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Abstract 
The present work, based on experimental, numerical and theoretical investigations, introduces a method to homogenize 
streaks in the laminar boundary layer. The streaks are created by a spanwise array of roughness elements on the surface of a 
flat plate. A homogenization body in the form of a horizontal bar is added at a downstream location away from the roughness 
array to homogenize the velocity differences of the streaks in the laminar boundary layer. Measurements are done with hot-
film anemometry and supported by numerical simulations and linear stability theory. The streak amplitude can be significantly 
reduced with the proposed homogenization body. Furthermore, the reduction in spanwise gradients of the mean velocity 
leads to a significant reduction in the sinuous instability of the streaky flow. The effects of the homogenization body on the 
displacement thickness and the observation of flow unsteadiness downstream of the homogenization body are discussed. 
The present work thus proposes and explores a passive technique to control undesired streaks in the laminar boundary layer.
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1 Introduction

One of the first visualizations of streaks in a laminar bound-
ary layer was done by Mochizuki (1961) downstream of 
a hemispherical roughness element. Depending on the 
Reynolds number, Mochizuki (1961) found either a steady 

wake, periodic vortex shedding or turbulent randomization 
of the smoke streaklines. Careful visualizations by Acar-
lar and Smith (1987) revealed the existence of a horseshoe 
vortex wrapping around the roughness and a recirculation 
zone emerging in the near wake of the roughness. Hairpin 
vortex shedding was observed beyond a Reynolds number 
of 120 based on the radius of the hemisphere and the tip 
velocity. Downstream of the recirculation zone, vorticity 
decays and velocity streaks rise and persist in the far wake. 
A sketch of these flow features is shown in Fig. 1. Numerous 
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publications have dealt with the effects of streaks in laminar 
boundary layers since then.

Streaks can be created for example by roughness, screens, 
rods, flaps or freestream turbulence. In all cases, streamwise 
vorticity drives a wall-normal exchange of momentum that 
gives rise to streamwise elongated streaks. More descrip-
tively, the process can be imagined as a scar being ripped 
into the boundary layer (Andersson et al. 2001). A theoreti-
cal discussion on this effect is provided by Landahl (1990), 
who introduced the term ”lift-up effect” to explain the 
exchange of high-speed and low-speed fluid due to stream-
wise vorticity in a shear layer. Mathematically speaking, 
streaks are a consequence of non-normality of the linear 
stability operator of the governing Navier–Stokes equations 
(Trefethen et al. 1993; Schmid 2007), leading to algebraic 
growth followed by viscous decay. This combination is also 
referred to as “transient growth.”

In many scientific and industrial applications, streaks 
originate particularly from high levels of freestream turbu-
lence. In such situations, the boundary layer is receptive to 
low-frequency vorticity disturbances from the surrounding 
flow (Phani Kumar et al. 2015). If the spanwise amplitude 
of the streaks becomes too large, the flow may rapidly trip 
to turbulence and bypass the ’classical’ exponential growth 
of Tollmien–Schlichting (TS) waves (Durbin 2017). More 
precisely, sinuous-type secondary instabilities of the streaks 
may set in if their amplitude grows larger than 26 % of the 
freestream velocity while varicose-type instabilities set in at 
much higher streak amplitudes (Andersson et al. 2001). This 
can ultimately lead to the breakdown to turbulence (Brandt 
et al. 2004) and thus increase drag, cost and emission of a 
moving body.

A desirable effect of streaks is their ability to attenuate 
TS waves. This mechanism has already been observed by 
Kachanov and Tararyki (1987) and Boiko et al. (1994) and 
later by Fransson et al. (2005). If parameters are chosen 
correctly, the attenuation of TS waves can lead to a delay 
of laminar-to-turbulent transition as shown in numerous 
studies (Fransson et al. 2006; Fransson and Talamelli 2012; 

Sattarzadeh et al. 2014). The explanation for this observa-
tion is an additional Reynolds stress term which decreases 
the perturbation kinetic energy (Cossu and Brandt 2004) 
and thus attenuates TS waves. Another explanation was 
given more recently, namely the stabilizing effect of the 
mean-flow distortion, see Dörr and Kloker (2018). Transi-
tion delay could also be reproduced by Lemarechal et al. 
(2018) and Puckert (2019) in the same facility as in the pre-
sent experiments; however, the transition delay was highly 
sensitive to parameter variations. If parameters are chosen 
wrong, premature transition is likely to be observed again. 
An overview of different effects of streaks on laminar bound-
ary layers is sketched in Fig. 2 as a qualitative function of 
streak amplitude.

Streaks are important in both laminar-to-turbulent tran-
sition and in the turbulence regeneration cycle. Therefore, 
studies on streak reduction in both laminar and turbulent 
boundary layers are found in the literature. In turbulent 
flows, the primary goal is to reduce skin-friction drag. Suc-
tion and blowing, for instance, has often been used to control 
streamwise vorticity that would otherwise lead to the for-
mation of streaks (Choi et al. 1994). In physical flows, the 
required control loop is difficult to install because of very 
small dimensions of sensors and actuators. To circumvent 
this difficulty, uncontrolled localized suction has success-
fully been used by Bakchinov et al. (1999). Later, a control 
logic for wall suction was implemented by Rathnasingham 
and Breuer (2003) and Lundell (2007). Another active 
method to reduce streaks without the need for feedback 
loops is the application of counter-rotating streamwise vor-
tices or colliding spanwise wall jets. Schoppa and Hussain 
(1998) showed with DNS that these structures can reduce 
small-scale streamwise vorticity if they are larger than the 
size of natural streaks in the turbulent boundary layer. More-
over, oscillatory walls are also known to reduce streaks in 
turbulent boundary layers (Laadhari et al. 1994; Touber and 
Leschziner 2012). In hypersonic flows, Fasel (2017) pre-
sented a method to reduce hot-cold streaks for hypersonic 
applications with passive 2D and 3D elements. In subsonic 
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Fig. 1  Roughness flow topology, sketch modified from Acarlar and 
Smith (1987)
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Fig. 2  Evolution of streaks in the laminar boundary layer
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flows, studies on passive methods to control streaks are not 
known to the authors.

