step
26 dt = min(precice_dt, dt)
27 solver.compute_time_step(dt)
28 solver.compute_write_data(write_data)
29 write_data = solver.get_write_data()
30 interface.write_block_vector_data(write_data_id, vertex_ids, write_data)
31

32 precice_dt = interface.advance(dt) # Advance time in precice
33 solver.end_time_step() # update variables, increment time, ...
34

35 if interface.is_action_required(...):
36 # Reload checkpoint for implicit coupling schemes, if needed
37 interface.mark_action_fulfilled(...)
38 # Free data structures and close communication channels
39 interface.finalize()
40 solver.destroy()

Figure 3.2: An exemplary coupling script to showcase the preCICE API (v2.5)
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3 Coupling Library preCICE

(a) serial-explicit (b) serial-implicit

Figure 3.3: Explicit and implicit serial coupling scheme
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4 Development of the Runner software

4.1 Concept

FMUs can be used to package simulation models in a standardized way with the specific
goal to enable co-simulation. They are not executables on their own, but require a so-called
importer to call them. During co-simulation, the importer has to fullfill two critical roles:
exchange data between FMUs and implement a master algorithm to sustain a stable sim-
ulation. Writing such an importer in Python is greatly facilitated by the software package
FMPy.
The coupling library preCICE is a software specialized on the coupling of simulation pro-
grams. To this end, it implements different coupling schemes and provides data mapping
and acceleration methods. Importantly, preCICE follows the library approach to parti-
tioned simulations. This means preCICE is called by the participants to advance the simu-
lation instead of preCICE calling the participants.

The idea behind the Runner is to provide the connection between preCICE and FMI. In this
scenario, preCICE steers the simulation. It decides which actions have to be taken by each
participant to reach a stable and fast-converging simulation. The Runner acts as the im-
porter for the FMU, executing the FMU model and steering it according to the commands
from preCICE. This functionality separates the Runner from other software components
used to connect simulation programs to preCICE, the adapters. These adapters are usu-
ally a function or module that communicates between preCICE and a full scale simulation
program. The adapters don’t execute the simulation programs, but transfer data and exe-
cution commands. The Runner, on the other hand, executes the FMU which implements
the simulation model. Simultaneously, it communicates to preCICE. Therefore it is a mix-
ture between importer and adapter.

In its simplest form, the Runner is a merge of the two exemplary scripts shown in Fig.
2.3 and 3.2 . This thought experiment is shown in Fig. 4.1 . All commands used have al-
ready been introduced.

But how would an ideal Runner software look like? What functionalities would we wish
for? In the following, I want to give this some consideration to motivate my implementa-
tions.
The Runner should be as general as possible. We want to use it with any FMU, regardless
of the FMI version or the model equations it implements. Furthermore, the Runner soft-
ware should be easy to install and use. To check local installations and guardrail further
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4 Development of the Runner software

1 import fmpy
2 import precice
3 # FMU Setup
4 fmu = fmpy.fmi3.FMU3Slave(...)
5 fmu.instantiate()
6 # preCICE Setup
7 interface = precice.Interface("solver_name", "config.xml", rank, size)
8 mesh_id = interface.get_mesh_id("coupling_mesh")
9 dimensions = interface.get_dimensions()

10 vertices = np.zeros((num_vertices, dimensions)) # Set coordinates for vertices
11 read_data = np.zeros((num_vertices, dimensions))
12 write_data = np.zeros((num_vertices, dimensions))
13 vertex_ids = interface.set_mesh_vertices(mesh_id, vertices)
14 read_data_id = interface.get_data_id("read_variable", mesh_id)
15 write_data_id = interface.get_data_id("write_variable", mesh_id)
16

