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Abstract Within this work, we utilize the framework of phase field modeling for fracture in order to handle a
very crucial issue in terms of designing technical structures, namely the phenomenon of fatigue crack growth.
So far, phase field fracture models were applied to a number of problems in the field of fracture mechanics and
were proven to yield reliable results even for complex crack problems. For crack growth due to cyclic fatigue,
our basic approach considers an additional energy contribution entering the regularized energy density function
accounting for crack driving forces associated with fatigue damage.With other words, the crack surface energy
is not solely in competition with the time-dependent elastic strain energy but also with a contribution consisting
of accumulated energies, which enables crack extension even for small maximum loads. The load time function
applied to a certain structure has an essential effect on its fatigue life. Besides the pure magnitude of a certain
load cycle, it is highly decisive at which point of the fatigue life a certain load cycle is applied. Furthermore,
the level of the mean load has a significant effect. We show that the model developed within this study is able
to predict realistic fatigue crack growth behavior in terms of accurate growth rates and also to account for
mean stress effects and different stress ratios. These are important properties that must be treated accurately
in order to yield an accurate model for arbitrary load sequences, where various amplitude loading occurs.

Keywords Phase field · Fatigue crack growth · Various amplitude loading · Finite elements

1 Introduction

As it is in the nature of dynamics, components of machines are subjected to oscillating loads. The magnitude of
these loadsmay be very low in comparisonwith thematerials ultimate strength, but nevertheless, it might be the
very reason for failure of machine parts and finally the cause of catastrophic accidents. The underling physical
phenomenon is denoted as mechanical fatigue of materials. This process involves the accumulation of damage
by ongoing repetition of loading and unloading, which leads to the formation of microscopic cracks and with
continuing cycling even to macroscopic cracks and fatal failure of the structure. Catastrophic accidents from
the past decades of e.g., airplanes, trains, cars, motorcycles, turbine rotors, pressure vessels and others make
clear that this field must be the focus of investigations and studies. Fatigue of materials has been the focus
of numerous textbooks like e.g., those from Suresh, Schijve or Dowling [11,33,39]. The progression of the
damage caused by fatigue is divided into the phases: (i) nucleation of microstructural damage and growth of
microcracks to form a macrocrack and (ii) growth of this macrocrack until final fracture of the structure. A
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specific approach for the description of fatigue was developed for each of these two stages of the total fatigue
life. The total life approach deals with the first phase by means of S–N curves, which reveal the number of load
cycles for specific amplitudes to be applied until a macrocrack is initiated and extended to complete fracture
of a specimen. It must be noticed that specimens to record S–N lines are usually designed such that the amount
of cycles until initiation of a crack is significantly higher (about 90% of the total life) than the period of crack
growth. The second approach has its focus on the period of the extension of an existing macrocrack to a critical
size. The small steps of crack extension of a fatigue crack are characterized by the crack growth rate, which
can be evaluated using the so-called Paris law [30]. Within this law, the cyclic load of a constant amplitude
sequence is commonly represented by the range of the stress intensity factor �K (see e.g., [32]). The crack
growth rates associated to a certain load range are fit using a power law, which reveals a straight line within
double logarithmic scales. Practically, it is crucial which period of the fatigue life is of interest in order to
decide which concept to life-time estimation is applied.