The objective of this investigation is therefore to homog-
enize streaks in laminar boundary layers. This can ultimately 
lead to a control method to prevent the ’bypass’ path to tur-
bulence. The paper is structured as follows. First, the set-up 
of the homogenization unit and the scientific methodology 
of both the experiment and the simulations are introduced. 
Second, a proof of concept is provided and followed by an 
analysis of different effects of the homogenization body on 
the laminar boundary layer. Last, a discussion on the appli-
cability of the proposed method for passive flow control is 
given with conclusions and outlook for further research.

2  Set‑up

The set-up of the physical experiments and the numerical 
simulations is illustrated here. The set-up is identical in both 
methods and can thus be compared well. The main purpose 
of the numerical simulation is to provide a base flow for 
linear stability analyses.

2.1  Experiment

The experiments in this work have been conducted in the 
Laminar Water Channel at the Institute of Aerodynamics 
and Gas Dynamics at the University of Stuttgart. It is a low-
turbulence, closed-circuit water channel with a test section 
of dimensions 8 × 1.2 × 0.2m3 . The natural turbulence inten-
sity of the facility is approximately 0.08 % of the freestream 
velocity in the frequency range of 0.1−10 Hz (Puckert and 
Rist 2018). Even lower values were reported by Wiegand 
(1996). A laminar boundary layer of Blasius type forms in 
the test section on a flat plate with elliptical leading edge 
and side edge boundary-layer suction (Puckert 2019). The 
spanwise center of the leading edge is the origin of the xyz-
coordinate system as shown in Fig. 3.

A spanwise array of 6 cylindrical roughness elements 
with height k = 10mm and diameter d = 1.5 k is placed at 
xk = 87 k from the leading edge of the flat plate to create 
streamwise streaks at a regular spacing. The choice of these 
parameters is based on preliminary work by Puckert (2019) 
and has to meet the constraints of the facility (Wiegand 
1996). The chosen roughness height, for instance, allows 
to create both laminar and turbulent wakes, depending on 
the Reynolds number  Rek = k Ue / ν, where Ue is the bound-
ary layer edge velocity and ν the kinematic viscosity of 
water.  Rek can be adjusted through the freestream velocity 
of the water channel. The relative height of the roughness 
to the boundary-layer thickness is similar to the literature 
(Klebanoff et al. 1992; Fransson et al. 2005). The span-
wise center z = 0 is located between the roughness and the 

dimensional parameters of this set-up have been determined 
in a preliminary study that was conducted both visually and 
quantitatively with hot-film to find an equal distribution of 
high-speed and low-speed streaks. The spanwise spacing 
Δz = 5 k of the roughness array yields a non-dimensional 
spanwise wavenumber of

with unit length l according to the normalization of Anders-
son et al. (1999). This wavenumber is close to � = 0.45 , 
where Andersson et  al. (1999) predict streaks to act as 
optimal perturbations in bypass transition. This set-up thus 
provides streaks that could be the result of freestream tur-
bulence diffusing naturally into the boundary layer at large 
levels of freestream turbulence (Brandt et al. 2004).

The centerpiece of the present study is the homogeniza-
tion body downstream of the roughness array. It consists of 
a stainless steel bar of diameter dhom = 1.6 mm and is sup-
ported by thin Plexiglas strips at both ends. The wall-normal 
distance of the bar is yhom∕k = 1 for Case I and yhom∕k = 0.5 
for Case II, respectively. Case I and Case II are distinguished 
by the wall-normal spacing between the horizontal bar and 
the flat plate. Case III is identical to Case I with a higher 
Reynolds number and investigated numerically, where artifi-
cial damping of perturbations is possible, see Sect. 2.2. In all 
cases, the streamwise station of the bar is far enough behind 
the roughness at xhom∕k = 130 to allow transient effects to 
dissipate according to the studies of Puckert (2019). The 
purpose of the horizontal bar (“homogenization body”) is 
to reduce the streak amplitude and thus homogenize the 
streaks. The parameters of all available cases in this work 
are summarized in Table 1. A reference case without homog-
enization body is also provided in this study for comparison.

(1)� =
2�

Δz∕l

√
�

Uel
= 0.53,

6 × roughness

xk xhom

Δzx

y

z

horizontal bar

hot-film probe
CTA bridge

A/D converter

PC

Ue streaky flow

Fig. 3  Set-up of the roughness and horizontal bar embedded into a 
flat-plate boundary layer. Streaks indicated in the wake of the rough-
ness
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The hot-film measurements have been acquired with 
Constant Temperature Anemometry (CTA), a hot-film 
probe Dantec 55R15 and a 16-bit A/D converter. The sam-
pling rate was 100 Hz to satisfy the Nyquist criterion for 
the present frequency range. The sampling rate is sufficient 
considering that a typical Tollmien–Schlichting-wave fre-
quency at our facility is in the order of 0.1-0.4 Hz, hairpin 
vortices of roughness wakes in the order of 1 Hz and late 
stages of transition also in the order of 1 Hz, see Puckert 
(2019). The calibration of the hot-film has been done in situ 
by moving the probe through resting water, see “Appen-
dix 1”. An overheat ratio of 8 % is used as recommended by 
the manufacturer. No temperature compensation is needed 
due to the very small temperature drift of < 0.05 ◦ C per day 
(Wiegand 1996). The bridge voltage of the CTA circuit is 
converted into velocity through King’s law and the velocity 
u in streamwise direction is decomposed into steady ( ̄u ) and 
fluctuating ( u′ ) components and filtered digitally between a 
bandwidth of 0.1-10 Hz (Puckert 2019). The complete set-
up is sketched in Fig. 3, and the parameters are summarized 
in table 1.