17 dt = interface.initialize() # preCICE timestep size
18

19 while not interface.is_coupling_ongoing(): # time loop
20 if interface.is_action_required(precice.action_write_iteration_checkpoint()):
21 state_checkpoint = fmu.getFMUstate() # Save FMU state
22 interface.mark_action_fulfilled(precice.action_write_iteration_checkpoint())
23 # Get read_data from preCICE
24 interface.read_vector_data(read_data_id, vertex_ids)
25 # Advance FMU in time
26 fmu.setFloat64([vr_read], [read_data]) # Set read_data in FMU
27 fmu.doStep(t,dt) # Compute next time step with FMU
28 write_data = fmu.getFloat64([vr_write_data]) # Get write_data from FMU
29 # Send write_data to preCICE
30 interface.write_vector_data(write_data_id, vertex_ids, write_data)
31 # Advance preCICE in time
32 dt = interface.advance(dt)
33

34 if interface.is_action_required(precice.action_read_iteration_checkpoint()):
35 fmu.setFMUstate(state_checkpoint) # Reload FMU state if necessary
36 interface.mark_action_fulfilled(precice.action_read_iteration_checkpoint())
37

38 interface.finalize() # Frees data structures and closes communication channels
39 fmu.terminate()

Figure 4.1: The concept behind the Runner software: The functionalities of FMPy and pre-
CICE are combined in one script to handle both the simulation of the FMU
model and the coupling with other simulation programs.
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changes, a test suite should be developed alongside the program itself.
Besides these user-focused requirements, an ideal Runner would support the full function-
ality of preCICE:

• Explicit and implicit coupling schemes: Implicit coupling schemes require solvers that
are able to repeat the calculation of a timestep. For this, the state of the solver needs
to be stored and retrieved. The FMI standard introduced respective functionalities
for FMUs with version 2. For models with the FMI version 1, this is not possible.

• Exchange of full meshes: In the past, the equations implemented in FMUs have been
focused on Ordinary Differential Equations (ODE ) and not on more complex PDEs.
The data formats available in FMUs were restricted to scalars, which made discretiza-
tion in space unfeasible. This is about to change, as FMI version 3 implements vectors
and matrices as new data types. Ideally, one could communicate a whole mesh from
preCICE to a FMU. However, for any legacy model, the exchange of single vertices
is enough.

• Acceleration: preCICE implements various acceleration schemes to reduce the conver-
gence time for implicit coupling schemes. They play an important role in conducting
simulations in an acceptable timeframe.

• Data logging: This is not typically associated with preCICE, as the solvers are re-
sponsible for storing the simulation results. However, as the Runner is a mixture of
importer and adapter, it also has to implement data logging for the FMU results.

• Error logging: Error logs are an invaluable tool to debug the simulation. The FMU
can assert internal errors and communicate them to the Runner, which should export
them to log files.

In the following I want to give insight into developed software by describing its abilities
and limitations. Additionally, the configuration options are discussed to show how the
functionalities of the Runner can be accessed. Use cases with possible simulation setups
can be found in chapter 5 .

4.2 Abilities and Limitations of the implemented software

The Runner is compatible with the FMI versions 1, 2 and 3. As the standard evolved,
function calls changed and new features were added. FMI 1 lacks some of the functionali-
ties which are now available in FMI 3. This is most apparent for implicit coupling, which
is not possible with FMI 1 models. They lack the ability to store and reload the state of the
model, which was introduced with FMI 2 and is necessary for implicit coupling schemes.
Even for models adhering to FMI 2 and 3, many models do not implement this feature.
The ability to redo a timestep is communicated to the importer by a flag. This makes it
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possible to implement both explicit and implicit coupling schemes with the Runner and
give responding error messages when the configuration of the coupling scheme does not
match the abilities of the FMU. As part of the implicit coupling schemes, acceleration can
be used with FMUs that have an implicit internal solver. No special adaptions were neces-
sary for this, as the acceleration is done in preCICE and affects the solver only in the data
that is communicated to it. The data exchanged with the Runner is currently restricted
to one vertex, which can hold a scalar or a vector. During the simulation, the Runner
can set time-dependent input signals and store output data from the FMU. The results
are stored as timeseries in a .csv file for easy post-processing. All of these functionalities,
including the coupling parameters with preCICE, are controlled by a generic interface ac-
cessed by two .json input files. The setting files and the different configuration options are
discussed in detail later on. Besides these characteristics directly involved with the simu-
lation process, the Runner also includes a simple regression test. Consideration was given
to create an easy installation process with good documentation using standard tools like
the Python Packaging Index pip.

