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Abstract
Quantifying the error that is induced by numerical approximation techniques is an
important task in many fields of applied mathematics. Two characteristic properties
of error bounds that are desirable are reliability and efficiency. In this article, we
present an error estimation procedure for general nonlinear problems and, in partic-
ular, for parameter-dependent problems. With the presented auxiliary linear problem
(ALP)-based error bounds and corresponding theoretical results, we can prove large
improvements in the accuracy of the error predictions compared with existing error
bounds. The application of the procedure in parametric model order reduction setting
provides a particularly interesting setup, which is why we focus on the application in
the reduced basis framework. Several numerical examples illustrate the performance
and accuracy of the proposed method.

Keywords Error estimation · Model order reduction · Reduced basis method

Mathematics subject classification (2010) 65J15 · 65L70

Communicated by: Anthony Nouy

This article belongs to the Topical Collection: Model Reduction of Parametrized Systems
Guest Editors: Anthony Nouy, Peter Benner, Mario Ohlberger, Gianluigi Rozza, Karsten Urban and
Karen Willcox

� Dominik Wittwar
dominik.wittwar@mathematik.uni-stuttgart.de

Andreas Schmidt
andreas.schmidt@mathematik.uni-stuttgart.de

Bernard Haasdonk
haasdonk@mathematik.uni-stuttgart.de

1 Universitat Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany

23 March 2020Published online:

Adv Comput Math (2020)  46: 32

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-020-09741-x&domain=pdf
mailto: dominik.wittwar@mathematik.uni-stuttgart.de
mailto: andreas.schmidt@mathematik.uni-stuttgart.de
mailto: haasdonk@mathematik.uni-stuttgart.de


1 Introduction

A-posteriori error estimates are important tools in many disciplines of applied math-
ematics. For example, they are required for assessing the quality of numerical
approximations and to guarantee their feasibility in the corresponding scenario. Pop-
ular examples for the application of error bounds are adaptive refinement strategies,
where error estimates are used to judge whether the spatial or temporal discretiza-
tion should be refined to improve the quality of the approximation, see for example
[1, 9, 17]. Two desirable properties of such bounds are rigorosity, i.e. the error bound
should be a valid upper bound, and effectivity, i.e. the factor of overestimation should
be computable. In the context of the finite element method (FEM), those properties
are also referred to as reliability and efficiency.

An area where error bounds are of utmost importance is reduced order modeling.
Faced with the computational complexity involved with solving high-dimensional
systems of equations arising for example for highly accurate discretizations of partial
differential equations (PDEs), several techniques have emerged that try to tackle this
challenge by reducing the dimension of the problem. This is typically done by a
projection of the problem onto a low-dimensional subspace that contains enough
information about the solution to the problem. The projection then yields a problem
of low-dimension which can be solved with low computational complexity and which
yields an approximation to the high-dimensional solution. The important question
that should then be answered is how far the approximation is from the true solution.
To this end, one typically employs a-posteriori error estimates which in the ideal case
deliver a rigorous upper bound that does not deviate too much from the true error.
Giving a complete overview over the available methods and corresponding results for
the error estimation is out of scope of this paper. Instead, we refer to [3] and [4] for
recent overviews of model (order) reduction in the parameteric and nonparametric
cases. Based on these techniques, approximate solutions can be calculated cheaply
and in a computationally efficient manner. One framework that is particularly suitable
for parametric problems is the reduced basis (RB) method. The essential idea of RB
methods is to identify low-dimensional subspaces in the high-dimensional solution
spaces by exploring the parameter domain with so-called greedy algorithms. In this
article, we will demonstrate that classical error bounds which are well-established
within RB methods can be significantly improved by introducing an auxiliary linear
problem and corresponding RB approximation. By the proposed procedure, we are
able to reach optimal effectivities of almost 1 in many examples. Additionally, the
necessity for good lower bounds on the inf–sup constant can be alleviated, which
allows the use of rougher (and thus computationally less expensive) lower bounds.
Furthermore, the quality of the error bound can be tuned according to the application
requirements.

In this paper, we improve a residual-based error estimation technique that has
been used frequently during the last decades. We illustrate the essential idea of the
improvement that enables highly accurate error estimates by the following simple
example: Consider the vector-valued equation Ax = f for A = (

1 0
10 1

)
and f =(

0
1

)
. This equation has the unique solution x∗ = (

0
1

)
. Assume we have a numerical
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scheme that is able to produce the approximate solution x̂ ∈ R
2 with say x̂ = 1.01x∗.

This results in a very low error (in the Euclidean norm) of only ‖x̂ − x∗‖2 = 0.01.
Usually the true solution x∗ is not available for the evaluation of the error, which is
why we are interested in finding rigorous upper bounds to the norm of the true error
e := x̂ − x∗. The straightforward procedure for doing this is to define the residual
r := Ax̂ − f and to derive the equation Ae = r for the error e. It then directly
follows ‖e‖2 ≤ ‖A−1‖2‖r‖2 ≈ 10.1 · 0.01 ≈ 0.101, which is an overestimation
of factor ≈ 10, which is already quite large in this small example. To obtain more
accurate error bounds in this linear setting, we start again with the equation for the
error Ae = r . It is an interesting observation that by solving this equation exactly, the
error can be calculated exactly, i.e. with no overestimation. Unfortunately this is often
too expensive in applications since this essentially adds the complexity of solving the
original problem again (at least in the linear case). The central idea now is to not solve
the error equation Ae = r exactly but by another computationally efficient method
that produces approximate solutions. If we assume to have a numerical scheme that
is able to calculate an approximate error ê rapidly, we can make use of the triangle
inequality and deduce the upper bound ‖e‖2 ≤ ‖̂e‖2 + ‖̂e − e‖2. The second term
can be estimated similarly to the first error bound by introducing a second residual
R := Aê − r , from which we then obtain the final bound

‖e‖2 ≤ ‖̂e‖2 + ‖A−1‖2‖R‖2. (1)

Returning to the toy example and assuming an approximation ê = 1.01e, we can
evaluate equation (1) and obtain ‖e‖2 ≤ 0.01111, which gives an overestimation
factor of approximately 1.111. Hence, the error estimate is improved by a factor of
about 10.

In this paper, we show how the idea behind this very simple example can be
generalized to a large class of linear and nonlinear problems, especially in the con-
text of RB methods. To this end, we introduce a generic nonlinear error estimate in
Section 2. We discuss the application in the RB context in Section 3 and provide sev-
eral numerical examples in Section 4. Finally, we present a conclusion and an outlook
in Section 5.

2 Rigorous and effective error bounds

We first clarify the setting used throughout this article. In what follows, we always
assume X and Y to be Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , respectively.
The set of all bounded linear operators from X to Y is denoted as L (X, Y ). For
A ∈ L (X, Y ), we define the operator norm ‖A‖L (X,Y ) := sup0�=x∈X

‖Ax‖Y‖x‖X
.

Throughout this article, we consider continuously differentiable mappings G ∈
C1(X, Y ) and are interested in solving the problem

Find x ∈ X such that G(x) = 0. (P)

An element x∗ ∈ X is called (true) solution to the problem (P), if G(x∗) = 0.
In the remainder of this article, we always assume that at least one solution exists.

We are interested in estimating the error e := x̂ − x∗ between a true solution and a
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suitable approximation x̂ ∈ X by means of reliable a-posteriori error bounds, which
can be represented by functions � : X → R with the property

‖x̂ − x∗‖X ≤ �(x̂). (2)

A general framework for providing such error estimates can be found in [7]. However,
the results presented in that reference often lead to quite large overestimations of
the true error. The quality of the upper bound � can be quantified in terms of the
so-called effectivity, which is defined as

eff(x̂) := �(x̂)

‖x∗ − x̂‖X

. (3)

By its definition, it is clear that for reliable (i.e. rigorous) error estimates, it always
holds eff(x̂) ≥ 1. Ideally we aim for error bounds that provide effectivities close to
one as we then get almost exact error predictions.

2.1 Rigorous, effective, and computable a-posteriori error estimates
with effectivity bounds

In this section, we refine the results derived in [7] and show how significant improve-
ments can be achieved. We want to emphasize that these derivations are independent
of model order reduction but apply to any kind of approximation procedure. To this
end, let us assume that the Fréchet-derivative DG|x̂ of G at the approximate solu-
tion x̂ defines an invertible linear operator from X to Y . Based on this derivative, we
then define the following three quantities, where Bα(x̂) = {x ∈ X| ‖x − x̂‖X ≤ α}
denotes the closed ball in X with radius α around x̂

ε(x̂) := ‖ DG|−1
x̂

(
G(x̂)

) ‖X, (nonsplit residual)

γ (x̂) := ‖ DG|−1
x̂

‖L (Y,X), (stability constant)

L(α) := sup
x∈Bα(x̂)

‖ DG|x − DG|x̂ ‖L (X,Y ), (local nonlinearity indicator).

