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Abstract
This paper presents a comparison of experimental and numerical results for a series of tur-
bulent reacting jets where silica nanoparticles are formed and grow due to surface growth 
and agglomeration. We use large-eddy simulation coupled with a multiple mapping con-
ditioning approach for the solution of the transport equation for the joint probability den-
sity function of scalar composition and particulate size distribution. The model considers 
inception based on finite-rate chemistry, volumetric surface growth and agglomeration. The 
sub-models adopted for these particulate processes are the standard ones used by the com-
munity. Validation follows the “paradigm shift” approach where elastic light scattering sig-
nals (that depend on particulate number and size), OH- and SiO-LIF signals are computed 
from the simulation results and compared with “raw signals” from laser diagnostics. The 
sensitivity towards variable boundary conditions such as co-flow temperature, Reynolds 
number and precursor doping of the jet is investigated. Agreement between simulation and 
experiments is very good for a reference case which is used to calibrate the signals. While 
keeping the model parameters constant, the sensitivity of the particulate size distribution 
on co-flow temperature is predicted satisfactorily upstream although quantitative differ-
ences with the data exist downstream for the lowest coflow temperature case that is consid-
ered. When the precursor concentration is varied, the model predicts the correct direction 
of the change in signal but notable qualitative and quantitative differences with the data are 
observed. In particular, the measured signals show a highly non-linear variation while the 
predictions exhibit a square dependence on precursor doping at best. So, while the results 
for the reference case appear to be very good, shortcomings in the standard submodels are 
revealed through variation of the boundary conditions. This demonstrates the importance 
of testing complex nanoparticle synthesis models on a flame series to ensure that the physi-
cal trends are correctly accounted for.
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1 Introduction

A large variety of nano-sized particulates are produced by combustion processes, some 
as unwanted by-products in the energy sector such as soot, others as commodities such 
as catalysts or stabilising agents  (Iler 1979). In all cases, the final product characteris-
tics are significantly influenced by precursor reactions, interparticulate interactions and 
the gas-phase conditions (composition, temperature, fluid dynamics) under which they 
are formed. The numerical simulation of all these processes and the accurate prediction 
of the particulate size distribution (PSD) are vital if we are to understand and control 
flame synthesis. The evolution of the PSD is usually described by the population bal-
ance equation (PBE) that can be solved by Direct Monte Carlo methods   (Kruis et al. 
2000), moment methods  (Pratsinis 1988) or discretised sectional methods  (Friedlander 
2000; Marchisio and Fox 2013). When the PBE is coupled with the Navier-Stokes equa-
tion, modelling is required for the multiscale, non-linear interactions of the particlulate 
dynamics and the turbulent flow. In the context of large eddy simulations (LES), Loef-
fler et al. (2011) and Wang and Garrick (2006) investigated the formation and growth 
of titanium dioxide nanoparticulates, but neglected particulate-turbulence interactions. 
Neuber et  al. (2017) used the sectional method and showed that the error associated 
with omission of sub-grid turbulence interactions can be large for the highly non-linear 
nucleation and surface growth processes. Similar conclusions were drawn by Pesmazo-
glou et al. (2017) and Sewerin and Rigopoulos (2018) who modelled particulate aggre-
gation and soot formation and growth, respectively.

In Neuber et  al. (2017, 2019a) we presented the implementation of a stochastic 
Monte-Carlo method for the spatial and temporal evolution of the joint filtered density 
function (FDF) of the gaseous composition and number density of the particulates. The 
number density is discretised into sections representing particulates of different sizes. 
To avoid ambiguities, we strictly distinguish in this paper between “stochastic parti-
cles”, which are computational elements for solving the FDF equation in the Lagrangian 
sense, and “particulates”, which are the physical nanoparticulates produced during the 
flame synthesis process. Conventional stochastic FDF methods require stochastic par-
ticle numbers up to 20–50 per LES cell (You et al. 2017), and even though optimised 
methods—such as in-situ adaptive tabulation (Pope 1997)—exist for the calculation of 
reaction kinetics, the simulation of flame synthesis processes remains computationally 
expensive. When using a sectional method, the computing time for the particulate syn-
thesis may even exceed the computing time for the chemical kinetics of the gas phase. 
For such problems it is therefore beneficial to use a so-called sparse-Lagrangian FDF 
approach, which requires far fewer stochastic particles than traditional intensive meth-
ods   (Cleary and Klimenko 2011). The key enabler of the sparse FDF approach is the 
use of a novel mixing model called multiple mapping conditioning (MMC)  (Klimenko 
and Pope 2003) which helps to correctly emulate molecular and turbulent diffusion 
despite the relatively large physical distances between the particles to be mixed. The 
MMC model has been validated widely for different turbulent flames, e.g. see  (Cleary 
and Klimenko 2011; Vo et al. 2017a; Galindo-Lopez et al. 2018; Neuber et al. 2019b). 
Recent publications have shown that the method can also be applied to particulate 
nucleation and growth processes   (Neuber et al. 2017; Vo et al. 2017a) where interac-
tions with turbulence are important. We demonstrated the capability of the combined 
PBE-MMC-LES method to model particulate inception, surface growth and agglom-
eration of non-spherical agglomerates in a turbulent, reactive jet flow   (Neuber et  al. 
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2019a). That study included, however, only one specific setup. MMC could capture 
some features of the flame synthesis process but notable differences between computa-
tions and experiments were observed.

Complete model evaluation demands the computation of a series of cases with varying 
boundary conditions to establish the sensitivity of the model and its input parameters. The 
comparison with a series will also ensure the model’s capacity to capture trends and thus 
to have incorporated all the important physics of the particulate synthesis process. Here, 
we apply the model to the flame synthesis of silica nanoparticulates from a silane doped 
nitrogen jet issuing into a vitiated hot co-flow and investigate the sensitivity towards varia-
tions in precursor loading and gas phase temperatures and assess the model’s performance 
against experimental OH-LIF, SiO-LIF and elastic light scattering (ELS) signals.

2  Methodology

PBE-MMC-LES is a hybrid Euler/Lagrange approach where the mass and momentum 
transport equations are solved by an Eulerian LES solver, here employing standard closures 
for the sub-grid terms. The gas-phase composition and particulate size distribution are 
solved using a Lagrangian Monte Carlo approach whose details are provided now. For the 
solution of the particulate size distribution we use the nodal form of the sectional approach  
(Prakash et al. 2003) which discretises the particulate volume space into a finite number 
of sections. If the particulate matter is transported by a fluid of gas-phase composition Y , 
temperature T and velocity field uj(xi, t) , the nodal form of the population balance equation 
takes the form

where nk is the number density of particulates in section k, Dk is the diffusion coefficient of 
section k, and G(v,Y, T) is the volumetric growth term that can be modelled as a function 
of particulate volume, v, and Y . Changes of the PSD due to inception and agglomeration 
are included via the source term ṡk . The rate at which primary particulates are formed is 
determined by the production rate of the precursor species, which in turn is given by the 
gas phase chemistry described by the underlying reaction mechanism. Incipient particu-
lates that are newly formed by chemical reaction are added to the first section of the discre-
tised particulate size distribution.