From a numerical modeling perspective, the problem is on the one hand the high number of load cycles
leading to high computational effort, and on the other hand, the lag within the mechanistic basis of the
fatigue phenomenon. Fatigue is affected by a large number of complex processes occurring on different scales.
Accordingly, a large number of numerical approaches to fatigue incorporate the phenomenological laws from
above. For instance, in [20,29], Paris’ law is used to simulate fatigue crack growth with finite elements and
generalized finite elements, respectively. The law is also incorporated in a widely used tool for fatigue crack
growth simulations, namelyNASGRO, [15]. However, in some studies (see e.g., [9,25]), cyclic fatigue life until
crack initiation wasmodeled utilizing the framework of ContinuumDamageMechanics (CDM) fromLemaitre
[24]. Fish and Oskay introduced a numerical model in [13], where the damage evolution is integrated by a
growing void volume fraction governed by Gurson’s model. In this work, cracks are modeled by the deletion of
finite elements after a the void volume fraction exceeds a critical damage value. Generally, the approximation
of cracks or crack extension within a conventional simulation setting is problematic, as element deletion or
remeshing algorithms must be integrated in the simulation scheme. A very beneficial technique to overcome
these issues is provided by the phase field framework.Within this method, cracks are modeled via an additional
scalar field indicating broken or intact material. This scalar field is coupled with the material’s stiffness in order
to account for the significant stiffness reduction in broken areas. The method has gained much attention in the
last decade and a high number of studies in different fields of fracture mechanics were published so far. The
topics of the presented models range from dynamic fracture by e.g., Schlüter et al. [34] over brittle fracture
by e.g., Borden et al. [5], Miehe et al. [27] and Kuhn and Müller [21], and also ductile fracture, proposed
by e.g., Borden et al. [4], Kuhn et al. [22] and Aldakheel et al. [1] to models including effects of anisotropic
materials like e.g., the models from Teichtmeister [40] or Schreiber et al. [35]. The field of fatigue crack growth
is relatively new in the context of phase field modeling, and to the best of the authors knowledge, it was first
dealt with this issue by Alessi et al. [2] for a one-dimensional setting. Within this work, the critical energy
release rate of the material becomes degraded according to an accumulated strain value. Following up on this
publication, several phase field approaches for fatigue fracture in higher dimensions as e.g., [7,26,38] were
proposed. Furthermore, a phase field fatigue model for cracking in cyclically loaded concrete was proposed by
Wriggers et al. [42]. In [37], we presented an alternative basic phase field approach to handle the issue of cyclic
fatigue, which is generally an extension of the work from Kuhn and Müller for brittle fracture [21]. Fatigue
is incorporated by an additional energy contribution controlled by accumulated damage, and we showed that
crack growth rates evaluated by this model follow Paris’ law. However, so far, we only considered constant
amplitude loading for a pulsating load sequence in unidirectional cracks. As in real applications, generally
various loading amplitudes occur with different stress ratios, which have significant effect on the crack growth
curve, we apply appropriate modifications to the model in order to meet this requirement.

2 Model description

In order to provide a comprehensive description and to point out the motivation for the underlying modification
regarding fatigue damage, we start with a brief illustration of the phase field method for fracture and give a
characterization of the basic model and its equations. Within the subsequent section, we then continue to
introduce the new model for fatigue crack growth, its properties, and the underlying simulation scheme.
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2.1 Regularization of brittle fracture using the phase field method

The phase fieldmethod very elegantly overcomes the issue ofmodeling interfaces by coupling fields of physical
quantities to an order parameter that indicates the phase at a certain point. Thus, a defuse approximation of
sharp interfaces is obtained. In terms of fracture mechanics the underlying pure phases are either intact material
or broken material. The range of the order parameter is used to smear cracks over a certain area, which is then
referred as transition zone. In order to yield an approximation of the sharp crack, this zone shall be as small as
possible.

Within the phase field model for brittle fracture [21], the approximation of cracks is accomplished by
means of the continuous transition of the variable s(x, t) in the range [0, 1], where the value s = 1 refers
to the initial intact condition of the material, and s = 0 refers to broken material. In the context of phase
field fracture modeling, the theory by Griffith [16] is a fundamental contribution. According to this theory, the
condition for crack extension is the compensation of strain energy release by additional crack energy, related to
crack surface area of infinitesimal crack extension. Following up on this consideration, the phase field model
uses the regularized formulation of brittle fracture proposed by Bourdin et al. [6], where it is postulated that
displacements and crack patterns represented by s(x, t) minimize the total internal energy

E =
∫

�

ψ(ε, s, ∇s) dV =
∫

�

(g(s) + η)W (ε) + �(s, ∇s) dV (1)

of a loaded and potentially fractured body. The first energy contribution in Eq. (1) accounts for strain energy
with the strain energy density of a linear elastic material

W = 1

2
ε : (Cε) , (2)

with the material stiffness tensorC and the infinitesimal strain tensor ε. The strains are computed by the spatial
gradient of the displacements u via

ε(u) = 1

2

(
∇u + (∇u)T

)
. (3)

The connection to Griffith’s theory becomes evident considering the second energy contribution of Eq. (1),
which accounts for crack energy characterized by the crack energy density

� = Gc
(

(1 − s)2

4ε
+ ε|∇s|2

)
. (4)

The critical energy release rate Gc is a material parameter with unit energy per surface area. This quantity can
be referred to as a material specific measure of the energy release per crack surface increase and within this
regularization it applies to a local and also to a nonlocal contribution governed by s and its spatial gradient.
According toEq. (4), crack energywill increase once the phasefield order parameter decreases or corresponding
gradients evolve. A length scale ε is incorporated in order to control the width of the transition zone form
intact to broken material. Accordingly, this parameter is also referred as regularization parameter. In [21], it
is shown that crack energy is correctly estimated as ε goes to zero. However, the feasible minimum of ε is
certainly a matter of discretization.