2.2  Numerical simulations and linear stability 
theory

Numerical simulations are performed in OpenFOAM 
(Jasak 2009) with the steady-state solver simpleFoam for 
Case I and II. The governing equations in these cases are 
the incompressible Navier–Stokes equations which are 
solved with an iterative procedure until a residuum of 10−6 
is reached. To obtain a laminar baseflow for Case III, the 
selective frequency damping (SFD) described in Åkervik 
et al. (2006) is implemented and used. The computational 
domain extends over −50 < x∕k < 200 , 0 < z∕Δz < 1 and 
0 < y∕k < 30 with periodic boundary conditions at the side 
walls and constant velocity at the inlet. The outlet condition 
is defined as constant pressure. The bottom, roughness and 
homogenization body are no-slip walls, whereas the top is a 

slip wall. The block-structured mesh has been generated in 
Pointwise, and a grid convergence study has been performed 
to determine a suitable cell number of 494,890. Refinements 
are done towards the flat plate, around the cylindrical rough-
ness and the homogenization body, see Fig. 4.

Linear stability theory is applied to obtain a better under-
standing of the linear dynamics in selected cases. For this 
purpose, the 2D normal mode ansatz

is chosen to compute the eigenmodes from an operator-form 
of the incompressible, linearized Navier–Stokes equations. 
In Eq. (2), the state vector �′ is expanded into the product of 
the eigenvector �̂ and exponential function of the mode, con-
taining the streamwise wavenumber � , complex frequency 
� , time t, imaginary unit i and complex conjugate c.c.. The 
two dimensions y and z of this analysis lead to the name 
bi-local or bi-global stability analysis, depending on the 
literature (Bucci 2017; Theofilis 2011). This 2D method is 
particularly suitable for quasi-parallel flows, i.e., with slow 
streamwise variation of the base flow such as in the present 
case with streaks. More details on LST and the code applied 
to this work can be found in Wu and Rist (2020).

3  Results

3.1  Streak creation and homogenization

The introduction of streaks into the boundary layer, as 
well as the effects of the homogenization body, is evalu-
ated in a slice perpendicular to the streamwise direction at 
x∕k = 163 . This station is far enough downstream of the 
homogenization body for local effects to dissipate. The hot-
film is traversed between 75 spanwise positions in the range 
of −1.5 < z∕Δz < 1.5 and 14 wall-normal positions in the 
range of 0.1 < y∕k < 2.7 to record the streamwise veloc-
ity component. The measurement duration at each position 
was 60 seconds, which is more than sufficient to capture 
the most important fluctuations of the flow. Figure 5 illus-
trates both mean and root-mean-squared (rms) values of the 

(2)��(y, z, t) = �̂(y, z)ei𝛼x−i𝜔t (+c.c.)

Table 1  Parameters of experimental set-up

‘–’ means no change from previous case and ‘n.a.’ not available

Parameter Reference Case I Case II Case III

k 10 mm – – –
xk∕k 87 – – –
D/k 1.5 – – –
Δz∕k 5 – – –
Rek Variable 550 550 700
xhom∕k n.a. 130 – –
yhom∕k n.a. 1.0 0.5 –
dhom∕k n.a. 0.16 – –
Red n.a. 51 26 71.5

Fig. 4  Computational mesh. Slices at z = 0 of a roughness and b 
homogenization body. Every second line is shown
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non-dimensional, streamwise velocity for the reference case 
without homogenization body, Case I, and Case II. Note 
that the spanwise origin is manually corrected to remove the 
effects of a very small crossflow in the laminar water channel 
(typically < 1◦ deflection).

Figure 5 (top) shows streaks with regular spacing in the 
mean flow. Low-speed streaks can be recognized by lifted 
velocity isolines at z∕Δz = − 1 , 0 and 1, whereas high-speed 
streaks are located at z∕Δz = − 0.5 and 0.5, which is the 
spanwise position of the roughness. Whether the roughness 
far wake is of high or low velocity compared to the surround-
ing flow depends primarily on the thickness of the roughness 
and subsequent vortex system induced by the roughness. In 

case of a thin roughness, the horseshoe vortex system from 
the front side of the roughness dominates and creates a high-
speed streak in the center. If the roughness is thick, the vor-
tex system in the near wake of the roughness may introduce 
a low-speed streak in the centerline. The decision whether 
the centerline contains high-speed or low-speed fluid can 
depend on Reynolds number, roughness shape and spanwise 
spacing as shown in visualizations in Puckert et al. (2015). 
To explain the present results, a sketch of the flow topology 
is shown in Fig. 6. Arrows indicate the rotation direction 
of the horseshoe vortices that wrap around the roughness 
elements as known from Acarlar and Smith (1987). Driven 
by this vorticity, low-speed fluid is pushed up between the 
roughness wake and high-speed fluid is transported down 
behind the roughness at a sufficient distance from the recir-
culation zone. The vorticity then decays while streaks persist 
for a long streamwise distance. The vortex system in the 
near wake may be steady, periodic or chaotic, depending on 
the Reynolds number. These observations are documented 
in previous investigations, see for instance Puckert (2019), 
and the literature (Acarlar and Smith 1987; Klebanoff et al. 
1992). The distribution of high-speed and low-speed fluid in 
Fig. 5 (top) forms a wavy pattern. The spanwise wavelength 
equals the spacing of the roughness Δz , confirming that the 
streaks are controlled by the roughness.

When the homogenization body (Case I) is added, see 
Fig. 5 (middle), the spanwise gradients are reduced in com-
parison with Fig. 5 (top). The strongest homogenization 
effect can be found at y∕k = 1 , which is at the height of 
the homogenization body. The same effect can be observed 
in Fig. 5 (bottom). The streak amplitude in the laminar 
boundary layer is qualitatively weaker in Case I and II com-
pared to the reference case, which proves that the proposed 
method is effective. A more detailed discussion, including 

(top)

(middle)

(bottom)

Fig. 5  Slice at x∕k = 163 showing isolines of ū∕Ue from 0.1 to 1 
in increments of 0.1 as solid black lines. Pseudocolors represent 
u�
rms

∕Ue . (top) reference, (middle) Case I, (bottom) Case II

Fig. 6  Flow topology from top view. Blue arrows indicate rotation. 
Base flow direction from top to bottom
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a quantitative definition of the streak amplitude, follows in 
the next section.