The volumetric surface growth is determined by two processes, each dominating in dif-
ferent size ranges. For small particulates the surface growth is determined by a collision 
process whereas for large agglomerates the surface growth is driven by diffusion processes. 
For the former, the growth rate is based on the free-molecular collision kernel. The colli-
sion diameter of the species which is depositing on the agglomerates surface is assumed 
to be the diameter of the molecule   (Shekar et  al. 2012). In our sectional approach we 
consider fractal-like structures with their morphology given by a power law  (Friedlander 
2000). The collision diameter of the agglomerate is given by dc,k = dp,0N

1∕Df

k
 , with Nk being 

the number of primary particulates in the agglomerate, dp,0 being the diameter of the pri-
mary particulate and Df  being the fractal dimension which is set to Df = 1.8 as suggested 
in Refs.   Shekar et  al. (2012); Schaefer and Hurd (1990). Hence, the volumetric growth 
rate is given by the collision rate of the depositing species with the agglomerate. For the 
larger particulates we apply a diffusion-limited growth method  (Witten and Sander 1981) 
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because there the volumetric surface growth is mainly determined by the diffusion rate of 
the depositing species towards the agglomerates’ surface. We use the harmonic mean of the 
two formulations which serves as a blending function between the two regimes.

For agglomeration the Fuchs interpolation expression between the free molecular and 
continuum regimes was proposed by Seinfeld (1986). For arbitrarily shaped agglomer-
ates (Kruis et al. 1993) proposed to replace the spherical particulate diameter in the Fuchs 
interpolation expression by the collision diameter of the agglomerate and this was also 
done here. The implemented discretised representation of the PSD requires a size-splitting 
operator for the agglomeration term which ensures particulate number and mass conser-
vation by distributing the formed particulates into two adjacent sections   (Loeffler et  al. 
2011). This procedure introduces a slight broadening of the PSD but this effect is small 
compared to the broadening due to growth and agglomeration. Due to the relatively low 
temperatures in regions where particulates are formed we assume that the agglomerates are 
not subject to any sintering processes. This assumption is justified as agglomerate samples 
in the exhaust do not show significant signs of neck formation between the primary par-
ticulates (see also Fig. 2 and discussion in Sect. 3).

We apply a Lagrangian scheme to approximate the evolution of Eq. (1) as part of the 
joint FDF, F� , of the composition field � = (Y1,… , Ys, h, Z, n1,… , ne)which includes the 
gas phase composition vector Y , the total enthalpy, h, the mixture fraction, Z, and the dis-
cretised particulate number density field n . The FDF method has the major advantage that 
the chemical source terms as well as the rates for nucleation, volumetric surface growth 
and agglomeration appear in closed form in its governing equations. Thus, no closures are 
required for these terms to incorporate unknown sub-grid effects due to turbulence. As we 
use a Monte-Carlo technique a fractional step approach is applied to describe the spatial 
dispersion, gas phase reaction, mixing and aerosol dynamics  (Pope 1985). The time evolu-
tion is then given by the equivalent stochastic differential equations (Cleary and Klimenko 
2011) for particle transport

and the change of the composition field in time is governed by Cleary and Klimenko (2011)

where � is a Wiener process and standard notation is used for diffusion, density, veloc-
ity, space and time. The molecular diffusion coefficient, D, is set equal for all species and 
particulate sizes except in our discussion conducted in Appendix 3 and Dt denotes the tur-
bulent diffusivity. S� accounts for source terms including chemical reactions, particulate 
inception, surface growth and agglomeration and M� is a mixing operator which emulates 
the sub-filter scalar dissipation. A suitable reaction mechanism provides chemical reaction 
rates and thus determines the particulate inception (cf. Sect. 4). Models for volumetric sur-
face growth and agglomeration have been discussed above.

The mixing operator appears in unclosed form and requires modelling. A mixing model 
like the interaction by exchange with the mean (IEM)  (Villermaux and Devillion 1972), 
Curl’s mixing model  (Curl 1963), the modified Curl mixing model  (Janicka et al. 1979) 
or the Euclidean minimum spanning tree (EMST) model  (Subramaniam and Pope 1998) 
can be used to close the equation on mixing operator level. Subramaniam and Pope (1998) 
specified requirements for mixing models, such as linearity, independence and localness 
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in composition space. A mixing model which provides such requirements is the multiple 
mapping conditioning (MMC) model   (Klimenko and Pope 2003) as it enforces localisa-
tion in composition space indirectly by localisation in an independent reference space. 
MMC requires the additional solution of such a reference field. This reference field is the 
(Eulerian) LES solution of mixture fraction, f̃  , and the mixing of the stochastic particles 
is then conditioned on f̃  . The localisation in reference space allows to increase the spatial 
distance of the stochastic particles as long as localness in composition space is maintained. 
This has led to the development of the so-called sparse-Lagrangian MMC method, where 
there are fewer stochastic particles than LES grid cells. In contrast to conventional mixing 
models sparse particle methods use up to three orders of magnitude fewer particles result-
ing in significant computational savings. Here, we use Curl’s mixing model where parti-
cles are pairwise mixed in combination with the MMC conditioning. The particle pairs are 
selected such that they are local in reference mixture fraction space and the mixing extent 
is controlled by a mixing time scale, �L . For a detailed discussion on the modelling of the 
mixing time scale the reader is referred to Vo et al. (2017a, b) and Neuber et al. (2019b).

3  Experimental Configuration

The general experimental configuration is based on the Cabra burner (Cabra et al. (2002)) 
where a central turbulent jet (here nitrogen) issues into a hot vitiated co-flow of premixed 
hydrogen-air combustion products. The central jet has a diameter of D = 4.57mm and the 
outer diameter of the vitiated co-flow is 210mm . The cold jet bulk velocity is Uj = 33.2m/s 
resulting in a jet Reynolds number of ReD = 10,000 . The co-flow velocity is Uc = 1m/s 
based on cold conditions (i.e. no combustion of co-flow mixture). The nozzle exit plane 
extends 70mm above the perforated plate of the co-flow. The experimental campaign con-
sists of measured signals from parameter variations where the central jet is doped with dif-
ferent concentrations of silane (0, 300, 1000, 2500, 2700, 2900 and 3100 ppm). Also, the 
co-flow temperatures (1300, 1500 and 1800K ) and the jet Reynolds numbers (5000, 10,000 
and 15,000) were varied. The case with no silane doping (0 ppm) is used as baseline for the 
OH-LIF signal and served for the validation of the flow and mixing field predictions (Neu-
ber et al. 2019a). Preliminary measurements demonstrated that dopings below 2000 ppm 
do not lead to any detectable light scattering signal from the particulate matter while for a 
range between 2500 and 3100 ppm a large variation of the signal is observed (cf. Fig. 1). 
There is a clear temperature dependence of the signal over the temperature range between 
1300 to 1800 K and the dependence is less pronounced for lower loadings such that here, 
the analysis with respect to silane loading considers cases with silane doping larger or 
equal 2500 ppm only. The temperature sensitivity studies focus on the case with 3100 ppm 
and the Reynolds number dependence is based on 2500 ppm doping due to restrictions of 
the mass flow rate controller in the high Reynolds number case.

Silica particulate synthesis is investigated experimentally by two laser diagnostic tech-
niques, planar laser-induced fluorescence (PLIF) and elastic light scattering (ELS). The 
investigation is supplemented with extractive particulate sampling. OH-PLIF and SiO-
LIF are used to validate the chemical kinetic model whereas ELS is used to validate both 
the particulate formation model and the temperature field. Model validation follows the 
“paradigm shift” approach described by Connelly et al. (2009), which involves computing 
‘synthetic signals’ that are compared with experimentally-acquired signals as a strategy to 
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avoid incurring assumptions needed by the experimentalist for conversion of the signal to 
physically meaningful quantities.

