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Abstract
Ensemble-based uncertainty quantification and global sensitivity analysis of environmental models requires generating

large ensembles of parameter-sets. This can already be difficult when analyzing moderately complex models based on

partial differential equations because many parameter combinations cause an implausible model behavior even though the

individual parameters are within plausible ranges. In this work, we apply Gaussian Process Emulators (GPE) as surrogate

models in a sampling scheme. In an active-training phase of the surrogate model, we target the behavioral boundary of the

parameter space before sampling this behavioral part of the parameter space more evenly by passive sampling. Active

learning increases the subsequent sampling efficiency, but its additional costs pay off only for a sufficiently large sample

size. We exemplify our idea with a catchment-scale subsurface flow model with uncertain material properties, boundary

conditions, and geometric descriptors of the geological structure. We then perform a global-sensitivity analysis of the

resulting behavioral dataset using the active-subspace method, which requires approximating the local sensitivities of the

target quantity with respect to all parameters at all sampled locations in parameter space. The Gaussian Process Emulator

implicitly provides an analytical expression for this gradient, thus improving the accuracy of the active-subspace con-

struction. When applying the GPE-based preselection, 70–90% of the samples were confirmed to be behavioral by running

the full model, whereas only 0.5% of the samples were behavioral in standard Monte-Carlo sampling without preselection.

The GPE method also provided local sensitivities at minimal additional costs.
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1 Introduction

Numerical modeling of environmental processes is an

important tool for many researchers and practitioners. With

the increasing availability of computer power, we also see

an increase in the size and complexity of the modeled

systems (e.g., Kollet et al. 2010). For example, to describe

flow and transport in surface-subsurface systems, it is

common to solve systems of partial differential equations

(pde) (e.g., Maxwell et al. 2015; Kollet et al. 2017).

Aiming at a realistic representation of the physical
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processes, these models are often highly uncertain due to

uncertain material properties, boundary conditions, struc-

tural features, and geometric parameters. Commonly, all

uncertain parameter values are inferred from sparse and

indirect observations (a.k.a. model calibration), a field that

has been studied intensively in subsurface hydrology (e.g.,

Vrugt et al. 2008; Shuttleworth et al. 2012; Yeh 2015).

Before embarking into the calibration of a complex model,

some form of sensitivity analysis (e.g., Saltelli et al.

2004, 2008; Xiao et al. 2018) is usually advisable to

determine which parameters are sensitive to the data at

hand. Sensitivity analysis is also a well-studied topic in

hydrological science (e.g., Mishra et al. 2009; Song et al.

2015; Pianosi et al. 2016; Wagener and Pianosi 2019).

Both global-sensitivity analysis and statistical parameter

inference may be performed using comparably large

ensembles of model runs with different parameter values.

A basic, but not trivial requirement is that every ensemble

member should show a realistic behavior with respect to

the modeled system. Typical examples of non-behavioral

model runs include flooding of valleys that in reality are

not wetlands, rivers falling dry that in reality are perennial,

or the simulated reversal of observed flow directions,

among others. Erdal and Cirpka (2019) analyzed the sub-

surface-flow model of a small valley, showing that the non-

behavioral parameter-sets can take up a notable part of the

parameter space. The behavioral parameter space may have

non-trivial and unexpected boundaries, making unguided

Monte-Carlo sampling computationally expensive. For

large, computationally intensive models, the small and

irregularly bounded behavioral parameter space may pro-

hibit ensemble-based uncertainty quantification, global-

sensitivity analysis, and model calibration.

An increasingly popular approach to decrease the

computational effort of complex models is using surrogate

models. Recent comprehensive reviews were given by

Ratto et al. (2012), who considered environmental models,

Razavi et al. (2012b), who considered hydrological mod-

els, and Asher et al. (2015) and Rajabi (2019), who both

considered groundwater models. A surrogate-model, also

known as a meta-model, proxy-model, emulator-model, or

low-fidelity model, is in its most general form a simpler

representation of a complex model. Owing to its relative

simplicity, the surrogate model can be run much faster than

the original complex model. In their review of surrogate

models for groundwater applications, Asher et al. (2015)

divided the surrogate models into three groups: (1) data-

driven methods, in which the surrogate model mimics a

given input-output relation based on training data origi-

nating from the original model, (2) projection-based

methods, in which the original model is projected to a

lower-order subspace to reduce parameter complexity, and

(3) hierarchical methods, which directly simplify the actual

model, e.g., by grid coarsening or assuming quasi-steady-

state conditions (e.g von Gunten et al. 2014). Because in

this work we are interested in approximating an input-

output relationship, we will focus on data-driven methods.

In studies related to subsurface flow and transport, com-

monly used data-driven methods are the polynomial chaos

expansion (e.g., Laloy et al. 2013; Oladyshkin and Nowak

2012; Wu et al. 2014; Zhang et al. 2017), support vector

machines (e.g., Yoon et al. 2011; Wu et al. 2015; Xu et al.

2017), and Gaussian Process Emulators, which have been

used in the modeling of groundwater flow (e.g., Cui et al.

2018b, a), unsaturated flow (e.g., Zhang et al. 2018; Gadd

et al. 2019; Zheng et al. 2019), subsurface transport (e.g.,

Ouyang et al. 2017; Zhang et al. 2018; Gadd et al. 2019;

Zheng et al. 2019), saltwater intrusion (e.g., Rajabi and

Ketabchi 2017; Kopsiaftis et al. 2019), and processes

related to CO2-sequestration (e.g., Espinet and Shoemaker

2013; Tian et al. 2017; Crevillén-Garcı́a 2018).

Due to its wide-spread use, good results reported in the

literature, relative simplicity, and inherent ability to pro-

vide not only predictions but also their uncertainty, we

decided to use a Gaussian Process Emulator as our surro-

gate model in the present work. An additional advantage of

Gaussian Process Emulators, which has not been empha-

sized in the literature so far, is that it can easily be extended

to provide the gradient of the simulated quantity with

respect to the parameters, a feature that we develop in

Sects. 2.5 and 2.6. The gradients are needed when applying

the active-subspace method (Constantine et al. 2014;

Constantine and Doostan 2017) and other global-sensitivity

analysis methods. Efficiently and reliably accessing gra-

dients has been shown a difficult requirement of the active-

subspace method in the past (e.g., Gilbert et al. 2016; Grey

and Constantine 2018).

A key question in using surrogate models in the context

of model calibration is how static the surrogate model

should be. Razavi et al. (2012a) distinguished between a

simple sequential approach, in which the surrogate model

is trained once and no more changed, and an adaptive-

recursive approach, in which the surrogate model is con-

tinuously updated when new runs of the full model become

available. An example of the more common adaptive-re-

cursive approach in subsurface modeling is the two-stage

Markov-Chain Monte- Carlo (MCMC) method (Cui et al.

2011; Laloy et al. 2013). When considering the adaptive-

recursive approach, a possible critical point is how to ini-

tialize the surrogate model. Any data-driven surrogate

model needs a set of inputs and corresponding outputs (also

known as snapshots or training samples) computed by the

complex model it is about to mimic. However, as noted by

Asher et al. (2015), many surrogate models lack frame-

works for selecting these snapshots. If the aim is to create a

sufficiently large ensemble of behavioral complex model
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runs, two main routes can be taken, that are analyzed in the

present study.

The first route is to first systematically train the surro-

gate model on a non-random set of snapshots exploring the

boundary between the behavioral and non-behavioral

parameter space by so-called active learning (Cohn et al.

1996), until the surrogate model is good enough for pre-

dicting whether a parameter-set is behavioral. After the

active training, the surrogate model is used for preselecting

behavioral random parameter realizations before they are

tested by the full model. The surrogate model is regularly

updated as the ensemble size grows. In the field of relia-

bility engineering, the surrogate model is often combined

with active learning to find the separation boundary

between safe and fail parameter regions (Echard et al.

