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Abstract In hydromechanical applications, Darcy, Brinkman, Forchheimer and Richards equations play a
central role when porous media flow under saturated and unsaturated conditions has to be investigated. While
Darcy, Brinkman, Forchheimer and Richards found their equations mainly on the basis of flow observations
in field and laboratory experiments, the modern Theory of Porous Media allows for a scientific view at these
equations on thebasis of precise continuummechanical and thermodynamical investigations.Thepresent article
aims at commenting the classical equations and at deriving their counterparts by the use of the thermodynamical
consistent Theory of PorousMedia. This procedurewill prove that the classical equations are valid under certain
restrictions and that extended equations exist valid for arbitrary cases in their field.

Keywords Classical hydromechanics · Theory of PorousMedia · Saturated and unsaturated porous materials

1 Introduction

The present article aims at discussing the validity of classical hydromechanical equations describing porous
media flow for saturated and unsaturated porous materials. Thus, the article is somehow in between a review
article and an article presenting original research. As far as the author is aware, the famous Darcy law is
widely used as a constitutive assumption for the description of mostly fully saturated pore flow conditions
in porous media, rather than as the result of a continuum mechanical and thermodynamical investigation of
a biphasic material of solid and fluid. In the same way, the Brinkman or Darcy–Brinkman equation as well
as the Forchheimer or Darcy–Forchheimer equation is handled as extensions of Darcy’s law either by the
introduction of frictional forces or by including inertia- or tortuosity-based terms added to the drag force. In
contrast to these two equations, the Richards equation has been formulated for fluid flow in unsaturated media
by combining the Darcy equation with the continuity equation of the pore fluid.

In the following chapters, the classical approaches will be addressed, before biphasic and triphasic media
are considered with the goal to find general relations that can be reduced to the classical equations. By this
approach, it will easily be seen, what assumptions have to be made, such that the classical equations become
evident. As the classical equations do not include thermal effects, the following investigations will be carried
out under the assumption of isothermal conditions.
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2 The classical equations

2.1 Darcy 1856

In 1856, Henry Darcy [1] published an extended treatise on the public water supply for the city of Dijon,
compare Fig. 1, where he also included the results of various experiments that guided him to formulate his
famous filter law yielding “Il paraît donc que, pour un sable de même nature, on peut admettre que le volume
débité est proportionnel à la charge et en raison inverse de l’épaisseur de la couche traversé”. This led to the
equation

vFV = −kF
∂h

∂x
or vFV = −kF grad h, (1)

where grad (·) = ∂ (·)/∂x with x as the location vector. Darcy’s empirical equation given here in its basic
one-dimensional (1-d) and in a modern three-dimensional (3-d) notation expresses the filter velocity vFV of
the pore fluid as a linear function of the gradient of the hydraulic head h. While vFV is given in m/s, h is
measured in m and the hydraulic conductivity kF in m3/(m2 s), often reduced to m/s, respectively. Note that
the hydraulic head is usually given as

h = 1

γ FR
( pFR +Ug) with Ug = U0 − ρFRg · x, (2)

cf. Figure 2, where γ FR = ρFRg is the intrinsic or realistic specific weight of the fluid, while ρFR is the
intrinsic fluid density that is constant as a result of the assumption of fluid incompressibility. Furthermore,
pFR is the intrinsic fluid pressure exceeding the atmospheric pressure. Finally, g = |g| is the norm of the
gravitation vector g = −g e3. Note in passing that h can also be understood as the so-called water potential
splitting in a pressure-driven and a gravitation-driven term.

Dividing the gravitation potential Ug by the specific weight yields with U0 = 0

h = pFR

γ FR
+ x3. (3)

Therein, pFR/γ FR is the pressure head, sometimes also called the matrix head, while x3 is the geodetic head.
As an alternative to (1), Darcy’s filter law can also be formulated by the use of the intrinsic permeability

K S given in m2, such that

vFV = − K S

μFR
(grad pFR + ρFRg) with K S = μFR

γ FR
kF . (4)

Fig. 1 Cover sheet of Darcy’s treatise covering 647 pages filled with historical, experimental and theoretical material including
his famous filter law on p. 593 (text) and p. 594 (equation)
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Fig. 2 Hydraulic head h in a standard setting of a fluid-saturated porous soil

While K S only depends on the permeability properties of the porous medium, kF additionally depends on the
specific weight γ FR and the intrinsic shear viscosity μFR of the fluid. Introducing a specific permeability k
through

k := K S

μFR
= kF

γ FR
(5)

with the dimension m3s/kg, Darcy’s law yields

vFV = −k (grad pFR + ρFRg). (6)

2.2 Forchheimer 1901

Although Darcy’s filter law was accepted as a more or less general equation describing the movement of
water through soil, there have been several issues requiring extensions. Especially, it has been found that the
proportionality between the gradient of the hydraulic head and the filter velocity of the pore fluid did not
persist for higher flow rates. This phenomenon has been the subject of many experimental investigations and
theoretical speculations, wheremicroinertia terms or tortuosity properties came into play. In the original article,
Forchheimer [2] argues on the basis of experimental findings on coarse sands that the hydraulic conductivity
shrinks when the hydraulic gradient increases, such that the proportionality between vFV and grad h does not
hold.

Based on this, Forchheimer suggested to modify Darcy’s law (1)1 by the addition of a quadratic velocity
term via

− ∂h

∂x
= a vFV + b (vFV )2 (7)

with a = 1/kF and b as a non-Darcian flowcoefficient.Apart of the parabola (7), Forchheimer additionally sug-
gested a cubic version of (7) and a potential function −∂h/∂x = m (vFV )n . Generalising the one-dimensional
equation (7) towards three dimensions yields

− grad h = a vFV + b |vFV | vFV . (8)

In the younger literature, compare, for example, Markert [3], b is set to b = 1/bS , where bS with the dimension
(m/s)2 is a sort of solid tortuosity parameter including the inherent irregularities of the pore channels in the
description.
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In extension of Forchheimer’s work, (8) can be solved for the filter velocity vFV yielding

vFV = −kF
(
1 + kF

bS
|vFV |

)−1

grad h, (9)

where |vFV | still needs to be expressed by |grad h|. This can easily been done by taking the norm of both sides
of (8):

0 = |vFV |2 + bS

kF
|vFV | − bS |grad h|. (10)

As a quadratic equation in |vFV |, the solution of (10) is

|vFV |1,2 = −1

2

bS

kF
±

√
1

4

(
bS

kF

)
2 + bS |grad h|. (11)

Based on the fact that |vFV | has to vanish when |grad pFR| vanishes, only |vFV |1 is valid, such that (9) can
be solved as a function of grad h alone:

vFV = − kF

⎛
⎝1

2
+

√
1

4
+ (kF )2

bS
|grad h|

⎞
⎠ −1

︸ ︷︷ ︸
K F

grad h. (12)

In those cases, where the hydraulic gradient should be expressed by the pressure gradient, grad h has to be
substituted by

grad h = 1

γ FR
(grad pFR + ρFRg), (13)

where (2) has been used. With the aid of this equation, (12) results in

vFV = − K S

μFR

⎛
⎝1

2
+

√
1

4
+

(
K S

μFR

)
2 ρFR

BS
|grad pFR + ρFRg|

⎞
⎠ −1

︸ ︷︷ ︸
K F
F

×

× (grad pFR + ρFRg),

(14)

where kF has been substituted by K S trough (5) and bS has been substituted by the tortuosity parameter BS

with dimension m through bS = BS|g|, thus combining the tortuosity effect with the norm of the gravitation
g.