For ELS, a four-head Q-switched frequency-doubled Nd:YAG laser is used in conjuc-
tion with sheet-forming optics to illuminate a 23mm × 400 μm region across the burner 
centerline. The ELS signal is collected using a CCD camera with a 105 mm f/16 lens per-
pendicular to the laser beam. Using three of the four available heads, the shot energy is 
approximately 3 × 450mJ . Measurements of different regions of the jet are performed by 
vertical translation of the burner. Data post-processing includes background subtraction, 
shot energy correction, beam profile correction, spatial calibration and image de-warping. 
Besides corrections that stem from the particulars of the experimental setup such as back-
ground subtraction and laser profile and energy corrections, no physical interpretation of 
the signal is attempted, as the measurement process is already simulated within the numer-
ical model.

The fourth head of the Nd:YAG laser is used to pump a frequency-doubled Rhodamine 
6G dye laser, tuned to a wavelength of 283.6 nm to excite the Q1(8) transition (� = 1 ← 0) 
of the A2Σ ← X2Π electronic system of the OH radical. This transition has been chosen so 
that the LIF signal is only weakly sensitive to temperature. A CCD camera with intensifier 
(multi-alkali, P43) and f/2.8 UV lens is placed at 90◦ to collect the fluorescence signals 
from the (� = 0 ← 0) and (� = 1 ← 1) branches of OH around 309–315nm . Laser energy 
and sheet thickness have been adjusted to ensure operation within the linear LIF regime 
(Seitzman and Hanson 1993). The area probed is 23 mm x 700 μm and the shot energy 
1.15 mJ. Again, background subtraction, shot energy correction, beam profile correction 
and beam extinction along the direction of travel of the beam are applied to the experimen-
tal signal.

For the SiO-LIF experiments, the fourth head from the Nd:YAG laser was converted to 
third harmonic emission (355 nm) and the dye laser converted to run on a Coumarin dye 
mixture. 100 mJ of 355 nm radiation was used to pump the dye laser, generating around 
15 mJ pulse energy, tuneable around 460–470 nm. The beam was then frequency doubled 
in a BBO crystal, producing up to 1.5  mJ of narrowband radiation which could be var-
ied in the range 230–235 nm. The laser was tuned to the Q11 (J = 32) A1Π ← X1Σ+(0, 0) 

Fig. 1  Influence of co-flow 
temperature on the ELS signal in 
the Re = 10,000 case
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absorption line in SiO (235.087  nm) and the fluorescence signal was detected and cor-
rected in the same way as the OH experiments (extinction corrections were not made, since 
SiO was not found in the co-flow).

Additionally, particulate samples were obtained in two ways, using a thermophoretic 
sampling device (TPS) similar to that described in Dobbins and Megaridis (1987) and 
using a Dekati PM10 impactor. The TPS samples were collected at specific locations in the 
jet, whilst the impactor samples were collected far downstream ( ∼ 2 m), in the extraction 
hood positioned over the burner. The TPS device uses a double-action pneumatic cylin-
der to rapidly push a 3 mm perforated carbon TEM grid into the jet and remove it after 
a pre-set residence time of 50 ms. The grid is held vertically during sampling in order to 
minimize disruption to the flow. Both types of samples are analysed using a Jeol 2100+ 
transmission electron microscope (TEM) at an acceleration potential of 200 kV without 
additional preparation and images are exported to Image-J for analysis.

Figure 2 shows typical TEM images of particulates extracted from within the flame and 
from the exhaust. TPS samples at z = 70mm had a dwell time in the jet of 250 and 50 ms 
in the 1000 ppm and 3100 ppm cases, respectively. The downstream samples, collected at 
z = 2m , resulted from drawing the sampled gas through the finest impactor filter for 5 min 
at 3100 ppm and 20 min at 1000 ppm. Only few and small particulates can be seen on the 
samples for a silane loading of 1000 ppm indicating the presence of nucleation and surface 
growth but only moderate rates of agglomeration at this silane doping concentration. The 

(a) 1000 ppm at z = 70mm (b) 3100 ppm at z = 70mm

(c) 1000 ppm at z = 2m (d) 3100 ppm at z = 2m

Fig. 2  Transmission electron microscope (TEM) image of silica particulates: a, b extracted from within the 
flame by thermophoretic sampling; c, d captured by suction two metres above the burner using a filter. The 
large empty areas correspond to holes in the carbon film of the TEM grid, used for mechanical support dur-
ing imaging
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picture for the case with 3100 ppm is not that clear. Much larger silica structures can be 
observed for samples taken within the flame, but clear agglomerate structures are absent. 
This “coating” of the sample probe may be due to condensation of the silica on the surface 
of the sample probe forming a surface film. When sampling within the exhaust two meters 
above the burner, large particulates of fractal shape have deposited on the sample probe 
indicating that the agglomeration process is the predominant growth mechanism and that 
sintering effects are irrelevant at conditions investigated here, see Fig. 2d. These images 
do certainly not represent the agglomerates’ PSD, however, they clearly demonstrate the 
moderate particulate nucleation in the case with 1000 ppm and significant agglomeration 
yielding very large cluster for loadings with 3100 ppm.

4  Numerical Configuration

The hybrid Euler/Lagrange approach has been implemented into a code package called 
mmcFoam   (Galindo-Lopez et al. 2018) which is based on OpenFOAM-5.0. The compu-
tational domain extends 25D in the axial direction and 11D in the radial direction. A priori 
investigations of three different grids with 0.5, 1.5 and 4 million cells revealed that results 
for the latter two cases are similar. The 1.5 million cell grid is used for all results presented 
in this paper. The mesh is refined near the nozzle, which is resolved by 45 cells along the 
jet diameter giving smallest cell sizes of 50 μm in the center and the shear layer of the jet. 
The turbulent sub-grid viscosity is modelled by the �-model   (Nicoud et al. 2011) and a 
model constant of C� = 1.5 is applied. Pipe flow simulations were conducted inside the 
nozzle to provide realistic turbulent inflow velocity boundary conditions and zero-gradient 
outflow conditions are used at all other boundaries. Second-order central difference and 
TVD schemes are used for discretization of momentum and species transport, respectively. 
For the Lagrangian scheme, 230 000 stochastic particles have been used to compute the 
subgrid distribution of composition and particulate number density, which corresponds 
to one particle for every 6.5 LES cells. All MMC modelling parameters are standard as 
defined in earlier publications (Neuber et al. 2017; Cleary and Klimenko 2011; Vo et al. 
2017b; Neuber et al. 2019b).