2011; Cadini et al. 2014; Xiao et al. 2020).

The second route is to train the initial surrogate model

from a small random sample of snapshots without active

learning and start the selection of parameter realizations

using the surrogate model for preselection. Initially, the

surrogate model will not be very accurate in predicting

whether a parameter-set is behavioral, but as the ensemble

size of behavioral model runs grows, the surrogate model is

updated and notably improved. Hence, in contrast to active

learning, this learning is passive, non-targeted, or on-the-

fly. To our best knowledge, there are few examples of pro-

actively seeking the behavioral boundary with active

learning, and no comparison has been made between active

learning and on-the-fly learning for large-scale environ-

mental models.

The scope of this paper is to illustrate the efficiency of

Gaussian-Process-Emulator-based surrogate models for

selecting behavioral parameter-sets in subsurface-flow

applications in the context of ensemble-based uncertainty

quantification and global-sensitivity analysis. We will

compare active and passive training methods, targeting the

plausibility (being behavioral) of model results, and show

how Gaussian-Process-Emulator-based surrogate models

can be used to construct local sensitivities needed in the

active-subspace method of global-sensitivity analysis. Our

application problem is a catchment-scale subsurface flow

model with uncertain material properties, boundary con-

ditions, and geometric descriptors of the geological

structure.

The rest of the paper is structured as follows. In Sect. 2

we describe the theoretical background and methods used.

This section includes both the theory of the surrogate

model and the global sensitivity analysis, as well as the

detailed description of our suggested sampling schemes.

Following this, Sect. 3 outlines the two test-cases to which

the sampling schemes are applied, while Sect. 4 presents

the results. The paper finishes with discussions and con-

clusions in Sect. 5

2 Theory and method development

2.1 Subsurface flow

Our example application for the general approach pre-

sented in this work targets regional-scale subsurface flow.

Variably saturated flow in the subsurface is commonly

described by the Richards (1931) equation:

SwSs
ohp
ot

þ hs
oSw
ot

þr � q ¼ Q ð1Þ

q ¼ �Kkrrðhp þ zÞ ð2Þ

in which Sw [-] is the water saturation [-], Ss [1/L] is the

specific storage coefficient, hp [L] is the pressure head, hs
the saturated water content, or porosity, Q [1/T] denotes

volumetric sources and sinks, K [L/T] is the saturated-

hydraulic-conductivity tensor, kr [-] denotes the relative

permeability, which depends on hp, and z [L] is the vertical

coordinate. In this work, the dependence of the water sat-

uration Sw and the relative permeability kr on the pressure

head hp is modelled by the standard Mualem-van Gen-

uchten parameterization (Mualem 1976; Van Genuchten

1980):

Sw ¼ Swr þ ð1� SwrÞ 1þ ahp
�
�

�
�
n� �m

if hp \0

1 otherwise

�

ð3Þ

kr ¼S0:5e 1� 1� S1=me

� �m� �2
ð4Þ

with Se ¼
Sw � Swr
1� Swr

ð5Þ

in which Swr [-] is the residual water saturation, a [1/L], n [-
], and m [-] are shape parameters with m ¼ 1� 1=n, and Se
[-] is the effective water saturation.

As boundary conditions, we either directly prescribe the

pressure head at the boundary node (hp;i), or pre-

scribe/compute a flux Qi across the boudary in three dif-

ferent ways:

hp;i ¼ hp;ref on CD ð6Þ

Qi ¼ Qref on CN ð7Þ

Qi ¼ Kref � ðhp;i � hp;ref Þ=Dxref on CR ð8Þ

Qi ¼ Cref � ðhp;i � hp;ref Þ � Hðhp;i � hp;ref Þ on Cdrain ð9Þ

in which the subscript ref denotes a user-specified refer-

ence value, i is the index of the boundary node, Kref [L/T]

is the conductivity between the boundary and the reference

node, Dx [L] is the corresponding separation distance, C

[L2/T] is the equivalent conductance, and Hð�Þ is the

Heaviside function. Equations 6–9 define all boundary
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conditions considered in this work with Cj denoting the

boundary section of type j. CD, CN , CR, and Cdrain are

known as Dirichlet, Neumann, Robin, and drainage

boundaries, respectively, and the total boundary of the

domain is C ¼ CD [ CN [ CR [ Cdrain.

2.2 Gaussian process emulator

Surrogate models replace computationally demanding

models by a quick-to-evaluate approximate model that can

predict a specific response of the full model without actu-

ally calling it. Gaussian Process Emulators (GPE) are

widely used as surrogate models (Bastos and O’Hagan

2009; Busby 2009; Loeppky et al. 2009). In the hydro-

logical community, a GPE model may best be explained as

a kriging estimator in parameter space (see Kitanidis 1997).

We denote the vector of parameters x and the corre-

sponding (here: scalar) model response yðxÞ. After training,
the original model is replaced by an interpolation of the

training data, assuming that the model yðxÞ can be replaced

by a multi-Gaussian field gðxÞ over the parameters x,

conditioned to exactly meet the actual full-model evalua-

tions yiðxiÞ. All assumptions of ordinary kriging apply (in

particular second-order stationary of the unconditional field

and diffuse prior knowledge about deterministic trend

coefficients), but the spatial coordinates used in interpola-

tion by kriging are replaced by the parameter values.

Given a set ½x1; x2; . . .; xnO �
T
of nO training samples with

the corresponding model responses y ¼ ½y1; y2; . . .; ynO �
T
of

the full model, we estimate a deterministic uniform trend

coefficient b and the vector of structural parameters h of a

covariance function QðDxjhÞ of a given functional form by

maximizing the likelihood:

pðb; hjyÞ / Qj jj j�1=2
exp � 1

2
ðy� 1bÞTQ�1ðy� 1bÞ

� 	

ð10Þ

in which Qj jj j is the determinant of the nO � nO covariance

matrix Q, the nO � 1 vector 1 consists only of unit entries,

and the element Qi;j of Q is evaluated by the covariance-

function model Qðxi � xjjhÞ. Typical structural parameters

are the prior variance and a set of correlation lengths

quantifying the distance in parameter space over which the

correlation vanishes.

Assuming a uniform mean may be seen as the special

case of a trend model Xb with the nO � nb matrix X of

trend functions discretized at the points xi, and the nb � 1

vector of trend coefficients b, in which nb is the number of

distinct trend functions considered. If the purpose of the

surrogate model was to completely replace the full model,

identifying the most suitable set of trend functions and

covariance-function model would be advisable. In the

given context, the surrogate model is only used in an

intermediate step, and we deem the extra effort of opti-

mizing the functional shape of trend models and covariance

functions unnecessary. But of course, when there is good

evidence that a well-selected trend model within X is

helpful to better approximate the model with less training

points for the GPE, then the framework here is easily

extended.

The interpolation gðxcÞ at the parameter point xc is then

achieved by solving the kriging system of equations, which

we may write in its function-estimate form as (Kitanidis

1997):

l̂gðxcÞ ¼bþQxn ð11Þ

Q 1

1T 0


 �
n

b


 �

¼
y

0


 �

ð12Þ

in which l̂gðxcÞ is the best estimate, or conditional mean,

of gðxcÞ, the 1� n0 vector Qx has the elements

QxðiÞ ¼ Qðxc � xijhÞ, and n is a nO � 1 vector of weights.

The estimation variance r̂2gðxcÞ is given by (Kitanidis

1997):

r̂2gðxcÞ ¼ Qð0jhÞ � ½Qx; 1�
Q 1

1T 0


 ��1

½Qx; 1�T ð13Þ

The kriging estimate l̂gðxcÞ is the surrogate model, which

is quickly evaluated for any point in parameter space if the

structural parameters h of the covariance function are

known.

