

Multi-Satellite Mission

Operations System

Providing Constellation

Planning Functionality

Kai Leidig

Doctoral Thesis

Multi-Satellite Mission

Operations System

Providing

Constellation Planning Functionality

A thesis accepted by

the Faculty of Aerospace Engineering and Geodesy of

the University of Stuttgart

in partial fulfillment of the requirements for the degree of

Doctor of Engineering Sciences (Dr.-Ing.)

by

Kai Leidig

born in Engelskirchen, Germany

Main referee: Prof. Dr.-Ing. Jens Eickhoff

Co-referee: Prof. Dr.-Ing. Reinhold Bertrand

Co-referee: Prof. Dr.-Ing. Sabine Klinkner

Date of Defense: January 9, 2023

Institute of Space Systems

University of Stuttgart

2023

iii

Abstract

According to established space engineering standards, a space sys-

tem can be decomposed into two main parts: the space segment,

and the ground segment. While most space segments used to con-

sist of just one single satellite, this thesis considers the growing case

of a space segment featuring an arbitrary multiple of satellites. This

is the case under two circumstances: The space segment is either

a constellation, or a number of independent satellites are operated

in parallel. A constellation describes a cluster of satellites all con-

tributing to a common objective, while the case of one organization

operating multiple independent satellites simultaneously is referred

to as multi-mission operations.

Regardless of which of the two cases applies, simultaneous oper-

ation of multiple satellites leads to a series of problems. The more

satellites are operated, the more compete these satellites for the

limited resources required for executing the mission, such as ground

station time or operations personnel. A further problem is the one

caused by the increased complexity. This work refers to the term

complexity as a measure for system functionality and the amount of

interactions between different systems.

Existing satellite operations concepts are usually data driven,

which means that the entire design primarily focusses on the cre-

ation of a data connection between space and ground. Commu-

iv Abstract

nication with the satellite is based on the exchange of telemetry

and telecommands, enabling ground to access certain services in the

satellite on-board software. Software establishing such a connection

must then be complemented with a series of systems, which are fur-

thermore required for satellite operations, including but not limited

to flight dynamics, mission planning, or automation approaches.

With respect to multi-satellite operations, this causes a series

of difficulties. Satellite operations software is usually customized

for each mission. Nonetheless, these products are commonly de-

rived from former solutions for single-satellite operations and do not

properly consider those problems that arise when there are multiple

satellites to be operated.

In other words, common implementations always fall back on

the same old solutions, which are then adapted for the respective

mission. These old solutions are not designed for constellation or

multi-mission operations though, which is why they do not prop-

erly reflect the requirements of such a use case. As a consequence,

these systems become prone to error. The latter is caused by not so-

phistically dealing with the phenomenon of an increased complexity,

respectively by not adequately mapping processes and the states of

the operated systems.

This thesis addresses the design of a system primarily designed

for the operations of multiple satellites simultaneously. The work is

done under the principle hypothesis that a complex system cannot be

operated efficiently without automation. Unlike existing solutions,

this work does not refer to automation as an additional ground sys-

tem feature, but as a holistic process that involves the entire system

including the operated satellites. Consequently, the proposed con-

cept is not data driven anymore, but process driven.

Abstract v

Automation as a form of controlling a system requires knowledge

on the state of the operated system. Due to the natural limitations

of satellite communications, that information is not continuously

available. In order to compensate for data gaps, this work pro-

poses a concept by means of which the satellite system state can be

mapped, planed, estimated, and verified on ground. The same con-

cept further implements an approach for the planning of activities

across system boundaries, which allows for the coordination of tasks

between multiple collaborating systems within a network, and thus

for the planning of constellation and multi-satellite activities too.

vi Abstract

vii

Kurzfassung

Gemäß einschlägiger Standards setzt sich ein Raumfahrtsystem aus

zwei Komponenten zusammen: dem Raumsegment und dem Bo-

densegment. Bisher bestanden die meisten Raumsegmente aus le-

diglich einem einzelnen Satelliten. Die vorliegende Arbeit widmet

sich dem jedoch immer häufiger auftretenden Fall, dass sich das

Raumsegment aus einer beliebigen Vielzahl an Satellitensystemen

zusammensetzt. In zwei Situation ist dies der Fall. Erstens, beim

Raumsegment handelt es sich um eine Konstellation, also um einen

Verbund mehrerer an einer gemeinsamen Aufgabe beteiligter Sys-

teme, oder zweitens, es besteht Multi-Missionsbetrieb. Im zweiten

Fall werden mehrere voneinander unabhängige Satellitensysteme gle-

ichzeitig von einer einzelnen Organisation betrieben.

Durch den Betrieb mehrerer Satelliten gleichzeitig, ergibt sich

das Problem der Konkurrenz um eine begrenzte Menge an für die

Durchführung der Mission(en) zur Verfügung stehender Ressourcen,

wie etwa Bodenstationen oder Personal für den Betrieb. Ein wei-

teres Problem ist jenes der gestiegenen Komplexität des betriebenen

Systems. In dieser Arbeit wird der Begriff Komplexität als ein Maß

für die Menge an Systemfunktionalität und die Interaktion zwischen

verschiedenen Systemen heran gezogen.

Bestehende Konzepte für den Satellitenbetrieb sind in der Regel

datenbasiert. Das heißt, es wird sich konzentriert auf die Herstellung

viii Kurzfassung

einer Kommunikation mit dem Satelliten auf Grundlage von Teleme-

trie und einzelner Telekommandos, mit Hilfe derer sich etwa Dienste

in der Satelliten on-board Software steuern lassen. Für den Betrieb

muss diese zentrale Software dann um eine ganze Reihe an Systemen

ergänzt werden. Dazu zählen unter anderem Flugdynamik, Missions-

planung, oder Ansätze zur Automatisierung.

Für den Multi-Missionsbetrieb ergeben sich dadurch einige Sch-

wierigkeiten. Bei Software im Bodensegment, insbesondere im Be-

trieb, handelt es sich in der Regel um Sonderanfertigungen. Jedoch

setzen diese meist auf Systemen auf, welche einst für den Einzelbe-

trieb konzipiert wurden und die nicht die Probleme berücksichtigen,

welche erst durch eine Mehrzahl an zu betreibenden Satelliten entste-

hen.

Mit anderen Worten: Bei der Implementierung von Systemen für

den Satellitenbetrieb wird auf die immer selben Softwarelösungen

zurückgegriffen und diese dann an die jeweilige Mission angepasst.

Diese sind jedoch nicht für den Mehrsatellitenbetrieb ausgelegt, wo-

durch sie den damit einhergehenden Anforderungen nicht ohne wei-

teres gerecht werden können, was diese Systeme entsprechend fehler-

anfällig macht. Letzteres wird zum Beispiel dadurch hervorgerufen,

dass dem Phänomen der gestiegenen Komplexität nicht angemessen

Rechnung getragen wird und Vorgänge, die mehrere interagierende

Systeme mit einbeziehen nicht adäquat abgebildet werden können.

Ziel der vorliegenden Arbeit ist der Entwurf eines Systems, wel-

ches von Anfang an für den simultanen Betrieb mehrerer Satel-

litensysteme ausgelegt ist. Dabei wurde die Grundannahme getrof-

fen, dass Systeme ab einem gewissen Grad an Komplexität effizient

nur noch automatisiert betrieben werden können. Im Gegensatz

zu einschlägigen Lösungen wird Automatisierung jedoch nicht als

eine zusätzliche Funktionalität des Betriebssystems angesehen, son-

dern als Prozess, welcher das gesamte Betriebssystem einschließlich

Kurzfassung ix

der betriebenen Satelliten umfasst. Folglich ist das ausgearbeitete

Konzept nicht mehr rein daten- sondern vorrangig prozessorientiert.

Automatisierung also Form der Regelung eines Systems erfordert

außerdem die Verfügbarkeit des Systemzustands. Naturgemäß liegt

diese Information bei einem Satelliten nicht kontinuierlich vor. Aus

diesem Grund wird neben der globalen Betriebssystemarchitektur

ein Konzept entworfen mithilfe dessen sich der Zustand des be-

triebenen Satelliten auf Systemebene planen, vorhersagen und ver-

ifizieren lassen kann. Um darüber hinaus sowohl der Aufgabe des

Konstellations- als auch des Multi-Missionsbetriebs gerecht zu wer-

den, ermöglicht das ausgearbeitete Konzept zudem das Planen von

Vorgängen über Systemgrenzen hinweg und damit die Koordinierung

der Zusammenarbeit mehrerer Systeme in einem Verbund.

x Kurzfassung

xi

Acronyms & Abbreviations

ACK acknowledgment

AIS Automatic Identification System

Ana. Analysis

AOI area of interest

AOS acquisition of signal

API Application Programming Interface

APID Application Process ID

App Application

AS Automation System

BCBF body-centered body-fixed

BCI body-centered inertial

CCS Central Checkout System

CCSDS Consultative Committee for Space Data Systems

CLTU Command Link Transmission Unit

CMD command

Com. communication

COTS commercial off-the-shelf

CPT Constellation Planning Tool

CPU Central Processing Unit

xii Acronyms & Abbreviations

DAS Data and Archives System

DLR German Aerospace Center

E2E End-to-End

ECEF earth-centered earth-fixed

ECI earth-centered inertial

ECSS European Cooperation for Space Standardization

EnvDyn Environment and Dynamics Models

EO Earth Observation

FDIR Failure Detection Isolation and Recovery

FDS Flight Dynamics System

FDT Flight Dynamics Tool

GFZ German Research Center for Geosciences

GNC Guidance Navigation and Control

GPS Global Positioning System

GS Ground Station

GSOC German Space Operations Center

GUI Graphical User Interface

I/O input / output

ICD Interface Control Document

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IF interface

Insp. inspection

IOT Internet of Things

Acronyms & Abbreviations xiii

IRS University of Stuttgart, Institute of Space Systems

ISL inter-satellite link

ITU International Telecommunication Union

JSON JavaScript Object Notation

LEO low Earth orbit

LEOP Launch and Early Orbit Phase

LLA latitude, longitude and altitude

LOAT Level of Automation Taxonomy

LOS loss of signal

LTAN local time of ascending node

MMOS Multi-Mission Operations System

MCS Mission Control System

MCT Mission Control Tool

MGSE Mechanical Ground Support Equipment

MIB Mission Information Base

MJD Modified Julian Date

MMU Mass Memory Unit

MOCR Mission Operations Control Room

MOIS Manufacturing and Operations Information System

MOM Message Oriented Middleware

MPS Mission Planning System

MPT Mission Planning Tool

Nav. navigation

NCTRS ESA Network Controller and Telemetry Router System

NIS ESA Network Interface System

xiv Acronyms & Abbreviations

OBC On-board Computer

OS Operating System

OSI Open Systems Interconnection

Prio. priority

PUS Packet Utilization Standard

RAAN right ascension of the ascending node

Rev. review

RMAP Remote Memory Access Protocol

RTEMS Real-Time Executive for Multiprocessor Systems

RTG Radioisotope Thermoelectric Generator

RX receiver

S/C spacecraft

Sci. science

SCID Spacecraft ID

SCM Source-Control Management

SGP4 Simplified General Perturbation Model

SIB System Information Base

SimTG Simulation Third Generation

SLE ESA Space Linke Extension

SMP2 Simulation Model Portability Standard (version 2)

SMT Simulated Mission Time

SOA Service-Oriented Architecture

SPARC Scalable Processor Architecture

SPL Software Product Line

SRDB Satellite Reference Database

Acronyms & Abbreviations xv

SRT Simulation Runtime

SSOT single source of truth

SST Simulator Session Time

TC Telecommand

TCP/IP Transmission Control Protocol / Internet Protocol

TLE Two Line Element

TM Telemetry

TX transmitter

UML Unified Modeling Language

UPM Universiti Putra Malaysia

UTC Universal Time Code

UUID Universally Unique Identifier

Ver. verification

VGS Virtual Ground Station

VM Virtual Machine

XTCE XML Telemetric and Command Exchange

xvi Acronyms & Abbreviations

xvii

Contents

Abstract iii

Kurzfassung vii

Acronyms & Abbreviations xi

1 Introduction 1

1.1 Motivation . 2

1.2 Best Practices in Constellation Operations 4

1.3 Scope and Research Hypothesis 7

1.4 Structure – A Guide Through this Thesis 8

2 Background 11

2.1 Flying Laptop . 12

2.1.1 Space Segment 12

2.1.2 Ground Segment 14

2.2 Upcoming Missions 17

2.2.1 EIVE . 17

2.2.2 SOURCE . 18

2.2.3 Ground Station Network 19

2.3 The New Operations System 20

3 Objectives 23

3.1 Paradigm Shifts in Satellite Mission Operations . . . 23

3.2 Reference Mission Architecture 25

3.2.1 Size . 28

3.2.2 Spacial Distribution 31

xviii Contents

3.2.3 Operating Principle 32

3.2.4 Architectural Homogeneity 32

3.2.5 Service Availability 34

3.3 Summary . 35

3.3.1 Top-Level Requirements 36

4 Methodology 39

4.1 The Wife and the Mother-in-Law 39

4.2 Project Organization 41

4.2.1 Agile vs. Process Oriented 42

4.2.2 Agile Methods 43

4.3 Domain Engineering 48

4.3.1 Domain Analysis 52

4.3.2 Domain Design 56

4.4 Implementation . 57

4.4.1 Selection of a Programming Language 58

4.4.2 Source-Control Management 60

4.5 Test and Verification 62

4.5.1 Terminology and Fundamental Aspects of Soft-

ware Testing 63

4.5.2 Test Items and Verification Process 69

4.5.3 System Simulation 76

5 MMOS Domain Engineering 89

5.1 Quality Requirements 89

5.1.1 Runtime Requirements 91

5.1.2 Non-Runtime Requirements 108

5.2 Domain Analysis . 112

5.2.1 Space System Breakdown 112

5.2.2 MMOS Subsystems 115

5.3 Design . 142

5.3.1 System Architecture 142

5.3.2 Interfaces . 153

5.3.3 System Configuration 170

Contents xix

6 Mission Planning 179

6.1 Value of the Mission Planning Tool 179

6.2 The Activity . 181

6.2.1 Inheritance 184

6.2.2 Class Diagram 186

6.2.3 Resource Demand 188

6.2.4 State . 198

6.2.5 Nested Activities 206

6.2.6 Derived Activities (Examples) 206

6.3 Mission Planning Tool Architecture 212

6.3.1 Configuration Layer 212

6.3.2 Scheduling Layer 214

6.3.3 Operative Layer 217

6.3.4 Interface Layer 221

6.3.5 Communication Layer 222

6.4 The Schedule . 223

6.4.1 Graphical User Interface 225

6.5 Constellation Planning 227

6.5.1 Layout . 228

6.5.2 Reflection of Architecture Requirements . . . 233

7 System Test and Verification Environment 237

7.1 System Simulation 238

7.1.1 Model Libraries 238

7.1.2 OBC Emulation 245

7.2 Simulation Infrastructure 256

7.2.1 Simulator Checkout System 257

7.2.2 System Simulation Network 258

7.3 Simulated Mission 260

7.3.1 Scenario . 262

7.3.2 Final Setup 266

8 Summary 269

xx Contents

9 Outlook 273

A Information Used 277

A.1 List of Satellite Constellations 277

A.2 The LOAT Matrix 283

B MPT Implementation 291

B.1 Mission Planning Tool (MPT) Requirement Backlog 291

B.2 MPT Activity Management Flow Diagrams 309

C Space Debris 323

Bibliography 325

Index 343

1

1

Introduction

After more than sixty years of spacecraft operations, aerospace com-

munity still knows quite little about satellite constellation opera-

tions. This is due to several reasons. Constellations are complex,

expensive and used to be operated by agencies, large companies or

syndicates only. The term constellation is actually not well defined,

even though it is used by media, and an increasing number of new

space companies has launched satellite constellations within the last

decade [11].

Today, several approaches of defining a satellite constellation ex-

ist. The most simple approach is defining a constellation by the

pure number of satellites. Thus, two satellites can be a satellite

constellation already. However, the general idea of a constellation

is that multiple satellites “work together to achieve common objec-

tives” ([134], p. 269). This means that not only the number of

satellites make a constellation, but also the fact that those satellites

are dedicated to a common objective.

Beyond that, constellations are further distinguished by the num-

ber and the shape of the orbits. Satellites within about the same or-

bit and performing relative station-keeping are commonly referred to

as a formation, where the term constellation describes a set of satel-

lites performing independently on separate orbits ([134], p. 269).

2 1 - Introduction

Other definitions go further and claim that a major aspect of a con-

stellation is also the functional similarity of the satellites ([53], p.

26).

In accordance with [134] this thesis defines a constellation as follows:

A constellation is a system that consists of multiple satel-

lites, which provide functionality to serve a common ob-

jective.

This definition completely disregards the number and the shape

of the orbits, the functional implementation of the satellites or any

kind of satellite interaction. A more comprehensive definition of the

term and a discussion of other special forms will be pursued in the

later course of this work.

This work intends to regard a satellite constellation in a very

macroscopic manner and from a systematic point of view, because

the overall goal is the proposal of operations system architecture

and not the design of a constellation. Moreover, this thesis intends

to handle aspects of constellation operations and fleet management

in the most possible generic fashion. Nevertheless, the way how

design, size, or distribution of a constellation affect the design of

such a system must be discussed.

1.1 Motivation

Operating a constellation raises some problems. First of all, con-

stellations are complex systems. But what does that mean? The

term complexity is used intensively on many occasions, usually when

things tend to get difficult to handle. Definitions vary depending on

the nature of the described system and the field of science. Hence,

different definitions of complexity are considered in the fields of na-

ture science, computer science, social science etc.

1.1 - Motivation 3

The Duden dictionary defines a complex as “a structured unit,

which can be decomposed into components and domains” 1 [132].

Accordingly, one author defines complexity as a means of character-

izing “the behavior of a system [...] whose components interact in

multiple ways and follow local rules ...” [76, 136]. In other words,

a system as a functional unit is more complex the more

components it consists of and the more these components

interact with each other.

Since satellites can also be quite difficult to handle, it makes

sense to structure space missions into separate functional domains

(systems) and therefore to provide means of dealing with the com-

plexity of a mission. The European Cooperation for Space Standard-

ization (ECSS) decomposes a space mission into three main areas.

The Space Segment, the Ground Segment, and the Launch Segment.

Each of these areas can be subdivided further into systems, sub-

systems, components and elements [37]. This thesis focuses on the

ground segment and the space segment, where the launch segment

is out of scope of this elaboration.

Compared to a single satellite mission, the higher level of com-

plexity in a constellation mission is obvious. In a single satellite

mission the space segment consists of one system, the satellite. In a

constellation the space segment consists of n satellites. If complexity

could be quantified, it would be n times higher, presumably. That

rise would be even larger in case these satellites are also functionally

coupled in some manner.

Resources in an operations center are limited, which is why an

operations system suited for constellation operations must somehow

incorporate that increased complexity. An operations system that

is well designed for single satellite missions does not necessarily be

1German definition translated into English

4 1 - Introduction

capable of operating a constellation as well, because these systems

are usually too slow and inefficient.

For instance, during Launch and Early Orbit Phase (LEOP),

spacecraft operations is less automated and binds a lot of personnel

([128], sec. 2.1.3). During that phase the space segment is checked

out and prepared for its upcoming mission. At any time, but es-

pecially during LEOP, an operator must focus on its pure task and

must not be impeded by an unnecessary workload. If a problem or

a cause for an action is identified, that action must be implemented

and executed efficiently, without losing valuable time. On the other

hand, an operator or an automatic decision-making must be pro-

vided with the required data products. In the event of a system

failure, time consuming data analyses that still work to recover one

satellite could be hazardous for a constellation.

To sum up, the major problem of constellation operations is that

constellations are nested and interactive systems and therefore very

complex. This level of complexity must be covered by the operations

system. In order to deal with that situation, an operations system

must be very efficient in the process of handling the operated space-

crafts. This requires the implementation of a lean control process,

including a proper mapping of the satellites’ states on ground.

1.2 Best Practices in Constellation Op-

erations

If efficiency is measured by the size of staff that is required to operate

the mission, the most obvious solution for increasing efficiency is

automation. In their paper about Best Practices for Operations of

Satellite Constellations Joseph Howard et al. mention automation as

one of the key means of operating a constellation [67]. The paper lists

a number of best practices, that were identified based on discussions

the authors did with constellation operators in the year 2005. The

1.2 - Best Practices in Constellation Operations 5

authors distinguish between the autonomy of the spacecraft and the

automation to be implemented on ground.

In accordance with the general usage of the terms, this elabora-

tion defines autonomy and automation as follows:

• Autonomy describes the capability of one system (the satellite)

to operate itself without the need of external monitoring and

command. Autonomy is a quality of a system, while

• automation describes a process. Automation enables one sys-

tem (the operations system) to operate and to control another

system (the satellite) without the need of human interaction.

Furthermore, this work distinguishes between the terms opera-

tions and control as follows:

• Operations covers all processes on ground which are needed for

the achievement of the mission goals, including the monitor-

ing, the resolution, and the control of the sate of the operated

system.

• Controlling describes a closed technical process of actively man-

aging the state of a controlled system. More precisely, it refers

to a feedback process, where a system state is maintained based

on existing knowledge about that state.

Howard et al. recommend that “the best practice is to put au-

tomation on board the spacecraft” ([67], p. 8) and thus speak in

favor of spacecraft autonomy rather than ground system automa-

tion. Yet, with the limited resources available on board a satellite,

such as sensor measurements, computing performance etc., this is

only feasible for quite simple tasks. Therefore, even [67] states that

for some activities, an automatic ground segment is necessary. This

last statement is according to the design principles implemented by

operators of large swarms. According to [103], constellation auton-

omy can also be achieved by implementing high-level automation in

6 1 - Introduction

all necessary areas of the ground segment.

The problem with automation is though that it is something that

cannot be added to a system like some sort of additional feature. As

mentioned above, automation refers to a process, not to a subsystem,

unit, or element.

Almost every mission operations solution commercially available

claims to support automation. Most of them are built based on one

or the other established Mission Control System (MCS) 2. The prin-

ciple concept of these MCS dates back into a time were spacecraft

were operated with minimum support by a computer. Back then

operations was done by human operators sending single TCs to the

satellite, and evaluating the received TM on simple displays. Over

time, more and more features were added to these MCS, features like

on-board service management, event management, improved teleme-

try dashboards, and eventually automation.

What is referred to as automation though does not describe a

fully automatic spacecraft control process, but single software fea-

tures fulfilling tasks formerly done by a human: tasks like generating

a command stack from a schedule, reacting on specific events, creat-

ing reports and notifications, execution of specific procedures, etc.

Fully automating operations on the basis of such systems requires

a lot of effort and adaption of the concept. What usually comes out

of that is some sort of of automation, which [99] refers to as “clumsy”.

A characteristic of such systems is that they are difficult to engage

and prone to error.

What works for single satellite operations does not necessarily

work for constellations as well and definitely not for multi-mission

operations, as most of these systems completely fall apart, or need

to be reworked intensively when a new mission needs to be operated.

2The term MCS has evolved historically and is quite misleading in this par-
ticular context, because what these systems provide is actually no control func-
tionality as defined above. In modern operations concepts MCS refers to the
system that exchanges TM/TC with the operated system.

1.3 - Scope and Research Hypothesis 7

1.3 Scope and Research Hypothesis

Scope of this thesis is the proposal of an architecture for a multi-

mission operations system, including an appropriate mission plan-

ning concept. Both, global architecture and mission planning con-

cept shall be designed for constellation operations.

The work is done under the general assumption that automa-

tion is only possible if the operated system can be monitored and

controlled by a closed technical system. Monitoring and control al-

gorithms in turn depend on the availability of valid data about that

system’s state.

The problem with monitoring a satellite is telemetry not be-

ing continuously available due to the natural, physical separation of

space and ground segment. Any sort of automation must compen-

sate for the lacking of current system data. Thus, a mission planning

concept must provide means of creating a forecast of the system state

based on which a new planning can be made. In turn, scheduled ac-

tivities must be considered by the forecasting, as they actively alter

the state of the operated system. Thus, the first research hypothesis

is the following:

If the system state can be modeled, resolved, and tracked

sufficiently precise by a closed system, automatic satellite

operations can be possible without the presence of real-

time monitoring data.

As stated in the very beginning of this chapter, a constellation

is a system of satellites, which serve a common objective. This is

why the operations system must be designed in a way that it sup-

ports that overall objective too. It is not sufficient if the operations

system is just designed for the operations of a number of individ-

ual satellites. It must be capable of operating the constellation as

one system. If the objective of a constellation is the provision of a

service to a certain location on earth, operators surely do not want

8 1 - Introduction

to command each satellite individually, they want to command the

entire constellation to provide that service and expect the operations

system to do the rest of the commanding for them. The operations

concept must therefore be capable of commanding the entire constel-

lation, as well as each satellite individually, as it must be capable of

dividing a global constellation schedule into separate satellite activ-

ities, which leads to a second research hypothesis:

If an individual satellite system can be operated auto-

matically by a closed system, then it is also possible to

operate a finite number of individual systems in order to

serve a common, higher-level objective.

This thesis aims at the description of a software unit for the

scheduling of constellation and constellation satellite activities. That

unit shall be the Constellation Planning Tool (CPT). It shall fit into

an operations system architecture with the demand for automation

as specified above. In that context, the CPT shall prevent the satel-

lite systems from getting into undefined states, as it shall prevent

operators from scheduling conflicting activities. The CPT shall not

provide any form of intelligence or active decision-making though.

This shall be the task of higher-level planning agents, which are not

discussed in detail during the course this work.

1.4 Structure – A Guide Through this

Thesis

Chapters 2 & 3

The subsequent discussion begins with a brief overview on the back-

ground and the origin of the project. The chapter introduces the

research facility where the work has been done, and justifies the de-

velopment through the introduction of those satellite missions, which

demand for an operations system.

1.4 - Structure – A Guide Through this Thesis 9

The top-level requirements and the objectives derived from that

demand are introduced in chapter 3. These first two chapters address

those who are interested in why this project has been kicked-off, and

what is expected from the envisaged operations system.

Chapter 4

A selection of applied methodologies is introduced in chapter 4. It

focusses on those issues which were considered most relevant during

the course of such a development project. The chapter deals with

applied technical methodologies from the areas of software and do-

main engineering, but also also non-technical issues like the applied

project organization methodology. Addressed are readers particu-

larly interested in how to approach a software development project

in the domain of space mission operations. Readers, who are just

interested in the details of the technical implementation can skip

this chapter.

Chapter 5

In the course of this work, the methodology of domain engineering

has been applied for the requirements specification as well as for

the design of the Multi-Mission Operations System (MMOS). The

outcome of this work is introduced in chapter 5. That chapter com-

prehensively covers the scope and the details of the system design. It

begins with a discussion of the most relevant quality requirements,

and elaborates in detail how these are reflected by the global archi-

tecture. Chapter 5 also deals with a comprehensive, but macroscopic

discussion of the MMOS subsystems and their interfaces, as well as

it tackles matters like system configuration and orchestration. It

addresses anybody interested in what makes the developed system

different from all the other mission operations systems, and how

multi-mission capability can be achieved.

10 1 - Introduction

Chapter 6

The core of the proposed operations architecture is the mission plan-

ning approach. Therefore, chapter 6 goes into detail of the imple-

mentation of that subsystem. It introduces in particular the devel-

oped Activity concept for the realization of a reliable, and conflict-

free schedule. It further introduces how schedules of multiple in-

teracting systems can be managed, and how this approach supports

constellation planning eventually. Compared to the previous chap-

ter, chapter 6 goes more into low-level aspects of the implementa-

tion, and addresses everybody with a particular interest in how-to

schedule various interacting systems of a space mission all together.

Chapter 7

This chapter discusses aspects of the system verification. A system

like the introduced MMOS must be tested eventually, which is why a

simulation infrastructure for the simulation of satellite constellations

has been set up. Chapter 7 goes into details of the implementation of

that simulation infrastructure, focussing on how it actively supports

the verification of a multi-mission system. It particularly addresses

readers with a special interest in satellite system simulation and

on-board computer emulation for ground system verification. The

chapter is less relevant for readers focussing on aspects of mission

operations.

Chapters 8 & 9

This work closes with a summary of the presented results, and with

an outlook for further development by highlighting the open issues

and the potential of the developed architecture.

11

2

Background

Goal of this work is the conceptual development of a software tool

for the mission planning of satellite constellations. That tool shall be

embedded into a software architecture designed for the operations

of multiple satellite missions in parallel, called the Multi-Mission

Operations System (MMOS).

Before starting the development of an all new architecture it is

worth making a step back though and have a look around what is

already there and what is needed. This work was done at University

of Stuttgart, Institute of Space Systems (IRS). Over the past years

the institute gained a lot of experience in satellite system design, as

well as the development of ground system architectures and systems

for satellite operations. This experience has been the foundation

based on which this work could been done.

Starting point for the development has been the Flying Laptop

mission, respectively the operations system designed for that mis-

sion. Flying Laptop also was the starting point for subsequent satel-

lite missions at the institute, which actually drove the development

for a system like the MMOS, and which were the reason why this

project was engaged eventually. This chapter justifies the need for

the new operations concept, through a brief introduction of these

missions.

12 2 - Background

However, the top-level objective of the envisaged system is multi-

mission capability. Such a system must neither be designed against

one mission, nor a particular satellite system architecture. There-

fore, section 3 covers the definition of a general reference architecture

against which the system can be designed instead.

2.1 Flying Laptop

On June 14, 2017 the small satellite Flying Laptop was launched from

the Russian spaceport Baykonur. Since then, Flying Laptop has been

operated from the premises of University of Stuttgart (IRS) [81].

Flying Laptop is the first satellite of the university’s small satellites

programme and the starting point of several subsequent missions

initiated at the institute.

The Flying Laptop system consists of a space segment, a small

satellite with a launched mass of approximately 110 kg in a sun-

synchronous orbit 1, and a ground segment featuring a fully operative

control room and a ground station, both located at University of

Stuttgart, Germany. The ground segment is extended by a series

of globally distributed antennas, which belong to ground station

networks of the German Aerospace Center (DLR) and the German

Research Center for Geosciences (GFZ) [81].

2.1.1 Space Segment

Flying Laptop (fig. 2.1) was developed by the academic staff at

the university. It marks also the initial design of an industrialized

platform for low Earth orbit (LEO) satellites currently developed by

Airbus.

The system features a series of payloads and experiments for

earth observation and technology demonstration purposes, such as

1LTAN ≈ 09:30 h (UTC), Altitude ≈ 600 km (Jan. 2021)

2.1 - Flying Laptop 13

Figure 2.1: Flying Laptop - The image shows the fully integrated satel-
lite, without its outer thermal insulation.

• diverse camera systems in the optical and the near infrared

range,

• an Automatic Identification System (AIS) for the tracking of

seagoing vessels,

• a GPS based attitude determination experiment,

• and a prototype of an optical data downlink system.

The latter was actually one of the design drivers for the satellite’s

attitude control system. Due to the narrow laser beam width, a

pointing with an accuracy of less than 150 arc seconds is required

for a successful link with an appropriate ground station [133].

A dedicated data downlink system is used for the transmission of

the payload data. That data is transmitted in the amateur S-band,

at a maximum rate of 10Mbit/s. A further system is implemented

for telemetry downlink and command uplink in the commercial S-

band. That system provides a data rate of 128 kbit/s in the downlink

and 4 kbit/s in the uplink [81, 15].

Core of the satellite bus is an On-board Computer (OBC), com-

posed of two cold redundant LEON3FT processor boards, two cold

14 2 - Background

(a) Meteor Antenna (b) IRS Control Room

Figure 2.2: Elements of the Flying Laptop Ground Segment, Located at
the Institute of Space Systems, University of Stuttgart

redundant boards for TM storage and device I/O, and two hot re-

dundant CCSDS-boards for TM data encoding and TC decoding

[48]. The OBC processor board hosts the in-house built satellite on-

board software, which controls the system. That on-board software

is also the first implementation of a software framework that can be

and has been adapted for further missions [9].

For the internal data handling tasks, the on-board software im-

plements a series of services, which can be addressed from ground by

means of the Packet Utilization Standard (PUS) protocol. This al-

lows for live operations during the Stuttgart ground stations passes,

as well as for the scheduling of tasks that happen offline. For that

purpose, the on-board software features a queue that can be filled

with up to approximately 1000 time-tagged commands.

2.1.2 Ground Segment

The Flying Laptop ground segment [81] features a ground station

and a control room, both located at the institute’s premises (fig.

2.2).

The 2.5m parabolic antenna Meteor (fig. 2.2a) is installed on

the roof of the control room building. Originally developed for a

former application by the military, it has been redesigned to sup-

2.1 - Flying Laptop 15

port satellite communication in the S-band. Therefore, a new feed

had been integrated. That feed splits incoming right- and left-hand

polarized signals, which allows for the reception of satellite TM and

payload data simultaneously [15].

The meteor antenna facilitates Flying Laptop operations entirely

from the university premises, although the ground station network

features further antennas, distributed all over the globe. During

Launch and Early Orbit Phase (LEOP), DLR antennas in Germany,

northern Canada, and the Antarctic were used to check-out the space

segment. These ground stations can still be used as fall-back systems

in case of an emergency. A further GFZ ground station in Spitsber-

gen, Norway is used to extend TM and payload downlink capacity

of the mission.

Via the university operations network, these ground stations are

connected to the control room (fig. 2.2b). This room features all

elements of a state-of-the-art satellite control facility. As such it

provides workstations for the various tasks in the operations process:

• Flight Direction

• Subsystem Control (e.g. Power, GNC, Data, etc.)

• Payload Operations

• Command & Control

• Mission Planning

• Ground Station / Antenna Control

• Ground Systems Operations

Besides those hardware elements, the Flying Laptop ground seg-

ment of course features a series of software solutions too. These

elements partly rely on commercial and/or third party products, as

well as on tools that were developed in-house:

16 2 - Background

• An in-house built routing system supporting ESA Space Linke

Extension (SLE), to connect to the Meteor ground station and

the university ground station network

• SCOS-2000 as Mission Control System (MCS)

• An in-house built database system for TM archiving and stor-

age of payload data

• A ticketing system for mission planning, based on an open

project planning software

• An in-house built flight dynamics tool for pass generation 2

• An in-house built multi-purpose display system for TM evalu-

ation, health check, pass planning, etc.

• Several tool chains for tasks in the planning and scheduling

process

Lots of these software components were designed according to

the requirements of the Flying Laptop mission: for instance, the

Meteor control software. Significant parts of the Mission Planning

and the Display System were also tailored to the mission. This

was mostly due to the fact that some needs became evident during

operations, and a mission specific solution was normally the fastest

in that situation.

After LEOP, when the mission entered its nominal operations

phase, more and more tasks of the operations process were auto-

mated. It begun with the automatic generation of command stacks

to be uplinked, and ended with the sophisticated scheduling of imag-

ing activities, taking into account environmental conditions such as

cloudiness, illumination conditions, etc.

All of these automatic features rely on automation scripts that

needed to be implemented successively during the ongoing mission.

2The tool relies on third party Two Line Element (TLE) generation though.

2.2 - Upcoming Missions 17

As a result, the development was driven by the urgent demand for

a working solution, rather than by the requirement for reusability.

Accordingly, an adaption for another mission turned out to be ex-

tremely complicated.

2.2 Upcoming Missions

Based on the development, the lessons learned, and the resources

from the Flying Laptop mission, University of Stuttgart is heading

for a number of follow-on projects. Among of them are a couple

of satellite missions, and a series of new antennas extending the

university’s ground station network.

2.2.1 EIVE

The satellite mission on Exploratory In-orbit Verification of an E/W-

band Link (EIVE) is a collaborative project between Institute of

Space Systems (IRS) and a consortium of other partners in industry

and academia. EIVE is a six unit CubeSat featuring a 4K camera

for high resolution images and a novel communication system to be

tested in orbit.

Background of the mission has been the decision by the Interna-

tional Telecommunication Union (ITU) to release frequencies in the

E/W band (71–76 GHz and 81–86 GHz) for satellite services, “which

allows for data rates of several gigabits per second”, and further

opens space industry for broadband communication and Internet

of Things (IOT) applications [114]. Purpose of the mission is to

demonstrate the capabilities of an appropriate satellite transmitter

in orbit.

The in-orbit verification process is supposed to take place in three

stages. At first, an arbitrary waveform is transmitted in order to

study the basic functionality of the link. After that, real images of

the 4K camera are going to be downlinked, in order to demonstrate

18 2 - Background

the pursued bandwidth. In a third step, the link is also verified for

the transmission of satellite telemetry using state-of-the-art CCSDS

compliant protocols.

Due to the nature of the mission, EIVE has also a huge impact

on the university ground station. The mission is only feasible if

the ground station provides E/W-band reception capabilities. Con-

sequently, the university ground station has been extended by an

appropriate antenna for the purpose (sec. 2.2.3).

The mission shall be operated for at least one year in a low earth

orbit.

2.2.2 SOURCE

SOURCE is a three unit CubeSat mission by students from Univer-

sity of Stuttgart, which are supported by the academic staff of the

Institute of Space Systems. The satellite features a camera payload

and various scientific experiments. The latter are dedicated to the

detection of molecular oxygen and heat-flux measurements in the

upper layers of the atmosphere shortly before re-entry [54].

Unlike EIVE, the prime goal of the SOURCE mission is not just

the in-orbit verification of a component, but the education of stu-

dents in satellite development and operations. Students are trained

in all disciplines related to space mission projects, starting with the

definition of the project, requirements engineering, the design pro-

cess, the implementation, and ending with test & verification even-

tually. The training is also not limited to the development of the

satellite, but covers the entire space system, including the space

and the ground segment. Right from the beginning of the project,

students also got involved in the definition of the new operations

infrastructure.

2.2 - Upcoming Missions 19

Table 2.1: List of IRS Ground Stations

Key Location / Operator TC TM Data

IRS Stuttgart (GER) / IRS X X X
WHM Weilheim (GER) / DLR X X
INU Inuvik (CAN) / DLR X X
OHG O’Higgins (Antarctica) / DLR X X
NYA Ny-Ålesund (NOR) / GFZ X X
MAL Kuala Lumpur (MAL) / UPM X X

IRS
WHM

NYA
INU

OHG

MAL

Figure 2.3: Global Distribution of IRS Ground Station Network

2.2.3 Ground Station Network

As introduced in section 2.1.2, the Flying Laptop ground segment

already features a series of ground stations. That network is con-

stantly growing. For instance, in the scope of a collaboration with

Universiti Putra Malaysia (UPM), a new antenna system was set-up

in south-east Asia, adding S/X dual band reception capabilities to

the network [16]. All ground stations actively used for the Flying

Laptop mission are listed in table 2.1. The global distribution of

that network is shown in figure 2.3.

The DLR ground stations in Germany, Canada and the Antarc-

tica were only used during LEOP and have been utilized as back-up

system for TM/TC since then. A similar use case is considered

20 2 - Background

MMOS

EIVE

SOURCE

Flying Laptop

Meteor Antenna S/X Neo

Figure 2.4: Missions to be Operated by the MMOS

for the upcoming missions. The ground station of the GFZ in Ny-

Ålesund, Norway is used for TM and payload data downlink. Same

applies to the new 4.5 m dish antenna in Malaysia.

For daily operations and TC uplink Flying Laptop and all follow-

on missions fall back to the university ground station. With the

upcoming mission EIVE, the number of antennas located at the

institute premises is growing too.

2.3 The New Operations System

The multitude of new satellite missions University of Stuttgart is

going for raises the demand for a new ground infrastructure and a

2.3 - The New Operations System 21

new operations system. That new operations system shall be the

MMOS (fig. 2.4).

That System not only must be capable of operating multiple

satellites simultaneously, it also must be capable of scheduling the

different ground stations and antennas in the network. Furthermore,

it must deal with the challenge of handling multiple satellites com-

peting for the limited link capabilities of these antennas.

Because, the rework of the existing ground system would have

meant an enormous amount of implementation work anyway, the

decision was made to start the development of an all new Operat-

ing System (OS), which serves the requirements of each upcoming

mission equally. This is when the MMOS project was initiated.

Starting point for that development were of course the solutions and

the lessons learned from the Flying Laptop mission.

22 2 - Background

23

3

Objectives

The striven MMOS shall be a system specifically designed for the

operations of multiple distributed satellite systems in parallel. The

system design shall be contemporary and must therefore take pace

with the ongoing evolution of satellite mission operations and shift-

ing operational paradigms, which shall be discussed briefly in the

following.

3.1 Paradigm Shifts in Satellite Mission

Operations

Since various new space companies have entered the satellite market

over the past decades, missions and earth bound constellations are

not just projects of big syndicates or governmental agencies anymore.

Through a developing industry, the availability of standards such as

the CubeSat Design Specification [21], and a growing market of com-

mercial off-the-shelf (COTS) components, even larger fleets become

feasible for new and smaller stakeholders in the space sector. As a

side effect of that development, conventional operational paradigms

have been shifted. Ben-Larbi et. al. have identified the following

[11]:

24 3 - Objectives

1. Due to the reduced costs and the arising opportunities of being

launched as secondary payload, organizations favor small satel-

lites or CubeSats instead of large satellite buses. And since the

barriers of launching small satellites are getting fewer, organi-

zations tend to use multiple missions instead of single satellites

to achieve operational or scientific goals. Consequently, these

organization must be capable of multi-mission operations.

2. The operation of fleets and constellations with limited per-

sonnel is not possible without a sound automation concept on

ground. New concepts promote automatic operations during

all mission phases, even during LEOP, commissioning, and

contingency operations. This covers mission planning, the al-

location of resources in space and on ground, telemetry moni-

toring, anomaly reaction etc.

3. “A constellation must be considered holistically [as one sys-

tem]. Performing detailed monitoring of individual satellites

is no longer possible for large constellations and operations

techniques are moving towards monitoring and operation of

the system as a whole. Metrics must be defined that allow for

the overall system health to be assessed.” ([11], p. 42).

4. Classical telemetry/telecommand systems are replaced by Service-

Oriented Architectures (SOA). “High level abstractions are

created for standard satellite activities. Instead of sending in-

dividual telecommands and receiving telemetry confirmation,

the system is restructured such that these low-level commands

are transparent to the requester. All system processes between

the request and the output are automated and require minimal

manual interaction.” ([11], p. 43).

5. Instead of dedicated control centers, modern operation sys-

tems feature cloud based architectures, allowing operators to

connect from anywhere via web front end. This reduces the

3.2 - Reference Mission Architecture 25

complexity of the required infrastructure on site and conse-

quently the demand for hardware maintenance [11].

3.2 Reference Mission Architecture

Designing a mission OS for a distributed satellite system is probably

the most vague objective that can be formulated. Before such a

system can be implemented, it is necessary to make a step back

in order to clarify the key characteristics of a distributed satellite

system. After that, a reference mission architecture can be specified,

against wich a mission OS can be designed.

Constellations as a special kind of a distributed system are usu-

ally designed to provide global communication, navigation or Earth

Observation (EO) services. The service is thereby improved that

a global or local demand is not satisfied by just one, but multiple

satellites. So in the first instance, a constellation is nothing more

than a distributed system of at least two satellites.

Beyond that, a more precise classification is necessary. G. B.

Shaw et. al. classify distributed satellite systems by means of the

operating principle, the spacial distribution, the architectural ho-

mogeneity and a set of operational characteristics [117]. In terms of

the operating principle, Shaw et. al. distinguish between collabo-

rative systems, where each satellite contributes independently to an

overall mission goal, and symbiotic systems, where the distributed

system can only function as a whole. An example for a collabora-

tive architecture is Planet’s earth imaging constellation Dove [11].

A symbiotic system for instance is the German TanDEM-X mis-

sion providing radiometric EO, where the image receiving satellite

cannot function without its illuming satellite 1 [82]. Regarding the

architectural homogeneity, Shaw et. al. distinguish between the

homogeneity in the spacial distribution of the satellites and the ho-

mogeneity in the used satellite architectures. The latter is achieved,

1Depending on the operational mode

26 3 - Objectives

Swarm

Rendezvous
& Docking Formation

Flying

Constellation

local regional global

Distribution / Mean Distance

C
on

tr
ol

A
cc

u
ra

cy

Figure 3.1: Classification of Distributed Satellite Systems [57]

if all satellites in the distributed system are identical. Regarding

the homogeneity in the spacial distribution, Shaw et. al. define

local clusters of satellites flying in close proximity (also known as

formation), constellations of mostly identical satellites distributed

on different orbits (usually following a Walker Delta pattern), and a

combination of both. Finally, Shaw et. al. consider operational as-

pects to classify distributed satellite systems. Last cover e.g. sensing

methodologies (active/passive), data collecting modes and the avail-

ability of the provided service [117].

Inspired by nature, E. Gill introduces a different classification ap-

proach (fig. 3.1). Gill classifies distributed satellite systems by the

mean distance of the spacecraft, the way how the satellites interact,

and the required control accuracy (e.g. for station-keeping). He fur-

ther defines the swarm as a special kind of constellation, consisting

of a larger number of low-cost satellites with very limited control

capabilities. A characteristic of a swarm is that a single satellite can

be taken away from the mission without significantly impairing its

3.2 - Reference Mission Architecture 27

Table 3.1: Example Classification of Distributed Satellite Systems, from
[11] - For each mission, the table displays: the number of
satellites, the global distribution, the working principle, the
homogeneity, and the service availability

GPS Meteosat Sentinel Starlink

31 4 7 240 / 4425
global regional global global
symbiotic collaborative collaborative collaborative
homogeneous inhomogeneous inhomogeneous homogeneous
global regional local global

Constellation Formation Constellation Swarm

functionality [103]. Furthermore, swarm satellites, as in case of the

Dove mission, usually do not feature inter-satellite communication.

Rendezvous & Docking systems are formed by two pairing satel-

lites. Rendezvous as well as formation flying have in common that

they demand for a high level of position control accuracy in the order

of 1m and better [57].

Some examples for the introduced classification approaches are

listed in table 3.1.

The consideration of these aspects is necessary, because they di-

rectly affect the operational concept. Depending on the kind of the

constellation, different requirements emerge regarding the OS scala-

bility, the automation concept, and the mission scheduling approach.

Also, boundary conditions for operational optimizations depend on

the kind of the constellation. For example, the scheduling of ground

station communication times is more problematic if multiple oper-

ated spacecraft are located in close proximity to each other.

As long as the operated constellation is not defined in detail, an

OS would have to be designed against very uncertain requirements.