Due to the assumption on G, DG|x̂ is bounded and thus DG|−1
x̂

is also bounded
according to the bounded inverse theorem and the above quantities are well-defined.
Based on these quantities, we are able to prove the following fundamental error
estimate.

Theorem 1 (Rigorous a-posteriori error estimation) Let x̂ ∈ X be an approximate
solution and assume that DG|x̂ : X → Y is invertible. Let the validity criterion

τ(x̂) := 2γ (x̂)L(2ε(x̂)) ≤ 1

holds. Then the problem G(x) = 0 has a unique solution x∗ ∈ X in the closed ball
B2ε(x̂)(x̂) and the following upper bound for the error e = x̂ − x∗ ∈ X holds

‖e‖X = ‖x̂ − x∗‖X ≤ �(x̂) := 1

1 − τ(x̂)/2
ε(x̂) ≤ 2ε(x̂). (4)

Proof We present the full proof of the theorem in Appendix A.
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Remark 1 Note that similar bounds have been derived by various authors [20, 21,
23]. However, in the bounds in literature known to us, the nonsplit residual ε(x̂) is
replaced by the upper bound

εsplit(x̂) := γ (x̂)‖G(x̂)‖Y ≥ ‖ DG|−1
x̂

(G(x̂))‖X = ε(x̂), (5)

which we call split residual for obvious reasons. As we have seen in the introduc-
tion and as we will see in the numerical results, this splitting can induce a very large
overestimation. This is not the case when the quantity ε(x̂) or other, more accu-
rate approximations to it, are used. Hence, the results in this article improve all the
aforementioned existing results.

The quantity L(α) can be seen as a measure for the nonlinearity of the problem
in the vicinity of the approximate solution. In particular, for (affine) linear problems,
we immediately get L(α) = 0 (and τ(x̂) = 0, i.e. unconditional validity) and hence
even exact error predictions as stated in the following corollary.

Corollary 1 (Exact error prediction for linear problems) Let G be affine linear
in x. Then it holds

‖e‖X = ‖x̂ − x∗‖X = �(x̂), and eff(x̂) = 1.

Proof Since G is affine linear in x it can be written as G(x) = Ax + g for some
A ∈ L (X, Y ) and g ∈ Y . We then obtain G(x̂) = G(x̂)−G(x∗) = A(x̂ −x∗) = Ae

or equivalently e = A−1(G(x̂)). We further infer

‖e‖X = ‖A−1(G(x̂))‖X = ‖ DG|−1
x̂

(G(x̂))‖X = ε(x̂) = �(x̂),

since DG|x = A for all x ∈ X and τ(x̂) = 0.

If the local nonlinearity indicator L(α) does not vanish but satisfies L(α) ≤ Cα

for some constant C > 0, the constant in front of the nonsplit residual in (4) can be
improved as follows:

Lemma 1 Let the assumptions of Theorem 1 hold and let L(α) ≤ Cα for some
C > 0. If the modified validity criterion

τ̂ := 4γ (x̂)Cε(x̂) ≤ 1

is satisfied, then the problem G(x) = 0 has a unique solution x∗ ∈ X and the error
e = x̂ − x∗ is bounded by

‖e‖X ≤ 1 − √
1 − τ̂

2γ (x̂)C
= 2

1 + √
1 − τ̂

ε(x̂). (6)

Proof We present the full proof of the lemma in Appendix B.

In (6), we recover the multiplicative structure of error bounds for RB methods for
quadratic nonlinearities, e.g. [23] except for different leading factors. In particular,
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we omit the stability factor which arises when the split εsplit is used as a bound to the
nonsplit residual ε.

As it was motivated in the introduction, the key quantity to assess the quality of
the error bound is the effectivity eff(x̂). In order to make quantitative statements of
the effectivity for the error bound in the general nonlinear case, we assume that the
function DG|−1

x̂
G(·) is locally Lipschitz-continuous around x̂. By this, we mean that

there exists a constant CG(x̂) ≥ 0 such that it holds

‖ DG|−1
x̂

(G(x)) − DG|−1
x̂

(G(x̂))‖X ≤ CG(x̂)‖x − x̂‖X, ∀x ∈ B2ε(x̂)(x̂). (7)

Based on this property, we are able to prove an estimate for the effectivity for locally
Lipschitz-continuous problems.

Lemma 2 (Effectivity estimate) Let DG|−1
x̂

(G(·)) be locally Lipschitz-continuous
around x̂ with constant CG(x̂) and let the error estimate from Theorem 1 holds true.
Then it holds

eff(x̂) ≤ CG(x̂)

1 − τ(x̂)/2
.

Proof The proof follows directly from the fact that G(x∗) = 0 and

�(x̂) = 1

1 − τ(x̂)/2
‖ DG|−1

x̂
(G(x̂))‖X

= 1

1 − τ(x̂)/2
‖ DG|−1

x̂
(G(x̂) − G(x∗))‖X

≤ CG(x̂)

1 − τ(x̂)/2
‖x̂ − x∗‖X.

Note that the effectivity estimate agrees with the result stated in Corollary 1.
Indeed, for linear problems, we immediately observe τ(x̂) = 0 and CG(x̂) = 1 which
results in eff(x̂) = 1.

It is noteworthy that the local Lipschitz-continuity assumption is satisfied for
a large class of problems. One class that is of particular interest in applications
are quadratic problems such as the Navier-Stokes equation, Burgers equation, the
algebraic Riccati equation (ARE), or nonlinear reaction-diffusion equations. The
following proposition provides a bound on CG(x̂) in this case.

Proposition 1 (Local Lipschitz-continuity for quadratic problems) LetG be qua-
dratic, i.e. there exists a y0 ∈ Y , A ∈ L (X, Y ) and a continuous bilinear mapping
B : X × X → Y such that

G(x) = y0 + Ax + 1

2
B(x, x).

Then DG|−1
x̂

(G(·)) : B2ε(x̂)(x̂) :→ X is locally Lipschitz-continuous around x̂ with

CG(x̂) ≤ 1 + γ (x̂)cBε(x̂),

where cB := sup
x,x′∈X\{0}

‖B(x,x′)‖Y‖x‖X‖x′‖X
is the continuity constant of B.
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Proof It holds

DG|x̂ (x) = Ax + 1

2

(
B(x, x̂) + B(x̂, x)

)
and D2G

∣∣∣
x̂
(x, x′) = 1

2
(B(x, x′) + B(x′, x)).

By direct computation, we get the Taylor-like expansion

G(x) = G(x̂) + DG|x̂ (x − x̂) + 1

2
D2G

∣
∣
∣
x̂
(x − x̂, x − x̂)

and therefore,

DG|−1
x̂

(G(x)) − DG|−1
x̂

(G(x̂)) = DG|−1
x̂

(G(x) − G(x̂))

= DG|−1
x̂

(
DG|x̂ (x − x̂) + 1

2
D2G

∣
∣∣
x̂
(x − x̂, x − x̂)

)

= x − x̂ + 1

2
DG|−1

x̂
(D2G

∣∣
∣
x̂
(x − x̂, x − x̂))

= x − x̂ + 1

2
DG|−1

x̂
(B(x − x̂, x − x̂).

Taking the norm on both sides, applying the definition of the continuity constant cB

and using the triangle inequality, we get

‖ DG|−1
x̂

(G(x)) − DG|−1
x̂

(G(x̂))‖Y ≤ ‖x − x̂‖X + 1
2γ (x̂)cB‖x − x̂‖2

X.

Finally, applying the bound given in (4) gives the desired result.

In the infinite-dimensional settings, the calculation of the involved quantities is
often not possible while in the finite-dimensional case, it can be computationally
demanding or even infeasible. This is particularly true for very high-dimensional
settings arising for example from semi-discretized PDEs. Instead, one often only has
computable upper bounds to the quantities, i.e.

ε(x̂) ≤ εub(x̂), γ (x̂) ≤ γ ub(x̂), L(α) ≤ L ub(α). (8)

In this case, Theorem 1 remains valid with the replaced quantities:

Theorem 2 (Computable error bound and effectivity estimate) Let x̂ ∈ X be an
approximate solution and assume that DG|x̂ is invertible. Let the validity criterion

τ ub(x̂) := 2γ ub(x̂)L ub(2ε ub(x̂)) ≤ 1. (9)

holds. Then the problem G(x) = 0 has a unique solution x∗ ∈ X in the ball
B2ε ub(x̂)(x̂) and the upper bound holds

‖e‖X = ‖x̂ − x∗‖X ≤ � ub(x̂) := 1

1 − τ ub(x̂)/2
ε ub(x̂) ≤ 2ε ub(x̂). (10)

Furthermore, if there exists a constant Cε(x̂) > 0 such that ε ub(x̂) ≤ Cε(x̂)ε(x̂)

and DG|−1
x̂

(G(·)) is locally Lipschitz-continuous around x̂ with constant CG(x̂), the
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effectivity estimate

eff ub(x̂) ≤ Cε(x̂)CG(x̂)

1 − τ ub(x̂)/2
,

where eff ub(x̂) is the effectivity for the error bound � ub(x̂) holds.