Disturbances, marked by fluctuation level u′
rms

 in Fig. 5 
(top), occur predominantly in regions of high spanwise 
velocity gradients with some outliers due to transient effects 
in the Laminar Water Channel. In Case I, the disturbance 
level is increased due to the homogenization body between 
0.5 < y∕k < 2 , see Fig. 5 (middle). If the homogenization 
body is installed at the lower wall-normal position in Case 
II, the disturbances are almost as low as in the reference 
case, see Fig. 5 (bottom). This can be explained by the low 
Reynolds number based on the diameter of the bar in Case 
II. At a spanwise average of Red ≈ 26 in Case II, no sig-
nificant vorticity can be expected. With Red ≈ 51 in Case 
I, on the other hand, first laminar disturbances may occur 
like in a von-Kármán type of vortex street (Schlichting and 
Gersten 2005). It can be noted that preliminary visualiza-
tions with the homogenization body placed at y∕k = 1.5 
(thus Red ≈ 70 ) exhibited rapid breakdown to turbulence. 
Such ’trip wires’ have received considerable attention in 
the past and are not the goal of this investigation. Though 
Case II induces less disturbances into the flow, it is also less 
effective than Case I. Therefore, particular attention is given 
to Case II in the following investigations to understand the 
physics of this method in more detail.

Another perspective is provided with numerical results 
in Fig. 7 for Case I at y∕k = 1 . The wake of the roughness 
forms a high-speed streak surrounded by low-speed streaks. 
Local effects of the roughness are confined to a short stream-
wise distance and vanish before reaching the horizontal 
bar. This figure confirms that the bar is in a region where 
the parallel-flow assumption for 2D linear stability theory 
is valid. The streaks behind the homogenization body at 
x∕k > 130 in Fig. 7 (bottom) are qualitatively much weaker 

than in Fig. 7 (top). This is in qualitative agreement with 
the physical experiments and substantiates successful streak 
homogenization.

The working principle of this method is based on two 
effects. First, the drag of the horizontal bar equalizes large-
scale velocity inhomogeneities similar to screens in the set-
tling chamber of a wind tunnel. Here, high-speed streaks 
are inhibited more than low-speed streaks because the drag 
increases with velocity. Second, small-scale vorticity dis-
turbances induced locally behind the horizontal bar may 
enhance the exchange of momentum between neighboring 
high-speed and low-speed streaks, which leads to further 
homogenization. The risks of these effects are additional 
drag and unsteady disturbances in the laminar boundary 
layer. These effects are investigated in Sect. 3.3.

3.2  Streak amplitude

To evaluate the homogenization of streaks more quantita-
tively, the streak amplitude is defined as in Shahinfar et al. 
(2012):

The maximum and minimum of ū at z = const. yields a 
streak amplitude Ast(y) that depends on the y-position. The 
maximum streak amplitude within a yz-plane is then defined 
by Eq. (4).

An exemplary velocity distribution for Case I at 
(x, y)∕k = (170, 1) is shown in Fig.  8. The experimental 
data originate from measurements with spanwise increments 

(3)Ast(y) =
maxz(ū) −minz(ū)

2Ue

,

(4)Ast,max = maxy(Ast(y)) .

(top)

(bottom)

Fig. 7  Non-dimensional, streamwise velocity ū∕Ue from numerical simulations of (top) reference and (bottom) Case I at y∕k = 1 (for illustration 
purpose z stretched by factor 10)
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dz∕Δz = 0.02 between each position and a measurement 
time of 120 s at each position. The experiments are fur-
ther compared to numerical simulations and exhibit over-
all excellent agreement except for the low-speed region in 
Case I, where the simulation underestimates the flow veloc-
ity slightly. Applying Eq. (3) to the numerical values gives 
a streak amplitude of Ast = 0.22 for the reference case and 
Ast = 0.15 for Case I. In other words, the streak amplitude of 
Case I is reduced by 32 % compared to the reference case. It 
is reasonable to use numerical results in such comparisons 
because they exclude experimental outliers. For instance, the 

experiments in Fig. 8 yield a streak reduction of 35 %, which 
is very similar to the numerical result but slightly larger 
due to outliers. Error bars shown in Fig. 8 are calculated as 
described in “Appendix 2”. Keeping in mind the restrictive 
assumptions of the steady solver and experimental short-
comings, the agreement between experiment and simulation 
can still be considered excellent.

Figure 9 shows the streak amplitude in wall-normal direc-
tion at x∕k = 163 for the reference, Case I, and II, respec-
tively. The experimental data originate from the same meas-
urements as in Fig. 5. Numerical data are available for the 
reference case and Case I and have been added to the fig-
ure. Overall, there is good agreement between the experi-
ment and the simulation. The streak amplitude grows with 
increasing wall-normal direction up to a maximum value 
between 1.1 < y∕k < 1.5 and then drops back to zero further 
away from the wall. A good estimate of the location of the 
maximum is at or slightly above the wall-normal location 
of the homogenization body, which was further upstream at 
y∕k = 1 . In Case I, the flow in the experiment seems strongly 
influenced by the homogenization bar and exhibits two max-
ima above and below y∕k = 1 . Although the simulation does 
not represent this detail, it does not change the streak ampli-
tude significantly and is therefore accepted.

In Andersson et al. (1999), the optimal perturbations 
from an optimization algorithm were reported to be streaks 
with a maximum amplitude at y∕k = 0.94 (converted to our 
coordinate system). Considering the idealization of ’optimal’ 
streaks, the agreement to the location of our maximum in 
the reference case at y∕k = 1.1 (experiment) and y∕k = 1.0 
(simulation), respectively, is good. It is known that experi-
mentally created streaks are strongest further away from the 
wall than in optimal perturbation theory (White 2002; Frans-
son et al. 2004).