The most computationally-expensive part is the esti-

mation of h, here written as the maximization of pðb; hjyÞ
according to Eq. 10. In this work, we use the STK-toolbox

for MATLAB (Bect et al. 2017) to construct the GPE

surrogate model, which performs the estimation of h by the

restricted maximum likelihood method (Patterson and

Thompson 1971).

It may be worth noting, that the GPE procedure is often

written in a form that is identical to the standard Kalman

filter, or simple kriging, which requires that the trend

coefficient b is known prior to considering any training

data. Because we only have diffuse prior knowledge about

b, the ordinary kriging equations listed above apply. As

stated above, it would be possible to replace the uniform

trend coefficient b with a deterministic trend model that

depends on x. However, already a linear trend would

require estimating as many additional trend coefficients as

structural parameters h. As, in our approach, the GPE-

models are re-trained at regular intervals throughout the

sampling procedure, this could notably increase the com-

putational demand for parameter estimation.
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2.3 Probability of misclassification

The estimation variance r̂2gðxcÞ expresses the uncertainty of
the estimate and is needed in active training. In particular,

we may be interested in the cumulative probability

PðytðxcÞÞ that the true model response yðxcÞ is not greater
than a target value yt, which we approximate by the

Gaussian distribution of the conditional estimate:

PðytðxcÞÞ ¼
1

2
1þ erf

yt � l̂gðxcÞ
r̂gðxcÞ

ffiffiffi

2
p

 ! !

ð14Þ

Then the probability of misclassification PmcðxcÞ whether

the approximated value of yðxcÞ is greater or less than the

target value yt is:

PmcðxcÞ ¼ 2PðytðxcÞÞð1� PðytðxcÞÞÞ ð15Þ

which is useful to evaluate the uncertainty of the boundary

in parameter space where the model response meets an

inequality condition yðxÞ� yt or yðxÞ� yt. For applications

using multiple observations (i.e. multiple GPEs), we con-

sider the product of the individual probabilities.

2.4 Sampling schemes

In this work, we consider two different sampling schemes,

both applying a two-stage acceptance procedure. For each

of the targets found in Sect. 3.1, we set up one GPE-model.

The GPE-surrogate models, mimicking the targets, are

used for the stage-1 acceptance of candidate parameter-

sets, and only the stage-1 accepted sets are run using the

full model. Stage-2 acceptance is then achieved if also the

full model shows a behavioral result. To judge the effi-

ciency of the sampling schemes, we define an acceptance

ratio as the number of stage-2 accepted samples divided by

the number of stage-1 accepted samples. The two sampling

schemes differ in the training of the GPE model. We call

them ‘‘on-the-fly’’ (passive) and ‘‘active-learning’’ sam-

plers. In the on-the-fly sampler, the GPE is trained during

the subsequent actual sampling, implying that it will ini-

tially perform rather poorly and then gradually improve as

the number of simulated stage-1 accepted samples, and

hence the training data, grows. The active-learning sam-

pling scheme, by contrast, starts with a non-random train-

ing period, in which the GPE learns about the boundary

between accepted and rejected parameter-sets. Because the

samples from the active-learning period are not drawn

randomly, we must not use them in the actual sampling.

This implies comparably high initial costs, but the effi-

ciency of the actual sampling is expected to be high from

the beginning on. The two sampling schemes are described

in detail below.

2.4.1 Learning on-the-fly

This sampling scheme is based on the following steps:

1. Draw an initial set of random parameter-sets and run

the flow model to obtain the observations. Here, we

sample from a uniform prior and use Latin Hypercube

sampling to draw 50 parameter-sets.

2. Set up and train one GPE for each target based on the

current set of parameters and observations.

3. Suggest a new candidate point, drawn randomly from

the allowed parameter space. Use the GPE to approx-

imate the observations and their corresponding uncer-

tainty. Compute, for each target, the probability of the

candidate point being on the behavioral side of the

targets. Finally, compute the joint probability of all

targets being met by taking the product of the

individual probabilities.

(a) Accept the candidate point at stage-1 if the joint

probability is larger than a given threshold and

run the full flow model to check whether the

candidate point is actually behavioral (stage-2

accepted). As a threshold, we use 0.5, which is

chosen based on initial tests of the model. A

higher value would generate a higher fraction of

stage-1 accepted points that are also stage-2

accepted, but risk poor sampling quality in the

boundary regions of the behavioral parameter

space, while a lower number would risk resulting

in low sampling efficiency.

If not accepted,

(b) Reject the candidate point. As the GPE at early

times may not have a high quality, this decision

may be wrong. Therefore, rejected candidates are

stored in an archive, which is maintained

throughout the full sampling, and the corre-

sponding probabilities are updated whenever the

GPE is retrained in this algorithm. If the

probabilities exceed the threshold upon retrain-

ing of the GPE, they are included in the set of

stage-1 accepted samples and are run with the

full flow model. For practical reasons, the

archive may be limited to a maximum number

of parameter-sets with the highest (but still

rejected) probabilities. In this work, we store

10,000 samples in the archive. This value was

chosen since it is small enough to prevent

storage or memory issues, but large enough to

hold the rejected parameter-sets with the highest

probabilities that may become stage-1 accepted

upon retraining the GPE models. As long as the

number is kept reasonably large, the choice is not
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critical and can be fitted to the user’s available

resources.

4. Redo point 3 until enough candidate points are

accepted (stage-1) and run with the full model, then

return to point 2 and retrain the GPE using the full

collection of stage-1 accepted datasets sampled so far.

Here, a variable threshold is used that ranges from

every 10th accepted candidate (as long as the total

number of accepted parameter-sets is below 500) to

every 100th (when more than 3000 parameter-sets have

been stage-1 accepted). The variable threshold is used

to find a good balance between keeping the GPE

updated and keeping the time spent on training it as

low as possible.

5. Check whether the sample is large enough to finish the

sampling. This is commonly done by checking the

number of stage-2 accepted samples (here: 3000

samples are required, which is deemed large enough

to easily perform the global sensitivity analysis with).

2.4.2 Active learning

In the active learning scheme, the actual sampling is pre-

ceded by a non-random sampling targeted at exploring the

boundaries between behavioral and non-behavioral regions

of the parameter space. Once this phase is finished, the

resulting surrogate model should be of high quality and

immediately make confident predictions on the behavioral

status of a suggested parameter-set. After this initial

learning boost, we return, for the remaining sampling

process, to the on-the-fly sampling scheme described

above. The active learning starts between points 1 and 2 of

the scheme outlined for the on-the-fly sampler. The

scheme consists of the following steps:

1. Setup and train one GPE for each target based on the

current set of parameters and observations.

2. Find a parameter-set for which the misclassification

probability according to Eq. 15 is the highest. This is

done by drawing a large number of random candidate

parameter-sets, evaluating the best estimate l̂g, then
computing the misclassification probability Pmc for

each candidate by Eq. 15, and picking the one with the

highest value of Pmc. In this work, we use 100,000

random candidate parameter-sets. The size is not

critical but should be large enough to allow for the

identification of a candidate parameter-set with a high

misclassification probability. 100,000 appeared to be a

good compromise between the time required to eval-

uate the GPE-models and the chance to find good

candidates.

3. Run the full flow model with the new parameter-set

and return to point 1.

4. Keep adding new parameter-sets according to steps 2

and 3 until the surrogate model is good enough. In

theory, this would be the case when the highest found

misclassification probability does not exceed a preset

threshold value. In practice, we found that both setting

and achieving a good threshold value is difficult and

requires an often too large number of model evalua-

tions to be a usable statistic. In the present application,

we therefore chose to finish the active-learning phase

when the mean stage-2 acceptance ratio over the last

100 parameter-sets reached a value of 0.5. This

represents a proxy for a stable sample, as half the

samples are rejected and half accepted, which is what

we would expect when correctly sampling the bound-

ary between behavioral and non-behavioral space.