The stress σ is obtained by applying the derivative of the potential ψ with respect to strain. This yields

σ = ∂ψ

∂ε
= (g(s) + η)Cε (5)

and as a consequence of the coupling to the scalar phase field the stress is degraded, governed by the function
g(s) with s < 1. Furthermore, the application of the parameter η is important. This coefficient is chosen
such that 0 < η � 1 in order ensure a marginal residual stiffness and therefore avoid numerical problems
concerning the static solution scheme. The most widely used form of a degradation functions is a simple
quadratic approach

g(s) = s2. (6)



566 C. Schreiber et al.

Itmay be noticed that alternative approaches for degradation functionswere proposed (see e.g., [4,23]) affecting
the material behavior. Thus, applying a certain cubic approach as degradation function, it can be shown that
the material does not experience a significant degradation of stiffness just before cracking, which is not the
case for Eq. (6). However, this degradation function was used in many studies as it has been proven to provide
a robust implementation and reliable results.

As the potential does not only dependent on the order parameter but also on its gradient, within [21], a
generalized Ginzburg-Landau equation (see [18]) is applied for the time evolution of the phase field s with

ṡ = −M
δψ

δs
= −M

{
∂ψ

∂s
− ∇

(
∂ψ

∂∇s

)}
= −M

2

{
g′(s)ε : (Cε) − Gc

(
4ε�s + 1 − s

ε

)}
(7)

utilizing the Laplace operator �. The scalar mobility parameter M in Eq. (7) may be considered as viscous
regularization parameter regarding static conditions with the limit case M → ∞ to approximate quasi static
conditions.

2.2 Model formulation for cyclic fatigue cracks

2.2.1 Interpretation of the order parameter

A basic property of the phase field model for cyclic fatigue proposed in this work is the interpretation of the
order parameter s, since it can be interpreted as either physical damage variable according to CDM or as
indicator quantity for the regularization. A formulation in terms a of a damage variable

D = �SD
�S

. (8)

with the area of the intersection of all microvoids with a certain plane �SD and undamaged area �S as
introduced by Lemaitre’s framework of CDM ([24]) may in a first place seam likely. This definition restricts
the range of the damage variable D to 0, . . . , 1. A damage state D = 0 indicates undamaged material, while
D = 1 indicates fully damaged (broken) material. Suppose now a material point is exposed to a constant stress
σ . The effective stress tensor σ̂ has to increase as the effective surface area carrying the load is reduced and
therefore

σ̂ = 1

1 − D
σ . (9)

By means of the strain equivalence principle and considering a linear elastic constitutive law, the strain energy
density for the damaged material point can be formulated by means of effective stresses

WD = 1

2
σ̂ : (

C
−1σ̂

) = 1

2(1 − D)2
σ : (

C
−1σ

)
. (10)

The strains can be obtained by differentiation

ε = ∂WD

∂σ
= 1

(1 − D)2
C

−1σ (11)

and an effective compliance tensor can be defined as

C̃
−1 = 1

(1 − D)2
C

−1. (12)

If Eq. (5) is solved for ε, and Eq. (6) is used as degradation function one obtains

ε = σ

s2
C

−1 with: C̃
−1 = 1

s2
C

−1, (13)

where the residual stiffness η is neglected. The state of a material in terms of differentiation between intact
and broken material can be described by the damage variable D from CDM, and it can also be described
by the phase field order parameter, where s = 1 for intact material and s = 0 for broken material. Further,
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D ∈ [0, 1], s ∈ [0, 1] and with the definitions for undamaged and fully damaged state the relation s = 1 − D
can be formulated. Incorporating this relation in Eqs. (12) and (13), one finds the constitutive law of both
formulations to coincide. An analog comparison is used in [41] to formulate a damage model in terms the
phase field method. However, according to Bourdin [5], the phase field variable is in general not meant to
describe damage in terms of a physical criterion like the evolution of microvoids. It results from the basic
approach of approximating sharp interfaces by a smooth transition for numerical convenience. Accordingly,
even if s may also be interpreted as a kind of nonlocal damage variable, in the following damage refers to
fatigue and the connection to s is not explicit. Therefore, a proper estimate to represent the fatigue damage
occurring in the material must be adopted.