In this context, Fig. 9 also gives a hint on where in the 
boundary layer the homogenization body should be placed. 
The streak reduction is more effective in Case I than in Case 
II. This is most likely due to the wall-normal placement of 

Fig. 8  Non-dimensional, streamwise velocity ū∕Ue for Case I at 
(x, y)∕k = (170, 1)

Fig. 9  Streak amplitude Ast versus wall-normal coordinate y/k at sta-
tion x = 163

Fig. 10  Downstream evolution of streak amplitude Ast from numeri-
cal simulations
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the homogenization body close to the maximum streak 
amplitude and the higher diameter-based Reynolds number 
of Case I, which enhances the mixture of momentum. Vis-
ual attempts to place the homogenization body at y∕k = 1.5 
resulted in immediate transition and were excluded from 
quantitative experiments. Thus, a low wall-normal position 
of the homogenization body leads to low homogeniztion per-
formance while a too high position may trip the flow.

The downstream evolution of streak amplitudes is shown 
in Fig. 10 for the reference case and Case I. Figure 10 exhibits 
a rapid rise of Ast at x∕k = 87 as a result of local effects at the 
roughness array (dotted lines). The transient growth of streaks 
(Brandt et al. 2004) can be observed from x∕k ≥ 95 where 
local effects of the roughness vanish. After further growth 
of Ast in the downstream direction, the fate of Ast depends 
on the presence of the homogenization body (dashed line at 
x∕k = 130 ). If there is no homogenization body (reference 
case), the streak amplitude continues to grow until x∕k = 144 
and decays thereafter. In Case I, on the other hand, a significant 
reduction in Ast can be observed downstream of the homog-
enization body. This observation is in agreement with the find-
ings above. Furthermore, Fig. 10 reveals that the homogeni-
zation effect is particularly strong in the close vicinity of the 
homogenization unit between 130 < x∕k < 140 . Downstream 
of x∕k = 140 , the streak amplitude evolves similar to the refer-
ence case with an almost constant offset.

3.3  Mechanisms of the homogenization unit

This section focuses on both steady and unsteady flow fea-
tures induced by the homogenization unit to understand further 
effects of the horizontal bar in the boundary layer.

3.3.1  Displacement thickness

In contrast to the flow through screens in wind tunnels, the 
boundary layer is not bounded by a wall at the top. As a con-
sequence, the adverse pressure gradient induced by the bar 

thickens the boundary layer. This can be quantified by the 
displacement thickness �∗ , which is linked to the boundary-
layer thickness and momentum thickness in a Blasius flow. 
The displacement thickness is obtained by integration of the 
streamwise velocity (White 2006):

Equation (5) is evaluated with numerical data and averaged 
across the spanwise direction to obtain a representative value 
of �∗ for each yz-slice. The results are shown in Fig. 11 for 
the reference case and Case I with homogenization body. 
The theoretical displacement thickness of the Blasius bound-
ary layer,

is also added to the figure for comparison.
The reference case and Case I in Fig. 11 are in good 

agreement to the theoretical Blasius solution upstream of 
the roughness at x∕k = 87 (dotted lines). This was expected 
and is another confirmation of a correct numerical simu-
lation. Closer to the roughness, �∗ rises in both reference 
case and Case I due to the blockage effect of the roughness. 
A local maximum appears at the roughness, exceeding the 
Blasius solution by up to 32 %. This difference decreases 
downstream of the roughness. In the proximity of the bar 
at x∕k = 130 (dashed lines), �∗ increases in Case I and con-
tinues almost with a constant offset to the Blasius solution. 
Further downstream, the curve for Case I may eventually 
relax and return to the original Blasius solution, similar to 
the reference case. A larger value of �∗ in Case I leads to a 
larger Re�∗ , which can have negative effects on the stability 
and laminar state of the flow. The installation of the homog-
enization unit can thus be understood as a trade-off between 
spanwise gradients and wall-normal thickness. The stability 

(5)𝛿∗ = ∫
∞

0

(
1 −

ū(y)

Ue

)
dy.

(6)�∗ = 1.7208

√
�x

Ue

,

Fig. 11  Non-dimensional displacement thickness �∗∕k versus down-
stream coordinate x/k 

Fig. 12  Disturbance root mean square u�
rms

∕Ue from experiments in 
streamwise direction
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of the homogenized flow will be investigated in more detail 
in Sect. 3.3.3.

3.3.2  Unsteadiness

To evaluate the velocity fluctuations downstream of the 
horizontal bar, another experiment has been performed. Fig-
ure 12 illustrates the non-dimensional fluctuations u�

rms
∕Ue 

versus x-direction for the reference case and for Case I and 
II. To acquire these data, the hot-film probe was positioned 
to five spanwise positions between 0 ≤ z∕Δz ≤ 0.8 at differ-
ent stations 140 ≤ x ≤ 390 . The results in Fig. 12 represent 
the averaged rms value of all spanwise measurements. This 
procedure ensures that the probe does not miss important 
features in spanwise location where both high-speed and 
low-speed streaks occur. The wall-normal position y∕�∗ with 
respect to the displacement thickness was kept constant at 
the height of the horizontal bar k∕�∗|bar to compensate for 
the growth of the boundary layer. More precisely, for the 
reference and Case I it is y = 1.191�∗ and for Case II it is 
y = 0.596�∗ , although the wall-normal position is not cru-
cial for the detection of streak breakdown. Matsubara et al. 
(1998) showed that intermittency profiles, being a measure 
of turbulent parts in the flow, are almost constant inside a 
streaky, transitional boundary layer. This was confirmed 
in preliminary visual experiments at this facility (Lemare-
chal et al. 2019). The measurement time was 60 s at each 
position.