Proof The first statement (10) follows identical to Theorem 1. For proving the
additional effectivity estimate, we infer

� ub(x̂) = ε ub(x̂)

1 − τ ub(x̂)/2
≤ Cε(x̂)ε(x̂)

1 − τ ub(x̂)/2
,

from which we can proceed similar to Lemma 2.

Similar to Lemma 1, the error bound and effectivity bound can be improved
if L ub(α) ≤ Cα for some C > 0 and if the modified validity criterion
4γ ub(x̂)Cε ub(x̂) ≤ 1 holds.

2.2 Reaching high effectivities through auxiliary linear problems

In this section, we will see how a very sharp bound for ε(x̂) can be obtained with
low additional computational overhead. As it was motivated in the introduction by a
simple two-dimensional linear problem, the effectivity of the a-posteriori error bound
deteriorates by a large factor if the calculation of ε(x̂) is split according to (5). Thus,
the key towards highly effective (i.e. eff(x̂) ≈ 1) error bounds lies in finding highly
effective approximations or bounds to ε(x̂).

We first observe that the value of ε(x̂) can be calculated exactly by solving the
following linear system

DG|x̂ (E(x̂)) = G(x̂) (11)

for E(x̂) ∈ X, which then gives ε(x̂) = ‖E(x̂)‖X by definition. While in the linear
example, i.e. for linear G, this equation calculates the exact error, this is no longer
the case for nonlinear G. We therefore refer to (11) as the auxiliary linear problem
(ALP) and will consequently denote the here presented error bounds as ALP-based
error bounds. Although linear problems of the form (11) are often relatively easy to
solve, it can be prohibitive to do so in high-dimensional or multi-query scenarios.
To obtain a computationally efficient scheme, instead of requiring the true solu-
tion E(x̂), we assume to have a suitable method that can be used to calculate an
approximate solution Ê(x̂) ∈ X.

Remark 2 One technique that is often applied to solve nonlinear problems of the form
G(x) = 0 is the Newton-iteration. Based on an initial guess x0 ∈ X, the following
procedure is performed in an iterative manner:

xn+1 = xn + �xn, with DG|xn
(�xn) = −G(xn), n ≥ 0.

Hence, we can see that the computation of E(x̂) is equivalent to performing one
step in the Newton-iteration and Ê(x̂) can be considered as a quasi Newton update.
Thus, the additional computational effort can either be used for improved error
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quantification—as in our case—or improved approximation quality by setting ˆ̂x =
x̂ − E(x̂) or ˆ̂x = x̂ − Ê(x̂), respectively.

The strength of the proposed method lies in the fact that we can easily derive a
rigorous bound for the quantitiy ε(x̂), when an approximation Ê(x̂) is available:

Lemma 3 (Upper bound for ε(x̂)) Let Ê(x̂) ∈ X be an approximate solution to the
ALP (11) and define the ALP residual R(x̂) := DG|x̂ (Ê(x̂))−G(x̂). Then the upper
bound

ε(x̂) ≤ ε ub(x̂) := ‖Ê(x̂)‖X + γ ub(x̂)‖R(x̂)‖Y . (12)

holds true.

Proof The proof is a straightforward application of the triangle inequality. It holds

ε(x̂) = ‖E(x̂)‖X = ‖E(x̂) + Ê(x̂) − Ê(x̂)‖X ≤ ‖Ê(x̂)‖X + ‖Ê(x̂) − E(x̂)‖X.

For the difference Ê(x̂) − E(x̂), we make use of the linearity of the ALP and obtain
the relation DG|x̂ (Ê(x̂) − E(x̂)) = R(x̂), from which we get

‖Ê(x̂) − E(x̂)‖X = ‖ DG|−1
x̂

(R(x̂))‖X ≤ γ (x̂)‖R(x̂)‖Y ≤ γ ub(x̂)‖R(x̂)‖Y . (13)

Provided that an efficient scheme for the approximation of E(x̂) exists, the com-
putational overhead for the calculation of ε ub is not very large as it only requires
the calculation of ‖Ê(x̂)‖X and ‖R(x̂)‖Y . Many iterative solvers for large-scale lin-
ear systems provide the residual of the equation as an abortion criterion which can
be directly used for the calculation of the residual norm ‖R(x̂)‖Y . Furthermore, no
additional quantities are required: In particular, γ ub(x̂) has to be calculated anyway
for the evaluation of the error bound.

At this point, we want to emphasize that our numerical examples reveal very accu-
rate error predictions when using � ub(x̂) from Theorem 2 with the choice ε ub(x̂)

according to Lemma 3. One possible explanation for this observation can be deduced
from

‖x̂ − x∗‖X ≤ �(x̂) ≤ 2ε(x̂) ≤ 2ε ub(x̂),

and the fact that ε ub(x̂) is a very accurate estimate of ε(x̂). In contrast to the original
splitting of ε(x̂) in (5), the splitting in (13) does not deteriorate the bound ε ub(x̂)

significantly since ‖R(x̂)‖Y is often much smaller than ‖Ê(x̂)‖X. To quantify this
observation rigorously, we use the following lemma.

Lemma 4 (Relation of ε(x̂) and ε ub(x̂)) Assume

2γ ub(x̂)‖R(x̂)‖Y

‖Ê(x̂)‖X

≤ 1.
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Then the following inequality holds true for ε ub chosen as in (12).

ε ub(x̂) ≤ Cε(x̂)ε(x̂), with Cε(x̂) :=
(

1 + 4
γ ub(x̂)‖R(x̂)‖X

‖Ê(x̂)‖X

)
≤ 3.

Proof Note that the following proof is similar to a proof for the effectivity of rel-
ative RB error bounds [18]: The proof follows with E(x̂) = DG|−1

x̂
(G(x̂)) and

‖E(x̂)‖X �= 0

ε ub(x̂) = ‖Ê(x̂)‖X + γ ub(x̂)‖R(x̂)‖Y

≤ ‖E(x̂)‖X + ‖Ê(x̂) − E(x̂)‖X + γ ub(x̂)‖R(x̂)‖Y

=
(

1 + ‖Ê(x̂) − E(x̂)‖X

‖E(x̂)‖X

+ γ ub(x̂)‖R(x̂)‖Y

‖E(x̂)‖X

)

‖E(x̂)‖X. (14)

From the triangle inequality and (13), we infer
∣
∣
∣∣
∣
‖E(x̂)‖X − ‖Ê(x̂)‖X

‖Ê(x̂)‖X

∣
∣
∣∣
∣
≤ ‖Ê(x̂) − E(x̂)‖X

‖Ê(x̂)‖X

≤ γ ub(x̂)‖R(x̂)‖Y

‖Ê(x̂)‖X

≤ 1

2
.

If ‖Ê(x̂)‖X > ‖E(x̂)‖X, we thus get ‖Ê(x̂)‖X − ‖E(x̂)‖X ≤ 1
2‖Ê(x̂)‖X, and hence

1
2‖Ê(x̂)‖X ≤ ‖E(x̂)‖X. In the other case, i.e. ‖Ê(x̂)‖X ≤ ‖E(x̂)‖X, the inequality
1
2‖Ê(x̂)‖X ≤ ‖E(x̂)‖X follows trivially. Hence, in total, we obtain

‖Ê(x̂) − E(x̂)‖X

‖E(x̂)‖X

≤ γ ub(x̂)‖R(x̂)‖Y

‖E(x̂)‖X

≤ 2
γ ub(x̂)‖R(x̂)‖Y

‖Ê(x̂)‖X

.

Inserting this twice into (14) yields the final result.

3 Highly accurate error bounds in the reduced basis context

In this section, we apply the proposed error bound within the RB framework. In
particular, we explain how the a-posteriori error bound derived in Section 2 can be
applied to parametric and nonlinear problems within the RB context.

3.1 Parametric nonlinear problems and the reduced basis method

In the following, we consider parametric problems. To this end, let μ ∈ P be a para-
meter vector where P ⊂ R

P for P ∈ N is a compact set of admissible parameters.
The problems that we are interested in take the form

For μ ∈ P find x∗(μ) ∈ X : G(x∗(μ); μ) = 0, (P(μ))

for the parameter-dependent operator G(·; μ) : X → Y . In the following, we always
assume that for every parameter μ ∈ P at least one solution exists.