Please note that we only check stage-2 acceptance to

judge convergence, as this property is normally not

needed during the actual active-learning phase, and

that the acceptance criterion is measured as number of

stage-2 accepted samples divided by the total number

of model evaluations.

5. Continue with point 3 of the on-the-fly sampling

scheme. The only differences to the description above

is that (1) the training dataset now includes also the

active-learning dataset, (2) the re-training of the GPE

occurs on regular intervals (here: every 500 runs) and

(3) the probability PðytðxcÞÞ required to accept a

candidate parameter-set xc is raised to 0.7. It is

important to note, however, that while the active-

learning dataset is used for the training of the GPE, we

don’t include it in the final ensemble, even though it

contains stage-2 accepted samples. The reason for this

is that these samples are not drawn randomly; they are

specifically targeted at the boundaries of the behavioral

regions so that including the stage-2 accepted samples

of the active-learning period would lead to a bias in the

final ensemble towards these boundaries.

As a full model run is computationally expensive, we

perform the computations on a mid-range cluster, running

multiple instances of the flow model in parallel. However,

flow models with different parameter-sets can take widely

different computation times, so that waiting for a specific

simulation to be finished before drawing new parameters

would be inefficient. In the on-the-fly sampling scheme,

this is just a matter of technical implementation. The

active-learning scheme, by contrast, has originally been

designed for sequential learning. To avoid waiting for

model results of preceding parameter-sets, we thus tem-

porarily approximate them by the expected value l̂g of the
GPE surrogate model and proceed as if this were the
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simulation results of the full model. As soon as the true

observations are available, the expected values of the GPE

model are replaced with true results. While this approach

may deem the active learning sub-optimal in comparison to

a sequential approach, the improvement in terms of wall-

clock time is as large as the total number of jobs that can be

run simultaneously, which is 100 in our case.

At this point, it is important to note that a global sen-

sitivity analysis, like the active-subspace method described

below, requires an independent sample of the behavioral

parameter space. When using a surrogate model for pres-

election, we approximate the outcome of a full flow model

with the surrogate model, which yields correct decisions

only if the surrogate model is of high quality. It is essential

that the user is fully aware of these assumptions. For a

CPU-intensive full flow model, checking the correctness of

a sample is difficult. In Sect. 4.2 we therefore provide a

comparison between our sampling schemes and a pure

Monte Carlo sample for a simplified testbed, to assess

whether our proposed schemes capture the true parameter

distributions, and therefore are valid to be used in a global

sensitivity analysis. It is also important to note that storing

stage-1 rejected parameter-sets described in point 3b above

serves the purpose of correcting wrong decisions in the

preselection scheme. When a falsely rejected parameter-set

is re-evaluated by the updated GPE models, we can correct

the wrong-negative sampling error and maintain a good

coverage of the problematic regions in parameter space.

Not re-evaluating rejected parameter-sets, by contrast,

would lead to a smaller coverage of the parameter space

also in the final (stage-2 accepted) sample, because sam-

pling points had been discarded at a stage when the GPE

models were still inaccurate. This would lead to a bias in

the final sample, that can easily be avoided by re-evaluat-

ing the samples as the GPE-models evolve.

2.5 Global sensitivity analysis by active
subspaces

The purpose of a global sensitivity analysis is to evaluate

the relative impact of different parameters across the entire

parameter space. In the last decades, various global-sensi-

tivity-analysis methods have been proposed, including

variance-based methods (Saltelli et al. 2010), derivative-

based methods (Sobol’ and Kucherenko 2009), classifica-

tion-based methods (Spear and Hornberger 1980; Xiao and

Lu 2017), and the methods based on active subspaces

(Constantine and Diaz 2017). Each of these methods would

benefit from an ensemble acceleration by active or passive

learning. Following our past positive experience with

active subspaces (Erdal and Cirpka 2019), and the added

benefit of the GPE supplying also the required gradients

(see below), we demonstrate the advantages of the GPE-

based preselection scheme when using active subspaces for

global sensitivity analysis. This method takes local sensi-

tivities to construct a sorted basis of orthonormal directions

in parameter space with decreasing influence on the model

outcome. An active subspace is defined by the eigenvectors

of the nP � nP matrix:

C ¼
Z

rf ð~xÞ � rf ð~xÞqð~xÞd~x 	 1

n

Xn

i¼1

rf ð~xiÞ � rf ð~xiÞ

ð16Þ

in which f denotes the model, ~x is the vector of normalized

parameters, each scaled between 0 and 1, rf ð~xÞ is the

vector of partial derivatives of=o~xi, q is the prior proba-

bility density function of the normalized parameters, n is

the number of observations, and the last part of the equa-

tion describes the approximation of the integral by Monte

Carlo sampling. The eigen-decomposition of C reads as:

C ¼ WKW�1 ð17Þ

in which K is the diagonal matrix of the eigenvalues ki, and
W is the matrix of corresponding eigenvectors wi. From

the eigen-decomposition, we can compute the square root

of the activity score aj (Constantine and Diaz 2017) which

is used as a global sensitivity metric of parameter j:

aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

k¼1

kkw2
j;k

s

; ð18Þ

in which j is the parameter index, m is the number of

subspace dimensions (i.e. number of eigenvectors), kk is

the k-th eigenvalue and wj;k the value for parameter j in the

k-th eigenvector.

A major issue in the use of active subspaces is evalu-

ating the gradients of the observation f with respect to the

scaled parameters ~x. In theory, this would require a local

sensitivity analysis at each evaluation point in parameter

space. For large-scale complex models, these gradients are

not readily available, and direct numerical differentiation is

not an option if there are many parameters and an indi-

vidual model run is computationally expensive. The com-

mon approach when using the active-subspace method in

subsurface modeling is to approximate the gradients using

a linear (Gilbert et al. 2016; Jefferson et al. 2015) or

higher-order polynomial trend surface (Erdal and Cirpka

2019; Oladyshkin et al. 2012), which is fitted to all training

data but may give a poor approximation of the local

gradients.

In the given context, we use a GPE surrogate-model

which not only yields a very reasonable approximation of

the real model after sufficient training, but also a direct

estimate of the sensitivity of the model with respect to the
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parameter vector x at any evaluation point xc by taking the

gradient of Eq. 11:

rl̂gðxcÞ ¼ r �Qxð Þn ð19Þ

in which r�Qx is the matrix of gradient vectors of all

elements of Qx with respect to the normalized parameters

~x, requiring the derivatives of the known, differentiable

covariance function QðDxjhÞ with respect to Dxi. The

existence of these gradients restricts the GPE to be used

with differentiable covariance functions.

2.6 Choice of the covariance function

The GPE surrogate model depends on the choice of the

covariance function QðDxjhÞ, which determines the func-

tional shape of the estimate. The same covariance functions

are available that are used in geostatistical interpolation of

spatial variables (e.g., the exponential and squared expo-

nential covariance functions, the family of Matérn covari-

ance functions, power-law functions, etc. (see Rasmussen

and Williams 2006, Chapter 4)). As the interpolation is in

parameter space, it is typical to choose a covariance

function that has a derivative of zero at the origin to

guarantee smoothness. Most likely, the squared exponential

covariance function is the most widely used one in GPE

modeling. Stein (1999), however, argues that the strong

smoothness of the squared exponential function is not

suitable for many physical processes, and recommends

using a member of the Matérn family of covariance func-

tions. Following the recommendations by Stein (1999) and

the results of our preliminary testing, we chose the aniso-

tropic Matérn covariance function of order 3/2. The

covariance function is implemented in the STK toolbox

(Bect et al. 2017) in the following way:

QðDxjhÞ ¼r2 1þ 2

ffiffiffi

3

2

r

d

 !

exp �2

ffiffiffi

3

2

r

d

 !