Considering five of the criteria mentioned above means 216 possible

permutations (tab. 3.2). Realizing a generic design from scratch,

28 3 - Objectives

Table 3.2: Possible Permutations of Distributed Satellite Systems

Characteristic Options Variants

Size (magnitude) 100 / 101 / 102 / 103 4
Distribution global / regional / local 3
Principle symbiotic / collaborative / both 3
Homogeneity homogeneous / inhomogeneous 2
Service Availability global / regional / local 3

Permutations: 216

which serves all of them equally in all operational aspects, is not

realistic.

Hence, the solution is to start with a baseline implementation

of a mission OS, providing a subset of features distributed satel-

lite systems require in general. Nevertheless, even such a baseline

OS must be designed and verified against specified criteria, which is

why a reference architecture must defined. Therefore, the following

sections discuss the definition of that reference architecture for the

MMOS by means of the five key characteristics: system size, spa-

cial distribution, operating principle, architectural homogeneity and

service availability.

3.2.1 Size

Figure 3.2 depicts the sizes of active and planned satellite constella-

tions, since the launch of the GPS in 1978. The evaluation is based

on a register, created by [11] (appendix. A.1).

Since the beginning of the 21st century, the number of active

constellations in orbit has increased significantly. Yet, there is no

long-term trend that constellations are also getting larger by orders

of magnitude. There are indeed plenty of companies that have an-

nounced the launch of constellations significantly larger than 100 or

even 1000 satellites during the last decade, yet it is not sure that

this trend can be pursued in the face of space debris dissemination

3.2 - Reference Mission Architecture 29

1980 1990 2000 2010 2020
100

101

102

103

104

Year

S
at

el
li

te
s

Navigation
Communication
EO

Data / IoT
Science

Figure 3.2: Sizes of active and planned constellations since 1978, bro-
ken down by service type - The plot shows the total size of
the respective constellations, including active, inactive and
planned satellites. The date is the year of the first launched
satellite. Data from [11].

30 3 - Objectives

100 101 102 103 104

Science

EO

Navigation

Communication

Data / IoT

Satellites

Figure 3.3: Distribution of constellation sizes, broken down by mission
type. Data from [11].

and other limiting factors, such as the finite number of usable radio

frequency bands ([35], p. 19). Today, the median size of a constel-

lation is 20, and the majority of active constellations is significantly

smaller than 100.

Another trend that can be observed is, that the constellation

size correlates with the provided service. With a median sizes of

42, respectively 64 satellites, constellations providing communica-

tion, data or IOT services are noticeably larger than constellations

providing scientific or EO services. The median sizes of the latter

are 14 and 4 (fig. 3.3).

Due to the immense scattering of the constellation sizes and the

uncertain use case, the envisaged MMOS design and thus the ref-

erence mission architecture should be oriented towards the area of

application that is most likely. For instance, organizations operating

larger fleets for navigation, communication, and data services usu-

ally have their own, tailored mission operations solution, a generic

baseline mission OS cannot compete with. Thus, from an academic

3.2 - Reference Mission Architecture 31

0 50 100 150 200

40 %

60 %

80 %

100 %

MMOS Design Size [Satellites]

C
ov

er
ed

M
is

si
o
n

s

Data / IoT Communication

Navigation EO
Science

Figure 3.4: Percentage of missions covered by the MMOS design size,
broken down by mission type

point of view, the consideration of a science or an EO mission makes

more sense.

As mentioned above, the median size of the listed EO missions is

14. With a median size of 4, scientific missions are even significantly

smaller (fig. 3.3). Hence, a constellation size in the order of mag-

nitude of tens is a valid assumption for the reference mission. For

example, an MMOS designed for a constellations size of 50 satellites

would cover about 80 % of the EO missions and all of the scientific

missions to date (fig. 3.4).

3.2.2 Spacial Distribution

A number of operational aspects are affected by the spacial distri-

bution of the satellites. Such as

32 3 - Objectives

• the scheduling of ground station passes and the resolution of

conflicts,

• the necessity for maneuver planning, and station-keeping

• or the level of satellite interactions.

Generally, these issues are getting more problematic the closer the

satellites are located to each other. In order to cope with these, a

sound constellation OS should therefore be capable of scheduling ac-

tivities of spacecraft moving in close proximity; in particular because

even globally distributed systems are usually deployed as a cluster,

before the individual satellites drift into their final orbit position

[63].

3.2.3 Operating Principle

Within a collaborative architecture, each satellite performs a task

independently from the rest of the constellation and the malfunction

of a single satellite does not necessarily impair the mission goal.

A symbiotic system instead is characterized by the fact, that each

individual satellite only performs a subset of a mission task. Thus,

the mission can only function as a whole, if each individual satellite

performs correctly [117].

Operating a symbiotic system can mean that activities of dif-

ferent satellites must be coordinated. This coordination (e.g. by

a mission planning software) is an extra effort not necessary for a

collaborative system.

Consequently, a baseline constellation OS should support the

handling of a symbiotic system, and thus the association of vari-

ous satellite sub-tasks with an overall task.

3.2.4 Architectural Homogeneity

Ground segment and space segment of a mission are the two sides

of the same coin, which shall mean that the mission as a whole

3.2 - Reference Mission Architecture 33

can only function if ground segment architecture and space segment

architecture are compatible to each other. Compatibility can thereby

achieved, that both parties agree on a common implementation of

several aspects, including but not limited to:

1. Physical Communication Layer (frequency band, polarization,

modulation, etc.)

2. Security Mechanisms (e.g. encryption mechanisms)

3. Data Abstraction (e.g. according to CCSDS [23] or OSI [74])

4. Protocols

5. TM, TCs, and parameter definitions etc.

6. System Topology

The physical communication layer to be implemented by the satel-

lite is usually a boundary condition coming from the mission design.

Yet, it is the matter of the used ground stations and not of the mis-

sion OS as described here to cope with the physical layer. Security

mechanisms such as encryption methodologies are another sparkling

source for compatibility problems between spacecraft, ground sta-

tion and OS, but shall not discussed in-depth hereinafter too. What

will be discussed is the way data is abstracted by the space sys-

tem and how this is reflected by the mission OS. Furthermore, OS

and space system must agree on the same protocols, and a common

set of TM, TC and parameter definitions. In other words, mission

OS and spacecraft must speak the same language. The dictionary

for that language is what is commonly known as Satellite Reference

Database (SRDB) or Mission Information Base (MIB) in European

spacecraft operations.

Furthermore, the satellite topology can also have a significant

impact on the design and the working concept of a mission OS. The

MMOS, as will be discussed later on, is designed for a hierarchi-

cal satellite topology, featuring a central OBC, which controls the

34 3 - Objectives

spacecraft. There is no proof, that the concept of the MMOS also

applies to satellite topologies that are fundamentally different. For

instance, the satellite itself could consist of a federal bus system with

a number of distributed control entities ([134], p. 610 f.).

In case of an inhomogeneous constellation (non-identical satel-

lites), each individual satellite design must be compatible with the

OS.

But even in case of a homogeneous constellation (identical satel-

lites), individual satellites can deviate from the actual design. These

deviations can be the result of bug-fixes, workarounds, different soft-

ware versions or the rollout of new satellite generations. Because

of that and because of the mutual dependencies listed above, each

satellite within a constellation should be registered, mapped and

commanded individually by the MMOS. That means that each mis-

sion must be regarded as inhomogeneous in terms of the satellite

architectures, even though the constellation is homogeneous by de-

sign.

3.2.5 Service Availability

Distributed systems providing a global service, such as GPS or Star-

link (tab. 3.1), usually perform the same task again and again, 24/7.

This means that the fulfillment of the pure mission task, e.g. the

delivery of position data by the GPS, does not require a tailored

activity scheduling from ground.

Providing a local or a regional service instead, e.g. the mapping

of an area of interest (AOI), usually requires the individual schedul-

ing of spacecraft activities. Such activities are time and location de-

pendent, because they are tailored according to individual customer

needs. This is an additional effort, compared to the operations of

space system, working autonomously 24/7.

3.3 - Summary 35

Table 3.3: Characteristics of the Reference Architecture for Require-
ment Generation and the Derivation of System Features

Characteristic Selected

Size (magnitude) → 101

Distribution → local
Principle → symbiotic
Homogeneity → inhomogeneous
Service Availability → local/regional

A baseline mission OS, should support and individual, time, and

location dependent activity scheduling though. This is why the M-

MOS targets missions providing a local or regional service.

3.3 Summary

Table 3.3 summarizes the characteristics of the satellite system ref-

erence architecture against which the MMOS shall be designed. All

non-functional and functional requirements as well as all system fea-

tures are derived from that architecture, or are formulated accord-

ingly.

The considered system size is about the order of ten, accord-

ing to the estimated demand for scientific or EO missions in the

academic sector. The satellites are locally distributed within a for-

mation, which results in the demand for more sophisticated maneu-

ver scheduling or pass planing capabilities by the ground system.

The selected operating principle of the satellite system is symbiotic,

meaning that all of the spacecraft perform a subtask of an overall

goal and that the system can only function as a whole. In other

words, each satellite performs an individual activity and the overall

goal can only be achieved, if individual activities are executed suc-

cessfully. In terms of the architectural homogeneity, an inhomoge-

neous design was selected for the reference architecture. This means

that the satellites within the constellation can be implemented vari-

36 3 - Objectives

ously. Finally, it is assumed that the reference architecture provides

a local/regional service.

Because, the envisaged MMOS is supposed to be a generic base-

line implementation of a constellation OS, each of the considered

characteristics has been shifted towards the use case that was con-

sidered most universal. This is why the introduced sketch of a ref-

erence architecture is more a theoretical, worst case scenario than a

realistic mission that will be operated.

3.3.1 Top-Level Requirements

From the previous considerations a number of top-level requirements

can be derived:

• Single Satellite Operations – The MMOS shall be capable of

operating a single satellite mission, where the term operations

is understood as the sum of all activities to monitor and to

control the operated satellite, and to execute the mission.

• Multi Satellite Operations – The MMOS shall be capable of

operating multiple satellite missions simultaneously.

• Ground Station Operations – The MMOS shall be capable of

operating ground stations. The ground station schedules shall

be made available to all the other missions for their planning

process.

• Constellation Operations – The MMOS shall be capable of

operating a constellation as described in section 3.2.

• Scalability – The MMOS shall allow the adding of new missions

into the working system.

• Mission Interference – The various mission operations pro-

cesses must not interfere with each other.

3.3 - Summary 37

• Automation – The MMOS shall implement a control concept

that allows for automatic operations.

• Baseline Features – The MMOS shall provide all baseline fea-

tures of a satellite operations system, so that a satellite sys-

tem can be monitored, scheduled, and commanded without the

need of a third party solution, or the need of a rework. Missions

specific behavior of baseline components must be achievable

through configuration only.

• Telemetry and Telecommand – The MMOS shall be capable of

exchanging TM and TC with the operated satellites.

• Archive – The MMOS shall feature a central telemetry archive

for all its operated systems.

• Flight Dynamics – The MMOS shall feature a flight dynamics

system capable of orbit determination, orbit prediction, and

the determination of contact times with the satellites. The or-

bit prediction shall further consider boundary conditions such

as environmental effects, and scheduled maneuvers.

• Planning – The MMOS shall feature a planning concept ca-

pable of resolving the state of the operated system. It shall

further be possible to schedule activities and to resolve con-

flicts between them. That scheduling concept shall not make

a restriction in terms of the type of operated system.

• Interaction – The scheduling concept shall allow for the sym-

biotic collaboration of operated systems, the coordination of

activities across system boundaries, and thus for the planning

of system interaction.

• Extendability – The MMOS shall feature a set of standard-

ized interfaces, which allow the integration of mission specific

software components into the operations process.

38 3 - Objectives

The requirements above cover the pure operational functionality of

the MMOS, which is referred to in the following. Beyond that, the

system itself needs to be set-up, configured and maintained. This

means additional requirements like the demand for a user manage-

ment, an automatic orchestration, an internal component logging,

security concepts, etc. These requirements are not listed here, be-

cause those topics cannot be dealt with conclusively in this work.

39

4

Methodology

Purpose of any software is to utilize a computer architecture for

the solution of a certain task. In this case, a software for satellite

operations is required, which needed to be developed from scratch.

This section guides through a series of methodologies, which have

been applied on the way towards this particular software, begin-

ning with the problem of requirement identification and ending with

methodologies for testing and verification of the product. Following

a top-down approach, this chapter starts with a global, macroscopic

view of the problem and subsequently goes further into details of the

solution.

4.1 The Wife and the Mother-in-Law

In the year 1915, cartoonist William E. Hill posted an illusion in

Puck, a former American humor magazine. The illusion is shown

in figure 4.1. It was titled “My wife and my mother-in-law. They

are both in this picture - find them” [65]. Nowadays, this image is

shown on many occasions to demonstrate that people can see dif-

ferent things in one and the same image. Depending on the chosen

perspective, the picture either shows an old lady with a big hooky

40 4 - Methodology

Figure 4.1: My Wife and my Mother-in-Law by William E. Hill - 1915
[65]

Figure 4.2: Two Boxes and an Arrow

nose, or a young woman with her head turned away from the ob-

server.

The picture shall relate to a well known problem. When a group

of people works together on a technical problem, figures and graphs

are always a good means of discussing certain aspects of the solution.

However, depending on the background of the members of the group,

these figures are usually interpreted in at least as many ways as

people are involved. This shall be demonstrated by figure 4.2.

Figure 4.2 shows two boxes, which are linked by an arrow point-

ing towards the left one. The questions is: What could people see

in that picture? Depending on the type of person, answers can by

manifold. A person with a non-technical background would proba-

bly answer: “I see two blue rectangles and an arrow in the middle.”

4.2 - Project Organization 41

A system engineer would maybe answer: “I see two systems and the

right system provides information to the left system.” And an IT-

specialist would possibly say something like: “I see a data channel

between two communication partners, where the right one subscribes

to the left one.”

If it is not stated perfectly clear what a figure is supposed to

express, those various possible interpretations can lead to long and

extensive discussions during the engineering process. The problem

with this kind of discussion is often that at the end of the day two

persons leave the room, where one of them thinks to be right and

the other one thinks to be proven wrong, although that has never

been the case. A solution to this is an agreement on standardized

forms of display. If for instance figure 4.2 would really display two

communicating systems, then it must be specified somewhere what

the black arrow means. It could be a network connection, a data

flow, or some sort of functional interface.

This particular problem will appear and be discussed on many

occasions within this work. Therefore, consistent forms of display are

applied in this work. If not stated otherwise, a technical implemen-

tation is always displayed in the same manner, as well as one form of

display always refers to the same kind of technical implementation.

4.2 Project Organization

Whenever a new project is initiated, the question that arises is the

one about how the project shall be organized. Books are written

about that challenge and an answer is not easy to find, as the best

way depends on a series of boundary conditions. The trade-off is

generally made between a fully process oriented approach and an

agile development, where many favor the agile approach, simply be-

cause it is modern these days. In her book about Agility within ISO

9001, P. Adam mentions that some enthusiasts think of agility as the

42 4 - Methodology

Agile

Process
Oriented

agile teams within
process organization

fully agile
project

strict process
organization

Figure 4.3: Agile vs. Process Oriented Approach, following [3]

one and only way of organizing a project ([3], p. 15), but apparently,

it is not that easy.

4.2.1 Agile vs. Process Oriented

The selection of a suitable way of project organization depends on

a series of boundary conditions, such as the interfaces to the envi-

ronment organization, the availability of competences and eventu-

ally the ability of the team members to organize themselves ([3], p.

35 ff.). An organization or a project does not necessarily have to

follow either the one or the other approach. Hybrid solutions exist

too, as figure 4.3 illustrates.

At project initiation, the members of the team responsible for

the Multi-Mission Operations System (MMOS) project faced a se-

ries of challenges. The most prominent problem at project launch

was the work load of each team member that time. As mentioned in

chapter 2, Institute of Space Systems had gone through the realiza-

tion of a series of space mission projects. As it turned out, almost

every team member had part-time obligations within at least one of

these projects, which limited the available man-hours and made the

planning complicated.

4.2 - Project Organization 43

The limited team size directly led to a lack of capacity for team

lead, project management and planning. As it turned out after the

first weeks, consequently tracking the entire project state and up-

dating the project plan simply was not feasible. That was not just

because of the limited man-hours but also due the uncertain and

changing boundary conditions of the project. When the project was

officially initiated, a primary objective needed to be specified in or-

der to get everyone on the same page regarding the goal and the

extend of the project. The problem was though, some of the mis-

sions which demanded for an operations systems had not specified

their concept of operations yet. So the project organization needed

to be capable of reacting on changing user requirements.

All of these practical aspects directly spoke in favor of an agile

development approach. The demand for a methodology to cope with

such a volatile, complex and uncertain environment is one of the

reasons why agile methods exist in the first place [3].

4.2.2 Agile Methods

While supporters of agility claim that everything must be agile, op-

ponents think that this sort of project organization only results in

chaos [3]. To prevent this from happening, a series of agile methods

exist to structure the work flow. One of the most prominent ones is

Scrum, which was developed in the early 1990s by Ken Schwaber and

Jeff Sutherland [115]. Meanwhile the approach is well established in

the world of software development.

The principle idea is that a rather small team works indepen-

dently on a predefined goal in an iterative process. The advantage

of this methodology is that intermediate results (increments) are

generated on a frequent basis, and that these increments can be

constantly assessed and compared to the user requirements. In this

manner the approach enables the team to react agilely on changing

customer needs or varying boundary conditions.

44 4 - Methodology

progress

time
0 %

100 %

Sprint

Increment

Figure 4.4: Progress of Scrum

Within Scrum the product is developed during consecutive work-

ing periods, called sprints. Outcome of each sprint is the increment.

Prior to each sprint, the team plans the working period by defining

the target increment, based on the current product backlog. The

backlog is a dynamic document, listing the requirements on the en-

visaged product. This document can change and is updated con-

stantly, since the requirements on the product can change.

According to The Scrum Guide [115], the duration of a sprint is

usually a month, depending on the size of the increment. During a

sprint, the work progress is constantly monitored by means of short

daily meetings, called Daily Scrums. These meetings shall make

the progress transparent to everyone and indicate delays. A Sprint

terminates after the work on the increment is done, which requires

that the extend of the work has been defined specifically in advance.

After a Sprint, the work of the development team is reviewed.

That review is conducted by the development team and potential

stakeholders or customers. Purpose of this review is to identify what

has been done, which problems appeared, and to clarify what needs

to be done next. The outcome of the review is documented in the

4.2 - Project Organization 45

product backlog. A sprint review is followed by the complementary

sprint retrospective, a meeting that shall ensure the productivity of

the team and support the further planning [115]. The process is

illustrated by figure 4.4.

A few roles within the team are defined by the Scrum Guide. The

first one is the product owner, a person in charge of documenting the

state of the developed product. That person must ensure that all

needed information about the product is available to the rest of the

team, which covers the backlog and the definition of the sprint goals.

The second group is the development team, which is a self-organizing

unit responsible for the delivery of the increment. The last one is

the so called Scrum master, an experienced associate who takes care

that the concept of Scrum is clear to everyone and that the rules are

followed.

4.2.2.1 Applied Methods

Schwaber and Sutherland think of Scrum as a framework, rather

than a defined method or a technique. They claim that institutions

are free to implement their own “tactics for using the Scrum frame-

work” ([115], p. 3).

This section introduces some of the agile methods that have been

applied in the scope of the project.

Technical Meetings

Especially during the very early stages of the project, technical meet-

ings were a good means of discussing a specific topic or problem in

order to gain domain knowledge, or to shape the design of the MM-

OS architecture.

Central element of these discussion was usually a preliminary de-

sign, and/or a whiteboard, which the participants used to develop

ideas and thoughts. These whiteboard sketches were photographed

afterwards, so that everyone was able to recall what has been dis-

cussed. The value of these photographs was very limited though.

46 4 - Methodology

Figure 4.5: Whiteboard Sketch (Example)

For instance, a sketch as the one depicted in figure 4.5, does not en-

able someone external to follow the discussion. Even for participants

these sketches become worthless eventually, because the respective

trains of thought vanish or the findings become obsolete. This is

why the discussed content was formally documented right after the

meeting. The created documents could then be referenced and used

in the subsequent development process.

At the beginning of the project, technical meetings were held

with the entire development team. After assigning responsibilities

to certain members of the group, the circle of people participating in

such meetings shrank. Limiting the number of participant to three

or four significantly increased the efficiency of those meetings.

Design Backlog and MoSCoW Prioritization

The design backlog has been implemented as a means of recording

the requirements of a certain system component after it had been

further decomposed into various functional elements. A short extract

from the backlog of the MMOS Mission Planning Tool (MPT) is

shown in figure 4.6. For the complete MPT backlog, it is referred to

appendix B.1.

4.2 - Project Organization 47

Figure 4.6: Extract from Backlog of an MMOS Component

48 4 - Methodology

Within a backlog, requirements are hierarchically linked by means

of a key and a parent-child referencing. This ensures that the en-

tire functional design of a component can be mapped in the log. A

status flag helps keeping track of the implementation state of each

requirement.

For a better definition of design increments, each requirement is

prioritized. In this case, the MoSCoW Prioritization scheme was

applied ([84], p. 90).

Increment Definition

Guided by the prioritization scheme in the backlog, increments for

a sprint can be defined.

An increment is characterized by a number of features or func-

tionalities, which have a particular value for a user of the component.

These features are formulated in so called epics, where an epic de-

scribes the implemented functionality from a user’s perspective, like

in the following example:

1. The user can select a command from a drop-down list.

2. The user can manually edit the command parameters.

3. The user can hit a button to add the command to the command

stack.

4. The user can hit a send button for command release.

5. The user can see acknowledgment information.

Each epic further references the requirements, which it imple-

ments. This way, the result of the increment can be traced in the

backlog.

4.3 Domain Engineering

With the problem and requirements being specified, a software sys-

tem architecture can be designed.

4.3 - Domain Engineering 49

Again, purpose of the project is the development of a system for

multi-mission and constellation operations. Ignoring different nam-

ing conventions, Operating Systems (OS) usually consist of always

the same functional elements namely: flight dynamics, mission plan-

ning, ground data handling, and so on. ([134], p. 905, fig. 29-1).

Assuming that all these systems are well understood, why is making

them multi-mission capable so complicated?

What has been identified quite soon is that most OS are tailored

solutions, and that the key to a multi-mission application is reuse.

Thus, a maximum portion of the MMOS software must either be

used commonly, or, if that is not possible, instantiated several times

and then configured for a respective mission.

Software components instantiated once and used commonly by

all missions are referred to as common elements within the MM-

OS. Components, which are instantiated and configured separately

for each mission are referred to as generic elements. A quality of

generic components is that it always executes the same source code

and that instances only differ by their configuration.

Of course, satellite operations, especially automatic operations,

always falls back on mission specific solutions for certain tasks. These

components need to be developed from scratch for each new mission.

The MMOS must therefore provide standardized interfaces to allow

the integration of such customized items into the architecture.

To distinguish uniquely between common, generic, ans mission

specific components, this work applies a colour scheme, which is

shown in figure 4.7.

However, the idea of composing an architecture from reusable

components causes some problems. The first one is the problem of

orchestration. Instantiating a variable number of generic and mission

specific elements in a working environment is a non-trivial process.

The second one is a problem of software quality. As a matter of

fact, it cannot be guaranteed that an object tested and verified for

50 4 - Methodology

Element 1

(a) Common
Element

Element 2

(b) Generic
Element

Element 3

(c) Mission Specific
Element

Figure 4.7: Color Scheme for the Identification of the Different Types
of Elements

a specific use case also performs correctly in another use case ([121],

p. 22).

And finally, the third problem is the one of answering the ques-

tions: Which components in the architecture can be reused? The

discipline of answering that question is called domain engineering .

Domain engineering is the discipline of developing reusable software,

where the term domain specifies

“[...] an area of knowledge [...] including a set of con-

cepts and terminology [...], and including knowledge of

how to build software systems [...] in that area” ([31], p.

41).

The concept dates back to the doctoral thesis by James M. Neighbors

[94], who in 1980 identified the problem that the major portion of

the development efforts to computing systems goes into the develop-

ment of software rather than the hardware. Yet, the lack of capable

software development methods back then resulted in what Neighbors

calls the software crisis. Consequently, he introduced a methodology

for organizing the software development process through the identi-

fication of similar, reusable elements. This enabled the adaption of

existing solutions to various kinds of implementations, where former

object-oriented methods only aimed for specific solutions to specific

problems [31].

4.3 - Domain Engineering 51

Driver A Driver B Driver C

Operating System / Framework

Communication Layer

Functional Element A Functional Element B

V
er

ti
ca

l
D

im
en

si
o
n

Horizontal Dimension

Figure 4.8: Example Software System with two Dimensions

A domain engineering process can happen in two different dimen-

sions, the horizontal dimension and the vertical dimension 1 ([31], p.

34). The idea is illustrated by means of an example software archi-

tecture in figure 4.8.

Horizontal domain engineering aims for the development of reus-

able functional elements. An example will be the Mission Planning

Tool. As will be shown in the later course of this work, the Mission

Planning Tool in the MMOS is implemented as a generic piece of

software, which can be instantiated and configured for an individual

mission. The OS then can host and run as many Mission Planning

Tools as missions are operated.

Vertical domain engineering however aims for reusable solutions,

which apply to the entire system, such as frameworks, interfaces or

communication solutions. In the specific case of the MMOS, the out-

come of the vertical domain engineering has been a message-oriented

1Actually, [31] speaks of vertical and horizontal domain rather than dimen-
sion. Yet, in this context the term dimension is preferred, because it is considered
more vivid.

52 4 - Methodology

middleware that all software components use for information ex-

change.

The process of domain engineering consists of two consecutive

steps: the domain analysis and the domain design [31], which are

introduced in the following.

4.3.1 Domain Analysis

A domain analysis comprises those activities to get from existing

knowledge about an area, the domain knowledge, to a model of the

domain, the domain model. K. Czarnecki describes that process

not just as a gathering of data, but as a “creative activity” ([31], p.

35). Organizations are encouraged to use creative ways to extend the

existing knowledge on the domain. “The sources of domain informa-

tion include existing systems in the domain, domain experts, system

handbooks, textbooks, prototyping, experiments, already known re-

quirements on future systems, etc.” ([31], p. 35). Hence, the process

of domain analysis is not a closed procedure, but an iterative activ-

ity that refines the domain model as long as the organization gains

domain knowledge.

The activities actually comprise a series of processes, such as the

characterization of the domain, the collection of data, data analysis

and modularisation, and classification [6]. Each process consists

of further steps, which are not introduced here, but which can be

followed from [31]. For instance, the result can be a hierarchical

feature model of a system, like the one depicted in figure 4.9.

A feature model is is a means of decomposing a technical system

into functional elements (features), to identify reusable elements,

and to indicate dependencies between those elements. It can also be

used to map a real technical device into a software architecture. An

example can be found in [9].

Goal of this work is the mapping of all operated systems and the

state of those systems within the MMOS. A similar idea is followed

4.3 - Domain Engineering 53

by the European Ground System – Common Core, currently devel-

oped by ESA, various national space agencies and industry [131].

The mapping of complex systems on ground requires a decomposi-

tion of these systems. Hence, all operated satellites, or constellations

must be split into individual systems and subsystems potentially.

Each identified system can then be represented as an entity by a

(reusable) software component on ground.

A result from this domain analysis was that mission operations

is not achieved by just mapping the state of the operated satellite.

Instead, every involved system including ground stations, antennas,

and parts of the MMOS itself must be considered by the feature

modelling. The result of this decomposition is discussed in section

5.3.3.1.

4.3.1.1 Feature Model

As mentioned above, domain analysis describes the process of trans-

ferring existing domain knowledge into domain models. One possible

outcome of this are so called feature models. Within domain analysis

in general and within Software Product Line (SPL) 2 development

in particular, feature models are a common means of describing the

possible functional extend of a system and its derivatives. In this

context,

“a feature is a prominent or distinctive user-visible as-

pect, quality or characteristic of a [...] system.” ([4], p.

324)

An exemplary feature model of an arbitrary spacecraft system is

shown in figure 4.9. Feature models are usually displayed in a tree-

like structure, called feature tree. Each element, called node or prod-

uct, represents a feature of the system, where each feature (parent),

2SPL: ”systematic reuse of software artifacts across a very large number of
similar products” ([97], p. 1)

54 4 - Methodology

System
System
Features

Subsystem
Features

Component
Features

Spacecraft

Life
Support

Power
Supply

Data
Handling

Payload

RTG

Solar
Panel

Battery

body
mounted

deployable

Legend

mandatory

optional

requires

excludes

OR

alternative (XOR)

Figure 4.9: Exemplary Domain Feature Model of a Hierarchical System

4.3 - Domain Engineering 55

Table 4.1: Feature Model Relationships

Relationship Description

mandatory A product must provide that specific
feature

optional A product can optionally provide
that feature

OR The product must provide at least
one of these features

alternative
(XOR)

The product must provide exactly
one of these features

can have a number of sub-features (children). The connections indi-

cate the logical relationship between parents and their children [107,

97]. They are explained in table 4.1.

Besides the logical relationships, feature models can define con-

straints between elements. A require constraint indicates a feature

that is required by a different one, where an exclude constraint in-

dicates a feature that is excluded by a another.

At the start of each software development process stands the

conversion of the stakeholders’ textual descriptions of use cases (sec.

4.2.2) into sound system requirements. According to [34], a require-

ment is

“a statement that identifies a product or process opera-

tional, functional, or design characteristic or constraint,

which is unambiguous, testable or measurable, and nec-

essary for product or process acceptability.” ([34], p. 7)

In the easiest form of Requirement Engineering, requirements are

simply captured in tables ([34], p. 7) or the product backlog ([115],

p. 15). This however shows some drawbacks.

The problem already begins with the user stories. The formula-

tion of a requirement based on a user story can be compared with

the translation from one language into another. Like any other in-

56 4 - Methodology

terpretation, this holds the risk of information being mistaken if not

being missed entirely. In other words, one cannot be sure that the

extracted requirements are resilient, and that they really cover the

exact scope of the project.

Feature trees can also be a means of solving these problems as

they allow for the display of system requirements in a hierarchical

and structured manner [97]. This brings a series of benefits, not only

with regard to system requirements.

For instance, each feature in the tree is supposed to represent a

specific requirement. By hierarchically structuring an linking them,

they can be checked in terms of completeness and validity. Unnec-

essary, and/or redundant requirements become evident right away

and conflicts can be made transparent. Organizing features in a hi-

erarchical tree structure also helps defining the scope of a product

or a system. This automatically defines the scope of the system

testing too, as it supports the definition and the generation of test

procedures for a product [97].

As a means of displaying all possible system derivatives, feature

trees are a good means of identifying reusable elements eventually.

In both the horizontal and vertical dimension, following [31], the

methodology allows for the identification of all common, generic,

and potentially mission specific features (fig. 4.7).

4.3.2 Domain Design

Scope of the domain design is the transformation of the domain

model into an architecture. F. Buschmann et. al. define a software

architecture as

“[...] a description of the subsystems and components

of a software system and the relationships between them.

Subsystems and components are typically specified in dif-

ferent views to show the relevant functional and non-

4.4 - Implementation 57

functional properties of a software system. [...]” ([20],

p. 384)

In that context P. Kruchten’s paper on the 4 + 1 View Model of Soft-

ware Architecture [83] is usually cited. In his work, Kruchten ad-

dresses the problem that a good architecture must provide enough

views, so that each stakeholder of the software can extract the rel-

evant information. [31] compares software architecture with the ar-

chitecture of a building, which must feature certain information too.

For example, a plumber cannot work with an electrical circuit plan.

This is exactly the Mother-in-Law Problem, introduced in section

4.1. Consequently, Kruchten has identified a series of stakeholders,

which must be considered in the scope of the design process. These

are the end users, the programmers, the system integrators, and the

system engineers. For each group he defines a specific view and a

subset of suitable forms of display which shall not further discussed

here.

With a software architecture being defined, a process of identi-

fying recurring arrangements (so called patterns) can be initiated.

Patterns aim for the extraction of reusable software parts to form

a solution for a particular problem. Emerging patterns can depend

e.g. on the type of application, or the design [20].

4.4 Implementation

Compared to the previous steps of the software development, the

implementation should be a rather unspectacular process. It basi-

cally covers the translation of the system design, usually realized by

means of modeling languages, into a coding language, such as C++,

Java, Python etc.

The more detailed the architecture has been designed, the better

it can be implemented. This does not mean that code generation is

a trivial process. Like during house construction based on the ar-

chitect’s plans, the derivation of software code from a system design

58 4 - Methodology

requires certain “skills, creativity and discipline” ([61], p. 109) by

the people writing the code. Like an electrician who must be capable

of reading a circuit plan, a programmer must be capable of reading a

modeling language. And that person must have the technical know-

how of converting the content into a specific coding language, like a

mason must know how to build a wall according to the construction

plans. Such a procedure is of course a sparkling source for human

error, which is why software testing is that important (sec. 4.5). It

is also beneficial if the person in charge of the software has a cer-

tain domain knowledge, so that flaws in the design can be identified

during the implementation already ([121], p. 164).

The way towards a compiled piece of software is covered with

numerous obstacles and decisions to be made. It begins with the

selection of a capable coding language and continues well past the

distribution of the source code or the binaries. Yet, this work does

not claim to provide a comprehensive discussion of these issues and

refers to common literature instead. This is due to the fact that

solving problems during software implementation is well discussed,

fairly generic and not the purpose of this work in particular.

In the following, those aspects of software implementation are

discussed, which are considered the most critical in the context of

this work.

4.4.1 Selection of a Programming Language

The choice of a programming language is surely the most important

decision in the implementation process. It depends on a series of

boundary conditions, the application, and the capabilities of the

programmers. [111] has identified ten criteria for the selection of a

programming language for distributed systems: The list is largely

according to a study of [28], who published an evaluation of the

mostly used programming languages between the years 1993 and

2003. In order to estimate the success of a language, the authors

4.4 - Implementation 59

Concurrency Efficiency High Integrity
Maintainability Portability Reliability

Reusability Scalability Security
Simplicity

distinguish between what they call intrinsic factors and extrinsic

factors.

Intrinsic factors, such as the ones above, describe the hard tech-

nical capabilities of a language. They can be considered to narrow

down the number of suitable languages for the job. Extrinsic factors

cover aspects such as the availability of support and documentation,

the existing knowledge about the language and the number of people

using it. If the decision is to be made between a limited number of

suitable programming languages, extrinsic factors usually make the

difference.

If programmers have to choose between a handful of suitable

languages they would most likely use the one they know or like best.

In turn, an organization should select a language that is widely used

among its programmers. What sense would it make to use a language

that nobody else speaks?

Another key aspect is the availability of support and existing

knowledge about a language outside the organization. A practi-

cal measure of quantifying the dissemination of a language are the

statistics provided by online forums such as StackOverflow or Stack-

Exchange. A respective study was performed by [119], who evaluated

the number of questions asked about different software frameworks

for web page applications, in order to quantify their popularity. Such

an evaluation can make sense if the decision is to be made between

two or three equivalent languages or within fast evolving domains.

In conclusion, extrinsic factors can speak in favor of a certain lan-

guage, although others maybe more modern or better in technical

terms. Within this project languages were chosen the development

60 4 - Methodology

team was most comfortable with.

The selection of a programming language has to be made after

the design process and prior to the implementation. But uncon-

sciously, the design process can be already driven towards a certain

programming language or framework. This happens, when the peo-

ple programming the software are involved in the design process.

Like any other language, a programming language is an expres-

sion of thought [29, 121]. If programmers are involved in the design

process, they usually think about the implementation already and

how they would implement a specific idea in their favorite program-

ming language. If a problem occurs that does not fit to a particular

language or framework of choice, usually the design is reworked in-

stead of questioning the selected programming approach. This is

based on personal observations made during meetings whenever as-

pects of the system design were discussed (sec. 4.2.2).

To avoid a large variety of coding languages within the project,

only a few were allowed eventually:

• C++, and Python for component and back-end programming

• HTML, CSS, JavaScript, and Python (Flask) for user front-

end programming.

Further used markup, and database querying languages are not men-

tioned.

4.4.2 Source-Control Management

Nowadays, there is no serious software project ongoing that is not in

some way administrated by a Source-Control Management (SCM),

such as Git, SVN or CVS. Main purpose of such a system is to keep

track of the versions of the software source code and thus to enable

a programmer to return to a stable version of the software in case

something goes wrong. Apart from this, the benefits are manifold.

4.4 - Implementation 61

New
Branch

Master
Branch

Stage

Version Copy
Implementation & Test

Merge

Figure 4.10: Exemplary Version Tree

Git was chosen for this project, since it is widely used in the Linux

community and by other organizations such as Google, Microsoft or

Qt [116]. The Git project was launched in 2005 and the software is

developed further ever since [26].

Within Git, the source code is stored in so called repositories

on servers. Whenever someone needs a version of the software, the

source code can be downloaded (checked out) from the repository.

In turn, modifications that shall be published have to be pushed to

the repository by the developer.

A great advantage of Git compared to other SCM systems is

the concept of branches. It is briefly illustrated by figure 4.10. In

this concept the software versions (stages) are mapped in a tree-

like structure. The main branch is the so called Master Branch.

Whenever the software has to be modified, a new branch is derived

from the Master Branch (or any other parent branch). Modifications

in one branch are tracked independently from the others. When the

work in one branch is finalized, it is usually merged with the Master

Branch again (or its respective parent branch). The concept enables

multiple programmers to collaborate in one single software project.

Through hooking of stable branches to automatic tool chains on

build servers, SCM also supports the delivery of the product. Stable

62 4 - Methodology

Module

Submodule A Submodule B Submodule C

Version Tree

Figure 4.11: Concept of Submodules

branches refer to those, which contain source code that was formerly

tested.

Another benefit is the possibility to integrate so called submod-

ules into the project (fig. 4.11). Submodules can be separate pro-

grams or pieces of software. The difference to branches is that sub-

modules are self-contained projects, with their own repository and

their own Git version tree.

Git repositories are usually managed by means of graphical web

front ends, such as GitLab, GitHub or Gitea. These allow for the

granting access right to repositories, for the handling of merge re-

quests from contributors, and for the tracking of bugs and issues.

For this project the web front end Gitea was used.

For a detail description of Git it is referred to [116, 26].

4.5 Test and Verification

Every human makes mistakes. So, as long as software code is written

by a person, programs will contain faults. That is already caused by

the limited human capability to express a thought. Everyone, who

ever was in the situation to explain a complicated subject knows

how difficult it can be to put certain facts into words. This prob-

4.5 - Test and Verification 63

lem becomes even worse, if a thought or technical problem must

be expressed in a foreign language or a computer language [29, 121].

Other sources of human error are quite evident, such as lack of knowl-

edge, a misunderstanding of the technical problem, or simply poor

concentration.

4.5.1 Terminology and Fundamental Aspects of

Software Testing

Testing aims for the identification of faults in the software, and for

the verification that the system behaves as specified in a given sit-

uation. In the following, a series of terms and definitions are intro-

duced, which are commonly used in the field.

4.5.1.1 Debugging, Testing, Verification and Validation

If a test has shown that a software is erroneous, debugging usually

helps to identify the part in the code, where the error occurred.

Almost every modern software language provides debuggers, which

enable the programmer to manually step through the routine of a

program. Thus, it is more a technical feature to examine and repair

the software code, rather than a means of testing it.

Testing is basically an experiment. At the beginning of the exper-

iment a hypothesis is made about how a tested specimen will behave

under certain boundary conditions. During the test, the technical

system, the software, the method etc. is exposed to these bound-

ary conditions and the resulting state of the item is checked against

expectations. Like any other scientific experiment, the outcome is

only valid, as long as the results of the test are repeatable ([110],

p. 23). In the context of this thesis, the usage of the term test

always refers to functional testing. Functional testing aims for the

verification of product functionalities, that evolve during the prod-

uct development and the product life cycle. It has been proposed in

1981 by William E. Howden to complement the usual branch test-

64 4 - Methodology

ing and mutation testing approaches. Branch testing, also referred

to as coverage analysis, is a means of measuring to what degree a

software has been tested, where mutation testing evaluates the effect

that small program increments (mutations) have on the generated

results [68, 19]. Further testing methodologies exist, which all have

their justification within the software development process, such as

data-driven testing, model-based testing, or back-to-back testing [121].

Yet these approaches shall not be discussed further here.

Software testing is part of the software verification process. The

European Cooperation for Space Standardization (ECSS) defines

verification as a

“ [...] process to confirm that adequate specifications and

inputs exist for any activity, and that the outputs of the

activities are correct and consistent with the specifica-

tions and input” ([44], p. 16).

While software verification simply aims for the approval that all

hard requirements are met as specified, validation intends to proof

that the software also behaves as expected by the user in a working

environment. For a successful validation also weak criteria are im-

portant. A software which is verified with respect to specification

still can be invalid for a user, if certain weak criteria are not satisfied,

such as efficiency, ergonomics, or user friendliness ([121], p. 13).

4.5.1.2 Failure, Error and Fault

In his paper about Dependable Computing and Fault Tolerance, Jean-

Claude Laprie introduces a specific terminology to describe what im-

pairs the dependability of software: the failure, the error , and the

fault [85].

Laprie calls a failure the occurrence of an unspecified system

behavior. Quality of a failure is that a certain feature cannot be

provided anymore, with the consequence that the software can be-

come worthless for the user. A failure is triggered by an error, which

4.5 - Test and Verification 65

Human Error
“Mistake”

Fault
“Bug”

Error

Failure

causes

causes

causesinvokes

Figure 4.12: Fault, Error and Failure Chain, following [85]

Laprie basically describes as a special kind of system state. How-

ever, an erroneous software does not necessarily lead to a system

failure, especially if the software provides internal error handling

mechanisms.3 Errors in turn are the result of software faults, com-

monly known as bugs. Not every bug in the software does lead to an

error, since the emergence of a bug usually depends on the system

state. Other bugs may not become evident, simply because they are

never called. According to Laprie’s terminology, bugs in turn can

be invoked by errors, which are caused by other bugs, and so on. So

a software might run through a series of faults and errors before a

failure shows up eventually [85].

The terminology is illustrated by figure 4.12. The figure also lists

the mistake as a human, special kind of error, the initial cause of a

bug.

According to figure 4.12, any system failure can be traced back to

a bug, which is initially caused by human error. The usual suspect

for the origin of a bug is the programmer, who obviously has made

a mistake and wrote a poor line of code, causing the error and the

software to fail. But unfortunately, (or luckily for the programmer),

3A prominent example are exception throwing and catching mechanisms such
as the try, catch & throw calls in C++ or Java applications.

66 4 - Methodology

it is not that easy, because bugs can emerge during the system design

already and thus long before the actual implementation.

So it makes sense to improve the entire development process in a

way that design flaws are detected prior to the implementation. First

steps in that direction were made by leading software companies in

the 1970s. The effort was driven by the finding that costs for fault

removal are the higher, the later they are found ([126], p. 33).

In the scope of this project, an extensive documentation and

a detailed design have been considered key with regard to a good

software. Consequently, every element of the envisaged system has

been documented carefully and reviewed prior to its implementation.

4.5.1.3 Testing of Object-Oriented Software

Yet, not the most sophisticated design evaluation and not even the

most intense testing can guarantee that all bugs in a software are

found. In their book about the testing of object-oriented software,

H. M. Sneed and M. Winter compare the detection of faults with

the literal search of the needle in the hay stack ([121], p. 4).

Fortunately, since the first serious efforts of establishing testing as

an engineering discipline in the early 1970s, numerous methodologies

have been developed in order to improve the verification process and

the design of dependable software. They cover definitions, norms

and standards, process models, quality assurance mechanisms, test

automation, and more.

The understanding of the effect that system design or program-

ming paradigms such as object-orientation have on the testing has

evolved too. After the introduction of the first object-oriented lan-

guages in the 1980s, a popular belief was that object-orientation

would not affect the testing of a software, or would even simplify it

([121], p. 22). Another common opinion was that a well-tested and

well-used class can be reused easily without further testing. These

assumptions turned out to be wrong [102].

4.5 - Test and Verification 67

In fact, certain qualities of object-oriented or reusable software

complicate the verification process. Sneed and Winter mention the

following four:

1. The usage of different classes in a modular system causes de-

pendencies between the classes and the objects of these classes.

A certain system functionality for example is usually not im-

plemented by a single procedure, but a number of classes. Each

class then implements the functionality of a specific domain in

the process. Dependencies occur because of mutual method

calls, inheritance, or the acquisition of foreign methods and

attributes.

2. Classes can provide a large number of methods. The output

of a method is not just a function of the method parameters,

but also the state of the object, which is constituted by the

class attributes. By calling a method that alters the state of

the object, the output of another method can be influenced.

Hence, all methods are functionally coupled by the attributes

of the class.

3. The purpose a class method shall serve eventually is sometimes

not evident when a class is developed. That uncertainty can

result in an unpredictable number of object states, which can

not all be tested.

4. The number of possible states of an object is a function of the

class attributes. The more attributes a class has, the more

states the object can be in. Since the number of states rises

exponentially with the number of attributes, a hundred percent

test of a class is simply not possible. ([121], p. 22 f.)

Similar problems apply to distributed systems.

68 4 - Methodology

4.5.1.4 Test Methodology

Test projects are usually organized in parallel to the actual devel-

opment project. That is because the outcome of every stage in the

product development process, demands for a series of specific tests.

These tests must be planed, designed and conducted individually,

which requires significant efforts and personnel capacities. In a clas-

sical top-down approach, it begins with the definition of acceptance

tests, based on the user requirements, and ends at the bottom with

code reviews, method or class tests, usually organized and conducted

by the programmer.

Methodologies for the implementation of a software test can be

derived from standards such as IEEE-12207, IEEE-829 or ECSS-E-

ST-10-03C [71, 70, 69, 43]. These standards also define how a test

must be documented. Although Institute of Electrical and Electron-

ics Engineers (IEEE) and European Cooperation for Space Stan-

dardization (ECSS) make slightly different specifications regarding

the extend of the test documentation 4, the scope is basically the

same. So, every test must pass the following phases:

1. Planning

2. Specification

3. Procedure Generation

4. Implementation

5. Execution

6. Report

Every test begins with the planning, a definition of goals and the

allocation of testing resources. The phase is followed by the design

and the specification of the test. For the preparation of the test

4E.g., ECSS further defines reviews prior and after the test activities ([43],
p. 29 f.)