The idea behind RB methods is to determine a low-dimensional subspace XN ⊂ X

with N = dim(XN) � dim(X) = d ≤ ∞ and to find approximate solutions
in this subspace by solving an N-dimensional so-called reduced problem. To illus-
trate the procedure, we equip the approximation space XN with a reduced basis
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{φ1, . . . , φN } ⊂ X, of linearly independent basis elements φi ∈ X. We then define
the approximation x̂(μ) ∈ XN via

x̂(μ) :=
N∑

i=1

xN,i(μ) φi = �xN(μ),

where the coefficient functions xN,i : P → R are called reduced coordinates of
the reduced coordinate vector xN = (xN,i)

N
i=1 ∈ R

N and where we introduce � :=
(φ1, . . . , φN) as the row vector of basis functions. By restricting the set of possible
solutions of the problem (P(μ)) to the subspace XN and by projecting the residual
G(x̂(μ); μ)) to another low-dimensional subspace YN of dimension N , we arrive at
the reduced problem:

For μ ∈ P find x̂(μ) = �xN(μ) ∈ XN : GN(x̂(μ); μ) = 0, (PN(μ))

where the reduced problem is given as

GN(·; μ) : XN → YN, GN(·; μ) := 	YN

(
G(·; μ)|XN

)
.

Here, 	YN
: Y → YN denotes a projection onto the subspace YN , which we equip

with a basis {ψ1, . . . , ψN } ⊂ Y . This procedure is commonly referred to as Petrov-
Galerkin projection and it is widely used for projection-based model order reduction
(MOR) methods.

The solvability of (PN(μ)) is typically ensured by a careful construction of the
spaces XN and YN . In the following, we always assume that all problems are solv-
able, i.e. in particular we can compute true solutions x∗(μ) ∈ X and approximations
x̂(μ) ∈ XN for any parameter μ ∈ P . But as mentioned above, we do not require
uniqueness.

3.2 Effective error prediction for the RBmethod

Given an approximate solution x̂(μ) ∈ XN to a true solution x∗(μ) ∈ X, the fun-
damental question arises whether the norm of the error e(μ) := x̂(μ) − x∗(μ) can
be quantified rigorously and with good effectivity. To give a positive answer to this
question, we apply Theorem 1. In the parametric setting, we are challenged with the
requirement of calculating the following parameter-dependent quantities efficiently,
where we often omit the explicit dependency on x̂(μ) for the sake of readability:

γ (μ) := ‖DG(·; μ)|−1
x̂(μ)

‖L (Y,X),

ε(μ) := ‖[DG(·; μ)|−1
x̂(μ)

](G(x̂(μ); μ))‖X,

L(α; μ) := sup
x∈Bα(x̂(μ))

‖DG(·; μ)|x̂(μ) − DG(·; μ)|x‖L (X,Y ).

Since a direct calculation of these quantities is often too expensive, we employ
rapidly computable and (in the ideal case) rigorous upper bounds similar to the
nonparametric case

γ (μ) ≤ γ ub(μ), ε(μ) ≤ ε ub(μ), L(α; μ) ≤ L ub(α; μ).
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Although all quantities are important, we will primarily focus on the efficient calcu-
lation of ε ub(μ) and provide comments about the role of the other quantities in the
subsequent section. We recall that ε(μ) can be calculated explicitly by solving the
following parametric linear equation for E(μ) ∈ X

For μ ∈ P find E(μ) ∈ X : [DG(·; μ)|x̂(μ)](E(μ)) = G(x̂(μ); μ). (P E(μ))

and by computing ε(μ) = ‖E(μ)‖X. Lemma 3 shows how an upper bound for
ε(μ) can be calculated based on an approximation Ê(μ) ∈ X of the solution
E(μ). The idea to obtain such approximations in the context of RB methods is to
employ another Petrov-Galerkin projection of the parametric ALP (P E(μ)) for a
different pair of subspaces XE

M ⊂ X, YE
M ⊂ Y with dim(XE

M) = dim(YE
M) =

M � d = dim(X). We equip both subspaces with bases {φE
1 , . . . , φE

M} ⊂ X and
{ψE

1 , . . . , ψE
M } ⊂ Y consisting of linearly independent basis functions and define the

ansatz

Ê(μ) :=
M∑

i=1

EM,i(μ) φE
i ∈ XE

M, with EM(μ) := [EM,1(μ), . . . , EM,M(μ)]T ∈ R
M,

and project the ALP (P E(μ)) analogously to the original problem

	YE
M

([DG(·; μ)|x̂(μ)](Ê(μ))
) = 	YE

M

(
G(x̂(μ); μ)

)
. (P E

M(μ))

Note that this equation is of dimension M and can be solved efficiently, provided M

is sufficiently small. To be able to state a rigorous upper bound ε ub(μ) for ε(μ), we
define the residual R(μ) ∈ Y of the approximation of the ALP as

R(μ) := [DG(·; μ)|x̂(μ)](Ê(μ)) − G(x̂(μ); μ).

We then get from Lemma 3 the upper bound

ε(μ) ≤ ε ub(μ) = ‖Ê(μ)‖X + γ ub(μ)‖R(μ)‖Y . (15)

Based on this, we denote as � ub(μ) the parametric computable error bound
stemming from Theorem 2 (10) where we use ε ub(μ) given by (15).

Remark 3 We want to note that � ub(μ) identifies snapshot reproduction. To see
this, we first assume that the true solution for some parameter μ ∈ P lives in
our approximation space, i.e. x∗(μ) = x̂(μ) ∈ XN . It immediately follows, that
G(x̂(μ); μ) = 0 and thus the reduced ALP (P E

M(μ)) has the solution Ê(μ) = 0
which leads to R(μ) = 0 and ε ub(μ) = 0. Hence, in total, � ub(μ) = 0. Conversely,
if we have � ub(μ) = 0 for some parameter μ ∈ P then also ε ub(μ) = 0. We
can now conclude that both Ê(μ) = 0 and R(μ) = 0. The latter again implies that
G(x̂(μ); μ) = 0, since DG(·; μ)|x̂(μ) is invertible by assumption, which means that
x∗(μ) = x̂(μ) ∈ XN .
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3.3 Improvement of classical RB bounds for linear elliptic problems

The RB method is classically applied in the context of parametric PDEs. In this
section, we recall the basic error estimation results for linear elliptic problems and
relate them to the bound presented in the previous section.

Let X be suitable Hilbert (function) space and consider the following weak
formulation of a parameterized PDE:

For μ ∈ P find u(μ) ∈ X : a(u(μ), v; μ) = f (v; μ), ∀v ∈ X. (16)

We assume a(·, ·; μ) : X×X → R to be a continuous bilinear form and f (·; μ) ∈ X′,
where X′ denotes the dual space of X. We further assume the following essential
properties that ensure the well-posedness of (16) for any μ ∈ P

sup
u∈X

sup
v∈X

|a(u, v; μ)|
‖u‖X‖v‖Y

=: c(μ) ≤ c ub(μ) < ∞, (continuity),

inf
u∈X

sup
v∈X

|a(u, v; μ)|
‖u‖X‖v‖Y

=: β(μ) ≥ βlb(μ) > 0, (inf-sup stability),

and for each 0 �= v ∈ X, there exists a u ∈ X such that a(u, v; μ) �= 0. Pro-
vided these assumptions hold true, it is a well-known result that there exists a unique
solution u∗(μ) ∈ X to the problem (16) (cf. [6]).

This problem fits in the general framework by setting Y := X′ and G(·; μ) : X →
Y via

G(u; μ)(v) := a(u, v; μ) − f (v; μ), ∀v ∈ X.

Let us now assume that an RB approximation x̂(μ) ∈ XN for some suitable subspace
XN with N = dim(XN) � d is given. Then, the classical relation between the error
e(μ) := x̂(μ) − x∗(μ) ∈ X and the residual of the approximation is established via
the the norm of the residual G(x̂(μ); μ) and reads as follows

‖x̂(μ) − x∗(μ)‖X ≤ �RB(μ) := ‖G(x̂(μ); μ)‖Y ′

β(μ)
≤ ‖G(x̂(μ); μ)‖Y ′

βlb(μ)
.

In this setting, the equation 1
β(μ)

= γ (μ) relates the inf-sup constant to the stability
constant in the abstract formulation in this paper. Recall that for linear problems, we
have

‖e(μ)‖X = ε(μ) ≤ εsplit(μ) = γ (μ)‖G(x̂(μ); μ)‖X′ = �RB(μ).

Hence, by not splitting the calculation of the residual and by directly applying an
approximation scheme to ε(μ), we can expect more accurate error predictions.
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To apply the improved error estimation technique, we setup the ALP, whose weak
form in the linear case is given via

a(e(μ), v; μ) = a(x̂(μ), v; μ) − f (v; μ), ∀v ∈ X. (17)

Since this equation is as expensive as the original problem, we perform the additional
RB approximation of the ALP according to the framework described in the previous
section. To this end, we assume to have another subspace XE

M ⊂ X with dim(XE
M) =

M � d , which leads to the reduced ALP

a(̂e(μ), vM ; μ) = a(x̂(μ), vM ; μ) − f (vM ; μ), ∀vM ∈ XE
M .

Recall that this is an M-dimensional equation that can be solved rapidly, similar to
the RB approximation of the main problem. Based on the approximate solution, we
then get according to Lemma 3 the error bound

� ub(μ) = ‖̂e(μ)‖X + 1

βlb(μ)
‖R(μ)‖Y ,

where R(μ) ∈ Y is the Riesz-representative of the residual of (17), when the
approximation ê(μ) replaces the true error e(μ).