A finite rate chemistry model for the precursor chemistry is applied to model silane 
combustion (Suh et  al. 2001; Suh et  al. 2002). We use the mechanism provided by Suh 
et al. (2001) including 63 species and 264 reactions at their reported rates for atmospheric 
pressure. The mechanism includes clustering of silicon oxides in the gas phase that leads 
to nucleation of the first incipient particulates once the molecules are large enough. Suh 
et al. (2001) selected ( SiOn)11 to represent the first solid particulate but acknowledged this 
choice to be arbitrary as it depended on a trade-off between increased detail for gas-phase 
precursors and increasing uncertainties in the reaction kinetics for larger gas-phase mol-
ecules. Assuming spherical symmetry of incipient particulates with a solid matter den-
sity of �p = 2196 kg∕m3 gives a diameter of dp,0 = 0.98 nm for all primary particulates. 
A constant primary particulate size appears restrictive and Fig.  2d indeed demonstrates 
that particulates of various sizes are present. However, a sectional method including a 
primary particulate size distribution (i.e. an effectively two-dimensional representation 
of the particulate characteristics parameterized by the radius of gyration, Rg , and dp,0 ) is 
not yet feasible within a PBE-MMC-LES approach and is not attempted here. Therefore, 
the stochastic particles carry the information of 63 species, enthalpy, mixture fraction and 
a suitable number of sections of the PSD. This “suitable” number warrants some more 
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discussion: The number should be as small as possible to avoid unnecessary computational 
overhead but Neuber et al. (2017) showed that an unsuitably coarse discretisation can lead 
to excessive numerical diffusion and to an overprediction of the number of larger particu-
lates. Since only nucleation and condensation were considered therein, the sensitivity study 
should be repeated here to ensure independence of results in the presence of agglomera-
tion. Figure 3 shows the time-averaged PSD on the centerline of the jet with a 3100 ppm 
silane loading and a co-flow temperature of 1500 K at two different downstream positions. 
The number of sections has been varied from 30 to 120. It can be seen that all PSDs look 
similar and have a bimodal character, which indicates that numerical diffusion is small and 
that agglomeration effects are already dominating the distribution’s spread across particu-
late size space at z∕D = 10 . For a higher number of sections the solutions converge. We 
can clearly observe that for 30 and 60 sections numerical diffusion leads to deviations from 
the converged solution for the PSD. The results for 90 and 120 sections are very similar. 
Since calculations with 120 sections increase computational requirements by 25% but dif-
ferences in predictions are small, we use 90 sections for the approximation of the PSD for 
all further results presented in this study.

In the next section, we compare measured with computed signals following the “para-
digm shift” approach which was used for a variety of analyses in turbulent combustion 
(Torniainen et  al. 1998; Floyd and Kempf 2011) including particulate nucleation and 
growth (Connelly et al. 2009). This strategy avoids incurring assumptions needed to con-
vert experimental signals to physical meaningful quantities such as particulate number 
density. The procedures to calculate the ELS and LIF signals are described in Appendi-
ces 1 and 2 , respectively.

5  Results

The PBE-MMC-LES calculations are performed for different silane loadings of the 
jet stream, different jet Reynolds numbers and different co-flow temperatures. Statis-
tics have been collected for a minimum of 15 flow through times after a statistically 
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stationary state had been reached. The simulations have been run for 4500 CPUh, where 
the stochastic particle costs are about 16 times the costs of the LES.

The general numerical setup of this configuration including the predicted flow and 
mixing fields were validated in Neuber et  al. (2019a). There it was shown that good 
agreement of measured and computed mean and standard deviation of the elastic light 
scattering (ELS) signal can be achieved. For the case with no silane doping, this indi-
cated good predictions of the temperature (and therefore the mixing) field and that the 
most important flow phenomena can accurately be reproduced. The agreement for the 
ELS signal also indicated good predictions for silica nucleation and growth in the case 
with 3100 ppm silane doping of the jet. However, as measured signals require calibra-
tion and calibration has been realized by matching the peak centerline values, a certain 
degree of agreement is expected to be observed. For a more critical analysis, a series 
of test cases needs to be assessed and the model’s capability to predict trends and to 
capture the underlying physics needs to be investigated. We now show further valida-
tion for the case with the highest silane loading of 3100 ppm (Sect. 5.1) and take this 
case as reference. Sections  5.2 (variation of silane loading) and 5.3 (variation of co-
flow temperature and jet Reynolds number) then provide a critical assessment of the 
model’s capability to predict changes in process and boundary conditions. The varia-
tion of model parameters allows the identification of reasons for remaining discrepan-
cies between measurements and computations. We complement our analysis by sensi-
tivity studies towards variation of model parameters. However, these variations are ad 
hoc, they shall serve as indication of sensitivities and identify needs for further model 
improvements, but do not necessarily provide new suitable modelling constants. Results 
are therefore deferred to Appendices 3 and 4 .
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loading of 3100 ppm and a co-flow temperature of 1500 K
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5.1  Evaluation of the Reference Case

In this section we present results of our reference case with a silane doping of 3100 ppm 
and a co-flow temperature of 1500  K at a Reynolds number of ReD = 10,000 . Figure  4 
compares the ELS signals from the experiments with those from the simulations. The 
signals from the LES are calculated as described in Appendix 1. We have calibrated the 
experimental signal such that it is unity in the co-flow. The predicted signal has two contri-
butions. The signal originating from the gas phase is normalised to match the mean co-flow 
values, and the signal associated with the particulate matter is normalised such that the 
peak values of experiment and simulation agree. Note that this procedure is followed for 
the reference case only. For all other cases reported below the ELS signals are normalised 
by the same constants and no further adjustments have been applied. Overall, the simula-
tions agree well with the measurments when assessing the mean of the ELS signal. Most 
notably the positions of the signals’ peaks are very similar.

There are, however, a few pronounced differences that warrant some discussion: 

1. The spatial extent of high particulate matter concentrations is somewhat too wide. 
This might be caused by the unity Lewis number assumption used here for the particle 
composition space including the size sections. The particulates can have very large 
Schmidt-numbers that are up to several orders of magnitude larger than the gaseous 
species’ Schmidt numbers, and their molecular diffusion will tend to zero. Larger par-
ticulates emitting a higher signal tend to follow the streamlines while equal diffusivity 
assumptions enhance lateral diffusion. Vo et al. (2017a) suggested a modification of the 
Lagrangian mixing time scale for the particulate matter and this effect is discussed in 
Appendix 3. In addition, the random walk model (represented by the last RHS term in 
Eq. 2) induces particle dispersion and thus diffusion independent of the species specific 
molecular diffusion coefficient. This “enhanced” diffusion of heavy particles is more 
pronounced in hot regions where molecular diffusion coefficients are large and of the 
same order of magnitude as the turbulent contribution. In the present setup, the co-flow 
is hot which contributes to the over-prediction of particulate dispersion. The mean drift 
model developed by McDermott and Pope (2007) may extenuate this artificial diffusion 
but its implementation in the context of a sparse particle method is unclear to date and 
beyond the focus of this paper.

2. A comparison of Fig. 4c, d reveals qualitative differences between experiments and 
computations. The experiments show a clear maximum along the centerline while simu-
lations place the highest fluctuations at the edges of the jet right into the shear layers. 
Again, neglecting differential diffusion in the model may be the cause of these differ-
ences. The heavy particulates would cluster in the inner jet and the larger concentra-
tions there would also lead to larger gradients and thus variances within the jet’s center. 
Indeed, modification of the mixing time scale such that there is differential dissipation 
of variances of the number densities of small and large particulates enhances variances 
along the centreline as shown in Appendix 3.