ð20Þ

with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XnP

j

Dxj
‘j

� 	2

v
u
u
t ð21Þ

in which r2 denotes the variance, d is the scaled separation

distance, nP is the number of parameters, and ‘j is a scaling

length for parameter xj. The vector h of structural param-

eters, to be estimated in the GPE training, thus consists of

r2 and the 32 scaling lengths ‘j, one for each parameter xj
(see further Sect. 3.1). The STK-toolbox estimates these

parameter by the restricted maximum likelihood method

(see further Sect. 2.2).

As pointed out in Sect. 2.5, we need the gradient of the

model response yðxÞ at all evaluation points of the model

for the construction of the active subspace. We have

already discussed that this can be approximated by the

gradient of the GPE surrogate model according to Eq. 19.

Substituting Eq. 20 into Eq. 19 yields:

ol̂gðxÞ
oxj

¼ �
XnO

i

ni
oðQxÞi
oxj

¼ �
XnO

i

ni
oðQxÞi
odi

odi
oxj

with
oðQxÞi
odi

¼ � 6r2di exp �2
ffiffiffiffiffiffiffiffiffiffiffi

ð3=2Þ
p

di

� �

and
odi
oxj

¼ xj � xi;j
di‘

2
j

ð22Þ

in which di is the scaled distance between the evaluation

point x and the training point xi and xi;j is the j-th parameter

in parameter-set xi. If the surrogate model is a good rep-

resentation of the real model, the corresponding gradients

are also expected to be good approximations.

3 Test cases

3.1 Subsurface model mimicking the Käsbach
catchment

Throughout this manuscript, we use a catchment-scale flow

model as a testbed for the sampling schemes presented

later. We solve the Richards equation (Eq. 1) with

HydroGeoSphere (Aquanty Inc. 2015), which uses lowest-

order conforming finite elements on triangular prisms for

spatial discretization and implicit Euler integration for

temporal discretization. The test application is taken from

Erdal and Cirpka (2019). The model domain mimics the

Käsbach catchment close to Tübingen in southwest Ger-

many. An illustration of the model domain and its setup is

shown in Fig. 1.

As can be seen from Fig. 1, the subsurface consists of

five different geological layers, which we assume to be

internally homogeneous in the model. The bottom layer is

the Middle Triassic Upper Muschelkalk, a karstified

limestone formation, overlain by the lower Upper Triassic

Erfurt formation, consisting of clayey mudstones and car-

bonate-rocks. The Erfurt formation is overlain by the

middle Upper Triassic Grabfeld formation, made of

interbedded mudstones and gypsum layers. While the

original Grabfeld formation is comparably low-permeable,

it becomes more conductive upon weathering so that we

consider a weathered layer of uncertain thickness. In the

valley center, unconsolidated Quaternary sediments persist.

In the following we abbreviate the layers, from the bottom

up, as mo, ku, km1, km1-w, and Q. A description of the

regional settings can be found in D’Affonseca et al. (2020).

Figure 1 shows that a fault line with an uncertain vertical

offset passes approximately in the north-south direction

through the model domain. Also, not all geological layers
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are present at all locations. We address the uncertainty in

layer thicknesses and the fault offset by considering these

geometric parameters as stochastic variables.

The model has a major stream and four tributaries, all

modeled as drains (Eq. 9), implying that water can leave

the groundwater domain if a reference pressure-head is

exceeded, but it can never enter through this boundary. To

account for the possibility of overland flow, we define a

second drain boundary with a higher reference pressure-

head at the top of the model domain wherever there are no

streams. The other boundary conditions are: three Neu-

mann boundary conditions (Eq. 7) on top of the domain,

representing the incoming recharge for three different land

uses (grassland, cropland, and forest), a Dirichlet boundary

condition (Eq. 6) at the bottom of the domain representing

inflow from the surroundings, and a Robin boundary con-

dition (Eq. 8) at the southern vertical boundary represent-

ing the Ammer river into which the Käsbach river feeds.

All other boundaries are modeled as no-flow boundaries.

In total, the model has 32 uncertain parameters, which

are listed and explained in Table 1. Further information

about the model and parameters are given by Erdal and

Cirpka (2019). The model is run in transient mode with

constant boundary conditions until steady state is reached.

On a mid-range cluster, one model run takes about four

CPU-hours.

A key problem in setting up the original model was that

many parameter combinations, in which the individual

parameter values were taken from plausible ranges, led to

implausible model results. In an ensemble-based uncer-

tainty analysis of the Käsbach model, we need to exclude

such non-behavioral parameter combinations. Towards this

end, we have defined a set of five target quantities, simu-

lated by the model, that decide whether the parameter

combination can be accepted (behavioral) or must be

rejected (non-behavioral). In this work, we use the same

targets as Erdal and Cirpka (2019), with slightly modified

values to further decrease the behavioral part of the

parameter space:

1. Maximum of 2� 10�3 m3/s of water leaving the

domain on the top, outside of the streams (requesting

no flooding).

2. Between 25 and 60% of the incoming water should

leave the domain via the streams.

3. At Gauge C, the main stream should have a minimum

discharge of 5� 10�3 m3/s

4. Stream A should have a maximum discharge of

3� 10�3 m3/s.

5. Stream B should have a minimum discharge of

5� 10�6 m3/s

3.2 Simplified testbeds

Although the HydroGeoSphere flow model presented

above is reasonably fast compared to many similar and

realistic catchment models (wall-clock time 1 h), the

number of simulations that can be done in our study is

limited to a few thousand. Hence, it is not possible to

perform a pure Monte-Carlo rejection sampling as a true

reference. To still allow for a more rigorous test of the

suggested sampling schemes, we consider two simplified

testbeds. The first is the surrogate model based on the

active-subspace decomposition of the 10,000 flow simula-

tions performed by Erdal and Cirpka (2019), while the

second one is the GPE-surrogate model resulting from the

on-the-fly sampling scheme performed and presented in

this work. Hence, the simplified testbeds have the same

Fig. 1 Overview of the Käsbach

catchment. Left: model domain

with topography and streams;

right: example of a geological

realization
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input parameters as the real testbed, but the run time to

obtain an observation is almost negligible. Arguably, the

first idealized testbed is the simplest, as the active-subspace

based surrogate model projects the 32 input parameter to

two active variables which are subsequently used to obtain

the observation from an estimated 2-D surface. Conversely,

the GPE-based surrogate model remains an interpolation in

32-dimensional parameter space and could represent more

complex relations. Using a GPE as a simplified testbed,

while using the same GPE-setup in the proxy model, cre-

ates a simplified environment. In essence, it means that the

true model can perfectly be modeled by the proxy model,

which normally is not the case. This could lead to inflated

acceptance rates, but should not affect the efficiency

compared to the Monte-Carlo sampling.

3.3 Prior work

In a preceding study (Erdal and Cirpka 2019), we used the

method of active subspaces (Constantine et al. 2014;

Constantine and Diaz 2017) to both perform the global

sensitivity analysis and aid the Monte-Carlo sampling of

the behavioral parameter space. This resulted in a sample

of 10,000 HydroGeoSphere simulations, out of which 	
2000 fulfilled all targets listed above. Our current goal will

be to pursue a much higher efficiency, hoping to achieve

some fraction close to 100% after training the GPE. The

prior study showed that most of the 32 parameters were

insensitive to the selected behavioral targets (e.g., all

parameters related to the unsaturated flow regime), but that

the sensitive ones had a large impact on subsurface flow in

the model. The previous work also showed that the corre-

lation between parameters strongly influenced the sam-

pling, so that it is very difficult to predict the sampling

result by expert knowledge. Hence, it is highly advisable to

apply an automated search to obtain the joint distribution of

behavioral parameters.