Often, the calculation of the inf-sup constant β(μ) poses many difficulties when
it comes to an efficient implementation. As a remedy, one often employs pessimistic
lower bounds βlb(μ) to β(μ) that can be calculated rapidly. Such lower bounds can,
for example, be computed by employing standard estimation techniques in the RB
framework such as the min–θ scheme or the successive constraint method (SCM) (cf.
[12, 18]). However, they are often either not applicable, computationally involved
or deliver highly imprecise results that render the classical RB error bounds useless.
The following example demonstrates the influence of β(μ) onto the classical and
improved error bound and shows the benefit of using the results presented in this
article. By using the upper bound � ub(μ) with ε ub(μ) and a lower bound of the inf-
sup constant βlb(μ) := β(μ)

λ
with a parameter λ ≥ 1, we get the following estimates

when using the classical RB bound and the improved version presented in this paper.

�RB(μ) ≤ λ · ‖G(x̂(μ); μ)‖Y

β(μ)
and � ub(μ) ≤ ‖Ê(μ)‖X + λ · ‖R(μ)‖Y

β(μ)
.

Since we expect that ‖R(μ)‖Y � ‖G(x̂(μ); μ)‖Y , severe underestimations, i.e.
assuming large λ, of the inf-sup constant have less impact in the nonsplit bound
� ub(μ). In particular, this property might be useful in cases for which a (probably
pessimistic) lower bound β(μ) ≥ β̄ > 0 for all μ ∈ P is available, making expen-
sive estimation techniques for those stability constants superfluous. We demonstrate
the effect of this behavior in our numerical examples in Section 4.

3.4 Basis generation and offline/online efficient implementation

The essential idea of RB methods is to split the calculation into a potentially expen-
sive offline phase where precomputations are performed which then allow a rapid
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online phase. During the offline step, the first task is to construct the subspaces,
which in our case means finding a suitable basis for XN, YN . To avoid technical dif-
ficulties and to ease the following, we only construct the ansatz space XN and set
YN = (XN)′.

While there are many ways to determine suitable subspaces (cf. [10]), we focus on
snapshot-based techniques. In this case, the subspace is contained in the span of sev-
eral true solutions, i.e. XN ⊂ span({x(μ1), . . . , x(μN)}) for suitable μ1, . . . , μN ∈
P . Two popular techniques with this respect are the proper orthogonal decom-
position (POD) method [25] and the class of greedy algorithms [24]. The first
extracts the relevant information from a given set of solutions based on an eigen-
value decomposition of the empirical correlation operator of a set of snapshots
S := {x(μ1), . . . , x(μN)} (cf. [10]). Greedy procedures, on the other hand, deter-
mine the parameter whose solution should be used to enhance the space based on
its current approximation quality. In this section, we focus on the latter; however,
we also make use of the first in our numerical section. The general structure of the
greedy algorithm is as follows and the pseudocode is given in Algorithm 1: Starting
from an initial subspace X0 ⊂ X and a finite training set Ptrain ⊂ P , the maximum
approximation error is sought by evaluating an error indicator δ(·; μ) : X → R≥0
for all reduced solutions with parameters in the training set Ptrain. The subspace is
then extended with the element that delivers the maximum error estimate and the
loop continues until a prescribed tolerance is met. By this, we get an iterative scheme
where the subspace is extended in each iteration.

Algorithm 1: Greedy algorithm(Ptrain, ρ, δ, X0).
Data: Training set Ptrain, greedy tolerance ρ, error indicator δ, initial

subspace X0
Result: Subspace XN .

1 while maxμ∈Ptrain δ(x∗
N(μ); μ) > ρ do

2 Set μ∗ := arg maxμ∈Ptrainδ(x
∗
N(μ); μ);

3 Solve full problem G(x; μ∗) = 0 for x∗(μ∗) ∈ X;
4 Extend subspace XN+1 := XN

⊕
span(x∗(μ∗));

5 Increment N := N + 1;
6 end

For the approximation of the ALP, we have to identify another pair of subspaces
XE

M and YE
M . To this end, we proceed in an analogous fashion, i.e. we also restrict

ourself to the case YE
M = (XE

M)′; however, instead of solving the full problem (P(μ)),
we now solve the ALP (P E(μ)) in each greedy iteration. Additionally, the error indi-
cator and tolerance have to be chosen in a sensible manner. In our case, we use the
error indicator δ(Ê(μ)) := �E

RB(μ) = ‖RE(μ)‖
βlb(μ)

which is a suitable (and even rigor-

ous) choice. Ideally, one would like to build an error space XE
M in each iteration of

Algorithm 1 to use the here proposed improved error estimators in the basis building
process, i.e. one would need to perform a (nested) double greedy algorithm. How-
ever, this proves to be highly computationally expensive since the error space XE

M

depends on the approximation space XN . Thus, we defer to a sequential computation
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of the spaces which makes the construction of both spaces computationally feasable.
The pseudocode for this sequential double greedy algorithm is given in Algorithm 2.

Furthermore, this dependency of the error space XE
M on the approximation space

XN limits the usefulness of our proposed bound as an error indicator for the greedy
algorithm since the space XE

M has to be rebuild in every iteration.

Algorithm 2: Sequential Double Greedy algorithm(Ptrain, PE
train, ρ, ρE , δ,

δE , X0, XE
0 ).

Data: Training sets Ptrain, P
E
train, greedy tolerances ρ, ρE , error indicators

δ, δE , initial subspaces X0, X
E
0

Result: Subspaces XN and XE
M .

1 while maxμ∈Ptrain δ(x∗
N(μ); μ) > ρ do

2 Set μ∗ := arg maxμ∈Ptrainδ(x
∗
N(μ); μ);

3 Solve full problem G(x; μ∗) = 0 for x∗(μ∗) ∈ X;
4 Extend subspace XN+1 := XN

⊕
span(x∗(μ∗));

5 Increment N := N + 1;
6 end
7 while maxμ∈PE

train
δE(EM(μ); μ) > ρE do

8 Set μ∗ := arg maxμ∈PE
train

δE(EM(μ); μ);

9 Solve full problem DG|x̂(μ∗) (E; μ∗) = G(x̂(μ∗); μ∗) for E(μ∗) ∈ X;
10 Extend subspace XE

M+1 := XE
M

⊕
span(E(μ∗));

11 Increment M := M + 1;
12 end

Remark 4 1. We want to note that in contrast to our improved bound which is less
sensitive to underestimation in the inf-sup constant βlb(μ), the chosen coarse
error indicator δ might result in a less efficient approximation space.

2. The computational efficiency of our a-posteriori estimator is directly influenced
by dim(XE

M). Thus, if one wants to achieve a fast online phase including error
estimation, one might have to make sacrifices in the quality of the error space
such that the computational overhead is comparable with the computational
demands required for solving the reduced problem (PN(μ)).

Finally, we shortly address how an efficient online phase can be achieved: The
classical assumption that is made in this respect is the parameter separability of
the problem. Given the parametric problem G(·; μ) = 0, we assume that it can be
decomposed into an expansion of the form

G(·; μ) =
Q∑

q=1

�q(μ)Gq(·),

i.e. it consists of parameter-dependent coefficient functions �q : P → R and
parameter-independent operators Gq : X → Y . In cases where no such decomposi-
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tion is present, the (discrete) empirical interpolation method can be employed (cf. [8,
16]). This property carries over to GN as

GN(·; μ) =	YN

(
G(·; μ)|XN

)=
Q∑

q=1
�q(μ)	YN

(
Gq(·)∣∣

XN

)
=:

Q∑

q=1
�q(μ)GN,q(·).

Thus, one can easily assemble the reduced system by precomputing GN,q during the
offline-phase. In the same way, the above property is inherited by DG and thus the
reduced error problem can be handled analogously.

4 Numerical examples

In this section, we evaluate the proposed a-posteriori error estimation theory in the
context of the RB method. The first example is a well-known thermal-block test case,
modeling a parametric heat conduction problem on the unit square. Here we will see
that by making use of the proposed method, we are able to reach excellent effectivi-
ties in any norm that we consider. The second example shows the application of the
framework to a nonlinear finite-dimension problem that stems from a semidiscretized
parametric PDE with nonvariational finite difference (FD) discretization. Finally, in
the last example, we consider a parametric ARE, i.e. a parametric nonlinear matrix-
valued equation. All examples are implemented in the toolbox RBmatlab1 and were
run on a machine with an Intel Core i7-6700 CPU with 16GB RAM in MATLAB
2017a.

