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Abstract
Poisson Voronoi (PV) tessellations as artificial microstructures are widely used in investigations of material deformation
behaviors. However, a PV structure usually describes a relative homogeneous field. This work presents a simple numerical
method for generating 2D/3D artificial microstructures based on hierarchical PV tessellations. If grains/particles of a phase
cover a large size span, the concept of “artificial phases” can be used to create a more realistic size distribution. From case to
case, detailed microstructural features cannot be directly achieved by commercial or free softwares, but they are necessary for
a deep or thorough study of the material deformation behavior. PV tessellations created in our process can fulfill individual
requirements frommaterial designs. Another reason to use PV tessellations is due to the limited experimental data. Concerning
the application of PV microstructures, four examples are given. The FE models and results will be presented in consecutive
works, i.e. “part II: applications”.

Keywords Hierarchical Poisson Voronoi tessellation · Polycrystalline aggregates · Twins · Artificial tomographic images ·
Multiphase materials

1 Introduction

To investigate the material behavior, micromechanical mate-
rial properties are essential, since such features, besides
other factors, determine the overall material characteristics.
Besides experiments, finite element (FE) simulations also
play an important role in studying material behaviors. Due
to limitedly measured data or other reasons, FE simulations
with artificial microstructures can be as valuable as simula-
tions with real microstructures. When a real microstructure
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is applied, its phase composition may have a large discrep-
ancy to the one of the sample. This discrepancy is caused
by the limited size of a microstructure cut-out, e.g. as shown
in Schneider et al. [1]. Artificial microstructures generally
do not have the above mentioned composition misfitting
between the applied structure and the real one. At least, it can
be easily avoided. The application of the artificialmicrostruc-
ture is very useful for a computer-aided material design and
for the structure optimization. It is more time efficient and
less expensive than the application of the real microstruc-
ture. To evaluate the microstructural influences on material
properties, it is important to statistically estimate the mean
size, the size distribution and geometrical characteristics of
each phase. A random microstructure can be approximately
presented by the Voronoi tessellation [2], which is widely
used inmodelling and analysing cell-type structures. Voronoi
tessellations are also known as Voronoi diagrams, Voronoi
decompositions or Dirichlet tessellations. Tessellations are
also called cells, grains, aggregates or mosaics. To be distin-
guished with grains in a crystalline material (e.g. Ag grains
in Fig. 6), the term “grain” is not used for Voronoi tessella-
tions in the current work. Voronoi tessellations have different
classes/types, e.g. the Poisson Voronoi (PV), the Hardcore
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Voronoi and the Laguerre Voronoi [3–7]. Within the class of
Voronoi tessellations, the most intensively examined model
is the PV tessellations. For this type of tessellations, the most
extensive set of existing results concerns the distribution of
the cell quality [2,5].

Voronoi structures are used by different authors to simu-
late material mechanical behaviors, e.g. [8–15]. Fritzen et al.
[8] reported a method of generating the 3D meshing of peri-
odic Voronoi structures for polycrystalline aggregates. Their
process was time efficient, but it required professional pro-
gramming skills and no hierarchical Voronoi tessellations
are included. Schneider et al. [9] used PV cells in their
texture simulations for α-Fe–Cu composites, where a reg-
ular meshing was used. Falco et al. [10] applied Voronoi
tessellations for the discretization of arbitrarily shaped three-
dimensional polycrystalline models. They also introduced
an original approach to define any possible (concave or
convex) shape of the final domain, independent from the
initial configuration of the aggregate. To simulate the perva-
sive fracture of materials and structures, Bishop [11] used
the randomly closed-packed Voronoi tessellations, which
provide a regularized random network of facets for repre-
senting cracks. Based on the Voronoi tessellation method
applied on the microscopy, an approach for the elastic prop-
erty calibration of the macroscopic property is established
by using the discrete-element-method [12]. This calibra-
tion approach connects the macroscopic elastic properties
with microscopic properties. By applying combined real and
Voronoi microstructures, a coupled approach of a crystal
plasticity FE model with a phase-field model is used to sim-
ulate the grain recrystallization [13]. In this model [13], the
3D real microstructure used in an FE simulation is taken
as the starting local morphology under a hot rolling defor-
mation process. The deformed microstructure (from a real
one) provided the geometric information for the generation
of Voronoi tessellations used in a phase-field simulation to
simulate the recrystallization during a cold rolling process.
Some applications of PV structures can be found in [16].
Based on closed-pack non-overlapping circles, Jafari and
Kazeminezhad [17] proposed a new Voronoi diagram in a
Laguerre geometry. In their microstructures, grain sizes and
fractions were created by controlling the size and distribu-
tion. Based on Laguerre Voronoi tessellations, the generation
of 3D numerical models for polycrystalline microstructures
was given in [14]. Falco et al. [14] used the 2D sections (by
cutting 3D tessellations) to compare with real 2D surfaces,
in order to achieve the most representative set of input val-
ues. Based on the minimization of the energy and distance
function, a process was presented to dynamically generate
the spherical Laguerre Voronoi diagram based on assump-
tions in the real world [18]. Such Voronoi diagram has the
corresponding properties of polyhedra as described in [19].
i.e. the spherical Laguerre Voronoi diagram is valuable to

analyze or model some real-world phenomena. The relative
density and irregularity of Voronoi closed-cell foam struc-
tures can be used to investigate the elastic characters of the
foam material [20]. With a combination of the Laguerre
Voronoi tessellation method and the FE method for solv-
ing the heat transfer problem, the thermal properties were
computed [21]. Luo et al. studied the optimization of the
centroidal Voronoi tessellations by using a Laplacian opera-
tor, where a density function was used to control the size and
distribution of Voronoi tessellations [22]. Their study results
can be used in dynamic simulations of forming processes.
Besides in materials science, Voronoi tessellations has also
applicability in other fields, e.g. in aviation, in biology, in
ecology, in geography and in astronomyaswell as in telecom-
munications. Using the cohesive element-based numerical
manifold method with Voronoi cells (grains), a fully coupled
hydro-mechanical formulation is presented for the investiga-
tion of the hydraulic fracturing of rock on the micro-scale
[23]. To study the rock strength, a methodology for gener-
ating Voronoi tessellations presenting a polycrystalline rock
microstructure is proposed to simulate the packing processes
and the crystal growth of mineral grains, where the distribu-
tion of the poly-crystals (tessellations) varies in shapes and
sizes representing different mineral grains [24]. In present-
ing structures for individual cases, especially for detailed
structural features, Voronoi tessellations have more than one
drawback, if no extra constraints for cells are set. Using
the Voronoi estimator for the intensity estimation, the major
drawback is that it tends to paradoxically under-smooth (the
over accentuating of local intensity) the data in regions with
a high point density and to over-smooth in regions with low
point density. To remedy this behavior, an additional smooth-
ing operation to the Voronoi estimator is applied based on
resampling the point pattern by independent random thin-
ning [25]. Their proposed intensity estimation schemes were
used to two datasets: locations of pine saplings (planar point
pattern) and motor vehicle traffic accidents (linear network
point pattern) [25]. Mentioned in Koufos and Dettmann [26],
little is known about the properties of Voronoi cells located
close to the boundaries of a compact domain. In a domain
with boundaries, Voronoi cells would be naturally clipped
by the boundary. They [26] used a low-complexity numeri-
cal method to compute the mean cell area of homogeneous
Poisson Voronoi tessellations for seeds located along and/or
close to the boundary of a quadrant. It is found that, by using
the location-dependent parameters calculated by using the
method of moments (second moment of the cell area), it
can provide a reasonably good approximation of the wished
structure, i.e. avoid the above mentioned cell area problem
near to boundaries. Voronoi tessellations are ubiquitous in
nature, since they possess the ability to model growth pro-
cesses and equilibrium states [27]. To be simple and time
efficient, users can firstly try to use softwares with open
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Fig. 1 A sketch to show the
growth of Voronoi cells: a
generation of Voronoi nuclei in
a controlled area; b the cells are
growing in an identical speed in
both x and y directions; c
resulting from the growth,
tessellations (given in polygons)
presented