However, there are some limitations to what could be achieved throughout this thesis.
Most remarkably, the Runner is currently not able to exchange multiple vertices. Al-
though this seems like a harsh restriction, it is not: FMUs are designed and built to run
Ordinary Differential Equations. These systems of equations are discretized in time, but
not in space like Partial Differential Equations. Therefore, the models implemented in
FMUs tend to be simpler and don’t require the exchange of big meshes. One sign of the
design choice towards ODEs was the limitation to scalar variables within the FMU, which
hold up until the introduction of FMI 3 in 2021. With FMI 3, array variables are now avail-
able. However, the Runner is currently not adapted for this. Instead, the assumption is
that all FMU variables are scalars. This does not mean tough that the data exchanged via
preCICE is limited to a scalar. Instead, the vector data sent from another participant can
be transferred to scalar variables in the FMU. They form a vector through naming conven-
tions. Although not very elegant, this approach has been used by the FMI community for
many years before the introduction of FMI 3 and is therefore well established. Another
limitation of the Runner is its lack of the logging of FMU internal errors. The FMUs can
report errors to the importer, and FMPy has functionalities to catch and log these errors,
which makes this feature very feasible for future developers. The fact that the software
is currently only available for preCICE v2 falls in the same category. The release of pre-
CICE v3 is scheduled for the summer of 2023 and brings some breaking changes in the
API calls. However, it remains to be seen how fast the preCICE community will switch
to the new version. Lastly, the Runner can only be executed in serial. In general, FMUs
can be executed in parallel, which has been used by other tools before [13 ]. The restriction
to serial execution may be a disadvantage when solely coupling FMUs with each other
via preCICE. But as soon as the computationally rather light-weight FMUs are coupled
with more resource intensive programs like OpenFOAM, the Runner is not likely to be the
bottleneck to slow down simulation time.

20



4.3 Configuration

4.3 Configuration

The configuration of the Runner is organized through two setting files, precice-settings.json
and fmi-settings.json, which are handed to the Runner on execution. They allow to set up
the simulation case with the FMU. The files are structured in dictionaries, which are briefly
discussed to explain the configuration options.

The file precice-settings.json file shown exemplary in Fig. 4.2 contains a dictionary called
coupling params. Most entries here consider the standard procedure of setting up a cou-
pling scenario with preCICE: The coupling library needs to know which participant the
Runner is going to be, where to find the preCICE configuration file and what mesh be-
longs to this participant. The last two entries, Write-Data and Read-Data, concern the data
exchanged via preCICE. Data name and type have to be given as they are defined in precice-
config.xml. Hence, the data type can be either scalar or vector. This extra classification
is necessary to set the correct preCICE API calls within the Runner. The rank and size of
the process as well as the number of vertices have been set to set to rank = 0, size = 1 and
nvertices = 1. These values reflect the current limitations of the Runner.