3. The computations predict an early onset of the mean ELS signal and corresponding fluc-
tuations in the shear layers between jet and co-flow (cf. Fig. 4b, d). This is not observed 
in the experiments. The appearance of the simulated ELS signal within the upstream 
shear layer can be explained by the (modelled) dynamics within this jet that dominate 
silica particulate formation and growth. Figure 5 shows the inception rate, volumetric 
surface growth, primary particulate number density and agglomerate number density 
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on a plane at centerline position. The inception rate is very high in the shear layer close 
to the jet exit, where the hot surrounding co-flow mixes with the jet and mixing leads 
to oxidation of silane and particulate inception. Along the centerline the inception rate 
peaks at z∕D = 10 and decreases significantly further downstream, which is in line 
with the observation that the precursor species is completely consumed at z∕D = 20 
(not shown). The volumetric surface growth differs qualitatively from the inception 
rate. It is very large in the shear layer close to the jet exit but rapidly decreases further 
downstream. This is consistent with the observation that strong surface growth occur in 
regions where many intermediates are present which then deposit on the particulates’ 
surfaces. Consistent with the inception rate, the number of primary particulates increases 
first in the turbulent shear layer and reaches its highest value at about z∕D = 15 (cf. 
Fig. 5c). Further downstream, the primary particulate number density decreases again 
due to ceasing primary particulate inception and due to particulate dispersion. Com-
parison of agglomerate number density with the number density of primary particulates 
highlights the influence of agglomeration which is in line with the analysis of the TEM 
pictures in Sect. 3. In regions where the primary particulate number density is highest, 
the number density of the agglomerates decreases very quickly due to particulate colli-
sion events.

The early inception of particulates in the shear layer is likely to be related to the gas 
phase chemistry including silane oxidation and formation of gas phase precursors. The val-
idation of the gas phase kinetics includes a comparison of OH and SiO signals. OH can be 
understood as an indication of the position of the shear layer and it is linked to the kinetics 
of the silane oxidation process that is typically relatively fast and intimately coupled with 
the underlying hydrogen-oxygen kinetics. Radial profiles of OH mean values and standard 
deviation are shown in Fig. 6a, where experimental and predicted signals are normalised 
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Fig. 5  Selected aerosol properties of the reference case given by a co-flow temperature of T = 1500K and 
a silane loading of 3100 ppm. a Inception rate in #/m3s, b surface growth rate in  m3/s, c primary particulate 
number density in #/m3 and d particulate number density in #/m3
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with their respective co-flow values at z∕D = 3 . It is seen that the positions of silane 
decomposition and OH production are well detected but peak values of the mean OH-LIF 
signal is over-predicted by 27%. This is a good agreement given the uncertainties that can 
be associated with the kinetics of silane oxidation. In line with the trends observed for 
the mean values the standard deviations are also overestimated. Note that the experimental 
standard deviations in the co-flow do not tend to zero. This is mainly due to shot noise and 
to a lesser extent to readout noise and temperature fluctuations in the hot co-flow. Overall, 
we achieve a satisfactory agreement between the measured and predicted position of the 
reaction zone and between actual and predicted silane decomposition representing the fast 
reactions within this process. OH is not, however, a good indicator for the silica formation 
process. Instead, SiO may serve as a representative species as it is the key intermediate for 
the formation of gaseous SiO2 and one key species for (i) surface growth and (ii) growth of 
the gas phase precursors leading to the first particulates. Figure 6b shows excellent agree-
ment between measured and predicted SiO-LIF signals. The location of the peak values 
and the variation with downstream distance for mean and standard deviations agree very 
well. Deviations at larger radii can be associated with the experimental read noise and shot 
noise that have a more substantial impact for SiO than for OH due to the relatively small 
SiO signal intensity.

With respect to the chemical kinetics and possible turbulence-chemistry interactions we 
may conclude that MMC-LES captures silane oxidation and formation of SiO (and possibly 
of the first silicon dioxide molecules) in the gas phase accurately. High SiO concentrations 
are correctly predicted in the shear layer close to the jet exit. The apparent agreement of 
key species in the gas phase and our prediction of the early onset of particulate nucleation 
(with the latter not being observed in the experiments) suggests some inaccuracies related 
to the modelling of cluster growth (the formation of ( SiO2)m and (SiO)m with m ∈ [2, 10] ) 
in the gas-phase leading to particulate inception. The relevant kinetics were developed for 
standard pressures at T= 773 K (Suh et al. 2002) and extrapolation of the respective rate 
constants to the range of temperatures relevant in the present configuration may introduce 
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some unavoidable inaccuracy. Direct validation of the cluster growth process is difficult as 
direct measurements of SiO and SiO2 clusters do not exist and are not easy to perform—in 
particular for SiO2 due to its photophysical properties. We can, however, assess the sensi-
tivity of predictions on precursor kinetics and this is discussed in more detail at the end of 
Sect. 5.2.

5.2  Sensitivity Study for Varying Silane Loadings

Figure 7 depicts the means of the ELS signals along the centerline for cases with 2500, 
2700, 2900 and 3100 ppm silane loading. For the reference case with 3100 ppm the pre-
dicted ELS signal increases with the same rate as the signal from the measurements, indi-
cating that particulate number and size are well predicted. Also growth and agglomera-
tion are likely to be suitably modelled. The measured signal reaches its maximum value 
at z∕D = 14 , while the predicted peak value is very close at z∕D = 15 . The simulations 
predict the correct trends, i.e. lower silane doping leads to lower agglomerate numbers and 
therefore lower ELS signals. However, the sensitivities towards changes in silane doping 
are moderate while experiments feature much larger differences in signal strength. Only a 
small signal is detected for 2500 ppm and the increase in signal strength is strongly non-
linear with increasing silane concentrations. The strong dependence is unexpected but con-
sistent with the TEM images shown in Sect. 3: for the low silane loadings only few small 
agglomerates were captured while higher loadings led to significant increases in particulate 
production and agglomeration. In contrast, the relatively low sensitivity observed in the 
simulations is not unexpected and can be explained by the models used for nucleation, 
growth and agglomeration. Nucleation and growth are linearly dependent on silane load-
ing, and this linear trend is observed in the predictions where the predicted peak ELS sig-
nal is (to a good approximation) proportional to the silane loading. Non-linearities that may 
explain the experimental trends appear in the current models in three expressions only: 
(1) the agglomeration reveals a square dependence on particulate number, (2) the com-
puted ELS signal increases non-linearly with primary particulate size, agglomerate size 
and fractal dimension, and (3) chemical kinetics are non-linear. Appendices 1 and 5 give 

Fig. 7  Mean elastic light scatter-
ing signal along the centerline for 
cases with a co-flow temperature 
of T = 1500K and with different 
silane loadings in the central jet 
stream. Experiment (symbols) 
and PBE-MMC-LES (lines)
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details on the computation of the ELS signal, highlight the signals sensitity to parameters 
and demonstrate that neither agglomeration nor ELS signal computation can reasonably 
explain the large discrepancies. The analysis in App. 5 hints at possible changes in Df  that 
might be caused by the different seedings and lead to the different signal strenghts. These 
changes are, however, not clearly identifiable nor quantifiable for seedings between 2500 
and 3100 ppm as the TEM images are snapshots and do not provide adequate statistics of 
the agglomerates’ morphologies.