2.2.2 Phase field approach for cyclic fatigue cracks

The convenient properties of the phase field modeling philosophy result from the formulation of the evolution
equations for certain phases, which are commonly derived from potentials. Within the solution scheme a
sequence of states is generated, which approximate energetic minima. No additional criteria are required. In
terms of quasi static fracture, this means a crack will be predicted once an increase of crack energy is beneficial
regarding the local minimum of the total potential energy. Also, knowledge about the crack extension direction
is not required a priori.

Naturally, the underlying processes caused by fatigue of materials like e.g., movement of dislocations,
formation of microcracks and others do also consume energy. Accordingly, this has to be taken into account
by a respective potential. As a matter of fact, the evolution of s described by Eq. (7) will not lead to an
evolution of a fatigue crack, no matter how many load cycles are explicitly simulated. This is simply because
the driving processes associated with fatigue already occur far below the global ultimate strength of the
material, but they accumulate. This accumulation of disruption is not considered by the total internal energy
form Eq. (1). Therefore, the basic modification we apply to this functional is to incorporate an additional
density contribution accounting for accumulated driving forces caused by the phenomenon of cyclic fatigue.
The resulting regularized total internal energy is

E f =
∫

�

(g(s) + η)W + � dV +
∫

�

h(s)P(Df) dV, (14)

where P(Df) represents the additional energies as piecewise defined function

P(Df) = q〈Df − Dc〉b. (15)

The 〈·〉 are referred to as Macaulay brackets with the definition

〈·〉n =
{
0 for (·) ≤ 0

(·)n for (·) > 0.
(16)

This additional energy will, appropriate regularization parameters q and b presumed, rapidly increase once the
threshold value Dc is exceeded. These parameters may also be set in order to obtain a correct behavior in terms
of crack growth rates. The current state of fatigue damage is generally determined as sum of previous damage
D0 and the damage increment associated with a certain period of time dDf, which is in general dependent
on the load amplitude, the midpoint load of the particular cycle, the load ratio, the stress rate and also on the
damage history. Considering the complexity of fatigue, an accurate approach has to be incorporated within the
phase field model as estimate for dDf , which is also reasonable in terms of computation. Different approaches
have been proposed. These approaches can be characterized between those being of rather phenomenology
kind as e.g., in [8,28], and contributions based on continuum mechanics consistent with the second law of
thermodynamics (e.g., [9,14]). Even if probably any approach could be integrated in the proposed model, it
is less convenient to apply a micromechanical approach in this case as one would end up at a CDM-related
model. Two basic approaches within the field of fatigue lifetime estimation areMiner’s rule [28] and the fatigue
damage model proposed in [8]. Both models can be formulated in terms of the damage increment, which is

dDfMiner = 1

NFi
dN (17)
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Fig. 1 Schematic illustration of S–N line with explanation of several important quantities

according to the Miner’s rule. NFi is the number of bearable cycles at a certain stress amplitude and stress
ratio, which is given by a S–N curve (see Fig. 1) to indicate the bearable stress magnitude as function of cycle
numbers NFi . The data for these curves are obtained by fatigue experiments.

A straight line is obtained using a double logarithmic scale. In contrast, within the fatigue damage model
from Chaboche the increment is formulated as

dDfChaboche = Dα1

(
σmax − σmean

f (σmean)
,

)α2

dN (18)

where the parameters α1, α2 and the effect of the mean stress f (σmean) have to be determined in experiments.
Separation of variables and integration yields the accumulated damage states