x

y

(a) (b) (c)

accesses, e.g. “NEPER” [28]. “NEPER” cannot fulfill some
individual requirements for microstructure topologies in our
cases, e.g. �3-twins in Fig. 7d–f and mixed crystals with
layers in Fig. 8g.

It is well known that PV tessellations result in rela-
tively homogeneous cell sizes, which can be a defect to
present structures with inhomogenous sizes. The current
work presents a simple process to numerically generate 2D
and 3D hierarchical PV structures, i.e. to remedy the afore-
mentioned defect. A “hierarchical structure” is achieved
by controlling the number of total nuclei in a given vol-
ume or subvolume. The size distribution of a given phase
can be described by dividing the whole size spectrum into
N subzones. Each subzone has its own mean size, i.e.
the concept of an “artificial phase” (each subzone corre-
sponds to an artificial phase). A further contribution of this
work is to illustrate processes in order to fulfill individ-
ual microstructural requirements, e.g. twins. The method
is to set constrains during the nuclei generation. In the
3D case, the tomography concept is used to present the
3D PV tessellations. Since it is only necessary to gener-
ate points (Voronoi nuclei) and write out numbers, it needs
only some basic programming knowledge of any software.
No deep understanding of mathematical theories is required.
PV microstructures with ASCII format are directly ready
for meshing. Here, PV tessellations are applied as artificial
microstructures in FE simulations to investigate solid mate-
rial behaviors.

2 A simple numerical method for the
generation of Poisson Voronoi
tessellations

As mentioned, the current work is aimed at presenting a
simple numerical way to generate PV tessellations for mate-
rial simulations. For a detailed knowledge about Poisson
field and Voronoi cells, it can be referred to [3–5]. Here
our method will be directly introduced. Tessellations in PV
structures should match characters of material microstruc-
tures.

2.1 Basic concepts

In a controlled volume E (a Euclidean space E), let {pi } be
a set of points, i.e. generator points [3]. {pi} are randomly
generated inside E. Each point in {pi} generates a Voronoi
cell, which covers a certain volume Si with ∪Si = E. It
means that the Voronoi cells partition the Euclidean space
E into sets Si with non-overlapping interiors [3]. A certain
volume Si consists of all points {xi}, which have pi as their
nearest generator point inside E. I.e. if pi �= p j ,

Si = {x ∈ E : ‖pi − x‖ ≤ ‖p j − x‖,∀p j }, (1)

where ‖ · ‖ indicates the distance between two points in E. In
our case, {xi} points are generated by the subdivision ofE in
a regularway (equal subvolumesSxi with∪Sxi = E), and {xi}
points lie in the center of each Sxi . {xi} points are uniformly
distributed, i.e. a homogeneous Poisson’s distribution. The
above generation process is also suitable for 2D cases, i.e.
within a controlled area.

Figure 1 schematically presents the growth process of 2D
Voronoi nuclei (generation points). As a result of the afore-
mentioned growth, Voronoi cells/tessellations are created.
In a 2D controlled area, 10 Voronoi nuclei given as black
points are randomly generated (Fig. 1a). During the growth,
the speed is identical in both the x- and the y-direction. In
Fig. 1b, each circle (including dashed and solid lines) has a
Voronoi nuclei as its center point. The two Voronoi nuclei
with dashed circles will firstly meet each other, since the
distance between these two neighboring nuclei is the mini-
mum one among all. Fig. 1c denotes the final result of such
a growing process of Voronoi nuclei, i.e. Voronoi tessella-
tions are created. More simply, the aforementioned Voronoi
tessellation structure can be obtained by: (I) supposing each
Voronoi nuclei has M neighbors, drawing the middle line
between each two neighboring Voronoi nuclei, (II) connect-
ing intersection points of thesemiddle lines in sequence; (III)
an individual Voronoi tessellation being a polygon with M
edges.

Figure 2 schematically illustrates the generation process
of 2D PV tessellations. Figure 2a shows that 8 points are
randomly generated inside the controlled area, i.e. 8 Voronoi
nuclei in the generator point set {pi}. Figure 2b with 10×10
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Fig. 2 A sketch to generate Poisson Voronoi tessellations by using the ASCII format of images: a random generation of N=8 Voronoi nuclei (circle
red points, 8 points in {pi}) in a controlled area; b in the same controlled area, generation of the homogeneous Poisson field, i.e. 10 × 10 = 100
pixels with their center points (rectangle black points, 100 points in {xi}); c assign each subzone of Poisson field in {xi} to a certain Voronoi cell
in {pi}; d 14 pixels with inclined stripes belong to the Voronoi cell located at the upper left. (Color figure online)

subzones shows the homogeneous Poisson field within the
same controlled area as the one in Fig. 2a. Since an image
will be created as the illustration of the final structure, the
pixel resolution of this image will be 10 × 10 pixels. The
mean size of each tessellation will be 100

8 = 12.5 pixels,
i.e. 12.5% area fraction. Let each rectangle point locate at
the center point of the above mentioned subzones, it means
that there are 10 × 10 points in the Poisson’s point set {xi}.
Each point in {xi} presents a subzone of the Poisson field.
Figure 2c means that the very upper left rectangle point in
{xi} belongs to a certain Voronoi cell, after searching the
minimum distance between this rectangle point and all the
8 Voronoi points (red circles) in {pi}. In our code and for
all the resulted PV structures in the current work, the search
begins with the upper left subzone of the Poisson field and
goes to the next neighbor on the same layer in the x direction
(Fig. 2b). After searching for the first layer, it goes to the next
neighboring layer (second layer). The search still begins with
the left subzone and so on. Figure 2d means that 14 subzones
of the Poisson field (pixels with inclined lines) belong to a
certain Voronoi cell after the whole searching process. The
area fraction of this tessellation with 14% ( 14

10×10 ) is slightly
higher than the mean value 12.5%. Each tessellation will be
assigned an individual pixel color number for the graphical
presentation.

Figure 2 is suitable for one phase material, which can be
polycrystalline. Figure 3 schematically gives the generation
process of a two-phase material with different phase mean
sizes. This PV tessellation generation process (Fig. 3) can
be analogously applied for multi-phase (N-phase) materials
with non-identical mean sizes of phases. A detailed descrip-
tion to generate Fig. 3 is referred to the appendix. Here, the
general method to create a hierarchical PV structure with N
phases is given in Table 1 for the 2D case.