4.5 - Test and Verification 69

specification detail knowledge about the software is necessary. This

is needed to estimate the behavior of the tested item in a given situ-

ation. For a distributed system, the outcome of the test specification

can mean hundreds of test cases ([121], p. 44 f.).

With a certain amount of test cases, testing cannot be efficient

anymore without automation. This covers server systems and tool

chains for automatic software delivery, as well as scripting tools and

languages for the test procedure implementation. A quite popu-

lar language for the job is the scripting language Python. In space

industry Python has to compete with a vast number of scripting

languages and commercial automation systems. However, some in-

stitutions have begun to establish Python as a standard and open

alternative for a widely use in the testing domain [56, 18].

Outcome of the test is a test report eventually. According to

the ECSS, the final test report “describes test execution, results and

conclusions in the light of the test requirements. It contains the

test description and the test results including the as-run test proce-

dures, the considerations and conclusions with particular emphasis

on the close-out of the relevant verification requirements including

any deviation.” ([43], p. 33)

4.5.2 Test Items and Verification Process

During the previous sections of this chapter, a series of methodolo-

gies has been introduced, which have been applied on the way from

the beginning of project organization until the preparation of soft-

ware tests. That covered the specification of requirements based on

user specifications, the domain analysis, the design of the software

architecture and finally the definition of tests for the different im-

plementation stages. This top-down approach is visualized by the

V-Model in figure 4.13.

With the preliminary work being done, usually the first lines of

code can be written and the first classes and methods are imple-

70 4 - Methodology

System
System/Acceptance Test

Subsystem
Integration Test

Component
Component/Unit Test

Class
Class Test

Method
Method Test

Static Analysis

A
n

alysis
&

D
esign

Implementation

T
es

t
&

V
er

ifi
ca

ti
on

User Specifications
& Requirements

(sec. 4.2.2)
Product

(sec. 4.3)

(sec. 4.4)

(sec. 4.5)

Figure 4.13: V-Model and Test Items, following [13] and [121]

4.5 - Test and Verification 71

Test Environment

Test Item

Input
Data

Output
Data

Log.

Monitoring
&

Control

Simulation Scenarios Test Sequences Stubs

Figure 4.14: Elements of a Functional Testing System, following [121]

mented. This is when the first tests of the delivered software are

conducted too.

While system analysis and design follow a top-down approach,

testing and verification goes exactly the other way round. It begins

with the verification of smaller items and ends with the acceptance

test for the assembled system. In between, various tests are con-

ducted depending on the tested item and the implementation stage.

A general setup for a functional testing system is shown in figure

4.14. The tested item, the specimen, is embedded in a test environ-

ment. The comprehensiveness of that environment grows with the

complexity of the item. Smaller specimens of the software product

are directly tested within the development framework which is used

for the implementation too, while larger integration or system tests

demand for more sophisticated setups.

Yet, the general purpose of each test environment is always the

same. The environment must ensure that a test case is executed as

specified. Therefore, it launches the defined test sequences, which

execute the item and expose it to input data. Software elements,

which are too complex for the test or simply out of scope, are re-

placed by so called stubs, if necessary. Stubs are simple software

72 4 - Methodology

blocks that can be used for data injection, the collection of data or

simply as a substitution for a missing communication partner.

Complex data, which cannot be provided by simple stubs must be

generated by a simulator. The worth of a simulator as a data source,

especially for integration and system level tests, will be discussed in

section 4.5.3.

The output data is collected in a data sink for further processing

and evaluation of the test. A test environment must further provide

means of logging and report generation so that the execution of the

test, the coverage, and the results can be evaluated afterwards [121].

The various items and the characteristics of their test are briefly

discussed in the following.

4.5.2.1 Static Analysis

“The earlier we find bugs, the easier it is to fix them. Ideally, we

would like to catch errors when we make them, or as close afterwards

as possible, and not ipso facto with reviewing or testing.” [88]

A good practice of finding bugs are static code analyses, some-

times referred to as static tests, although they are no test in the

classical sense, as described above. For this kind of analysis, the soft-

ware code is not executed (dynamically), but reviewed and checked

for mistakes. These checks are conducted by the developer already

and/or by means of code checkers.

Most Integrated Development Environments (IDE) for static cod-

ing languages like C/C++, provide basic code analysis capabilities

already. So the developer is informed about a mistake the moment

a line of code is written. After that, the code is checked by the

compiler. Yet, both just provide rudimentary code checking, as they

only seek for obvious mistakes, such as syntax errors, unused vari-

ables, missing initialization etc. They don’t eliminate the risk of

making a mistake causing a runtime error, like invalid pointers, or

logical mistakes. Modern coding languages such as Rust claim to

4.5 - Test and Verification 73

close that gap by providing sophisticated code checking mechanisms

and conclusive warning messages [58].

The need and the value of static code analysis due to the discrep-

ancy between compiler warnings and actual flaws in the program

code was recognized in the 1970s already. That time, the first code

checking algorithms were introduced taking advantage of the fact

that human errors during the coding process usually follows certain

patterns. These patterns are recognized by code checkers [88, 75].

4.5.2.2 Method Test, Class Test and Unit Test

General purpose of a software system is to solve a problem, by creat-

ing a model of the problem domain [27]. If the paradigm of object-

orientation is applied, a software unit is composed of classes, where

a class implements a concept, an idea or an entity within a pro-

gram [124]. A class is defined by its attributes and its functionality

implemented by its methods. Methods, classes, and the software

units they form must be tested successively by the developer, prior

to handing the product over to the testing team.

The smallest testable item within an object-oriented software is

the method. Methods are tested as function of their inputs and

their parameters ([121], p. 28). The smaller and the more simple

methods are kept, the more unlikely are faults and the easier they

can be tested. By dividing a complex algorithm into more simple

functions, the pure number of methods to be tested rises though.

The next level are class and unit tests. The challenges of testing

these have been discussed in section 4.5.1 already. In conclusion,

class tests are complicated mostly because of the infinite number of

objects states, the dependence on the owned objects, or inheritance

from foreign classes. Consequently, class and unit tests cannot be re-

alized by means of simple input-output tests. Instead, they demand

for sophisticated class drivers within the test environment, which

monitor and control the state of controlled item during the test.

74 4 - Methodology

Modern IDEs, such as the Airbus Eclipse plugin SimTG for mod-

eling and simulation purposes provide internal mechanisms for class

and unit tests [140]. A popular framework for integrated unit tests

in java is the JUnit testing library, available for Eclipse too [60].

Within SimTG, JUnit tests can be executed automatically when-

ever the software product is compiled.

4.5.2.3 Integration Test

During integration tests, all tested items exist in form of self-contained

units. These units are the components of the developed software

architecture. Thus, an integration test does not focus on a single

software specimen, but the verification of the compatibility of the

various items under test. In other words, the test item of an integra-

tion test is not a single self-contained object, but an abstract process

that emerges through the interaction of the various units.

In section 4.3 the substantial characteristics of domain software

design and the conditions for software reuse were discussed. One

approach in that context was to display an architecture in two di-

mensions: the vertical and the horizontal dimension (fig. 4.8). Con-

sequently, the strategy for integration testing must consider these

dimensions too.

In the vertical dimension, software design strives for a hierar-

chy of elements within the software architecture. That hierarchy

shall serve a certain process, for example a process of data han-

dling and presentation. Such architectures are usually realized by

means of multiple abstract data handling layers, where each layer

implements a specific protocol, e.g. according to the Open Systems

Interconnection (OSI) model [74]. In a bottom-up approach, vertical

integration tests shall verify that the architecture supports the data

handling process in any possible situation, and that components are

compliant to the implemented data abstraction model.

The understanding of horizontal integration test is a little less

abstract. Horizontal integration testing shall basically verify that

4.5 - Test and Verification 75

multiple elements of the same level (e.g., element A and element B

in figure 4.8) are functionally compliant in any given situation. That

covers the pure verification of collaboration, but also the verification

of failure handling capabilities, like when one component returns

corrupt data, or terminates unexpectedly ([121], pp. 197–200).

4.5.2.4 System Test and Acceptance Test

System tests and finally acceptance tests aim for the verification

that all system requirements are met and that the system behaves

as expected by the user. Although formally different, they are han-

dled equally in the context of this work, as both focus on the fully

integrated system.

System testing covers a wide range of different types of tests.

That is because the overriding goal of system testing in not just the

pure verification of all system functionalities, but also to ensure that

the system remains stable under poor conditions.

System testing begins with a series of basic functionality tests,

verifying that the system is compliant to its specification under nom-

inal conditions. When these tests have been passed, the more rigor-

ous testing begins, verifying that the system can withstand boundary

conditions, which vary from nominal ([93], sec. 8). In the following,

some of these system tests are introduced:

Robustness

Test

A robustness test tries to determine how sensi-

tive the system reacts on erroneous input data.

The system is considered robust if a wrong in-

put or a wrong usage does not cause as system

failure.

Stress Test Stress tests expose the tested system to bound-

ary conditions, which exceed the specified de-

sign limits (e.g., high data rates). It is basi-

cally a test of the system’s internal error han-

dling mechanisms (sec. 4.5.1.2).

76 4 - Methodology

Load/Stability

Test

Load and stability tests ensure that the system

remains stable for a long period, when the sys-

tem is working at its maximum capacity.

Reliability Test The system reliability is quantified by measur-

ing the time period during which the system

remains stable, without the need of rework or

repair.

Regression Test Regression tests verify that the system still

meets its specifications after the software has

been changed or a new version has been re-

leased [93].

4.5.3 System Simulation

In section 4.5.2 it has been mentioned that testing requires input

data. Simple method or class tests can be realized by means of

static data sets or primitive stubs, which generate the input data

during runtime of the test. Yet, the more comprehensive the tests

become, the more problematic becomes the generation of valid input

data, as becomes the processing of the output of the system under

test.

The major inputs and output of an MMOS are the TM/TC

frames exchanged with the satellite. Since system testing cannot

be done with a real satellite in orbit, simulating the spacecraft func-

tionality is the general practice [47]. Figure 4.15 depicts the target

setup with a number of simulated satellites connected to the devel-

oped system under test.

For this work an industrial simulation IDE called Simulation

Third Generation (SimTG) was used. SimTG is an eclipse plu-

gin, allowing for simulator implementation as well as for simulator

execution [140].

A simplified architecture of a simulation environment like SimTG

is shown in figure 4.16. Such environments consist of three basic

4.5 - Test and Verification 77

Simulation Infrastructure

Simulator 1

Simulator 2

Simulator 3

Simulator 4

MMOS (under test)

TCTM

Figure 4.15: Simulated Constellation - Verifying an MMOS requires the
simulation of multiple satellite systems simultaneously.

78 4 - Methodology

Model A Model B Model C

Generic Model Library

Srv. 1 Srv. 2 Srv. 3 Srv. 4

Control Interface

Sequence

Simulator
Control

S
im

u
la

to
r

K
er

n
el

Modelling Framework Simulator Ops.

Figure 4.16: Simplified Simulator Architecture, following [22]

elements. The modelling framework is the element which allows

for the implementation of simulation models. These models usually

represent a system, a device, a physical phenomenon, or what ever

shall be simulated. During runtime these models are executed by the

kernel, which can be monitored and controlled from the simulator

operations tool.

4.5.3.1 Modelling Framework

Models within in a system simulator as shown in figure 4.16 are

discrete-time models, which means that they map the discrete sate

of a system over time. In control theory it is general practice to

represent a system by means of discrete-time models, whenever a

controller for that system is designed ([1], p. 268).

The simulation models, which define the scope of the simulation

are implemented within the modelling framework (SimMF). Models,

created within SimTG are SMP2 compliant, which supports model

ruse from different simulator projects [38].

4.5 - Test and Verification 79

SimTG uses the programming language C++ for model imple-

mentation. In the first instance, a simulation model in is nothing

more but a class. SimMF supports the user in the specification of

these classes, which covers the declaration of attributes, the decla-

ration of member functions, the declaration of interfaces, and the

declaration of dependencies (e.g., to other simulation models). Fur-

thermore, SimMF supports the user in the specification of those

model characteristics, which go beyond a traditional UML compli-

ant declaration of a class. This covers for example the definition of

initialization values, variable ranges, or advanced visibility settings.

The model code is automatically generated according to these spec-

ifications.

After model creation, the developer is in charge of implementing

the model functionality. Three different member function types must

be implemented.

Executable Functions

During runtime, simulator models are executed by the simulator

kernel. Executable member functions refer to all those methods

which can be called from the kernel. The value of this is manifold.

Basically, the entire simulator scheduling as will be described in

section 4.5.3.5 relies on this functionality. Apart from that, calling

executable functions allows for the implementation of model self-

tests, for failure injection, or for a direct manipulation of the model

state.

Model Function: init()

init() is an executable function that is called once during a default

simulator initialization process that stands at the beginning of each

simulation run.

After a model has been defined, SimMF automatically generates

the program code including all class constructors. The init() method

80 4 - Methodology

Model
Model
Input Results

time step ∆t

Figure 4.17: Simulator Model Working Principle - Model inputs are pro-
cessed during a time step, and propagated afterwards.

is used to implement all model initialization steps, which are not

covered by the automatically implemented model constructors.

Model Function: step()

step() is the executable function that actually defines the behavior of

the model. As such, it is the function that implements the numerical

algorithms that represent a certain physical phenomenon, or quality

of a simulated component.

Unlike init(), step() is not called just once, but cyclically with a

constant period ∆t. At the beginning of each step stands an update

of all model inputs. Following that, a time step is executed. The

scope of a time step can be manifold. It can be an integration step, a

run through a state machine, or any sort of algorithm representing a

functional behavior. After that, the model outputs are propagated,

and can be used by other models. The process is illustrated in figure

4.17.

4.5.3.2 Kernel

The simulator kernel is responsible for model execution. It provides

a series of mechanisms (services) that support the simulation, such

as time services providing the simulation time to models, scheduling

services actually executing those models, logging services etc.

Industrial simulation frameworks like SimTG [140], already pro-

vide a formally verified kernel. Thus, a simulator does not need to

be developed from scratch whenever a new system simulation needs

4.5 - Test and Verification 81

to set-up. Instead, simulator development can focus on modelling,

integration and testing, and scenario generation eventually.

Once all models have been completely implemented, they are

compiled together with the kernel library. The result is a software

binary that can be executed and controlled from the simulator op-

erations tool.

4.5.3.3 Simulator Operations Tool

Within SimTG, SimOPS refers to the tool that takes care of simula-

tor monitoring and control. It executes and commands the compiled

simulator kernel through an API. That kernel API allows for the call

of various kernel functions from simulator sequences to be created

by the user. SimOPS is based on the java coding language for the

realization of these sequences. They define which models are to be

executed during a simulator run, the duration of that run, as well

as the simulation boundary conditions (epoch, initial model stats,

etc.). A generic sequence contains the following steps:

1. Creation of a simulator process (Does not mean starting the

simulation!)

2. Creation of model instances

3. Setting of the frequencies of the models’ step() function calls

4. Connection of the model interfaces

5. Simulator default initialization

6. Override of the default initialization

7. Start of the simulation

8. During the simulation runtime, sequences can be used to per-

form model tests, or to monitor & control the simulation. If

none of this is required, the sequence just idles for as long as

the simulator is supposed to run.

82 4 - Methodology

9. Stop of the simulation

10. Termination of the simulator process.

Beyond this basic functionality, SimOPS provides a series of addi-

tional features, including but not limited to: a model debugger, a

failure injection, logging, data sampling, and a user interface.

4.5.3.4 Modeling

This thesis follows the model concept as defined by H. Stachowiak in

1973. In his book about General Model Theory, Stachowiak defines

a model as an

“image [...], a representation of a certain (real) original

[...].” ([123], p. 129)

According to this definition, a model is characterized by three basic

features:

1. “A model is an image/representation of something natural or

artificial.”

2. “A model does not capture all attributes of the original, but

only those which are relevant for the model creator and/or the

model user.”

3. A model may provide functionality, that “cannot be assigned

clearly to an original (functionality). (Instead), models provide

substitute functionality”, which depend by whom, when, and

why a model is used. ([123], p. 131 ff.)

The following example shall illustrate the concept (fig. 4.18). Fig-

ure 4.18a shows an image of a model locomotive. First, it is the

miniaturized version of the original German BR 216 series. Second,

a model train of course cannot provide all features of the original.

The model has no brakes, no air pressure system, no heating, etc.

4.5 - Test and Verification 83

(a) Model Locomotive

(b) Electric Motor (c) Wheel Set (d) Coupling

Figure 4.18: Model of a BR 216 Diesel Locomotive

84 4 - Methodology

Third, certain features of the original are realized by substitute mod-

els. So, instead of a diesel engine, the model has an electric motor,

but the observable functionality: the train moving forward, stays the

same. Other features like the wheel set and the coupling are very

simplified and hardly resemble the real implementation.

For the realization of a satellite system simulation, the following

items need to be modelled:

• satellite components (devices, structure, . . .)

• interfaces (power lines, data links, . . .)

• orbital dynamics

• space environment (atmosphere, magnetic field, . . .)

Prior to the modelling process, the relevant physical properties

of the originals need to be determined. Of interest in space system

simulation are usually the electrical properties, the mechanical prop-

erties and the thermal properties, which is why a component model

is normally decomposed into the appropriate sub-models (fig. 4.19).

Not every property of a component needs to be simulated though,

instead the scope of a model should be kept to a minimum and only

the relevant properties should be simulated. The identification of the

relevant and non-relevant sub-models is part of the model design

process. For example, the simulation of a reaction wheel for the

verification of an attitude controller does not require the simulation

of the component’s thermal behavior.

A model decomposition into separate, closed sub-models is not

trivial though, because different physical qualities can be functions

of each other. For instance, the thermal condition of a device (e.g.,

a solar cell) normally affects its electrical characteristics.

4.5 - Test and Verification 85

Reaction Wheel Assembly

Electrical Model

Mechanical Model

Thermal Model

Simulation Model

Figure 4.19: Properties of a Satellite System Model - The selection of
relevant properties depends on the individual use case.
E.g., for the simulation of a reaction wheel, thermal prop-
erties are usually not relevant.

4.5.3.5 Simulator Model Scheduling

Within a simulator architecture as sketched in figure 4.16, the term

scheduling refers to the frequency of the model step function calls

by the kernel. Before discussing aspects of the model scheduling,

some time definitions as used in satellite system simulation shall be

introduced.

Simulator Session

Time (SST) -

“Zulu”

The SST is the actual time shown by the

clock on the wall. Within satellite opera-

tion and satellite simulation environments,

it is usually indicated in UTC.

Simulation Run-

time (SRT)

The SRT is the simulated time. All time

dependant processes within the models are

in reference to the SRT. It starts at 0 s

and counting. If the simulation runs at

real time speed, SRT and Zulu-Time are

synchronized. If the simulator execution is

paused, SRT counting pauses too.

86 4 - Methodology

Simulated Mission

Time (SMT)

The SMT can be any time in the past, the

present and the future, depending when the

simulated scenario takes place. The SMT

is usually, set actively to a specific Modi-

fied Julian Date (MJD) at the beginning of

the simulation. The SMT is always in sync

with the SRT ([47], p. 156).

After the models have been implemented, they are executed as

specified by the simulation sequence (sec. 4.5.3.3).

A simulation sequence specifies which model and how many in-

stances of each model shall be executed. Furthermore, a simulation

sequence allocates a scheduling frequency and an initial offset to

each model instance. The scheduling frequency determines the pe-

riod ∆tSRT between two calls of the model step function, where the

offset specifies the time (in SRT) of the very first call. An example

scheduling scheme is shown in figure 4.20.

Depending on the size and the complexity of the simulation, the

scheduling frequencies can have a huge impact on the fidelity and the

real time capability of the simulator. The right period is a parameter

that must be found for each model individually. It is the result from

a trade-off between model accuracy and simulator performance. If

the frequency is too low, the numerical simulations could be insuf-

ficient. If the frequency is too high, the entire simulator could lose

its real-time capability. The latter is the case, when the time for

the execution of the model step functions comes close to, or even

takes longer than the specified scheduling periods. In such a case a

rework of the simulator scheduling in favor of a lower frequent model

execution is necessary.

4.5 - Test and Verification 87

t = 0 s

offset

period (B)

period (A, C)

Model C Model C Model C

Model B Model B Model B Model B

Model A Model A Model A

SRT

Figure 4.20: Example Scheduling Scheme, following [47] - Scheduling
periods and the scheduling offset of three simulation mod-
els over SRT. The model execution times (Zulu) are indi-
cated by the bar widths. Qualitative display only.

88 4 - Methodology

89

5

MMOS Domain Engineering

In a top-down approach, chapter 4 introduced those methodologies,

which were applied in the scope of this project.

Following that approach, this chapter deals with the domain en-

gineering process of the Multi-Mission Operations System (MMOS).

It covers the discussion of the system quality requirements, an intro-

duction of the MMOS subsystems in the scope of a domain analysis,

and ends with a brief discussion of the outcome system design.

Chapters 6 and 7 will then go further into details of the Mission

Planning System (MPS) design, and aspects of system verification.

5.1 Quality Requirements

Each application needs to be designed according to user require-

ments. An Operating System (OS) like the MMOS shall be useful

for a wide range of people, such as: satellite controllers, flight di-

rectors, mission planners, payload scientists, engineers, etc., where

each group has different expectations on the system, in terms of

functionality and in terms of quality.

In contrast to functional requirements (appendix. B.1), which

define what must be implemented, non-functional requirements spec-

90 5 - MMOS Domain Engineering

Table 5.1: Mutual impairment of the five most significant non-functional
requirements and the effect of an extended system function-
ality to the fulfillment of these criteria, following [8]

E
ffi

ci
en

cy

R
el

ia
b
il
it

y

U
sa

b
il
it

y

S
ec

u
ri

ty

M
ai

n
ta

in
ab

il
it

y

Efficiency − 0 − −
Reliability − + + +
Usability 0 + − 0
Security − + − +
Maintainability − + 0 +

Functionality − − 0 − −

+ positive influence, - negative influence, 0 no significant influence

ify how the system shall be designed. Non-functional requirements 1

apply to the entire system. Yet, a clear distinction between both

types is not always so easy, since technical requirements can have an

effect on the required functionality too ([8], p. 109). E.g., security

is a common non-functional requirement for a software system. For

the implementation of an encryption methodology however, it can

become a functional requirement.

Numerous non-functional requirements are cited and used in lit-

erature to describe the quality of a technical solution. A study by

[89] has identified more than hundred 2. Yet, the meaning and the

dissemination of the various quality criteria strongly depends on the

domain and the kind of application.

1sometimes called technical requirements, or quality requirements
2That list however should not be taken for granted, as a lot of mentioned cri-

teria are derivatives of each other, e.g. reliability, verifiability and testability. A
reliable software of course must be verifiable. And a verifiable software of course
must be testable too. Also the work lists a lot of synonymous requirements, e.g.
expandability, extendability and extensibility.

5.1 - Quality Requirements 91

The five, most significant quality criteria are listed in table 5.1.

They are efficiency, reliability, usability, security, and maintainabil-

ity [8]. A general problem with quality criteria is their contradictory

nature, which makes it impossible for an architecture to cover all of

them equally. E.g., an enhanced efficiency generally impairs the

reliability of a system. The effect becomes worse the more function-

ality the architecture provides. Finding a solution in between is a

well-known problem in software engineering.

Consequently, a prioritization is necessary, and a focus on those

quality criteria, which have the biggest value for the user of the

software. The following sections introduce the considered technical

requirements for the MMOS. According to [8], the discussion dis-

tinguishes between runtime requirements and non-runtime require-

ments.

5.1.1 Runtime Requirements

Runtime requirements are those quality criteria, that take effect dur-

ing execution of the software. A formal verification of such can be

difficult, because the degree to which quality aspects have been ful-

filled can only be assessed when the software is actually used ([8], p.

114). Hence, the evaluation of these quality issues is the matter of

a software validation and not of the prior formal verification.

5.1.1.1 Efficiency and Automation

It is assumed that the key to efficient constellation operations is au-

tomation. Within the MMOS, basically everything shall automated

that is too time consuming, generates too much workload, or is prone

to human error.

In the area of satellite operations, it is common practice to refer

to an OS as automatic the moment it is capable of performing single

tasks autonomously, i.e. the generation of a command stack from

plan. But that is not the full story. So, what makes a fully automatic

92 5 - MMOS Domain Engineering

Data
Acquisition

Data
Analysis

Decision
Making

Response
Action

Figure 5.1: Four-stage Model of Information Processing, following [99]

system then? For that to understand, it is necessary to know what

automation means.

First of all, automation means that a task formerly done by

a human is fully or partly carried out by a computer. Whenever

that happens, a decision must be made to what degree automation

shall be implemented. In other words: How much of the task shall

be done by the computer, and how much shall the human still be

involved? This requires an analysis of how human and computer

interact, by whom an action is done, and how that action is com-

municated. In that context, Sheridan and Verplank defined the 10

Levels of Automation in Man-Computer Decision-Making ([118], p.

8-17 ff.), which specify ten grades between a task completely done

by a human and a fully automatic implementation (tab. 5.2).

Secondly, within a mission OS, automation is the implementation

of a process; a process of monitoring and control of a satellite mis-

sion. A principle four-stage model of that control process is shown

in figure 5.1.

A control action is always the result of a former sensor data

acquisition, an analysis of that data, a decission making, and an

implementation of that action. Parasuraman and Sheridan found

that each of these four stages can be automated at different levels 3.

Whenever an automatic system shall be implemented, the selection

of the respective automation level depends on a series of boundary

conditions, such as: the workload, the costs, the criticality of the

3Parasuraman and Sheridan introduce their findings with the words: “Con-
sider the following design problem. A human operator of a complex system
provided with a large number of dynamic information sources must reach a de-
cision relevant to achieving a system goal efficiently and safely.” [99] In a way,
this shows how valuable their approach is for this work.

5.1 - Quality Requirements 93

Table 5.2: Levels of Automation in Man-Computer Decision-Making -
for a single elemental decisive step [118]

Level Description

1 Human does the whole job up to the point of turning
it over to the computer to implement.

2 Computer helps by determining the options.

←
−

L
ev

el
o
f

A
u

to
m

at
io

n

3 Computer helps determine options and suggests one,
which human need not follow.

4 Computer selects action and human my or may not do
it.

5 Computer selects action and implements it if human
approves.

6 Computer selects action and informs human in plenty
of time to stop it.

7 Computer does whole job and necessarily tells human
what it did.

8 Computer does whole job and tells human what it did
only if human explicitly asks.

9 Computer does whole job and tells human what it did,
if the computer decides he should be told.

10 Computer does whole job, if it decides it should be
done, and if so tells human, if it decides he should be
told.

94 5 - MMOS Domain Engineering

action, the reliability of an implementation, the presentation of data

etc. Considering these and other boundary conditions upper and

lower bounds can be determined for each stage independently [99].

However, a poor automation can also impair the system quality,

and therefore increase an operator’s cognitive workload. This is the

case when a too rigid form of automation retains valuable informa-

tion, so that the operator is not able to trace a decision process,

or the cause of a failure anymore [99]. Even a balanced level of au-

tomation can impair the system quality. That is the case, when “the

burdens associated with managing automation [...] outweigh the po-

tential benefits” [80], for example when the automation is “clumsy

[, and] difficult to initiate and engage” [99].

So, the one question that needs to be answered is: Which M-

MOS system functionality (stage in the control process) shall be

automated to what extend? Answering that is actually quite the

trade-off and has been the topic of research since computers have

started taking over human tasks.

5.1 - Quality Requirements 95

Table 5.3: Simplified Level of Automation Taxonomy (LOAT) Matrix,
as defined by Save and Feuerberg [113], based on the work of
Parasuraman and Sheridan [99] - table from [112]

A B C D

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

↓ Level of Automation −→ Process

A0 B0 C0 D0

Manual

Information

Acquisition

Working

Memory Based

Information

Analysis

Human Decision

Making

Manual Action

and Control

A1 B1 C1 D1

Artefact-

Supported

Information

Acquisition

Artefact-

Supported

Information

Analysis

Artefact-

Supported

Decision Making

Artefact-

Supported

Action

Implementation

A2 B2 C2 D2

Low-Level

Automation

Support of

Information

Acquisition

Low-Level

Automation

Support of

Information

Analysis

Automated

Decision

Support

Step-by-Step

Action Support

A3 B3 C3 D3

Medium-Level

Automation

Support of

Information

Acquisition

Medium-Level

Automation

Support of

Information

Analysis

Rigid

Automated

Decision

Support

Low-Level

Support of

Action Sequence

Execution

Table continues on next page.

96 5 - MMOS Domain Engineering

Table 5.3: Simplified LOAT Matrix, as defined by Save and Feuerberg
[113], based on the work of Parasuraman and Sheridan [99] -
table from [112]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A4 B4 C4 D4

High-Level

Automation

Support of

Information

Acquisition

High-Level

Automation

Support of

Information

Analysis

Low-Level

Automatic

Decision Making

High-Level

Support of

Action Sequence

Execution

A5 B5 C5 D5

Full Automation

Support of

Information

Acquisition

Full Automation

Support of

Information

Analysis

High-Level

Automatic

Decision Making

Low-Level

Automation of

Action Sequence

Execution

C6 D6

Full Automatic

Decision Making

Medium-Level

Automation of

Action Sequence

Execution

D7

High-Level

Automation of

Action Sequence

Execution

D8

Full Automation

of Action

Sequence

Execution

To support this trade-off, a taxonomy has been applied that sub-

divides each stage in the control process into specific automation

levels. That taxonomy is called the LOAT matrix [113]. In a con-

5.1 - Quality Requirements 97

Agent 2

≤A4 ≤B4

≤C2

≤D4

A B C D
A

u
to

m
at

io
n

L
ev

el

Process Stage

MMOS
Automation Level

Agent 1

Agent 3Mission Specific
Automation Levels

Figure 5.2: Foreseen MMOS Automation Levels according to the LOAT
- Just a qualitative figure. Individual automation levels need
to be adapted according to the respective system function-
ality. Mission specific decision making as well as action im-
plementation can be realized by individual agents.

densed form it is shown in table 5.3. The full matrix, including detail

level descriptions, is available in appendix A.2. In this taxonomy,

A, B, C and D refer to the control stages in figure 5.1, where for

each stage specific levels of automation are defined. The higher the

number, the less involved is the human into the respective stage.

The striven levels of automation within the MMOS control pro-

cess are indicated by the gray area in figure 5.2. The indicated

bounds (A4, B4, C2, D4) are according to the LOAT matrix.

The acquisition of data from the operated systems shall be fully

automatic (A4). This covers the reception of TM packets, the ex-

traction of parameter values from these packets, and the writing of

that data into a persistent database. The definition of the received

98 5 - MMOS Domain Engineering

data types is a configuration made by the user though, as well as

the definition of parameter limits, and the type of display.

Some of the received data must be further processed. E.g., the

received satellite position and velocity information must be inte-

grated for orbit prediction and the calculation of pass times. These

computations are done automatically too, based on pre-defined user

specifications. Thus, the upper bound for data analysis B4.

The decision making based on the analysed data is highly mission

specific. Consequently, the MMOS can only provide a very limited

automation level during this stage (C2). The MMOS shall only

support a decision making process, e.g. by evaluating certain system

metrics. A full/high-level decision making is the task of so called

Agents, which must be designed and implemented for each mission

individually. Agents are therefore no feature of the baseline OS that

is the MMOS. By means of Agents various automation levels can be

achieved during each stage in the control process (dashed lines in

figure 5.2).

Once a decision is made, a satellite activity must be scheduled.

After activity creation, either by an operator, or by an Agent, the M-

MOS is in charge of handling that activity. That covers all steps from

the scheduling and the release of commands, until the verification

of the activity execution. An operator however must be able to

monitor and interrupt the process. The respective automation level

according to the LOAT is D4. An automation level higher than D4

can be achieved, if the activity execution is monitored by an Agent.

It is important to know that the automation levels specified in

figure 5.2 (A4, B4, C2 and D4) are just upper bounds. This means

that an operator granted with respective rights must always have the

opportunity to intervene the process and/or to trigger system func-

tionality manually. Situations where this might become necessary

are manifold, like the following:

1. An Agent might be erroneous and the automatically scheduled

activities would jeopardise the mission.

5.1 - Quality Requirements 99

MMOS Agency

Component A

Component B

Agent
(sec. 5.2.2.4)

1

2

Data

Action

D
ec

is
io

n
-M

ak
in

g

Figure 5.3: Standardized Interfaces for System Extendability - Different
interfaces are needed for the provision of acquired data to
Agents (1) and for the insertion of actions implemented by
these Agents (2).

2. The automatic decision making or the automatic action imple-

mentation might fall apart. In that case the operations team

must be capable of scheduling satellite activities manually (e.g.

by releasing manual commands).

3. Full and high-level automation can cause skill-degradation [99].

To prevent this from happening the operations team must be

capable of performing low-level operations for training pur-

poses.

5.1.1.2 Extendability

As figure 5.2 indicates, various missions could demand a significantly

higher level of automation than provided by the MMOS. The means

of closing that gap are so called Agents, which are individual soft-

ware components, tailored to their specific mission. Unlike other

components, Agents are no element of the baseline MMOS. Conse-

quently, the MMOS must actively support the addition of external

software.

100 5 - MMOS Domain Engineering

To fulfill that extendability requirement, the system must pro-

vide a number of well defined and documented interfaces, enabling a

development team to add mission specific functionality to the MMO-

S. According to the process model in figure 5.1, this requires generic

interfaces for the provision of acquired and/or analyzed data to those

Agents, as well as interfaces enabling Agents to inject decisions into

the MMOS (fig. 5.3).

These interfaces as well as the concept of Agents are introduced

in section 5.2.2.4.

5.1.1.3 Scalability

Scalability is a frequently referenced non-functional requirement for

computer and software systems, even tough it has never been com-

prehensively defined [64, 89]. In 1990, after a failed attempt of

defining it algebraically, one author even encouraged “the techni-

cal community to either rigorously define scalability or stop using it

to describe systems”, as it would be “about as useful as calling [a

system] modern” [64].

Yet, every distributed system, such as the MMOS, must cope

with growth and an increased load eventually. In that context, the

technical community (if there is any) has agreed on a certain termi-

nology in order to describe the capability of a system to deal with

these issues. Such a terminology is considered useful even though

scalability as a measurable characteristic of a software system is dif-

ficult to evaluate and to express in mathematical terms.

Following A. Bondi, scalability describes

“the ability of a system to accommodate an increasing

number of elements or objects, to process growing vol-

umes of work gracefully, and/or to be susceptible to en-

largement.”

Consequently, a system is not scalable, if

5.1 - Quality Requirements 101

“the additional cost of coping with a given increase in

traffic or size is excessive, or [the system] cannot cope at

this increased level at all.” [14]

In that context “cost can be quantified in many ways, including but

not limited to response time, processing overhead, [...] memory, or

even money.” [14] Different types of scalability have been defined,

because the performance of a system can be compromised by growth

in many ways.

Load Scalability

Load Scalability describes the ability of a system to perform properly

at increased loads. Measures for the quantification of load scalability

can be manifold, such as response times, memory consumption, CPU

utilization etc.

Space Scalability

A system is considered space scalable, if an increased number of

supported items/objects does not result in an unacceptable usage of

memory. Sometimes space scalability can only be achieved at the

expense of load scalability, as will be discussed later on.

Space-Time Scalability

Similar to space scalability, space-time scalability requires that the

system is capable of supporting an increased number of objects. Yet

the measure for space-time scalability is not memory usage, but the

maintenance of a sound system performance. Space-time scalability

is an important requirement for search engines and databases, which

must be able to return the requested data within an acceptable time

period, even though the number of encompassed objects increases by

an order of magnitude. Consequently, space scalability is a necessary

requirement for space-time scalability.

102 5 - MMOS Domain Engineering

Structural Scalability

Structural Scalability describes the general ability of a system of

accommodating new objects. The number of objects a system can

handle is usually limited by the size of the address range. E.g. if

objects are identified by means of an 8 bit unsigned integer, the

number of handled objects is limited to 256. [14]

Unlike space, space-time and structural scalability, which are ar-

chitecture inherent, load scalability can be achieved by exploiting

the capacities of the computing hardware. Given the availability and

the increasing technical capabilities of such, load issues are gladly

solved by means of parallelism, multi-processing or simply by in-

stalling more powerful hardware, even though those issues could be

solved more efficiently, as the following example shall demonstrate.

E.g., the problem could be to solve the linear system Ax = b. If

matrix A is of size n×n, a Gaussian LU-decomposition to solve the

equations would require approximately 1/3n3 operations. Within

numerical analysis, the asymptotic big O notation is generally used

to quantify the computational effort of such a problem. In this case,

the problem scales in the order of

O(
1

3
n3), n −→∞ . (5.1)

If the Cholesky method is used instead, the same problem can be

solved with only half es many operations: O(1/6n3) ([32], p. 78,

88). This example shall demonstrate that with every performance

issue, at first the underlying algorithms (respectively the schedul-

ing) should be questioned prior to the attempt of diminishing the

problem by an overhead in computing power. Further options for

the improvement of load scalability according to [14] are:

• identification of unproductive execution cycles

• reducing sojourn times in cycles.

5.1 - Quality Requirements 103

a

b

c

d
f(n)

C
o
st

n
Problem Size

Figure 5.4: Increase in Cost/Effort as Function of Problem Size n - (a)
Effort is a constant and thus now function of the problem
size, (b) sublinear, (c) linear and (d) superlinear increase of
effort.

• avoiding deadlock situations

• altering scheduling rules

• using options of exploiting asynchronous/parallel execution

However, considerations with respect to load-scalability require de-

tail knowledge about the system functionality, and the implemented

algorithms already. For the discussion of the architectural require-

ments: space, space-time, and structural scalability, it is reasonable

to specify the demand in a less formal way [12].

In the following discussion the problem size n shall be the num-

ber of operated satellites. Figure 5.4 shows in which manners that

number can increase the operational costs. Case a) is a rather the-

oretical example, where the effort of operating a distributed system

is a constant and no function of the number of satellites at all.

If the satellite systems are organized within a hierarchical archi-

tecture, for example under the authority of a planning entity, the

104 5 - MMOS Domain Engineering

0

(a) n = 1

1

(b) n = 2

3

(c) n = 3

6

(d) n = 4

10

(e) n = 5

15

(f) n = 6

Figure 5.5: Number of connections in Peer-To-Peer Networks of n Nodes
- An example of a superlinearly scaling problem, as the num-
ber of connections rises increasingly faster than the number
of nodes

problem would most certainly scale sublinearly (case b). Indeed,

the set-up of a central control entity requires a certain overhead in

costs. Yet, the additional costs decrease with every new operated

satellite.

A linear increase in costs (case c) turns out, if each satellite is

operated individually. There is no overhead due to a central control

entity. Yet, since the same planning capabilities need to be im-

plemented for every single satellite again and again, the additional

expenses stay the same for each new satellite.

Case d) describes the situation of operating a distributed sys-

tem with an increasing complexity with respect to the number of

satellites. Due to the dependencies between the satellites and the

additional effort of coping with them, such a problem scales super-

linearly. [12]

Eventually, the requirement for the MMOS is two fold. At first,

the OS must be able of coping with distributed satellite systems that

5.1 - Quality Requirements 105

Middleware

Figure 5.6: Network Topology as Selected for the MMOS - The im-
proved space scalability, comes at the the expense of load
scalability, as the middleware has to handle the entire traf-
fic.

scale as shown in figure 5.4. Secondly, the MMOS as a distributed

system itself must be capable of growing. That is quite obvious,

because with an increasing number of operated satellites the MMOS

grows too, as well as the group of people using it. All of this results

in an increased competition for system resources and therefore an

increased number of control and scheduling processes, an increased

number of accesses, an increased traffic, and an increased amount of

data to be handled and stored. The demand for scalability derives

from the size and the operational concept of the supported mission

types, as discussed in section 3.2.

In terms of space consumption, a sublinear scaling implementa-

tion is envisaged. An example where this has not been achieved is

shown in figure 5.5. In the displayed peer-to-peer networks the num-

ber of connections grows increasingly with every new node. Hence,

the problem scales superlinearly. Consequently, the MMOS shall

feature a star like network topology (fig. 5.6) with a central node

that manages the connection between all the entities in the system.

The example shows that resolving an issue in terms of scalability can

impair the system performance. In a network topology as shown in

figure 5.6, the entire traffic is routed via the middleware, which must

be appropriately load scalable.

The balance between service quality (performance) and scalabil-

ity is an individual optimization problem where either the quality

of the solution must be maximized, or the costs must be minimized.

106 5 - MMOS Domain Engineering

A good scaling solution most certainly comes at the cost of poor

service quality, while optimal solutions usually scale superlinearly.

If however the operated system size is known or definitely will not

grow beyond a critical limit, the latter does not necessarily impair

the system scalability. [12]

The trade-off introduced here applies to the entire system archi-

tecture, as well as to the design of units and classes, as the quality

of low-level implementations directly affects the quality of the entire

system.

5.1.1.4 Reliability

Reliability is a measure of the correctness of software with respect

to time. It is usually quantified by the count or the percentage

of operations completed correctly within a given period, or by the

average duration between two software failures ([135], p. 274).

A sole demand for reliability is a quality requirement hardly to

fulfill though, because the correct working of a software depends on

a series of boundary conditions, like: Who is using the software?

How is the quality of the input data? For how long and how often

will the software be used? How large is the throughput? From the

answers to these questions a series of further quality requirements

can be derived. The reliability of the software is then nothing more

than a manifestation from the fulfillment of these requirements.

Robustness

Robustness describes the capability of a system to handle erroneous

input data without an impairment of its operability. Primarily, the

MMOS has to deal with two kinds of inputs: satellite TM and user

inputs. Both can be invalid in different ways. In terms of satel-

lite TM, the system must be able of coping with bad data that can

be corrupted due to transmission errors, or some kind of malfunc-

tioning. Invalid data must be recognized as such, and presented

appropriately. Similar applies to user inputs. The assumed group

5.1 - Quality Requirements 107

of people using the MMOS consists of trained personnel. Due to

the given complexity however, the risk of an incorrect usage cannot

be eliminated. This is why the system must be capable of keeping

quality of service upon wrong usage, as the users must be prevented

from making erroneous inputs as good as possible.

Availability

Satellites that are not coasting, or about to be injected into a target

orbit, are usually active around the clock. This requires the OS not

only to be up and running 24/7 as well, but also constantly available.

Availability is a measure to which degree a targeted operational time

has been reached by the system. It is quantified by the ratio of the

actual up time and the target up time (following [135], p. 267).

Stability

Stability describes the ability of a system to handle an increased data

throughput, or an increased usage over a longer time period ([93],

p. 194). The stability requirement is a direct consequence from the

demand for system availability and the expected system load.

Consistency

If a system is lacking consistency, different entities relying on the

same data can produce conflicting outputs. An area where this can

become a problem is mission planning. If the mission schedule is

inconsistent, or the state of the operated system is not mapped un-

ambiguously, conflicting satellite activities could be the result. In a

worst case, this could jeopardize the mission.

For that reason, the MMOS must ensure that a used information,

data point, or metric is true, meaning that two instances referencing

the same data point get the same result in any situation. This is

why the MMOS shall implement a very strict single source of truth

(SSOT) policy.

108 5 - MMOS Domain Engineering

Verifiability & Testability

The reliability of a system of course must be verified. Consequently,

a reliable system must be testable too. Unlike the other quality

attributes though, verifiability and testability have no direct value

for the user. In this sense, it is quite astonishing that authors like

[89] list verifiability and testability as self-contained quality criteria

of software.

5.1.2 Non-Runtime Requirements

Unlike runtime requirements, which take effect when the software is

executed, non-runtime requirements cover the static qualities of the

software design.

5.1.2.1 Reusability

A software component is reusable if it can be used in different appli-

cations. Thus, reusability “indicates the relative effort required to

convert a software component for use in other applications.” ([135],

p. 284)

Due to the problems and the characteristics of object-oriented

software (sec. 4.5.1), this requires a certain degree of thorough-

ness and a comprehensive system analysis. Components can only

be reused, if the software supports modularity, and the reused ele-

ment is well documented and not designed for a specific application.

Beyond that, the adherence of standards, a rigorous maintenance of

the libraries, and permanent regression testing are necessary ([135],

p. 284).

In this specific context, software elements shall be reused in two

different manners.

1. In accordance with the common understanding of reuse, single

software items such as classes, interfaces etc. shall be reused

throughout the development project wherever possible. This

5.1 - Quality Requirements 109

requires a maintained library of generic items, which develop-

ers can utilize for the implementation of their product.

2. Within the MMOS, reuse further means that multiple instances

of one and the same component are utilized by different mis-

sions. A mission specific behavior of a reused component is

achieved through configuration.

5.1.2.2 Configurability

The system configuration is quite a crucial aspect in terms of multi-

mission operations. Current OS, designed for single-mission op-

erations, are usually configured by means of a Satellite Reference

Database (SRDB) 4, which features those mission specific informa-

tion the OS requires to establish a communication with the satellite.

This covers for example TM, TC, and parameter definitions.

Purpose of these SRDBs is to simplify and to standardize the mis-

sion specific configuration, and to support the exchange of mission

information between different OS. An example is the SCOS-2000

standard [52], which is used for the configuration of the eponymous

Mission Control System (MCS).

An effort that is often underestimated, is the part of the OS

configuration, which is not mission specific. Unfortunately, it is not

sufficient just to configure single components for a mission. The OS

itself needs to be configured too.

There are a lot of variables, which are not necessarily mission

specific and which therefore cannot be set by means of an SRDB.

For example, the OS must be orchestrated 5, it must be connected

to a number of ground stations, and users must be registered at

the system. The task of setting up an OS is usually quite time

consuming, requires detail knowledge about the architecture, and

4In some applications the SRDB is referred to as Mission Information Base
(MIB), which is also the term used in this project.

5In this context the term orchestration refers to the process of selecting,
launching, and executing all necessary system components (sec. 5.3.3.1)

110 5 - MMOS Domain Engineering

MMOSMission 1

Component A

Component B

Mission 2

Component A

Component B

Mission 1
Configuration

Mission 2
Configuration

System
Configuration

Figure 5.7: Configuration of the MMOS - Components A and B must be
configured for their respective mission, as well as the MMOS
itself must be configured in order to operate multiple mis-
sions. It is important to know that both components A and
both components B are identical pieces of software, which
only differ by their individual mission specific configuration.

sometimes even programming skills. The problem of course scales

with the size and the complexity of the OS, and the number of

operated missions.