DfMiner = N

NFi
and DfChaboche =

(
N

NFi

) 1
1−α1

, (19)

for single-level loading. Considering Eqs. (17)–(19), one can simply identify the main difference between the
two approaches. Within Miner’s rule, the effect of the initial state of damage is neglected, and therefore, the
damage accumulation is linear. The approach of Chaboche on the other hand reveals a nonlinear curve if the
damage is plotted as function of the number of cycles. The consequences are illustrated by the plot in Fig. 2.
For the Miner rule, no sequence effect occurs, whereas the final damage state within Chaboche’s model clearly
differs for different load sequences. In the following, the extension of the introduced phase field model will be
discussed exemplary in terms of the Miner’s rule due to its convenient way of implementation. However, in
[36], we showed that even by adapting this linear accumulation method, the global response in terms of fatigue
crack growth predicted by our model shows a significant sequence effect. Furthermore, a direct connection
between Miner’s rule of damage accumulation and Paris’ law for the description of crack growth rates can
be shown (see [10]). The model proposed in [36,37] was capable of dealing with constant amplitude loading
only, which means cyclic loading constant in amplitude and mean load. However, in reality, components are
subjected to load time histories, which vary in amplitude and mean load and are therefore rather considered
as complex. An example for a sequence of various amplitude loading is illustrated in Fig. 3. As the amplitude
of the particular cycles and also the mean load has a crucial effect on the fatigue crack growth behavior, these
quantities have to be taken into account within the damage increment. Thus, we define the ratio of the mean
external load with respect to the maximum load following the envelope of the load time history of the external
load as the mean load ratio L . According to linear elasticity, the damage increment due to cyclic fatigue is
formulated utilizing this ratio L as

dD = dN

nD

(
σ̃ (1 − L)

f (L)

)k

(20)

with knee point cycle number nD and slope factor k of the S–N curve. Increments from amplitudes below the
threshold f (L) = AD(1−L)β with parameters AD and β are not taken into account for damage accumulation.
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Fig. 2 Sequence effect of Chaboche’s model and comparison with the Miner’s rule

Fig. 3 Schematic illustration of various amplitude load sequence consisting of five different blocks

Integrating this increment in Eq. (14), the total internal Energy E f of a component that may contain cracks
caused by quasi static or under critical cyclic loading is

E f =
∫

�

[
(g(s) + η)

1

2
ε : (Cε) + Gc

(
(1 − s)2

4ε
+ ε|∇s|2

)]
dV

+
∫

�

h(s)q

〈
D0 + dN

nD

(
σ̃ (1 − L)

f (L)

)k

− Dc

〉b
dV,

(21)

with D0 being the previous state of fatigue damage, which within the following transient simulation
framework is treated as history variable. The parameters AD , k, and nD can be obtained from respective S–N
curves. The aim in this concern must be to get a corresponding Paris law from a number of simulations with
different �K range. This can be achieved as shown in [37]. Considering the energy in Eq. (21), the stress
reveals an additional component besides the usual static stresses with

σ = (g(s) + η)Cε + h(s)qb〈Df − Dc〉(b−1) dDf

dε
. (22)

The second term in Eq. (22) is considered as component accounting for micro-stresses caused by the fatigue
mechanism. Note that, a small deformation framework with a linear elastic material law is used within this
work. Accordingly, the model may be restricted to the range of high cycle fatigue, where NF ≥ 1000. Within
fatigue, the number of cycles to reach a certain state of damage or crack length is the essential. Therefore, the
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phase field evolution Eq. (7) is transferred into the cycle domain by chain rule differentiation. The evolution
can then be formulated in terms of number of cycles as

ds

dN
= −M̂

{
g′(s)1

2
ε : (Cε) + h′(s)P(Df) − Gc

(
2ε�s − s − 1

2ε

)}
, (23)

Generally, the large number of cycles, which are to be applied within the fatigue range before a noticeable
damage occurs, are an issue for simulations within this field. In order to keep simulation times within an
acceptable range, cycles of similar quantities are collected into blocks and the additional fatigue damage
handled within one simulation step refers to these blocks. The block size is chosen adaptively to control the
rate of damage. The idea of this scheme is referred to as “cycle jump” and was proposed in [14]. In detail, the
cycle scheme we applied within our simulations deals with a fixed block size (cycles per simulation step). In
order to control this block size and also to ensure a proper convergence behavior even for situations of a rapid
increase of the energy contribution P adaptive step size adjustment is applied. The state of fatigue damage
of the previous simulation step is treated as history variable and accordingly the damage at a certain state or
simulation step i , respectively, is

Di = Di−1 + dDf. (24)

Also worth to note is that an arbitrary load time sequence is handled within this simulation scheme using
a proportional load command, which follows the envelope curve illustrated in Fig. 3. In case of sequences
consisting of cycles, which are not only pulsating the ratio L is varied with the particular cycle numbers.