For the generation of 3D PV tessellations, the process
is analogous to the one for the 2D case. Some precal-

culations are necessary, based on the requirements of the
material design. It includes: (I) all the phases are made in
order according to their mean size values d, i.e. d phase−1 ≤
d phase−2 ≤ · · · ≤ d phase−N . Basically, the exact number
of points in the Voronoi point set {pi} and the one of the
Poisson point set {xi} are required. If the hierarchical tessel-
lations are desired, one needs to distinguish the number of
the real Voronoi nuclei/points {pphase−n−real

i } from that of

the {pphase−n−total
i }.

Figure 4 schematically presents the generation process
of a 3D PV tessellation diagram within a controlled vol-
ume E. Assumptions for Fig. 4 are similar as those for
Fig. 3. In total 25 Voronoi nuclei in {pphase−A−total

i } should
be generated (Fig. 4a). Among the 25 nuclei, 4 nuclei sur-
rounded with circles belong to phase-A ({pphase−A−real

i }
), and 4 nuclei surrounded with hexagons belong to phase-
B ({pphase−B−real

i }). Furthermore, {pphase−B−real
i } and

{pphase−B−total
i } are identical. Concerning the Poissonfield,

one can imagine that the volume E is regularly divided into
layers in the z-direction. In Fig. 4b, the volume E is divided
into 4 equal layers by the dashed lines. 4 images go through
center points of the above mentioned equal layers and they
are perpendicular to the z-axis. These 4 images compose an
artificial tomography. Each above mentioned image will be
subdivided into nx × ny pixels. It is user dependent how fine
the net is. The refinement degree of the net depends on the
number of the total layers and the total pixels of each image.
In Fig. 4b, each image in the artificial tomography is subdi-
vided into nx ×ny = 5×5 pixels. These pixels are presented
by squares in blue. “Squares” indicates that the length of a
pixel is identical in the x and in the y direction (Fig. 4b,
c). A small blue rectangle point locates at the center point
of each pixel. If the length of each layer in z direction, the
length of each pixel in the x and the y direction are the same
(Fig. 4b, c), then the controlled volume is regularly subdi-
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(a) (b) (c)

Fig. 3 A sketch to generate hierarchical Poisson Voronoi tessellations for a two-phase material by using the ASCII format of images: a random
generation of Ptotal = 20 Voronoi nuclei (circle red points) and a homogeneous Poisson field presented by black squares (phase-A with 20 vol.%
and a mean size d, phase-B with 80 vol.% and a mean size D = 2d); b for phase-A, the search goes through all the 20 Voronoi cells, and as a result,
the subzones of the Poisson field with inclined strips are assigned for phase-A Voronoi nuclei (red points with dashed circles) with a mean size of
d; c for phase-B, the search goes only through the 4 cells for phase-B (red points with polygons) with a mean size D = 2d. (Color figure online)

Table 1 A method to generate
the hierarchical PV structures
with N-phases for the 2D case

Given: The desired square structure has an area of D2
0 , where edge lengths in x and y directions

are divided into equal M sublengths with nx = ny = D0
M , i.e. totally M×M = M2 points

in {xi } with i ∈ [1, M2] for the homogeneous Poisson’s field, also M2 subareas in {Xi }
and ∪Xi = D2

0 ;

Total N phases with mean size diameters d j , j ∈ [1, N ] and d1 ≤ d2 ≤ · · · ≤ dN ; where
corresponding phase volume fractions are vol% j with j ∈ [1, N ] and ∑N

j=1 vol% j =
100%

Step Description

1 Calculation of Poisson point coordinates (points in {xi }), where each point i in {xi } locates
in the center of the Poisson subzones in {Xi }

2 Calculation of the total nuclei number Ptotal = D2
0

1
4 πd1×d1

and then randomly generating

coordinates of Ptotal points for {ptotali }
3 Calculation of two types of nuclei numbers for each phase, i.e. P j−total and P j−real

(generator points) with j ∈ [1, N ]
P j−total = (100%−∑ j−1

k=1 vol%k )×D2
0

1
4 πd j×d j ; P j−real = vol% j×D2

0
1
4 πd j×d j

Each nuclei in {p j−real
i } with i ∈ [1, P j−real ] corresponds to a tessellation in the final

PV structure and {p j−total
i } with i ∈ [1, P j−total ] is only an intermediate tool to achieve

a geometrical hierarchical structure, where P j−real ≤ P j−total and P j−total ≤ Ptotal as
well as {p j−real

i } ⊆ {p j−total
i } and {p j−total

i } ⊆ {ptotali }

4 For each phase j with j ∈ [1, N ], assignation of remaining {xi } to {p j−total }. The
condition for the assignment is

S
j−total
l = {‖p j−total

l − x‖ ≤ ‖p j−total
m − x‖,∀p j−total

m }; with l,m ∈ [1, P j−total ]
For j ≥ 2, not all M2 points in {xi }, but the remaining ones (i = M2 − ∑ j−1

k=1 Pk−real ).
Points belong to {pk−real } with k ∈ [1, j − 1] should be subtracted;

After the assignment for the current phase, then j = j + 1 and the data
({xi }, {p j−total

i }, {p j−real
i }) should be updated. Then, it starts the assignment for the next

phase;

5 At last, a hierarchical PV structure with N phases will be created with ∪S j−real
i = D2

0
with i ∈ [1, P j−real ] and j ∈ [1, N ]

vided into cubes. These cubes demonstrate a homogeneous
Poisson field. Figure 4c is just to illustrate the Voronoi nuclei
and the concept of the artificial tomography together. Since

there would be 4 layers ×25 cubes per layer = 100 cubes, it
means 100 points in the Poisson point set {xi}.

For a pixel image with an ASCII format in a grey scale,
256 pixel color numbers are available. This color number
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(a)

a tomographic image lies in

the middle of a subzone in Poisson field

(b) (c)

Fig. 4 A sketch to generate 3D hierarchical Poisson Voronoi tessellations: a Ptotal = 25 nuclei inside a controlled volume, where cells with circles
and hexagons belong to phase-A and phase-B, respectively; b one tomographic image with 5× 5 = 25 pixels lies in the center of a layer (a subzone
in the Poisson field) bounded by two dashed lines; c Voronoi cells and the homogeneous Poisson field (partly)

spectrum is [0, 255]. A colored ASCII format is out of
the discussion range of the current work. For a multi-phase
microstructure, phases can have non-overlapping subranges
of the above mentioned color spectrum. If a microstructure
includes more than 256 grains and particles (more than 256
pixel groups), our method is still applicable. Strictly, an extra
variable should be used in the code to trace each pixel group.
The usage of this variable is to guarantee that no neighboring
groups will be assigned an identical pixel color. It is very rare
that a grain or a particle cluster has more than 255 neighbors
in the engineering applications. Practically, the code can only
assign each pixel group a color number one after another.
The possibility is very low for neighboring pixel groups to
have the same pixel color, since the cells are randomly gen-
erated in the control volume and there are large enough data
to guarantee a representative microstructure. Besides, each
phase has its own color number range. It means that pixel
groups belonging to different phases will have non-identical
pixel color numbers. Even though two or a few neighboring
pixel groups have the identical pixel color, the percent ratio
is still near to zero among a few hundreds of PV cells (total
number of PV cells at least larger than 256). In FE simula-
tions of polycrystalline materials, the maximum number of
considered cells are within 1000, e.g. [1,8,9].