4.1 Standard linear test case: thermal blockmodel

The thermal block example is a well-known test example in the RB community (cf.
[10, 18]). It consists of a steady linear heat equation on the unit square � = (0, 1)2,
which is divided into B := B1 · B2 subblocks, where B1, B2 ∈ N denote the number
of subblocks per dimension. We denote the subblocks by �i for i = 1, . . . B, counted
rowwise starting from the left bottom. We prescribe a unit flux into the domain on the
bottom boundary, which is denoted as �N,1 with unit outward normal n(ξ), where
ξ ∈ � indicates the spatial variable. The left and right boundary part �N,0 is insu-
lated, which is modeled by a zero Neumann boundary condition and the top Dirichlet
boundary �D has constant 0 temperature. A schematic drawing of the domain is
provided in Fig. 1a.

The parametric PDE for the temperature field u(·; μ) : � → R for this example
is given as

−∇ · (κ(ξ ; μ)∇u(ξ ; μ)) = 0, ξ ∈ �,

u(ξ ; μ) = 0, ξ ∈ �D,

(κ(ξ ; μ)∇u(ξ ; μ)) · n(ξ) = i, ξ ∈ �N,i, i = 0, 1,

1http://www.morepas.org
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a b

Fig. 1 Test 1: a Illustration of the thermal block setting used in the examples. b Decay of error indicator
for the primal greedy and the greedy for the ALP

where we define the heat conductivity function

κ(·; μ) : � → 0, κ(ξ ; μ) :=
B∑

i=1

μiχ�i
(ξ),

using the indicator function χA for sets A ⊂ � . The parametric domain for this
problem is given as P := [1/μmax, μmax]B for some μmax > 1. With the function
space X = H 1

D(�) := {v ∈ H 1(�) | v|�D
= 0} and its dual X′, we define the

problem G(·; μ) : X → X′ via

G(u; μ)(v) :=
∫

�

κ(ξ ; μ)∇u(ξ) · ∇v(ξ) dξ −
∫

�N,1

v(ξ)dξ, ∀v ∈ X.

We equip the space X with the norm ‖x‖X = ‖∇x‖L2(�). It is a well-known fact that
for every μ ∈ P , this problem possesses a unique solution u∗(μ) ∈ X.

For the first tests, we pick B1 = B2 = 3, i.e. we have in total 9 parameters and
μmax = 10. For the truth-approximation, we apply a finite-element approximation of the
PDE with piecewise linear elements resulting in a d = 3 721 dimensional problem. The
generation of the basis for the subspace XN for the RB-approximation of the problem is
performed with a standard greedy procedure, see also Section 3.4. For this, we define the
residual-based error estimator δ(uN(μ)) := �RB(μ) = ‖G(uN (μ);μ)‖X′

βlb(μ)
. Since we take

the norms in the space H 1
D(�), we can define a lower bound to the inf-sup constant as

βlb(μ) := mini=1,...,B μi . The basis is constructed on a finite training set consisting
of |Ptrain| = 1 000 random elements chosen uniformly from P . We fix the tolerance
ρ = 10−3 which yields a basis for the approximation of size N = 62.

For the construction of the approximation space XE
M for the approximation

of the ALP DG|uN (μ) (E(μ)) = G(uN(μ); μ), where uN(μ) ∈ XN is the
RB-approximation of the solution, we perform another greedy procedure, i.e. we
apply Algorithm 2. In particular, we again invoke the standard residual-based error
estimator applied to the ALP and define

δE(μ) := ‖ DG|uN (μ) (Ê(μ)) − G(uN(μ); μ)‖X′

βlb(μ)
,
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where uN(μ) is the RB approximation obtained from the 62-dimensional subspace
and Ê(μ) is the current approximation of the ALP for the parameter μ. We run the
greedy algorithm for the ALP with the very low tolerance ρE = 10−8. Furthermore,
we reuse the same 1 000 parameters that were chosen for the greedy procedure for
the main problem. The basis construction results in a subspace XE

M of dimension
M = 118. Note that due to linearity of the problem the ALP corresponds to solving
another thermal block problem with a distributed source term that is given by the
residual G(uN(μ); μ).

Figure 1b shows the decay of the error indicators for the main problem and the
approximation of the ALP. We infer that the initial error for the ALP that is measured
by the error indicator δE is very low and in the magnitude of the true error, which is
why we had to set the tolerance to ρE = 10−8.

In the following, we compare the improved error estimation techniques that are
presented in this paper to the standard error bounds that are very widely used
in the RB context. As a first test, we use the H 1

D(�)-norm for the evaluation of
the error bound and pick 20 random test parameters for the evaluation. For this
test, we calculate the exact value of the stability constant γ (μ) by solving a d-
dimensional eigenvalue problem. Clearly this is not online efficient but the purpose
of the first test is to solely demonstrate the improved quality of the error esti-
mates. The results are presented in Fig. 2: We show the absolute value of the true
error ‖uN(μ) − u∗(μ)‖H 1

D(�) as well as the standard RB-error bound �RB(μ) =
γ (μ)‖G(uN(μ); μ)‖H 1

D(�). Recall that the latter choice corresponds to the split
bound. The results in Fig. 2 show a very large overestimation in the range of 10−100
for all test parameters. To demonstrate the improved error estimation and the arbi-
trarily high effectivity in the linear case, the error bound � ub(μ) with the improved
approximation of ε(μ) is shown in the same figure. To this end, we choose decreas-
ing tolerances ρE and pick the subspace for Ê(μ) according to these tolerances. The
plot clearly shows that an increasing dimension M improves the quality of the error

Fig. 2 Test 1: Absolute error measured in the H 1
D(�)-norm for 20 random test parameters
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estimation. In particular for ρE ∈ {10−6, 10−7, 10−8} (M ∈ {74, 101, 118}), we get
almost exact error prediction.

In Fig. 3, we plot the true effectivities eff(μ) along with the effectivity predictions
from Lemma 4. Starting from ρE = 10−5, the bound on the effectivity is applicable
whereas for ρE = 10−7, the predicted effectivity is close to the actual effectivity.
The inapplicability of the effectivity bound can also be concluded from the results
depicted in Figs. 4 and 5, where the approximation of the nonsplit residual ‖Ê‖X

and weighted error residual γ ‖RE‖Y is depicted for basis sizes N ∈ {40, 62} and
and error space sizes M ∈ {20, 40, 60, 80, 100, 118}. To this end, we recall that the
effectivity bound holds only if the quotient γ ‖RE‖Y

‖Ê‖X
is bounded by 1

2 . We also note

a rapid decline in the absolute value of the quotient which in turn translates to a
effectivity (bound) close to 1, as can be seen in Fig. 3.

For the next test, we pick a larger test set Ptest ⊂ P consisting of 100 randomly
chosen parameters. We compare the error estimation for the H 1

D(�), L2(�) and the
so-called energy norm ‖ · ‖μ̄, which is defined as ‖u‖μ̄ := √

a(u, u; μ̄) for u ∈ X

and a fixed parameter μ̄ ∈ P . We pick the parameter μ̄ = (1, 2, 1, 2, . . . , 1)T . It as
well-known fact that the error estimation in the energy norm delivers very accurate
results, which is also visible in Table 1 where the maximum and mean effectivity for
all three norms are provided. The first row corresponds to the standard RB bound. The
column entitled λ shows the factor by which we overestimate γ (μ), i.e. we pick the
upper bound γ ub(μ) := λγ (μ) for the calculations. In all cases, we observe a decay
for decreasing tolerances ρE , i.e. richer subspaces XE

M for the ALP. In particular, for
the largest basis (ρE = 10−8) and for λ = 1, we get exact error prediction over the
whole parameter test set in the H 1

D(�) and energy norm. As expected, the influence
of large overestimations of γ (μ) has much less impact on the improved norm in all
three cases. Recall that for the classical RB bound, the scaling directly enters in the
bound, i.e. λ = 100 means an additional degradation in the effectivity of factor 100
whereas we observe only factor 1.2−38, depending on the chosen norm. Please note

Fig. 3 Test 1: Effectivity of the H 1
D(�)-norm error bound for 20 random test parameters
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Fig. 4 Comparison of the nonsplit residual approximation and the weighted error residual for approxima-
tion space size N = 40 and varying error space sizes M

that in general, the residuals are only elements of (H 1
D)′, depending on the source

term in the heat equation, and therefore the use of the L2(�) norm is not possible.
However, in our case, (no source term) and in the discrete setting, it is still applicable
and was chosen to illustrate that the proposed method can be used for a variety of
different norms.