Goal of this work is to close the gap between existing concepts for

mission specific configuration and lacking concepts for a neat system

configuration. An approach is illustrated in figure 5.7. While certain

generic elements are configured for their respective mission as usual,

the entire MMOS shall be set-up first by means of a standardized

system wide configuration scheme. That one shall cover for example

the definition of the operated missions, the instantiation of the var-

ious MMOS components, and the registration of these components

within the system.

5.1 - Quality Requirements 111

Satellite

Ground Station Operations

Figure 5.8: Interacting Systems of a Space System

The process of system configuration can also be considered from

a different perspective. If mission operations is regarded at holisti-

cally, it is nothing more than a collaboration of three different sys-

tems: the satellite, the ground station, and the OS (fig. 5.8). What

system configuration shall achieve is a description of that trio within

a SSOT. That source of truth shall be the System Information Base

(SIB) (sec. 5.3.3.1).

5.1.2.3 Recoverability

If one of the systems in figure 5.8 is rebooted or power-cycled, the

user has a valid interest that it is returned into an operational state

automatically. For instance, if the satellite is rebooted, reconfigura-

tion is usually achieved by means of a persistent system state vector

in the on-board computer, and some form of reconfiguration unit

([48], p. 323).

A similar behavior is expected by the MMOS as well. The main

difference between the OS, the satellites, and the ground stations

is, that the OS is in charge of the other two. This means that the

112 5 - MMOS Domain Engineering

system states of satellite and ground stations musst be mapped by

the OS. Upon re-launch of the OS these states must be restored as

well.

An example where this has not been implemented is the on-

board queue feature of SCOS-2000. At most satellite systems, the

number of time-tagged commands that can be buffered in the on-

board computer is limited. A means of keeping track of that number

is the SCOS on-board queue display. However, if SCOS is rebooted,

that list gets lost and an operator has no information about the

remaining commands in the on-board queue.

As long as the state of the operated system is not restored within

the OS, (automatic) operations is impeded. So the problem of re-

covery is quite similar to the problem of configuration, in the sense

that the MMOS itself must be restored as well as the mapped state

of the systems it interacts with. Consequently, the state of the op-

erated system shall be persistently tracked and serialized within the

MMOS.

5.2 Domain Analysis

In accordance with the previously defined quality requirements, which

specify how the system shall be designed, the outcome of a domain

analysis is the specification of what needs to be implemented. Scope

of this activity is the creation of domain models, which constitute the

global system architecture. In a first step this means the definition

of the various subsystems and the specification of their functional

extends. In the following, the subsystem components can be defined

in detail.

5.2.1 Space System Breakdown

The MMOS is part of a Space System. A concept for the break-

down of such a system is provided by the European Cooperation for

5.2 - Domain Analysis 113

Space System

Space
Segment

Ground
Segment

Launc
Segment

Support
Segment

Element

Unit

Component
Subsystem

System
Legend

functional

physical

Figure 5.9: Space System Breakdown, following [37]

Space Standardization (ECSS) [37]. ECSS-S-ST-00-01C decomposes

a Space System as shown in figure 5.9.

According to the standard, a Space System is broken down into

three different segments, the Space Segment , the Ground Segment

and the Launch Segment, where the Launch Segment is out of the

scope of this work though and will not be discussed hereinafter.

The Space System is complemented by the Support Segment, fea-

turing elements for the support of the mission, but which are not

necessarily part of the mission itself. This can cover for instance:

relay satellites, training and test facilities, or Mechanical Ground

Support Equipment (MGSE) ([37], p. 59).

A segment describes a physical assembly of elements. For in-

stance, the Space Segment consists of satellites, which in turn are

assembled together from components. The functionality of a seg-

ment is summarized in systems and subsystems. Technical compo-

nents and units are usually associated to certain subsystems, but a

one-to-one allocation is not always possible.

114 5 - MMOS Domain Engineering

5.2.1.1 Terminology

ECSS-S-ST-00-01C defines a large number terms to describe Space

Systems. A selection shall be introduced in the following, as these

terms are used repeatedly in the subsequent architecture description.

Ground Segment

Basically everything on ground that is directly involved in the con-

duction of the mission can be associated to the Ground Segment .

From a functional perspective, the two prime systems within this

segment are the ground station network (system) and the OS (fig.

5.8). This is of course only one way of decomposing the ground seg-

ment functionality. For other terminologies and system definitions

it is referred to literature.

Element

According to the ECSS, the term element refers to a “combination of

integrated units, [and] components [...]. An element fulfils a major,

self-contained, subset of a segment’s objectives.” ([37], p. 9) E.g.,

the developed MMOS software is an element of the Ground Segment.

Unit

Following ECSS, a unit describes a self-contained assembly of com-

ponents for the fulfillment of a specific function ([37], p. 9). Within

the MMOS the term is used to describe an assembly of software

components for a certain subtask.

Component

A component is a self-contained piece of software for the fulfilment

of a specific “function that can be evaluated against expected [...]

requirements” ([37], p. 9). An important characteristic of a com-

ponent, compared to a unit, is the fact that it cannot be disassem-

bled without destroying its functionality. An example of an MMOS

5.2 - Domain Analysis 115

Mission Control

Flight Dynamics

Data & Archives

Mission Planning

Automation

Figure 5.10: MMOS Subsystem Overview

component is the Mission Planning Tool, which will be introduced

comprehensively in the later course of this work.

System

The ECSS defines a system as a “set of interrelated or interacting

functions constituted to achieve a specified objective” ([37], p. 9).

So the MMOS (as a system and not an element) is constituted by

the sum of functionality provided by its components.

Subsystem

A subsystem is considered as a subset of the system functionality.

According to ECCS a subsystem can be distributed over several

segments. This will be neglected though.

5.2.2 MMOS Subsystems

Figure 5.10 displays the subsystems of the MMOS. The naming con-

vention follows state-of-the-art operations concepts.

116 5 - MMOS Domain Engineering

To this point of the elaboration that subsystem overview is still

gray and empty. This will change in the later course of this work,

when the subsystems in figure 5.10 will be introduced incremen-

tally. In doing so, it will be discussed how the respective systems

are commonly understood, what functionality they usually provide,

and what is done fundamentally different in the MMOS.

Furthermore, in section 3.1 a series of paradigm shifts in mission

operations were introduced. The following discussion will also show

how and where these are reflected in the design.

5.2.2.1 Mission Control

The MCS is probably the first system one thinks about when it

comes to space mission operations. One of the most famous control

facilities is the NASA Mission Operations Control Room (MOCR)

[46], known from the Apollo missions.

Since the early days of space flight, the MCS has been the ba-

sic system behind such a facility. Before automation was applied

to mission operations, flight procedures were prepared manually in

advance and uplinked by TC via the MCS. In turn, TM was received

and the calibrated data needed to be evaluated by controllers. Based

on that evaluation the controllers used to make recommendations to

the Flight Direction for the further planning of the mission.

That procedure still applies to modern space mission operations,

especially during Launch and Early Orbit Phase (LEOP) and other

critical mission phases. During these phases the spacecraft is exam-

ined quite extensively in order to detect malfunction, and thus to

prevent the mission from being jeopardised, or even lost.

The moment these critical mission phases have been passed,

and/or automation is engaged to the operations process, the focus

is shifted from single system metrics towards higher-level mission

goals. That is when the MOCRs are getting empty again. During

routine operations, a control room can be staffed with just a single

controller.

5.2 - Domain Analysis 117

Current MCS software, such as SCOS or CCS5 [50] are primarily

designed for these critical mission phases. In the later mission phases

a major portion of their functionality is either covered by other units

or remains unused. The functional scope of modern MCS usually

covers the following items:

• Telemetry reception, verification, and the display of data,

either in alphanumerical or graphical form.

• Release and verification of telecommands. The transmission

is usually verified at multiple stages, such as: release, ground

network transmission, reception, and execution.

• Data archiving & distribution: MCS usually feature an

internal database for a later evaluation of the received data.

• Event services enable the user to trace incidents in the oper-

ated system.

• A user management allows to associate rules to different

users of the system. E.g., command release is only allowed to

someone with the appropriate rights.

• Some MCS provide means of on-board software mainte-

nance, such as binary or patch upload.

• File exchange, if supported by the Space Segment.

• External interfaces allow for the connection of complemen-

tary tools. An example is the Manufacturing and Operations

Information System (MOIS) [100] for the generation and exe-

cution of procedures and command sequences. ([96], p. 3 f.)

The extensive functionality and the complex architectures of current

MCS software generally complicate their multi-mission use. De-

signed for the use in big agency MOCRs, they are usually imple-

mented as client/server system with an own configuration, an own

118 5 - MMOS Domain Engineering

MCS

FDS

DAS

MPS

AS

Required MCS
Functionality

Functionality of current MCS
(e.g. SCOS)

MMOS
Functionality

Figure 5.11: Comparison of Functionalities - Current MCS provide func-
tionality, which exceeds the requirements of the MMOS
MCS. Qualitative display only. The area sizes and overlaps
have no meaning in terms of the portion of functionality
to be implemented by the individual subsystems.

user management, and comprehensive internal data handling mecha-

nisms [96]. All of this makes such systems complicated to instantiate

and to maintain.

In conclusion, these systems are hardly to integrate into an ar-

chitecture as of the MMOS. This will become even more evident in

the later course of this work.

A solution to this problem is to implement the MCS software by

a set of microservices, and to reduce its functionality in a way that

it complements the overall functionality of the MMOS (fig. 5.11).

Mission Control Tool

The Mission Control Tool (MCT) shall be the central component of

the MCS. Table 5.4 shows that its functionality is radically reduced,

compared to current MCS solutions. This shall not mean that the

5.2 - Domain Analysis 119

Table 5.4: Functionality of the MCT compared to other state-of-the-art
MCS software [96, 125]

MCT SCOS-2000 CCS5
(r 4.0)

Network and Connection Status X X X
TM Reception X X X
TC Transmission & Verification X X X
Internal TM Data Management - X X
(Synoptic) TM Display - X X
External Interfaces X X X
Scripting Interface - - X
Dedicated User Interface - X X
User Management - X X

MMOS is lacking of these functionalities, they are just implemented

by other components, rather than the MCT.

Basically everything is not implemented by the MCT, which is

considered not to be an MCS specific functionality: e.g., the user

management. Without any doubt, a system like the MMOS needs a

user management to grant certain rights to single persons or groups

of people. The right of accessing the MCS and/or to send commands

to the satellite is one of these permissions. These however will be

granted by a central user management, and not by the MCT itself.

The MCT, like any other MMOS component, is implemented as a

microservice. Users, granted with the appropriate right, are allowed

to access the MCT via a Graphical User Interface (GUI). Like the

central user management, that GUI is a system wide application and

no specific feature of the MCT.

A spacecraft controller of course is interested in satellite TM.

Various means of displaying that TM are implemented in the GUI.

However, the group of people interested in satellite data does not

only consist of satellite controllers, but other stakeholders too (e.g.

scientists, payload specialists, engineers or mission planners). In or-

der to satisfy the individual requirements, and to avoid a double

120 5 - MMOS Domain Engineering

implementation, the functionality of accessing and processing the

satellite TM is implemented by a dedicated subsystem, which will

be described in section 5.2.2.2.

With a massively reduced functionality, a generic and lightweight

MCT can be realized. As shown in table 5.4, the MCT features

are limited to the pure task of TM reception and TC generation,

transmission and verification.

Upon TM reception, the MCT shall be capable of extracting the

satellite data from the received packet and forward that data to the

Data and Archives System (DAS) for further processing. In turn, the

MCT must be capable of composing and sending TCs to the satellite.

Consequently, the tool must be capable of being configured to the

protocol used by the satellite, e.g. the Packet Utilization Standard

(PUS) (sec. 5.3.3.2).

The tool shall allow for two different kinds of operation: the

manual uplink of commands and the automatic commanding. Both

operating modes require that the MCT provides a so called command

interface (sec. 5.3.2.1) by means of which abstract commands can

be fed into the tool for TC composition (fig. 5.12). That interface

shall further enable the commanding entity (e.g., a human controller

or a software component) to follow the transmission process and to

intervene if necessary. This also requires that the MCT provides up-

link status information and information about the ground network

connection status. Based on these meta information, a human con-

troller for instance can decide whether to continue or to abort the

uplink, or to try a re-send.

As indicated above, the MCT shall be a generic software com-

ponent. Each individual satellite, operated by the MMOS, is com-

manded by an individual MCT. This means that in case a constella-

tion of n satellites is operated, n MCTs need to be instantiated and

each one must be configured for a specific satellite.

5.2 - Domain Analysis 121

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

Component

GUI

or

Simulator

Ground
Station

Legend

subsystem

generic component

system component

TM/TC bus

Remote Connection

Command

Figure 5.12: MCS setup from a data perspective - Individual MCTs for
each operated system compose the TCs and receive TM
from that system. The data is routed between the MCS
and the various ground stations via the Virtual Ground
Stations (VGS). Each ground station is addressed by an
individual VGS.

122 5 - MMOS Domain Engineering

Command vs. Telecommand

Here, the difference between a command and a telecommand (TC)

shall be pointed out once again. All commands ever to be sent to

the spacecraft originate from a schedule managed under the Mission

Planning System (MPS) (sec. 5.2.2.5). Commands are added to the

schedule either manually via a GUI, or automatically by planning

components, which will be introduced in the later course of this work

(fig. 5.12).

Commands in that schedule are protocol agnostic. They contain

just as set of parameters. Purpose of the MCT is the conversion of

those command information into real TCs. All the required protocol

specific meta information is managed by the MCT and obtained from

a central database called the MIB (sec. 5.3.3.2).

After composition, TCs are released via a microservice called the

Virtual Ground Station (VGS).

Virtual Ground Station

Before a TC is uplinked, the respective data packet must get routed

to the used antenna via the ground station network. Within the area

of satellite operations a variety of standards and network protocols

have been established:

• ESA Space Linke Extension (SLE) - Within this framework

two network protocols are commonly used:

– ESA Network Controller and Telemetry Router System

(NCTRS)

– ESA Network Interface System (NIS)

• Zodiac Cortex Protocol

At this level, information is usually transferred in frames. For testing

and pre-launch operations, also some packet based protocols have

been established, such as EDEN and CNC [125].

5.2 - Domain Analysis 123

It is expected that an MMOS supports a variety network proto-

cols. This either means to make the MCS protocol agnostic, or to

allow switching the network protocol during runtime. Since the var-

ious network protocols usually work fundamentally different, both

solutions were considered impractical. Designing the MCT to cope

with all of the available protocols, would have made the software

unnecessarily complex.

The solution to this problem is what is called the VGS. These

generic software components are virtual representations for the var-

ious real ground stations, that are registered at the MMOS. Each

VGS is configured for the protocol the respective ground station

uses, and thus intercepts all connectivity issues for the MCT. Be-

tween VGS and MCTs TM/TC data, acknowledgment data, and

link status information are routed via an internal bus (fig. 5.12).

By means of this approach, the system can dynamically switch

between the used ground stations without the need of an agnostic

software design, or the need of a reconfiguration during runtime.

Every endpoint in a connected network that implements one of

the supported protocols can be addressed by means of a VGS. So,

instead of a ground station, the MMOS can also be connected to a

flatsat, a system test bench, or a satellite simulator (fig. 5.12).

5.2.2.2 Data & Archives

The internal management of the satellite telemetry is carried out

by the Data and Archives System (DAS). Every mission OS fea-

tures a subsystem like this. At first, data archived in such a system

is a complete history of the satellite TM. That TM contains raw,

unprocessed information from the satellite system such as house-

keeping data, events etc. The gathered information can be queried

and returned upon request for further evaluation. Beyond that, the

archived data is also the basis on which higher level data products

can be generated, for example scientific data, images etc.

124 5 - MMOS Domain Engineering

The component which actually accesses and manages the data-

bases is the TM Back-End (fig. 5.13).

Derived from the global demand for consistency, the most im-

portant DAS requirement is that every data point in the archive

must be uniquely identifiable, e.g. by the Spacecraft ID (SCID),

the parameter ID and a timestamp. To avoid any data corruption,

the TM Back-End must have the sovereign authority on the archive,

and neither another component nor entity must be able to write the

underlying databases.

In addition to these fundamental requirements, the DAS must

cope with some special boundary conditions and an increased per-

formance demand. That is because of the following:

1. The DAS is part of a multi-mission system.

2. The DAS provides functionality that used to be implemented

within the MCS.

3. The DAS is part of an automation process (fig. 5.1)

Being part of an MMOS implies that the DAS must be capable of

handling data from different satellites and that the number of oper-

ated systems can change and grow. Further will grow the number

of system accesses to retrieve data from the archive. These circum-

stances must not cause the system to fail and the managed data to

get messed up. As a consequence, the data of each mission and each

satellite must be stored within different, isolated sections.

The fact that the DAS shall implement functionality formerly

carried out by an MCS increases the demand for subsystem perfor-

mance. During live operations, received telemetry, or portions of it,

needs to be displayed instantaneously. This is why the DAS must

support the real-time routing of TM into the GUI. The GUI itself is

a system-wide component and no inherent part of the DAS.

The third circumstance to cope with is the fact that the DAS is

part of an automation process, which has been introduced in section

5.2 - Domain Analysis 125

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

TM Back-End

Telemetry
from
MCT

Legend

subsys.

data

MMOS comp. TM Data

Figure 5.13: MMOS Data & Archives Subsystem - The DAS features
a separate TM databases for each operated satellite. The
databases can only be accessed by the TM Back-End

126 5 - MMOS Domain Engineering

5.1.1.1. This means that different software components must be

capable of accessing the satellite databases. Consequently, the TM

Back-End implements an API called the Data Interface (fig. 5.13),

by means of which other instances in the MMOS are able to retrieve

satellite data points from the archives.

Data in the DAS archives consists of raw unprocessed telemetry,

which shall be managed by means of a relational database system

like MySQL. A benefit of such a relational database system is that it

supports data consistency [95]. Even though relational database sys-

tems like MySQL are quite efficient and designed for large amounts

of data, querying information always comes along with latencies be-

tween the request and the return of data. These latencies depend on

the database architecture, the amount of data and the underlying

hardware. Of course, these latencies must not impair the automatic

operations process.

The implementation of databases for higher level products, like

payload image data, can better be realized by means of document

orient systems such as MongoDB, or by means of hybrid solutions.

Appropriate design decisions depend on the structure of the queried

data [95]. A discussion of such payload databases is out of the scope

of this work though and won’t be pursued in the following.

5.2.2.3 Flight Dynamics

The Flight Dynamics System (FDS) covers all those functionalities,

which are related to the computation of the spacecraft motion in

space. Respective software solutions are no exclusive part of satel-

lite operations, because a lot of these features are used way before

satellite launch, during mission analysis and the satellite design pro-

cess.

In the scope of the satellite design process, knowledge about the

orbit is important as it directly affects the thermal boundary con-

ditions and the energy household of the satellite. If the spacecraft

features a propulsion system as in most constellations or in inter-

5.2 - Domain Analysis 127

planetary missions, flight dynamics is in charge of the maneuver

planning, as well as the determination of the required ∆v and the

energy demand. The results of these computations have an direct

impact on the mass and the structure, which in turn define the dy-

namical characteristics of the satellite. So the final satellite design is

usually not the result of a closed solution, but a process that needs

a couple of iterations.

Beyond that, the responsibilities of flight dynamics are manifold.

They cover for instance:

• the model-based orbit prediction (considering disturbance, at-

mosphere etc.),

• the coverage analysis,

• the pass time prediction,

• the preparation and calibration of maneuvers,

• the propellant mass calculation,

• the center of gravity calibration,

• or the lifetime estimation.

Some of these activities happen outside the operations process ([128],

p. 287–290). Flight dynamics computations are usually supported

by commercial software solutions, which provide an extensive func-

tionality for the various tasks described above.

Compared to all of this, the requirements of the MMOS FDS are

rather limited. In simple words: The functionality of the FDS can

be reduced to the pure task of determining the satellite position and

velocity over time. Most commercially available solutions are way

too comprehensive and thus too expensive for this purpose. Further-

more, they are hardly to integrate into the automation process as

they do not feature the required interfaces.

128 5 - MMOS Domain Engineering

A good alternative are open software libraries for orbit propa-

gation, such as SPICE, PyEphem, or Skyfield [120, 105, 106]. The

latter implement the Simplified General Perturbation Model (SGP4)

[130]. An advantage of these libraries is that they enable the imple-

mentation of a Flight Dynamics Tool (FDT), tailored to the given

requirements.

Within the MMOS automation process the FDT is one imple-

mentation of the data analysis stage (fig. 5.1). An important task

is the determination of the current satellite orbit, based on the re-

ceived satellite position data, e.g by means of a least square method.

Internally, the determined orbit can be described by means of the

six Keplerian elements ([66], p. 143) or a Two Line Element (TLE),

which is a standardized form of orbit description. As soon as the

orbit has been determined, satellite position and velocity can be

forecasted by means of one of the propagators mentioned above.

However, predicting the satellite position is usually of minor in-

terest for mission planning. What is more interesting is the answer

to the question: When will be the satellite at a certain location, or

within line-of-sight to a certain point in space? The time period

during which the satellite has a line-of-sight connection to a certain

location, e.g. to a ground station, is called a phase in the MMOS.

By means of a defined interface, called the Phases Interface (fig.

5.14) other components can make a phase requests at the FDT. For

instance, an entity in charge of planning ground station passes for

a certain satellite, can ask the FDT when within a specified time

frame that satellite will pass a particular ground station. Upon such

a request, the FDT returns the acquisition of signal (AOS) and loss

of signal (LOS) times, which mark the begin and the end of the

determined ground station passes.

Satellite missions with active orbit control, and constellations

in particular, require that scheduled maneuvers are considered by

the orbit propagation. After the maneuver has been executed, it is

usually necessary to verify that the maneuver has been performed as

5.2 - Domain Analysis 129

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

TM Back-End

Telemetry

Flight Dyn. Tool

from
MCT

Legend

subsys.

unit

MMOS comp. Data Phase

Figure 5.14: MMOS Flight Dynamics Subsystem - The central compo-
nent of the FDS is the Flight Dynamics Tool. Its purpose
is the orbit determination based on satellite position data,
as well as the future propagation of that orbit.

130 5 - MMOS Domain Engineering

planned. Hence, the FDT has to provide means of feeding satellite

maneuver data as boundary condition into the propagation process.

However, due to the constrains of this work, this particular feature

is not discussed hereinafter.

All the FDS functions described so far, shall be executed by the

component instantaneously. This means that the FDT does not

feature persistent databases containing the orbital data. Persistent

information like current satellite TLEs shall only be issued and saved

for external use, for plausibility checks, or as back-up in case the

current satellite position data is invalid. This approach ensures that

the orbit propagation relies on a single source of truth, which is the

latest available position information from the satellite.

5.2.2.4 Automation

The Automation System (AS) should actually be called Decision

Making System, because that is what is really happening within this

subsystem. Within satellite operations the term evolved historically,

and is insofar justified, as the implementation of the decision making

is usually the last missing step on the way from a manual to a fully

automatic system.

The process of decision making is implemented by so called Agents.

What is an Agent? The term has been used before during the intro-

duction of the applied automation taxonomy in section 5.1.1.1. It

refers to all software components, which are no part of the baseline

MMOS, and which need to be implemented for each mission individ-

ually. As mentioned earlier, a generic OS cannot provide universal

decision making capabilities, because any kind of decision making

requires detail knowledge about the operated system. Purpose of

Agents is the generation of system Activities on the basis of the

state of the operated system provided by the MMOS.

Depending on the application and/or the mission goals, Agents

can be written to schedule different types of Activities, such as:

5.2 - Domain Analysis 131

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

Agency

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

TM Back-End

Telemetry

Flight Dyn. Tool

Agent 1

Agent 2

Agent 3

from
MCT

to
Agents

Legend

subsys.

unit

mission comp.

Data

Phase Activity

Figure 5.15: MMOS Automation Subsystem - The AS consist of several
customized Agents, which are individual software solutions
for the decision making process.

132 5 - MMOS Domain Engineering

• Maneuver Activities

• Link Activities (Ground Station Passes)

• Scientific Data Takes

• Maintenance Activities

• etc.

The Activities in that list are merely examples though. Basically,

every planned process executed by the operated system shall be re-

lated to a scheduled Activity. By providing the appropriate inter-

faces, the MMOS actively supports the connection of any kind of

Agent initiating those Activities.

If necessary, multiple Agents can be combined to units of Agents,

referred to as Agencies. Within these Agencies, each Agent carries

out the subtask of a higher level function to be fulfilled by the Agency

(fig. 5.15).

The MMOS can only support decision making processes on the

basis of the data products it can provide. On the one hand, this is

the raw (level-0) telemetry that can be requested from the DAS via

the Data and Parameters Interface. On the other hand it is (an-

alyzed) orbital data such ass pass times provided by the FDS via

the Phases interface. Of course, a decision making based on higher

level data products is also thinkable. The provision of higher level

data products for the further exploitation of the mission is general

praxis [33]. Yet, this requires the implementation of Agents gener-

ating these data products first.

The result of the decision making process is the Activity, to be

executed by the operated system. According to [49], an Activity can

be described as follows.

An activity is a procedure, characterized by the defined

change in the state of the system by which it is executed.

5.2 - Domain Analysis 133

A detail definition of the Activity as used in this work will follow

in section 6.2. A generated Activity is eventually handed over for

execution to the operated system. The process will be introduced in

detail in the later course of this work.

Functionality that Agents provide is of course highly mission

specific. Consequently, Agents are individual components with a

minimum of reused code. This implies that the provision of Agents

cannot be the scope of a baseline mission OS. What the MMOS must

provide instead, are the boundary conditions for the fulfillment of

the extendability requirement (sec. 5.1.1.2), so that any kind of

Agent can be attached to the system easily and conveniently for the

user.

Except for the needed interfaces, the MMOS shall not make any

restriction in terms of the Agent design. The interfaces classes, pre-

cisely the Phases Interface, the Data & Parameters Interface, and

the Activity Interface, must be made available for the Agent de-

velopers in a widely accepted language. The same applies to any

required software parts which are necessary to connect an Agent to

the internal data handling mechanism of the MMOS.

Agents must be recognized and addressable by the system. Reg-

istering a component at the MMOS means that the component is

known by the system, and will be executed and connected to the in-

ternal data handling mechanism the moment the system is booted.

It further means assigning a logical address to it, by means of which

the component can be identified.

5.2.2.5 Mission Planning

According to T. Uhlig et.al., the common understanding of Mission

Planning is that it “ensures that all [system] resources are avail-

able and used to an optimal level and the goals of the mission are

achieved” ([128], p. 167). This of course can mean all or nothing.

In fact there is no single definition of mission planing. Specific de-

limitations vary with each mission (type) and the used operations

134 5 - MMOS Domain Engineering

facilities. Uhlig et.al. therefore come up with an own definition,

which is the interpretation widely followed by this work too.

“[Uhlig et.al.] consider mission planning as the task of

preparing, organizing, and planning all relevant activities

that happen during the mission, on board as well as on

ground.” ([128], p. 167)

Within the domain of spacecraft operations, the process of mission

planning can be implemented in various manners. Uhlig et.al dis-

tinguish between the different approaches based on their degree of

automation. According to them, a mission planning system can be

implemented fully automatic, as well as completely manual. A so-

lution somewhere in between, where the operator is supported by a

GUI, while internal algorithms check the consistency of the gener-

ated mission plan (usually referred to as Schedule), is what Uhlig

et.al. consider “the most economical solution” ([128], p. 168). As

examples, the authors mention the mission GRACE as one planned

mostly by human operators, and in contrast the mission TerrarSAR-

X / TanDEM-X featuring a fully automated mission planning [90].

The principle way of how the mission plan is generated and main-

tained, is one further means of distinguishing between mission plan-

ning approaches. Uhlig et.al. refer to this particular aspect as the

“periodicity of the planning process” ([128], p. 169). Depending on

a set of boundary conditions, the Schedule is prepared in different

manners. The main boundary conditions are:

• the duration and the date of the scheduled activity,

• the availability of contact during activity execution,

• the periodicity of contact times,

• the criticality of the activity,

• the distance between the earth and the vehicle (transmission

time)

5.2 - Domain Analysis 135

After an evaluation of these boundary conditions, a schedule can

either be prepared as a Fixed Plan, or be the result of a Repeated

Rescheduling, or of an Incremental Scheduling ([128], p. 169).

In case of a fixed plan, a series of activities is planned beforehand

and uplinked to the spacecraft eventually. This is mostly done, when

operations cannot interact with the vehicle during activity execution,

like in deep space missions or during descent of landing units.

Repeated Rescheduling describes the periodical revision of the

spacecraft activities, and the consideration of new information by

the scheduler. The reworked schedule can be the result of an opti-

mization process, assumed that the appropriate computing resources

are available.

If uncertainties make planning beyond a limited time frame im-

possible, incremental scheduling is usually applied. This scheduling

approach starts with an empty timeline, which is continuously filled

with new satellite activities. Whenever a new activity is added to

the schedule, internal evaluation mechanisms must verify the consis-

tency of the satellite schedule. ([128], p. 168 f.)

A comprehensive mission planning that meets the needs of all

individual mission types equally is therefore quite unrealistic. How-

ever, a careful reader may have noticed that the scheduling ap-

proaches, described within this section, encompass aspects of the

decision making process, and also aspects of the action implemen-

tation (fig. 5.1).

Within the MMOS, decision making and action implementation

shall be radically isolated from each other, though. The entities in

charge of the decision making are the Agents and the human mis-

sion planners. Decision making shall basically answer the question

of when which activity shall be executed. As described in section

5.2.2.4, this task is highly mission specific, which is why the MMOS

cannot provide a universal solution here.

136 5 - MMOS Domain Engineering

The MPS shall only provide the functionalities related to action

implementation. This process shall be implemented in the most

generic fashion, as it is basically limited to Activity scheduling and

the resolution of conflicts. The interface between the decision making

(Automation) and the action implementation (MPS) is the Activity

(sec. 5.3.2.2).

The moment the decision making is completely isolated from

the action implementation, it does not matter anymore whether the

Activity is requested by a human operator, or automatically by a

software component (Agent). So the remaining question is: Which

scheduling approach shall be supported. From the MPS perspective

it shall not matter, whether the satellite schedule originates from a

fixed plan, or an incremental scheduling. In any case, the system

must allow for the addition of new Activities to the Schedule, the

removal of Activities, the rescheduling, as well as the resolution of

conflicts. So, the MMOS scheduling capabilities shall meet the de-

mand of a repeated rescheduling, because this is considered the most

universal one. In other words: An Activity management that sup-

ports rescheduling, also supports an incremental scheduling. And

an Activity management that supports incremental scheduling can

also handle a fixed plan.

Considering all of this, the MPS shall provide the following basic

functionality:

• Provision of an individual (Activity) schedule of each operated

system in space and on ground

• Providing means for the management of Activities requested

from other entities

• Providing means of maintaining the Activity Schedule

– Providing means of adding, removing, and the modifica-

tion of existing Activities

– Resolution of conflicts

5.2 - Domain Analysis 137

– Resolution of the operated system state with all its re-

sources

– Implementation of a resource model

– Implementation of a priority scheme

• Implementation of an Activity verification mechanism

– Implementation of model for the resolution of the Activity

execution status

– Implementation of notification service for the initiator of

an Activity

• Issue of an abstract Command stack, generated from the Ac-

tivity Schedule

– Generation of Command meta information (e.g. release

times) based on the existing Schedule

• Providing technical means of releasing the Command stack (to

the MCS)

A detail list of requirements can be found in appendix B.1.

Mission Planning Tool

The component within the MPS implementing the functionality

listed above is the Mission Planning Tool (MPT).

Each system operated by the MMOS shall be represented by an

individual MPT instance. Thereby, it is important that it does not

matter which type of system is managed by the MPT. So, it can be a

single satellite system, a ground station, a distributed system like a

constellation or any other type of system compatible to the MMOS.

An example setup is shown in figure 5.16.

As figure 5.16 indicates, the MPT is a generic software compo-

nent. This means that always the same software is executed, disre-

garding the mission or the type of system represented by the tool.

138 5 - MMOS Domain Engineering

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

Agency

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

MPT Satellite 1

MPT Satellite 2

Schedule

Schedule

TM Back-End

Telemetry

Flight Dyn. Tool

Agent 1

Agent 2

Agent 3

from
MCT

Legend

subsys.

data

generic comp. Activity CMD

Figure 5.16: MMOS Mission Planning Subsystem - Each MPT individ-
ually handles the schedule of one operated system.

5.2 - Domain Analysis 139

Activities are handed over to the MPT by means of the Activity

Interface. Upon reception of an Activity request from an initiating

entity (e.g. an Agent), the Activity is inserted into the Mission

Schedule. Each MPT is in charge of a single Schedule, and each

Schedule is managed by only one MPT. This sovereign authority

over a Mission Schedule shall ensure that it cannot be corrupted

by other entities. During runtime, the MPT performs a permanent

consistency check on the Mission Schedule. Whenever necessary,

activities are rejected, or just suspended and resumed later on, as

will be discussed in more detail in chapter 6. The system state,

which is also resolved by the MPT, is the result of this Activity

schedule.

The Schedule is the basis for all activities, executed by the sys-

tem. Consequently, it is also the basis for the command stack to

be released via the MCT (sec. 5.2.2.1). Upon release time, abstract

Commands are streamed to the MCT via the Command Interface.

After TC composition and release, the transmission is acknowledged

by the MCT and the status of the respective Activity in the Schedule

can be marked accordingly.

As mentioned above, the MPT is the realization of the MMOS

action implementation process. Following to the non-functional re-

quirement specified in section 5.1.1.1, an operator must under any

circumstances be able to monitor and to intervene the release pro-

cess. The appropriate automation level according to the LOAT is

D4, if the action is initiated by a human operator, and D5, if the

activity is initiated by an Agent (tab. 5.3). Consequently, the MPT

must implement a proper verification mechanism, informing the ini-

tiator about the current status of the Activity, and also enabling an

operator to monitor and to intervene the process. The means that

provides entities with the appropriate information and that grants

the appropriate access rights is again the Activity Interface.

140 5 - MMOS Domain Engineering

MPS

MPT System . . .

MPT Satellite

MPT GS

via MCS

Schedule

Schedule

Schedule

Legend

Activity

Command

subsystem generic component

system schedule

interaction

Figure 5.17: Interacting MPTs - Various MPTs are supposed to interact
with each other. This is important, when resources are
shared by interacting systems, for example by a satellite
and a ground station during a pass.

5.2 - Domain Analysis 141

A different MPS configuration is shown in figure 5.17. That

particular image shall lead to a very important feature of the MPT.

During real operations various systems interact with each other.

These interactions are not necessarily limited to one mission, but can

affects systems from different missions. From the mission planning

perspective, system interaction is characterized by the sharing of a

resource. For example, during a ground station pass two systems

communicate with each other: the satellite and the ground station.

The resource both systems share is the link capacity of the antenna,

which in that particular moment is not available for other missions.

If two operated systems can interact with each other, the MPTs

representing them must be able to interact with each other too.

Continuing the example above, this means that whenever a ground

station pass is scheduled, the appropriate schedules must be syn-

chronized and coordinated by the different MPTs.

Two conclusions can be made from that particular fact:

1. The Activity concept to be implemented must support a plan-

ning process across system boundaries. Thus, an Activity is

not necessarily a single procedure, but a hierarchical process

that can be decomposed into further subroutines, or subtasks.

Each subtask can be executed by a different system provid-

ing its resources for the execution of the activity. The Activity

concept supporting all of this will be discussed in further detail

in chapter 6.

2. A sound mission planing is only possible if all systems related

to the mission are mapped within the MPS. This means that

each operated system must be represented by an individual

MPT instance. E.g., if a ground station is not represented,

passes using this station cannot be scheduled.

Consequently, each used ground station must be represented within

the MPS, as well as all the operated satellites. A proper representa-

tion of all involved systems becomes important even more, the more

142 5 - MMOS Domain Engineering

satellites are operated, and the more these satellites compete for the

limited communication time [12].

Furthermore, the design of the MPT shall not make a restriction

in terms of the extend of the operated functional unit. So the entity

represented by the MPT can be a subsystem, a system, or a cluster

of systems (e.g. a constellation). The only condition is that the

functional unit can be addressed individually.

By means of this approach a holistic representation of the entire

mission can be achieved as required by the underlying operational

paradigm introduced in section 3.1.

5.3 Design

To this point, the required subsystem functionalities have been de-

scribed comprehensively on a macroscopic level, but detail views of

the system and the complete data handling process have not been

presented yet. The questions that still need to be answered are: How

does the proposed design intercept the complexity of a distributed

system? And what actually qualifies the MMOS for a multi-mission

use?

This section deals with discussion of the MMOS on system level.

It shall be demonstrated, which design principles have been applied

and how these promote the operation of constellations and multiple

other systems in parallel. Furthermore, this section shall demon-

strate how the automation process has been implemented and how

all of this supports the remote control process of a spacecraft.

5.3.1 System Architecture

As discussed in section 4.3.2, the output of a design process is a

software architecture. The complexity and the various aspects of

software in general make it impossible to capture all characteristics

of an architecture in a single display, although that is often tried

5.3 - Design 143

[83]. Instead, a software description must consider the recipient.

In section 4.3.2 a number of common stakeholders were introduced,

which normally demand for a presentation of the software from their

respective view.

This is why, the architecture will be presented from two different

angles. Following the previous domain description, the automation

approach is introduced from a data driven perspective. A func-

tional perspective is chosen for the description of how the system

is orchestrated and how the communication between the different

components is established.

5.3.1.1 Data Driven Perspective

The MMOS architecture is the realization of an automated data

handling and control process. So the architecture design is ipso

facto process driven. However, one of the biggest impediments on

the way towards any OS is making a connection with the operated

asset. This challenge still requires a data-driven perspective and a

proper abstraction of the communication layers.

Figure 5.18 shows a data flow diagram of the entire system with

all its subsystems and data handling components. The main direc-

tion of the data flow is indicated by the arrows, which also represent

the interfaces that are defined in section 5.3.2.

What has not been mentioned before explicitly, the MMOS ar-

chitecture follows two essential design principles. The first one is the

principle that the system must implement a data abstraction model,

so that each component or subsystem can address a particular coun-

terpart in space.

The second principle, is that the MMOS implements a closed

control loop with the satellite system. This of course is a direct

consequence from the requirement for automation.

How both principles have been implemented shall be introduced

in the following.

144 5 - MMOS Domain Engineering

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

Agency

Commanding
Layer

Scheduling
Layer

Operative
Layer

VGS
1

VGS
2

VGS
3

MCT
1

MCT
2

MPT Satellite 1

MPT Satellite 2

Schedule

Schedule

TM Back-End

Telemetry

Flight Dyn. Tool

Agent 1

Agent 2

Agent 3

from
MCT

to
Agents

Legend

subsys.

unit

data

MMOS comp.

generic comp.

mission comp.

TM/TC

Activity

CMD

TM

Data

Phase

Figure 5.18: MMOS Simplified Data Driven Architecture - Entire ar-
chitecture with all subsystems, components and interfaces
as introduced in section 5.2.2. The figure shows an ex-
ample configuration of the MMOS. The number of hosted
MCTs and MPTs depends on the number of operated sys-
tems. Same applies to the VGS and the number of op-
erated ground stations. The number of Agents depends
on the complexity of the operated mission and the level of
automation that shall be achieved.

5.3 - Design 145

The Principle of Abstraction

Complete control of a complex technical system is not implemented

all at once, as the following example from aviation shall demonstrate.

Before an aircraft can be equipped with a guidance system, at first

a low-level controller needs to be set up, damping the natural mo-

tion of the vehicle. If that has been achieved, an autopilot can be

added to maintain altitude, speed and attitude. Only if damping

and autopilot work properly, high level guidance and navigation can

be engaged.

The problem of communicating with a spacecraft is quite similar.

Purpose of the MMOS is to establish a comprehensive and neat form

of communication with the satellites so that the mission objectives

can be pursued. Before something like this can be realized, both,

satellite and OS, must be decomposed into layers with correspond-

ing endpoints on each side. Here, this decomposition is referred to

as space-to-ground abstraction. On each layer, a different protocol

is applied that is used by the endpoints to exchange information.

To take up the example from aviation again, only if all low-level

protocols are implemented correctly, an abstract, high-level commu-

nication is possible. All of this is required for a sound automation

and a subsequent development of ground-based applications for the

mission.

The idea of decomposing communication between technical sys-

tems into abstract layers is not new. A widely used scheme that

covers a variety of standards is the Open Systems Interconnection

(OSI) model [74]. Accordingly, “the CCSDS Space Packet Protocol

(CCSDS 133.0-B-1) and the ECSS-E-ST-50 series of standards ad-

dress the end-to-end transport of telemetry and telecommand data

between user applications on the ground and application processes

on-board the spacecraft, and the intermediate transfer of these data

through the different elements of the ground and space segments.”

([41], p. 8). On application layer, which is the highest layer accord-

ing to the OSI model ([74], p. 30), these standards can be comple-

146 5 - MMOS Domain Engineering

mented e.g. by the Packet Utilization Standard (PUS), which defines

“application-level interfaces between ground and space” ([41], p. 8).

The first problem with the applications, called services, that can

be addressed with PUS is that these only implement very rudimen-

tary functionality. That is basically due to the limited performance

of satellite on-board computers, and due to the consequence that

the on-board software needs to be kept light and simple. So, from a

perspective of an on-board software developer PUS surely addresses

an application, but certainly not for a scientific user of the satellite.

In a way, those PUS services can be compared with background ser-

vices of a PC operating system. Users of such a PC do not want to

manage these services manually. Users want the operating system to

handle such services for them, while they focus on their real tasks.

The second problem is that the PUS services in the on-board

software are indeed the most high-level endpoint that can be techni-

cally addressed in many satellite platforms. Any automatic process

on ground that addresses the satellite on system level, has no real

endpoint to communicate with. Here is were the OSI or the CCSDS

abstraction models do not apply anymore.

Figure 5.19 shows into which layers communication between M-

MOS and satellite is broken down. The physical link to the satellite

transceiver is of course established by the ground station. The com-

munication partner of the MCT is the satellite On-board Computer

(OBC), respectively the on-board software, which processes the TCs

and returns TM. Up to this layer the concept is according to OSI

and CCSDS models, as it describes real communication links.

The TCs, sent to the satellite are generated from the mission

schedule, which is manged by the MPT. Instead of the MCT, the

MPT does not address a particular component or computer, but

the entire satellite system. At this point neither the OSI, nor the

CCSDS model apply anymore, because the communication partner

of the Mission Planning is not a real endpoint, but an abstract en-

tity. The result of the satellite scheduling process in the MPS is

5.3 - Design 147

Mission

Satellite System

On-Board Software

Transceiver Ground Station

Mission Control

Mission Planning

Application

Activity

Command

TC

Operations

Scheduling

Commanding

Transmission

Figure 5.19: Identified Space-to-Ground Abstraction Layers for the
Communication Between Satellite and MMOS - Qualita-
tive display only. Not following the OSI model.

148 5 - MMOS Domain Engineering

an alteration of the satellite system state. On ground, that system

state is generated from the received satellite data.

The satellite schedule in turn is the result of a former decision

making, either done by an automatic application (Agent) or a human

operator. Again, this top-level abstraction describes no real end-to-

end connection according to the OSI or any other model, as the

application does not address a particular entity, but an abstract

mission state, which must be verified by means of the processed

satellite data. Maintaining the lower communication layers so that

the top-level mission goals can be followed is the major purpose of

satellite operations.

The Principle of Control

As mentioned in section 5.1.1.1, the MMOS implements an auto-

matic control process, as proposed by [99]. That approach consists

of four consecutive steps, the data acquisition, the data analysis, the

decision making and the response action implementation. Figure

5.20 indicates how these steps are covered by the individual subsys-

tems.

The acquisition of data is done by MCS, which is in charge of

TM reception and of forwarding that data to the archives. DAS and

Flight Dynamics implement the data analysis, by providing stan-

dardized means of accessing the satellite data. The outcome of the

FDT is already a first level data product, generated from the satellite

telemetry. Further data analysis is not implemented by the MMOS,

because this is something Agents must provide. However, the prime

job of an Agent is to automate the decision making process, which

still can be performed by a human operator too. The result of that

process is an activity to be executed by the controlled system even-

tually. The management of the spacecraft response action is handled

by the MPT. Finally, new telemetry is generated as a result of that

action.

5.3 - Design 149

Mission Control Flight Dynamics

Data & Archives

Mission Planning

Automation

Data Acquisition
Mission Control

Data Analysis
Data Processing,
Flight Dynamics

Decision Making
Operations Team,

Payload Specialists,
Engineers, Agents

Response Action
Mission Planning

Figure 5.20: Four-stage Model of Information Processing [99], applied
to Mission Operations - The figure shows which element of
the MMOS fulfills which stage in the automation process.

The MMOS strictly follows the principle of a closed control loop

by avoiding any kind of cross-connection and prohibiting write op-

erations against the main control flow.

Recalling the avionics example, a mission level control cannot be

realized by a single control loop, although figure 5.20 might suggest

that. Instead, the control of a spacecraft is made of a cascade of

concentric control loops too. The basic control, such as attitude

control and thermal control, is usually implemented on board. Even

more complex tasks like rendezvous maneuvering can be performed

by the satellite autonomously, assumed that it is equipped with the

appropriate sensors and computing performance.

Since all high-frequency control processes are implemented on-

board the satellite, operations can focus on planning long-term pro-

cesses. But even long-term processes can be decomposed into differ-

ent high and low-level control loops, e.g. an imagery campaign. For

the achievement of the campaign objectives it is normally necessary

to schedule multiple data takes. Each take requires the execution of

150 5 - MMOS Domain Engineering

a number of activities, for instance to change the pointing vector of

attitude control and to switch on the camera.

At first, the activity execution must be verified through the eval-

uation of the satellite’s housekeeping telemetry, in this case through

the verification of the pointing vector and the power consumption

of the camera. After the verification of the activity execution, the

image data is evaluated. If the images are as expected, the data take

was successful. The process is repeated until all the data for the im-

agery campaign is collected. The entire campaign can be monitored

by a top-level process, or e.g. by a managing scientist.

Such a process in supported by the MMOS and the Activity

concept discussed in detail in section 6.

5.3.1.2 Functional Perspective

The MMOS is designed as a distributed system of individual and in-

dependent software components referred to as microservices. Each

component is kept as simple as possible, with a very limited yet

precisely specified scope. The rigorous distinction between the com-

ponent functionalities allows that each one can be developed and

maintained individually without affecting the rest of the system. A

principle sketch of the MMOS functional architecture is show in fig-

ure 5.21.