2.2 Generation of 2D and 3Dmulti-phase PV
microstructures

In the generation process of the PV structure, the Voronoi
nuclei are firstly randomly generated in the range of [0, 1]
(ABCO in Fig. 5a). Then, coordinates of nuclei are scaled
into the desired dimensions (A1B1C1O in Fig. 5a). To keep
the same nuclei growing rate in all the directions, the above
mentioned desired dimensions should be a square in 2D
cases. To create a rectangle-shaped PV microstructure, the
involved area should be firstly selected as a square. The edge
length of this square is the same as the longer edge length of

y

x

A B

CO

A1
B1

C1

(a)

an arbitrary size
distribution of a phase

divide into “m” subzones

(b)

Fig. 5 a Generation of Voronoi nuclei in the range of [0, 1] (ABCO)
and then scaling their coordinates to desired range (A1B1C1O with
‖A1B1‖ = ‖B1C1‖); b division of the whole size spectrum into “m”
subzones to realize a better size distribution in a PV microstructure,
where each subzone is taken as an extra artificial phase and has its own
mean size and volume fraction

the rectangle. Then, the PV structure should be cut into the
desired size. An example is presented in Fig. 8g, h. In 3D
cases, the controlled volume should be a cube. In usual, a PV
tessellation diagram gives a relative homogeneous size dis-
tribution. This can be a defect for the representation of real
microstructures. A simple way, i.e. adding artificial phases,
can be used to compensate this defect. If a phase (phase-
A) possesses a relative large size spectrum in reality, “m”
(m > 1) phases in PV structure can be used to describe
phase-A (Fig. 5b). Each artificial phase would have its own
mean size, but the mean size of “m” phases is the same
as the one of phase-A, where the volume weighting factor
should be considered according to the phase-A size distri-
bution. It is pointed out that the concept of an “artificial
phase” is a way to improve the shortage of a relative homo-
geneous cell size distribution. But this concept increases the
total amount of constraints for the nuclei, which makes the
finding of all nuclei coordinates more and more difficult. A
good mapping of a very irregular real size distribution of
a phase might be impossible by using this concept, since
the generation of all desired nuclei might be too difficult to
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Table 2 A polycrystalline Ag/SnO2 ODS: some measured data [30] provide requirements for the generation of artificial PV microstructures

Material SnO2 content wt.% SnO2 content vol.% Mean grain size D (µm) Mean oxide size d (µm)

Ag/SnO2 12 17 4.36 0.9

be successful. Figure 5b schematically describes the way to
present the size distribution spectrum of a phase by using
PV tessellations. Each subzone in Fig. 5b will have its
own mean size. As a final result, the size distribution can
be better described. For a given phase in a PV structure, a
volume deviation exists between the phase volume fraction
in the final structure and the prescribed volume fraction as
an input parameter. The larger the number of total nuclei, the
less the volume deviation. Statistically, a larger number of
total nuclei depicts usually a more representative microstruc-
ture.

Generally, some basic physical data, like the volume frac-
tion, mean size and size spectrum of each phase as well
as cell/grain/particle distributions, should be obtained from
each individual material and applied in the PV structure gen-
eration. To obtain a representative structure, the total nuclei
number should be big enough for each phase. The minimum
distance between nuclei must be considered to avoid unreal-
istic tessellation concentrations, e.g. islands. If islands exist,
some phases would be completely surrounded by the other
phases. In our code, an algorithm according to Ahrens et
al. [29] is used to generate pseudo-random numbers in the
range of (0, 1). By using this multiplicator [29], the advan-
tage is that the nuclei distribution quality is high, i.e. there
are no islands observed in our PV structures. A minimum
distance control helps to ensure that nuclei for each phase
are distributed in the whole region, i.e. no complete concen-
tration of all nuclei of a phase in a small subregion of the
whole image exists. This control also avoids that nuclei of
secondary phases (small volume fraction and/or less nuclei)
would solely locate on boundaries of the major phase. In
the current work, there are more than 100 nuclei for each
phase in all the presented PV structures (not the one to
show geometrical adaptive meshing). In combination with
the applied nuclei distance control, there exist neither islands
nor the phase concentration on the boundary of another
phase. After each generation, the resulted geometry should
be reviewed critically. If there is anything far away from the
reality, more constraints should be set for the generation of
nuclei.

2.2.1 2D two-phase polycrystalline microstructures

For a 2D image, a pixel length can be taken as a unit one. This
unit length is identical in the x and in the y direction (coor-
dinate axes see Fig. 2). Here, a polycrystalline two-phase
Ag/SnO2 oxide dispersion strengthend (ODS) composite is

given as an example. A controlled area with 500× 500 units
is supposed, i.e. an image with 500× 500 pixels. If absolute
dimensions are necessary in FE simulations, node coordi-
nates can be scaled into desired dimensions after meshing.
Based on the experimental data in Table 2 [30], the mean size
of SnO2 particles is smaller than the one of the Ag phase, i.e.
dSnO2 = d phase−1 < d Ag = d phase−2 with d phase−1 :
d phase−2 ≈ 1 : 4.8. In generating 2D PV microstructures,
the volume fraction is also taken as the area fraction for
2D cases (Table 2). Let 1

2d
SnO2 = 1

2d
phase−1 = 4, then

1
2d

Ag = 1
2d

phase−2 = 4 × 4.8 ≈ 20, the SnO2 phase

will have 17%×500×500
π( 12 d

phase−1)2
≈ 845 particles ({pSnO2−real

i }). The

Ag phase should have about 165 grains ({pAg−real
i }). It

implies that about 17%×500×500
845 ≈ 50 pixels as a mean

value describe a hard particle. For Ag grains, this value is
83%×500×500

165 ≈ 1257. Since SnO2 and Ag phase have dif-
ferent mean sizes, the number of total points in Voronoi
point set {pSnO2−total

i } and in {pAg−total
i } should be calcu-

lated. They are 4973 and 165, respectively. From 4973 points
in {pSnO2−total

i } ({pSnO2−total
i } = {ptotali } in Table 1),

cells 1–845 belong to {pSnO2−real
i } and 846–1010 belong

to {pAg−real
i } = {pAg−total

i }. It is worthy to mention that
all the data for the generation of PV tessellations come from
material design or physically measured data.