In this work, we will make use of the previous findings

in three ways. First, we will compare the new GPE-based

sampling schemes to the scheme of Erdal and Cirpka

(2019), testing if they generate similar parameter distri-

butions. Second, we will use the active-subspace surrogate

model of Erdal and Cirpka (2019) to extensively test the

GPE-based sampling scheme, by replacing the full

HydroGeoSphere model with the active-subspace surro-

gate. This is done to show that the new sampling

scheme can produce similar results as a pure Monte-Carlo

sampling in the limit of extremely large ensembles, which

is not possible to perform on the full HydroGeoSphere

model (see further Sect. 3.2). Third, we compare the results

of the global sensitivity analysis of Erdal and Cirpka

(2019) to that based on the GPE-based sampling schemes

to detect possible shifts in accuracy.

4 Results

4.1 Tests with the full subsurface-flow model

We start with the application to the real HydroGeoSphere

flow model, aiming for 3000 stage-2 accepted parameter-

sets. Figure 2 shows the acceptance statistics of the two

GPE-based sampling schemes (blue: on-the-fly sampling,

red: active learning) and the original scheme of Erdal and

Cirpka (2019) (green). The latter scheme, which is based

on a polynomial fit in two active subspaces, approaches an

acceptance ratio of about 20%, while the two GPE-based

sampling schemes end around 70%. In the GPE-

scheme with active learning, the active-learning part

extended over 680 samples. In this period, no samples can

Table 1 List of uncertain

parameters and ranges
ID Parameter Where Equations Unit Max Min

1. Offset hp;ref -fixed Domain bottom 6 m 5 �5

2. Fault height mo-ku interface – m 100 0

3. Interface offset ku-km1 interface – m 20 �20

4. Layer thickness km1-weathered – m 50 5

5. hp;ref -drain Streams 9 m 0.2 0.005

6. hp;ref -Robin Southern exit 8 m 355 335

7–9. Qref Domain top 7 mm/year 150 80

10–14. K All geological units 1 m/s 10�5 10�9

15–17. Kz-ratio km1-weathered, km1, ku – – 50 1

18–22. a All geological units 3 1/m 5 0.5

23–27. n All geological units 3 – 9 1.5

28–32. Ss All geological units 1 1/m 10�4 10�6

1822 Stochastic Environmental Research and Risk Assessment (2020) 34:1813–1830

123



be accepted (zero acceptance in the right subplot), but these

datasets are needed to assess the boundary of the behav-

ioral parameter space. The crossover point between the two

sampling schemes can be seen at 	 2000 stage-2 accepted

samples (or 	 3000 stage-1 accepted samples). Before this

point, the on-the-fly sampling scheme is more efficient,

while afterward, the active-learning is more efficient.

Hence, for our 3000 samples, the active learning is in

principle more effective, but the difference between the

schemes in the total number of full-model runs required to

achieve the 3000 stage-2 accepted samples is rather small.

To assess the quality of the resulting posterior parameter

distributions, it is not possible to compare the results of the

sampling schemes to the true distribution that would be

obtained by pure Monte-Carlo rejection sampling because

the acceptance rates of the latter would be smaller than 1%.

Instead, we compare the two GPE-based sampling schemes

with the previously published scheme using active sub-

spaces (Erdal and Cirpka 2019). Figure 3 shows the

marginal parameter distributions resulting from the sam-

pling schemes for three parameters with distinct

distributions.

Table 2 (columns 8–10) lists the p-values of standard

two-sided Kolmogorov–Smirnov tests for all 32 parame-

ters, comparing the distributions resulting from the three

sampling schemes among each other. To increase read-

ability, p-values above 0.01 are set in bold (highlighting

significant similarities), and the others are in italic.

Although the Kolmogorov–Smirnov tests are not conclu-

sive across all parameters, a visual comparison of the

distributions indicates high degrees of similarity.

Figure 4 shows the square-root of activity scores

(Eq. 18) for the ten most influential parameters with respect

to streamflow at Gauge C (see Fig. 1) obtained by the

global-sensitivity analysis using the different stage-2

accepted ensembles with 3000 samples each. We only

show one observation here, since the results in the others

are similar. For the results of the full sensitivity analysis

Fig. 2 Performance of the sampling methods in application to the full

subsurface-flow model. Left: Stage-2 acceptance ratio as a function of

the number of stage-2 accepted samples; right: number of stage-2

accepted samples as a function of the number of stage-1 accepted

samples. Blue: GPE-based on-the-fly sampler; red: GPE sampler with

preceding active-learning phase; green: active-subspace based sam-

pler of Erdal and Cirpka (2019)

Fig. 3 Marginal distributions of three example parameters with

distinct distributions, generated using the full flow model. Blue: GPE-

based on-the-fly sampler; red: GPE sampler with preceding active-

learning phase; green: active-subspace based sampler of Erdal and

Cirpka (2019). Please note that, due to the slightly more conservative

targets used in this work, the number of samples is a little bit lower

for the active-subspace sampling scheme than in the two GPE-based

schemes. Please also note that colors different to those in the legend

are due to overlaying histogram-bars
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Table 2 Quantitative

comparison of the marginal

distributions of all parameters

by p-values of two-sided
Kolmogorov–Smirnov tests. For

the simplified testbeds, columns

2–3 and 5–6 compare the

different GPE-based sampling

schemes to their respective pure

Monte Carlo sampling scheme,

while columns 4 and 7 compare

the pure MC sampling

scheme to a uniform

distribution. Columns 8–10

show the same test for the full

flow model and compares

different sampling schemes to

one another

Active subspace data GPE-based data Full flow model

ID OtF AL Uni OtF AL Uni OtF-AS AL-AS OtF-AL

1 0.704 0.003 0 0.771 0.102 0 0.029 0.001 0.001

2 0.845 0.001 0 0.007 0 0 0 0 0

3 0.522 0.777 0 0.443 0.564 0 0.001 0.019 0.418

4 0.019 0.01 0 0.435 0.792 0 0 0 0.039

5 0.089 0.035 0 0.947 0.59 0.001 0.01 0.001 0.259

6 0.183 0.531 0 0.537 0.544 0 0.023 0.335 0.078

7 0.364 0.465 0 0.218 0.6 0 0 0 0.036

8 0.171 0.004 0 0.305 0.378 0 0.013 0.113 0.085

9 0.484 0.792 0.001 0.686 0.751 0.003 0 0 0.632

10 0.117 0.7 0 0.807 0.046 0 0.065 0.019 0.598

11 0.159 0 0 0.017 0 0 0 0 0.282

12 0.125 0.073 0 0.296 0.466 0.692 0.169 0.612 0.308

13 0.576 0.001 0 0.211 0.227 0 0.02 0.062 0.155

14 0.453 0.208 0 0.011 0.07 0 0.634 0.08 0.519

15 0.619 0.544 0 0.597 0.083 0 0.239 0.828 0.286

16 0.104 0.359 0 0.052 0.096 0.657 0.003 0.001 0.561

17 0.312 0.153 0.429 0.348 0.451 0.972 0.256 0.391 0.879

18 0.581 0.029 0.013 0.197 0.928 0.089 0.519 0.403 0.701

19 0.155 0.098 0.833 0.108 0.352 0.474 0.72 0.483 0.314

20 0 0.555 0.097 0.189 0.499 0.594 0.931 0.819 0.904

21 0.678 0.517 0.4 0.123 0.193 0.368 0.007 0.515 0

22 0.197 0.173 0.541 0.097 0.037 0.471 0.123 0.473 0.372

23 0.661 0.159 0.684 0.612 0.797 0.787 0.957 0.09 0.084

24 0.061 0.367 0.318 0.653 0.108 0.927 0.375 0.78 0.201

25 0.43 0.358 0.276 0.037 0.252 0.69 0.021 0.029 0.87

26 0.835 0.896 0.495 0.754 0.46 0.222 0.335 0.076 0.133

27 0.066 0.532 0.461 0.234 0.414 0.235 0.533 0.496 0.615

28 0.686 0.491 0.834 0.22 0.225 0.576 0.667 0.195 0.216

29 0.167 0.836 0.702 0.733 0.656 0.71 0.01 0 0.195

30 0.954 0.848 0.886 0.919 0.131 0.487 0.091 0.179 0.264

31 0.944 0.089 0.705 0.071 0.097 0.375 0.119 0.055 0.646

32 0.384 0.158 0.054 0.838 0.284 0.909 0.115 0.211 0.651

ID refers to the ID in Table 1. To increase readability, p-values above 0.01 (i.e. acceptable results) are bold,
and the others are italic. OtF, On-the-fly sampler; AL, Active-learning sampler; Uni, uniform distribution;

AS, Active subspace; OtF-AS, comparison between OtF and AS (from prior work)

Fig. 4 Global sensitivity

analysis of the full flow model.