In case of negligible body forces, (14) reduces to

vFV = − K S

μFR

⎛
⎝1

2
+

√
1

4
+

(
K S

μFR

)
2 ρFR

BS
|grad pFR|

⎞
⎠ −1

︸ ︷︷ ︸
K F
F

grad pFR . (15)

Note that in equations (12), (14) and (15), the terms K F and K F
F can be understood as hydraulic conductivities

that, in contrast to kF , also consider the relative importance of tortuosity-induced inertia forces, cf. Markert [3].
Furthermore, note that using the intrinsic measures K S and BS is generally preferable, as they are independent
of the properties of the permeating fluid.
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2.3 Brinkman 1949

As Forchheimer, Brinkman [4] was looking for a modification of Darcy’s law for the description of, as the
title of [4] says, “A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles”.
Starting with Darcy’s law (4), where the gravitational forces have been neglected, such that

vFV = − K S

μFR
grad pFR or grad pFR = −μFR

K S
vFV , (16)

respectively, Brinkman considered this equation as not appropriate to solve the problem as there is no definition
of a viscous force. Following this, he looked at the Navier–Stokes equations of a viscous, incompressible fluid
yielding

div vF = 0 and grad pFR = μFRΔ vF , (17)

where vF is the fluid velocity or the seepage velocity of a pore fluid permeating a non-deforming skeleton,
respectively. The seepage velocity is related to the filter velocity through vFV = nFvF . Therein, nF is the
fluid volume fraction or, in case of a fully saturated porous solid, the porosity. Furthermore, div (·) is the
divergence operator corresponding to grad (·), while Δ (·) = div grad (·) is the Laplace operator. Note that
(17)1 is the continuity equation of a free fluid flow, while (17)2 is the momentum balance of a viscous fluid,
where inertia and gravitational forces have been neglected. Stating that the Navier–Stokes equations combine
partial differential equations of first and second order “making it impossible to formulate rational boundary
equations”, Brinkman suggested to combine the Darcy and the Navier–Stokes equations via

grad pFR = −μFR

K S
vFV + μ̄FRΔ vF , (18)

where μ̄FR was assumed to be possibly different from μFR .
As far as the author is aware, Brinkman did not recognise the difference between vF and vFV . Writing the

above equation as Brinkman did in terms of vF , Brinkman would have found that

grad pFR = −μF

K S
vF + μFRΔ vF , (19)

where μF = nFμFR is the partial shear viscosity of the pore fluid, and Brinkman’s assumption that there is a
difference between the two viscosity parameters is obvious. As Brinkman stated in his article, it is furthermore
seen from (19) that “this equation has the advantage of approximating (16)2 for low values of K S and (17)2
for high values of K S”. Concerning Brinkman’s equation and the consequences of its individual terms, also
compare the work by Auriault and colleagues [5,6], where the second term in (19) was called a corrector to
the original Darcy equation.

2.4 Richards 1931

In contrast to Darcy, Forchheimer and Brinkman, who considered a fluid-saturated porous medium, Richards
[7] was interested in a partially saturated material. Based on earlier work by Buckingham [8] and Richardson
[9], he combined Darcy’s law with the continuity equation of the pore fluid.

In a partially saturatedmaterial, the continuity equation of the pore liquid is obtained from themass balance
of the pore liquid yielding in an Eulerian setting under the assumption of liquid incompressibility

∂nL

∂t
+ div (vFV ) = 0. (20)

Therein, nL is the volumetric fraction of the pore liquid compared to the overall volume of the porous medium
of solid, liquid and gas.

Taking the divergence of Darcy’s law in the version of (1)2 results in

div vFV = −div (K grad h), (21)
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where Richards substituted the hydraulic conductivity kF by K and named K the capillary conductivity
depending on the moisture content, what might be expressed by the relative hydraulic conductivities through

K := kLr = κL
r k

L with κL
r = (sL)

2+3λ
λ , (22)

where sL = nL/nF is the liquid saturation. Furthermore, kL is the hydraulic conductivity of the pore liquid
under fully saturated conditions, while κL

r addresses an empirical parameter that was given as in (22)2 by
Brooks and Corey [10] as a function of sL and a pore size distribution or wettability parameter λ.

Combining (21) with (20) yields the Richards equation

∂nL

∂t
= div (K grad h). (23)

3 The classical equations in the light of the TPM

3.1 Theory of Porous Media in brief

As the classical equations described above, the equations governing porous media mechanics are based on
a macroscopic, continuum mechanical description, where the porous solid material and the pore content
are smeared out over the control volume. This leads to a continuum-mechanical setting, where the balance
equations of the overall aggregate as well as of the individual components are given in the same domain, the
latter coupled to each other by so-called interaction or production terms, respectively, compare Bowen [11,12]
and Ehlers [13,14]. The mathematical basis of these equations is the Theory of Mixtures, compare Bowen
[15], that has been extended by the concept of volume fractions. This concept goes back to the very early days
of the investigation of porous and multi-component media and has been found and described byWoltman [16]
and Delesse [17], also compare the short historical review of the TPM by the author [18].

In the following sections, a fluid-saturated porous material is discussed and compared to Darcy’s law and
the extensions of Forchheimer and Brinkman in the framework of a biphasic medium of solid and liquid, while
the Richards equation describing a partially saturated material needs the investigation of a triphasic medium
of solid, liquid and gas.

3.2 Biphasic materials

The biphasic medium ϕ under discussion is understood as a deformable porous solid material ϕS saturated by
a single pore fluid ϕF . Both constituents, solid and fluid, are taken as materially incompressible components,
meaning that their intrinsic densities ραR remain constant under isothermal conditions. For the solid skeleton,
this means that although the intrinsic solid density remains constant, the partial solid density ρS = nSρSR can
vary through variations in the solid volume fraction. This model is composed by

ϕ =
⋃
α

ϕα = ϕS ∪ ϕF where α = {S, F}. (24)

From this composition, volume fractions nα can formally be defined by the fraction of a volume element dvα

of ϕα over the total volume element dv of ϕ. Thus,

nα := dvα

dv
with dv =

∑
α=S, F

dvα. (25)

This definition naturally includes the sum of all volume fractions yielding the so-called saturation condition
∑

α
nα = 1. (26)

As the following biphasic setting is mainly in line with Sect. 3.1 of Ehlers and Wagner [19], the governing
set of balance equations is given as there by the mass and momentum balances of both constituents, solid and
pore fluid via
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(ρα)′α + ρα div
′
xα = 0,