3 Numerical implementation

The phase field model for fatigue failure proposed in the previous sections is discretized and implemented
into a finite element framework. With the evolution equation for the phase field Eq. (23), the governing set of
partial differential equations for the unknown displacements u and the order parameter s is

0 = div σ

Gc
2ε

= 1

M̂

ds

dN
+ 2s(W + P) + s

Gc
2ε

− Gc2ε�s,
(25)

where volume forces are neglected within the mechanical equilibrium and the quadratic degradation function
Eq. (6) is incorporated. The respective weak forms are obtained if both equations are multiplied with virtual
quantities δu and δs, respectively. This yields

0 = −
∫

�

σ : δε dV +
∫

∂�t

δu · t∗ dS (26)

with vector t∗ of prescribed tractions that act on the boundary ∂�t and

0 = −
∫

�

δs
ds

M̂dN
dV −

∫

�

δs

(
sε : (Cε) + 2P + (s − 1)

Gc
2ε

)
dV −

∫

�

2Gcε∇s · ∇δs dV, (27)

where integration by parts was applied. The following derivations are made in terms of a 2d setting and under
using Voigt’s notation for symmetric tensors. The field quantities u and s are discretized by means of shape
functions HI with I = 1, . . . , n and n the number of nodes per element. Accordingly,

u(x) =
n∑

I=1

HI (x)uI and s(x) =
n∑

I=1

HI (x)sI , (28)

with nodal quantities uI and sI . The strain matrix ε and the spatial gradient ∇s are discretized by

ε(x) =
n∑

I=1

Bu
I (x)uI and ∇s(x) =

n∑
I=1

Bs
I (x)sI , (29)
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using the respective operator matrices

Bu
I (x) =

⎡
⎣H(x)I,x 0

0 H(x)I,y
H(x)I,y H(x)I,x

⎤
⎦ and Bs

I =
[
H(x)I,x
H(x)I,y

]
. (30)

The internal forces corresponding to the displacements u and s at node I are derived from Eqs. (26) and (27)
as

Fu
I =

∫

�

(
Bu

I

)T
σ dV (31)

and

Fs
I =

∫

�

HI M̂
−1 ds

dN
dV +

∫

�

HI

(
sεTCε + 2sP(Df) + Gc s − 1

2ε

)
dV +

∫

�

2Gcε
(
Bs

I

)T ∇s dV, (32)

where the same shape functions HI are used for virtual quantities. In order to find a solution of the nonlinear
system, the Newton-Rapson scheme is applied. The associated components of the current tangential stiffness
matrix are obtained by derivation of the residual with respect to the unknown field quantities as

Kuu
I J = ∂Fu

I

∂uJ
=

∫

�

{
Bu

I (s
2 + η)CBu

J + s2Bu
I
d2P

dε2
Bu

J

}
dV, (33)

K su
I J = ∂Fs

I

∂uJ
=

∫

�

HI2s

(
Cε + dP

dε

)T

Bu
J dV, (34)

Kus
I J = ∂Fu

I

∂sJ
=

∫

�

(
Bu

I

)T 2sHJ

(
Cε + dP

dε

)
dV, (35)

K ss
I J = ∂Fs

I

∂sJ
=

∫

�

{
HI HJ

(
εTCε + 2P + Gc

2ε

)
+ 2Gcε

(
Bs

I

)T Bs
J

}
dV (36)

with

dP

dε
= qb〈Df − Dc〉b−1 dDf

dσ̃

dσ̃

dε
. (37)

The choice of an adequate driving force quantity σ̃ (ε)may depend on the material and also on the type of crack
extension expected. For example, if only unidirectional loading is expected, the normal stress component in
loading direction, which can be formulated as

σ̃ = 1TCε (38)

with 1 = (0, 1, 0)T for a vertical load direction, is a sufficient driving force quantity for the fatiguemechanism.
As a more general driving force quantity in terms of mixed mode loading, the first principal stress should be
utilized. This is a consequence of the maximum tangential stress criterion [12], which states that within linear
elastic fracture mechanics a crack will extend perpendicular to the direction of the largest tension around the
crack tip. For this two-dimensional setting, the first principal can be formulated as