Based on the statistical data (Table 2), several material
input parameter sets are used to generate the PV artifi-
cial microstructures. As an example, a PV structure with
hierarchical tessellations is shown in Fig. 6b. It has 800
SnO2 particles and 150 Ag grains. Figure 6a presents a real
microstructure cut-out obtained from an electron backscatter
diffraction (EBSD) test. In comparison with Fig. 6a, b, it is
obvious that the mean size ratio of SnO2 to Ag in Fig. 6b
is smaller than the one in Fig. 6a. The reason is that the
calculation of the statistical data in Table 2 is based on a
much larger size than the size given in Fig. 6a. If an artificial
microstructure should be more matchable to the real cut-out
(Fig. 6a), one can enlarge the mean size of the particle phase
by keeping the Ag mean size constant. Compared to Fig. 6b,
c is taken as a better mapping for the real microstructure.
A particle cluster marked by a red circle in Fig. 6a shows a
character of the real microstructure, i.e. some small particles
compose a cluster and are located in Ag grains. In Fig. 6a, a
large particle surrounded with a purple circle locates among
Ag grains. Such a particle can be taken as a neighbor of Ag
grains. Particles in the yellow circle (Fig. 6a) are partly inside
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Fig. 6 a An EBSD image of a real microstructure of Ag/SnO2 ODS (black: SnO2 phase); b generated Poisson Voronoi tessellations according to
the measured mean size and the volume fraction of each phases; c another generated Poisson Voronoi diagram in order to obtain a better match to
the real structure in a; d by using two different mean sizes for the SnO2 phase to obtain a better match to a. (Color figure online)

certain Ag grains and partly along Ag grain boundaries. The
PV tessellations in Fig. 6c can catch the above mentioned
three microstructure characteristics marked in correspond-
ing colored circles as in Fig. 6a.

In Fig. 6a, some very small particles are sparsely dis-
tributed in the whole structure. If such small particles should
be embodied in the PV structure, a third phase (an artifi-
cial phase) can be added. It means that the particle phase is
described by phase 1 and 2with a mean diameter of d phase−1

and d phase−2, respectively. Since the above mentioned arti-
ficial phase has the smallest mean size, it should be the phase
1. This means that its mean size d phase−1 is used to cal-
culate the {pphase−1−total

i } ({pphase−1−total
i } = {ptotali } in

Table 1). The Ag phase will be described by phase 3 with
d Ag = d phase−3. Figure 6d possesses 3%phase 1, 14%phase
2 and 83% phase 3 with 1

2d
phase−1: 12d phase−2: 12d phase−3 =

2:5:10. It is worth mentioning that the very small particles
in Fig. 6d will lead to more elements in meshing. In such a
microstructure with many small particles, the total number
of elements may exceed the calculation capacity limit in 3D
cases.

Our Ag/SnO2 ODS is heat treated, i.e. two passes of the
hot extrusion [30]. After hot extrusion, the Ag phase has
about 20–25vol.%�3-twins. Figure 7a is identical to Fig. 6a.
Figure 7b shows the twin boundaries of Fig. 7a. Figure 7c
schematically shows a simpleway to generate nuclei pairs for
twins. In Fig. 7c, point P1(a, b) in black is randomly gener-
ated. Points P1(a, b) and P2(x, y) (in red) compose a pair of
twins. In the current work, point P1(a, b) and point P2(x, y)
are called a master nuclei and a slave nuclei, respectively.
The length c1 denotes the distance between the twin bound-
ary AB and the master nuclei. The distance between the twin
boundary and the slave nuclei is c2. The angle between the x-
axis and the twin boundary is presented as α. For the sake of
simplicity, it is taken as c1 = c2 = c in Fig. 7d–f. For a given
distance c and an angle α, the coordinates of P2(x, y) can
be determined. It also means that the slave nuclei depends

on the master nuclei. In Fig. 7d–f, master nuclei generate the
black grains. Grains in grey color are from slave nuclei. The
area fraction of twins is about 20% in Fig. 7d–f. Figure 7d
has 27 pairs of twins (54 grains), where the distance value c
is kept constant. The angle α ∈ [0◦, 180◦] increases in a 30◦
step. The grain mean size in Fig. 7e, f is half of the mean size
as the one given in Fig. 7d. There are 98 pairs of twins (196
grains) in Fig. 7e, f. The angle α has an increment of 90◦
and 15◦ in Fig. 7e, f, respectively. The distance c (integer)
with a value of 5 units is constant for all twins in Fig. 7e. It
varies in a range of c ∈ [1, 10] for Fig. 7f. The value of α

and c can be statistically obtained from experimental data. If
the boundary length also should be taken into consideration,
more constraints should be set to generate master and slave
nuclei.

2.2.2 Overlapping: a simple way to create multi-phase
microstructures

Following the generation process as given in Fig. 6b, c, sets of
{pphase− j−total

i } and {pphase− j−real
i } with j ∈ [1, N ] need

to be updated for each phase. The advantage of this process is
that the volume fraction of each phase is guaranteed. For an
N-phase material, a simpler way would be the overlapping:
(I) 1-N phases are arranged according to their vol.%, i.e.
vol.%phase−1 ≤ vol.%phase−2 · · · ≤ vol.%phase−N ; (II) N
images are generated, i.e. each phase one image; (II) the first
image (for phase 1) overlaps the second image. The over-
lapping resulting image overlaps the third one and so on.
As a final result, an image with N-phases will be created.
In this way, the deviation of the volume fraction before and
after overlapping is kept possibly small for phases with small
volume fractions. The advantage of the overlapping process
is that no calculation of {pphase− j−total

i } is necessary with
j ∈ [1, N ]. The disadvantage is that the phase volume frac-
tion is only guaranteed for two-phase (N=2) materials, but
not forN ≥ 3. Practically, even thoughN ≥ 3, the final image
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for given a, b, c:
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Fig. 7 Generation of twins, i.e. to fulfill individual requirements: a the same real microstructure as given in Fig. 6a; b Ag phase twin boundaries of
a; c generation of nuclei P1 and P2 in a pair for twins: coordinate dependence of P2 on P1; d 27 pairs of twins with an increment of α = 30◦ and a
constant value of c; e 98 pairs of twins with an increment of α = 90◦ and a constant value of c; f 98 pairs of twins with an increment of α = 15◦
and different c values

might be acceptable, since the phase volume fraction devia-
tions can be in a tolerable range. It is pointed out that more
consideration might be required for individual microstruc-
tures.

The PV tessellations as artificial microstructures are also
widely used for ceramic materials. Zirconia ceramic ZrO2 is
a kind of a brittle technical ceramic for industrial and biomed-
ical applications. It possesses many favorable properties, like
the high strength, high toughness, very good thermal insula-
tion and shape memory ability [31,32]. Figure 8a presents
a microstructure of such a material [33]. Such a ceramic is
polycrystalline and belongs to the high-performance ceram-
ics. For some usages, subregions with different phases might
appear inside one microstructure cut-out, e.g. a layered
or coated material. Figure 8b presents a zirconia-alumina
ceramic composite, where zirconia is shown in light grey
color [34]. Such zirconia-alumina ceramic composite also
can be manufactured as layered material and coated mate-
rials. Figure 8c illustrates a small microstructure cut-out
from a SEM image of a polished surface from a ZrO2 +
30 wt.%Al2O3 composite [35]. Zone A1 in Fig. 8c located
near the interface between the zirconia phase and the alumina
phase, which presented the grain growth (in alumina phase).
Zone B1 in Fig. 8c referred to the formation of a protective