ρα ′′
xα = divTα + ρα g + p̂α. (27)

In these equations, ρα is the partial density of ϕα given as the product of the intrinsic (respectively, effective
or real) density ραR and the volume fraction nα , Tα is the partial Cauchy stress, g the gravitation vector and
p̂α the so-called direct momentum production [13] coupling the momentum balances of solid and pore fluid.
Since the TPM provides a continuum-mechanical view onto porous-media problems, all terms have to be
understood as local means representing the local averages of their microscopic counterparts. For example, the
direct momentum production exhibits the volumetric average of the local contact forces acting at the local

interfaces (pore walls) between the solid and the pore-fluid. In addition to the above,
′
xα and

′′
xα are the local

velocity and acceleration terms, while (·)′α is the material time derivative following the motion of ϕα .
Assuming incompressible material properties in an isothermal setting by ραR = const., the mass balance

(27)1 reduces to the volume balance

(nα)′α + nα div
′
xα = 0. (28)

Combining the time derivative of the saturation condition nS + nF = 1 with the volume balances of solid
and pore fluid leads to the saturation constraint of the overall aggregate or the incompressibility condition of
materially incompressible solid and fluid materials reading

0 = nSdiv
′
xS + nFdiv

′
xF + grad nF · wF , (29)

where wF := ′
xF − ′

xS is defined as the seepage velocity. Note that the seepage velocity wF in deformable
porous media and the filter velocity vFV are related to each other by the fluid volume fraction nF . Thus,

vFV := nFwF . (30)

Furthermore, note again that the fluid volume fraction nF is equivalent to the porosity, as the pore fluid in a
fluid-saturated medium covers the whole pore space. As nF = 1 − nS and nS = nS0 (detFS)

−1 with nS0 as the
solid volume fraction in the reference configuration at t0 and detFS as the determinant of the solid deformation
gradient FS , nF is determined through the solid motion via

nF = 1 − nS0 (detFS)
−1. (31)

In continuum mechanics, the balance equations alone are not sufficient for the solution of initial boundary
value problems (IBVP). Instead, the set of balance relations has to be closed by constitutive equations that
have to fulfil the entropy inequality, which for isothermal processes reduces to the Clausius–Planck inequality

∑
α = S, F

[Tα · Lα − ρα (ψα)′α − p̂α · ′
xα ] ≥ 0, (32)

whereLα is the velocity gradient ofϕα andψα theHelmholtz free energy of the constituents per unit constituent
mass.

Based on the principle of phase separation [20] stating that the free energies of immiscible components of the
overall aggregate, as on the microscale, do only depend on their own constitutive variables, the arrangement of
an elastic solid and an incompressible fluid in an isothermal setting implies ψ S = ψ S(FS) and ψ F = ψ F (−).

Multiplying the incompressibility constraint (29) with a Lagrange multiplier Λ ≡ pFR and adding the
result to (32) yield the entropy inequality in its final shape:

(
TS
E − ρS ∂ψ S

∂FS
FT
S

)
· DS + TF

E · DF − p̂F
E · wF ≥ 0. (33)

Therein, Lα has been substituted by its symmetric part Dα on the basis of the symmetry assumption for Tα .
Furthermore, Tα

E = Tα + nα pFR I and p̂F
E = p̂F − pFR grad nF are the so-called extra terms of stress and

direct momentum production with p̂F + p̂S = 0. The quantity I is the second-order identity tensor, while pFR

is the excess pore pressure meaning the pressure exceeding the atmospheric pressure that, in short, is simply
called the pore pressure. Note in passing that the solid extra stress coincides with the so-called effective stress
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TS
eff defined as that part of the overall stress state that produces solid deformations by convenient constitutive

equations, compare Ehlers [21].
Exploiting the entropy inequality yields by the use of the Coleman–Noll procedure [22] that the following

results hold:

TS
E = TS

eff = ρS ∂ψ S

∂FS
FT
S ,

TF
E = TF

fric = 4
Dv DF , p̂F

E = p̂F
fric = −SvwF . (34)

Therein, the equation for TS
E = TS

eff has been obtained from the equilibrium part of (33), where DS can be
arbitrary and DF and wF vanish, while the extra or frictional terms TF

E = TF
fric and p̂

F
E = p̂F

fric are found from
the dissipational part as functions of DF and wF , respectively, with positive definite forth- and second-order

constitutive tensors
4
Dv and Sv given as

4
Dv = 2μF ( I ⊗ I )

23
T , Sv = (nF )2

γ FR

kF
I (35)

with ( I ⊗ I )
23
T as the fourth-order fundamental or identity tensor. Furthermore, note again that μF = nFμFR

is the partial shear viscosity of the pore fluid, while different possibilities to describe permeability properties
alternatively to (35)2 can be taken from (5). Finally, note in passing that a scalar-valued hydraulic conductivity
like kF is only valid in case of an isotropic pore structure, while anisotropic pore structures require a symmetric
tensor KF of hydraulic conductivities that reduces in case of isotropy to kF I.

Concerning the solid skeleton, a geometrically linear version of the elasticity law satisfying (34)1 reads

TS
eff ≈ σ S

eff = 2μS εS + λS (εS · I) I, (36)

where the extra Cauchy stress TS
E or the effective stress TS

eff , respectively, approximately coincides with the

linearised extra or effective stress σ S
eff . Furthermore, εS = 1

2 (FS +FT
S )− I is the linearised solid strain tensor,

and μS and λS are the Lamé constants of the porous solid.
Given the above constitutive equations for the solid and fluid extra stresses and the extra momentum supply,

the governing equations of the binary model result in

0 = div [ (uS)′S + nFwF ],
(nSρSR) (uS)′′S = −nSgrad pFR + divTS

eff + (nSρSR) g − p̂F
fric,

(nFρFR) (vF )′F = −nFgrad pFR + divTF
fric + (nFρFR) g + p̂F

fric. (37)

Therein, (37)1 is a modification of the overall volume balance (29), while (37)2 and (37)3 are results of (27)2,
where the relations between total and extra terms of the solid and fluid stresses and the direct momentum
production have been inserted. Moreover, as the basic kinematic variables of solid and fluid materials are the
solid displacement uS = x − x0 with x and x0 indicating the current and the reference position of the solid

material and the pore-fluid velocity vF = ′
xF at x, the solid and fluid velocities and accelerations have been

substituted accordingly. Note that in a modified Lagrangian description of the pore fluid, especially in the
frame of numerical computations, the fluid inertia term has to be modified with respect to the solid motion via

(vF )′F = (vF )′S + (grad vF )wF . (38)

This yields the so-called modified Eulerian description, where the pore fluid is not described with respect to a
fixed frame but with respect to the frame of the moving skeleton. Applying the modified Eulerian description
also to the fluid volume balance, (28) additionally yields

0 = (nF )′S + nFdiv (uS)′S + div (nFwF ). (39)

Furthermore, as the external load t̄ acting at the Neumann boundary of the saturated porous solid material
cannot be split into solid and fluid portions, the solid and fluid momentum balances have to be added. Thus,
(37)2 is substituted with the aid of (38) by
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(nSρSR) (uS)′′S + (nFρFR) [ (vF )′S + (grad vF )wF ] =
= −grad pFR + div (TS

eff + TF
fric) + ρ g (40)

with ρ := ∑
α n

αραR as the so-called mixture density of the overall aggregate. Note in passing that under
quasi-static and creeping-flow conditions with (uS)′′S ≈ 0 and (vF )′F ≈ 0, the left-hand side of (40) vanishes
and the overall momentum balance reads

0 = −grad pFR + div (TS
eff + TF

fric) + ρ g. (41)

These equations are sufficient to conclude to the classical fluid flow descriptions of Darcy, Brinkman and
Forchheimer.