Finally, we want to investigate the relation between the size of XN and XM

which is needed to achieve a prescribed effectivity. For this purpose, we run the
sequential double greedy algorithm (Algorithm 2) for N ∈ {10, 20, 30, 40, 50, 60}.
We then select the basis size M of XM in such a way that the effectivity of the
error bound � ub is smaller than 8,4,2, and 1.1 on a test set of 50 randomly cho-
sen parameters. The results are depicted in Fig. 6. For the cases eff ≤ 4, 2, 1.1, we

Fig. 5 Comparison of the nonsplit residual approximation and the weighted error residual for approxima-
tion space size N = 62 and varying error space sizes M
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Table 1 Test 1: Maximum and mean effectivity of the error estimate for the thermal block example in
three different norms

Maximum Mean

ρE M λ ‖ · ‖L2(�) ‖ · ‖H 1
D(�) ‖ · ‖μ̄ ‖ · ‖L2(�) ‖ · ‖H 1

D(�) ‖ · ‖μ̄

1 10,018.07 64.27 42.83 3516.73 9.22 9.24

1 · 10−4 21 1 2, 025.01 9.94 7.02 513.37 2.29 2.28

1 · 10−5 45 1 384 2.86 2.25 73.46 1.19 1.18

1 · 10−6 74 1 55.5 1.31 1.21 8.58 1.02 1.02

1 · 10−7 101 1 7.63 1.03 1.02 1.88 1 1

1 · 10−8 118 1 1.58 1 1 1.11 1 1

1 · 10−8 118 10 6.48 1.02 1.01 2.08 1 1

1 · 10−8 118 100 59.36 1.22 1.15 11.79 1.02 1.02

The first row shows the results for the standard RB bound �RB, the remaining rows for the proposed
improved error estimate

notice an initial linear correlation between N , M . However, for larger values of N ,
a decay in the value of M can be observed. This can be attributed to the qualita-
tively better approximation Ê of E for larger values of N . For the same pairs of
N, M , we average the computation time for the calculation of the approximation uN

and the improved error bound � ub for 200 randomly chosen parameter. The rela-
tive computational overhead which is required to compute the error bound is plotted
in Fig. 7. We observe an overhead between 3 and 7 which decreases for increasing
basis size M . This stems from the fact that for the basis sizes M used in this con-
text, the computational cost of � ub is dominated by the assembly of the reduced
ALP. The relative impact of the assembly then decreases as the basis sizes N and M

grow in value which in turn leads to a decrease in the overall relative computational
overhead.

Fig. 6 Basis size M(N) required to achieve prescribed effectivities
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Fig. 7 Relative overhead for the computation of the improved error bounds for varying effectivites

4.2 Nonlinear finite-dimensional parametric problems

The second example stems from the finite-difference discretization of a nonlinear
reaction-diffusion-advection equation. The infinite-dimensional description for this
problem is given by defining for ξ ∈ � := (0, 1) the PDE

−μ1∂ξξu(ξ ; μ) + ∂ξu(ξ ; μ) − μ2u(ξ ; μ)2 = f (ξ), ξ ∈ �.

u(0; μ) = u(1; μ) = 0.

The parameter for this example stems from the set μ = (μ1, μ2)
T ∈ [0.1, 1]×[1, 10],

where μ1 describes the diffusivity of the problem and μ2 changes the influence of the
nonlinearity. The right-hand side function (source term) is given as f (ξ) := sin(ξπ)2

for ξ ∈ �. The PDE is discretized in space with a simple finite-difference scheme
with upwind flux and results in a d = 400 dimensional nonlinear problem of the form
G(x; μ) = 0 with G(x; μ) := A(μ1)x+μ2g(x)−f where A(μ) ∈ R

d×d , g : Rd →
R

d and f ∈ R
d . In this case, we pick the finite-dimensional spaces X = Y = R

d and
use the standard Euclidean norm for quantifying the error. We construct a subspace
of dimension N = 6 by calculating snapshots for 100 random parameters chosen
uniformly from P and by extracting the basis through the POD procedure. Note
that this does not yield very accurate results for the RB-approximation but suffices
to show the benefit of the improved error estimation theory presented in this paper.
Figure 8a shows the solution to the full problem and to the reduced problem for three
different parameters.

For evaluating the error bound, we have to calculate DG|x̂(μ), which yields

DG|x̂(μ) (y) = A(μ1)y + 2μ2(x̂(μ) ◦ y),

where (a ◦ b)i := aibi for a, b ∈ R
d denotes the componentwise product. From

the explicit formula, we immediately get L(α; μ) ≤ 2μ2α =: Lub(α). In all of the
following examples, the value of γ (μ) = ‖DG(·; μ)|−1

x̂
‖ is calculated exactly by

solving a high-dimensional eigenvalue problem.
For the application of the error bound, we have to construct a subspace XE

M . To this
end, we calculate solutions to the high-dimensional ALP for 50 random parameters
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a b

Fig. 8 a Example solutions for three different parameters. b Results for increasing basis size

from the training set and extract a basis by means of POD. For evaluating the bound,
we calculate the error estimates for test parameters Ptest consisting of 200 parameters
chosen randomly from the parameter domain. We then vary the size of the RB space
for the approximation of the ALP and evaluate the mean and maximum effectivity
of the valid error estimations over the whole parameter test set Ptest. The results
are presented in Fig. 8b. Note that a size of M = 0 corresponds to the split upper
bound and represents the result that is classically used for error estimation in the RB
context. Increasing the size again reveals a very accurate error prediction uniformly
over the parameter space. Recall that in the nonlinear problem, the bound is only
applicable if τ(μ) ≤ τ ub(μ) ≤ 1, where τ ub(μ) is defined in (9). To show the
benefit of using the improved error bound, the column entitled with “% valid” shows
the fraction of valid error predictions. We observe that by increasing the dimension
of XE

M , the fraction increases from 57 to 78%. Note that the validity criterion is not
always satisfied since the RB-approximation is too coarse. Hence, we cannot expect
valid error estimations for all parameters unless we build richer subspaces XN . Once
again we want to highlight the fact that for the RB-approximation of the ALP, the
solution to an M-dimensional linear problem is required.

4.3 Parametric algebraic Riccati equations

The ARE is a nonlinear matrix-valued equation with many applications in systems
theory such as optimal (feedback) control or optimal state estimation, see [14]. For
X := {A ∈ R

d×d | A = AT } =: Rd×d
sym and 〈A, B〉X := trace(AT B), we define the

mapping G(·; μ) : X → X via

G(P (μ); μ) := A(μ)T P (μ) + P(μ)A(μ) − P(μ)F (μ)P (μ) + Q(μ), (18)

where A(μ) ∈ R
d×d and F(μ), Q(μ) ∈ R

d×d
sym with F(μ) and Q(μ) being

positive-semidefinite matrices. It is a well-known fact that this equation has a unique
(stabilizing) solution P ∗(μ) ∈ R

d×d
sym (i.e. the eigenvalues of (A(μ) − F(μ)P (μ))

have negative real part and P(μ) is positive-semidefinite) provided the matrix
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A(μ), F (μ), and Q(μ) satisfy specific conditions [15]. Often, in high-dimensional
applications, the solution matrices P ∗(μ) are of low numerical rank, meaning they
can be efficiently approximated by low-rank factorizations of the form P ∗(μ) ≈
Z∗(μ)Z∗(μ)T for Z∗(μ) ∈ R

d×K with K � d (cf. [2]). This special structure
is exploited in [20] in a parametric setting, where the low-rank factor greedy algo-
rithm (LRFG) is introduced to make use of the special structure and to construct a
suitable subspace for the RB-approximation of the ARE. This is done by defining
the N-dimensional subspace XN := {V PNV T | PN ∈ R

N×N
sym } ⊂ X for a suitable

basis matrix V ∈ R
d×N which is then used for the approximation via the Galerkin-

projection V T G(V PN(μ)V T ; μ)V = 0. It can be shown that PN(μ) solves an
N-dimensional ARE that can be solved very efficiently for low N . Based on the low-
dimensional matrix PN(μ), we then define the approximation P̂ (μ) := V PN(μ)V T

and the error e(μ) = P̂ (μ) − P ∗(μ). For measuring the error, we pick the spec-
tral norm in the space X. The application of the error bound requires the quantities
L(α; μ) and ‖DG(·; μ)−1‖L (X,X). Due to the quadratic nature of the ARE, the
derivative is readily calculated as

DG(·; μ)|
P̂ (μ)

(P ) = (A(μ) − F(μ)P̂ (μ))T P + P(A(μ) − F(μ)P̂ (μ))

for some matrix P ∈ R
d×d
sym . Furthermore, an upper bound for L(α; μ) can be derived

L(α; μ) ≤ 2‖F(μ)‖Xα =: Lub(α).

The linearization DG(·; μ)|
P̂ (μ)

of the ARE results in a Lyapunov operator and the
norm of its inverse is well studied (cf. [22]). For the following calculations, we use the
exact value for γ (μ), which can be obtained by solving a high-dimensional Lyapunov
equation and by taking the norm of the solution (cf. [13]).