Figure 12 exhibits an increase in the fluctuations for Case 
I between 130 < x∕k < 200 followed by a return to the refer-
ence case. In contrast, Case II remains at or below the refer-
ence case in the majority of measurements. Note that Case 
II was measured closer to the wall since the horizontal bar 
in this case is also installed closer to the wall. Most likely, 

the difference of wall-normal probe position explains the 
low fluctuation level of Case II.

To clarify why the fluctuation level of Case I in Fig. 12 
rises and then drops back to the reference level, four time 
traces of the same experiment are plotted in Fig. 13. Here, 
the spanwise position z∕Δz = 0.2 is chosen, while other 
positions yield similar results (not shown). The stations 
x∕k = 140 and 160 are located before the fluctuation peak 
of Fig. 12, x∕k = 200 at the peak and x∕k = 300 behind, 
respectively. The time traces at x∕k = 140 and 160 appear 
laminar with some disturbances. High-frequency distur-
bances in x∕k = 140 lead to an apparently thicker line than 
in x∕k = 160 , see detail on top of the plot. This effect will 
be investigated in more detail in the next paragraph. Here, 
it is interesting to see chaotic motion in a part of the signal 
at x∕k = 200 . This turbulent motion is intermittent in time, 
i.e., it emerges from and returns to the laminar state. The 
turbulent motion is one part of the explanation for the rise of 
fluctuation rms in Fig. 12 and can also be observed at other 
locations in the vicinity of x∕k = 200 . Further downstream, 
at y∕k = 300 , the signal looks smooth again. This can be 
explained by relaxation of the base flow as the distance to 
the homogenization body increases. The turbulence cannot 
self-sustain itself and returns to the laminar state similar to 
a turbulent spot in a favorable pressure gradient (Narasimha 
et al. 1984). The intermittent creation of turbulence may not 
be desirable in engineering applications; however, the lateral 
exchange of momentum can strongly assist in the extinction 
of the remaining streamwise streaks.

To understand the creation and amplification of instabili-
ties behind the bar, Fourier transforms are performed on the 
experimental data closest to the bar at x∕k = 140 . The Power 
Spectral Density (PSD) of the five available measurements at 
different spanwise positions are added, and the sum is shown 
in Fig. 14. The same procedure has been repeated for the 
signals at x∕k = 160 , 200 and 300. The abscissa in Fig. 14 

Fig. 13  Time traces of Case I at different stations. Offsets added for 
better readability

10-2 10-1

St

10-10

10-5

Fig. 14  Power spectral density (PSD) of streamwise velocity distur-
bances u′ at three stations x/k as described in legend
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is the Strouhal number St = fd∕ud,th , where f is the physical 
frequency in Hertz, d the diameter of the horizontal bar and 
ud,th the velocity at the center of the horizontal bar in the 
Blasius boundary layer. This type of non-dimensionalization 
enables a comparison with the literature. In the spectrum 
for x∕k = 140 , there is a region of increased PSD between 
0.1 ≤ St ≤ 0.16 and again at its higher harmonics. At low 
frequencies, the PSD increases naturally with another peak 
at St = 0.011 , which is in the range of Tollmien–Schlicht-
ing waves for the present Reynolds number and streamwise 
location. For x∕k = 160 , Tollmien–Schlichting-like distur-
bances contribute even more energy to the spectrum. These 
Tollmien–Schlichting waves can also be seen in temporal 
space in Fig. 13 and are another reason for the rise and fall 
of the fluctuation rms in Fig. 12.

Returning to Fig. 14, the curve for x∕k = 200 does not 
contain a clear peak but rather exhibits distributed high val-
ues of PSD. Again, this is a strong indication for random, 
turbulent motions within parts of the signal. This result sub-
stantiates the observation from Fig. 13. The spectrum for 
x∕k = 300 contains the smallest values of PSD compared 
to the other curves. No frequency peaks appear in this case. 
The flow becomes less energetic throughout the spectrum, 
which can be explained by the settling of turbulent events.

Vortex shedding behind the bar can be predicted by mod-
eling a 2D cylinder in uniform crossflow. The dominant 
Strouhal number can be estimated with the empirical for-
mula by Fey et al. (1998) using the diameter-based Reynolds 
number Red:

The Reynolds number provided in table 1 yields a Strouhal 
number of St = 0.12 for Case I. This result matches per-
fectly to the frequency peak of Case I in Fig. 14. Although 
Eq. (7) does not take the velocity gradients of the physical 
flow into consideration, it can be inferred that the horizontal 
bar induces vortices in the boundary layer.

This result can be substantiated with the flow visuali-
zation in Fig. 15. Potassium permanganate crystals were 
placed in the near wake of the roughness where they do 
not disturb the flow significantly. The parameters of this 

(7)St = 0.2684 −
1.0356
√
Red

.

visualization are the same as in Case I. As the crystals dis-
solve in water, dye streaklines are drawn into the boundary 
layer. Due to the higher density of water compared to air, the 
mean free path length in water is much smaller than in air, 
leading to less diffusion. Therefore, dye streaklines persist 
for a much longer distance than smoke in air (Strunz 1987). 
The magenta dye streaklines in Fig. 15 reveal unsteady 
structures in the wake of the horizontal bar. These structures 
are aligned in the spanwise direction. The unsteadiness is 
formed in the near wake of the bar and dissipates viscously 
further downstream of the bar. This unsteady observation 
helps to understand the measurement in Fig. 14 and visual-
izes the Strouhal behavior predicted by Eq. (7).

3.3.3  Linear stability theory

Linear stability theory allows to determine the fate of an 
infinitesimal disturbance through linearized equations. Here, 
temporal theory has been performed, i.e., the wavenumber 
� is real, whereas the frequency � = �r + i�i is complex. 
The imaginary part of the frequency �i can be understood 
as the growth rate: if 𝜔i < 0 , the flow is linearly stable and 
it is unstable if 𝜔i > 0 . Results from temporal theory can be 
converted into spatial theory with Gaster’s transformation 
(Gaster 1962). This is particularly useful for comparisons 
to experiments (White 2006).