3.3 The Darcy and Darcy–Brinkman equations

Concerning the reduction in the setting (37) towards the findings by Darcy and the modification by Brinkman,
one has to be aware that the classical equations proceed from a non-deforming solid skeleton, such that uS ≡ 0.
Thus, (uS)′S is dropped from (37)1, while (37)2 does not play any role and is dropped completely. Thus, only

0 = div (nFwF ),

(nFρFR) (vF )′F = −nFgrad pFR + divTF
fric + (nFρFR) g + p̂F

fric (42)

remains. Furthermore, as the solid is non-deforming or rigid, nS is constant in time and additionally constant
in x, once the solid material has a homogeneous pore structure. Assuming these conditions, (42) can be divided
by nF yielding

0 = div vF ,

ρFR (vF )′F = −grad pFR + 1

nF
divTF

fric + ρFR g + 1

nF
p̂F
fric, (43)

where wF = vF together with
′
xS = (uS)′S ≡ 0 has been used. Based on (35), the frictional fluid stress TF

fric
and the frictional momentum production p̂F

fric or the drag force read

TF
fric = 2μFDF = μF (grad vF + gradT vF ),

p̂F
fric = −(nF )2

γ FR

kF
vF . (44)

Combining (43) and (44) results in

(vF )′F = − 1

ρFR
grad pFR + μFR

ρFR
div grad vF + g − nF

|g|
kF

vF , (45)

where div gradT vF = grad div vF = 0 has been used on the basis of (43)1. In (43)2 the frictional force
divTF

fric = μFdiv grad vF and the drag force p̂F
fric = −(nF )2(γ FR/kF )vF compete in a certain sense. Fol-

lowing this, it is worth to check this competition by the use of a dimensional analysis, cf. Ehlers et al. [23].

Introducing dimensionless quantities by
∗
(·) such that

∗
x =: x

L
and

∗
vF =: vF

V
(46)

with L as the characteristic length and V as the characteristic velocity yields the following relations between
dimensionless and non-dimensionless gradient and divergence operators:

grad (·) = 1

L

∗
grad (·) and div (·) = 1

L

∗
div (·). (47)
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Following this, the frictional force and the drag force can be reformulated as

divTF
fric = nFμFRV

L2

∗
div

∗
grad

∗
vF ,

p̂F
fric = (nF )2γ FRV

kF
(−∗

vF ).

(48)

Given these equations, the quotient of the prefactors of the frictional and drag forces is a measure for the
importance of these terms in different versions of the fluid momentum balance. Thus, one concludes to

Frictional force

Drag force
∝ μFRkF

nFγ FRL2 = K S

nF L2 , (49)

where (5) has been used. Once K S is known, the relation between the frictional force and the drag force
is mainly governed by the characteristic length L , as the viscosity μFR drops out. Understanding K S as
the internal length parameter of the porous microstructure, investigations at the microstructural domain with
L 
 √

K S yield the frictional force to be dominant, while investigations at the macroscopic domain with
L � √

K S yield the result that the frictional force is negligible compared to the drag force. However, the
frictional force can always be taken as a corrector to the drag force, compare Auriault [5].

To set an example, consider a geomaterial like a dense sand with a porosity of nF = 0.35 and an intrinsic
permeability of K S = 2 × 10−11 m2, while L is set to 0,1m, meaning, for example, a typical width or height
of an experimental setup. In this case, K S over nF L2 yields 5.71 × 10−9.

Thus, the frictional force is negligible and (45) reduces to

(vF )′F = − 1

ρFR
grad pFR + g − nF

|g|
kF

vF . (50)

Darcy’s filter law In the subsurface, one usually finds creeping flow conditions, such that the acceleration
(vF )′F is negligible in comparison with the other terms in (50). Following this, (50) can be solved with respect
to the filter velocity vFV = nFvF yielding Darcy’s law, compare (4):

vFV = − kF

γ FR
( grad pFR − ρFRg ). (51)

In conclusion, Darcy’s filter law is recovered from the TPM by the application of a binary model of one
porous solid and one fluid. Furthermore, both constituents have been assumed to be materially incompressible
with constant ραR in space and time. This led to Eq. (37) that could further be reduced by the assumption of
a non-deforming or a rigid skeleton, respectively, where nF is constant in space and time, compare (43). In
addition to this, it could be shown by a dimensional analysis that the frictional force divTF

fric can be neglected
compared to the drag force p̂F

fric. Finally, the inertia term in the fluid momentum balance (50) dropped out as a
result of the creeping-flow assumption, such that (50) could be solved with respect to the filter velocity vFV .

Remark As Darcy’s law (51) has been obtained without the need to use the assumption of a non-deforming
skeleton, Darcy’s law also holds without further restrictions when vFV is identified as nFwF including the
skeleton motion:

nFwF = − kF

γ FR
( grad pFR − ρFRg ). (52)

The Darcy–Brinkman equation In contrast to the Darcy law valid at the macroscopic range with L � √
K ,

investigations at the microstructural domain proceed from L 
 √
K , such that the drag force is negligible

compared to the frictional force. In this case, the fluid momentum balance reduces to the Navier–Stokes
equation, where also the acceleration terms might have to be considered. However, in between these borderline
cases, also L ≈ √

K is possible, such that both the frictional and the drag force have to be taken into
consideration. In this case and under creeping flow conditions with (vF )′F ≈ 0, (45) reads

0 = − 1

ρFR
grad pFR + μFR

ρFR
div grad vF + g − nF

|g|
kF

vF . (53)
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Solving this equation with respect to the pressure gradient gives

grad pFR = μFR div grad vF + ρFRg − nF
γ FR

kF
vF . (54)

Assuming that the body forces do not matter, this equation yields with the aid of (5) that

grad pFR = −nF
μFR

K S
vF + μFR Δ vF

= −μF

K S
vF + μFR Δ vF ,

(55)

thus recovering the Brinkman equation (19).