The fact that the developed OS shall support multi-mission op-

erations implies that the system must be able to cope with growth

and a dynamic adaption according to the needs of the individual mis-

sions. This means that the entire system setup as shown in figure

5.18 can change, and that it must be possible to add new components

to the system at some point. This rises the demand for scalability,

especially in terms of the internal communication.

A well-known means of establishing such an infrastructure, which

also comes with many other advantages, is the use a Message Ori-

ented Middleware (MOM). For the realization of such, reliable solu-

tions already exist even for large systems [87].

5.3 - Design 151

MOM

Telemetry

Schedule 2

Schedule 1

MCT2

MCT1

FDT

DAS

MPT2

MPT1

Agent

Agent

Agent

GUI (Web Application)

1

2

3

4

1

2

3

4

Human Interface Layer

Application Layer (fig. 5.18)

Presentation Layer

Session & Transport Layer

Figure 5.21: Three-Dimensional Depiction of the MMOS Architecture -
Simplified figure, VGS not displayed.

152 5 - MMOS Domain Engineering

MOM

Gateway Gateway Gateway

IF 1 IF 3 IF 2 IF 1 IF 2 IF 3

Feature 1

Feature 2

Feature

Feature 1

Feature 2

Component A Component B Component C

Queue

Figure 5.22: Principle Sketch of the Functional MMOS Architecture -
Components communicate via message queues, which are
managed by a middleware.

The idea behind a MOM is that instances in a network, which

don’t know each other directly, can communicate by exchanging mes-

sages in a predefined format. In the MOM, messages are routed via

queues only by means of the recipient logical address (fig. 5.22).

Thus, components are completely decoupled from each other and

can be even moved to different locations without impairing the sys-

tem functionality. The MOM takes care about the entire traffic.

This covers the pure task of routing, but also the buffering of mes-

sages, and the interception of temporary connection losses. As a

consequence, the system can even deal with short downtimes or load

peaks [87].

Counterpart of the MOM within the component is a generic piece

of software, called the gateway. It is responsible for the component

authentication in front of the middleware. Whenever a new com-

ponent is added to the MMOS, it is automatically registered at the

middleware. By sending an authentication request to the MOM, the

gateway hooks the application to the desired queues.

5.3 - Design 153

During operations, the gateway is responsible of composing and

sending the component messages in the format that is understood

by its counterpart. Consequently, the gateway is also in charge of

handling messages from a queue.

Each component can implement an arbitrary number of interfaces

(sec. 5.3.2). Messages received by the gateway must be addressed to

these interfaces to trigger the correct functionality. This is achieved

by the message format, which allows the receiving gateway to address

the message content to the right interface, which in turn can respond

with an answer that must be converted into an appropriate reply

message.

Naturally, each component implements a different functionality.

A characteristic of generic ones, such as MPT or MCT, is that they

always provide the same features. A mission specific behavior is

achieved through configuration. To allow that, each component is

further equipped with an appropriate interface that allows loading

a mission specific configuration into a component. Such an interface

has not been described so far. The problem of a mission specific

configuration will be dealt with in section 5.3.3.2 though.

5.3.2 Interfaces

In the scope of the prior discussion of the subsystems, the term inter-

face was used quite intensively without being introduced properly.

Several interpretations of the term interface exist in the areas of

engineering and information technology ([72], p. 574). This work

follows the definition as commonly used in object-orientation. Ac-

cordingly, E. Gamma et.al characterize the interface of an object as

the “set of requests that can be sent to [the] object” [55]. The ob-

ject itself is in charge of computing information. Via the interface,

information can be requested from the object, or provided to the

object.

154 5 - MMOS Domain Engineering

�Interface�
IData

�Interface�
IData

ID ID

Value Value

Status Status

Component A Component B

Data Pipeline

Figure 5.23: Working Principle of an Interface in a Distributed Soft-
ware - Arbitrary interface object with arbitrary attributes.
Convention: The preceding I identifies Data as an interface
type.

In practice, there is often confusion between the concept of an in-

terface and the concept of a class. That confusion is even reinforced

by some coding platforms. For instance, unlike Java, the language

C++ does not semantically differentiate between the two. In C++

an interface of an object is realized by the public inheritance from

another class, which declares all the public virtual methods for the

inheriting object [55].

Interfaces are implemented in almost every software. For dis-

tributed designs however, they have an increased value. Figure

5.23 illustrates the concept as applied within the MMOS. Two com-

municating components A and B exchange data. During runtime,

that data is represented by interface objects within the components.

Since the two do not share the same memory, or are even located on

different computers, means of exchanging the data must be found.

A widely used approach is to implement the interface object as a

serializable object (sec. 5.3.2.5). Once the object is defined by means

of its attributes, it is decomposed into a binary stream, a packet, a

message, or a file that can be transferred to a different location. Af-

5.3 - Design 155

Figure 5.24: Astronaut’s Procedure Journal from the Apollo 12 Mis-
sion [77] - These procedure journals contained sequences
of consecutive steps to be executed by the astronauts, e.g.
for extra vehicular activities (picture), or for emergency
situations.

ter transmission, the same mechanism can be used to reconstitute

(de-serialize) the object for further processing of the data [104].

A quality of an interface for the exchange of information between

two separate applications is that it involves all data abstraction lay-

ers [74]. So, when an interface is discussed, it must be perfectly clear

on which abstraction layer that discussion takes place. On lower lev-

els, interfaces are usually understood as means of binary data trans-

portation, or just as a physical connection. However, the higher the

layer, the more interfaces are understood as mentioned initially; as

a functional means of requesting and exchanging information. The

MMOS interfaces introduced in the following, are discussed on such

a functional level.

156 5 - MMOS Domain Engineering

Command

- id : const idType

- mnemonic : const char[]

- description : string

- executionTime : Timestamp

- releaseTime : Timestamp

- status : short

- ParameterList : List<Parameter>

Figure 5.25: Attributes of an Abstract Command in the MMOS

5.3.2.1 Command Interface

Since the early days of human spaceflight, astronauts have used pro-

cedure journals. These journals list the steps for the fulfilment of

a tasks on board a spacecraft or during an extra vehicular activity

(fig. 5.24). In unmanned spaceflight the approach is quite similar.

The major difference is that the steps are called commands, and that

these are executed by an on-board computer instead of a human.

Object Type

Within the MMOS, an abstract command is defined by a set of

attributes, as shown in figure 5.25.

• The ID is a unique identifier that allows to identify a particular

command in the schedule.

• A so called mnemonic is a character string, which can be used

to categorize commands.

• A description enables the human operator to follow the pur-

pose of the command.

• The command will be executed by the on-board computer at

the specified execution time.

5.3 - Design 157

• The command will be transmitted to the spacecraft at the

specified release time.

• A status variable indicates the present transmission/execution

stage of the command. Also failures are indicated.

• The command parameters are listed in the parameter list.

A characteristic of an abstract command is that it is designed

to be human readable. Calling it abstract shall point out that it

is protocol independent. The conversion of an abstract command

into a protocol specific TC is done by the MCT the moment the

command is released.

Purpose

Purpose of the Command Interface is to provide a mechanism for the

exchange of command (CMD) and acknowledgment (ACK) informa-

tion between the the mission schedule, the single source of truth for

all commands, and the MCT (fig. 5.26). The spacial separation be-

tween abstract commands in the schedule and the TC composition

allows for a protocol agnostic scheduling process with all protocol

specific functionalities being intercepted by the MCT.

Implementation

During nominal operations the schedule is supposed to be managed

by the MPS. This means that Activities (sec. 5.3.2.2) are added to

the schedule, and that commands are extracted from these Activ-

ities. The MPT further controls the release process automatically.

The moment release time is reached, commands are unlocked for

transmission, and handed over to the MCT. The MCT instanta-

neously converts the commands into TCs and forwards them to the

ground station.

The concept also allows users to add single commands to the

schedule. Commands added via the GUI must be released manually

though (fig. 5.26).

158 5 - MMOS Domain Engineering

Human IF
Layer

Application
Layer

Presentation
Layer

MCT

Schedule

Automatic
Operations

Manual
Operations

MPT

GUI

release
control

manual release
control

CMD

ACK

Entire Communication via

Transport Layer / Middleware

(not in figure)

Figure 5.26: Command Interface - Depending on the operational mode,
release is either controlled automatically by the MPT, or
manually by the user via the GUI.

5.3 - Design 159

In any case, the authority over the command release lies at the

MPT, or the user who scheduled the command. When a command

leaves the schedule, it is processed and forwarded by the MCT as

fast as possible.

The moment the MCT receives acknowledgment TM about a

sent TC, that information must be associated with the right abstract

command in the schedule. However, this is not a trivial process, be-

cause different protocols implement different verification schemes.

E.g., the Packet Utilization Standard (PUS) has no real verification

layer. Instead, transmission and execution are verified by means of

a special service type [42]. Processing that kind of acknowledgment

information requires a cumbersome tracking of the packet sequence

count. If the MCT loses track of this count, acknowledgment infor-

mation cannot be associated with the correct TC anymore.

In the setup in figure 5.26 the MCT is not only in charge of

implementing such a protocol specific verification scheme, it is also

responsible for the forwarding of acknowledgment information to the

right abstract command in the schedule, via the Command Interface.

5.3.2.2 Activity Interface

At the end of section 5.3.2 the problem was mentioned that with

every discussion about an interface the respective abstraction layer

must be clarified too. However, with the Activity Interface discussed

here, as with the Command Interface presented earlier, there is an-

other problem.

Like the Command Interface, the Activity Interface is a means of

exchanging information between different MMOS components. But

that is not everything. Command and Activity are also interfaces

which allow an entity on ground interacting with the operated sys-

tem in space. So whenever these interfaces are discussed, it must be

clarified whether the Ground-to-Ground interface or the Space-to-

Ground interface is meant.

160 5 - MMOS Domain Engineering

V
G

S

M
C

S

M
P

T

A
gen

t

G
S

IF
(F

ram
e)

T
C

IF

C
om

m
an

d
IF

A
ctivity

IF

G
rou

n
d

-to-G
rou

n
d

n

Space-to-Ground Abstraction

Middleware

A
pp

lic
at

io
n

Pre
se

nt
at

io
n

Tra
ns

po
rt

N
et

wor
k

D
at

a
Lin

k

N
et

wor
k

Pre
se

nt
at

io
n

A
pp

lic
at

io
n

Figure 5.27: Two Dimensions of MMOS Interface Abstraction

As a consequence, the MMOS must implement two different

abstraction schemes: A vertical Ground-to-Ground abstraction is

needed to describe communication between different components

within the MMOS. And a second, horizontal Space-to-Ground ab-

straction is required to analyze the communication between an M-

MOS component and a counterpart in space (fig. 5.27). So far, all

discussions were in reference to the Ground-to-Ground abstraction.

In the Space-to-Ground scheme, the Activity represents the top-

level protocol, which allows interacting with the operated system

as a whole, and which shall enable the development of ground ap-

plications for that system eventually. Like in any other abstraction

scheme, a top-level protocol relies on a series of lower-level protocols.

In case of the Activity, this is the Command, which is converted into

a TC, encoded, parsed into a bit stream, and physically transmitted

via the antenna eventually. In the space segment the reverse process

must be implemented of course.

5.3 - Design 161

Activity

- id : : const idType

- mnemonic : const char[]

- description : string

- initiator : logAddrType

- executor : logAddrType

- issueDate : Timestamp

- thePriority : Priority

- theState : State

- theSequenceList : List<idType>

...

Figure 5.28: Selection of Attributes of an Activity

However, for the following introduction, that Space-To-Ground

Abstraction shall be put aside, and the Activity only be introduced

as an interface between MMOS components. The topic of Space-to-

Ground interfacing will be revisited in section 6.1.

Object Type

As specified elsewhere, an Activity contains a sequence of commands

to be executed by a system. Another quality of an Activity is that

it precisely defines the change of the system state, as a result of the

command execution. The concept will be introduced in detail within

chapter 6. For the discussion of the Activity as Ground-to-Ground

Interface, it is sufficient to regard it in a simplified fashion.

Figure 5.28 illustrates some selected attributes of an Activity

object.

162 5 - MMOS Domain Engineering

• ID, mnemonic, and description have the same function as

in a command object (fig. 5.25).

• Each Activity has an initiator, which has defined and re-

quested the activity.

• The executor is a reference to the entity (system) that exe-

cutes the activity.

• The issue date is the date of object creation.

• Each activity has a priority, which is considered by the schedul-

ing and conflict resolution process described later on.

• The state specifies on the hand to which stage the Activity

has been executed, and on the other hand whether the Activity

is currently processed or not.

• Finally, the Activity specifies the command sequences to be

executed.

5.3 - Design 163

Purpose

Purpose of the Activity Interface is to provide the different enti-

ties with access to the mission schedule. Entities refer to all per-

sons, software components, or systems, which are actively involved

in the planning process. Entities can be human operators, Agents,

or the operated system itself. Within the MPS the operated systems

are represented by the various MPT instances. Each entity is also

uniquely identifiable by means of a logical address.

Via the Activity Interface requests can be made at the mission

schedule. Such requests can be used to add new Activities to the

schedule, to alter existing ones, or to retrieve information about the

Activities in the schedule.

Implementation

In the functional depiction of the MPS in figure 5.16 it looks like the

mission schedule would be an inclusive part of the MPT. Also, the

previous description of the MPS functionality in section 5.2.2.5 might

have reinforced that impression. The implementation looks slightly

different though. The schedule is actually a separate component. It

manages the internal schedule database and handles the incoming

requests. (fig. 5.29).

However, that schedule management, for convenience referred to

just as schedule, is only the executing instance. All powers and de-

cision making competencies rest with users, Agents, and MPTs. For

instance, in the previous section the automatic release of commands

by the schedule was mentioned. This only happens, when the re-

spective commands are unblocked for release either by an MPT or

by an operator via the GUI. The Activity interface is the means of

sending such blocking/unblocking requests.

Nevertheless, each schedule is sovereignly controlled by a single

MPT, which manages the activity state, resolves conflicts, deter-

mines release times, verifies the execution etc. The entire process

will be discussed in detail in chapter 6. All requests necessary for

164 5 - MMOS Domain Engineering

Human IF
Layer

Application
Layer

Presentation
Layer

Schedule 1 Schedule 2

MPT1

MPT2

Agent 1

Agent 2

GUI

read/write
request

reply

Entire Communication via

Transport Layer / Middleware

(not in figure)

Figure 5.29: Components Implementing the Activity Interface - Via the
Activity Interface entities can make requests at the sched-
ule. Such request can contain new Activities to be added
to the schedule. Requests can also be used to retrieve Ac-
tivity information, or to modify Activities, assumed that
the requesting entity has the rights to do so.

5.3 - Design 165

Parameter

- name : string

- mnemonic : const char[]

- rawValue : Data<ValueType>

- theCalibration : Calibration

- unit : string

- base : ushort

Figure 5.30: Attributes of a Parameter

this task are made via the Activity Interface, while the information

is persistently stored in the schedule.

According to the previous description of the MPS (sec. 5.2.2.5),

only one MPT per schedule is allowed to modify Activities. However,

the hierarchical nature of an Activity and the fact that Activities can

be distributed over different systems, require that MPTs can request

Activity information at any other schedule. Same applies to all the

other entities. An internal access management verifies whether the

requesting entity is granted with the appropriate rights.

5.3.2.3 Data Interface

In mission operations, parameter objects are used variously. They

are the means of adjusting command sequences, and a means of

displaying telemetry data.

Object Type

A parameter object, as shown by figure 5.30 is characterized by the

following attributes:

• A name helps a user to follow the kind of the parameter, e.g.,

a battery voltage.

• By means of the mnemonic, each parameter is registered in

the system.

166 5 - MMOS Domain Engineering

MeasurementData

- validityPeriod : uint

ParameterTimestamp

1

1-theValue

1

1 -time

Figure 5.31: Attributes of a the Measurement Data Class

• The physical, human readable state of a variable is given by

the parameter engineering value. For transmission between

ground and space, this value is normally converted into the

raw value.

• The means of converting an engineering value into a raw value

is the calibration. The calibration can either be implemented

in form of a lookup table or of a function that converts from

the domain of the raw value into the range of the engineering

value and vice versa.

• If the parameter represents a physical value, it must specify

the according SI unit.

• The base attribute specifies the number base in which the

engineering value shall be displayed. Most common bases are:

binary, decimal and hexadecimal.

A particular application for a parameter is within a measurement

value. A measurement data point is a combination of a parameter

and a timestamp indicating the moment the value was measured

on board (fig. 5.31). By means of the parameter mnemonic and

the timestamp, each measurement ca be identified explicitly. A fur-

ther attribute of the measurement data object is the validity period

indicating the duration for as long the measurement is valid.

5.3 - Design 167

Purpose

On ground, measurement data is gained from TM. The contained

information is persistently stored in the DAS (sec. 5.2.2.2). Purpose

of the Data Interface is to allow the retrieval of measurement data

from the archive for further analysis and processing of the data.

Implementation

Measurement data is provided upon request. All components that

implement the consumer side of the interface can send a request to

the provider, the TM Back-End, upon which the component returns

the data. As mentioned above, a specific data point is requested

and identified by the parameter mnemonic, and the timestamp. The

respective system must also be specified, so that the TB Back-End

knows in which archive to look-up the value.

In general, data can be requested in two different manners.

1. The sate of a parameter can be requested for a specific point

in time. If that point lies within a period valid measure-

ments are available, the according data is returned. Other-

wise, the last available measurement is returned, with the re-

spective attribute indicating that the returned parameter is

invalid though.

2. In addition, the entire history of a parameter over a certain

period of time can be queried. If measurements exist within

the specified time frame, the set of data is returned.

Every component implementing the consumer side of the interface

can query data like this. Examples are the GUI, the FDT, Agents,

or instances mapping the TM into a system state vector, like the

MPT.

5.3.2.4 Phases Interface

As mentioned in the discussion of the FDS in section 5.2.2.3, the

result of the flight dynamics computations are phases. Phases are

168 5 - MMOS Domain Engineering

PhaseRequest

- spacecraftID : uint

- coordinateSystem : char[]

- theTarget : Target

- theProximityLevel : short

- begin : Timestamp

- end : Timestamp

Figure 5.32: Attributes of a Phase Request

periods of time during which two objects in space are in a certain

relative position to each other. A phase begins the moment the two

objects have a line of sight connection and are within a specified

range. Accordingly, the phase ends when the objects drift beyond

the specified range again, or the line of sight condition is not satisfied

anymore.

Phases are the basis of planning ground station passes, observa-

tion times, etc. Furthermore, they can specify time slots for ren-

dezvous or maneuvers.

The means of requesting phase times at the FDT is the Phases

Interface. Similar to the Data and Parameters Interface, phases are

returned by the FDT upon request by a consumer. The attributes

of such a phase request are shown in figure 5.32.

• Each request contains the ID of the spacecraft whose or-

bit propagation in the FDT shall be the basis of the phase

computation.

• The coordinate system is the frame in which the second

point (target) is specified.

• A target object describes the location of the second point in

the specified coordinate system. The target can either be a

fixed location in the frame or a moving object (e.g. described

by TLE)

5.3 - Design 169

{
‘‘Family’’: {
‘‘Mother’’: ‘‘Jane’’,

‘‘Father’’: ‘‘Michael’’,

‘‘Children’’: [

{
‘‘name’’: ‘‘Philipp’’,

‘‘age’’: 16

‘‘gender’’: ‘‘male’’

},
{
‘‘name’’: ‘‘Kim’’,

‘‘age’’: 12

‘‘gender’’: ‘‘female’’

}
]

}
}

Figure 5.33: JSON Example

• The proximity level parameter describes how close the two

bodies must approach for the phase to begin.

• Begin and end mark the time frame during which phases

shall be determined. All phases are returned that begin or end

within the specified time frame.

If at least one phase falls within the specified time frame, the begin

and end times are returned by the provider side of the Phases In-

terface. Each component that implements the consumer side of the

Phases Interface, can make such requests at the FDT.

5.3.2.5 Serialization

The interfaces types introduced in this section are structured ob-

jects. These have in common that at some point they need to be

decomposed, transferred, and reassembled again. The process of ob-

170 5 - MMOS Domain Engineering

ject decomposition for a use somewhere else, or for memorizing an

object state, is referred to as serialization [104].

A popular format for the exchange of structured objects between

different applications is the JavaScript Object Notation (JSON). Al-

though its name suggests otherwise, JSON is agnostic of the pro-

gramming language [137]. It is a notation for text files containing

the attribute information of the serialized objects [36, 73]. JSON

has been the selected message format for the transmission of data

via the MOM [5]. An example is shown in figure 5.33.

5.3.3 System Configuration

The development, the setup and the configuration of the ground

software is generally driven by the space segment. That is because

of the usual practice of the satellite development starting way ahead

of the ground segment, which then must get tailored to the space

segment eventually. Presumably, this will always be like this. The

approach is insofar understandable as the spacecraft is usually the

more challenging and driving part of the mission.

To this date, a vast number of satellites is still developed from

scratch, supported by a variety or tools, techniques, and standards

which are available these days. Nevertheless, new interfaces need to

be developed or at least tailored for almost every new satellite, or at

least for the payload. “The interface design for spacecraft systems

and spacecraft payloads is still a manual and time-consuming effort.”

([23], p. 5)

Purpose of an interface is to guarantee a flawless interaction be-

tween ground and space on different abstract levels (fig. 5.19). By

defining a standardized space-to-ground abstraction, the MMOS en-

counters the demand for a neat multi-level connection. However,

each component implementing one of these interfaces must get con-

figured, so that the component knows how to use the interface cor-

5.3 - Design 171

rectly. An MCT instance for example needs to know which TCs can

be processed by the on-board software.

In satellite operations, the general method is to define the mis-

sion specific interface configuration in a persistent database. These

databases are commonly referred to as SRDB or Mission Informa-

tion Base (MIB). Several standards for the setup of such databases

have been defined in the past, like XML Telemetric and Command

Exchange (XTCE) [25], or the SCOS-2000 standard [52], and both

of them have their justification, advantages and disadvantages.

• Both standards are compliant to the CCSDS and designed for

a space application.

• Using standardized databases supports the exchange of config-

urations between different ground systems.

• A new configuration can be loaded into the system fast.

• The configuration can be generated automatically from the

on-board software.

• The application of those standards supports testing and veri-

fication.

Despite all these benefits, those MIB standards also have a major

drawback. Existing MIBs are limited to command layer communi-

cation. The two mentioned standards have been designed just for

the configuration of MCS, and for the exchange of configurations be-

tween different MCS. They are explicitly not designed for the mission

specific configuration of higher-level components as they exist in the

MMOS or any other OS. That is not surprising due to the huge va-

riety of systems available on the market. It would not be easy to

define a MIB standard that suits all existing systems equally in the

mission specific configuration of their components.

The SCOS MIB for instance allows for the definition of TM / TC

packets, parameters, events, or forms of displaying TM. For system

172 5 - MMOS Domain Engineering

level operations though, a MIB must also specify metrics by means

of which the state of the system can be quantified, as it must indi-

cate system variables which have a relevance for high-level operations

(e.g. GPS x, y, and z position, which can be the basis for orbit de-

termination by the FDT).

One of the advantages of such a database concept is also its

biggest disadvantage. A familiar promise that is made by almost

every MIB is: Load me into your system, and you are ready to go!

Yet, practice has shown that it is not that easy. On the one hand, the

concept of persistently saving configuration parameters in a database

is very convenient. On the other hand, existing MIBs merely allow

for interface configuration. An OS however has other aspects too,

which raise the demand for a configuration.

The setup and the configuration of the interfaces is without a

doubt one of the biggest burdens for a ground systems engineer, but

it is surely not the only one. An effort that is often underestimated

is the configuration of the OS itself. In order to cope with that, a

second database called the System Information Base (SIB) shall be

introduced for the initial orchestration of the MMOS. The concept

takes advantage from the known benefits of a standardized configu-

ration, and thus enables the automatic launch and (re-)configuration

of the MMOS.

Launch and configuration of the MMOS are done in two steps:

1. System boot, and initialization of each component by means

of the SIB.

2. Mission specific configuration of each component by means of

the MIB. Each mission is supposed to provide an individual

MIB that can be loaded into the system.

5.3 - Design 173

5.3.3.1 System Information Base

The process of launching the MMOS by executing all its components

and initializing them is referred to as orchestration in this work.

Basis for the orchestration are the entries and parameters specified

in the SIB .

A graphical representation of what is configured by means of the

SIB is shown in figure 5.34. In its essence, the SIB is the implemen-

tation of the MMOS feature tree model (sec. 4.3.1.1). The database

specifies which features shall be activated and it resolves dependen-

cies between them.

In section 5.1.2.3 it has been pointed out, that a space system

consists basically of three major entities: The satellite (mission), the

ground station, and the OS (fig. 5.8). A fourth entity that has been

disregarded so far are the users, respectively the operators working

with these systems. Purpose of the SIB is setting up the MMOS so

that the configuration reflects that space system (sec. 5.2.1). There-

fore, it is not surprising that all these entities show up in the SIB as

well.

Setting up the system itself means first orchestrating all com-

ponents that are not used for one mission particularly, which are

the MOM, the GUI, and all the other commonly used components.

Since the MMOS itself needs to be operated and maintained too,

user groups regulate by whom the system can be used and who is

allowed to do what, like performing administrative activities, adding

missions, and so on.

In a second step the missions are defined. Creating a mission in

the database means listing all those components, which should be

used by the mission. This can be an arbitrary number of archives,

an arbitrary number of MCTs, an arbitrary number of Agents, and

at least one MPT. As will be discussed later in chapter 6, complex

satellite systems are represented by a network of multiple MPTs.

174 5 - MMOS Domain Engineering

MMOS

System

Missions

VGS

Users

Groups

GUI

MOM

Archive

MCS

MPTs

Agents

Groups

Ref. MPT

Name

Log. Addr.

Executable

Options

Credentials

Rights

Users

Name

Log. Addr.

Executable

Options

Rights

Users

These attributes

must be

specified for

all components.

compare
figure 5.8

Legend

mandatory optional requires

Figure 5.34: System Configuration - Simplified representation of the
system feature tree as modelled by means of the SIB. The
tree indicates which system features, elements and compo-
nents can be executed and which attributes must be spec-
ified for the configuration of them.

5.3 - Design 175

Multiple MPTs then of course demand for the appropriate number

of MCTs.

Each component definition must specify a name, a logical ad-

dress, and a path to the executable. In case of a baseline component,

the path is a default setting. It must only be adapted in case the

respective component is a mission specific software, e.g. an Agent.

Every operations team consists of different members. There is

the Mission Director, the Flight Director, several System/Subsystem

Engineers, and others ([128], p. 42–46). These people must have

different rights. Some shall be allowed to schedule activities, some

shall be allowed to approve these, and some shall be allowed to send

direct TCs. Therefore, the SIB supports the definition of user groups

to grant people with the appropriate access rights.

The third entity type to be configured are the ground stations

represented by the Virtual Ground Stations (VGS). These VGS must

be defined like any other component. The major difference is that

the use of a VGS is not limited to a single mission. However, ground

stations are scheduled like any other system too. This is why each

station must have its own MPT.

Finally, the people using the MMOS are defined in a fourth sec-

tion. The users created here are the ones that can be granted with

access right as mentioned above.

5.3.3.2 Mission Information Base

Purpose of a MIB is the configuration of the various communication

interfaces according to the implemented space-to-ground abstraction

scheme (fig. 5.19). In the past, the concept of a MIB was limited

to the use by an MCS, and to a configuration up to commanding

layer. MIBs were used for the configuration of TM / TC parameters,

command sequences and user interfaces (displays) ([52], p. 11).

Within the MMOS, the scope of the MIB is extended in the way

that it supports an additional so called scheduling layer on top of

the commanding layer.

176 5 - MMOS Domain Engineering

Scheduling Layer Name

Calibration

SI Unit

Base

Mnemonic

Parameter

CMD Par.

Mnemonic

Defaults

Limits

Type

Mnemonic

CMDs

Resource

Sequences

Mnemonic

Activity

Application Layer (OSI)
Commanding Layer

2nd. HeaderPUS

Protocol x

...
Protocol

Network Layer (OSI)
PID

Packet Cat.
APIDSpace Pkt.

Data Link Layer (OSI)
S/C ID

Virt. Ch.
Fr. HeaderTC FrameCLTU

Legend

mandatory

optional

requires exclusive
OR

Figure 5.35: Mission Specific Interface Configuration - On each abstrac-
tion layer, certain interface attributes must be specified by
the MIB. The figure illustrates these attributes. It only
shows the configuration of the uplink (TC) though.

5.3 - Design 177

As known from other standards, uplink and downlink interfaces

are configured almost independently. The breakdown of the uplink

configuration in shown in figure 5.35. By using the notation of a

feature tree model, the figure indicates which object types must be

specified on which abstract layer, as well as the dependencies be-

tween the different elements. Up to commanding layer, the extend

of what is going to be configured by the MIB is derived from the

SCOS-2000 Interface Control Document (ICD) [52].

The MMOS supports SLE, so the MIB must enable the creation

of a Command Link Transmission Unit (CLTU) containing the TC

frame. This also covers the specification of the coding scheme, or

details about a possible encryption (not mentioned in figure 5.35).

Frames encapsulate the transmitted CCSDS Space Packets [24],

which are identified by means of an Application Process ID (APID).

On the next layer, the MIB defines the used application layer pro-

tocol (e.g. PUS). The application layer protocol must be specified

exclusively, which means that only one protocol can be selected for

one operated system.

Up to this point the extend of the MIB does not exceed the scope

of a SCOS-2000 MIB. On the next layer however, the MIB configures

the system level interface. By doing this, the MIB enables a close

interaction between the satellite commanding and the system level

mission planning (scheduling).

The interface that allows for a system-level communication is the

Activity . For the composition of such, the MIB must specify a num-

ber of abstract commands (sec. 5.3.2.1), and command sequences,

which shall be executed during an Activity.

The successful execution of an Activity depends on the avail-

ability of the appropriate system resources. Resources are certain

system parameters, which are later mapped into a state vector. For

the definition of such, these parameters must be specified as well.

The concept of how resources are used in the Activity scheduling

process is discussed comprehensively in section 6.

178 5 - MMOS Domain Engineering

179

6

Mission Planning

While the previous sections went through a comprehensive descrip-

tion of the Multi-Mission Operations System (MMOS), this chapter

will cover detail aspects of the Mission Planning Tool (MPT) de-

sign, and describe how that component enables the scheduling of a

distributed system eventually.

6.1 Value of the Mission Planning Tool

Among of all MMOS components and subsystems, why is it so im-

portant to have a closer look at the MPT particularly? To answer

that question it is worth to make a step back to have an examining

view at the MMOS architecture.

Figure 6.1 displays the MMOS in two different ways. The left-

hand side image is a simplified version of the functional architecture

as shown in figure 5.21. Reason for that kind of architecture with a

central Message Oriented Middleware (MOM) was the demand for

scalability (sec. 5.1.1.3), and extendability (sec. 5.1.1.2). Orga-

nizing the MMOS this way allows for the addition and the launch

of different applications, and thus for a flexible orchestration of the

system. From this perspective, the term application refers to all the

MMOS components (Virtual Ground Stations (VGS), Mission Con-

180 6 - Mission Planning

Server / Hardware

MOM

MCT MPT Agent

G
rou

n
d

-to-G
ro

u
n

d
A

b
st.

Satellite / HW

GS-Infrastructure

MCT

MPT

Agent

S
p

ac
e-

to
-G

ro
u

n
d

A
b

st
ra

ct
io

n

MMOS Application

Satellite Application

rotate

Figure 6.1: Implementation of a two-dimensional Abstraction Scheme
- From an operational perspective, the MPT is the inter-
face between mission specific applications (Agents) and the
rest of the MMOS architecture. The respective abstraction
scheme is referred to as Space!-to-Grnd. Abstraction.

6.2 - The Activity 181

trol Tools (MCT), MPTs, etc.) as introduced in section 5.2.2, which

are hosted as microservices on top of the MOM.

But, neither the MCT, nor the MPT, nor any other of those mi-

croservices can be considered as an application from an operations

perspective. Instead, they are just means of establishing the data

connection to the satellite. An application that has a real value

for an operations team is something that needs to be implemented

on top of that infrastructure. This is why a second dimension to

the MMOS architecture has been introduced, which is referred to as

Space-to-Ground Abstraction (sec. 5.3.1.1), and which is indicated

on the right-hand side of figure 6.1.

So what makes the MPT so special? The MPT is the instance

that manages the satellite schedule. Whenever a real satellite ap-

plication is written (e.g., an Agent planning scientific data takes),

all Activities generated by that application need to pass the Mission

Planning System (MPS). The MPT and its underlying schedule are

thus the interface between all those top-level applications and the

rest of the architecture. Among other things, the MPT performs

schedule consistency checks through monitoring and forecasting the

satellite state, it automatically controls the command release, and

verifies the Activity execution.

All of this makes the MPT the heart and soul of the MMOS,

which is why it shall be discussed in detail hereinafter.

6.2 The Activity

The scheduling process carried out by the MPT is based on the

Activity concept. During the previous sections of this work the

term Activity has been used extensively, without even being defined

properly. A single definition of it is not trivial though, as it depends

on the application and the individual perspective. In this work, the

Activity is looked at from three basic angles:

182 6 - Mission Planning

• the operational perspective,

• the data-handling perspective,

• and the scheduling perspective.

Operational Perspective

Choosing the operational perspective is probably the most obvious

way to define the Activity. From the operational angle, an Activity

simply describes a process executed by a system or an entity, to

perform a certain task. A quality of an Activity is that it affects the

state of the executing system, and demands system resources like

energy.

Data-Handling Perspective

From the data-handling perspective, the Activity refers to an object

type, which can be used to exchange information between elements of

the MMOS. Thus, it describes an interface that software components

can implement to interact with the system schedule managed by the

MPT. This perspective was chosen during the Activity (interface)

description in section 5.3.2.2.

From a data-handling perspective, an Activity further refers to

an interface between space and ground (sec. 5.3.1.1). As such, it is

a means of exchanging all necessary information with the executing

system. These information cover data for activity execution, as well

for its verification.

Scheduling Perspective

In this chapter, the Activity is regarded at from the scheduling per-

spective. In this context, an Activity refers to a scheduled object,

which provides all information needed by the MPT to manage, ex-

ecute and verify the mission plan. The attributes of an Activity as

an object within the mission schedule are shown in figure 6.2.

6.2 - The Activity 183

Activity

system start state

consumption
end state

Resource Demand

Priority State

Command Sequence

Initiator
(Entity)

Executor
(Entity)

Figure 6.2: Attributes of an Activity

184 6 - Mission Planning

Each Activity has an initiator, a reference to the entity that

has planned the Activity, and an executor, which is a reference to

the system executing the Activity. Both attributes are important

identifiers in the planning process.

The command sequence is a reference to the command list to

be released to the executing system eventually. The states of the

released commands are indicators considered during the Activity

verification process.

Priority and state are important attributes for the resolution of

conflicts, and for the scheduling process that will be introduced in

section 6.2.4.

As mentioned above, the execution of an Activity is bound to

the availability of system resources. The amount of the resource

consumption is quantified by one or more resource demand objects.

The conditions specified by these objects are the basis for the re-

source propagation and the conflict determination by the MPT, as

they describe the required state of the operated system at the be-

ginning of the execution, as well as the resulting end state. Details

of the state estimation based on the resource demand are handled

in section 6.2.3.

6.2.1 Inheritance

Activities are so called scheduled objects. As such they must provide

a number of attributes, which are necessary for their identification

in the scheduling process. Since activities are not the only objects

which are involved into that process, an inheritance structure has

been created, which several of those other objects and interface types

can reuse (fig. 6.3).

Each object that is somehow handled in the course of the opera-

tions process, or is exchanged as an interface type (sec. 5.3.2), shall

6.2 - The Activity 185

NamedObject

RegisteredObject

IdentifiedObject

ScheduledObject

- name : string

- description : string

- mnemonic : const char[]

- theUUID : const idType

- initiator : logAddrType

- executor : logAddrType

- theParentID : idType

- ChildList : list<idType>

Parameter

Command

Sequence

Activity

Figure 6.3: Inheritance and Serialization of an Activity Object

186 6 - Mission Planning

have a name and a description, which help a user to understand its

meaning at a glance.

Each activity further must be registered at the system. Only

registered objects can be instantiated and thus appear in the sys-

tem schedule. A quality of a registered object is that it is defined

once and then can be instantiated, or appear in various sates at

different times. For instance, a system parameter is defined once.

Over time that parameter (e.g., a battery state of charge) will be in

various states, which are recorded in several data points within the

archive. An Activity is also defined once, and then can be scheduled

over and over again. Registered objects are identified by a so called

mnemonic. Mnemonics are short character arrays that also support

structuring the registered objects.

Once a registered object has been instantiated it must be uniquely

identified. Activities, as well as the commands in the schedule, are

identified by a constant Universally Unique Identifier (UUID) [5].

That UUID is created at object instantiation and cannot be changed.

Scheduled objects further specify an executor, which helps associat-

ing the object with the executing mission, while the initiator is a

reference to the entity which created the object.

A special quality of the Activity as a scheduled object is the op-

tional specification of a parent and several children, which supports

nesting the Activity. The concept of nesting will be discussed in

detail in section 6.2.5

6.2.2 Class Diagram

In addition to the object structure specified above, an Activity is

characterized by a set of further attributes (fig. 6.4). As mentioned

in section 5.3.2.2 already, each Activity object features a time stamp

indicating the issuing date, and a priority that helps resolving con-

flicts between different Activities during the scheduling process.

6.2 - The Activity 187

Activity

- issueDate : TimeStamp

- thePriority : prorityType

- theSequenceList : List<idType>

RessourceDemandState

1

n

1

1 - theState

Figure 6.4: Attributes of an Activity, Complementing Figures 5.28 and
6.3

Each instance can also specify an arbitrary number of command

sequences to be executed during the activity. Like the Activity itself,

sequences and commands can be identified within the schedule via

a UUID. Consequently, those sequences are no direct member of the

Activity object, but referenced by a list of UUIDs.

Two further attributes playing an elevated role in the scheduling

process shall be discussed in more detail. They are the resource

demand and the state. Both are important, because they define the

design of the MPT, which will be introduced in the later course of

this chapter.

Through the specification of resource demands, the consumption

of system resources can be modeled and thus the evolution of the

system state over time. Modelling the system state by means of a re-

source demand enables the detection of conflicts between Activities,

as it supports the Activity verification process.

The state indicates to what degree the Activity has already been

processed, either on ground or in space. Managing the sate is one of

the primary tasks of the MPT.

188 6 - Mission Planning

6.2.3 Resource Demand

The major goal of Mission Planning is the creation of a seamless

and conflict-free Activity schedule (sometimes referred to as timeline

too). Conflicts emerge when Activities lead into a system state that

would jeopardize the mission, or when they lead into invalid states,

which is the case when Activities demand for diametrical system

states. To resolve such conflicts, the system state must be predeter-

mined at the planning of new Activities. This can be achieved my

means of a resource modelling approach ([128], p. 173–183).

Activity execution is coupled to the availability of system re-

sources. The moment an Activity is executed by the operated sys-

tem, resources are consumed. A positive consumption describes the

case of a resource being used, where a negative consumption de-

scribes the mining of a resource. For instance, an Activity that

deletes data from memory would mine space for new data and would

therefore have a negative memory consumption.

In this context, the system state is defined by the quantity of

resources the system provides. System state and resource state are

therefore considered as equivalents.

RSystem(t) =

R1(t)

R2(t)
...

Rn(t)

 (6.1)

Through the planning of Activities, system resources are con-

sumed in a predefined way, which is therefore equivalent to a con-

trolled and predictable alteration of the system state.

The idea of quantifying the system state by means of a resource

model has already been applied elsewhere [49, 128]. In some aspects,

the approach implemented here follows the concept of a modelling

language, which has been applied at German Space Operations Cen-

ter (GSOC) for timeline generation and conflict resolution [59].

6.2 - The Activity 189

Purpose of such a modelling language is the description of a re-

source consumption. This requires the definition of system resources,

the definition of resource types, the definition of upper and lower

bounds, and finally a formalized way to describe the consumption

process. The latter is then used for the prediction of the system

state.

The consumption process will be described in the following.

6.2.3.1 Resource Level Modelling

The resource consumption of an Activity is quantified by its n re-

source demand objects (fig. 6.4). These objects indicate how much

of a resource is consumed, for how long, and when. The algebraic de-

pendency between the state of a resource (short: level), the demand,

and the consumption is illustrated in figure 6.5.

The level is a function of the initial state R0, a continuous con-

sumption c, and a constant withdrawal b. So, following image 6.5,

the level at a time t is then:

R(t) = R0 − b− c(t− tb) if: tb ≤ t ≤ te (6.2)

In a more formal way the consumption is quantified by a demand

d(t), which is a function of the parameters listed above. The result-

ing level can then be determined through the integration of that

demand function.

R(t) = R0 − d(t) (6.3)

= R0 −
∫ te

tb

c(t) dt with: c = const. (6.4)

= R0 − c (te − tb)− b with: T = te − tb (6.5)

= R0 − c · T − b (6.6)

190 6 - Mission Planning

R(t)

t

R0

Rb

Re

b

d(t)

t0 tb te

T
c(t)

t

R(t) Resource level over time.
R0 Precondition - Last available level prior to execution.
Rb Level at the begin of consumption.
Re Level after the end of consumption.
T Duration of the consumption
c(t) Resource consumption c(t) = −∂R

∂t
d(t) Resource demand function d(t) =

∫
c dt

b Initial demand, withdrawn or returned at the beginning.

Figure 6.5: Modelling of the Resource Consumption

6.2 - The Activity 191

ResourceDemand

- theResource : Resource

- t b : Timestamp

- t e : Timestamp

RelativeDemand

- b : Data<Type>

- c : Data<Type>

Figure 6.6: Diagram of the Relative Demand Class

A resource of course is not only consumed once, but several times,

and during various activities. The resulting resource state at a time

t is the sum of all integrated consumptions.

R(t) = R0 −
n∑

i=0

di(t) = R0 −
n∑

i=0

[
bi +

∫ ti,e

ti,b

ci(t) dt

]
for all ti,∗ ≤ t

(6.7)

This formal way of describing a resource demand is referred to

as relative demand. This means that the required (or the result-

ing) system state is not specified explicitly, but implicitly through

the quantification of a consumption. Accordingly, an Activity can

also specify an absolute demand. That sort of demand does not de-

scribe a consumption, but specifies an explicit condition for a system

resource.

The difference between absolute and relative demand with re-

spect to the scheduling process shall be elaborated in the following.

6.2.3.2 Relative Damand

A class diagram of a relative demand object is shown in figure 6.6.

192 6 - Mission Planning

Rmax

Rmin

R(t)

t
t0 t1 t2

Conflict!

Activity I

Activity II

Figure 6.7: Two Activities Excessively Consuming the Same Resource

The relative demand class inherits the generic class resource de-

mand. Its attributes are a reference to the consumed resource, and

the demand parameters as introduced above: b and c. Furthermore,

the object specifies the time frame during which the consumption

takes place. A component predicting the state of a system resource

through the implementation of equation 6.7 can retrieve all integra-

tion parameters from these objects.

A special quality of relative demands is their capability of be-

ing accumulated ([59], p. 10). The concept is illustrated in figure

6.7. The moment an Activity starts consuming a resource, the level

begins to sink or rise, where

∂R

∂t
= −c(t). (6.8)

If another Activity starts using the same resource simultaneously,

the consumptions are added, which results in a change of the level

gradient.

6.2 - The Activity 193

The use of a resource is limited by the resource’s upper and lower

bounds Rmin and Rmax. These need to be specified in the Mission

Information Base (MIB) for each resource individually. A conflict

occurs, if the consumption of a resource results in a violation of these

bounds (fig. 6.7).

Example I

2.5 MB of memory are available at t0, when Activity I starts writing

data with a rate of 2 MB/min for one minute. If no further Activities

are scheduled, 0.5 MB of free space remain after execution at t2 (fig.

6.7).

If another Activity II starts writing data with the same rate be-

ginning at t1, 30 seconds after beginning of Activity I, the total con-

sumption would be 3 MB, which is more than the available memory.

Hence, the scheduling of Activity II caused a conflict.

Resource propagation keeping track of the available memory would

have detected that conflict through the implementation of the inte-

gration schema, as mentioned above.

Example II

Through a narrow definition of Rmin and Rmax, a relative demand

can be used to model the allocation of a resource. For example,

a component could be in the state Rmin = 0 (unused), or in the

state Rmax = 1 (used). If an Activity is scheduled with a relative

demand of b = −1 and c = 0, the component would be completely

allocated. Accordingly, the component can be de-allocated with a

relative demand of b = 1 at the end of the Activity.

A conflict emerges if two Activities with the same demand b = −1

would try to allocate that resource, because

R(t) = R0 − b1 − b2 = 2 > Rmax.

194 6 - Mission Planning

ResourceDemand

- theResource : Resource

- t b : Timestamp

- t e : Timestamp

AbsoluteDemand

- R b : Condition[]

- R e : Condition[]

Figure 6.8: Diagram of the Absolute Demand Class

6.2.3.3 Absolute Demand

Similar to a relative demand, an absolute demand describes a transi-

tion from one state Rb into a new state Re (fig. 6.5). The difference

is that an absolute demand object explicitly describes the required

levels through the specification of one or more conditions, which

must be met at the beginning and the end of the consumption. A

class diagram is shown in figure 6.8.

The absolute demand inherits the generic resource demand too.

Its first attribute is again a reference to the system resource that is

of interest. Two sets of conditions describe the required levels at the

beginning (tb) and at the end (te) of the consumption.

If no transition is performed, Rb and Re are identical. This is the

case when a system resource just needs to be in a particular state

for the execution of an Activity. Four different types of condition

can be formulated (fig. 6.9).

6.2 - The Activity 195

R

t

R(t)

(a) R(t) = Rref

R

t

R(t)

(b) R(t) 6= Rref

R

t

R(t)

(c) R(t) > Rref

R

t

R(t)

(d) R(t) < Rref

Figure 6.9: Level Conditions that can be Specified by an Absolute De-
mand

1. The level must be equal to a reference value (=)

2. The level must not be equal to a reference value (6=)

3. The level must be greater than a reference value (>)

4. The level must be lower than a reference value (<)

If multiple conditions are specified they are linked by a logical OR,

which means the demand is met when at least one condition is sat-

isfied. This allows for the specification of further expressions like ≤
and ≥, or for the specification of different possible options.