1 {
2 "coupling_params": {
3 "participant_name": "Runner",
4 "config_file_name": "../precice-config.xml",
5 "mesh_name": "Runner-Mesh",
6 "write_data": {"name": "Write-Data", "type": "vector"},
7 "read_data": {"name": "Read-Data", "type": "vector"}
8 }
9 }

Figure 4.2: An exemplary preCICE settings file for the Runner

Let’s turn to the second input file fmi-settings.json shown in Fig. 4.3 . As the name pre-
dicts, all entries concern the interaction of the Runner with the FMU. We start of with sim-
ulation params. It is a mandatory entry for the settings file. It contains fields to choose
the FMU model for simulation, the directory and name of the output file and which in-
ternal data from the FMU should be stored there. The fields fmu read data names and
fmu write data names connect the FMU with preCICE. They decide which FMU variables
receive the read data from other participants and which variables are retrieved to write
data to preCICE. When vector data is exchanged via preCICE, as is the case here, the num-
ber of entries in the lists for fmu read data names and fmu write data names has to match the
dimensions of the vector data. The scalar variables in the lists are used to store the vector
elements. If, for example, a 2D vector (x, y) is read, the variables are set to read data 1 = x
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4 Development of the Runner software

and read data 2 = y.
The next entries of the settings file are optional and the dictionaries can be left blank or
removed completely. The model params and initial conditions dictionaries are used to
set parameters before the start of the simulation. The key has to match the variable name.
The variables are set during the initialization phase of the FMU. Doing so allows setting
variables which can not be changed during the simulation due to restrictions enforced by
the FMU model, such as variables marked as ”fixed” in the model description XML. Fi-
nally, the dictionary input signals can be used to create changing input signals over the
course of the simulation. The first entry of the list always has to be the time at which the
new values should be set, followed by the values for the respective variables.
Crucially, all entries concerning variable names in fmi-settings.json must match the names
of the internal variables of the FMU. The variable names can be checked in the model
description XML file of the respective FMU model. Furthermore it is assumed that all
variables are scalars, a current limitation of the Runner.
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1 {
2 "simulation_params": {
3 "fmu_file_name": "../model.fmu",
4 "output_file_name": "./output.csv",
5 "output": ["output_1", "output_2"],
6 "fmu_read_data_names": ["read_data_1", "read_data_2"],
7 "fmu_write_data_names":["write_data_1", "write_data_2"],
8 "fmu_instance_name": "model_1"
9 },

10 "model_params": {
11 "param_double": 0.0,
12 "param_bool": true,
13 "param_string": "simulation_flag"
14 },
15 "initial_conditions": {
16 "variable_1": 0.0,
17 "variable_2": 0.0
18 },
19 "input_signals": {
20 "names":["time", "variable_3", "variable_4"],
21 "data": [
22 [0.0, 0.0, 0.0],
23 [1.0, 2.0, 0.0],
24 [3.0, 2.0, 4.0]
25 ]
26 }
27 }

Figure 4.3: An exemplary FMI settings file for the Runner
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5 Test Cases

This chapter introduces two test cases to showcase and test the abilities of the Runner.
First, I couple two ODE systems implemented with FMUs in section 5.1 . The results are
compared with a coupling of Python solvers. Second, I discuss the coupling to a Fluid-
Structure Interaction in 5.2 . Both test cases are archived for reproduction in the Data
Repository of the University of Stuttgart DaRUS.1  

5.1 Partitioned Mass-Spring Oscillator

Mathematical description

The first test case is made up of an ideal mass-spring oscillator with three springs and two
masses. The setup is motivated by [14 ] and has been adapted for preCICE by [2 ]. This
section closely follows the structure there to introduce the case.
Figure 5.1 shows the system, which we will simulate in a partitioned fashion. This setup
has some interesting benefits. It is simple enough for a fast implementation. Because the
resulting partitions are described with ODEs, they can be easily computed within FMU
models. At the same time, the problem is complex enough to apply different integration
methods and coupling schemes (see [2 ]). This allows the testing of many functionalities of
preCICE that the Runner has to implement, like implicit coupling and acceleration.

k1

m1

k12

m2

k2

u1 u2

Figure 5.1: Monolithic mass-spring system [2 ]

1https://doi.org/10.18419/darus-3408 
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The system can be described by the following initial value problem (IVP ):