Remark 1 In contrast to the Darcy equation, the Brinkman equation cannot be adopted to fluid flow in
deformable porous solids without discussion. This is due to the fact that the term divTF

fric = μFRΔ vF
was found on the basis of (43)1. However, for deformable solid skeletons, (43)1 has to be substituted by (42)1,
meaning that div vF does not necessarily vanish, such that divTF

fric = μFR(Δ vF + grad div vF ). In other
words, using the Brinkman equation for flow in deformable porous solids includes the additional assumption
that μFRgrad div vF approximately vanishes.

Remark 2 As has been stated after (19), Brinkmanwanted to show that his equation containing a corrector term
compared to the originalDarcy equationwas appropriate to describe situationswith lowandhighpermeabilities.
This usually describes a situation, where a transition from a porous domain towards a free flow domain is
considered. On the other hand, the above dimensional analysis also underlines that, depending on the size
of the pore structure, the Navier–Stokes term in (55) becomes apparent when microstructural domains are of
interest.

The Darcy–Forchheimer equation For the validity of the Forchheimer equation, the same conditions are
valid as for the Darcy equation. In particular, the viscous force is also negligible compared to the drag force.
Neglecting gravitational forces, the Darcy law (51) can be written as

grad pFR = −μFR

K S
vFV , (56)

where (5) has been used. Now, (56) is an equation for the pressure loss as a linear function of the filter velocity.
However, in cases where this linearity is not found in the experimental evidence, a nonlinear pressure loss
can be modelled by a variation in (35)2. Maintaining the thermodynamic validity of the model, (34)3 can be
extended towards

p̂F
E = p̂F

fric = −SvwF − Sq |wF |wF . (57)

In addition to (35)2, Sv and Sq can be found as positive definite tensors

Sv = (nF )2
μFR

K S
I, Sq = (nF )3

ρFR

BS
I, (58)

where the nonlinear velocity term is controlled by the tortuosity parameter BS describing the inherent irregu-
larity of the pore channels.

Neglecting inertia and gravitational terms and disregarding the viscous force compared to the drag force,
an insertion of (57) and (58) in (43)2 yields the Darcy–Forchheimer equation (9) that has been expressed in
terms of the filter velocity vFV = nFwF and grad pFR instead of grad h:

grad pFR = −
(

μFR

K S
+ ρFR

BS
|vFV |

)
vFV . (59)

Proceeding as in Sect. 2.2, |vFV | has to be expressed by |grad pFR |, such that (59) finally reads

vFV = − K S

μFR

⎛
⎝1

2
+

√
1

4
+

(
K S

μFR

)
2 ρFR

BS
|grad pFR|

⎞
⎠ −1

︸ ︷︷ ︸
K F
F

grad pFR . (60)
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This equation is identical to the Forchheimer equation (15). Finally, note in passing that Hassanizadeh and
Gray [24] came to a comparable result by the use of volume averaging techniques within the hybrid mixture
theory.

Remark In contrast to the Darcy equation, the Darcy–Forchheimer equation proceeds, on the one hand, from
negligible body forces and, on the other hand, from the addition of a quadratic filter-velocity term. As the
viscous force has not been included, the Darcy–Forchheimer equation can also be applied to deformable
media, whenever the limiting restrictions necessary to obtain Darcy’s law are valid.

3.4 Triphasic materials

For the investigation of the continuum-mechanical validity of the Richards equation, the consideration of a
triphasic medium of solid skeleton, pore water and pore gas is necessary. According to Sect. 3.2, the triphasic
medium ϕ under discussion is understood as a deformable porous solid material ϕS that is saturated by two
immiscible pore fluids, a materially incompressible pore liquid ϕL and a compressible pore gas ϕG . Thus, the
model is composed of

ϕ =
⋃
α

ϕα = ϕS ∪ ϕL ∪ ϕG where α = {S, L , G}. (61)

The balance equations for mass and linear momentum can directly be taken from (27) reading

(ρα)′α + ρα div
′
xα = 0,

ρα ′′
xα = divTα + ρα g + p̂α, (62)

where the only difference between (27) and (62) is that the above equations hold for α = {S, L , G}, while
(27) has only been considered for α = {S, F}.

In contrast to fluid-saturated biphasic media, where the fluid volume fraction nF is, at the same time, the
solid porosity, the porosity of triphasic media splits into the liquid and the gas volume fractions, such that

nF = nL + nG and 1 = sL + sG with sβ = nβ

nF
, β = {L , G}, (63)

where, in addition to the volume fractions nβ , sβ characterises the saturations of ϕβ as fractions of the porosity
nF .

In a general description including a deformable solid, such that nF = nF0 with nF0 as the reference porosity
at t0, only nF can be computed as a function of the solid deformation gradient FS through nF = 1 − nS with
nS = nS0 (detFS)

−1, while the liquid and gas saturations have to be found by the use of (62)1 through

(nL)′L + nL div vL = 0,

nG(ρGR)′G + (nG)′G ρGR + nGρGR div vG = 0. (64)

As the pore liquid is assumed to behave materially incompressible at constant temperature, the first equation
of (64), after having been divided by ρLR , reduces to a volume balance, while the second equation reflects that
the rate of the partial density ρG of a compressible gas includes the rates of both the volume fraction nG and
the intrinsic density ρGR .

At this point, one has to discuss basic features of unsaturated soil models. Several authors proceed from
a so-called static gas phase and argue that this is not only easier to handle compared to the fully triphasic
description but also sufficiently exact, compare, for example, Callari and Abati [25] or Moldovan et al. [26].
However, using the static gas-phase model means that the gas pressure pGR is always set to the atmospheric
pressure. As pGR and ρGR are usually coupled, for example, by the ideal gas law, this assumption furthermore
includes ρGR = const. at constant temperature, such that also (64)2 reduces to a volume balance. But the
assumption of a static gas phase includes further features. Taking pGR as the excess gas pressure, such that
pGR ≡ 0, the capillary pressure pC = pGR − pLR reduces to pC = −pLR . In standard drainage and
imbibition processes, pC is defined as the positive difference between the non-wetting and the wetting fluid,
gas and liquid. Thus, pLR must be negative describing the capillary suction. Furthermore, as equation (64)2
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Fig. 3 Saturation of the pore liquid during leakage, upper series: biphasic model (pGR = 0), lower series: triphasic model

is used in numerical models to find the values of pGR , this equation is no longer needed and the triphasic
description reduces to a quasi-triphasic or a biphasic one, respectively. As a result of the above, the effect of
capillary suction, where the excess pressure of the pore gas is negative, cannot be modelled.

To set an example of this effect, consider the Liakopoulos test (Liakopoulos [27]) that has been investigated
by the ALERT group1 as a benchmark (e. g. Klubertanz et al. [28]) and was modelled and computed, for
example, by Ehlers et al. [29], compare Figs. 3, 4 and 5 taken from that article. In these figures, it is clearly
seen for the example of the leakage of pore fluid from a fully saturated elastically deformable soil column of
very fine Del Monte sand under the effect of gravitational forces that the difference between the assumption of
a static gas phase and a fully triphasic mediummatters a lot. From Fig. 3, one observes that the capillarity effect
combined with the drag force retains the pore water much longer as the drag force alone. Figure 4 furthermore
exhibits the capillarity effect through the excess gas pressure pGR that goes down to around −6,200 Pa at
approximately 30 min after having opened the outflow, while, in the static gas case, pGR remains zero.