alumina layer on the zirconia-rich surface. The interface in
Fig. 8c can be approximately taken as vertically oriented.
Figure 8d presents a composite with the zirconia as a coating
material, where the interface is horizontally oriented [36].
It is pointed out that the current work concentrates on the
presentation of microstructures by PV tessellations. If the
interface is non-linear in a larger scale (larger than the cor-
responding microstructure’s scale), such a case is out of the
topic of this work. The characteristics illustrated by Fig. 8a–
d can be summarized as: (I) polycrystalline composites; (II)
non-uniform mean sizes of different phases; (III) approxi-
mately linear interface on the given microscales; (IV) the
orientation of the interface varies. In order to create a PV
microstructure with the aforementioned (I)-(IV) characteris-
tics, Fig. 8e, f schematically shows the approach. In Fig. 8e,
the microstructure is divided into 2 subzones by the straight
line CD, which has an angle α to the x-axis (Fig. 8f). The
above mentioned two subzones correspond to subzone A and
B in Fig. 8f. Both subzones are supposed to be polycrys-
talline. Subzone A has only one phase (phase-1). Subzone B
is composed of two different phases (phase-1 and phase-2),
each possessing its own mean size. In subzone B, the mean
size ratio between phase-1 and phase-2 is taken as 1:5 and
the area ratio 1:1. It is simple to create such a PVmicrostruc-
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e.g.: in lower region:
mean size: d1 : d2 = 1 : 5
area ratio: 1:1
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Fig. 8 PV artificial microstructure applied for ceramic layered/coated materials: a a measured microstructure cut-out of a polycrystalline zirconium
dioxide (ZrO2) ceramics [33]; b zirconia (light grey color) with alumina (dark grey color) [34]; c zirconia with a protective alumina layer (zone
A1: alumina grain growth, zone B1: alumina layer in zirconia-rich zone) [35]; d zirconia as coating material with a horizontally oriented interface
(EB-PVD: electron beam physical vapor deposition) [36]; e a sketch for a layered material with the interface orientation in a general case, where
the microstructure includes multiphase polycrystals in subregions and different phase mean sizes; f a condition to fulfill the requirements of the
individual phase distribution given in e; g a PV microstructure for polycrystalline layered materials with different phases and phase mean sizes in
subzones; h if necessary, cutting the image into desired dimensions

ture as prescribed by Fig. 8e, f: (I) define two points on
edges of the controlled area to get two regions A and B
in Fig. 8f. The aforementioned two points give a straight
line with a slope α; (II) for a randomly generated Voronoi
nuclei with coordinates (Px , Py), the y-coordinate Pα

y can
be calculated (Fig. 8f). If Pα

y > Py , it is a Voronoi nuclei in
region B. Otherwise, in region A. By using the overlapping
method, Fig. 8g shows a PV two-phase layered hierarchical
microstructurewith subzones. It includes two polycrystalline
phases and fulfills individual requirements (characteristics
shown in Fig. 8a–d) and assumptions given in Fig. 8e, f) for
subregions. Since there are only two phases (Fig. 8g), the
area fraction remains for each phase, i.e. not changed by the

overlapping. If a rectangle shape is necessary, as an exam-
ple, Fig. 8h is the cutting result of Fig. 8g to fulfill the size
requirement of the whole structure.

2.2.3 Generation of 3Dmicrostructures

Like aforementioned, the concept of the tomography is used
for generating 3D PV microstructures. The procedure is the
same as for 2D ones. Simply, the images of the tomography
is created one after another in the third direction. Due to the
identical cell growing rate in all directions, the 3D controlled
volume should be a cube for PV tessellations. It implies that:
(I) a pixel (unit one) has a square shape; (II) the distance of
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two neighboring images equals the edge length of a pixel;
(III) a voxel is a cube. For a PV structure, if a cuboid is
required (edge length not equal), a cube with the longer edge
length should be firstly created. Then, it is cut into the desired
cuboid. 3D PV microstructures will be shown together with
meshing in Sect. 2.3.

2.3 Geometrical adaptivemeshing of hierarchical PV
microstructures

2.3.1 An example of a two-phase polycrystalline material:
Ag/SnO2 ODS

The meshing can be done by softwares available for all,
e.g. the free software “OOF2D” and “OOF3D” with open
accesses [37,38]. Software “NEPER” [28] with an open
access also has the meshing function. In the current work,
the commercial software “Simpleware Scan IP” [39] is used.
This software provides much more functions than “OOF3D”
and meshes only 3D structures. If a 2Dmeshing is necessary,
it can be easily created in 3 steps: (I) a 3D structure can be cre-
ated by copying the given 2D image in manifolds (Fig. 9a);
(II) 3D meshing is generated (Fig. 9b); (III) 2D meshing can
be obtained by extracting the nodes and elements on the z=0
surface. Figure 9c is identical to a single image in Fig. 9a,
but in color. As a result, a geometrical adaptive meshing is
done for a polycrystalline 2D microstructure. The 2D geo-
metrical adaptive meshing marked in a rectangle area ABCD
(Fig. 9c) is presented in Fig. 9d. It is worthy to mention that a
2Dmeshing can be directly applied in axisymmetric analyses
(“CAX” element type in ABAQUS).

Based on the statistical data in Table 2, a controlled
volume E of 20 × 20 × 20µm3 is selected for the gen-
eration of a 3D polycrystalline artificial microstructure. In
the aforementioned volume, it has 3229 SnO2 cells (3229
points in Vononoi point set {pSnO2−real

i }) and 125 Ag cells

(125 points in Voronoi point set {pAg−real
i }). The volume

20×20×20µm3 is subdivided into 40×40×40 unit cubes.
This means that each tomographic image has a resolution of
40× 40 pixels and there are 40 images in the third direction.
There are 40×40×40 points in the Poisson’s point set {xi}.
In cases of FE simulations, the net refinement degree is also
influenced by the calculation capacity of the software, since
a finer net (higher pixel resolution and more images) leads
to more elements in meshing. The number of total points
in Voronoi point set {pSnO2−total

i } and in {pAg−total
i } are

18,995 and 125, respectively. Figure 10a shows 3 artificial
tomographic images. Practically, a volume reduction occurs
for the particle phase from the tomographic images (voxel
vol.%) to the final FE meshing (elements vol.%). In order
to fulfill the meshing conditions, e.g. no overlapping space
among cells and no pores in the controlled volumeE, a closed

surface needs to be created for each tessellation. During this
surface creation, “shrinkage” occurs. As a result, the vol-
umes of such tessellations with “shrunk” closed surfaces
are reduced. Such a volume reduction occurs also in other
meshings, e.g. the one for an Al/Al2O3 real microstructure
(commercial software AVIZO) [40]. Some trial meshings
are performed for PV structures with an enlarged volume
fraction of the SnO2 phase. Figure 10c illustrates the geo-
metrical adaptive 3Dmeshing for amicrostructurewith about
16.2vol.% SnO2 particles (“EVOL” in ABAQUS). The basic
characteristics of the particle geometry and distribution can
be captured, e.g. the non-uniform shape and size of particles.
Some small spherical SnO2 particles locate in the larger Ag
grain, like SnO2-A in Fig. 10c. Some particle clusters can
be taken as neighbors of Ag grains, like the particle SnO2-
B in Fig. 10c. Still some clusters locate among Ag grains as
well as go through/into Ag grains, like the particle SnO2-C in
Fig. 10c. In the example, the reduced volume of the particle
phase is integrated to the matrix phase.