[
m1 0
0 m2

](
ü1
ü2

)
+

[
k1 + k12 −k12
−k12 k2 + k12

](
u1
u2

)
= 0 (5.1)

The masses of the two bodies are denoted asm1 andm2, while their positions are written
as u1 and u2 with the respective accelerations ü1 and ü2. The three spring elements without
damping are characterized by their stiffnesses k1, k12 and k2. The matrix notation of this
case reads

M ü+Ku = 0

with the initial conditions for the positions and the velocities of the masses being

u(0) = u0, u̇(0) = v0

The analytical solution of the system can be computed and used to study the numerical
results. The total energy of the mass-spring oscillator consists only of kinetic and potential
energy and is given as

E =
1

2
u̇TM u̇+

1

2
uTKu

One can show that

dE

dt
= 0

In the partitioned case, the integration methods and coupling schemes vary in their
ability to accurately compute this energy conservation. To create a suitable test case, we
consider the system with the parameters shown in Table 5.1 .

k1, k2 4π2 [N/m] Spring stiffness
k12 16π2 [N/m] Spring stiffness
m1,m2 1 [kg] Mass

Table 5.1: Parameters for the mass-spring system

Furthermore, the initial conditions for displacement and velocity are chosen as:
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5.1 Partitioned Mass-Spring Oscillator

u1(0) = 1 u̇1(0) = 0

u2(0) = 0 u̇2(0) = 0

With the system defined, we can now calculate the analytical solution for this special
case (see Eq. 5.2 ). It has a period of T = 1s and is plotted in Figure 5.2 .

u1(t) =
1

2
(cos (2πt) + cos (6πt)) u2(t) =

1

2
(cos (2πt)− cos (6πt)) (5.2)

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

t

u
(t
)

u1
u2

Figure 5.2: Analytical solution of the mass-spring system [2 ]. The plot shows the displace-
ments u1 and u2 for the initial conditions u1(0) = 1, u̇1 = 0 and u2(0) = 0, u̇2 = 0

With the monolithic case adequately described, we can now move on to the partitioned
case (Fig. 5.3 ). The system is cut in half at the middle spring k12 with the interface forces
F1 and F2. This way of decomposing the domain into two smaller boundary value prob-
lems results in a Schwarz-type coupling: The domains overlap, because both subsystems
depend not only on the interface forces, but also on the stiffness of the middle spring k12
(see Eq. 5.4 ). Hence, the resulting subsystems are not fully independent from each other.
The benefit of this method is the symmetry of the subsystems which simplifies the imple-
mentation.

m1ü1 = − (k1 + k12)u1 + F2(t) (5.3)
m2ü2 = − (k2 + k12)u2 + F1(t) (5.4)
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k1

m1

k12

u1 u2

F1 F2 k12

m2

k2

Figure 5.3: Partitioned mass-spring system

Simulation

The mass-spring oscillator system in its partitioned form yields a simulation case that is
complex enough to test different coupling schemes, yet easy enough to be fully imple-
mented with FMU models. The Runner is used to load, execute and couple the FMU
model computing one of the partitions.

The motivation for this section is to show that the Runner works correctly for this simple
case. To this end, the Runner is coupled in different scenarios and the results are compared
with simulation results obtained with another solver and the analytical solution. The sec-
ond solver type used is the Python implementation by [2 ]. All four coupling options of the
two solvers [(R - R), (R - P), (P - R), (P - P)] are simulated. The methods used for integra-
tion and coupling are the same for both solvers. The results for u1 of all cases are used for
comparison. First, they are plotted and compared visually. Second, the maximum norm
‖e‖∞ between analytic and numeric result is calculated over all time steps. The maximum
serves as a worst-case approximation for the error.