Finally, the advantage of the fully triphasic model compared to the biphasic simplification is shown in
Fig. 5, where the water efflux is plotted versus time. In particular, a comparison of the experimental data
by Liakopoulos with the bi- and triphasic formulations reveals that the biphasic computation with the static
gas phase overestimates the water efflux at the beginning of the draining process, whereas the fully triphasic
computation yields a slight underestimation of the primary outflow. In contrast to the experimental evidence,
the biphasic formulation predicts the final distribution of the liquid saturation at t = 5h, while the triphasic
formulation fits the experiments very well. In this formulation, the final saturation distribution is reached after
approximately 88h, compare Fig. 3.

From these results, it can easily be concluded that things are as complicated as they are, but not easier.
Making them easier always yields a loss of information that might lead to wrong results and, in conclusion, to
wrong engineering decisions.

As the triphasic setting is much more complicated than a biphasic one but mainly in line with Sect. 5.2
of Ehlers [14] and Sects. 2.3–2.5 of Ehlers [21], these sections can be considered for further details. In the
triphasic description, the saturation condition is obtained in analogy to (29) through the combination of the
time derivative of the saturation constraint nS + nL + nG = 1 with the volume and mass balances (64) leading
to

0 = nSdiv
′
xS + nLdiv

′
xL + grad nL · wL +

+ nGdiv
′
xG + grad nG · wG + nG

(ρGR)′G
ρGR

.
(65)

1 http://alertgeomaterials.eu/.

http://alertgeomaterials.eu/
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Fig. 4 Time-dependent development of the excess gas pressure pGR, triphasic formulation

Fig. 5 Liquid filter velocity nLwL versus time of the Liakopoulos experiment and of the bi- and triphasic computations

The constitutive equations of the triphasic model have to fulfil the same Clausius–Planck inequality (32)
as those of the biphasic model with the only difference that three components instead of two have to be
considered:

∑
α = S, L ,G

[Tα · Lα − ρα (ψα)′α − p̂α · ′
xα ] ≥ 0. (66)

Based on the principle of phase separation [20], the free energies ψα are concluded to only depend on their
own constitutive variables. As a result, ψ S depends as in the biphasic model on FS , while ψG is a function of
the intrinsic gas density ρGR . In analogy to the biphasic model, ψ L does not depend on ρLR as ψ F did not
depend on ρFR . However, ψ L depends on sL . Thus,

ψ S = ψ S(FS), ψ L = ψ L(sL), ψG = ψG(ρGR), (67)
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such that

(ψ S)′S = ∂ψ S

∂FS
FT
S · LS and

(ψ L)′L = ∂ψ L

∂sL
(sL)′L , (ψG)′G = ∂ψG

∂ρGF
(ρGR)′G .

(68)

While ψ L depends on sL , sL depends on nL and nF = 1 − nS0 (detFS)
−1. Therewith, the liquid saturation is

coupled to the solid deformation what has to be taken into consideration by

(sL)′L = − 1

nF

[
nLdiv vL + sLnSdiv (uS)′S + sLgrad nF · wL

]
, (69)

where (69) has been obtained by the use of the mass and volume balances.
Multiplying the saturation condition (65) with a Lagrange multiplier Λ and adding the result to (66) yield

the final form of the Clausius–Planck inequality reading

(
TS
E + nS(sL)2ρLR ∂ψ L

∂sL
I − ρS ∂ψ S

∂FS
FT
S

)
· DS

+
(
TL
E + nLsLρLR ∂ψ L

∂sL
I
)

· DL + TG
E · DG

+
(

Λ
nG

ρGR
− nGρGR ∂ψG

∂ρGR

)
(ρGR)′L

−
(
p̂LE − (sL)2ρLR ∂ψ L

∂sL
grad nF

)
· wL − p̂GE · wG ≥ 0,

(70)

where (68) and (69) have been used together with

Tα = −nαΛ I + Tα
E, p̂α = Λ grad nα + p̂α

E,
∑
α

p̂α = 0. (71)

Exploiting the entropy inequality can easily be done in two steps following the Coleman–Noll strategy (Cole-
man and Noll [22]).

In the first step, the thermodynamic equilibrium is considered, meaning that (70) has to vanish for arbitrary
values of DS , DL and DG , and additionally for arbitrary values for (ρGR)′G , wL and wG . As a result, one
concludes to the equilibrium terms

Λ = (ρGR)2
∂ψG

∂ρGR
=: pGR,

TL
E = −nLsLρLR ∂ψ L

∂sL
I, such that

TL = −nL
(
pGR + sLρLR ∂ψ L

∂sL

)
I =: −nL pLR I,

TG
E = 0, such that TG = −nG pGR I.

(72)

As (72)3 is correct, whenever the term in parentheses equals pLR , one concludes from

pLR = pGR + sLρLR ∂ψ L

∂sL
to

pC : = pGR − pLR = −sLρLR ∂ψ L

∂sL

(73)
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with pC as the capillary pressure. Given (72) and (73), one furthermore finds

TS
E = nSsL pC I + ρS ∂ψ S

∂FS
FT
S , such that

TS = −nS
(
pGR − sL pC

)
I + ρS ∂ψ S

∂FS
FT
S .

(74)

Taking a closer look at the term in parentheses of (74)2, it is easily concluded that

pGR − sL pC = (1 − sL) pGR + sL pLR =: pFR (75)

recovers Dalton’s law [30]. With (74)2 in mind, it is concluded that pFR = pSR , as the pore pressure pFR

acts on both the overall pore content and the porous solid. With Dalton’s law, (74)2 reads

TS = −nS pFR I + ρS ∂ψ S

∂FS
FT
S with TS

eff = ρS ∂ψ S

∂FS
FT
S (76)

as the effective stress. As in the biphasic model, TS
eff is compatible with the Hookean law in the framework of

linear elasticity, compare (34)1 and (36).
Finally,

p̂LE = (sL)2ρLR ∂ψ L

∂sL
grad nF = −sL pCgrad nF , such that

p̂L = pFRgrad nL − sL pCgrad nG ,

p̂GE = 0, such that p̂G = pGRgrad nG .

(77)

Once the equilibrium terms are known, the non-equilibrium parts of TL , TG , p̂L and p̂G have to be found
from the dissipation inequality

D =
(
TL
E − nL pC I

)
· DL + TG

E · DG

−
(
p̂LE + sL pCgrad nF

)
· wL − p̂GE · wG ≥ 0.

(78)

Following this, one concludes to(
TL
E − nL pC I

)
∝ DL , TG

E ∝ DG,(
p̂LE + sL pCgrad nF

)
∝ −wL , pGE ∝ −wG .