2.3.2 An example of a three-phase composite:
Co/WC/diamond

To investigate the deformation and damage behavior of
Co/WC/diamond metal matrix composite (MMC), 2D and
3D real microstructures are applied. Figure 11a with 54 dia-
monds illustrates a 2D real microstructure [41]. After the
pixel handling, the image is given in Fig. 11b, which also
shows a part of the meshing along the particle boundaries.
After the meshing, the WC and diamond phase have an area
fraction of 5.23% and 8.64%, respectively. For the 3D real
microstructure cut-out, some 2D images from a tomography
and the final geometrical adaptive meshing is presented in
Fig. 11c. There are 5 diamond particles, two of which are
located on the boundaries of the cut-out and much bigger
than the other three. This means that the 3D real structure
(Fig. 11c) is less representative than the 2D one (Fig. 11b).
There is no possibility to create a real 3D microstructure
with about 50 diamond particles, since the experimental
tomography covers a much smaller size than the 2D image
(Fig. 11a). Comparing FE results of these two models, some
conflicts arose for the phase stress. There is no testing data
for the phase stress. To solve this conflict, an artificial 3D
PV microstructure is preferred. It should have 54 diamond
particles. After only two trial meshings (with different WC
vol.%), a suitable structure is found and shown in Fig. 12.
The element volume fractions of theWC and diamond phase
are kept the same as in the 2D real microstructure (Fig. 11b).
Here, “the same” volume fraction means within a tolerable
deviation. Figure 12a presents a stack view of some selected
artificial tomographic images. Thewhole size is 50×50×50,
inwhich 3580WCparticles are included. Themean size ratio
of the WC and the diamond particles is 1:3.6. The mean size
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Fig. 9 a A 3D tomography
composed of an 2D identical
image (particles in black); b 3D
geometrically adaptive meshing
for a polycrystalline
microstructure (image written
out by Hypermesh); c a
rectangle ABCD covers 5 Ag
grains and 4 SnO2 particles in
the PV structure (image written
out by Hypermesh); d an
enlarged view of the meshing
for the rectangle ABCD in c
(particles in white color, written
out by ABAQUS/CAE)
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Fig. 10 a Some selected pixel images of a 3D hierarchical Poisson Voronoi structure for an Ag/SnO2 ODS; b a volume reduction occurs after
meshing for the particle phase; c 3D geometrical adaptive meshing for a polycrystalline microstructure, where particles are in black and Ag grains
in other colors; d some selected polycrystalline Ag grains from c. (Color figure online)

ratio in the 2D real microstructure (Fig. 11b) is taken into
consideration for the creation of Fig. 12. It is pointed out that
the statistical mean size of the WC phase cannot be directly
used here, since WC particles should be partly invisible to
obtain a goodmatchable 3DPVstructurewith the real 2Done
(Fig. 11b). In the FE simulation, the matrix has homogenized
properties from the pure Co and the invisible WC particles.
Figure 12b is an overview of the geometrical adaptive mesh-
ing. Figure 12c, d present the diamond (8.00vol.%) and the
WC phase (5.89vol.%) after the meshing, respectively.

To generate the tomographic images like given in Figs. 10a
and 11a, it took only about 1 min. It takes about 40 min from
the creation of polycrystalline PV images Fig. 10a to the
final applicable meshing Fig. 10c. From Fig. 11a to the final
applicable meshing Fig. 11b, it needs only a few minutes,
since the manual work of the pixel group assortment is much
less.
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Fig. 11 a A 2D real microstructure cut-out presented by a SEM image [41]; b the corresponding image of a after the pixel selection, where the
regular mesh is created by a FORTRAN file due to a large amount of small WC particles, after which the meshing is improved by the software
Hypermesh for some sharp corners (WC: 5.23%; diamond: 8.64%); c measured tomographic images, selected regions and the meshing for the FE
simulation

Fig. 12 a Some selected PV images from an artificial tomography with 50 images and totally 3580 WC particles; b the geometrical adaptive
meshing of a; c the 54 diamonds after meshing with a volume fraction of 8.00vol.%; d the WC phase after meshing with a volume fraction of
5.89vol.%

3 Boundary conditions

Artificial boundary effects exist for the applied PV structure,
which is introduced by tessellations (materials) outside the
resulting geometry. A periodic PV structure can reduce these
artificial boundary effects, which requires periodic bound-
ary conditions (BCs). For micromechanical FE simulations,
BCs are one point which must be considered. BCs given as
constraints for node degree of freedoms are always a distur-
bance for the calculatedmaterial behavior, i.e. it causes,more
or less, inaccuracy of the predicted results. There are usu-
ally two types of BCs, i.e. homogeneous and periodic ones.
HomogeneousBCs set too strong constraints for the degree of
freedoms of boundary nodes, where nodes will move parallel

with each other, including the zero displacement case. Com-
paratively, periodic BCs soften these strict constraints, which
allow non-uniform displacements of boundary nodes and in
a periodic formulation for counterparts of edges/surfaces. In
many cases, it is a major task to calculate the stress-strain
relations for FE simulations. If so, constraints for the other
(stress or strain) should be also considered, when constraints
are set to one of them. Taking strain controlled loading as an
example, periodic BCs require periodic structures and anti-
periodic conditions for corresponding stresses, e.g. as shown
in [8,9].Our code to generate hierarchical PVmicrostructures
will be extended to cover the case for periodic microstruc-
tures in our consecutive works. Some of our previous works
used Voronoi (not hierarchical) structures with periodicity
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Fig. 13 A sketch for the generation of periodic Voronoi nuclei: (i)
randomly generate the nuclei in “block-1” (range ABCD); (ii) copy the
“block-1” nuclei to “block-2”–“block-9”, i.e. “block-1”–“block-9”with
the identical nuclei distribution; (iii) “block-1” will be an applicable
periodic Voronoi structure

[9,42]. Figure 13 illustrates a sketch for the generation of 2D
periodic Voronoi structure. In the 2D case, 32 = 9 same-
area-sized blocks of PV structures (Fig. 13), which with the
identical Voronoi nuclei distribution are neighbors, can result
in an applicable periodic Voronoi structure for the FE simu-
lation, i.e. the center block. For the 3D case, it is analogous,
i.e. the above mentioned blocks should be 33 = 27.

Based on experiences of the current authors, there is
a way to apply non-periodic microstructures and without
the strict constraints of homogeneous BCs applied on this
microstructure, i.e. simultaneous micro-macro two-scale FE
simulations. In our case, BCs are applied on the macrostruc-
ture, which means the microstructure is free of BCs. This
two-scale simulation method is also suitable for the appli-
cation of real microstructures, since, in reality and for most
cases, there exists no periodicity for real microstructure cut-
outs.