[2 ] includes a detailed study about the effect the coupling method and especially the inte-
gration method has on the energy conservation for the mass-spring oscillator. However,
we will limit ourselves to one integration method, namely the Newmark-β method [15 ],
and a serial-implicit coupling scheme with Aitken acceleration. Acceleration is not nec-
essary to reach acceptable simulation times, but was used for testing. The focus of this
example is to show that these methods work with the newly developed Runner software,
not to conduct numerical experiments.
The simulations were performed with a timestep size of δt = 0.005s for a total of T = 5s.
A relative tolerance of rtol = 10−6 for the difference of computed results in consecutive
iterations was chosen as convergence criterion. Both cases were run with the following
parameters for the Newmark-β method:

β =
1

4
γ =

1

2

Figure 5.4 visualizes the results. The trajectory ofm1 is plotted for the 5 simulated cycles.
This visualization makes it easier to spot deviations than a timeseries. No differences are
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−1 −0.5 0 0.5 1
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u1

u̇
1

Trajectory of state (u1, u̇1), δt = 0.005, T = 5

analytical solution
Runner-Runner
Python-Python

Figure 5.4: Numerical results for serial-implicit coupling with Aitken acceleration. Velocity
u̇1 is plotted over position u1 to show the trajectory of m1. The results from
a coupling of Runner and Python solver to itself have no visible differences
and track the analytical solution well. The results for the cross-combinations
Runner-Python and Python-Runner are similar (not shown).
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visible between the coupling of Runner-Runner and Python-Python solvers. Also, both
implementations match the analytical solution well. The same is true for the other two
solver combinations, namely Runner-Python and Python-Runner, which are omitted from
the plot.
The calculated error confirms this first impression partially. The error ‖e(u1)‖∞ ≈ 3.48 ×
10−2 for u1 is equal for all implementations until a precision of 10−5. For the error ‖e(u2)‖∞ ≈
3.43 × 10−2, the first divergence occurs at a precision of 10−4. A plausible explanation for
this could be the data type conversion that takes place at every time step between the Run-
ner and the FMU model. This may be taken into consideration for applications that rely
on a very exact computation.

5.2 Flow around an oscillating cylinder

Setup

We simulate the laminar flow around a cylinder. The cylinder is not fixed, but mounted
upon a spring damper system (see Fig. 5.5 ). During the simulation, vortex shedding oc-
curs behind the cylinder and causes the cylinder to move up and down. To turn this setup
into a control case, the root point of the spring can be moved to vary the spring force acting
on the cylinder. A control algorithm sets the spring displacement to counteract the cylin-
der displacement.

Experimental results are available for a similar setup with a fixed spring root [16 ]. It has
received some attention as a test case for numerical simulations, eg. in [17 ]. [18 ] provides
a comparison of different numerical simulation studies and expanded the setup with a
movable spring root and a controller. His explanation of the case forms the basis for the
following introduction.

The cylinder is set to D = 1.6 × 10−3m in accordance with [16 ]. The experimentalists
report lock-in effects for Reynolds Numbers between 104 < Re < 126 with the highest
excitations at the lower limit. The inflow speed v0 is therefore adjusted to reach a Reynolds
number of Re = 108.83.

Control algorithm

The proportionate-integral-derivative controller (PID) is commonly used in many indus-
trial applications for its simplicity and robustness. The continuous control law reads

u(t) = KP e(t) +KI

∫ t

0
e(t) dt+KD

δe(t)

δt

with e(t) as the error between desired and measured state. The parameters KP , KI and
KD are used to tune the controller for the specific use case and can be found analytically
or heuristically. The discretized form of the PID law with timestep size h can be stated as
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16.5D 50D

16.5D
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Figure 5.5: The setup for the flow around an oscillating cylinder. The object is mounted
upon a spring-damper system which allows it to move in the y-direction. The
root point of the spring can be moved to vary the force acting on the cylinder.