Square root of the activity score

for the flow rate at gauge C as a

metric of global sensitivity.

Comparison of the different

sampling schemes. The scores

are restricted to the top ten most

important parameters
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and its discussion, the interested reader is referred to Erdal

and Cirpka (2019). When performing the global sensitivity

analysis using the two GPE-derived ensembles, we com-

pute the gradients according to Eq. 19. Figure 4 shows the

activity score for both the active-learning and the on-the-fly

sampling schemes, as well as the active-subspace based

sampling scheme of Erdal and Cirpka (2019). As can be

seen, the two GPE-based sampling schemes yield nearly

identical activity scores. The activity scores of Erdal and

Cirpka (2019) are similar and give the same top five

parameters. The notable differences between the active-

subspace sampling scheme and the GPE-based ones are

likely due to the slightly different marginal parameter

distributions and the way how the local gradients are

evaluated in the approach of Erdal and Cirpka (2019), in

which a third-order polynomial was fitted through all

behavioral parameter-sets. Independent tests of the active-

subspace sampling scheme with a simplified testbed sug-

gest that the results of the GPE-based sampling schemes

are more correct. Above all, the global sensitivity analysis

performed with the GPE-based ensembles and using the

GPE-calculated gradients gives very plausible results at

attractively low computational costs.

In summary, both sampling schemes give similar results

when applied to the full flow model, with comparable final

acceptance rates. While active learning is faster from a

certain ensemble size onward, it adds complexity to the

technical approach, and the length of the necessary active-

learning phase is not known a-priori. We thus assess that

the on-the-fly sampler to be the better and safer choice.

4.2 Simplified testbeds

In contrast to the full flow model, we can perform pure

Monte-Carlo sampling when applying the sampling

schemes to the simplified testbeds. This facilitates com-

paring the sampling schemes to the true posterior distri-

bution obtained by the Monte-Carlo sampler. To achieve a

sample of 3000 stage-2 accepted parameter-sets by pure

Monte-Carlo sampling, the simplified testbed based on

active-subspace decomposition required about 800,000

model evaluations in rejection sampling, while the sim-

plified testbed based on the GPE-approximation required

600,000 model evaluations in rejection sampling, leading

to efficiencies of 0.4% and 0.5%, respectively.

Figure 5 shows the acceptance rate of the two GPE-

based sampling schemes together with that of the original

active-subspace-based sampling scheme by Erdal and

Cirpka (2019). As can be seen, the active-subspace sam-

pling scheme approaches a stable acceptance rate of

	 15–20%, while the two GPE-based samplers reach

acceptance ratios between 75 and 90%. The left plot of

Fig. 5 shows the cross-over points, where the active-

learning scheme becomes beneficial compared to the on-

the-fly scheme. In both simplified testbeds, this occurs long

before 3000 samples are accepted, which we defined as the

requested number of accepted samples in our application.

Hence, in these simplified testbeds, the active-learning

scheme appears slightly preferable over the on-the-fly

learning scheme. This is likely so because the boundary of

the behavioral parameter space is explored at lower costs

(active learning required only 200 samples) than when

using the full flow model (requiring 680 samples). This

notable difference in the active-learning period of the

active learning GPE sampling scheme confirms that the

simplified testbeds don’t capture the complexity of the full

flow model. The simplified testbed using a GPE surrogate

model as virtual truth is in a way circular because we test

whether the GPE approach can identify itself, which differs

from representing a full subsurface-flow model. Another

reason for the differences in the active training may be that

the simulation times of the full model are fairly long. As

discussed above, the full flow model needs to be run

asynchronously and without waiting for any previous run to

finish, whereas the original active-training procedure was

designed for sequential processing of one parameter-set

after the other, which is how the simplified test cases are

run. This may contribute to the simplified test cases having

a shorter active-learning phase than the full model.

Figure 6 shows the resulting marginal parameter distri-

butions of the same three selected parameters as shown in

Fig. 3. As can be seen, both GPE-based sampling schemes

result in the correct (marginal) distributions. Table 2

(columns 2–3 and 5–6) lists the resulting p-values of

standard two-sided Kolmogorov–Smirnov tests for all 32

parameters, comparing the distributions resulting from the

GPE-based sampling schemes to those of pure Monte-

Carlo sampling. To increase readability, p-values above

0.01 are again set in bold (highlighting significant simi-

larities), and the others are in italic. Table 2 (columns 4 and

7) also shows the KS-metric comparing the pure Monte-

Carlo samples with the uniform prior distribution (see

Sect. 2.4), indicating which parameters have undergone

significant selection upon the sampling. As can be seen,

both GPE-based sampling schemes applied to both sim-

plified testbeds result in marginal distributions of most

parameters that are significantly similar to the true distri-

butions. We thus conclude that both GPE-based sampling

schemes work well for the simplified testbeds.

Another way of analyzing the results of the simplified

testbeds is to check whether the surrogate models correctly

predict whether a candidate parameter-set is behavioral or

not. We test this here with the two GPE-based sampling

schemes. Towards this end, we randomly choose 3000

parameter-sets that are behavioral and 3000 parameter-sets

that are non-behavioral according to the truth of the
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simplified testbeds. We then ask the GPE surrogate models,

either actively trained or trained on-the-fly, whether they

predict these parameter-sets to be behavioral or not,

resulting in true-positive or true-negative (correct), false-

positive and false-negative predictions of the surrogate

models. Table 3 shows the results. In all cases, 80% or

more of the tested parameter-sets are correctly predicted as

being behavioral or non-behavioral. It is also clear that

barely any parameter-set is falsely predicted to be behav-

ioral (false-positive in Table 3). The most common mis-

classification is false-negative, where the surrogate predicts

a parameter-set to be non-behavioral while in fact, it is

behavioral. Unfortunately, we consider this the least tol-

erable error, because we use the surrogate model only as a

preselection tool. That is, a false-positive sample only

implies that a full model run is performed on a parameter-

set that needs to be discarded afterward, whereas a false-

negative sample is not run at all, and we miss a part of the

behavioral parameter space. With a ratio of false-negative

predictions of about 10%, however, the error is not

alarmingly large, especially considering that the tested

datasets contained 50% truly behavioral samples, while a

real sampling campaign would contain less than 1%

behavioral sets. Because the rejected parameter-sets in such

a setting are almost always truly non-behavioral, a realistic

dataset would result in a better overall performance of the

sampling schemes than in the test case. The dominance of

the false-negative errors can be understood by the setup of

Fig. 5 Performance of the sampling methods in application to the

simplified testbeds. Left: Stage-2 acceptance ratio as a function of the

number of stage-2 accepted samples; right: number of stage-2

accepted samples as a function of number of stage-1 accepted

samples. Blue: GPE-based on-the-fly learning; red: GPE-based active

learning; green: Active-Subspace sampling; black: pure Monte-Carlo

sampling. Solid lines: simplified testbed using GPE-based data;

dashed lines; simplified testbed using Active-Subspace based data

Fig. 6 Marginal distributions of the three example parameters with distinct distributions as shown in Fig. 3, here applied to the simplified

testbeds. Upper row: simplified testbed with active-subspace based data; lower row: simplified testbed using GPE-derived data

Table 3 Accuracy (%) of the GPE-based sampling schemes in pre-

dicting the behavioral status of 6000 parameter-sets in the simplified

testbeds

GPE-data AS-data

OtF AL OtF AL

Correct 95.2 91.6 93.0 87.2

False-negative 4.8 8.4 7.0 12.8

False-positive 0.02 0.02 0.03 0.02

GPE-data/AS-data, the true model is GPE-proxy model/Active sub-

space proxy model, OtF, on-the-fly; AL, active learning
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the sampling procedure. To obtain a false-negative, only

one of the six targets need to generate a low probability. To

obtain a false-positive, by contrast, all six targets must be

falsely positive. Hence, the former is more likely to occur

and therefore the false-negatives dominate over the false-

positive errors. While there might be other approaches to

combine the rejection criteria resulting in a balanced ratio

between false-positive and false-negative errors, exploring

such approaches would be outside of the scope of the

current paper and is left for further research.