σ̃ = 1T+Cε +
[(

1T−Cε
)

+
(
1Tτ Cε

)]1/2
(39)

with operators 1+ = ( 1
2 ,

1
2 , 0

)T
, 1− = ( 1

2 , − 1
2 , 0

)T
and 1τ = (0, 0, 1)T . Finally, the damping matrix can be

derived which reveals zero contributions except for the component

Dsṡ
I J = ∂Fs

I

∂s,N
=

∫
�

HI HJ

M̂
dV . (40)
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4 Numerical examples

In order to illustrate the behavior of the proposed model, different numerical examples and their results are
presented in the following. Properties of interest within the field of fatigue crack growth are on one hand the
crack growth rates da/dN , and on the another hand, the path a crack follows while extending under load. For
both of these properties, different setups where created and simulations where performed. The software FEAP
8.4 was used for these simulations, where the model described in the previous sections was implemented as
quadrilateral user element with linear shape functions for both the displacements and the phase field.

4.1 Effect of mean load

As outlined before, the mean load of an applied load time sequence has a very high effect on the fatigue life
of a structure. The number of bearable load cycles will be significantly lower for sequences with a higher
mean load of the load cycles compared to a sequence with the same amplitude but lower mean load. Within
the literature, this effect is referred to as mean stress effect and is characterized in terms of the stress ratio
R = σmin/σmax. How this effect is incorporated in our phase field model was discussed in Sect. 2.2. To verify
the models response to a variation of the mean load simulations with compact tension (CT) test specimens
were performed. This specimen geometry is commonly used for an experimental investigation of the crack
growth behavior for quasi static as well as for cyclic loading. The geometry and the dimensions of the used
CT-specimen according to the ASME standard [3] is illustrated in Fig. 4. A tensile load in vertical direction
was applied within these simulations by a distributed force at the upper hole of the specimen. The contour
plot in Fig. 4 shows the evolution of the crack field obtained from a simulation using the proposed phase field
model. A crack indicated by areas with s = 0 is visible. This crack grows in horizontal direction as a result of
the cyclic load. For the following evaluation of crack growth rates, the approximation for the stress intensity
factor range �K proposed in [3] was used, where the crack length is defined as horizontal distance from the
crack tip to the center of the holes.

To evaluate the model behavior regarding mean stress effects several simulations with identical amplitudes
and different stress ratios were performed. In Fig. 5, the schematic difference of the six simulations regarding
the stress ratio is indicated. As explained by many textbooks (see e.g., [11,19,31,33]), based on experimental
data, the crack growth curves (Paris’ law [30])

da

dN
= C�Km (41)

Fig. 4 Details of CT-specimen according to [3] with indication of contour plot of phase field obtained from cyclic phase field
simulation
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Fig. 5 Comparison of energy contribution ratio (W=strain energy, P= fatigue energy, E=total energy) of simulations for different
stress ratios

(a) (b)

Fig. 6 Results from simulations with different stress ratios: a crack growth rates (Paris’ law), b curves of crack length vs number
of applied load cycles

with constantsC andm are also dependent on the stress Ratio R, where higher R-ratios generally shift the crack
growth curve to a level of higher rates. In this regard, a quiet convenient property of the presented phase field
model is revealed by a comparison of the relative energy contributions for the state of crack initiation, which
is given in Fig. 5. The bar plot shows that the static strain energy delivers a significantly higher contribution to
the total energy for stress ratios with a higher mean load. With other words, less accumulated fatigue energy
is required to support crack growth at high stress ratios than for lower stress ratios. This behavior is also
reflected by the Paris diagram of Fig. 6a, which illustrates the basic characteristic of fatigue crack growth for
the six simulations in terms of crack growth rates. The plot consistently indicates higher rates da/dN for equal
stress intensity factor ranges with increasing stress ratio R. Consequently, the evolution of the crack length
with respect to the absolute number of load cycles also increases with the stress ratio as the curves in Fig. 6b
underline. For these simulations, a value of 0.3 was used for parameter β of the function f (L) in the damage
increment Eq. (20). This function controls the threshold stress for local fatigue growth and determines the
mean stress effect. For the case of a stress ratio of R = 0.5, the factor β was varied. Fig. 7 illustrates that the
deviation of the crack growth rates with respect to the basic alternating load decreased significantly by using



574 C. Schreiber et al.

Fig. 7 Curves of crack growth rates obtained for simulations with the CT-specimen

smaller values for β. The choice of the function f (L) within this study is of purely exemplary origin in order
to illustrate how an adaption of the proposed phase field model can be accomplished. We do not claim that this
kind of function provides a general method for any material. However, the model allows for arbitrary functions
for the threshold stress in order to properly fit a certain behavior.