Un+1 = KPXP
n+1 +KIXI

n+1 +KDXD
n+1

with the elements

XP
n+1 = en+1 (5.5)

XI
n+1 =

h

2
(en+1 + en) +XI

n (5.6)

XD
n+1 =

1

h
(en+1 − en) (5.7)

Here, equation 5.6 is derived with a trapezoid time integration and equation 5.7 with
the backwards Euler time integration.
For the oscillating cylinder, the error e(t) equals the distance of the cylinder from a given
reference point r(t): e(t) = r(t)−y(t). The control goal is therefore to minimize the distance
and keep the position of the cylinder at r(t) despite the external forces.
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k 69.48 [N/m] Spring stiffness
d 0.0043 [N/s] Damping coefficient
m 0.03575 [kg] Mass

Table 5.2: Parameters for the spring-damper system

Spring-Damper System

The spring-damper system upon which the cylinder is mounted is described by the equa-
tion

mÿ + dẏ + ky = F + ku (5.8)

y is the position of the cylinder centre, while ẏ is its velocity and ÿ its acceleration. The
lift force F comes from the fluid flow, while u represents the displacement of the spring
root. u is steered by the controller. Equation 5.8 is discretized with the trapezoid method
which results in the following set of equations:


2
h −1 0

k 2m
h + d 0

0 2
h −1


y

n+1

ẏn+1

ÿn+1

 =


2
h 1 0

0 2m
h m

0 2
h 1


y

n

ẏn

ÿn

+

 0

Fn+1 + kun+1

0

 (5.9)

In accordance with the experiments in [16 ] and the simulations in [18 ], the system pa-
rameters of Table 5.2 are used.

Simulation

To couple the three participants, a multi-coupling scheme is needed. An overview of the
necessary communication between the solvers is shown in Figure 5.6 . preCICE allows to
combine multiple bi-coupling schemes to satisfy this setup. The coupling between Fluid
and Solid is serial-implicit and the coupling between Solid and Controller is serial-explicit.
This combination of coupling schemes is known to perform well. Not all possible combi-
nations are numerically useful, see [19 ] for more information.

First, the case is run with a deactived controller, meaning the control gains are set to
KP = KI = KD = 0.0. The spring root is thereby fixed. This is done to compare the
basic setup with the mentioned experimental and numerical results. Figure 5.7 shows the
cylinder displacement of this simulation, which was obtained for TSim = 20s and δt =
5× 10−3s. After a transient phase, the system reaches a stable oscillation with a frequency
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5.2 Flow around an oscillating cylinder

Figure 5.6: The multi-coupling scheme for the oscillating cylinder case. Two different cou-
pling schemes are implemented: The coupling Fluid-Solid is serial-implicit,
while the coupling Solid-Controller is serial-explicit.

of f = 6.5Hz, which was also reported by [18 ] and [16 ]. However, the amplitude results
are quite different: Where the cited literature reports an amplitude of ŷlit = 6 × 10−4m,
the simulation results show ŷ = 2 × 10−6m. This mismatch of two orders of magnitude
could not be resolved, but OpenFOAM was allocated as the participant calculating wrong
results. Nevertheless, the test case is continued to be used to test the coupling of the FMU
controller model with a PDE-based model. The excited oscillation of the cylinder is still a
valid control test case for the main focus of this work, the Runner software.

Moving on, the controller is used during the simulation. Deriving from Fig. 5.7 , the
reference point is set to r = 4× 10−6m to keep the cylinder at the equilibrium point of lift
and spring force. The simulation starts without controller intervention. After the system
has reached a stable phase at T = 3s, the controller is activated by setting the control gains
to KP = 100, KI = 0.0 and KD = 0.0. The results in Fig. 5.8 show a clear reduction in dis-
placement, indicating that the control algorithm in the FMU model is connected correctly
to the simulation by the Runner.
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Figure 5.7: Simulated cylinder displacement y over time without controller intervention.
The amplitude ŷ = 2 × 10−6m misses the cited literature ([18 ], [16 ]) by 2 or-
ders of magnitude. The error could be pointed down to the force calculation in
OpenFOAM, without being able to correct it. The frequency of the oscillation
f = 6.5Hz matches the cited values.
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Figure 5.8: Simulated cylinder displacement y over time with controller intervention. The
controller is activated at T = 3s with the gains KP = 100, KI = 0.0 and KD =
0.0. This leads to a clear reduction of displacement.