An Activity can of course have multiple absolute demands. Con-

ditions from different demand objects are linked by a logical AND,

meaning that for a conflict free execution of the Activity all de-

mands must be met. For instance, this can be used to narrow down

196 6 - Mission Planning

R

t

R(t)

(a) R(t) > Rmin

∧
R(t) < Rmax

R

t

R(t)

(b) R(t) 6= Rref, 1

∧
R(t) 6= Rref, 2

Figure 6.10: Use of Multiple Absolute Demand to Narrow the Allowed
Range - For a conflict free execution of the Activity all
specified demands must be met.

the allowed range of a system variable (fig. 6.10a), or to exclude

particular system states for the Activity (fig. 6.10b).

Example I

For the execution of an Activity, a device temperature must be be-

tween 273 and 293 K for the entire duration of T = te − tb. Such an

Activity would specify two absolute demands: one demand claiming,

that the temperature must be greater than 273 K:

R1,b = R(tb) ≥ 273K

R1,e = R(te) ≥ 273K

AND a second demand, claiming that the temperature must be be-

low 293 K the entire time:

R2,b = R(tb) ≤ 293K

R2,e = R(te) ≤ 293K

Example II

A payload Activity changes the system mode parameter from idle

(0) into active (1). The Activity begins at t0, and it is assumed that

6.2 - The Activity 197

the mode transition takes 5 seconds. After 30 seconds, the Activity

is over and the system mode shall be switched back to idle again.

Such an activity would specify the following absolute demands:

R1,b = R(t1,b = t0) = 0

R1,e = R(t1,e = t0 + 5 s) = 1

for the mode transition back into active, AND :

R2,b = R(t2,b = t0 + 35 s) = 1

R2,e = R(t2,e = t0 + 40 s) = 0

for the mode transition into idle.

How can Mission Planning benefit from this proposed concept?

As mentioned above, system state and the quantity of resource levels

are equivalent. This means, the moment an Activity is scheduled,

the system state can be predefined. In case of an absolute demand,

certain system resources are actively set. Conflicts emerge when

various Activities demand for diametrical states of the same resource

at the same time.

Depending on the considered system parameter, a resource state

is only valid for a limited time frame. For example, a battery state

of charge information is only valid for a couple of minutes. After

that the value needs to be updated. Thus, a conflict check can only

be performed if recent satellite TM is available, or if the value is

continuously predicted.

Change of system parameters which don’t become invalid after

a certain amount of time, (e.g. system mode), can be scheduled

and checked easily without considering the timestamp of the last

telemetry data point, or the timestamp of the last scheduled change.

This is because those parameters only change when actively set. An

unscheduled change of a permanently valid system parameter usually

198 6 - Mission Planning

Stage

Status

State

Figure 6.11: Activity State - During its life, an Activity passes a series of
states. The state is modeled by means of a two-dimensional
approach. The stage indicates to what degree the Activity
has been processed (in space or on ground). The status in-
dicates, whether the Activity processing is currently active,
suspended or terminated.

indicates a system failure, which can be intercepted by the Mission

Planning through this approach.

6.2.4 State

Before an Activity is executed by the spacecraft, it needs to pass a

series of processing stages. At first, it somehow needs to be inserted

into the system schedule on ground, after that it is uplinked to the

spacecraft, inserted into the on-board schedule, or executed instan-

taneously. In a last step, that execution is verified by means of the

satellite TM, before the Activity is closed eventually.

Managing an Activity on ground requires various processing steps

during each of these stages. For instance, a recently requested Ac-

tivity is handled fundamentally different from an Activity currently

executed by the spacecraft.

For a proper Activity handling on ground, the state of the Activ-

ity must be resolved precisely, so that the correct processing mecha-

nisms can be applied. A two-dimensional approach has been selected

for that purpose, where the state of the Activity is represented by

a vector (fig. 6.11). Its vertical component, the stage, indicates

the degree to which the Activity has been processed. This covers

ground processing as well as the processing by the spacecraft. The

6.2 - The Activity 199

horizontal component, the status, indicates whether the Activity is

still being processed or not. The four possible statuses are:

• In Progress - This is the nominal status. If the Activity is in

progress, it is being processed until it is closed eventually.

• Suspended - Under certain circumstances, the handling of

the Activity can be suspended. A suspended activity won’t

be processed neither on ground nor in space until it is being

resumed again.

• Failed - Activities enter the status failed in case something

goes wrong or the Activity is rejected. Failed activities cannot

be resumed anymore and will be closed.

• Closed - This is the final status each Activity will enter even-

tually. Closed Activities cannot be opened again.

Purpose of the MPT is incrementally altering the stage of an Activ-

ity. The state diagram of such an increment is shown in figure 6.12

for an arbitrary stage n.

As long as the status is in progress, and all preconditions are

satisfied (e.g.: All commands have been successfully uplinked!), the

Activity can be altered towards the next stage (a→ b). This process

is repeated until the Activity reaches its final stage nfinal, after which

it is closed eventually (c → d).

If the preconditions for a nominal stage alteration are not or

cannot be satisfied, the status is set to failed. Setting an Activity

into the failed status is always accompanied by an alteration of the

stage (a → f). This shall indicate that reaching the next stage n+ 1

has failed.

Under certain circumstances (e.g. in case of a conflict) it can be

necessary to suspend the Activity processing. A suspended Activity

cannot be altered, unless it is resumed again (e → a). Altering

a suspended Activity means that the Activity has failed (e → f).

200 6 - Mission Planning

Stage
n

Status
m

In Progress Suspended Failed Closed

a

b

c

d

e

f

...

...

...

...

...

...

n

n+ 1

nfinal

Figure 6.12: Incremental Change of the Activity State

6.2 - The Activity 201

This happens for instance when the execution time of a suspended

Activity has elapsed.

The increment as sketched in figure 6.12 is repeated a couple of

times until the Activity has reached its final stage or has failed. The

complete state diagram is shown in figure 6.13. Incrementally alter-

ing the Activity state in the described fashion has the benefit that

the Activity state can be set with a very limited number of simple

functions (fig. 6.14). Since the next state is always a function of the

existing one, and since only a limited number of basic transitions

are possible (fig. 6.12), those functions don’t need any arguments,

which protects the Activity state from being corrupted.

Figure 6.13 depicts the entire state diagram an Activity goes

through during its life. It begins when the Activity is requested by

the initiator. If it is not rejected, the Activity is marked as scheduled

on ground. During this state the Activity is prepared for transmis-

sion, which means that command release times are determined and

the activity is constantly checked for conflicts.

Upon release time, the Activity, respectively the commands in

the sequences, are transmitted to the spacecraft and added to the

on-board schedule, if not executed right away. Once the on-board

software has started executing the commands, the stage in process

is reached.

An executed Activity of course cannot be suspended anymore.

After execution, the Activity is verified by means of satellite TM,

and closed eventually.

In order to enable a human operator to follow the current Activity

state conveniently, each of the 19 states can be interpreted by means

of a translation table, which is implemented in the state object (tab.

6.2).

6.2.4.1 State Machine

The conditions for an Activity to enter the next stage strongly de-

pends on the present status of the Activity. If for example the Ac-

202 6 - Mission Planning

Stage
n

Status
m

In Progress Suspended Failed Closed

Requested

Scheduled
on Ground

In
Transmission

Scheduled
on Board

In Process

Executed

Verified

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 6.13: Complete Activity State Diagram

6.2 - The Activity 203

State

+ alterStage() : state

+ susepend() : state

+ resume() : state

+ setFailed() : state

+ close() : state

Figure 6.14: Selection of Member Functions used for the State Modifica-
tion - Each function returns the resulting two-dimensional
state vector, informing the caller about the effect of the
function call.

Table 6.2: State Translation Table - Each state can be translated into a
human understandable interpretation.

State Translation Status

1 requested (initial state)

In Progress

2 scheduled on ground
3 in transmission
4 scheduled on board (transmitted)
5 in process
6 executed
7 verified

8 closed Closed

9 on hold

Suspended
10 withdrawn
11 transmission suspended
12 suspended on board
13 execution suspended

14 ground scheduling failed (rejected)

Failed

15 release failed
16 transmission failed
17 processing failed
18 execution failed
19 verification failed

204 6 - Mission Planning

tivity is scheduled on ground (2), the next stage in transmission

is entered when the release time of the first command is reached.

Switching from in process (5) to executed is possible the moment

the Mission Control System (MCS) has verified the execution of all

commands. Purpose of the MPT is to implement the incremental

state machines for each of the defined states (1–19).

If the Activity features a command sequence and/or a resource

demand (sec. 6.2.3.1), the Activity state can be derived from the

state of these commands and from whether the spacecraft state sat-

isfies the resource demand or not. If the Activity neither specifies a

command sequence nor a resource demand, the state of the activity

depends on the state of the child objects.

Due to the simplicity of the state increment as shown in figure

6.12, the parent stage can be determined by means of some simple

functions.

As long as the Activity has not entered the stage in process (n =

5), the stage of the parent activity is equal to the maximum child 1

stage.

nparent = max{nchild, 1, nchild, 2, . . . } if nparent < 5 (6.9)

For instance, the parent stage becomes scheduled on board if that is

the stage of at least one child even though others are still in trans-

mission. The moment the stage in process is reached, the parent

stage is equal to the minimum child stage.

nparent = min{nchild, 1, nchild, 2, . . . } if nparent ≥ 5 (6.10)

So the parent is only considered executed if all child tasks have been

executed, as well as the parent is only considered verified if all child

tasks have been verified.

1The concept of parent and child relationship between Activities is introduced
in section 6.2.5

6.2 - The Activity 205

The determination of the parent status m is a little more sophis-

ticated. The following logic is foreseen:

• The parent status is in progress if at least one child is in

progress and no child has failed.

• The parent status is suspended if all children are suspended.

• The parent status is failed if at least one child has failed.

• The parent status is closed if all children are closed.

Unlike the stage, the status can also be set top-down. Suspending

the parent activity triggers a suspension of all child activities, as

resuming the parent triggers the attempt of resuming the children.

Accordingly, all children are set failed if the parent is set so.

6.2.4.2 On-Board Schedule Synchronization

The execution of time-tagged TCs is usually managed by one or more

schedules within the satellite on-board software ([9], p. 104). Under

certain circumstances, e.g. in case of a system mode fallback, these

schedules usually become suspended. Activities can be associated

with these on-board schedules. Through the creation of an Activity

schedule for a particular on-board schedule, and through monitoring

the appropriate system parameter indicating the run-sate of the on-

board schedule, the Activity status can be synchronized with that

on-board schedule. This allows for the automatic suspension of all

affected Activities in case of a system mode fallback. After a suc-

cessful recovery and a resume of the appropriate on-board schedule,

these Activities are resumed too.

The implementation of a synchronization with an on-board sched-

ule is not further pursued here. However, the possibility of creating

independent Activity Schedules for various system components (such

as on-board schedules) will be dealt with in section 6.5.1.2, in the

course of the discussion of the constellation planning.

206 6 - Mission Planning

6.2.5 Nested Activities

An important quality of an Activity as a scheduled object is the

possibility of nesting it. This allows for the splitting of a certain task

(parent) into various subtasks (children) as shown in figure 6.15a.

The implemented concept is recursive, which means that a child of

a parent can have further children and become a parent itself.

A child Activity is no owned attribute of its parent. Instead,

parent and child objects are referenced by means of their UUID (fig.

6.15b). This is because each Activity shall be managed separately as

an independent element in the schedule. Yet, a software component

like the MPT that manages an Activity must be capable of accessing

those referenced objects. This can be achieved efficiently by means

of pointer maps as implemented by [98]. A pointer map is a concept

that allows for call by reference accesses to objects in the memory.

The object pointers in the map are identified with a unique key, in

this case the Activity UUIDs.

The concept does not make a restriction in terms of the Activity

executor, and thus the schedule the Activity is part of. It is foreseen

that parent and child tasks can be executed by different entities, as

well as each child can have a different executor. As a consequence,

each child Activity under a parent task might be executed by a

different system ans thus be managed by a different MPT.

Examples where this concept is taken advantage of are constel-

lation Activities, discussed in section 6.5.1, and Link Activities, dis-

cussed in section 6.2.6.1.

6.2.6 Derived Activities (Examples)

In satellite operations there are always types of activities which play

an elevated role to the scheduling process and/or the conduction of

the mission. Two of such are discussed in the following.

6.2 - The Activity 207

Activity
#00017

Activity
#00901

Activity
#00030

Activity
#04072

Activity
#00019

Activity
#00009

Task
(Parent)

Subtask
(Child)

(a) Nested Structure of Activities - Parents can have a number of children, as
those children can be parent of their children.

Activity
#00017

Activity
#00030

Activity
#00019

Activity
#00009

NULL

Parent:

00017

Parent:

00030

Parent:

00030

Parent:

Children: Children: Children: Children:

00901

00030

04072

00019

00009

(b) Referencing Nested Activities - Children are no attributes of the parent
activity, but referenced by means of their ID.

Figure 6.15: Structuring and Referencing Nested Activities

208 6 - Mission Planning

6.2.6.1 Link Activity

A link describes a remote data connection between at least two com-

munication partners. Physical links between ground and space are

usually realized by means of electromagnetic waves, where inter-

satellite links (ISL) often rely on optical systems. Due to the larger

bandwidths and the lower regulatory efforts, optical systems are re-

cently considered for space-to-ground communication too [78].

A temporary link between a satellite and a ground station is also

referred to as pass ([134], p. 180).

Successfully enabling a data link, requires certain activities by

all communication partners. Prior to communication, receiver and

transmitter must be switched on, and the receiver must be locked on

the sender signal, which requires a line of sight connection between

both parties, and synchronization of the receiver with the carrier

wave. In turn, communication is terminated if at least one compo-

nent in the link chain is disabled, or if the line of sight connection is

lost.

For the scheduling process within the MPT, the link planning

plays an important role. Due to the nature of space flight, commu-

nication with a satellite is usually limited to a couple of minutes a

day. Consequently, satellite activities must be uplinked in advance

and the satellite takes care of the time-tagged execution. The ques-

tion is: When can those commands be uplinked? The Link Activity

is the means of determining when and how many TCs can be re-

leased.

A Link Activity describes a single direction communication; ei-

ther an uplink, or a downlink. If a pass shall be used for up- and

downlink, two Link Activities must be scheduled. Each Link Ac-

tivity is parent of a couple of child Activities. Figure 6.16 shows

the example structure of a Link Activity between a satellite and a

Ground Station (GS). The child Activities comprise those techni-

cal processes in space and on ground which are necessary to enable

6.2 - The Activity 209

Link Activity
(parent)

Enable Link
(child)

Disable Link
(child)

Enable Link
(child)

Disable Link
(child)

Executor:
Satellite MPT

Executor:
Ground Station MPT

Figure 6.16: Link Activity - A link Activity is composed from a couple
of child activities, which enable the link and disable the
link eventually. Enabling/Disabling a link requires action
by both communicating systems (e.g. the satellite and a
ground station). Therefore, the appropriate child activities
need to be planned in the satellite schedule as well as in
the ground station schedule.

the link (e.g. transmitter activation), and those to disable it again.

Consequently, these child Activities have to be added to the satellite

schedule as well as the ground station schedule 2.

The time frame during which commands can be released is the

duration between acquisition of signal (AOS) and loss of signal (LOS).

AOS is reached if all link enabling Activities have been executed suc-

cessfully and the phase has begun. The phase is the period during

which GS and satellite have a line of sight connection (sec. 5.3.2.4).

In turn, LOS is reached if either the phase is over or one system has

started executing a link disabling Activity. An example schedule for

a ground station pass is shown in figure 6.17.

By means of the link duration T , the available bit rate, and the

frame size the number of commands that can be uplinked during one

2Through the specification of appropriate resource demands by the GS activ-
ities, the GS can be allocated, and thus blocked for other satellites. See Example
II in section 6.2.3.2.

210 6 - Mission Planning

AOS LOS

T

t

GS

Satellite

Phase

Link

Enable Link

Enable Link

Disable Link

Disable Link

Figure 6.17: Link Duration - The time between AOS and LOS during
which data transmission is possible.

pass can be determined. The principle also applies to the scheduling

of a TM downlink.

In figures 6.16 and 6.17 an example of a ground station pass is

considered, which describes a link between two communication part-

ners. The concept however does not make a restriction in terms of

how many systems are involved into the transmission. If for example

relay systems shall be used, the appropriate amount of child Activi-

ties can be added to the link Activity. In that case, AOS is reached if

the link is enabled successfully by all systems in the communication

chain. The conditions for LOS are accordingly.

6.2.6.2 Maneuver Activity

A maneuver describes a change of the satellite orbit, achieved through

a deliberate acceleration or deceleration along the flight path ([91],

p. 117). In space flight, maneuvers are used

• for the spacecraft injection into a target orbit,

• for rendezvous,

• for docking,

6.2 - The Activity 211

• for de-orbiting and landing,

• or for station-keeping.

Station-keeping is required to encounter for orbital drifts evoked by

natural disturbances [17]. Formation satellites in particular demand

for a steady station-keeping to maintain a target relative position

between each other [129].

The change of the orbit can be achieved through the utilization

of external impacts (swing-bys, atmospheric drag maneuvers, etc.),

or through the active appliance of thrust. In case of an impulse

maneuver, a relatively large amount of thrust is applied over a short

interval, while low thrust maneuvers slowly change the orbit over

a longer period [91]. All of these possibilities are covered by the

concept described here, since the detail principle based on which the

orbit change is achieved is not taken into account by the Mission

Planning.

A Maneuver Activity is characterized by the initial orbit, the

target orbit, and a duration. An orbit can be described e.g. by

the six Keplerian elements. So, within the Maneuver Activity initial

and target orbit are described through the appropriate number of

absolute demands specifying the states of these six elements at the

beginning (tb) and the end (te) of the maneuver:

Rb =

a(tb)

ε(tb)

ι(tb)

Ω(tb)

ω(tb)

τ(tb)

and Re =

a(te)

ε(te)

ι(te)

Ω(te)

ω(te)

τ(te)

A Maneuver Activity can be verified through comparison of the

planned target orbit (Re) with the one that has actually been achieved.

Accordingly, the scheduled initial orbit (Rb) can be compared with

the real initial orbit in order to estimate the success of the maneu-

212 6 - Mission Planning

ver in advance. A noticeable orbit deviation at the beginning of the

activity would trigger as suspension of the Maneuver.

Another resource that is consumed during a maneuver is the

propellant mass provided by the spacecraft. Specifying the fuel con-

sumption allows verifying whether the spacecraft can provide enough

specific impulse for the maneuver.

The determination of the maneuver parameters: the orbits, and

the required impulse is not implemented within the MPT. This must

be achieved by appropriate Agents or the Flight Dynamics Tool

(FDT). Discussing them is out of the scope of this work.

6.3 Mission Planning Tool Architecture

Figure 6.18 features an overview of the functional MPT architecture.

It is the implementation of a layered approach, where each layer is

either responsible for a certain aspect in the scheduling process, or

for the maintenance of the MPT itself. The layers are hierarchi-

cally organized in a top-down fashion, where the upper layers either

have the authority on the lower ones, or define their work load. An

introduction of each layer is pursued in the following.

6.3.1 Configuration Layer

The configuration layer is the top layer of the MPT architecture,

as it is basically in charge of all processes executed by the layers

underneath.

The MPT implements multiple threads and processes for the var-

ious purposes. At component launch, the configuration layer takes

care that each process and each thread is engaged, and that all el-

ements within the tool are initialized as specified by the System

Information Base (SIB) (sec. 5.3.3.1).

6.3 - Mission Planning Tool Architecture 213

Gateway

Interface

Activity IF

Interface

Data IF

Release Time
Management

Process

Release
Control

Process

Resource
Propagation

Process

Orbit
Propagation

Process

Activity Management

Monitoring & Control / FDIR / (Re-)Configuration / . . .

Scheduleaccess
to:

TM / Dataaccess
to:

1

Thread

2

Thread

3

Thread

4

Thread

· · · # 19

Thread

Message Oriented Middleware

5

4

3

2

1

1

2

3

4

5

Configuration Layer (sec. 6.3.1)

Scheduling Layer (sec. 6.3.2)

Operative Layer (sec. 6.3.3)

Interface Layer (sec. 6.3.4)

Communication Layer (sec. 6.3.5)

Figure 6.18: Mission Planning Tool Functional Architecture

214 6 - Mission Planning

After the tool has been launched, the configuration layer is in

charge of monitoring all the other software elements within the com-

ponent. That monitoring & control feature allows tracking the state

of each thread and process, as it allows for starting, stopping, paus-

ing, or resuming them. Purpose of this feature is enabling a user

or an internal Failure Detection Isolation and Recovery (FDIR) to

control and re-instantiate threads and processes if necessary.

6.3.2 Scheduling Layer

In section 6.2.4 of this chapter it has been pointed out that an Ac-

tivity can be in 19 different states (fig. 6.13). These states precisely

define what happens with an Activity during the scheduling pro-

cess. Purpose of the scheduling layer is the implementation of state

machines that determine the current state of an Activity based on

present boundary conditions. That state is then the basis for the ac-

tions happening on the layers underneath. These actions then have

an impact on the boundary conditions, which then are considered

for the update of the state again. That process continues until the

Activity has passed all stages and is closed eventually.

For the determination of an Activity state, the scheduling layer

considers a number of boundary conditions. If an Activity contains a

command sequence and/or specifies a resource demand, the Activity

state is determined on the basis of:

• the state of the operated system, respectively the state of the

consumed resource(s),

• or the state of the commands in the sequence

If an Activity is parent of one or more child Activities instead, the

state of the parent is determined only on the basis of the child Ac-

tivities’ states. At this point of the MMOS development it is not

allowed that Activities have children, and have command sequences

and/or resource demands. This is simply due to the fact that consid-

6.3 - Mission Planning Tool Architecture 215

Activity Management

1

Thread

2

Thread

3

Thread

4

Thread

· · · # 19

Thread

Figure 6.19: MPT scheduling layer

ering children and commands/resources for the state determination

could give ambiguous results.

The determination of the parent state as function of the child

states has been introduced in section 6.2.4.1 and won’t be discussed

further in this section.

The state determination on the basis of commands and the re-

source demands is a little more complicated though. It also depends

on the present state of the Activity too. This is why the MPT

scheduling layer implements 19 independent threads for this task

(fig. 6.19). At each state an individual thread checks those boundary

conditions, which must be checked for an alteration of the Activity

in that particular state. If a condition is satisfied, the Activity is

transferred into the next stage (fig. 6.13). In case of a conflict or a

problem, the Activity is either suspended or marked as failed.

Each thread implements a state machine like the one depicted

in figure 6.20. That figure displays those checks, which mast be

performed during state 1 (requested). As a result of these checks,

the Activity is either suspended, or altered towards the next stage:

scheduled on ground.

Almost every loop begins with a resource check. If that check

indicates a conflict that can be resolved by suspending one or more

Activities with lower priority, or if no conflict is detected at all, the

Activity processing is kept on. Conflicts that cannot be resolved

result in the suspension of the Activity.

216 6 - Mission Planning

Start

For all Activities in state 1 (requested)

check resource
demand

Conflict

check if marked
for approval

compare priorities

> Pmax

suspend conflicting activities

Success

check resource demand

Conflict

Marked

alter stage

suspend

check if activity
is approved

Approved

End

no

yes

no yes

no

no

yes

yes

Figure 6.20: Simplified Flow Diagram of a Scheduling Thread - The flow
diagram shows the transition of a requested Activity into
the next stage.

6.3 - Mission Planning Tool Architecture 217

Release Time
Management

Process

Release
Control

Process

Resource
Propagation

Process

Orbit
Propagation

Process

Figure 6.21: MPT operative layer

Suspended activities are handled by threads 9 to 13. These

threads constantly check if the conditions for the resume of an Ac-

tivity are satisfied. If a resume is not possible anymore, for instance

when the execution time has passed, the Activity is marked as failed

and is closed eventually.

All state machines, which are implemented in threads 1 to 19,

are compiled in appendix B.2.

6.3.3 Operative Layer

During each state of the scheduling process, particular actions need

to be performed by the MPT. For example, when an Activity is

in state 3 (in transmission), the commands need to be released.

And when an Activity is in progress, its recourse demand must be

considered for the detection of conflicts. The operative layer (fig.

6.21) is the layer where these actions are implemented. It consists

of the following components:

• the Release Time Management,

• the Release Control,

• the Resource Propagation,

• and the Orbit Propagation.

218 6 - Mission Planning

6.3.3.1 Release Time Management

Purpose of the release time management is the determination of the

command release times, which refer to the time when the command

is sent from the schedule to the executing system via the MCS. For

the determination of that time, the release time management must

consider a number of boundary conditions though, such as

• the command execution times,

• the duration of the link, respectively the times of AOS and

LOS,

• the available uplink bandwidth,

• and the estimated size of the TCs.

Before a release time can be determined, an appropriate window

for the uplink must be identified. That window must be before the

command execution time. Windows for command uplink are the link

durations between AOS and LOS of a satellite pass, which can be de-

termined on the basis of the scheduled Link Activities (sec. 6.2.6.1),

and the phases during which satellite and ground station have a

line-of-sight connection (fig. 6.17). These phases, and the duration

of those phases can be requested at the FDT via the appropriate

interface (sec. 5.3.2.4).

The command release time is determined automatically for all

commands in Activities, which are in state 2 scheduled on ground or

in state 11 transmission suspended.

This is the nominal process, which is quite straight forward. The

determination of the release times can become rather complicated

though, especially in case something unforeseen happens. For in-

stance, the command transmission can fail. In this case the release

time management must trigger another attempt through the defini-

tion of a new release time. Or the duration of a link can be too short,

or the available bandwidth is too low to uplink everything, such that

the upload of Activities must be split among different passes.

6.3 - Mission Planning Tool Architecture 219

Situations like these must be covered by the release time man-

agement to guarantee a reliable transmission to the spacecraft.

6.3.3.2 Release Control

The working principle of release control is very simple. Its only

purpose is to mark those commands, which are ready for release.

As mentioned in section 5.3.2.1, commands are released directly

from the schedule, and transmitted to the MCS via the command

interface. The release control is the component of the MPT which

triggers the transmission by tagging those commands in the schedule,

which shall be released.

Release control tags all commands of all Activities, which are in

state 3 in transmission. This enables transmit by the schedule, when

release time is reached.

Accordingly, all tagged commands of Activities, which are not in

stage 3 will be untagged. This way the transmit by the schedule is

disabled again.

6.3.3.3 Resource Propagation

In section 6.2.3 the resource demand attribute of an Activity has

been introduced. The parameters within these objects can be used to

propagate the state of a resource variable, through the application of

an integration scheme. The resource propagation is the component

where this integration takes place.

The propagation of a resource variable into the future requires an

initial state R(t), which is the last known state of the resource gained

from telemetry, and a number of boundary conditions. These bound-

ary conditions are the integration parameters from the resource de-

mand objects (fig. 6.22). With these information in place the run

of a resource variable can be simulated.

The propagation of a resource is triggered asynchronously every

moment the initial state is updated, or when an Activity consuming

220 6 - Mission Planning

Resource
Propagation

Resource Demand

Resource Demand

Telemetry R(t)

R̃(t)

Figure 6.22: Resource Propagation Black Box Functionality - The esti-
mated resource level R̃(t) is a function of the demands and
the actual level R(t), gained from telemetry.

that resource is suspended, resumed, removed from, or added to

the schedule. The simulation results are stored in a propagation

database for each resource separately. A conflict emerges, when the

simulation shows that a resource is consumed extensively, or when

diametrical demands cannot be satisfied.

Furthermore, the resource propagation keeps track of all the Ac-

tivities which will consume a resource. In case of a conflict, that

information is requested by the threads in the scheduling layer. Re-

solving a conflict means, that at least one of those Activities involved

needs to be suspended. That decision is made in the scheduling layer

as well. Suspending one Activity automatically triggers the propa-

gation process again. The conflict is resolved, if after the suspension

the simulated resource level remains within limits, and no diametri-

cal demands are detected.

6.3.3.4 Orbit Propagation

The concept of orbit propagation is very similar to the concept of

resource propagation. The major difference is that the orbit prop-

agation does not simulate system resources, but the future satellite

orbits based on the scheduled maneuver Activities (sec. 6.2.6.2).

In case of the orbit propagation the initial state R(t) is the

present orbit. The respective orbital parameters can be derived

from telemetry or gained from other sources like TLEs. Accord-

ing to the resource propagation, the orbit propagation is triggered

6.3 - Mission Planning Tool Architecture 221

Interface

Activity IF

Interface

Data IF

Scheduleaccess
to:

TM / Dataaccess
to:

Figure 6.23: MPT interface layer

every moment the present orbit information has been updated, or

when maneuver Activities are suspended, resumed, removed from,

or added to the schedule.

Like the resource propagation, the orbit propagation keeps track

of planned maneuver activities. A conflict emerges, when the speci-

fied target orbits cannot be reached. In such a case the same mech-

anisms for conflict resolution apply as described in the previous sec-

tion.

Unlike the resource propagation, which can be achieved through

very simple integration schemas (sec. 6.2.3.1), the simulation of the

future orbit requires specialized program libraries. This is why the

orbit prediction does not happen internally the MPT, but within the

FDT, which has been described in section 5.2.2.3.

6.3.4 Interface Layer

As indicated many times, the MPT does not keep any information,

it only reads and updates information that is stored elsewhere. The

interface layer is the means of getting access to that data.

Three different types of interfaces implemented in this layer are:

• the Activity interface,

• the Data interface,

• and the Phase interface (not shown in figure 6.23).

222 6 - Mission Planning

The Activity interface is the object that enables access to the

system schedules. All read and write requests by the scheduling layer

components or the operative layer components involving schedule

data are made via the Activity interface. This covers:

• reading and updating Activity states,

• reading command statuses,

• updating release times,

• tagging commands for release,

• etc.

The data interface allows accessing the satellite TM, managed

and provided by the Data and Archives System (DAS) (sec. 5.2.2.2).

This information is needed for the determination of the beginning

conditions R(t) of the resource and orbit propagations. During the

Activity verification process carried out by thread number 6, the

interface is needed to compare the actual resource state with the

propagated one.

Via the phase interface the MPT can request the occurrences

and the duration of satellite passes over ground stations at the FDT.

These information are needed for the determination of release times

by the release time management.

6.3.5 Communication Layer

All data traffic between the MMOS components is routed via the

MOM. Responsible for the connection of the MPT to the MOM is

the communication layer. The software component that facilitates

the communication is the so called gateway (fig. 6.18). By means of

the gateway, the MPT can subscribe for the different message queues,

which handle and buffer the messages between the components.

Through the creation of different message queues in the middle-

ware, and the definition of message types, the gateway ensures that

6.4 - The Schedule 223

information is addressed to the correct interface. In turn, outgo-

ing messages are automatically added to a particular sending queue.

The MOM ensures that messages are transferred to the target com-

ponent, and that messages are not getting lost in the event of the

receiving end being down at the moment of transmission. For the

latter, the MOM keeps messages in the buffer until the transmission

has been executed.

6.4 The Schedule

To this point of the discussion, it always has been pointed out that

the MPT manages the mission schedule, and that it has the sovereign

authority of it. What has not been mentioned yet is that the sched-

ule itself is a separate, self-contained component within the MMOS,

which fulfills a series of dedicated functionalities. MPT and sched-

ule are the two sides of the same medal though, which is why a

description of the MPS could not be sufficient without going into

some details of the schedule architecture too.

The functional architecture of the schedule is depicted in figure

6.24. In a way it is similar to the design of the MPT, which is due to

the fact that all components integrated into the MMOS must feature

the same communication layer.

On top of the gateway, the schedule implements the counter part

of the Activity interface by means of which the schedule receives the

requests from the MPT (or any other component demanding sched-

ule information). The requests are handed over to a component

called the Schedule Management, which handles the requests and

returns the required information. Purpose of that schedule manage-

ment is not only the handling of such request, but also the mainte-

nance of the database underneath.

The schedule data is persistently stored in a PostgreSQL database

[127]. Whenever a request is received, the schedule management

converts that request into a query statement in order to return the

224 6 - Mission Planning

Schedule

Gateway

Interface

CMD IF

Interface

Activity IF

Schedule
Data

Schedule Management

MPT

MCT

MOM

Figure 6.24: The System Schedule Integrated Into the MMOS Architec-
ture

requested data or to write an entry. Since the schedule management

is the instance actually writing the low-level schedule data, it is also

the component in charge of the schedule consistency. Thus, it must

protect the schedule from unauthorized access, as it must prevent the

schedule from being corrupted (e.g., through simultaneous access).

As mentioned during the discussion of the MPT release manage-

ment, the schedule is also the component that transmits the com-

mands to the MCT. Releasing commands from the schedule is just a

matter of querying the commands, which are tagged for release (sec.

6.3.3.2). When release time is reached, commands which are appro-

priately tagged are sent via the command interface. This is also the

interface by means of which the schedule receives acknowledgement

information back from the MCT. These acknowledgement informa-

tion is written into the schedule by the schedule management and

can be requested later on by the other components via the Activity

interface.

6.4 - The Schedule 225

Figure 6.25: Activity Editor of the MPS GUI, implemented by [5]

6.4.1 Graphical User Interface

The MMOS Graphical User Interface (GUI) is realized as a web-

application. Through the implementation of the interfaces intro-

duced in section 5.3.2 that application allows interacting with the

various MMOS microservices. Of course, this applies to the MPS

and the schedule component too. Via the Activity interface imple-

mented by the GUI, a user can interact with the system schedule.

If a mission planner has write access to the schedule, the appli-

cation allows to create new Activities and add them to the timeline.

Existing Activities can be edited. That write access is very limited

though. For example, users are neither allowed to manually alter

226 6 - Mission Planning

Figure 6.26: Timeline View of the MPS GUI, implemented by [5]

the Activity state, because that is entirely done by the MPT, nor

can they maintain the database underneath.

An example of a mission timeline as displayed within the GUI

is shown in figure 6.26. In this view, the planned activities are

displayed in a Gantt chart that shows the operator the progress of

the mission.

The command list derived from that timeline is displayed in a

different view. In that command view, the operator can also create

and add single commands to the schedule. During automatic op-

erations this is not recommended though, because the system state

6.5 - Constellation Planning 227

resulting from the execution of single commands is not considered

by the resource propagation, and can cause conflicts.

The first version of the MPS including MPT, schedule, and this

GUI was implemented by [5].

6.5 Constellation Planning

This section shall recap what has been introduced so far and show

how the proposed concept supports constellation operations.

Proposed has been an architecture for a configurable and ex-

tendable MMOS, supporting automation by closed loop operations.

Through the definition of appropriate interfaces in space and on

ground, the communication between MMOS and operated system

has been broken down into several abstraction layers. Those layers

are reflected in the control process and thus by the MMOS design.

The MCS interfaces the operated system on application layer,

as it addresses the processes/services implemented in the satellite

on-board software. A state of the art protocol for that application

layer communication is the Packet Utilization Standard (PUS) [41].

Such an application layer protocol does not yet support higher-level

system operations and scheduling though, which is why a protocol

agnostic system layer interface has been introduced, that is the Ac-

tivity. The Activity as a top-level abstraction layer, supports the

scheduling of interrelated system level processes and the resolution

of conflicts even across system boundaries.

With all of that being settled, the conditions for the definition of

a constellation mission within the MMOS are met, as are the con-

ditions for the composition of a Constellation Planning Tool (CPT)

within the MPS. How this can be done shall be elaborated conclu-

sively in the following. This will further show how the requirements

derived from the reference architecture (sec. 3.2) are met by the

concept.

228 6 - Mission Planning

6.5.1 Layout

A CPT consists of multiple Mission Planning Tools. It is therefore

more of an assembly rather than a tool. Following the terminology

introduced in section 5.2.1.1 it should actually be called a constel-

lation planning unit. The term CPT was chosen though to avoid

confusion with the general understanding of the acronym CPU.

An example CPT configuration is shown in figure 6.27.

Every satellite within the constellation is represented by its own

MPT. As usual, the satellite schedule is uplinked via its dedicated

MCT instance. Therefore, each satellite in the constellation can be

operated individually as discussed, either manually by a human or

automatically by a satellite Agent. The individual satellite MPTs

keep track of the schedule and the resource household, regardless by

whom Activities have been scheduled.

If one recalls one of the major objectives formulated in section

3.1, an envisaged quality of constellation operations was the treat-

ment of the entire distributed system as a whole, rather than the

capability of operating n satellites individually. As a consequence,

a CPT must feature an entity that merges the separate satellite

Activities into one single constellation schedule. That entity is the

constellation MPT (fig. 6.27). The constellation MPT does not

manage individual satellite activities, therefore no commands are

extracted from that schedule. Instead, the constellation schedule

contains those parent activities, who’s children are executed by the

different satellites. The child activities are managed individually

by the junior satellite MPTs. Commands from these schedule are

extracted as explained in section 6.4.

As mentioned many times, the Activity concept allows for the

decomposition of a (parent) task into various subtasks (children).

The CPT takes advantage of that. Whenever an entity requests a

constellation Activity, a global parent task is scheduled within the

constellation MPT, while subtasks must be scheduled within each

6.5 - Constellation Planning 229

MPS

CPT

MPT . . .

MCT
x

MCT
y

MCT
z

Satellite
Agent

Const.
Agent

MPT Satellite x

MPT Satellite y

MPT Satellite z

MPT
Constellation

Schedule

Schedule

Schedule

Schedule

Figure 6.27: Mission Planning Layout for the Realization of a Constel-
lation Planning Tool

230 6 - Mission Planning

satellite MPT. Purpose of the constellation MPT is the verification

of the parent task, through monitoring of those child activities ex-

ecuted by each satellites. This approach enables a human operator

to follow the state of a constellation Activity without the necessity

of examining each involved satellite individually. In case of a failed

execution though, the hierarchical parent-child nature of Activities

enables an operator to trace the cause of the problem back to the

satellite where the error occurred.

Within the automatic control process, MPTs are the implemen-

tation of the response action mechanism (fig. 5.20). They do not

provide means of system-level decision making. Any decision making

must be implemented by the Agents.

Purpose of the Agents is the creation of the constellation Activi-

ties and the distribution of child tasks among the satellite schedules.

Making a decision in terms of which satellite does what and when is

generally a non-trivial task though. The more complex the mission

becomes, and the more satellites compete for limited resources (e.g.

time slots for ground station passes), the more likely those tasks

become the matter of optimization problems [92].

Areas in which Agents can be used to implement the decision

making process are manifold. Classical applications in constellation

operations are for example:

• GNC and maneuver planning

• collision avoidance

• pass planning and link scheduling

• payload operations and data downlink scheduling

6.5.1.1 Implementation

Figure 6.27 displays the CPT from a data flow perspective. It has

been emphasized that each satellite schedule, as well as the constel-

lation schedule are managed by a separate MPT. That raises the

6.5 - Constellation Planning 231

Schedule

Gateway

CMD IF Activity IF

Schedule 3 Data

Schedule 2 Data

Schedule 1 Data

Const. Schedule

Schedule Management

MPT3

MPT2

MPT1

Const. MPT

MCT3

MCT2

MCT1

MOM

compare
figure 6.24

Figure 6.28: Implementation of the Constellation Planning

question how such a setup is implemented and how a data flow be-

tween schedules and the different MPTs can be established.

The integration of schedule and MPT for a single system has

been introduced in section 6.4. Implementing a CPT does not work

any way different. It means hosting multiple MPTs, and connect-

ing them to the MOM as usual. Via the MOM, the MPTs can

request schedule data as described above. Yet, instead of one sin-

gle schedule, the schedule management now maintains databases for

each operated satellite, plus one constellation schedule containing

the parent activities (fig. 6.28). This way, a constellation MPT can

obtain information about each satellite schedule by making a request

at one central component.

The release of commands via the individual MCTs works in the

same way as described in section 6.4.

6.5.1.2 Orchestration

A CPT layout as depicted in figure 6.27 needs to be orchestrated

during launch of the MMOS. Again, orchestrating a distributed sys-

232 6 - Mission Planning

Mission
Constellation

Satellite 1

Satellite 2

. . .

Satellite n

Component

Component

. . .

Targets

(a) Decomposing a Mission Into Different Targets by the SIB

Target

. . .

MCS

MPTs

Agents

. . .

registered
components

(b) Registering MMOS Components for Each Target

Figure 6.29: The definition of multiple targets within one mission and
the registration of MMOS components follows the concept
of the SIB, which has been introduced in section 5.3.3.1.
See also figure 5.34.

tem works not fundamentally different from orchestrating a normal

layout.

All information about which components must be instantiated

and registered at the middleware come from the SIB (sec. 5.3.3.1).

Its format allows decomposing a mission into a tree of so called

targets (fig. 6.29a). The difference compared to a single-satellite

mission is that a constellation demands multiple of these targets

being specified. All required MMOS components can be specified

for each target individually (fig. 6.29b).

Basically, every hierarchical system can be decomposed in this

manner, and be represented by the MPS. It does not necessarily have

to be a constellation. Already a single satellite consists of several

6.5 - Constellation Planning 233

subsystems and components, which could be represented, scheduled

and commanded independently from different MPTs.

6.5.2 Reflection of Architecture Requirements

In section 3.2 a reference constellation architecture has been dis-

cussed against which the MMOS has been designed. The following

recapitulation briefly shows how the characteristics of that reference

architecture are reflected by the MMOS, the CPT, and the proposed

Activity concept.

6.5.2.1 Constellation Size

The number of satellites that can be registered at the MMOS is

limited by the address range, and the number of components and

entities also registered at the system. A 16-bit address range was

considered appropriate to register multiple thousand MPTs at the

middleware, which is more of a theoretical scenario though. Thus,

the address range is probably not the limiting factor here.

Instead, the scaling capabilities of the MMOS are limited by the

computing performance of the underlying hardware, the available

server size, and the performance of the middleware.

6.5.2.2 Operating Principle

In section 3.2.3 it has been stated, that a constellation can achieve a

mission goal in two different ways. In a symbiotic system, each satel-

lite fulfills a dedicated subtask of a top level goal. The overall goal

can only be achieved if all satellites perform correctly. Collaborative

systems instead are systems in which each satellite performs individ-

ually, and it does not matter by which satellite a task is performed

[117]. Large fleets of earth imaging satellites are a good example for

the latter.

234 6 - Mission Planning

Both operating principles are supported by the mission planning

concept.

The distribution of tasks amongst the satellites of a collaborative

system is rather simple. Under certain circumstances, it does not

even require a constellation MPT, because the individual Activities

are executed independently or autonomously by the satellite [103].

Symbiotic systems however require a correlation of satellite Ac-

tivities. This is why representing such a system is not really a matter

of the CPT orchestration, but the distribution and the correct nest-

ing of Activities. Two examples are shown in figure 6.30.

6.5.2.3 Homogeneity, Distribution and Service Availabil-

ity

Because, every satellite is registered as a standalone mission in the

SIB, and since each satellite can be addressed and planned individu-

ally, constellation planning does not make any restrictions in terms

of the constellation homogeneity. Consequently, the MMOS sup-

ports constellations of identical satellites, as well as inhomogeneous

systems.

The proposed scheduling concept further makes no restrictions

in terms of the spacial distribution of the constellation (or the for-

mation). Naturally, operations of satellites in close proximity goes

along with a series of challenges. But those are commonly solved by

on-board autonomy or they need to be handled within the decision

making process. For example, the scheduling of passes is more prob-

lematic, if the satellites competing for link time always appear at

the same time. The problem of course depends on the specific orbit

and shall not further discussed here.

Furthermore, no restriction is made in terms of the availability of

the constellation. The proposed concept is indeed designed for the

scheduling of Activities that are executed when there is no connec-

tion to the satellite, but it can of course be applied to contact-only

operations as well.

6.5 - Constellation Planning 235

Constellation Activity
Executor: Constellation

Activity
Executor: Satellite x

Activity
Executor: Satellite y

Activity
Executor: Satellite z

.

. . .

Task (Parent)

Subtask
(Child)

(a) Example I - Simple distribution of subtasks

Constellation Activity
Executor: Constellation

Activity
Executor: Satellite x

Activity
Executor: Satellite y

Activity
Executor: Satellite z

.

. . .

. . .

(b) Example II - Certain satellite activities require the successful execution of
further child activities by other satellites. (e.g. Relay satellite x can only
forward image data, if satellites y and z take pictures.)

Figure 6.30: Correlating nested Activities in a Symbiotic System

236 6 - Mission Planning

Systems that rely on inter-satellite links are also covered, as the

link Activity does not dictate how the link between two communi-

cating systems is established. The concept only demands that each

system actively commanded for the establishment of a link is repre-

sented by an MPT.

237

7

System Test and Verification Envi-

ronment

One of the design requirements of the MMOS was reusability (sec.

5.1.2.1). Consequently, the system has been designed in a way it can

be configured for a new mission easily. However, the compatibility of

the configured Operating System (OS) with the operated system still

needs to be verified in each individual case, which is why appropriate

test means are necessary. A suitable test facility for the system had

been designed and integrated already prior to the development of

the MMOS itself.

The development of a verification architecture was also driven

by the multi-mission character of the to be tested OS. This is why

reusability was one of the quality criteria also for the simulation

infrastructure. New simulator models of a system added to MMOS

should not have to be developed from scratch.

This chapter introduces the architecture and the most impor-

tant elements of the MMOS test facility. Core of that facility is

the satellite system simulator, which processes the MMOS outputs

and generates its inputs. Fundamentals of system simulation and

its value for software development were discussed in section 4.5.3

238 7 - System Test and Verification Environment

already. The following sections cover some specifics of the imple-

mentation and how they support the idea of multi-mission use.

7.1 System Simulation

Purpose of system simulation as described here is the modelling of

the state of an operated system (usually a satellite) in time. This

is realized through numerical simulation models, implementing the

temporal behavior of a component, an entire system, or a physical

phenomenon [47]. Several aspects of the system simulator realization

are discussed in the following.

7.1.1 Model Libraries

The general problem of a verification approach with a simulator

in the loop is the time consuming development of a sound system

simulation. Why is that?

Developing a simple simulation model is indeed very easy, es-

pecially if one is supported by a modelling framework like SimMF.

If however a certain model fidelity is required, the implementation

efforts can increase superlinearly so that in the end the costs can

outweigh the benefit of the simulator.