This leaves—next to differential diffusion effects (cf. Sect. 5.1)—chemical kinetics as 
the primary suspect. Precursor growth in the gas-phase follows the sequence

for m ∈ [1, 9] and n ∈ [1, 2] . The cluster ( SiOn)11 represents the first incipient particulates 
(Suh et al. 2001). An adjustment of the rate constants of these cluster growth mechanisms 
will lead to non-linear changes in particulate properties. In addition, Fig. 4 indicates par-
ticulate nucleation to be predicted too early and a reduction in rate constants seems justifi-
able. Appendix 4 demonstrates that adjusted rate constants could yield a behaviour similar 
to the experimental trends observed in Fig.  7. Simple perfectly stirred reactor computa-
tions show that the ELS signal depends strongly non-linearly on silane doping at early 
times. A sufficient delay in particulate nucleation would then yield similar non-linearities 
at z∕D = 15 where the maxima of the measured ELS signals are observed. Appendix 4 also 
shows additional MMC-LES computations of the Cabra burner with reduced rate param-
eters. The results demonstrate that (i) nucleation and growth is shifted downstream leading 
to absence of a particulate signal in the shear layer and continuous growth along the center-
line, but (ii) shifts the peak ELS signal significantly further downstream and overall agree-
ment does not improve. It seems that particulate dispersion and lateral species diffusion is 
not strong enough to suppress a further increase of the ELS signal on the centerline beyond 
z∕D = 15 . We may conclude that this sensitivity study corroborates a strong influence of 
the kinetics on the predictions but simple scaling will not suffice and key to success will be 
detailed and validated chemical schemes that ensure the correct growth of precursor spe-
cies in the gas-phase.

5.3  Sensitivity Study for Varying Co‑flow Temperature and Reynolds Number

Figure 8a shows the ELS signal’s sensitivity towards co-flow temperature. The ELS sig-
nals for the upstream positions are in excellent agreement with experiments indicating an 
accurate numerical treatment of the varying boundary conditions. The ELS signal further 
downstream is correlated to nucleation and growth of the particulates indicating that the 
silane conversion is slower for the lowest co-flow temperature leading to lower particu-
late number densities. Measured and predicted ELS signals have a similar peak value for 
the two higher co-flow temperature cases and we may conclude that temperatures above 
1500 K are high enough for a fast and complete conversion of the precursor. Again, the 
larger changes observed in the experiments cannot be fully reproduced by the simulations 
when decreasing the co-flow temperature from 1500 to 1300 K, but we note that the model 
correctly captures the highest ELS signal for the middle temperature of 1500 K.

In Fig. 8b the sensitivity of the ELS signal towards the jet Reynolds number is shown. 
Due to restrictions of the mass flow rate controller for the high Reynolds number case, the 
silane doping of the central jet is set to 2500 ppm for all three cases. Results for the high 
and medium Reynolds number cases are consistent with the observations made above: no 

(SiOn)m + SiOn ⇀ (SiOn)m+1
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significant signal could be measured, but MMC-LES predicts presence of some particulate 
matter. Notably different is the low Reynolds number case. The much slower convective 
velocity provides sufficient time for particulate nucleation to set-in. At the same time, (tur-
bulent) dispersion is very low as the flow is quasi-laminar. The reduced dispersion leads 
to rather high particulate concentrations, fast agglomeration and a strongly non-linear 
dependence of the ELS signal on Reynolds number variations. MMC-LES cannot capture 
this re-laminarization of the flow and—similar to above—unity Lewis number assumptions 
lead to enhanced dispersion and an almost linear dependence of the peak ELS signal is 
predicted.

6  Conclusions

Sparse-Lagrangian PBE-MMC-LES calculations including detailed precursor chemistry, 
particulate inception, volumetric surface growth and agglomeration have been conducted 
for a series of silane doped nitrogen jets in a hot co-flow. The reference case with high 
silane loading is very well predicted and trends for variations in silane loading, jet Reyn-
olds number and co-flow temperature can be captured. However, the measured sensitivities 
are rather strong and non-linear while the model (based on the assumptions inherent in the 
submodels) gives an almost linear or at most quadratic dependence on silane concentra-
tion. Further comparison with LIF measurements of key gas-phase species representing the 
fuel conversion process and intermediates for silica formation demonstrates the method’s 
capability to represent gas-phase conversion and its interactions with turbulence. However, 
sensitivity studies indicate that the gas-phase precursor (cluster formation) chemistry can 
cause these strong non-linearities, but simple scaling of precursor (cluster) growth does 
not lead to success. Also, differential diffusion effects are likely to have significant effect 
on the specific locations in the flame where particulates nucleate and grow. The current 
work shall be understood as an attempt to identify the specific submodels’ sensitivities, to 
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provide guidelines for the need of future development in the area of modelling particulate 
flame synthesis and to highlight the need for proper model validation. The validation with 
one set of measurements only may not identify shortcomings of models or sub-models as 
the “right” choice of modelling constants may often allow for a good match between simu-
lations and “the” one target experiment. As has been established within the combustion 
community, a series of measurements with parameter variation is needed to provide an 
unbiased assessment of modelling approaches. The—at certain conditions—modest agree-
ment between measurements and simulations should not lead to dismissal of some of the 
sub-models used here, it rather highlights the complexity of the particulate formation pro-
cess. Nanoparticulate flame synthesis in general and silica particulate formation in par-
ticular is similar to soot inception and growth. The quality of predictions presented here is 
comparable to the quality of predictions of soot in turbulent flames found in the literature. 
Also, the difficulties with respect to modelling soot formation are commonly associated 
with the complex kinetics leading to the incipient soot particulates and with differential 
diffusion. This is consistent with the current paper that identifies the precursor chemistry 
and differential mixing of heavy species and particulates as key modelling issues that can 
explain the strongly non-linear dependence of particulate properties on silane doping, and 
more work is required in these areas if simulations are to be truly predictive for particulate 
synthesis processes.
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Appendix 1: Calculation of the Elastic Light Scattering (ELS) Signal

The overall ELS signal has contributions from molecular and particulate scattering with 
two normalisation factors a and b:

The ELS signal Smolec
ELS

 originating from gas molecules is calculated according to

(4)SELS = aSmolec
ELS

+ bS
agg

ELS
.

http://creativecommons.org/licenses/by/4.0/
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where T is the temperature, xi is the species mole fraction and �i is the ELS (Rayleigh 
scattering) cross section of species i at 532 nm . Normalised ELS cross sections have been 
determined by Fuest et al. (2012). Since composition and temperature are fully defined in 
the simulation the molecular signal can be predicted within the model.

The second contribution of the ELS signal originates from light scattered by agglomer-
ates and is calculated according to the Rayleigh–Debye–Gans theory of light scattering by 
fractal agglomerates (RDG-FA)  (Sorensen 2001). In the case that a sectional method with 
Ns sections is used the contribution of each class of agglomerates is added to give the total 
signal

where the Cagg
sca  is the scattering cross section of the fractal agglomerate and nk is the num-

ber density within the section k. The former is a function of the agglomerate size (Sorensen 
2001) and needs to be weighted with the computed PSD to be comparable to the measured 
signal.

For loose, spherical primary particulates several times smaller than the wavelength, the 
scattering cross section varies with the sixth power of the primary particulate diameter 
(Rayleigh’s approximation). When large fractal aggregates form, the scattering cross sec-
tion also depends on the radius of gyration. Following the conventions of Link et al. (2011) 
we can formulate a dependency of the scattering cross section on fractal dimension and 
size for three different size regimes:

where N is the number of primary particulates within the aggregate, the scattering 
wave vector q =

4�

�
sin(�) and k = 2�∕� are constant throughout the experiment since 

� = 532 nm and � = �∕2 . The value of the constant C is discussed in Sorensen (2001) and 
is set to C = 0.77 . As discussed in Sect. 2 the fractal dimension and the primary particulate 
diameter are set to Df = 1.8 and dp0 = 0.98 nm , respectively.