It may be worth noting that both Tables 3 and 2 indicate

larger or more errors when using active learning rather than

the on-the-fly sampling scheme. The larger differences to

the reference distribution can come either from a subopti-

mal performance of the GPE-model resulting from the

active learning, or, more likely, from the higher require-

ment during preselection use in this work for the active-

learning scheme. This suggests that the improved sampling

speed comes with a slight deterioration in the quality of the

posterior distribution.

5 Discussion and conclusions

In this paper, we have used Gaussian Process Emulators as

surrogate models for a surface-subsurface flow model, with

the purpose of creating a large ensemble of behavioral

parameter-sets to perform a global sensitivity analysis. We

compared two different approaches: actively training the

surrogate model prior to the sampling (active learning), or

passively training the surrogate model as the sampling

proceeds (on-the-fly). Both sampling schemes outper-

formed the pure Monte-Carlo sampling scheme (rejection

sampling) by orders of magnitude, where a pure Monte-

Carlo scheme only reached about 0.5% acceptance rate.

The active learning sampling scheme showed the highest

final acceptance rates with above 90%, while the on-the-fly

sampling scheme improved with the increasing number of

simulated samples and reached, in the best case, almost

90% acceptance rates. The on-the-fly scheme is most

effective if the required ensemble size is smaller, in our

case below 2000 samples for the full complex model. In a

preceding study, we used polynomials of the first two

active subspaces as surrogate models, achieving a sampling

efficiency of just under 20%, so that the improvement of

using the GPE is most notable. The GPE surrogate models

not only predict the model outcome of the type as used in

the training and its uncertainty, but also its gradient in

parameter space, thus supporting the active-subspace

approach as a global sensitivity analysis method.

To assess the performance of our sampling schemes, we

estimate the time it would take to run the sampling without

the GPE. The corresponding efficiency in the given

application is about 0.5% (which results from the pure

Monte-Carlo runs with the simplified testbeds), implying

that already a minimum sample size of 300 behavioral flow

models would require about 60,000 evaluations of the full

flow model, at the computational cost of 	 240,000 CPU-

hours. In contrast, any of our GPE-based sampling schemes

would require less than 2000 CPU-hours to obtain the same

number of behavioral samples, including the training time

for the 6 GPE-surrogate models.

In the results section we could show that both GPE-

based sampling schemes could reproduce the marginal

distributions produced by a pure Monte-Carlo sampling

scheme with high accuracy, even though this test could

only be performed with two idealized testbeds. In this

regard, the active-learning scheme sampled the target dis-

tributions slightly less accurate than the on-the-fly scheme.

The GPE-based sampling schemes require several tun-

ing parameters. One of those that partly controls the

resulting performance of the sampling schemes is the

number of initial samples drawn before the first training of

the surrogate model. In this work, we used an initial sample

size of 50 Latin Hypercube sampled parameter-sets. If the

requested size of the final ensemble is decently small, a

large sample size before the first training of the GPE will

cause many rejected full model runs (as, at least in our

case, the pure Monte Carlo sampling has less than 1%

acceptance ratio). However, a too-small number of initial

runs will leave the surrogate model unable to make accu-

rate predictions in the first iterations of the subsequent

training. We have chosen 50 as this is roughly 1.5 times the

number of parameters.

In designing a sampling scheme, two important and

interlinked questions are always ‘‘what is the purpose of

the sampling’’ and ‘‘how effective does it need to be’’. In

the present work, the aim is to explore the full posterior

distribution of the behavioral parameter space. This means

that we are interested in samples from the regions where

we are very sure that they are accepted, as well as samples

from the boundary between the behavioral and non-be-

havioral parts of the parameter space. The latter require-

ment is clearly more demanding, as a particularly effective

sampling scheme (with very high acceptance rates) could

potentially be so effective because it does not properly

sample the uncertain boundary regions of the parameter

space. Hence, it only samples the inner regions and thus

causes a bias. In our work, we compared the two proposed

GPE-based sampling schemes to pure Monte-Carlo sam-

pling, showing that they both correctly sample the marginal

parameter distributions. Contrasting to our current purpose,

if we had been interested in just sampling a sufficiently

large set of behavioral parameters, regardless of exploring

the boundaries of the behavioral parameter space, the

sampling would most likely be easier. Towards this end,
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we could raise the estimated required joint probability to

accept a sample so that only samples are tested about which

we are very sure that they are behavioral. In such a setting,

the active-learning scheme would likely be the stronger

candidate, as after the training we know rather certain

where we do not want to be. In such a setting, an accep-

tance rate close to 100% would become achievable, while

such a rate would be suspicious in our current setting where

we want to explore the parameter space up to its behavioral

boundaries.

A tempting thought to increase the acceptance rate,

would be to use stage-2 accepted samples only to train the

surrogate model. While this might indeed provide a higher

acceptance rate, it might also limit the exploration of the

parameter space to the inner part of the behavioral regions.

As we here aim to explore the full behavioral parameter

space, this approach is not feasible. For a further discussion

on this topic, please see Erdal and Cirpka (2019).

When comparing the two GPE-based sampling schemes,

the general conclusion of this study is to use the on-the-fly

scheme, unless the required ensemble size is very large

(notably larger than our current 3000 samples) or the user

has reasons to believe that the active-learning part will be

comparatively fast. For all other cases, the on-the-fly

scheme is most likely the safer and better choice, as it

produces usable simulation results already in the learning

phase and seems to lead to more correct posterior param-

eter distributions.

We highly recommend using surrogate models to assist

sampling the parameter space of complex models with

unforeseeable boundaries of its behavioral regions. In this

work, we have used the Gaussian Process Emulator as a

surrogate model, primarily because of its proven good

performance for subsurface flow (e.g., Cui et al. 2018b),

and because it yields derivatives at minimal additional

costs. Most likely, we could have used also other machine-

learning tools with similarly good results (e.g., Yoon et al.

2011). In comparison to our previous study on the same

model using a polynomial surrogate model of the first two

active subspaces (Erdal and Cirpka 2019), by contrast, we

see clear differences in both the performance and the ease

of implementation. In the present study, we relied on a

third-party code to perform all GPE-related tasks. This

deems the methods a gray box: we know how it is supposed

to work and what it is supposed to do, but the technical

details are out of our control. The active-subspace based

sampler, by contrast, is a complete white box, as the

implementation is very simple and done in-house. If one

just looks at the final performance metrics presented in

studies like the current one, the choice for more complex

models should be obvious. However, these figures are of

course computed once the model framework is stable and

operational, while the amount of time and number of model

simulations spent getting there are commonly not dis-

cussed. In our case, the difference in complexity between

the GPE and the active-subspace implementations resulted

in a notable overhead for the former, including setup/

learning time, unexplained errors, and crashes resulting

from erroneous setups. Hence, one should consider the

required ensemble size before choosing a method requiring

a complicated implementation. Simple but less effective

may be better for small ensembles, whereas complex and

effective will be better when the required ensemble is

larger.
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