(79)

Proceeding from (71), (72)1 and (73)2, the proportionalities in (79) can be expressed as follows:

TL
fric := TL + nL pLR I = 4

DL
v DL ,

TG
fric := TG + nG pGR I = 4

DG
v DG,

p̂Lfric := p̂L − pFRgrad nL + sL pCgrad nG = −SLv wL ,

p̂Gfric := p̂G − pGRgrad nG = −SGv wG ,

(80)

where Tβ
fric and p̂

β
fric are the frictional liquid and gas stresses and drag forces that are defined as in (35) through

4
Dβ

v = 2μβ( I ⊗ I )
23
T , Sβ

v = (nβ)2
γ βR

kβ
r

I. (81)

However, in contrast to (35)2, (81)2 is not governed by hydraulic conductivities kβ but by relative hydraulic
conductivities kβ

r = κ
β
r kβ also known as capillary conductivities. These terms are related to the hydraulic

conductivities kβ of ϕβ through the dimensionless relative permeability factors κ
β
r that depend on the degree
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of saturation, cf. (22). Finally, note in passing that a Forchheimer addition of a quadratic term as in (57) and
(58) is possible but has not been taken into consideration here.

In the general non-equilibrium case, the above equations finally result in

TL = −nL pLR I + TL
fric,

TG = −nG pGR I + TG
fric,

p̂L = pFRgrad nL − sL pCgrad nG + p̂Lfric,

p̂G = pGRgrad nG + p̂Gfric

(82)

Inserting these equations into the momentum balances (62)2 for different components of the overall model,
one obtains for the solid skeleton

nSρSR(uS)′′S = −grad (nS pFR) + divTS
eff + nSρSRg + p̂S

= −nSgrad pFR + divTS
eff + nSρSRg − p̂Lfric − p̂Gfric,

(83)

where p̂S = −p̂L − p̂G together with (82)3,4 has been used. Analogously, the pore-fluid equations can be
found by the use of Dalton’s law (75) as

nLρLR(vL)′L = − nLgrad pLR + +divTL
fric + nLρLRg

+ pC [ (1 − sL)grad nL − sL grad nG ] + p̂Lfric,

nGρGR(vG)′G = − nGgrad pGR + divTG
fric + nGρGRg + p̂Gfric.

(84)

Note again that in a numerical scheme proceeding from a modified Eulerian description, the liquid and gas
accelerations included in (84) have to be modified via

(vβ)′β = (vβ)′S + (grad vβ)wβ, (85)

also compare (38).
Applying the above full triphasic model to numerical computations by use of the Finite Element Analysis

(FEA), the primary variables are the solid deformation uS obtained from the weak form of the solid momentum
balance (83), the fluid velocities vβ obtained from the weak forms of the fluid momentum balances (84) and
the effective fluid pressures pβR obtained from the weak forms of the liquid volume balance and the gas mass
balance given in (64). As for the biphasic model, the solid momentum balance is usually substituted by the
overall momentum balance of solid, liquid and gas. This is again due to the fact that it is generally not possible
to split the external load t̄ acting at the Neumann boundary into portions acting separately on the solid, the
liquid and the gas. Thus, by addition of (83) and (84), the overall momentum balance reads

nSρSR(uS)′′S +
∑
β

(nβρβR) [ (vβ)′S + (grad vβ)wβ ] =

= −grad pFR + div (TS
eff + TL

fric + TG
fric) + ρ g, (86)

where (85) has been used.
Beneath the constitutive equations for the effective stresses TS

eff as the mechanical part of the solid stresses

TS , the fluid frictional stressesTβ
fric andmomentum productions p̂β

fric are given to close the system of governing
equations. However, as only nS can be determined by FS = I + GradS uS with GradS(·) = ∂(·)/∂x0 and
nF = 1− nS , the fluid volume fractions nβ = sβ nF or the saturation sβ , respectively, must be found from an
additional constitutive equation, for example, from the Brooks and Corey law [10] as a function of the capillary
pressure pC .

Simplifications of the full triphasic model The above dynamic triphasic model can be used for various
numerical applications and can easily be extended, for example, towards finite solid deformations and towards
nonlinear elastic, viscous and plastic solid material properties. These applications usually proceed from a
quasi-static setting, where the acceleration terms in the above momentum balances are neglected. On the other
hand, when earthquake problems come into play, the solid skeleton vibrates so quickly that the fluid has no
possibility to creep away, such that the fluid accelerations are set approximately identical to the solid vibrations.
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However, three different basic loading scenarios of porous media can be distinguished, those, where the
loaded solid skeleton drives the fluid flow as in consolidation or base failure problems, or those, where the
fluid flow drives the solid deformation as in hydraulic fracturing. The third group is none of the above, but it
is in the centre of the following simplifications. Here, the solid skeleton is not loaded except of gravitational
forces and fluid flow resultants, more precisely fluid pressures, and these effects are not large enough to induce
solid deformations. For the present article, this last group of problems is essential for the investigation of the
Richards equation. Following this, the full triphasic model will be reduced in 4 steps.

Step (1): Quasi-static scenarios In these scenarios, inertia forces can be neglected compared to the other forces
included in the momentum balances. This means the solid skeleton is assumed to be only under static loading
and the fluids exhibit creeping flow conditions. Thus, the momentum balances (84) and (86) of the full model
reduce to

0 = = −grad pFR + div (TS
eff + TL

fric + TG
fric) + ρ g,

0 = − nLgrad pLR + divTL
fric + nLρLRg+

+ pC [ (1 − sL)grad nL − sLgrad nG ] + p̂Lfric,

0 = − nGgrad pGR + divTG
fric + nGρGRg + p̂Gfric.

(87)

Remark This model built from the above momentum balances and the volume and mass balances (64) still
needs the full set of primary variables as the frictional fluid stresses still proceed fromDβ through the gradient
of vβ .

Step (2): Neglect of frictional fluid forces Once the frictional forces divTβ
fric can be neglected compared to the

drag forces p̂β
fric, (87) simplifies to

0 = = −grad pFR + divTS
eff + ρ g,

0 = − nLgrad pLR + nLρLRg+
+ pC [ (1 − sL)grad nL − sL grad nG ] + p̂Lfric,

0 = − nGgrad pGR + nGρGRg + p̂Gfric.

(88)

As there are no frictional forces, the primary variables vβ are no longer needed and (88)2 and (88)3 can be
solved with respect to the filter velocities nβwβ . Thus,

nLwL = − kLr
γ LR

{
grad pLR − ρLRg − pC

nL
[ (1 − sL) grad nL − sLgrad nG ]

}
,

nGwG = − kGr
γ GR

(
grad pGR − ρGRg

)
,

(89)

where (80)2,3 and (81)2 have been used. This formulation, given by (88)1 and (89), is known as the u-p-
p formulation with the primary variable uS , pLR and pGR . In a numerical setting, the overall momentum
balance (88)1 can be used for the determination of the solid displacement uS , while (89)1 and (89)2 are
inserted in the liquid volume balance and the gas mass balance, compare (64), yielding

0 = (nL)′S + nLdiv (uS)′S + div (nLwL),

0 = nG(ρGR)′S + ρGR(nG)′S + nGρGRdiv (uS)′S + div (nGρGRwG)
(90)

with filter velocities nβwβ from (89).