The normalisation factors in Eq.  (4) are determined based on the results of our refer-
ence case with a silane doping of 3100  ppm and a co-flow temperature of Tc = 1500K 
at ReD = 10,000 . The normalisation factor for the molecular ELS signal is determined to 
a = 6.52374 ⋅ 10−4 such that a value of unity is obtained for the co-flow. The ELS signal 
from agglomerates is normalised with b = 1.01 ⋅ 10−4 to match the same maximum value 
as the experimental reference case.

(5)Smolec
ELS

∝

∑Ys
i=1

xi�i

T

(6)S
agg

ELS
∝

Ns∑
k=1

Cagg
sca

nk ,

(7)Cagg
sca

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N2k4(dp,0∕2)
6 ∶ Rayleigh regime

(qRg < 0.1) ,

(Rg < 6 nm) ,

N2k4(dp,0∕2)
6
�
1 − (q2R2

g
)∕3

�
∶ Guinier regime

(0.1 ≤ qRg ≤ 1) ,

(6 nm ≤ Rg ≤ 62 nm) ,

N2k4(dp,0∕2)
6
�
C(qRg)

−Df

�
∶ Power-Law regime

(qRg > 1) ,

(Rg > 62 nm) ,
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Two implications of Eq. (7) are noted: 

1. C
agg
sca  scales with d6

p,0
 . We may be tempted to assume that the modelling uncertainty with 

respect to the initial primary particulate size and variations in growth rates may have a 
very significant non-linear effect on the ELS signal. Indeed, particulate diameters meas-
ured at 70 mm downstream can easily vary by a factor of 2. It is hypothesized, however, 
that particulate number density scales with d−3

p,0
 and therefore Sagg

ELS
 computed by Eq. (6) 

is much more likely to show a square dependence on the size of the primary particulates. 
Also note that TEM pictures indicate a very similar mean for the primary particulate 
size for the entire seedings range. Mean diameters are around 11 nm for 300 ppm and 
around 14 nm for 3100 ppm, and it may be concluded that primary particulate size is 
not (primarily nor solely) responsible for the strong non-linear effect observed for the 
different silane loadings.

2. Effects of agglomeration on the ELS signal are small and inaccuracies in the modelling 
of collision rates cannot explain the differences between the dependencies of simulations 
and experiments on silane doping. Agglomeration does not change dp,0 , it decreases nk 
and increases N and Rg . R

−Df

g  scales with N−1 . Collision of agglomerates yields changes 
in Sagg

ELS
 proportional to nkN2N−1 which equals unity if two large identical agglomerates 

collide. The agglomeration of two identical small agglomerates increases Sagg
ELS

 by a factor 
of two (Rayleigh regime) or smaller (Guinier regime).

These observations may not hold in case of significant sintering after collision. However, 
this is not observed in the current application where primary particulates can easily be 
identified in the samples collected in the exhaust (cf. Fig. 2d).

Appendix 2: Calculation of the Laser‑Induced Fluorescence (LIF) 
Signals

The predicted LIF signals are calculated from the molecular concentrations, ci , of species 
i as:

where f�,J(T) is the normalised Boltzmann fraction of electrons in the ground level for a 
transition of quantum numbers �, J and Qi(T) is the normalised collisional quenching rate 
at temperature T. The total quenching rate is obtained as

where kB is the Boltzmann constant, xs is the mole fraction, �s is the reduced mass and �s 
is the corresponding quenching rate of each collider species s. Quenching rates for the OH 
radical under various collider species have been determined by Tamura et al. (1998) where 
the empirical two-parameter expression is used. In absence of specific quenching rates for 
SiO, the same rates have been used for the computation of the SiO signal. The Boltzmann 
fraction for SiO computations was obtained from a PGOPHER simulation of this molecule.

(8)SLIF
i

∝ ci
f�,J(T)

Qi(T)

(9)Qi(T) = Ntot

∑
s

xs�s(T)

(
8kBT

��s

) 1

2
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Appendix 3: The Influence of a Mixing Time Scale Modification 
for the Transported Number Densities of the Discretised Particulate 
Size Distribution

Here, a modification of the Lagrangian mixing time scale is discussed. If unity Lewis num-
ber assumptions are invoked, all transported scalars are mixed with a mixing extent calcu-
lated on the basis of the anisotropic mixing time scale model proposed by Vo et al. (2017b). 
Here we show and discuss results obtained with a modification of the Lagrangian mixing 
time scale for the particulate number densities only, as proposed by Vo et al. (2017a). They 
showed that for transported particulate matter a modification of the Lagrangian mixing 
time scale can achieve a significant improvement of the conditional variance. The standard 
mixing time scale is scaled with the diffusivity of the individual sections in order to reduce 
the sub-grid mixing of the aerosol, �L,k = Dk∕D �L , where �L,k is the mixing time scale of 
section k. This emulates reduced mixing rates for large agglomerates. The reference simu-
lation uses the same Lagrangian mixing time scale for all transported scalars including the 
particulate number densities and has been presented in Sect. 5.1. There, the predicted mean 
of the ELS signal agrees well with measurements but qualitative differences are observed 
for the standard deviations (see Fig. 4). It is noted, however, that the location of the peak 
mean ELS signal moves 5 diameters downstream.

Figure  9 now shows simulated mean and standard deviation of the ELS signal for 
adjusted mixing time scales mimicking differential diffusion of the particulate matter. All 
remaining (gas-phase) quantities are mixed with the standard model. Improvements can be 
observed as (i) particulate nucleation and growth are moved further downstream leading to 

Fig. 9  Contour plots of the nor-
malised elastic light scattering 
signal for the reference case with 
a silane loading of 3100 ppm and 
a co-flow temperature of 1500 K 
using the modified mixing time 
scale model
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a reduced ELS signal in the shear layers upstream and (ii) a much better qualitative agree-
ment for the standard deviation is observed (compare Fig. 9b with Fig. 4c).

A more quantative comparison is provided by Fig. 10 where radial profiles of the ELS 
signal are shown for different downstream positions. Here, the presence of the ELS sig-
nal in the shear layer for the case with equal diffusivities is pronounced and predictions 
with a modified mixing time scale show improved predictions. Also, the peak values of 
the standard deviations are much better predicted with the reduced mixing frequencies 
for the aerosol matter, especially for centerline positions where the peak value are per-
fectly matched. However, overall agreement does not really improve: the predicted stand-
ard deviation profiles are much broader than the measured data and more importantly, the 
centerline dependence of the mean signal is not capture well. We should point out here 
that the modifications suggested by Vo et al. (2017a) do not provide a fully consistent dif-
ferential diffusion model and more sophisticated models as derived e.g. by McDermott and 
Pope (2007) and Dialameh et al. (2014) should be extended to the present application for 
accurate predictions of differential diffusion effect. Here, however, we limit ourselves to 
identify the sensitivities of results on molecular diffusion processes and point out that dif-
ferential diffusion may need to be properly modelled if agreement with measurements is to 
be achieved at all positions in the flow.