4.2 Mixed mode loading

Dealing with fracture mechanics, it is a very crucial task to gain knowledge about the path a crack will follow,
since, for instance, this information may be included in a fail safe design of a structure. For several cases, this
path may be very obvious, as, for example, in the case of an mode-I loading of the CT-specimen of the previous
section, but within practical applications variations of conditions occur in terms of load, deformation and crack
interaction. This can cause a very complex crack growth behavior. In order to validate the presented model
regarding the predicted crack growth direction, the geometry described in Fig. 8a was set up for a phase field
simulation. As within this simulation crack, curving is expected, and the criterion of a fatigue driving force has
to be generalized. Accordingly, Eq. (39) was used as driving stress measure. The specimen for this simulation

(a) (b)

Fig. 8 Example of crack interaction as test case for the propose model: a simulation setup, b contour plots of the phase field
variable s after different numbers of applied load cycles
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is a narrow stripe with sharp notches on both vertical edges. The notches are positioned with a small distance in
vertical direction. The lower edge is fixed, and a displacement load in vertical direction is applied on the upper
edge, where within this simulation the cyclic load was constructed as purely alternating (R = −1). Contour
plots of the phase field variable s are presented in Fig. 8b. Below the contour plots, the number of applied load
cycles to produce the particular state of crack evolution is indicated. These results show that a fatigue crack
initiates at about 28000 cycles, and the initial direction of crack extension is purely horizontal. After this period
of horizontal crack growth, the cracks start to curve such that the two cracks continue to grow away from each
other (N ≈ 40000). With ongoing cycling, the cracks follow this direction for a low number of cycles before
both cracks again change their direction of growth in the opposite direction. After another 6000 cycles, the
cracks obviously start to grow toward each other. The simulation was stopped after about 55000 cycles. This
state is shown in the last contour plot. The question whether this final crack patter is plausible can be addressed
by an analytic solution of the crack tip fields within linear elastic fracture mechanics. For a plane deformation
of a crack, two basic modes of loading are differentiated. The mode-I case, where a crack is loaded in normal
direction with respect to its orientation (e.g., the example for the previous section) and the mode-II case, where
the crack is loaded such that the crack surfaces undergo antisymmetric displacements along the crack. A crack
will extend straight for a pure mode-I load, and it will grow under an angle of approximately −70.5◦ (see
e.g., [17]) for a pure mode-II load. For an arbitrary load case, proportionality factors for the particular modes,
namely KI and KI I , contribute to the stress and displacement field near the crack tip. Accordingly, a crack that
deviates from its straight path undergoes a load with a significant KI I contribution. For two cracks of equal
length and orientation in an infinite plate under normal loading, the KI I contribution can be approximated (see
[17]) by

KI I = K0
a2

2d2
[sin(4θ) − sin(2θ)] . (42)

In this equation, 2a is the crack length, d is the distance of the cracks and θ is the skew angle, which becomes
π/2 for stacked cracks and zero for collinear cracks. Equation (42) implies that if cracks grow toward each
other, the KI I contribution is at first positive until a certain angle θ is reached such that KI I changes its
sign. This explains the crack paths observed in the simulation. The presented simulation results can also be
verified by the crack patterns presented in [43], which were obtained for cyclic experiments and show the same
behavior.

5 Conclusion

We presented a phase field fracture model, which in addition to quasi static fracture is also capable to predict
fatigue crack growth. The focus of our development lies on relevant loading conditions as various loading
amplitudes and arbitrary crack paths. It was shown that the effect of the mean stress is included in the model
formulation. Further, we give explanations how a specific material behavior can be incorporated. In a second
example, the behavior in terms of the crack growth direction is investigated by means of a mixed mode load
case. The obtained crack pattern is confirmed by experimental findings from the literature as well as analytical
considerations.
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