Step (3): Static gas phase Proceeding from a static gas phase induces the assumption of a constant gas pressure
equivalent to the ambient or the atmospheric pressure, respectively. As a consequence, the intrinsic gas density
ρGR is constant under isothermal conditions and the gas mass balance reduces to a volume balance reading

0 = (nG)′S + nGdiv (uS)′S + div (nGwG). (91)
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In a numerical setting, this equation could be used to compute the gas pressure pGR . However, as the gas
pressure is constant, this equation is not needed anymore and the set of governing equations reduces to a
quasi-triphasic setting yielding

0 = − grad pFR + divTS
eff + ρ g,

0 = (nL)′S + nLdiv (uS)′S + div (nLwL), where

nLwL = − kLr
γ LR

{
grad pLR − ρLRg+

+ pLR

nL
[ (1 − sL) grad nL − sLgrad nG ]

}
.

(92)

As all pressures have been normalised at the atmospheric pressure p0, such that pβR = 0 at p0, pC = −pLR .
In the framework of the usual pC over sL curves describing standard drainage and imbibition processes like
the Brooks and Corey [10] or the van Genuchten [31] laws, pC must always be positive or zero, such that
pLR can only describe a suction with pLR ≤ 0, while, on the other hand, spontaneous drainage and forced
imbibition curves also exhibit negative values of pC , compare Blunt [32].

Finally, note in passing that the term in brackets governed by pLR/nL has been found from the Clausius–
Planck inequality as a thermodynamical restriction of the triphasic model. However, as many authors working
on triphasic media do not check thermodynamical restrictions, this term is usually ignored.

Remark Equations (92), although obtained for a triphasic medium with static gas phase, provide a hindsight
towards biphasic media. Setting sL = 1 implies nL ≡ nF , such that the first two equations of (92) correspond
to (39) and (40). Furthermore, as sL = 1 also includes sG = 0, the last term of (92)3 governed by pLR/nL

vanishes, such that (92)3 reduces to Darcy’s law with kLr ≡ kF , compare (22) and (52).

Step (4): Rigid solid skeleton The rigid-skeleton assumption is based on a non-deforming solid matrix, such
that uS = 0. As a result FS = I and detFS = 1. This yields a constant porosity nF = nF0 = const., such
that nL = sLnF is only governed by the liquid saturation. As a further consequence of the rigid skeleton
assumption, equation (92)1 governing uS can be dropped and (92) reduces to

0 = ∂nL

∂t
+ div (nLwL)

with nLwL = − kLr
γ LR

(grad pLR − ρLRg).
(93)

Note that while stepping from (92)3 to (93)2, the term governed by pLR/nL has been neglected in view of
the Richards equation, such that (93)2 equals Darcy’s filter law, however, applied here to the liquid phase
of a triphasic material, compare (52). It should furthermore be noted that, as a further result of uS = 0,
(nL)′S + nSdiv (uS)′S reduces to ∂nL/∂t .

TheRichards equationBased on (93), the Richards equation can easily be found. The assumptions of creeping
flow conditions in a partially saturated rigid solid skeleton with a static gas phase are applied. Furthermore, as
γ LR = const., (93)2 can be written as

nLwL = −kLr grad h with h = 1

γ LR
(pLR +Ug), (94)

compare equation (2). Inserting (94) in (93)1 yields

∂nL

∂t
= div (kLr grad h), (95)

thus recovering theRichards equation.Note in passing that even in case of a homogeneous pore-size distribution
with constant kL , kLr is generally not constant as it depends on x through sL , compare (22).
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4 Conclusions

In hydraulic engineering as well as in geomechanics, the well-known equations of Darcy, Forchheimer,
Brinkman and Richards are widely used as constitutive equations without considering their validity range.
Following this, it was the goal of the present article to show that these equations perfectly fit into the framework
of the Theory of Porous Media, although they have been found only by empirical analyses and mathematical
analogies. On the other hand, the TPM as a general tool for the description of multi-component and multi-
phasic materials offers a wide basis for the solution of boundary-value problems, especially in the fields of
geomechanics and biomechanics and in all other fields, where coupled problems of porous solids with fluid
pore content have to be considered. This naturally includes the possibility to distinguish between miscible and
immiscible pore fluids.

In the field of fully water-saturated solids, for example, soils, the TPM provides a quite simple basis for
the description of coupled solid–fluid problems and furthermore guarantees the thermodynamic validity of the
elaborated models, no matter whether or not the solid is deformable or if the fluid (liquid or gas) is an inert
fluid or a fluid mixture. As has been shown, the Darcy, Forchheimer and Brinkman equations perfectly fit
into the character of the biphasic TPM. As Darcy, Forchheimer and Brinkman had only non-deforming solid
skeletons in mind when they presented their famous equations, the derivation of these equations followed their
assumption. Further restrictions are the assumption of homogeneous and isotropic pore structures, such that
the hydraulic conductivity could be assumed a single constant scalar. As the Darcy and Forchheimer equations
are usually applied to macroscopic problems, it could furthermore be shown by a dimensional analysis that
frictional forces could be neglected in comparison with drag forces. While the Darcy equation gives a linear
relation between the filter velocity and the gradient of the hydraulic head, the Forchheimer equation couples
the gradient of the hydraulic head with a quadratic function of the filter velocity, thus including nonlinearities
into the description. In contrast to Darcy and Forchheimer, Brinkman did not only include the drag force but
also the frictional force in his equation and therewith presents both a possibility to include a transition from
porous media flow towards free flow conditions, on the one hand, and to describe microstructural effects in
the pore fluid flow relations, on the other hand. To set an example, consider hydraulic fracturing scenarios,
where a fracking fluid is pressed into a porous soil or rock with the goal to drive a fracture. In this case, a
Darcy-type pore fluid flow appears in the porous matrix with transition towards a Navier–Stokes-type flow
in the fracture, compare, Ehlers and Luo [33,34]. Finally, it could be shown that the Darcy and Forchheimer
equations can also be applied to deforming solid skeletons in the realm of their basic restrictions, while the
Brinkman equation needs an additional assumption.

While the Darcy, Forchheimer and Brinkman equations could easily be found from biphasic TPMmodels,
the Richards equation describes a partially saturated soil, where the pores are filled with two immiscible fluids,
the pore liquid and the pore gas.

Proving the validity range of theRichards equationmade it necessary to firstly investigate a general triphasic
model of solid, liquid and gas that had to be broken down in 4 steps to obtain Richards’ equation. These steps
consist of (1) quasi-static scenarios, (2) the neglect of frictional forces, (3) a static gas phase and (4) a rigid
solid skeleton.

The above statements make clear that taking the classical hydromechanical equations as constitutive laws
does not necessarily lead to satisfactory solutions of related boundary-value problems, unless the range of
validity of the classical laws is not fully considered, also compare the work by Gray and Miller [35].
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