Appendix 4: Discussion of the Influence of Reaction Rate Parameters

In Sect. 5.1 we have shown results of the reference case with a silane doping of 3100 ppm 
and a co-flow temperature of T = 1500K . It has been discussed that the computed ELS 
signal becomes large in the shear layer, whereas this characteristic cannot be observed for 
the experimental data. There, the ELS signal increases at centerline position in stream-
wise direction. One reason could be an incorrect precursor chemistry where chemical 
reaction rates are overpredicted and inception is too fast. To investigate the influence of 

Fig. 10  Mean and standard 
deviation of the elastic light 
scattering signal at different 
downstream positions for the 
reference case with a silane dop-
ing of 3100 ppm and a modified 
Lagrangian mixing time for the 
particulate matter
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the precursor chemistry we first investigate the time evolution of particulate inception 
and growth. Figure 11 (left) shows perfectly stirred reactor calculations with different ini-
tial silane concentrations. After a transient, the ELS signals are almost linearly depend-
ent on the silane loading. However, during an initial stage (Fig. 11 (right)) the ELS sig-
nals are strongly non-linearly dependent and the sensitivity resembles the sensitivity 
observed in Fig.  7. The rate coefficient for the clustering reactions given in Suh et  al. 
(2002) are estimates and some adjustments seem justified. A reduction in rates may delay 

Fig. 11  ELS signals for different initial silane loadings: entire silicon conversion process (a) and zoom for 
initial time period of 15 ms (b)

Fig. 12  Contour plots of the nor-
malised elastic light scattering 
signal for different reaction rates 
of the clustering mechanism with 
a silane loading of 3100 ppm and 
a co-flow temperature of 1500 K

r/D

z
/
D

(a) ω̇i/2

r/D

z
/
D

(b) ω̇i/10



1189Flow, Turbulence and Combustion (2021) 106:1167–1194 

1 3

particulate nucleation sufficiently to (i) reduce particulate nucleation in the shear layer and 
(ii) “freeze” particulate formation sufficiently early due to dispersion and mixing prior to 
completion of the entire conversion process from silane to silica particulates. Figure  12 
shows the mean ELS signal of simulations where the pre-exponential factors of all cluster-
ing reactions are divided by 2 and 10, respectively. As expected, the particulate inception 
is shifted further downstream with negligible particulate formation in the upstream shear 
layers which is consistent with experiments. Thus, the precursor chemistry model—and 
uncertainties related with it—can have a strong impact on the particulate evolution pro-
cesses. We note, however, that the peak ELS signals are shifted further downstream (with 
the maximum for the �̇�i∕10 case likely to be located outside the computational domain). 
The overall agreement with measurements is therefore not improved, and we may postulate 
a need for improved precursor kinetics if simulations of silica production processes are to 
be predictive.

Appendix 5: Investigation of the Influence of the Particulates’ Fractal 
Dimension on the ELS Signal

The frequency of agglomerate-agglomerate collision is given by the collision kernel. Ker-
nels require the specification of collisional cross-sections that can be parameterized by the 
agglomerates’ radii of gyration and fractal dimensions. A typical fractal dimension for sil-
ica flame synthesis reported in the literature is Df = 1.8  (Shekar et al. 2012; Schaefer and 
Hurd 1990) and is assumed to be constant in our sectional approach. However, the fractal 
dimension may change during the growth process due to collision of different agglomer-
ates (Inci et  al. 2017) or due to surface growth and neck formation. To asses the influ-
ence of different morphologies Fig. 13 shows the mean ELS signal along the centerline for 
four MMC-LES simulation of the reference case (as defined in Sect. 5.1). The only change 
relates to using different—but still constant—values of the fractal dimension. The signal 
originating from the gas molecules is not affected and signals are nearly equal down to z/
D=5 when the first particulates form on the centerline. Then, the ELS signal increases with 

Fig. 13  Mean elastic light scat-
tering signal along the center-
line for cases with a co-flow 
temperature of T = 1500K and 
with different (constant) fractal 
dimensions for the agglomerates’ 
morphologies
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different rates and the signal originating from the solid phase starts to dominate. It can 
be observed that the maximum signal strength shifts further downstream for larger fractal 
dimensions. This indicates—as expected—a decreased agglomeration rate for more com-
pact agglomerates. It needs to be noted, however, that the respective maximum values do 
not reveal a clear dependence on Df  as the maximum value is observed for Df = 2.0.

This non-monotonic dependence on Df  can be explained with the aid of Fig.  14. To 
generate Fig.  14a, the ELS signals were computed from agglomerates with a uniform 
particulate number, N, and fractal dimension, Df  , keeping the total number of primary 
particulates, n0 = 1 ⋅ 1020 , fixed. The figure highlights changes in the ELS signal due to 
agglomeration and different morphologies. For small and medium sized agglomerates in 
the Rayleigh and Guinier regime, the signal increases almost linearly with N. This is con-
sistent with Eqs. (6) and (7) as nk ∼ N−1 . For large agglomerates in the powerlaw regime, 
the scattering signal remains constant which is in line with our discussion in App. 1. As the 
scattered signal from large agglomerates is much higher, only the large agglomerates affect 
the ELS signal. We can also see that the fractal dimension has a strong and non-linear 
influence on the ELS signal. Here, the scattered light of compact agglomerates is much 
higher than that of agglomerates with low fractal dimensions. Figure 14b shows the tempo-
ral evolution of the ELS signal from a perfectly stirred reactor calculation. The initial com-
position is given by a burning solution for a mixture fraction of Z = 0.35 of the reactive jet 
simulations with 3100 ppm silane loading. The simulation time corresponds to the time a 
fluid element would need to travel along the centerline in our jet configuration described 
in the main body of the paper, and the PSR simulations thus approximate the time history 
of a burning notional particle in the absence of mixing. It can be seen that agglomerates 
with smaller fractal dimensions emit stronger signals at the beginning. After some time, 
however, this dependence is reversed. This behaviour can now easily be understood with 
data from Fig. 14a. Initially, agglomerates with small fractal dimension grow faster due to 
a larger collisional cross section giving faster increases in the ELS signal. After some time, 
however, scatter is dominated by agglomerates in the power law regime, further growth 
does not increase the ELS signal, and the increase in the ELS signal considerably slows 
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(as nucleation is ongoing and smaller agglomerates continue to exist). Since more com-
pact agglomerates with larger fractal dimension tend to yield stronger ELS signals, simula-
tions using larger Df  will provide larger ELS signals and the initial dependence on Df  is 
reversed.

The evolution of the ELS signal observed in Fig. 13 can now be explained: The ELS sig-
nals for larger Df  rise more slowly as agglomeration is delayed. This trend is very quickly 
reversed for Df < 2.2 and the more compact agglomerates tend to give larger ELS signals. 
For the fractal dimension of Df = 2.2 the results do not quite follow the trend. Upstream, 
the computed ELS signal is in line with our expectations but further downstream, the sig-
nal does not surpass the values computed for Df = 2.0 . It can be hypothezised here that this 
is due to broadening effects further downstream. Radial (turbulent and molecular) diffusion 
and particulate and agglomerate dispersion decrease the local particulate number density 
and thus the collision frequency and counteract the expected increase in ELS signal.

The discussions with respect to the computed ELS signal show that an unambiguous 
comparison between measured and computed ELS signals may require a model for the 
solid phase that includes information not only on mean parameters for particulate number 
density, radius of gyration, primary particulate diameter and fractal dimension, but also on 
their distributions and correlations. Such a multi-variate characterisation of the nanoparti-
cles using a sectional approach is currently beyond reach as (i) computational requirements 
will be huge and (ii) models describing the dynamics within this multi-dimensional space 
do not exist. Only two-dimensional models based on a multi-sectional moment method 
were proposed (e.g. Yang and Mueller 2019; Xiong et  al. 1993) and may guide future 
research in the context of MMC-LES-PBE of nanoparticle flame synthesis for improved 
predictions of particulate characteristics.
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