4 Further works

Figure 10c for theAg/SnO2 ODS is used to prove the correct-
ness of a simulation process, which is found by axisymmetric
FE simulations. 2D and 3D PV microstructures will also be
applied to investigate the influence of�3-twins on the texture
evolution.

Besides the application mentioned in Sect. 2.3.2, PV tes-
sellations will also be used to simulate the crack path, the
debonding and thedamage evolution for theCo/WC/diamond
MMC.Since the generation of a PV structure is time efficient,
it is preferable to make parametric studies and to optimize
the microstructure.

FE results predicted by PV structures will be presented in
consecutive reports later on.

5 Conclusion and outlook

In the numerical investigation of material behaviors, the
application of microstructures in one-scale or multi-scale is
gettingmore andmore essential. Realmicrostructuresmaybe
unavailable, especially 3D polycrystalline ones. Still, it can
be difficult to achieve a well representative microstructure in
a limited small cut-out of the real microstructure. This work
presents a simple numerical method to generate multi-phase
and polycrystalline artificial microstructures by using hier-
archical Poisson Voronoi tessellations. By using softwares
with an open access, e.g. “Neper” [28], some individual
microstructural characters cannot be described. The basic
concept of our method is to create images with an ASCII
format. For 3D PV microstructures, “artificial tomographic
images” are used, i.e. more than one 2D images aligned in
order in the third direction. In this work, four examples are
presented for applications of artificial 2D/3D PVmicrostruc-
tures. The meaning of our method is:

• to fulfill individual requirements from material designs
by setting constraints for the Voronoi nuclei generation,
e.g. twins and mixed phases in selected regions;

• to make it easy by simply writing out numbers (pixel
color) for pictures and applicable for engineers with only
some basic programming knowledge of any software;

• to obtain a PV image with a better match to the real one,
e.g. a better description of the size distribution by using
the concept of artificial phases;

• to have potentials for further studies, e.g. generation of
3D twins for the Ag phase in Ag/SnO2 ODS in our exam-
ple.
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Appendices

To describe the generation process of Fig. 3, the content listed
in Table 1 is considered. For Fig. 3, the assumption is that a
two-phase material has phase-1 and phase-2. It has a compo-
sition of 20% area fraction for phase-1 and 80% area fraction
for phase-2. The mean size ratio (diameter in 2D) between
“d1” for phase-1 and “d2” for phase-2 is d1 : d2 = 1 : 2, i.e.
(d1)2 : (d2)2 = 1 : 4. It implies that PV tessellations should
be hierarchical. To create an artificial microstructure for such
a material composition, supposing the quadratic microstruc-
ture with an edge length D0, it is as follows:

• Calculation of the Voronoi nuclei numbers for each
phase:

– by considering the mean size and the volume fraction
of each phase, the cell number of each phase can be
fixed, if there are no other influential factors:

• in our example (Fig. 3), the cell number for

phase-1 is P1−real = 20% × D2
0

1
4π(d1)2

and the

one for phase-2 is P2−real = 80%× D2
0

1
4π(d2)2

=
80% × D2

0
1
4 4π(d1)2

;

• the ratio of the cell number between phase-1 and
phase-2 is P1−real : P2−real = 1 : 1 ;

• supposing that themean size of phase-1 tessella-
tions is 5% as an area fraction, then this value for
phase-2 will be (d2)2

(d1)2
× 5% = 4 × 5% = 20%;

the number of Voronoi tessellations for phase-
1 : 20%

5% = 4 ( {p1−real
i }, i ∈ [1, 4]), and for

phase-2: 80%
20% = 4 ({p2−real

i }, i ∈ [1, 4]);
• in Fig. 3a, the 4 Voronoi nuclei of phase-1 are
presented as red points surrounded by dashed
circles. Those of phase-2 are given as red points
surrounded by hexagons;

• each Voronoi nuclei in {p1−real
i } and {p2−real

i }
will be presented in the final structure as a tes-
sellation;

• Calculation of the number of total Voronoi nuclei to
achieve hierarchical tessellations, i.e. themaximumvalue
Ptotal for {ptotali }:

– by taking the phase with the smallest mean size
(dsmall ) among all phases, the value of Ptotal can
be fixed. In 3D case, Ptotal = voltotal

4
3π( 12 dsmall )

3 .

• for the 2D case as given in Fig. 3, it is phase-
1 with a mean size d1. Since the mean size
of phase-1 tessellations has 5% area fraction,
Ptotal = 100%

5% = 20;

• the above 20 Voronoi nuclei (Ptotal ) include the
4 Voronoi cells for phase-1 in {p1−real

i } and the
4 for phase-2 in {p2−real

i } (Fig. 3a);
• not all the Ptotal = 20 Voronoi nuclei present
a tessellation in the final structure. Only the 8
nuclei (real ones) for phase-1 and phase-2 will
result in 8 tessellations in the final image. The
other 12 nuclei are used only for the creation of
different phase mean sizes;

• Assignment of each subzone in Poisson field to a certain
Voronoi nuclei:

– arranging phases according to their mean sizes d, i.e.
d1 ≤ d2 ≤ · · · ≤ dN ;

– beginning with the phase with the smallest mean size
(phase-1, n=1);

• for example in Fig. 3, it begins with phase-1,
and the minimum distance search goes through
all the 10 × 10 = 100 Poisson’s subzones and
the 20 Voronoi nuclei ({p1−total

i }, i ∈ [1, 20]);
• after the search, 20 pixels with inclined lines
(Fig. 3b) are assigned to 4 Voronoi nuclei of
phase-1 (in {p1−real

i }). It implies that the mean
size of phase-1 tessellations is 20

4 = 5 (pixels);
• in the final images, pixel groups present tessel-
lations and each pixel group will be assigned a
pixel color number. The grey scale for the pixel
color is applied here. It means that the pixel color
number is in the range of [0, 255] for the ASCII
format;

– going to the next phasewith the second smallestmean
size (phase-2, n=2);

• it is phase-2 in Fig. 3. The search goes through
the remaining 100 − 20 = 80 subzones in the
Poisson field (pixels without inclined lines) and
the 4 Voronoi points for phase-2. It means that
the mean size of phase-2 tessellations is 80

4 =
20 (pixels). It is to mention that i ∈ [1, 4] is
identical for {p2−total

i } and {p2−real
i };

• in the PV diagram, the mean size ratio between
phase-1 and phase-2 is 5% : 20% = 1 : 4 =
(d1)2 : (d2)2;

– Going to the next phase (phase-3 upto phase-n), if
necessary;
• for the next phase (phase-n), the number of sub-
zones in the Poisson field is the number of remain-
ing pixels. Here, “remaining” pixels refers to the
ones not yet assigned to any Voronoi tessellation
{pn−real

i };
• the number of total Voronoi points (i in {pn−total

i })
is calculated from individual material designs. It is
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noted that the Voronoi tessellations {pn−real
i } ⊆

{pn−total
i } and{pn−total

i } ⊆ {ptotali } = {p1−total
i }.

• For the last phase (n=N), {pn−real
i } = {pn−total

i };
• for a representative PVmicrostructure, the number of the
Voronoi nuclei and of the subzones in the Poisson field
needs to be large enough.
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