Figure 16 is a result of a temporal computation combined 
with Gaster’s transformation. It shows the linear stability 
diagram in the near wake of the horizontal bar. Negative 
values of �i indicate linear instability, and positive values 
represent stable eigenvalues. Combining �r = 2�fk∕Ue with 
the definition of the Strouhal number yields the conversion 
identity

which allows to compare the experimental observations in 
Fig. 14 with LST in Fig. 16. The range of vortex shedding in 

(8)𝜔r = 2𝜋
ūd

Ue

k

d
St = 2𝜋

Red

Rek

(
k

d

)2

St

Fig. 15  Experimental visualization of unsteady flow downstream of 
horizontal bar (Case I) visualized by dye streaklines from potassium 
permanganate crystals Fig. 16  Stability diagram for Case I
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the experiment was 0.1 ≤ St ≤ 0.16 in Fig. 14, which equals 
to 2.3 ≤ �r ≤ 3.6 in LST. This range compares very well to 
the most unstable frequencies in Fig. 16. Linear stability the-
ory is therefore able to predict the experimentally observed 
vortex shedding accurately. It can also be inferred from 
Fig. 16 that the origin of the instabilities is very close to the 
roughness between x∕k = 130 and 133 and slowly vanishes 
further downstream. Furthermore, the low-frequency insta-
bility region below �r = 1 is qualitatively in agreement with 
the frequency peaks at St = 0.011 ( �r = 0.25 ) in Fig. 14. 
For the sake of completeness, it needs to be mentioned that, 
strictly speaking, bi-local theory loses validity when the flow 
is nonparallel (Huerre and Monkewitz 1990; Chomaz 2005). 
For this reason, Fig. 16 is to be read with care despite the 
good agreement with the experiment. In the following analy-
ses, LST is performed further downstream in quasi-parallel 
flow where the 2D assumption is more valid.

Temporal theory is applied to a yz-slice at x∕k = 170 in 
Case I and Case III to investigate whether or not the streak 
reduction is able to reduce instabilities. The two most unsta-
ble modes from the stability spectrum are investigated with 
a procedure suggested by Piot et al. (2008) and Siconolfi 
et al. (2015). An artificial velocity field � is created as a 
linear combination of the velocity field without horizontal 
bar �ref and with horizontal bar �bar . The combination is 
then created as

with a control parameter � ∈ [0, 1] . The velocity field � is 
physically not meaningful except for � = 0 (reference) and 
� = 1 (with bar). It can be imagined as a continuous change-
over from �ref to �bar . As a result, the modes in the linear 
stability spectrum will move in trajectories as the base flow 
changes from �ref to �bar.

The outcome of this procedure is shown in Fig. 17 (left) 
for the two most unstable modes of Case I. As will be shown 

(9)� = �ref + �(�bar − �ref)

later, one mode is symmetric (varicose) and the other is 
antisymmetric (sinuous) with respect to the spanwise center. 
Without horizontal bar ( � = 0 ), both varicose and sinuous 
modes are linearly stable close to neutral stability. Most 
other modes in the spectrum are located in the lower part 
of the diagram (not shown). As the effect of the horizontal 
bar becomes stronger ( � ≥ 0 ), the varicose mode travels to 
the upper half of the complex plane, whereas the sinuous 
mode descents to the lower part of the plane, thus becoming 
more stable.

The same technique is shown in Fig. 17 (right) for Case 
III. This case is identical to Case I except for a higher Reyn-
olds number Rek = 700 . The purpose of this additional case 
is to determine whether the horizontal bar is able to stabilize 
the sinuous mode. Indeed, the sinuous mode is highly unsta-
ble in the reference case without bar ( � = 0 ) and stabilizes 

(left) (right)

Fig. 17  Least stable modes in linear stability spectrum as a function 
of � for (left) Case I and (right) Case III at x∕k = 170

(left) (right)

Fig. 18  Real part of eigenvector at x∕k = 170 for varicose mode of 
Case III. Left: � = 0 , right: � = 1

(left) (right)

Fig. 19  Real part of eigenvector at x∕k = 170 for sinuous mode of 
Case III. Left: � = 0 , right: � = 1
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with horizontal bar ( � = 1 ). The varicose mode behaves 
similar to Case I in Fig. 17 (left).

Figure 18 illustrates the varicose mode of Case III with-
out horizontal bar ( � = 0 ) and with horizontal bar ( � = 1 ). 
The data of this case originate from the same analysis as in 
Fig. 17. The base flow in Fig. 18, indicated by solid black 
lines, is strongly affected by the presence of the horizontal 
bar. Spanwise gradients are weaker at the cost of a slower 
velocity in major parts of the boundary layer. The mode 
shape changes significantly but is symmetric both without 
and with the horizontal bar.

The dominant sinuous mode of the same case is presented 
in Fig. 19. It is interesting to see that the change of spanwise 
gradients from � = 0 to 1 reduces the extent of the color 
patches in Fig. 19 (right). Furthermore, small patches of 
opposite sign are created close to z = 0 . The energy of the 
mode may thus be split into more zones with opposite sign, 
which may further hinder a physical sinuous oscillation to 
ignite. This conclusion will, however, remain a hypothesis, 
because the experimental detection of sinuous instabilities at 
high Reynolds numbers is often overshadowed by varicose 
instabilities from the roughness (Bucci 2017).

3.3.4  Final remarks

The present study explores how boundary-layer streaks can 
be successfully damped, reduced or stabilized and further 
shows that the linear stability can be improved with respect 
to the sinuous mode. There are also adverse effects when 
applying this method. First, the horizontal bar leads to addi-
tional drag. Second, the drag of the bar leads to an increase 
in the boundary layer thickness which supports the growth 
of instability modes, in particular those of varicose type. 
Therefore, this method is recommended in flows where high 
streak amplitudes and sinuous instabilities are not desired. 
Environments with high freestream-turbulence seem appro-
priate for this method. These can be found for instance in 
the atmospheric boundary layer, turbine engines, wind tur-
bines, process engineering or other applications in mechan-
ical engineering. In future, it will be interesting to see if 
this method can also be used to delay laminar-to-turbulent 
transition.