Furthermore, a sound system simulation is only possible, if the

simulator has reached a certain degree of implementation. This is

because the simulation of a certain phenomenon does not only de-

pend on the availability of a number of models, it also depends on

the interconnection of these models. If that interconnection is not

implemented correctly, or just one model in the chain is missing, the

entire simulation can fall apart. The fact that the simulation of a

phenomenon, a component, or a system normally depends on a num-

ber of interconnected models, makes system simulators themselves

extremely complex and difficult to test (sec. 4.5.1.3).

7.1 - System Simulation 239

This is why, efforts of realizing a system simulator should be

initiated already during the very early stages of a satellite mission

project. On the other hand, a sound simulation is only possible if

enough knowledge about the to be simulated system is available,

knowledge that usually has not been gained during early project

stages. That discrepancy and the fact that a simulator is an addi-

tional, costly development in parallel to the actual satellite project,

can result in a low acceptance for a software based system simulator,

especially in smaller projects.

These problems can be solved by adopting some basic design

principles. First of all, models should be kept as simple as possi-

ble. Not everything that can be simulated also should be simulated.

Secondly, not every model needs to be designed from scratch. For

almost every component type or physical phenomenon, modelling

approaches exist which are sufficiently accurate for a system mod-

elling.

In order to support future missions with the development of a

system simulator, efforts were made to reduce model implementation

cycles. One result of these efforts has been a library of generic models

that later mission specific models can build on.

The model of a satellite component is indeed highly mission spe-

cific. Nevertheless, every component, for example a reaction wheel,

features certain qualities that can be simulated by means of generic

physical models, in this case: a rotating mass body. Implementing

a mission specific device is then just a matter of wrapping device

specific functionality around the basic physical model.

As explained in section 4.5.3.4, modelling describes the process

of mapping certain qualities of a real object into an artificial repre-

sentation of the object. Depending on the kind of object and the use

case of the model, the number of qualities that need to be simulated

varies. Within satellite system simulation, only a limited number of

physical qualities of a component are usually of interest. These are:

240 7 - System Test and Verification Environment

• geometric qualities (position, attitude, . . .)

• kinetic qualities (mass, inertia, . . .)

• electric qualities (internal resistance, capacity, . . .)

• thermal qualities (heat capacity, emissivity, absorptivity, . . .)

Intelligent devices with built-in controllers further require pure func-

tional models, which simulate the observable behavior of the inte-

grated circuits, for example the reaction of a command, or a boot

process. As these models simulate very specific qualities of the de-

vice, they usually cannot be generalized.

In the following section the scope of the modelling of the relevant

physical phenomena shall be introduced.

7.1.1.1 Environment and Dynamics Modelling

The Environment and Dynamics Models (short: EnvDyn) refers to

a group of models in charge of calculating position and attitude of

the simulated object in space. Core of the EnvDyn is a structure

model, representing the mass and inertia properties of that object

(e.g., a satellite).

In orbit, the satellite structure is exposed to several forces and

torques. Some of these are generated by the satellite actuators, and

some are due to the space environment. Purpose of the EnvDyn is

further the simulation of those forces and disturbing torques, induced

by the environment. These are generated e.g. by:

• the earth gravity and the gravity gradient,

• the residual atmosphere,

• the gravity of the moon (only on higher orbits).

The EnvDyn determines satellite position, attitude, and velocity

vectors of the satellite through the integration of all attacking forces

and torques by means of the Runge-Kutta Method [32] (fig. 7.1).

7.1 - System Simulation 241

Environment
&

Dynamics

Forces
∑ ~F

Torques
∑ ~T

Total Mass m

Inertia I

Position ~x

Attitude ~ψ

Velocity ~v

Angular Rate ~ω

Figure 7.1: Inputs and Outputs of the Environment and Dynamics Sim-
ulation

Position and attitude are important inputs for many other models,

whose functionality depend on that information (sensor models, solar

cell models, etc.). But also the EnvDyn itself needs these simulation

results, since the disturbing environmental forces are again functions

of the current position and attitude of the satellite [108, 7].

All computations related to position and attitude are performed

with respect to an inertial reference frame. For those models which

require the simulation results with respect to a different coordinate

frame, the EnvDyn implements the conversion. Relevant coordinate

frames are the following:

• earth-centered inertial (ECI) (used for computation)

• earth-centered earth-fixed (ECEF)

• latitude, longitude and altitude (LLA)

• body-centered inertial (BCI)

• body-centered body-fixed (BCBF)

7.1.1.2 Mechanical Modelling

Purpose of the mechanical modelling is the representation of the

geometrical and mechanical properties of a component. Modelling

these is necessary when they have a significant effect on the rest of

the simulation, which for instance is the case for moving parts, or

242 7 - System Test and Verification Environment

BCBF x

z

y

Solar Panel ~ao

~bo

~co Sun

~p

α

β

γ

δ
Obstacle

Figure 7.2: Simulation of an Obstacle Through the Simulation of a Ge-
ometrical Plane - The solar panel is shaded, when the sun
vector intersects the obstacle plane within the gray area.

parts with time dependant mechanical properties (e.g. fuel). Com-

ponents rigidly connected to the satellite structure do not demand a

dedicated mechanical simulation. They are normally considered by

the mechanical model of the main structure already.

Moving parts must be simulated, because a deployment has an

impact on the center of gravity and the inertia tensor of the satellite.

The mass and inertia properties of moving part models are an input

for the EnvDyn, because for the simulation of the satellite motion all

mass and inertia properties must be condensed into a single tensor

(fig. 7.1).

An example for the use case of a geometrical model is shown in

figure 7.2. If an object (e.g., another solar panel) is located in the

incidence range of a solar panel, geometrical models can be used to

simulate shading effects.

7.1.1.3 Thermal Modelling

Purpose of thermal models is the determination of the temperature

distribution within the satellite structure. The only transfer mech-

7.1 - System Simulation 243

anism that applies in space for the heat exchange between satellite

and space environment is radiation. In earth orbit, radiation that

encounters the satellite is the visible radiation from sun, the earth

albedo radiation and the earth infrared radiation ([134], p. 689, fig.

22-17). The satellite body itself emits black body radiation towards

the space environment with a background temperature of almost

0K.

Satellite structures are simulated thermally through a network

of thermal nodes, where each node represents the thermal proper-

ties of a component with a heat capacity c and a temperature T .

Within that network, nodes exchange heat P through radiation or

conduction. Active nodes, for example electrical devices, also dissi-

pate heat. This means that for each node the following simplified

equation must be solved [122]:

Psol. +Palb. +Pe,IR +Pdiss.−
∑

Pi,rad.−
∑

Pi,cond. = mc
dT

dt
(7.1)

7.1.1.4 Electrical Modelling

Almost every component in a satellite processes electrical energy.

Purpose of the electrical modelling is the simulation of the electrical

energy household of the system. For the simulation of such, each

simulated device is either simulated as an energy consumer, or an

energy provider. A consumer model, simulates the device current

consumption as a function of the supply voltage: i = f(u, t), where

a provider model simulates the supply voltage as function of the

consumed current: u = f(i, t).

The electrical models are connected via interface models simulat-

ing the power lines. Those line models are used for the exchange of

information on the consumed current, or the available supply volt-

age.

Basis for each electrical model is an electrical replacement dia-

gram, like the mesh in figure 7.3. Within the model such a mesh is

244 7 - System Test and Verification Environment

iSC i

iD

u R

Figure 7.3: Electrical Mesh of a Solar Cell

Mechanical
Model

Thermal
Model

Electrical
Model

Complementary
Model

Device Model

Figure 7.4: Device Model - A device can be modelled by means of generic
physical models plus one or more complementary models.

expressed by the appropriate differential equation, which is solved

numerically during each model step. If the elements in the mesh (re-

sistors, diodes, etc.) have a strong temperature dependency, or when

the component is exposed to large temperature changes, simulating

electrical devices also requires a thermal modelling too.

The model library features generic electrical models of batteries

and solar cells for reuse in different simulation projects.

7.1.1.5 Device Model

Through the combination of different physical models, a representa-

tion of a real device can be compiled. In practice, though, a com-

ponent always features certain characteristics that go beyond those

7.1 - System Simulation 245

generic physical properties. This is why almost every model must

be complemented by one or more device specific models (fig. 7.4).

Complementary models can be used for:

• simulation of complementary device features

• simulation of controllers, logical components or state machines

• simulation of interfaces

• simulation of buses

• model initialization

• creation and configuration of assemblies

While generic physical models can be provided by the library, device

models, respectively the complementary models, need to be imple-

mented for each simulation project individually.

7.1.2 OBC Emulation

In section 4.5 some of the general problems of software testing and

verification were addressed. One of these problems is that testing

a component in a real working environment is usually not possible,

which can be due to several reasons:

• a test in a real environment would be too expensive

• a test in a real environment would destroy the specimen

• a test in a real environment is technically impossible

• elements of the real working environment are not available for

the test

A common solution to this problem is to mimic the environment

as good as possible by means of a simulator (fig. 4.14). Scope, fi-

delity, and design of the simulator are driven by the complexity of

246 7 - System Test and Verification Environment

the test and by the qualities of the tested item. Depending on what

needs to be tested, the approaches can be manifold. For instance, an

astronaut’s training requires hours in a centrifuge simulating a mul-

tiple of the earth gravity in order to test the astronaut’s capabilities

to withstand the loads during launch and reentry. The capabilities

of technical components to withstand a use in space is tested by

putting them item into a thermal vacuum chamber simulating the

space environment and the radiation conditions ([47], p. 19).

Purpose of the simulator described here is to enable End-to-End

(E2E) tests of the MMOS, with and without human operators in

the loop. These tests aim for the verification of the entire workflow,

by ensuring “that [the] completely integrated system works together

from end to end” ([93], p. 183).

Such an E2E test requires a full simulation of the satellite sys-

tem from a data handling perspective. What does that mean? The

counter part of the MMOS in space is the satellite’s On-board Com-

puter (OBC), respectively the on-board software. Both systems

communicate with each other on the basis of TM and TC. An E2E

therefore requires that the OBC including its software is part of the

simulation, so that all TCs can be processed and the expected TM

is generated and returned. Apart from that, the simulated system

shall behave exactly like the real one, which is achieved by the other

component models.

Simulating computer architectures is commonly referred to as

emulation. Respective OBC models are fundamentally different

though, simply because the model must be capable of executing

an on-board software binary. A modelling approach as the one de-

scribed above is not capable of doing that. In the scope of this work

several opportunities have been evaluated to integrate an emulator

into the system simulation [86].

Linux Binary

7.1 - System Simulation 247

The OBC of a satellite is an embedded system. Systems like these

usually rely on lightweight real time operating systems, which are

designed for this kind of application. The on-board software frame-

work used for this test is built on RTEMS [109, 9]. The idea was to

take the framework and modify it in a way that it can be executed

in a Linux system instead [139]. So, on-board software and simu-

lator would have been hosted and executed in parallel by the same

machine without the need of an extra emulation environment. First

developments in that direction turned out to be promising.

The disadvantage of this approach is the low flexibility though.

Instead of one, two on-board software versions need to be main-

tained, and it must be ensured that the development of the Linux

variant takes pace with the development of the actual flight ver-

sion. Furthermore, the solution cannot guarantee that the modified

on-board software behaves exactly like the original in any given sit-

uation.

Open Hardware Emulator

An alternative to the approach described above is the use of a hard-

ware emulator, which simulates the used CPU architecture, and ex-

ecutes the on-board software in a virtual environment. Such en-

vironments are referred to as virtual machines. A series of open

and proprietary solutions are available for the purpose. The selec-

tion of one depends on the to be simulated computer architecture,

the application, and in the end the required fidelity/accuracy of the

emulation.

A popular, open solution for the emulation of embedded systems

is QEMU, which supports a variety of platforms like ARM, i386/x86-

64, or Sparc [10].

The advantage of free hardware emulators like QEMU, libvirt,

Docker, etc. is that they are used by large communities. These

communities can offer support, report bugs, and thus contribute to

the emulator development.

248 7 - System Test and Verification Environment

Figure 7.5: Proprietary SPARC LEON3 Emulation - Start-Up Sequence

Proprietary Hardware Emulator

If the simulation project cannot rely on public community support

only, or if the used architecture cannot be emulated sufficiently

with a freely disposable solution, a proprietary hardware emulator is

needed. Proprietary emulators are normally provided by the man-

ufacturer of the processor boards, and allow for the accurate em-

ulation of the used CPU. A sound emulation, as well as customer

support, normally comes at the price of a medium sized car though.

In this work, several licensed derivatives of the Scalable Proces-

sor Architecture (SPARC) are simulated, which are used by Flying

Laptop. Four licenses for such an emulator were provided by re-

search partner Airbus and the manufacturer of the processor board.

A start-up sequence of that emulator is shown in figure 7.5.

7.1 - System Simulation 249

EnvDyn

Device
Model 1

Device
Model 2

OBC Model

Emulator
Interface

Satellite SimulatorEmulator

Figure 7.6: Setup of the OBC Model within the Simulator

7.1.2.1 OBC Model Integration

With the emulator in place, an OBC model can be integrated into

the simulation. At first, the OBC model is integrated into the sim-

ulator like an ordinary model. As such it can feature a thermal

model, a rudimentary electrical model for the simulation of power

consumption, or any sort of complementary model.

Besides that, the OBC model features an interface that controls

the emulator. The emulator, as described above, runs within a dedi-

cated process outside the actual simulation (fig. 7.6). Purpose of the

emulator interface is to initialize, start & stop the emulation, and

to keep it in synch with the simulator. How the latter is achieved is

shown in figure 7.7.

Described here is a synchronous simulation approach, which means

that each model in the simulator, respectively its step function (sec.

4.5.3.1), is called periodically by the scheduler in the SimTG kernel.

The period dt of these calls is an individual constant for each model.

With each call of the OBC step function, the model advises the

emulator to run for another time step dt. The problem is that the

Zulu duration dt̃ of an incremental emulator run is neither equal to

dt, nor constant, which is due to two reasons:

250 7 - System Test and Verification Environment

Simulator Process (SimTG) Emulator Process

Simulator Kernel OBC Model Emulator

init()

step()

step()

step()

step()

step()

initialize()

run(dt)

run(dt)

run(dt)

run(dt)

run(dt)

t = 0 s

dt

dt̃

Figure 7.7: Emulator Synchronization - The sequence diagram shows
how the emulation is synchronized with the simulator by
means of the OBC Model. init() and step() are func-
tion calls that the simulator makes at the instantiated OBC
model. The calls the OBC model makes at the emulator are
no function calls in the classical sense. Instead, initialize
and run(dt) are commands sent to the emulator via socket.
So, the OBC model does not expect a return from the em-
ulator.

7.1 - System Simulation 251

1. With each incremental run, a series of instructions are exe-

cuted by the emulator. If an instruction is started within the

time frame dt, that instruction will be executed although its

execution overshoots the scheduled duration. If the emulation

is not actively paused after dt, simulation and emulation drift

apart in time.

2. By default, the emulation runs as fast as possible, which means

that the simulation of a time period can happen significantly

faster than real time (dt̃� dt). The speed factor by which the

emulation is faster than real time can be set. If it is set to 1,

the emulator doesn’t run faster than Zulu time.

So, the expected behavior would be that with a speed factor

set to 1, emulator Zulu time and Simulation Runtime (SRT) would

be synchronized, but unfortunately this is not the case. The speed

factor only limits the execution speed to the top. It does not prevent

the emulation from being slower than real time, which can happen

easily. To circumvent a drift between simulator and emulator, caused

by the emulator being too slow, a speed factor slightly faster than

real time has been selected. The selection of the right parameter is

quite a trade-off. The crux is on the one hand to minimize the gaps

between termination and restart of the emulator execution, and on

the other hand to avoid overshoots.

Why is keeping simulator and OBC emulation in synch so im-

portant? The modelled OBC uses SpaceWire for the communica-

tion with it peripherals. Unlike the OBC CPU, those peripherals

are modelled in the simulator. A sending SpaceWire node, expects

a response from its target within a few microseconds [39]. If the

emulation runs at an accelerated speed, compared to the rest of the

simulation, the emulated OBC SpaceWire core would always detect

a timeout when trying to establish device communication.

252 7 - System Test and Verification Environment

On-Board Data Handling

OBC
CCSDS
Board

I/O Board & MMU

TX

RX

Device Device Device

Legend

Subsystem

Model

SpaceWire + RMAP

Frame

Device IF

Figure 7.8: Simplified Model Setup of a On-Board Data Handling Sys-
tem

7.1 - System Simulation 253

7.1.2.2 Data Handling Simulation

Figure 7.8 illustrates the simplified setup of the on-board data han-

dling subsystem, as modelled within the simulator. Core of that

subsystem is the satellite OBC, which is modelled and integrated

into the simulator as described above. The OBC model receives

TCs from a CCSDS board model, which decodes the TC frames

from a receiver model. In turn, the OBC produces TM, and sends it

back to the CCSDS board. The CCSDS board then composes TM

frames, which are returned via the transmitter model eventually.

Via an I/O board model, various device models are connected

to the OBC. The I/O board buffers the in- and outgoing device

messages and features the Mass Memory Unit (MMU) of the data

handling system.

Within this data handling system, a SpaceWire Network facili-

tates the communication between the three nodes: OBC, I/O board,

and CCSDS board. In- and outgoing messages (device messages or

ground TM/TC) are buffered within simulated memory blocks in the

boards. By means of the Remote Memory Access Protocol (RMAP)

[40], the OBC is capable of reading and writing these blocks, and

thus to communicate with ground, or with the devices on board the

satellite.

As mentioned in section 7.1.2.1, the problem of routing traffic

between simulated devices and a SpaceWire core (real or emulated)

are the harsh time constrains of the protocol. A synchronous model

scheduling as described in section 4.5.3.5 is simply too slow for the

simulation of a SpaceWire bus. This is just one example. The

same issue can occur with other bus systems as well, which is why

the following solution can be considered universal an not just for a

SpaceWire application.

Assumed is the following situation (fig. 7.9): Via Model B, a

command shall be routed from Model A to Model C , and A expects

254 7 - System Test and Verification Environment

Model A Model B Model C

Figure 7.9: Data Transmission between Device Models

a response from C within microseconds. How can this be achieved,

if the model scheduling frequencies are too slow for a response in

time?

The simplest solution could be increasing the model scheduling

frequencies, but this would be rather inefficient. Furthermore, the

scheduling capabilities of SimTG are limited. Model frequencies in

the order of 50 Hz and higher caused larger simulations to crash

regularly.

A better approach is to handle the data packets asynchronously.

Therefore, each model within the data handling system was extended

by an asynchronous layer. Purpose of this layer is to wait for incom-

ing data from a source and forward the data to a sink as fast as

possible. Sources and sinks can be:

• model interfaces

• device memory (as part of the model)

• sockets (e.g. needed to route packets from and into the emu-

lator)

Figure 7.10 indicates how such an asynchronous layer is inte-

grated into a synchronous model. A device model, equipped with

such a layer features a handler, which is nothing more than a thread,

continuously waiting for data at the source. The handler is controlled

from the model step function a s part of the functional simulation.

For instance, if the simulated device is off (zero voltage on the power

input), the handler is paused by the model and all incoming data

will be discarded. If the device is active, the handler is resumed

again and incoming data will be forwarded to the sink.

7.1 - System Simulation 255

Synchronous
Layer

Asynchronous
Layer

Model
Interfaces

+ step()

DataHandlingModel

Handler Thread

Source Sink

Figure 7.10: Class Diagram of the Asynchronous Layer in a Data Han-
dling Model

Since the data forwarding is executed by an additional thread,

the fidelity of the data handling is no longer limited to the scheduling

frequency of the model. Furthermore, data forwarding and the func-

tional behavior of the device model are decoupled. What does that

mean? The only purpose of the handler is transmitting messages

from source to sink. As long as the sink is not within the model, the

data forwarding won’t affect the functional behavior of the device,

as modelled within the step function.

Unfortunately, the solution comes at the expense of two further

problems. The first one is that a former single-threaded simulator

becomes multi-threaded. Multi-threading a software always requires

a lot of care by the programmer, especially when those threads access

the same memory regions by design. If that is the case, the software

must be prevented from segmentation faults. A common means of

doing that in the C++ programming language are mutexes.

The second problem is a direct cause of solving the first one,

which is that the models implementing such an asynchronous layer

are no longer SMP2 compliant. The loss of SMP2 compliance was

accepted though, because the affected models were highly mission

specific anyway.

256 7 - System Test and Verification Environment

Simulation Environment

Simulator

CCS

Sequences

Kernel

Logging

Monitoring

Reporting
EnvDyn

Sat.
Comp. Device Device

I/O Board

OBC
CCSDS
Board RX

TX

Legend

SpaceWire

Dvice IF

Frame

SLE via TCP/IP

Physical IF

Figure 7.11: Setup for Model and Simulator Checkout - Simplified
schematic of the simulated satellite bus, connected to a
Central Checkout System (CCS). For convenience, redun-
dant component models are not displayed.

7.2 Simulation Infrastructure

A simplified schematic of the simulator as developed and used within

this work is shown in figure 7.11. Core of it is the simulation of a

data handling system as described in section 7.1.2.2.

Via two antenna models (TX and RX) the simulator can ex-

change TM/TC with a commanding entity. The telecommands are

executed by the on-board software on the emulated OBC. Simulat-

ing the various satellite functionalities (e.g. attitude control) re-

7.2 - Simulation Infrastructure 257

quires the simulation of all devices involved. If the satellite receives

a command to maintain a certain attitude, the OBC engages an on-

board control process. That requires actuators being commanded

to produce the appropriate torque. Actuator models, which sim-

ulate the device behavior and calculate the generated torque, are

the recipients of such on-board commands. The produced torques

and integrated by the EnvDyn as described in section 7.1.1.1. The

attitude calculated by the EnvDyn is returned to the OBC via the

appropriate sensor models.

Thus, a complete control process is implemented within the sim-

ulation and an observer, communicating with the simulated satellite

via TM/TC should not notice a difference to the real system. The

same concept of course applies to other control processes and func-

tionalities on board the satellite.

7.2.1 Simulator Checkout System

A system simulator is a complex software. So, before it can be used

as part of a verification environment (fig. 4.14) it must be tested

itself.

Verification of a simulator follows the same principles as intro-

duced in section 4.5. According to the traditional V-model approach,

this covers method, class and unit tests by the developer, followed

by model integration tests, and simulator system tests eventually.

The selected simulation IDE supports the developer in the model

testing, by providing functionality for test implementation and au-

tomation. For instance, method and JUnit tests can be triggered as

part of the simulator compilation process. More complex tests re-

quire the execution of sophisticated simulation sequences stimulating

the model input interfaces and verifying the model output.

In a next step, clusters of interacted models are tested. Again,

this is achieved by means of simulation sequences (sec. 4.5.3.3). The

more models are part of these tests, the more complex they become

258 7 - System Test and Verification Environment

and the longer it takes to create and execute the sequences. Due

to the complexity of these tests and the nature of object-oriented

programming, those tests cannot guarantee a complete verification

of the simulation though [121].

At some point the checkout out the simulator involves the OBC

model. The OBC is usually checked out last, because it requires the

presence of all the other models to function properly. As mentioned

above, the on-board software expects commands from ground so that

certain of its functionalities are getting triggered. So, a simulator

test involving the OBC actually requires interaction of two different

software products: the simulator, and a ground entity sending TCs

and processing TM.

If the simulator is the tested item, verification is only possible if

the commanding entity has been formally tested. Otherwise, mutual

consistencies might impede the detection of bugs at one or the other

side. Which is why a commercial CCS was selected to support the

testing of the simulator. The setup is shown in figure 7.11.

In a later use case of the simulator that CCS is about to be

replaced by the MMOS, which is then the tested item.

7.2.2 System Simulation Network

The verification of a multi-mission OS of course requires the sim-

ulation of a number of satellites. Therefore, an infrastructure was

set up supporting the instantiation of several of such simulators in

parallel (fig. 7.12).

Core of that simulation environment is a server architecture as

specified in table 7.1. Installed on that server is a libvirt virtualiza-

tion environment 1 by means of which a number of CentOS Linux

VMs were created, each running an instance of SimTG. By check-

ing out simulation projects from a central Git repository into the

1Server installation and the setup of the libvirt environment were not part of
this work.

7.2 - Simulation Infrastructure 259

VM 1 VM 2 VM 3 VM 4

Simulator
1

Simulator
2

Simulator
3

Simulator
4

MMOS

SLE via TCP/IP

Git Simulator Repository

checkout

Virtualization Environment

Figure 7.12: Network of Multiple Simulated Satellites - Each simulator
is executed by a dedicated Virtual Machine (VM), hosted
in a libvirt environment.

Table 7.1: Feature List of the Virtualization Server Hosting the Simula-
tion VMs

Feature Description

CPU 2x 16 Cores, 2.4 GHz, 64 MB Cache
Memory 2x 32 GB DDR4
Network 2x GBit LAN
Mass Memory 240 GB (SSD) + 1 TB (HDD)

260 7 - System Test and Verification Environment

VMs, various simulators can be executed, each simulating exactly

one spacecraft. The complete setup allows for the simulation of

multiple satellites in parallel, as well as for the simulation of con-

stellation scenarios.

Via Gigabit LAN, the Virtual Ground Stations (VGS) within

the MMOS MCS (fig. 5.12) can connect to the RX/TX models

(fig. 7.11). Purpose of the RX/TX models is then the simulation

of the entire TM/TC chain between the MMOS and the satellite’s

transceiver. Both parties of course must then implement the same

protocol. In the example in figure 7.12 this is ESA Space Linke

Extension (SLE) via TCP/IP, but it can be any other protocol as

used for the mission’s TM/TC routing on ground.

7.3 Simulated Mission

Goal of system testing is to verify the constellation operation ca-

pability of the MMOS, as well as the verification that it is really

capable of handling multiple missions simultaneously. Simulator de-

sign and test scenarios must therefore aim for the testing of those

hard functional requirements discussed in section 5.2.2, as well as

for the testing of weak quality requirements specified in section 5.1.

With all models and a simulation infrastructure in place, an ap-

propriate simulation environment for the MMOS system test could

be set up. Such an environment shall only feature formerly veri-

fied satellite system simulators with verified on-board software, as

it should feature a reference constellation architecture as defined in

section 3.2. That reference architecture is an inhomogeneous, sym-

biotic formation of about ten satellites, providing a regional service

(tab. 3.3).

Not all characteristics of that reference architecture could be

simulated right away. First of all, the available computing and

emulation capacities limited the number of simulated satellites to

four. Furthermore, the fact that only one verified on-board soft-

7.3 - Simulated Mission 261

Virtualization Environment

VM 1 VM 2

VM 3 VM 4

Simulator 1 Simulator 2

Simulator 3 Simulator 4

MMOS

Figure 7.13: Simulated Example Mission

262 7 - System Test and Verification Environment

Table 7.2: Flying Laptop Orbit at 07 October 2021, 14:57:00, from [101]

Orbit Parameter Value

Eccentricity ε 0.001506
Inclination ι 97.4535°
Perigee Hight hp 583 km
Apogee Hight ha 604 km
RAAN Ω 143.59°
Argument of Perigee ω 131.07°
Mean Anomaly at Epoch ν(τ) 229.18°
Epoch (UTC) τ 06 October 2021, 19:21:58

ware, and detail knowledge about only one satellite platform was

available forced the simulation of four identical satellites (fig. 7.13).

7.3.1 Scenario

The selected scenario for the verification of the principle MMOS

functionalities contains four simulated instances of Flying Laptop

(fig. 7.13), each one executing a formally verified on-board software

[9, 18]. All satellites are simulated in a separate orbit, similar to the

one of the real mission [138]. Flying Laptop is operated in a sun-

synchronous low Earth orbit (LEO). The orbital parameters from

[101] are summarized in table 7.2. Plots of real and simulated ground

tracks are displayed in figure 7.14.

To provide a realistic scenario, a fictive Flying Laptop constel-

lation is simulated as it would suit the utilization of an Automatic

Identification System (AIS). AIS is a system that allows tracking

vessels. The reception of the signal emitted by the ship transmit-

ters is normally limited to coastal regions. Installing AIS receivers

within a satellite constellation would allow for a global coverage and

the tracking of vessels in international waters.

For the simulation of such a constellation, four highly inclined,

but otherwise identical orbits were selected, each one of course with

7.3 - Simulated Mission 263

(a) Real Ground Track from [101]

(b) Simulated Ground Track

Figure 7.14: Plots of Real and Simulated Ground Tracks

264 7 - System Test and Verification Environment

Figure 7.15: Simulated Orbits of a Fictive AIS Constellation based on
Flying Laptop [138] - Orbits are plotted in the ECI frame.
For the sake of clarity the Earth diameter has been reduced
in size.

7.3 - Simulated Mission 265

Figure 7.16: Debugging Information provided by On-board Software
Emulator

a separate argument of the ascending node (fig. 7.15). Three goals

shall be achieved through the simulation of such a scenario.

1. Purpose of that simulator is to expose the MMOS to a realistic

scenario, by leveraging the resources of and the knowledge from

the Flying Laptop mission, available at the Institute of Space

Systems.

2. In advance of the actual use case, these simulations further

demonstrated that the selected computing hardware (tab. 7.1)

is capable of executing four simulators in parallel without los-

ing real-time performance [138].

3. Through the execution of simulation scenarios lasting several

hours and days, the setup was further used to demonstrate the

reliability of the simulator.

266 7 - System Test and Verification Environment

First runs of such a setup further demonstrated the proper in-

tegration of the OBC emulator into the simulator. A print of the

integrated debug window, informing the user about the state of the

hosted on-board software is shown in figure 7.16. Tests with a third-

part CCS connected to the simulator (fig. 7.11) have shown, that

emulated OBC and on-board software behave and process commands

as expected.

7.3.2 Final Setup

As stated in the earlier course of this thesis, satellite operations is

always the mutual interaction of three different systems: The OS, the

ground station(s), and the satellite(s) (fig. 5.8). As a consequence,

a space system is inhomogeneous and symbiotic by nature, even

though the space segment is not. Therefore, the MMOS capabilities

of operating inhomogeneous, symbiotic systems already emerge by

its ability of planning, coordinating and executing space-to-ground

interactions such as ground station passes (sec. 6.2.6.1).

To test the entire MMOS, not only the satellites need to be sim-

ulated, but the ground stations as well. A fully escalated setup is

shown in figure 7.17. While satellites and MMOS exchange TM/TC

via simulated SLE (or similar protocols), ground stations are com-

manded by means of a dedicated interface, which does not necessarily

require an MCT (sec. 5.2.2.1). That antenna interface has not been

addressed in the scope of this thesis though.

7.3 - Simulated Mission 267

S
im

u
la
to
r
5

S
im

u
la
to
r
6

S
im

u
la
to
r
7

S
im

u
la
to
r
8

S
im

u
la
to
r
1

S
im

u
la
to
r
2

S
im

u
la
to
r
3

S
im

u
la
to
r
4

M
M
O
S

A
n
te

n
n

a
C

on
tr

ol
IF

(n
o
t

d
is

cu
ss

ed
)

T
M

/T
C

Figure 7.17: Fully Escalated Simulation Environment - Testing all M-
MOS functionalities requires the simulation of all operated
systems, including ground stations. Antennas are com-
manded via dedicated control interfaces, which have not
been discussed in the scope of this work. These control in-
terfaces enable antenna planning and complement the SLE
connection for the exchange of TM/TC with the satellites.

268 7 - System Test and Verification Environment

269

8

Summary

At the very beginning of this work, the term complexity was intro-

duced. Constellations are complex by nature, due to the multitude

of their satellite systems, and the amount of interactions between

those and other systems in the operations process. A concept for

constellation operations, or for the operations of multiple, individ-

ual satellites in parallel, must therefore be capable of handling this

increased complexity. This work was conducted under the assump-

tion that the most efficient way of dealing with a high level of system

complexity is automation.

Result of this work is a macroscopic software architecture called

the MMOS, designed for automatic operations of such satellite sys-

tems. Besides, the work focussed on the development of a resource-

based planning concept within this architecture, which allows for the

automatic generation, conflict resolution, execution, and verification

of complex satellite activities.

Starting point of this development was a domain analysis, squired

by an adaption towards modern satellite operation paradigms. Ex-

isting operations systems usually feature a central and very compre-

hensive mission control system carrying out more or less the entire

270 8 - Summary

TM/TC based communication between ground and the operated

system. These powerful mission control systems are then comple-

mented by a bunch of further systems implementing the rest of the

operational functionality. Such concepts are very prone to planing

mistakes, as they do not actively support a lean automation process.

In the quest of defining an architecture that is an actual im-

provement compared to existing solutions, two aspects were consid-

ered important. First, efficient satellite operations requires a holistic

view on the controlled assets, and as a direct consequence, satellite

operations is a process that the developed architecture itself is a part

of.

A holistic view on operations lead to the conclusion that a plan-

ning process needs to be implemented on system level, and that

planning of complex systems requires taking into account interac-

tion between different systems, respectively different types of sys-

tems. The implementation of a closed control process also requires

the acquisition of detail knowledge about the state of these operated

systems. Following existing research on automation and human-

machine-interaction, an appropriate process was defined. That al-

lowed for a detail specification of the MMOS subsystems, and the

interfaces between those.

Furthermore, space and ground segment were decomposed into

abstract communication layers. Through that kind of decomposi-

tion each interface enables a ground component interacting with a

counter part in space. Outcome of this development was a system

layer interface, called Activity.

Its particular value for the planning process relies on two char-

acteristics. First, Activities can be nested, which means that one

Activity can be decomposed into several child Activities. This way,

271

a task can not just be split into subtasks, they can also be assigned to

various systems, which allows for a planning process across system

boundaries, and thus the planning of system interaction. Second,

Activities specify a resource demand. In combination with a respec-

tive resource modelling approach, this allows for the prediction of

the system state based on a given schedule, as well as for an auto-

matic conflict resolution.

By means of the results summarized so far, the first research

hypothesis (sec. 1.3) formulated for this work can be answered posi-

tively, because all theoretical requirements for the automatic opera-

tions of a remote satellite are met and supported by the introduced

methodology.

The component within the MMOS implementing the scheduling

algorithms, the resource propagation, and the conflict resolution is

the MPT. Through the implementation of a state machine within

its scheduling layer, each MPT instance has the sovereign authority

on the Activity schedule of an operated system. The nesting quality

of Activities allows for the clustering of multiple MPTs and thus for

the representation of complex satellite systems like constellations on

ground.

This quality of the MPS supports the second research hypothesis

(sec. 1.3). The proposed design supports the operations of a finite

number of individual satellites, based on paradigms for automatic

operations of a single system. However, it turned out, that for the

automatic operations of a complex system, like a constellation, it is

never sufficient to just look at a single satellite.

While former operations system architectures used to be primar-

ily data driven, the proposed approach is process driven. The inter-

action with the spacecraft is further no longer (just) based on the

272 8 - Summary

exchange of TM/TC, but on the scheduling of Activities. The fact

that these schedules are pre-checked and verified, and an activity

schedule comes along with a forecast of the system state, allows for

complete new approaches for spacecraft application development on

ground. So, individual, mission specific applications can be devel-

oped with pure focus on their mission goal and less focus on the

validity of the resulting system schedule, as the latter is carried out

by the introduced concept. The interface for the integration of such

applications into the MMOS is again the Activity.

273

9

Outlook

At submission of this thesis, the first versions of the MMOS have

been released featuring an integrated telecommand chain that con-

sists of MPT, MCT, and VGS. That command chain implements the

basic functionalities such as Activity state management, automatic

command release and verification, and a protocol conversion by the

MCT.

By means of a GUI, operators can interact with the mission

schedule, managed by the MPT. It allows for the addition of Ac-

tivities to the schedule, supports the modification of Activities, and

allows for the monitoring of the Activity states. Furthermore, the

user interface supports the manual release of commands, and gives

access to the complete history of sent commands.

An integrated user management further limits and controls the

access to the MMOS microservices underneath, and ensures for ex-

ample, that only authorized personnel can trigger a command release

or modify the schedule.

Based on this implementation, the next logical steps are the fol-

lowing.

• The integration of Flight Dynamics and Resource Propagation

as described is a missing step towards a complete MPT. The

propagation of the system state and the propagation of the

274 9 - Outlook

orbit are the basis for the conflict management by the MPT.

The MPT further needs to be connected with the DAS for

the retrieval of satellite telemetry from the archive. All the

necessary interfaces were introduced and defined in this thesis.

• After the development and the integration of the remaining

components stands the formal verification of the entire system.

This covers the checkout of the entire communication chain,

beginning with the scheduling of Activities, the release and

the transmit of commands, the verification and the display

of telemetry, and the closing of the Activities eventually. An

appropriate verification infrastructure on the basis of a fully

simulated satellite has been set up in the course of this work.

• The next step would be the orchestration of an MMOS featur-

ing multiple instances of interacting system MPTs, aiming for

the verification that the concept of nested Activities has been

implemented properly. The verification infrastructure featur-

ing multiple simulated satellites has been implemented and is

ready for appropriate test scenarios.

• The mission planning concept introduced in this work is ag-

nostic of any kind of operated system. A foreseen applica-

tion is the use of MPTs for the scheduling of ground stations.

Thus, the next logical step would be a connection of the MM-

OS to a ground station infrastructure and to perform analyses

identifying to what degree the specified interfaces support the

monitoring and command of antenna systems.

• To date a number of new satellite projects at the University of

Stuttgart entered the integration phase and are to be launched

within months. With the first version of the MMOS in place,

the development teams can start checking out their systems

and start building their own Applications (Agents) on top of

the MMOS.

275

• The biggest outcome of this work is the Activity based schedul-

ing concept. The design of the MMOS, featuring such an in-

tegrated scheduling mechanism, together with a standardized

interface to that schedule open a lot of different research op-

portunities, and possibilities to extend the functional scope of

the system. It further allows widening the user group of the

MMOS. Until the development of the MMOS access to the OS,

and thus access to the satellite, was limited to the operations

team and some few stakeholders like engineers or mission scien-

tists. With such a system in place various kinds of applications

can be designed on top of the MMOS. Such applications could

be used to provide a larger scientific community with access

to satellites and satellite data. Appropriate research projects

have already been engaged.

∗

276 9 - Outlook

277

A

Information Used

A.1 List of Satellite Constellations

Table A.1: List of completed and currently developed satellite constel-
lations sorted by launch year of the first satellite. Compiled
by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

GPS USAF USA 1978 31 72 Nav.

GLONASS Roscosmos RUS 1982 24 26 Nav.

Feng Yun National

Satellite Me-

teorological

Centre

CHN 1988 9 17 EO

Beidou CNSA CHN 2000 33 35 Nav.

Cluster II ESA EU 2000 4 4 Sci.

AprizeSat AprizeSat USA,

CAN

2002 12 12 Com.

Table continues on next page.

278 A - Information Used

Table A.1: List of satellite constellations. Compiled by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

DMCii DMC Interna-

tional Imaging

Int. 2002 7 13 EO

Meteosat ESA EU 2002 4 10 EO

A-Train Various Int. 2002 7 7 EO

SaudiComSat KACST SAU 2004 7 24 Com.

Gonets D1M RKA RUS 2005 12 27 Com.

Formosat 3 /

COSMIC

NSPO, NOAA TWN,

USA

2006 6 6 EO

MetOp ESA EU 2006 2 9 EO

CartoSat ISRO IND 2007 7 10 EO

COSMO-

Skyned

ASI ITA 2007 4 4 EO

RapidEye Planet Labs,

Inc.

USA 2008 5 5 EO

Huan-Jing CRESDA CHN 2008 3 3 EO

Globalstar

2nd gen.

Globalstar USA 2010 24 24 Com.

QZSS

Michibiki

JAXA JPN 2010 4 4 Nav.

Pleiades

SPOT

Astrium FRA 2011 4 4 EO

Orbcomm-

OG2

Orbcomm USA 2012 12 18 Com.

FireBIRD DLR GER 2012 2 2 EO

O3b O3b Networks

Ltd.

USA 2013 20 42 Com.

Table continues on next page.

A.1 - List of Satellite Constellations 279

Table A.1: List of satellite constellations. Compiled by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

BRITE Various CAN,

POL,

AUT

2013 5 5 Sci.

Gafon

CHEOS

CNSA CHN 2013 12 12 EO

IRNSS ISRO IND 2013 (9) 7 Nav.

SWARM

Earth Ex-

plorer

ESA, CSA EU,

CAN

2013 4 4 Sci.

Flock Planet Labs,

Inc.

USA 2014 188 300 EO

Sentinel ESA EU 2014 7 14 EO

Lemur-2 Spire Global

Inc.

USA 2015 100 175 EO

Galileo ESA EU 2015 22 30 Nav.

Jilin Chang Guang

Satellite Tech-

nology Co.

CHN 2015 13 138 Data

MMS NASA, SwRI USA 2015 4 4 Sci.

SkySat Planet Labs,

Inc.

USA 2016 15 21 EO

GHGSat GHGSat Inc. CAN 2016 1 3 EO

NuSat Satellogic S.A. ARG 2016 7 25 EO

GaoJing Su-

perView

Siwei Star

Company

CHN 2016 4 16 EO

CYGNSS NASA USA 2016 8 8 EO

Global BlackSky USA 2016 4 60 EO

Table continues on next page.

280 A - Information Used

Table A.1: List of satellite constellations. Compiled by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

Landmapper

BC

Astro Digital USA 2017 4 10 EO

3 Diamonds /

Perls

Sky and Space

Global

GBR,

ISR,

AUS

2017 3 8 Com.

CICERO GeoOptics

Inc.

USA 2017 7 24 EO

Iridium Next Thales Alenia,

Orbital ATK

USA 2017 74 81 Com.

OneWeb OneWeb USA 2018 6 648 Com.

Starlink SpaceX USA 2018 0 4425 Com.

Starlink

(VLEO)

SpaceX USA 2018 240 9102 Com.

Telesat Telesat

Canada

CAN 2018 1 292 Com.

Kepler Kepler Com-

munications

Inc.

CAN 2018 1 140 Data

Axelglobe Axelspace JPN 2018 3 50 EO

Commstell-

ation

Microsat Sys-

tems Canada

Inc.

CAN 2018 0 84 Com.

n.n. Hiber NLD 2018 2 50 IoT

Astrocast Astrocast CHE 2018 2 64 IoT

Landmapper

HD

Astro Digital USA 2018 0 20 EO

PlatentiQ PlanetiQ USA 2018 0 12 EO

n.n. Capella Space USA 2018 1 36 EO

Table continues on next page.

A.1 - List of Satellite Constellations 281

Table A.1: List of satellite constellations. Compiled by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

n.n. Fleet Space

Technologies

USA 2018 4 100 IoT

n.n. Reaktor Space

Lab

FIN 2018 1 36 EO

n.n. SatRevolution POL 2018 2 1024 EO

n.n. AISTech

Space

ESP 2018 2 102 EO

GEMS Orbital Micro

Systems

GBR 2018 1 48 EO

n.n. HawkEye 360

Inc.

USA 2018 3 18 EO

SeaHawk University

of North

Carolina

USA 2018 1 10 EO

ICEYE ICEYE FIN 2018 4 18 EO

n.n. Astronome

Technologies

IND 2019 0 150 Com.

1HOPSat Hera Systems USA 2019 1 50 EO

n.n. NSLComm ISR 2019 1 60 Com.

n.n. Kleos Space LUX 2020 0 20 EO

n.n. Lacuna Sys-

tems

GBR 2021 0 32 IoT

SpaceBelt Cloud Con-

stellation

Corporation

USA 2021 0 12 Data

ViaSat ViaSat Inc. USA 2021 0 20 Com.

UrtheDaily UrtheCast CAN 2022 0 8 EO

Table continues on next page.

282 A - Information Used

Table A.1: List of satellite constellations. Compiled by [11]

Name Organization

R
e
g
io

n

Y
e
a
r

A
c
ti

v
e

T
o
ta

l

A
p

p

Space Norway Space Norway

AS

NOR 2022 0 2 Com.

A.2 - The LOAT Matrix 283

A.2 The LOAT Matrix

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

A B C D

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A0 B0 C0 D0

The human ac-

quires relevant

information

on the process

she/he is fol-

lowing without

using any tool.

The human

compares,

combines

and analyses

different infor-

mation items

regarding the

status of the

process she/he

is following by

way of mental

elaborations.

She/he does

not use any

tool or support

external to

her/his work-

ing memory.

The human

generates de-

cision options,

selects the ap-

propriate ones

and decides all

actions to be

performed.

The human ex-

ecutes and con-

trols all actions

manually.

Table continues on next page.

284 A - Information Used

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A1 B1 C1 D1

The human ac-

quires relevant

information

on the process

she/he is fol-

lowing with

the support

of low-tech

non-digital

artefacts.

The human

compares,

combines,

and analyses

different infor-

mation items

regarding the

status of the

process she/he

is following

utilising pa-

per or other

non-digital

artefacts.

The human

generates de-

cision options,

selects the ap-

propriate ones

and decides

all actions to

be performed

utilising pa-

per or other

non-digital

artefacts.

The human

executes and

controls ac-

tions with

the help of

mechanical

non-software

based tools.

Table continues on next page.

A.2 - The LOAT Matrix 285

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A2 B2 C2 D2

The system

supports the

human in

acquiring infor-

mation on the

process she/he

is follow-

ing. Filtering

and/or high-

lighting of the

most relevant

information

are up to the

human.

Based on user’s

request, the

system helps

the human in

comparing,

combining

and analysing

different infor-

mation items

regarding the

status of the

process being

followed.

The system

proposes one or

more decision

alternatives

to the hu-

man, leaving

freedom to

the human to

generate alter-

native options.

The human

can select one

of the alterna-

tives proposed

by the system

or her/his own

one.

The system

assists the

operator in

performing

actions by

executing

part of the

action and/or

by providing

guidance for

its execution.

However, each

action is exe-

cuted based on

human initia-

tive and the

human keeps

full control of

its execution.

Table continues on next page.

286 A - Information Used

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A3 B3 C3 D3

The system

supports the

human in

acquiring infor-

mation on the

process she/he

is following.

It helps the

human in

integrating

data coming

from different

sources and

in filtering

and/or high-

lighting the

most relevant

information

items, based on

user’s settings.

Based on user’s

request, the

system helps

the human in

comparing,

combining

and analysing

different infor-

mation items

regarding the

status of the

process being

followed. The

system triggers

visual and/or

aural alerts if

the analysis

produces re-

sults requiring

attention by

the user.

The system

proposes one or

more decision

alternatives

to the human.

The human

can only select

one of the

alternatives or

ask the system

to generate

new options.