34



6 Conclusion

6.1 Summary of the Thesis

This thesis developed a first preCICE-FMI Runner to couple controller models to PDEs.
The new software loads and executes FMU models and calls preCICE to couple the sim-
ulation with other simulation programs. It is written in Python to leverage the Python
package FMPy and the preCICE Python bindings. The Runner software is configured
with two settings files, enabling different simulation scenarios. Concern was given to cre-
ate an easy, standard installation process to make the program accessible for users. Next
to the Runner software, this thesis included the creation of a regression test to guardrail
further development. Well-documented test cases were implemented which show that the
software works correctly and can be used as tutorials for future users.

The preCICE-FMI Runner is compatible with Co-Simulation FMUs of the FMI versions
1, 2 and 3. It supports explicit and implicit coupling via preCICE, as well as the use of
acceleration methods. Time-dependent input signals can be set to the FMU model during
simulation. Output signals from the FMU are stored for post-processing.
The work of this thesis is limited to an implementation for preCICE v2. Furthermore, the
Runner can only exchange data on one vertex. It does not support vector variables within
the FMU, but can exchange vector variables from preCICE elementwise as scalars to the
FMU model. The logging of internal FMU errors could not be implemented, as well as
parallel execution.

The developed software and the test cases files are archived on DaRUS. 1
 

6.2 Conclusion

Can the preCICE-FMI Runner be used as a general tool to couple FMUs to PDE-based
models or is it confined to a special use case? The new software can be used to couple
FMUs in a black-box fashion, but the scope of possible coupling scenarios is restricted by
its limited abilities. Some FMU models may require the exchange of more variables than
is currently possible. Other models will rely on more interaction with the importer than
implemented at this point in time. However, given these limitations, the configuration op-
tions of the Runner are general enough to enable many interesting co-simulation scenarios

1https://doi.org/10.18419/darus-3408 
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6 Conclusion

already.
Beyond control applications, FMUs are often used as system and component models for
cyber-physical systems. These simulations can now be enhanced by high-fidelity models
through preCICE. It remains to be seen how this will be used. But the two ecosystems that
have grown around preCICE and the FMI standard contain some very different tools, the
combination of which could lead to interesting new simulation scenarios.

6.3 Outlook

This thesis is the first approach towards a coupling of FMUs with preCICE. It was written
with a specific use case in mind, but can serve as a starting point for different implemen-
tations. Some possible routes for future work on the preCICE-FMI Runner are:

• Overcome minor limitations: Many of the limitations described here can be over-
come and would lead to a more versatile Runner. This includes the adaption for
preCICE v3, as this major update includes changes in the API and is scheduled for
2023. Moreover, the handling of FMU vector variables and FMU error messages
should be included.

• Explore the coupling of FMUs exported from other simulation tools: Many tools
export their internal models to the FMU format. This gives them a standardized in-
terface, but not necessarily standardized abilities. Exported FMU models may lack
vital functionalities like rollback in time for the co-simulation with preCICE. To de-
tect these shortcomings and address them either in the preCICE-FMI Runner or the
exporting tools will be an interesting venue.

• Get user feedback: The preCICE-FMI Runner should be introduced to both the pre-
CICE and the FMI community to start a discussion and steer future development.
What is useful to the communities will decide whether the new tool will be used or
not.
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Glossary

FMI Functional Mock-Up Interface. 1 

FMU Functional Mock-Up Unit. 6 

IVP Initial Value Problem. 26 

ODE Ordinary Differential Equation. 19 

PDE Partial Differential Equation. 2 
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