We test the error estimation procedure by applying the RB-ARE method to a math-
ematical model of an optimal cooling process for steel profiles arising in rolling mills.
The original model is a nonlinear heat equation for the temperature distribution of the
cross-section of the steel profile with boundary control. In the technical application,
the natural cooling process is supported by spraying cooling fluids onto the surface.
The control objective is to optimally balance between a fast cooling process and an
even temperature distribution. This is necessary to avoid deformations, brittleness,
and other undesirable effects. A detailed explanation of the model and corresponding
optimal control problem can be found in [5]. The resulting optimal control problem
takes the form

min
u∈L2(0,∞;R7)

∫ ∞

0
(y(t; μ)T Q(μ)y(t; μ) + u(t)T R(μ)u(t)) dt .

subject to Mż(t) = Nz(t) + Hu(t), y(t; μ) = Cz(t), t ≥ 0,

where we introduce parameter-dependent weights for the cost functional by setting
Q(μ) = I6μQ and R(μ) = I7μR with μQ ∈ [10−4, 0.1] and μR ∈ [10−4, 1] and In
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denoting the n-dimensional identity matrix. The unusual overbars are used to prevent
notation doubles. The system matrices are given as M, N ∈ R

d×d , H ∈ R
d×7,

and C ∈ R
6×d with d = 20 209. It is a well-known fact that the solution to this

optimal control problem is given by finding the stabilizing solution P ∗(μ) to the

ARE (18) with A(μ) := M
−1

N , B(μ) := M
−1

H , F(μ) := B(μ)R(μ)−1B(μ) and

Q(μ) := C
T
Q(μ)C and by defining u(t) = −R(μ)−1B(μ)P ∗(μ)z(t). The matrices

can be downloaded from the MORWiki.2

The high dimension of the parametric ARE raises the need for efficient techniques
for its solution. Hence, we apply the RB technique to the ARE. For testing the error
bound, we construct an N = 137 dimensional subspace XN ⊂ R

d×d
sym by running the

LRFG algorithm on a test set consisting of 900 training parameters that were chosen
from a grid consisting of 30 × 30 logarithmically distributed points in the parameter
domain. Recall that the equation under consideration is matrix-valued. Hence, the
reduction from d to N provides a huge computational benefit and speed-up. The basis
generation for the ALP is performed by calculating the solutions E(μ) to the ALP
DG(·; μ)|

P̂ (μ)
(E(μ)) = G(P̂ (μ); μ) for a prescribed set of 50 parameters chosen

randomly from the parameter domain. The basis is then extracted via a POD of the
columns of the matrix S := [E(μ1), . . . , E(μ50)] with a prescribed tolerance ρE

for the “energy” that is contained in the singular values σk , i.e. we extract l basis
elements with

l := arg min
j∈{0,...,d}

∑j

k=1 σ 2
k∑d

k=1 σ 2
k

≥ 1 − ρE .

We pick ρE = 10−3, which results in an M = 189 dimensional subspace for the
ALP. For details about the basis generation, we refer to [19].

For testing the error bound, we pick a test set Ptest ⊂ P consisting of 100
parameters chosen randomly from the parameter domain. Figure 9a shows the eval-
uation of the maximum effectivity for the full error bound �(μ), the upper bound
� ub(μ) with using ε ub(μ), and the split bound �split(μ). First of all, we observe a
very good agreement of the true error and the full error bound, where no additional
upper bounds for the quantities are employed. The mean overestimation of the non-
split upper bound is relatively low which indicates good error prediction. However,
when going from the nonsplit bound to the split bound, we see a large gap between
the results. These results show that the improved error estimation presented in this
paper is vital to get accurate predictions of the true error. As a last test, we explore
the influence of the dimension of the subspace onto the quality of the error estimate.
To this end, we vary the tolerance ρE for the construction of XE

M , determine the cor-
responding subspaces, calculate the error bound for those subspaces, and plot the
worst-case (maximum) effectivity along with the dimension M in Fig. 9b. Of course,
the dimension of the subspace grows with the extraction of more information up to
M = 254. On the other hand, the maximum effectivity decreases to an almost perfect
error prediction for ρE = 10−6 with a maximum effectivity of only 2.6.

2http://modelreduction.org
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a b

Fig. 9 a Mean and maximum effectivity for error bounds for the ARE. b Dimension of the subspace XE
M

(bars) and maximum effectivity (line) for varying ρE

5 Conclusion and outlook

In this article, we presented a novel improvement of error bounding techniques for
problems which can be described as a zero value problem for differentiable oper-
ators over two Banach spaces. This was achieved by introducing and solving an
auxiliary problem which counteracts the often severe overestimation that occurs
when applying standard error bounding techniques and resulted in the here presented
ALP-based error bounds. The resulting a-posteriori error bound shows significant
improvement in its effectivity. Furthermore, the quality of the error prediction can
be tuned by choosing richer subspaces for the approximation of Ê. The technique
was then applied in the context of RB methods, where comparisons with standard
error estimates were studied. Numerical examples for both, linear and nonlinear prob-
lems, highlight the benefits of the presented technique and show that we can reach
effectivities that are very close to one in all examples.

Future work will study the application of the here presented method to time
dependent-problems both continuous and discrete in time, as well as the applicability
as an effective estimator for adaptive approximation schemes. A comparison of the pro-
posed method to [11], especially in the case of linear problems, might be insightful.
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Appendix A. Proof of Theorem 1

In the following, we make frequent use of the identity

G(x) − G(x′) =
∫ 1

0
DG|x′+t (x−x′)(x − x′) dt, x, x′ ∈ X (19)

which is a direct application of the fundamental theorem of calculus.
Let H : X → X be defined via H(x) := x − DG|−1

x̂
(G(x)). The proof works by

showing the existence of a fixed point x∗ ∈ X of the mapping H in the vicinity of the
approximate solution x̂. It is an easy observation that G(x) = 0 ⇔ H(x) = x, which
motivates the application of Banach’s fixed-point theorem. To this end, we define
the set M = B2ε(x̂) := {x ∈ X | ‖x − x̂‖X ≤ 2ε}, i.e. the closed ball around the
approximate solution x̂ with radius 2ε. In order to be able to apply Banach’s fixed-
point theorem to H in M , we have to prove that H is a self-mapping and a contraction
in M .

Let x ∈ M . Consider

‖H(x) − x̂‖X = ‖x − DG|−1
x̂

(G(x)) − x̂‖X

= ‖DG|−1
x̂

[
DG|x̂ (x − x̂) − (G(x) − G(x̂))

] − DG|−1
x̂

(G(x̂))‖X

= ‖DG|−1
x̂

[∫ 1

0
(DG|x̂ − DG|x̂+t (x−x̂))(x − x̂)dt

]

− DG|−1
x̂

(G(x̂))‖X .

Since x̂ + t (x − x̂) ∈ M for t ∈ [0, 1] we get the estimate

‖H(x) − x̂‖X ≤ γ supz∈M ‖DG|x̂ − DG|z‖L (X,Y )‖z − x̂‖X + ε

≤ 2γL(2ε)ε + ε ≤ 2ε,

which shows that H(x) ∈ M for x ∈ M . Thus, H is a self-mapping in M . By making
use of (19), we obtain the bound

‖H(x1) − H(x2)‖X = ‖DG|−1
x̂

(DG|x̂ (x1 − x2) − (G(x1) − G(x2)))‖X

= ‖DG|−1
x̂

(∫ 1

0
(DG|x1

− DG|x1+t (x2−x1)
)(x1 − x2)dt

)

‖X

≤ γL(2ε)‖x1 − x2‖ ≤ 1

2
‖x1 − x2‖,

which proves the contraction property.
Hence, we can apply Banach’s fixed-point theorem and prove the existence of

x∗ ∈ M with G(x∗) = 0. We furthermore directly get the bound ‖x∗ − x̂‖X ≤ 2ε.
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However, the bound can be slightly refined by considering for x ∈ M

‖x∗ − x‖X = ‖H(x∗) − x‖X

= ‖DG|−1
x̂

(

−G(x) +
∫ 1

0
(DG|x̂ − DG|x∗+t (x−x∗))(x − x∗) dt

)

‖X.

≤ ε + γL(2ε)‖x∗ − x‖X,

from which we get for x = x̂ ∈ M the final estimate

‖x∗ − x̂‖X ≤ ε

1 − γL(2ε)
≤ 2ε.

Appendix B. Proof of Lemma 1

We only have to slightly modify the proof of Theorem 1. We consider the set M =
Bα(x̂) := {x ∈ X | ‖x − x̂‖X ≤ α} and determine the minimal radius α such that H

is a contracting self-mapping on M . Analogous to the proof of Theorem 1, we get

‖H(x) − x̂‖X ≤ γ sup
z∈M

‖DG|x̂ − DG|z‖L ‖z − x‖X + ε

≤ γL(α)α + ε ≤ γCα2 + ε
!≤ α.

Solving the resulting quadratic inequality, we have that α is contained in the interval
[α−, α+], where

α± = 1 ± √
1 − 4γCε

2γC
= 2

1 ∓ √
1 − 4γCε

ε.

Hence, the smallest α for which H is a self-mapping is given by α− = 2
1+√

1−4γCε
ε.

For the proof of the contracting property, no further modification of the proof of
Theorem 1 is necessary. Finally, it follows that

‖x∗ − x̂‖ ≤ 2

1 + √
1 − 4γCε

ε.
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