4  Conclusions

In this investigation, a method is proposed to reduce stream-
wise streaks in the laminar boundary layer. The streaks are 
created by a spanwise array of cylindrical roughness ele-
ments. Further downstream, the streaks are homogenized by 
a horizontal bar that is aligned in the spanwise direction at 
a defined distance to the wall. Three cases have been inves-
tigated and compared to a reference without the horizontal 

bar. Both experiments and numerical simulations show that 
the streak amplitude is reduced successfully by the horizon-
tal bar. The strongest effect can be achieved in a case when 
the bar is placed close to the maximum streak amplitude 
without the bar. The reduction in the streak amplitude is 
approximately 32 % in this case. Depending on the case, 
the Reynolds number of the bar is either above or below the 
’critical’ threshold to vortex shedding. A stronger homog-
enization effect is observed beyond the critical threshold, 
however, Tollmien–Schlichting-wave-like disturbances and 
intermittent turbulence in parts of the measurement signals 
were also observed. Interestingly, the intermittent turbulence 
is not able to sustain itself when the flow relaxes and fades 
away further downstream.

Linear stability analyses have been performed and 
reveal that the sinuous mode, which is often considered 
most harmful in streaky flows, is reduced in one case and 
even stabilized in another case. On the contrary, the vari-
cose instability becomes more unstable with the horizontal 
bar. This can be explained by the growth of the boundary-
layer displacement thickness when the horizontal bar is 
installed. Overall, the presented method can reduce the 
streak amplitude in different conditions and stabilize 
the sinuous linear mode while destabilizing the varicose 
mode. In a follow-up investigation, it is to be shown that 
this method can delay streak-induced laminar-to-turbulent 
transition.
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Appendix 1: Hot‑film calibration

The calibration of the hot-film probe is done prior to each 
experiment by traversing the probe through resting water 
in velocity increments of 0.005 ms−1 . The result of such 
a calibration is shown in Fig. 20. A correlation between 
traverse velocity U and probe voltage E can be obtained 
by nonlinear regression with King’s law E = (A + BUC)0.5 
to determine the calibration coefficients A, B and C (King 

http://creativecommons.org/licenses/by/4.0/
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1914). The proof-of-concept of this calibration method at 
the Laminar Water Channel was published in Subasi et al. 
(2015). When the calibration coefficients are known, the 
equation can be used inversely to calculate the velocity u 
of a flow from a given voltage E, see Puckert (2019).

The calibration of the hot-film in resting water is a spe-
cial procedure and has been introduced at this facility after 
several attempts to calibrate against hydrogen bubble visu-
alizations (see Fig. 21) and ultrasonic velocity measurements 
with equipment particularly suitable for low velocities. Note 
that the dynamic pressure is not sufficient to use a standard 
pitot pressure system for the calibration like in wind tunnels. 
A special arrangement with a high-precision scale is another 
solution to this problem that has been used earlier.

Appendix 2: Uncertainty analysis

In the following analysis, a statistical evaluation of random 
errors and an estimation of systematic errors is performed 
to provide the uncertainty of the experiments.

The random error of a single measurement can be quanti-
fied by the standard deviation (Gränicher 1994)

with sample xi , number of samples n and mean quantity x̄ . In 
contrast to the standard deviation of the mean for statistically 
independent quantities, this definition is a good indication 
for the degree of disturbances in a flow. Note that the stand-
ard deviation of the mean would yield a random error close 
to zero due to the high number of samples resulting from a 
long measurement duration. For the combined quantity Ast 
in Eq. (3), random error is propagated.

More importantly, the experiment is subject to systematic 
errors. In particular, the boundary layer edge velocity Ue may 
deviate from the target value. This error may originate from 
the probe calibration, temperature effects, probe corrosion or 
other unknown factors. As already shown in Puckert (2019), 
a practical way to estimate the combination of these errors is 
by comparison with another method. Here, hydrogen bubble 
visualizations are used. The velocity is found by carefully 
introducing timelines at a given frequency, measure their 
distance and then calculate Ue as distance divided by time. 
This method has also been used and described in detail by 
Shin (2014). Figure 21 compares the results of both meth-
ods. The deviation can be calculated with Eq. (10) and yields 
a systematic error estimate of �Ue

= 0.0013ms−1.
Another source of systematic error is inaccurate knowl-

edge of the Reynolds number, which depends on Ue , k and � . 
Taking into account manufacturing errors and possible dirt 
between the roughness and the flat plate, an estimate of the 
roughness-height error is �k = 5 × 10−5 m. The kinematic 
viscosity of water is a function of the temperature, which is 
directly measured prior to the experiments with a mercury 
thermometer. The resulting error, including a factor of 1.5 
for reading errors of the mercury thermometer and devia-
tions from ideal water properties, is �� = 3 × 10−9 m2s−1 . It 
was shown by Puckert (2019), appendix B, that the combina-
tion of �k and �� adds approximately the same uncertainty to 
the Reynolds number as �Ue

 . It is thus reasonable to estimate 
the overall systematic error as 2 �Ue

= 0.0026ms−1.
Both systematic and random errors contribute to the 

measurement uncertainty and can be added geometrically 
(Travoularis 2005):

The respective uncertainties are added in Figs. 8 and 9 to 
provide the reader an estimate of possible errors.

(10)𝜎 =

√√√√ 1

n − 1

n∑

i=1

(xi − x̄)2

(11)𝜎ū∕Ue
=

√(
𝜎ū,rand

)2
+
(
2𝜎Ue

)2
and

(12)�Ast
=

√(
�Ast,rand

)2
+
(
2�Ue

)2
.

Fig. 20  Calibration of hot-film probe

Fig. 21  Comparison of hot-film (CTA) and hydrogen bubble method 
(Puckert 2019)
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