The system

performs au-

tomatically a

sequence of

actions after

activation by

the human.

The human

maintains full

control of the

sequence and

can modify

or interrupt

the sequence

during its

execution.

Table continues on next page.

A.2 - The LOAT Matrix 287

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

A4 B4 C4 D4

The system

supports the

human in

acquiring infor-

mation on the

process she/he

is following.

The system

integrates

data coming

from different

sources and

filters and/or

highlights the

information

items which

are considered

relevant for

the user. The

criteria for

integrating,

filtering and

highlighting

the relevant

information ...

The system

helps the

human in

comparing,

combining

and analysing

different infor-

mation items

regarding the

status of the

process being

followed, based

on parameters

pre-defined by

the user. The

system triggers

visual and/or

aural alerts if

the analysis

produces re-

sults requiring

attention by

the user.

The system

generates

options and

decides au-

tonomously on

the actions to

be performed.

The human is

informed of its

decision.

The system

performs au-

tomatically a

sequence of

actions after

activation by

the human.

The human

can monitor all

the sequence

and can inter-

rupt it during

its execution.

Table continues on next page.

288 A - Information Used

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

are predefined

at design level

but visible to

the user.

A5 B5 C5 D5

The system

supports the

human in

acquiring

info on the

process s/he

is following.

The system

integrates

data coming

from different

sources and

filters and/or

highlights the

information

items consid-

ered relevant

for the user.

The system

performs com-

parisons and

analyses of

data avail-

able on the

status of the

process being

followed based

on parameters

defined at de-

sign level. The

system triggers

visual and/or

aural alerts if

the analysis

produces re-

sults requiring

attention by

the user.

The system

generates

options and

decides au-

tonomously on

the action to

be performed.

The human is

informed of its

decision only

on request.

The system

initiates and

executes au-

tomatically a

sequence of

actions. The

human can

monitor all the

sequence and

can modify

or interrupt

it during its

execution.

Table continues on next page.

A.2 - The LOAT Matrix 289

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

C6 D6

The system

generates

options and

decides au-

tonomously on

the action to

be performed

without in-

forming the

human. (Al-

ways connected

to an Action

Implementa-

tion level not

lower than

D5.)

The system

initiates and

executes au-

tomatically a

sequence of

actions. The

human can

monitor all the

sequence and

can interrupt

it during its

execution.

Table continues on next page.

290 A - Information Used

Table A.2: Complete LOAT Matrix, as defined by Save and Feuerberg
- from [113]

Information

Acquisition

Information

Analysis

Decision

and Action

Selection

Action

Implemen-

tation

D7

The system

initiates and

executes a

sequence of

actions. The

human can

only monitor

part of it and

has limited

opportunities

to interrupt it.

D8

The system

initiates and

executes a

sequence of

actions. The

human cannot

monitor nor

interrupt it

until the se-

quence is not

terminated.

291

B

MPT Implementation

B.1 MPT Requirement Backlog

Table B.1: MPT Requirement Backlog with Prioritization Scheme - The
backlog is a according to the functional architecture in sec-
tion 6.3

Name Description Prio. Ver.

Communication

Layer

The MPT shall have a low level

communication layer (COMM)

by means of which the MPT

is connected to the rest of the

system, and which handles all

the traffic between the MPT and

other system components.

Must Rev.

Interface

Layer

The MPT shall have an interface

layer (IFL). Purpose of the IFL is

to enable functional components

of the MPT collaborating with

other system functions.

Must Rev.

Table continues on next page.

292 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Operative

Layer

The MPT shall have an opera-

tive layer (OPL). Purpose of the

OPL is to perform various actions

based on the Activity states.

Must Rev.

Scheduling

Layer

The MPT shall have a schedul-

ing layer (SCL). Purpose of the

SCL is to host the services, which

manage the state of the scheduled

activities.

Must Rev.

Configuration

Layer

The MPT shall have configura-

tion (CONF) layer. Purpose of

the CONF layer is to initialize

the MPT, to load the mission

specific configuration of the tool

and to gather information about

the status of the tool.

Should Rev.

Gateway The communication layer shall

implement a gateway to connect

to the Middleware

Must Insp.

Routing The Gateway shall be capable of

directing messages to a specific

component in the System

Must Test

Reception The Gateway shall be capable or

recognizing messages from a dif-

ferent component in the system

and provide the content to the re-

spective feature in the MPT.

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 293

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Downtime After a down-time of the MPT,

the gateway shall be capable

of collecting messages, buffered

by the Middleware and provide

them the target features in the

MPT.

Should Test

Activity &

Schedule

Interface

The MPT shall have an inter-

face to access the mission sched-

ule, which is stored in a central

database. That IF shall be called

the Activity & Schedule Interface

(ASI)

Must Insp.

Phase Inter-

face

The MPT shall have an interface

to make phase requests at the

FDT. That IF shall be called the

Phase Interface (PIF)

Should Insp.

Data Interface The MPT shall have an interface

to connect to the central system

TM Archive. That IF shall be

called the Data Interface (DIF)

Should Insp.

Monitoring In-

terface

The MPT shall have an inter-

face that allows other (system

management) instances to mon-

itor the state of the MPT as an

instance. That IF shall be called

the Monitoring Interface (MIF)

Could Insp.

Table continues on next page.

294 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Control Inter-

face

The MPT shall have an interface

that allows other (system man-

agement) instances to control the

MPT asn an instance. That IF

shall be called the Control Inter-

face (CIF)

Could Insp.

MIB Interface The MPT shall have an inter-

face that allows mission specific

configurations from the MIB into

the MPT. That interface shall be

called MIB Interface (MIBIF)

Won’t Insp.

Buffering The interface layer shall deal

with the fact that requests to

other system components won’t

return right away. It shall buffer

the returned information so that

the MPT component making the

request can collect the requested

data later on.

Must Test

Schedule

Queries

The ASI shall allow making

queries within the mission sched-

ule and return the requested in-

formation

Must Test

Activity Mod-

ification

The ASI shall allow modify-

ing activities within the mission

schedule and return information

about the success of the modifi-

cation

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 295

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Activity Infor-

mation

The ASI shall allow for getting

information about a specific ac-

tivity in the schedule

Must Test

Command

Modification

The ASI shall allow to make

modifications on the scheduled

commands and return informa-

tion about the success of the

modification.

Must Test

Command In-

formation

The ASI shall allow for getting

information about a specific com-

mand in the schedule.

Must Test

Multiple Mis-

sion Schedules

The ASI must be capable of ac-

cessing multiple mission sched-

ules

Must Test

Return of

Phase Infor-

mation

The PIF shall enable components

of the MPT to request phases

from a respective component in

the system.

Must Test

Orbit In-

formation

Request

The PIF shall allow for the re-

quest of orbit information for a

specific time.

Should Test

Telemetry In-

formation

The DIF shall enable components

of the MPT querying the system

telemetry from a central archive.

Must Test

TM request The DIF shall allow for the re-

quest of one or more parameters

for a specified time frame

Must Test

Raw Value The DIF only returns the raw pa-

rameter values.

Must Test

Table continues on next page.

296 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

MPT active The MIF shall allow to follow if

the MPT as a component is work-

ing

Must Test

Functions

Monitoring

The MIF shall allow to follow if

each functional component (ser-

vices, management components,

threats) are active.

Must Test

Statistics The MIF shall allow to monitor

statistics (such as data through-

put, handled items per duration,

amount of handled items, active

since . . . information, etc.) the

data of interest of course depends

on the respective function.

Could Test

MPT Compo-

nent State

Each MPT component shall be

able to be monitored. Moni-

tored is the component state (ac-

tive, paused, terminated, stuck,

etc. . . .)

Should Test

Statistics Gen-

eration

Each component shall be capa-

ble of gathering relevant statis-

tics. The gathered data of in-

terest depends on the respec-

tive component functionality (e.g

data throughput, handled items,

load, . . .)

Should Test

Table continues on next page.

B.1 - MPT Requirement Backlog 297

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

MPT Compo-

nent Control

The CIF shall enable other com-

ponents to control (start, stop,

pause and reset) functional com-

ponents (services, managemetn

components) within the MPT.

Must Test

MPT Func-

tion Calls

The CIF shall allow for specific

function calls.

Won’t Test

Configuration

During Run-

time

The CIF shall allow for an MPT

configuration during runtime.

Should Test

MPT Compo-

nent Configu-

ration

Each MPT functional component

shall be configurable. The extend

of the configuration depends on

the component functionality.

Should Insp.

MPT Runtime

Configuration

Each MPT component shall be

configurable during runtime

Should Test

CMD Manage-

ment

The MPT shall have a command

management

Must Insp.

Release Man-

agement

The MPT shall have release man-

agement

Must Insp.

Resource

Management

The MPT shall have a resource

management

Should Insp.

On-board

Schedule

Mgmt.

The MPT shall have an on-board

schedule management

Won’t Insp.

Obit Manage-

ment

The MPT shall have an orbit

management

Won’t Insp.

Table continues on next page.

298 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

IFL Latencies The operative layer shall be de-

signed in a way, so it can handle

the fact that requests via the un-

derlying IFL won’t return right

away.

Should Test

Release Un-

lock

A releaser in the CMD Manage-

ment shall unlock commands in

the schedule for release

Must Test

Unlock Condi-

tion

Only commands of activities in

state 03 (in transmission) shall be

unlocked for release

Must Test

Lock Condi-

tion

Unlocked CMDs of activities

which are not in state 03 shall be

locked.

Must Test

Command

Ownership

The CMD management shall

only modify commands which are

part of an activity managed by

this MPT.

Must Test

Release Time The release management shall

determine the CMD release times

based on the CMD execution

times, scheduled uplinks, and ac-

tivity status.

Must Test

Release Plan-

ning

Release times shall only be deter-

mined for commands of activities

in state 02 or 11.

Must Test

Pass select The release planning must be ca-

pable of querying (up)link activ-

ities from the schedule via the

ASI.

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 299

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Pass duration The release planning must be

capable of querying querying

ground station passes via the

PIF.

Must Test

Link duration The duration of a link results

from the duration of the ground

station pass and the scheduled

link activity. Note: The link du-

ration is NOT equal to the pass

duration!

Must Test

Link time

margin

The release planning shall con-

sider configurable time margins

at the beginning and the end of

the link

Must Test

Data volume,

bandwidth,

and duration

The release planning shall con-

sider the uplink data volume, the

bandwidth and the determined

link duration for the release plan-

ning.

Should Test

Release Rules Different rules can be applied for

the determination of the release

times.

Could Insp.

Release Rule

Config

The release planning rules can be

configured

Could Insp.

Select of Re-

lease Rules

The release planning rules can be

selected by the user

Could Insp.

Table continues on next page.

300 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Release Opti-

mization

The determined release times are

the result of an optimization.

The variable to be optimized is a

matter of configuration or a user

input.

Won’t Test

Resource A resource is a mapped system

parameter, which is considered as

part of the system state.

Must Rev.

Accountant The resource management shall

manage budgets for each con-

sumed resource. The software

component in charge of the bud-

gets shall be called the Accoun-

tant

Must Insp.

Budget A budget tracks by whom (in

course of which activity) a re-

source is consumed and how

much.

Must Test

Budget Time-

line

A budget tracks the state of a re-

source in time.

Must Test

Resource

Propagation

The resource management shall

propagate the state of the re-

sources based on their last known

state and based on the scheduled

activities consuming them.

Must Test

Demand Han-

dling

For the propagation of the re-

source state, the resource man-

agement shall handle demands,

specified by the activities

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 301

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Absolute De-

mand

The resource management shall

be capable of handling abso-

lute demands: Absolute demands

specify a specific state the re-

source shall be in (e.g. system

mode = ‘safe’)

Must Test

Relative

Demand

The resource management shall

be capable of handling rela-

tive demands: Relative demands

specify how much of a resource is

consumed during an activity (e.g.

2 MB of RAM)

Must Test

Multiple

Demands

An activity can specify multiple

demands

Must Test

Resource

Information

The resource management in-

forms about the scheduled state

of a resource at a given time

Should Test

Resource

Check

The resource management shall

handle requests for an activity re-

source check. In case of a conflict

it informs the requester about the

cause of the conflict and the con-

flicting activities

Should Test

On-board

Schedule

Mgmt.

The OBS management shall keep

track of the on-board schedules.

Must Test

OBS Func-

tionality

The functional extend of the OBS

management is still to be defined.

Must Test

Table continues on next page.

302 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Orbit An orbit is a combination of mul-

tiple parameters describing the

shape and the location of the

satellite trajectory at a specific

time.

Must Rev.

Orbit Man-

agement

Implementa-

tion

Due to its similar functionality,

the orbit management should be

derived directly from the resource

management. Instead of a sin-

gle resource parameter, manag-

ing orbits requires the propaga-

tion of multiple parameters (e.g.

six Keplerian Elements)

Should Ana.

Navigator The orbit management keeps

track of the satellite’s trajectory

(aka. The scheduled future or-

bits). The software component

in charge of the orbits shall be

called Navigator

Must Test

Orbit Sched-

ule

The orbit schedule keeps of the

maneuver activities and the tar-

get orbits.

Must Test

Orbit Time-

line

The orbit schedule keeps track or

the trajectory in time (scheduled

orbits in time)

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 303

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Orbit Propa-

gation

The orbit management shall

propagate the trajectory based

on the last known orbit and based

on the scheduled maneuver ac-

tivities. This requirement might

require an interaction with the

FDT (in case this functionality is

not implemented within the orbit

management itself).

Must Test

Maneuver

Data

The orbit management shall be

capable of handling a defined set

of maneuver data. That set of

data is to be defined.

Must Test

Orbit Infor-

mation

The orbit management informs

about the scheduled orbit at a

given time

Should Test

Orbit Check The orbit management shall han-

dle requests for maneuver checks.

In case of a conflict (maneuver

does not fit into the scheduled

trajectory), the orbit manage-

ment informs the requester about

the cause of the conflict and the

conflicting maneuver activities

Should Test

19 Threads The SCL shall have a dedicated

thread for each of the 19 possible

states of an activity

Must Insp.

Thread Basic

Function

Purpose of a thread is to trans-

form an activity from a specific

state into another state.

Must Test

Table continues on next page.

304 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

IFL and OPL

latencies

The thread layer shall be de-

signed in a way, so it can han-

dle the fact that requests via the

underlying layers (IFL and OFL)

won’t return right away.

Must Test

Schedule Mod-

ification

The SCL shall be capable of

writing the mission schedule by

means of the ASI.

Must Test

Service

Thread

Each thread is a continuous

thread constantly checking and

updating the state of its activi-

ties.

Must Test

Only State

Modification

The Service only changes the

state of an activity. Any effects

caused through the change of an

activity status are implemented

by other components.

Must Test

Activity State

Machine

The SCL shall implement a state

machine that results in a state

flow as specified in the activity

definition. An activity must not

change into a state that is not

foreseen in the concept. (e.g.

an activity must not change from

state 02 into state 06.)

Must Test

Gathering In-

formation

The SCL shall be able to gather

all information required to check

the activity states.

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 305

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Activity Infor-

mation

The SCL shall be capable to re-

quest information about an ac-

tivity and its attributes from the

mission schedule via the ASI.

Must Test

Command In-

formation

The SCL shall be capable to re-

quest information about the com-

mands within the activity. Such

request shall be made at the mis-

sion schedule via the ASI.

Must Test

Real System

Data

The SCL shall be able to gather

system parameters from the cen-

tral archive via the DIF.

Should Test

Resource

Schedule Data

The SCL shall be able to gather

the scheduled state of a resource

from the resource management.

Should Test

Resource Veri-

fication

The SCL shall be capable of com-

paring real satellite data with the

scheduled resource state in order

to verify the successful execution

of an activity.

Could Test

Orbit Verifica-

tion

Like a system resource, the SCL

must be capable of comparing the

real orbit with the scheduled or-

bit.

Won’t Test

Thread 01 Thread 01 shall handle activities

in state 01 and check conditions

based on which the activity is ei-

ther suspended, set failed or set

to state 02

Must Test

Table continues on next page.

306 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Thread 02 Thread 02 shall handle activities

in state 02 and check conditions

based on which the activity is ei-

ther suspended, set failed or set

to state 03

Must Test

Thread 03 Thread 03 shall handle activities

in state 03 and check conditions

based on which the activity is ei-

ther suspended, set failed or set

to state 04

Must Test

Thread 04 Thread 04 shall handle activities

in state 04 and check conditions

based on which the activity is ei-

ther suspended, set failed or set

to state 05

Must Test

Thread 05 Thread 05 shall handle activities

in state 05 and check conditions

based on which the activity is ei-

ther suspended, set failed or set

to state 06

Must Test

Thread 06 Thread 06 shall handle activities

in state 06 and check conditions

based on which the activity is ei-

ther set failed or set to state 07

Must Test

Thread 07 Thread 07 shall handle activities

in state 07. Purpose of Thread 07

is to close the activity eventually

Must Test

Thread 08 Thread that handles all closed ac-

tivities. This thread possibly has

no functionality.

Must Test

Table continues on next page.

B.1 - MPT Requirement Backlog 307

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Thread 09 Thread 09 shall handle activities

in state 09 and check conditions

based on which the activity is ei-

ther resumed, or set failed.

Should Test

Thread 10 Thread 10 shall handle activities

in state 10 and check conditions

based on which the activity is ei-

ther resumed, or set failed.

Should Test

Thread 11 Thread 11 shall handle activities

in state 11 and check conditions

based on which the activity is ei-

ther resumed, or set failed.

Should Test

Thread 12 Thread 12 shall handle activities

in state 12 and check conditions

based on which the activity is ei-

ther resumed, or set failed.

Could Test

Thread 13 Thread 13 shall handle activities

in state 13 and check conditions

based on which the activity is ei-

ther resumed, or set failed.

Won’t Test

Thread 14 Thread 14 shall handle activities

in state 14. Purpose the thread

is to close the activity

Should Test

Thread 15 Thread 15 shall handle activities

in state 15. Purpose the thread

is to close the activity

Should Test

Thread 16 Thread 16 shall handle activities

in state 16. Purpose the thread

is to close the activity

Should Test

Table continues on next page.

308 B - MPT Implementation

Table B.1: MPT Requirement Backlog with Prioritization Scheme

Name Description Prio. Ver.

Thread 17 Thread 17 shall handle activities

in state 17. Purpose the thread

is to close the activity

Could Test

Thread 18 Thread 18 shall handle activities

in state 18. Purpose the thread

is to close the activity

Could Test

Thread 19 Thread 19 shall handle activities

in state 19. Purpose the thread

is to close the activity

Won’t Test

Monitoring &

Control

The CONF layer shall implement

and execute an internal MPT

monitoring & control

Could Insp.

Configuration The CONF layer shall implement

means of configuring the MPT

for a specific system

Should Insp.

B.2 - MPT Activity Management Flow Diagrams 309

B.2 MPT Activity Management Flow Di-

agrams

In section 6.3 the MPT architecture was introduced. The following

compilation of figures shows the state machines as implemented in

the nineteen different threads of the MPT scheduling layer.

310 B - MPT Implementation

Figure B.1: Thread 1 State Machine

B.2 - MPT Activity Management Flow Diagrams 311

Figure B.2: Thread 2 State Machine

312 B - MPT Implementation

Figure B.3: Thread 3 State Machine

B.2 - MPT Activity Management Flow Diagrams 313

Figure B.4: Thread 4 State Machine

314 B - MPT Implementation

Figure B.5: Thread 5 State Machine

B.2 - MPT Activity Management Flow Diagrams 315

Figure B.6: Thread 6 State Machine

316 B - MPT Implementation

Figure B.7: Thread 7 State Machine

Figure B.8: Thread 8 State Machine

B.2 - MPT Activity Management Flow Diagrams 317

Figure B.9: Thread 9 State Machine

318 B - MPT Implementation

Figure B.10: Thread 10 State Machine

B.2 - MPT Activity Management Flow Diagrams 319

Figure B.11: Thread 11 State Machine

320 B - MPT Implementation

Figure B.12: Thread 12 State Machine

B.2 - MPT Activity Management Flow Diagrams 321

Figure B.13: Thread 13 State Machine

322 B - MPT Implementation

Figure B.14: Threads 14–19 State Machine

323

C

Space Debris

An aspect, that should be addressed by a work about satellite con-

stellations, is the problem of space debris dissemination. Space

around Earth is a very large but limited resource. And as always,

humankind is exploiting that resource in a non-sustainable manner.

Since the beginning of space flight in the late 1950th, the number of

space debris objects is constantly growing.

In the year 1978, NASA scientist Donald J. Kessler described the

growth of a fragment belt around earth as a result of colliding space

objects in his article on Collision frequency of artificial satellites [79].

The scenario of cascading collisions of space objects that would result

in a permanent fragment belt around earth is referred to as Kessler

syndrome today. Such a belt would significantly affect space flight

if not making it totally impossible for certain altitudes. Already

back then Kessler warned of a “significant problem during the next

century” [79].

Today, in 2021 space flight is still possible. Yet, it relies on a

set of safety mechanisms, such as object tracking and active colli-

sion avoidance maneuvers. Furthermore, missions are supposed to

be compliant with requirements for space debris mitigation such as

ISO 24113 [45]. However, the numbers provided by ESA’s Annual

Space Environment Report of 2019 are still alarming. Between the

324 C - Space Debris

beginning of tracking in 1960 and 2007 the number of known objects

in orbit remained below 10,000. Since 2007 that number has more

than doubled, mostly in low earth orbits ([51], p. 13, fig. 2.2(a)).

This increase in numbers could of course be due to improved

detection mechanisms, but the major portion can surely be traced

back to triggering events. As a matter of fact, the amount of known

objects rises, because of the increasing number of satellites launched

into orbit. Compared to 2016, the annual payload traffic into alti-

tudes between 200 km and 1750 km has risen by roughly 100 % ([51],

p. 20, fig. 2.8). This goes along with a growing market and several

companies such as SpaceX announcing the launch of large satellite

fleets [62, 103, 63].

But not only satellite launches increase the amount of objects.

More concerning are reckless operations or accidental events such

as explosions or collisions of objects. Two prominent examples are

a Chinese anti-satellite missile test in 2007 [30] and the collision of

an Iridium satellite with a decommissioned Russian Kosmos-2251

satellite in 2009 [2]. Both events resulted in a noticeable rise of

in-orbit fragments.

The second event further demonstrates what kind of risk a poor

decommissioned or malfunctioning satellite could be for the safety

of space flight. This is why mission failures especially in large alti-

tudes are a complete taboo. To prevent that from happening space

missions demand for a sense of responsibility, as well as they require

reliable systems on space and on ground.

325

Bibliography

[1] Dirk Abel. Regelungstechnik. Ed. by Aachener Forschungs-

gemeinschaft Regelungstechnik e.V. Aachen, Germany: Ver-

lagsgruppe Mainz, 2009. isbn: 3-8107-0067-3.

[2] Joel Achenbach. Debris From Satellites’ Collision Said to

Pose Small Risk to Space Station. The Washington Post.

Feb. 12, 2009. url: https://www.washingtonpost.com/wp-

dyn/content/article/2009/02/11/AR2009021103387.

html.

[3] Patricia Adam. Agil in der ISO 9001. Wiesbaden, Germany:

Springer Gabler, 2020. isbn: 978-3-658-28310-0. doi: 10.1007/

978-3-658-28311-7.

[4] Eduardo Santana de Almeida. “Software Reuse and Product

Line Engineering”. In: Handbook of Software Engineering. Ed.

by Sungdeok Cha, Richard N. Taylor, and Kyochul Kang.

Cham, Switzerland: Springer, 2019. isbn: 978-3-030-00262-6.

[5] Andreas Farley, Daniel Koch, Lukas Heiland, Marius Hauser,

Max Hausch, Michael Erdenmann, Michael Voessner and Si-

mon Hauser. “Student Project about the Development of a

Mission Planning Tool for Satellite Operations”. University

of Stuttgart, Germany, Oct. 2021.

[6] Guillermo Arango. “A Brief Introduction to Domain Analy-

sis”. In: Proceedings of the 1994 ACM Symposium on Applied

Computing - SAC ’94. Schlurnberger Laboratory for Com-

https://www.washingtonpost.com/wp-dyn/content/article/2009/02/11/AR2009021103387.html
https://www.washingtonpost.com/wp-dyn/content/article/2009/02/11/AR2009021103387.html
https://www.washingtonpost.com/wp-dyn/content/article/2009/02/11/AR2009021103387.html
https://doi.org/10.1007/978-3-658-28311-7
https://doi.org/10.1007/978-3-658-28311-7

326 Bibliography

puter Science. Phoenix, AZ, USA: ACM Press, 1994, pp. 42–

46. doi: 10.1145/326619.326656.

[7] Niklas Arens. “Enhanced Development of a Disturbance Mo-

del for Small Satellite Simulation”. MA thesis. Stuttgart, Ger-

many: University of Stuttgart Institute of Space Systems,

Apr. 30, 2019.

[8] Helmut Balzert. Lehrbuch der Softwaretechnik. Entwurf, Im-

plementierung, Installation und Betrieb. 3rd ed. Heidelberg,

Germany: Spektrum, 2011.

[9] Bastian Bätz. “Design and Implementation of a Spacecraft

Flight Software Framework”. PhD thesis. Stuttgart, Germany:

University of Stuttgart Institute of Space Systems, Jan. 9,

2020.

[10] Fabrice Bellard. QEMU Wiki. Documentation/Platforms. QEMU.

Mar. 17, 2020. url: https://wiki.qemu.org/Documentation/

Platforms.

[11] Mohamed Khalil Ben-Larbi et al. “Towards the Automated

Operations of Large Distributed Satellite Systems. Part 1:

Review and Paradigm Shifts”. In: Advances in Space Research

(Aug. 2020). doi: 10.1016/j.asr.2020.08.009.

[12] Mohamed Khalil Ben-Larbi et al. “Towards the Automated

Operations of Large Distributed Satellite Systems. Part 2:

Classifications and Tools”. In: Advances in Space Research

(Sept. 2020). doi: 10.1016/j.asr.2020.08.018.

[13] Barry W. Boehm. “Guidelines for Verifying and Validating

Software Requirements and Design Specifications”. In: Euro

IFIP 79. Redondo Beach, CA, USA, 1979, pp. 711–719.

[14] André B. Bondi. “Characteristics of Scalability and Their Im-

pact on Performance”. In: Proceedings of the 2nd interna-

tional workshop on Software and performance. Ottawa, On-

https://doi.org/10.1145/326619.326656
https://wiki.qemu.org/Documentation/Platforms
https://wiki.qemu.org/Documentation/Platforms
https://doi.org/10.1016/j.asr.2020.08.009
https://doi.org/10.1016/j.asr.2020.08.018

Bibliography 327

tario, Canada: Association for Computing Machinery, Sept.

2000, pp. 195–203. doi: 10.1145/350391.350432.

[15] Maximilian Böttcher et al. “Design and Implementation of a

Wideband Back-Fire-Feed-System for an S-band Cassegrain

Antenna”. In: 36th ESA Antenna Workshop on Antennas and

RF Systems for Space Science. Noordwijk, The Nederlands,

Oct. 2015.

[16] Maximilian Böttcher et al. “Design of a Low-Cost S/X Dual

Band Stellite Ground Station for Small Satellite Missions”.

In: IAA/AAS Scitech 2020. Moscow, Russia, Dec. 2020.

[17] Alvise Braga-Illa. “Automatic satellite station-keeping”. In:

Journal of Spacecraft and Rockets 6.4 (May 23, 2012), pp. 430–

436. doi: 10.2514/3.29674.

[18] Nico Bucher. “Merging Spacecraft Software Development and

System Tests: An Agile Verification Approach”. PhD the-

sis. Stuttgart, Germany: University of Stuttgart Institute of

Space Systems, 2018.

[19] Timothy A. Budd et al. “The design of a prototype mutation

system for program testing”. In: National Computer Confer-

ence. American Federation of Information Processing Soci-

eties. Anaheim, CA, USA: AFIPS, June 1978, pp. 623–629.

[20] Frank Buschmann et al. Pattern-Oriented Software Architec-

ture. A System of Patterns. Vol. 1. Chichester, UK: Wiley,

2001. isbn: 978-0471958697.

[21] California Polytechnic State University. CubeSat Design Spec-

ification. Version 13. San Luis Obispo, CA, USA, Feb. 2, 2014.

[22] Claude Cazenave, Francis Rodor, and Bjoern Kircher. SimTG

Kernel User Manual. SIMTG-UM-0008-ASTR. Version 2.2.

Airbus DS. Mar. 9, 2015.

https://doi.org/10.1145/350391.350432
https://doi.org/10.2514/3.29674

328 Bibliography

[23] CCSDS. Mission Operations Message Abstraction Layer. CC-

SDS 521.0-B-2. Consultative Committee for Space Data Sys-

tems. Washington D.C., USA, Mar. 2013.

[24] CCSDS. Space Packet Protocol. CCSDS 133.0-B-1. Consulta-

tive Committee for Space Data Systems. Washington D.C.,

USA, Sept. 1, 2003.

[25] CCSDS. XML Telemetric and Command Exhange (XTCE).

CCSDS 660.0-B-1. Consultative Committee for Space Data

Systems. Washington D.C., USA, Oct. 2007.

[26] Scott Chacon and Ben Straub. Pro Git. 2nd ed. New York,

NY, USA: Apress, 2014. isbn: 978-1-4842-0076-6.

[27] Thomas J. Cheatham and Lee Mellinger. “Testing Object-

Oriented Software Systems”. In: Proceedings of the 1990 ACM

Annual Conference on Cooperation. Vol. 18. Association for

Computing Machinery. New York, NY, USA, Jan. 1990, pp. 161–

165. doi: 10.1145/100348.100373.

[28] Yaofei Chen et al. “An Empirical Study of Programming Lan-

guage Trends”. In: IEEE Software 22.3 (June 2005), pp. 72–

79. doi: 10.1109/MS.2005.55.

[29] Colin Cherry. On Human Communication. Cambridge, MA,

USA: The M.I.T. Press, 1966.

[30] Craig Covault. Chinese Test Anti-Satellite Weapon. Aviation

Week. Jan. 17, 2007. url: https://web.archive.org/

web/20070128075259/http://www.aviationweek.com/

aw/generic/story_channel.jsp?channel=space%5C&id=

news/CHI01177.xml.

[31] Krzysztof Czarnecki. “Generative Programming. Principles

and Techniques of Software Engineering Based on Automated

Configuration and Fragment-Based Component Models”. PhD

thesis. Ilmenau, Germany: Department of Computer Science

https://doi.org/10.1145/100348.100373
https://doi.org/10.1109/MS.2005.55
https://web.archive.org/web/20070128075259/http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=space%5C&id=news/CHI01177.xml
https://web.archive.org/web/20070128075259/http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=space%5C&id=news/CHI01177.xml
https://web.archive.org/web/20070128075259/http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=space%5C&id=news/CHI01177.xml
https://web.archive.org/web/20070128075259/http://www.aviationweek.com/aw/generic/story_channel.jsp?channel=space%5C&id=news/CHI01177.xml

Bibliography 329

and Automation, Technical University of Ilmenau, Aug. 9,

1999.

[32] Wolfgang Dahmen and Arnold Reusken. Numerik für Inge-

nieure und Naturwissenschaftler. 2nd ed. Berlin, Germany:

Springer, 2008. isbn: 978-3-540-76492-2.

[33] Fabienne Delhaise et al. “Spacecraft and Payload Data Han-

dling”. In: ESA Special Publication SP-1295 (Nov. 2, 2007),

pp. 1–13.

[34] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements

Engineering. 4th ed. Cham, Switzerland: Springer, 2017. isbn:

978-3-319-61073-3.

[35] Hans Dodel and René Wörfel. Satellitenfrequenzkoordinierung.

Heidelberg, Germany: Springer, 2012. isbn: 978-3-642-29202-

6.

[36] Ecma. The JSON data interchange syntax. ECMA-404. Ecma

International. Geneva, Switzerland, Dec. 2017.

[37] ECSS. Glossary of Terms. ECSS-S-ST-00-01C. European Co-

operation for Space Standardization. Noordwijk, The Nether-

lands, Oct. 1, 2012.

[38] ECSS. Space engineering: Simulation Modelling Platform -

Volume 1: Principles and Requirements. ECSS-E-TM-40-07.

European Cooperation for Space Standardization. Noordwijk,

The Netherlands, Jan. 25, 2011.

[39] ECSS. Space engineering: SpaceWire – Links, nodes, router-

sand networks. ECSS-E-ST-50-12C. European Cooperation

for Space Standardization. Noordwijk, The Netherlands, May 22,

2019.

[40] ECSS. Space engineering: SpaceWire – Remote memory ac-

cess protocol. ECSS-E-ST-50-52C. European Cooperation for

Space Standardization. Noordwijk, The Netherlands, Feb. 5,

2010.

330 Bibliography

[41] ECSS. Space engineering: Telemetry and telecommand packet

utilization. ECSS-E-ST-70-41C. European Cooperation for Space

Standardization. Noordwijk, The Netherlands, Apr. 15, 2016.

[42] ECSS. Space engineering: Telemetry and telecommand packet

utilization. ECSS-E-ST-70-41C. European Cooperation for Space

Standardization. Noordwijk, The Netherlands, Apr. 15, 2016.

[43] ECSS. Space engineering: Testing. ECSS-E-ST-10-03C. Eu-

ropean Cooperation for Space Standardization. Noordwijk,

The Netherlands, June 1, 2012.

[44] ECSS. Space product assurance: Software product assurance.

ECSS-Q-ST-80C Rev.1. European Cooperation for Space Stan-

dardization. Noordwijk, The Netherlands, Feb. 15, 2017.

[45] ECSS. Space sustainability. ECSS-U-AS-10C. European Co-

operation for Space Standardization. Noordwijk, The Nether-

lands, Dec. 3, 2019.

[46] Manfred von Ehrenfried. Apollo Mission Control. Cham, Swi-

tzerland: Springer, 2018. isbn: 978-3-319-76683-6. doi: 10.

1007/978-3-319-76684-3.

[47] Jens Eickhoff. Simulating Spacecraft Systems. Heidelberg, Ger-

many: Springer, 2009. isbn: 978-3-642-01275-4.

[48] Jens Eickhoff. The FLP Microsatellite Platform. Flight Oper-

ations Manual. Springer Aerospace Technology. Cham, Swi-

tzerland: Springer, 2016. isbn: 978-3-319-23502-8. doi: 10.

1007/978-3-319-23503-5.

[49] Jens Eickhoff, Harald Eisenmann, and Oliver Kienzler. “TINA

- Knowlegebased Mission Planning for Future Spacecrafts and

their Autonomous Operation”. In: WIT Transactions on In-

formation and Communication Technologies 19 (1997). doi:

10.2495/AI970421.

https://doi.org/10.1007/978-3-319-76684-3
https://doi.org/10.1007/978-3-319-76684-3
https://doi.org/10.1007/978-3-319-23503-5
https://doi.org/10.1007/978-3-319-23503-5
https://doi.org/10.2495/AI970421

Bibliography 331

[50] Jens Eickhoff et al. “Constellations Research using simulated

FLP-based Satellites”. In: SpaceOps Conference. Daejeon, Ko-

rea, May 20, 2016. doi: 10.2514/6.2016-2544.

[51] ESA. ESA’s Annual Space Environment Report. Tech. rep.

GEN-DB-LOG-00271-OPS-SD. Version 3.2. Darmstadt, Ger-

many: European Space Operations Centre (ESOC), July 17,

2019.

[52] ESA. SCOS-2000 Database Import ICD. EGOS-MCS-S2K-

ICD-0001. Version 6.9. European Space Agency. July 6, 2010.

[53] Annette Froehlich. Legal Aspects Around Satellite Constella-

tions. Ed. by European Space Policy Institute. Cham, Swi-

tzerland: Springer, 2019. isbn: 978-3-030-06027-5. doi: 10.

1007/978-3-030-06028-2.

[54] Daniel Galla et al. “The Educational Platform SOURCE -

A CubeSat Mission on Demise Investigation Using In-Situ

Heat Flux Measurements”. In: 70th International Astronau-

tical Congress (IAC). IAC-19,E1,IP,24,x53779. International

Astronautical Federation (IAF). Washington, D.C., USA, Oct.

2019.

[55] Erich Gamma et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Com-

puting Series. Pearson Education, 1994. isbn: 9780321700698.

[56] Gonzalo Garcia. “A New Approach for Satellite Operations

and Testing Automation using Python”. San Diego, CA, USA.

In: AIAA SPACE 2008 Conference. AIAA 2008-7864. Amer-

ican Institute of Aeronautics and Astronautics. Sept. 2008.

doi: 10.2514/6.2008-7864.

[57] Eberhard Gill. Together in space: Potentials and challenges

of distributed space systems. Inaugural speech. Delft Univer-

sity of Technology. Sept. 17, 2008. url: http://resolver.

tudelft.nl/uuid:13b5b1cf-1d3e-44b0-a724-44896cf157db.

https://doi.org/10.2514/6.2016-2544
https://doi.org/10.1007/978-3-030-06028-2
https://doi.org/10.1007/978-3-030-06028-2
https://doi.org/10.2514/6.2008-7864
http://resolver.tudelft.nl/uuid:13b5b1cf-1d3e-44b0-a724-44896cf157db
http://resolver.tudelft.nl/uuid:13b5b1cf-1d3e-44b0-a724-44896cf157db

332 Bibliography

[58] Jake Goulding. What is Rust and why is it so popular? Stack

Overflow. Jan. 20, 2020. url: https : / / stackoverflow .

blog/2020/01/20/what-is-rust-and-why-is-it-so-

popular/.

[59] GSOC. Planning Modelling Language. Ed. by German Space

Operations Center. German Areoscpace Center. July 2010.

url: https : / / www . dlr . de / rb / en / Portaldata / 38 /

Resources/dokumente/GSOC_dokumente/RB- MIB/GSOC_

Modelling_Language.pdf.

[60] Noopur Gupta. Embracing JUnit 5 with Eclipse. Eclipse Foun-

dation. 2017. url: https://www.eclipse.org/community/

eclipse_newsletter/2017/october/article5.php.

[61] Klaus Henning, Arno Gramatke, and Julia Sabine Jakobs.

Informationsmanagement im Maschinenwesen. Foundations,

Applications and Challenges. 8th ed. Aachen, Germany: Druck-

erei und Verlagsgruppe Mainz, 2008. isbn: 3-86073-735-X.

[62] Caleb Henry. OneWeb’s first six satellites in orbit follow-

ing Soyuz launch. SpaceNews. Feb. 27, 2019. url: https://

spacenews.com/first-six-oneweb-satellites-launch-

on-soyuz-rocket/.

[63] Caleb Henry. SpaceX launches 60 Starlink satellites, begins

constellation buildout. SpaceNews. May 23, 2019. url: https:

//spacenews.com/spacex-launches-60-starlink-satellites-

begins-constellation-buildout/.

[64] Mark D. Hill. “What is Scalability”. In: ACM SIGARCH

Computer Architecture News 18 (4 Dec. 2, 1990), pp. 18–

21. doi: 10.1145/121973.121975.

[65] William E. Hill. “My wife and my mother-in-law. They are

both in this picture - find them”. In: Puck. Vol. 78. Nov. 6,

1915, p. 11.

https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://www.dlr.de/rb/en/Portaldata/38/Resources/dokumente/GSOC_dokumente/RB-MIB/GSOC_Modelling_Language.pdf
https://www.dlr.de/rb/en/Portaldata/38/Resources/dokumente/GSOC_dokumente/RB-MIB/GSOC_Modelling_Language.pdf
https://www.dlr.de/rb/en/Portaldata/38/Resources/dokumente/GSOC_dokumente/RB-MIB/GSOC_Modelling_Language.pdf
https://www.eclipse.org/community/eclipse_newsletter/2017/october/article5.php
https://www.eclipse.org/community/eclipse_newsletter/2017/october/article5.php
https://spacenews.com/first-six-oneweb-satellites-launch-on-soyuz-rocket/
https://spacenews.com/first-six-oneweb-satellites-launch-on-soyuz-rocket/
https://spacenews.com/first-six-oneweb-satellites-launch-on-soyuz-rocket/
https://spacenews.com/spacex-launches-60-starlink-satellites-begins-constellation-buildout/
https://spacenews.com/spacex-launches-60-starlink-satellites-begins-constellation-buildout/
https://spacenews.com/spacex-launches-60-starlink-satellites-begins-constellation-buildout/
https://doi.org/10.1145/121973.121975

Bibliography 333

[66] Gerald R. Hintz. Orbital Mechanics and Astrodynamics. Cham,

Switzerland: Springer, 2015. isbn: 978-3-319-09443-4.

[67] Joseph Howard, Dipak Oza, and Danford Smith. “Best Prac-

tices for Operations of Satellite Constellations”. In: SpaceOps

2006 Conference. AIAA 2006-5866. American Institute of Aero-

nautics and Astronautics. Rome, Italy: American Institute of

Aeronautics and Astronautics, June 2006. doi: 10.2514/6.

2006-5866.

[68] William E. Howden. “Completeness Criteria for Testing Ele-

mentary Program Functions”. In: Proceedings of the 5th In-

ternational Conference on Software Engineering. IEEE, Mar.

1981, pp. 235–243.

[69] IEEE. Standard for Software and System Test Documenta-

tion. IEEE Std 829-2008. The Institute of Electrical and Elec-

tronics Engineers. New York, NY, USA, July 18, 2008.

[70] IEEE. Standard for Software Test Documentation. IEEE Std

829-1998. The Institute of Electrical and Electronics Engi-

neers. New York, NY, USA, Sept. 16, 1998.

[71] IEEE. Systems and software engineering - Software life cycle

processes. Ed. by ISO. IEEE Std 12207:2008. The Institute

of Electrical and Electronics Engineers. Geneva, Switzerland,

Feb. 1, 2008.

[72] IEEE. The Authoritative Dictionary of IEEE Standards Terms.

The Institute of Electrical and Electronics Engineers. New

York, NY, USA, Dec. 2000. isbn: 0-7381-2601-2.

[73] IETF. The JavaScript Object Notation (JSON) Data Inter-

change Format. RFC 8259. Internet Engineering Task Force.

Dec. 2018. url: https://datatracker.ietf.org/doc/

html/rfc8259.

https://doi.org/10.2514/6.2006-5866
https://doi.org/10.2514/6.2006-5866
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

334 Bibliography

[74] ITU. Data Networks and Open System Communications: Open

System Interconnection - Model and Notation. X.200. ITU-T

Recommendation. International Telecommunication Union.

July 1994.

[75] Stephen C. Johnson. “Lint, a C Program Checker”. In: Com-

puter Science Technical Report. Vol. 65. Bell Laboratories.

1978.

[76] Steven Johnson. Emergence. The Connected Lives of Ants,

Brains, Cities, and Software. New York, USA: Scribner, 2001.

isbn: 978-0-684-86875-2.

[77] Eric M. Jones. Apollo 12 Lunar Surface Journal. Apr. 27,

2013. url: https://www.hq.nasa.gov/alsj/a12/cuff12.

html.

[78] Jonas Keim et al. “Commissioning of the Optical Communi-

cation Downlink System OSIRISv1 on the University Small-

Satellite Flying Laptop”. In: 70th International Astronautical

Congress. Washington D.C., USA, Oct. 2019.

[79] Donald J. Kessler and Burton G. Cour-Palais. “Collision fre-

quency of artificial satellites: The creation of a debris belt”.

In: JGR Space Physics 83.A6 (Feb. 22, 1978), pp. 2637–2646.

doi: 10.1029/JA083iA06p02637.

[80] Alex Kirlik. “Modeling Strategic Behavior in Human-Autom-

ation Interaction. Why an “Aid” Can (and Should) Go Un-

used”. In: Human Factors 35 (2 June 1, 1993), pp. 221–242.

doi: 10.1177/001872089303500203.

[81] Kai-Sören Klemich et al. “The Flying Laptop University Satel-

lite Mission: Ground Infrastructure and Operations after one

Year in Orbit”. In: Deutscher Luft- und Raumfahrtkongress

2018. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilien-

thal-Oberth e.V. Friedrichshafen, Germany, Nov. 9, 2018. doi:

10.25967/480190.

https://www.hq.nasa.gov/alsj/a12/cuff12.html
https://www.hq.nasa.gov/alsj/a12/cuff12.html
https://doi.org/10.1029/JA083iA06p02637
https://doi.org/10.1177/001872089303500203
https://doi.org/10.25967/480190

Bibliography 335

[82] Gerhard Krieger et al. “TanDEM-X: A Satellite Formation

for High-Resolution SAR Interferometry”. In: IEEE Transac-

tions on Geoscience and Remote Sensing 45.11 (Nov. 2007),

pp. 3317–3341.

[83] Philippe B. Kruchten. “The 4+1 View Model of Architec-

ture”. In: IEEE Software 12.6 (Nov. 1995), pp. 42–50. doi:

10.1109/52.469759.

[84] Jürg Kuster et al. Handbuch Projektmanagement. Berlin, Ger-

many: Springer, 2019. isbn: 978-3-662-57877-3. doi: 10.1007/

978-3-662-57878-0.

[85] Jean-Claude Laprie. “Dependable Computing and Fault Tol-

erance. Concepts and Terminology”. In: 25th International

Symposium on Fault-Tolerant Computing. Pasadena, CA, USA:

IEEE, June 1995. doi: 10.1109/FTCSH.1995.532603.

[86] Kai Leidig and Jens Eickhoff. “Microsatellite Simulation for

Constellation Research”. In: AIAA Modeling and Simulation

Technologies Conference. AIAA 2017-1553. American Insti-

tute of Aeronautics and Astronautics. Grapevine, TX, USA,

Jan. 2017. doi: 10.2514/6.2017-1553.

[87] Kai Leidig et al. “Multi-Mission Operations System support-

ing Satellite Constellations”. In: 16th International Confer-

ence on Space Operation. SpaceOps-2020,4,14,x281. Interna-

tional Astronautical Federation (IAF). Cape Town, South

Africa, May 2021.

[88] Panagiotis Louridas. “Static Code Analysis”. In: IEEE Soft-

ware 23.4 (July 17, 2006), pp. 58–61. doi: 10.1109/MS.2006.

114.

[89] Dewi Mairiza, Didar Zowghi, and Nurie Nurmuliani. “An In-

vestigation into the Notion of Non-Functional Requirements”.

In: Proceedings of the 2010 ACM Symposium on Applied Com-

puting (SAC). Sierre, Switzerland, Jan. 2010. doi: 10.1145/

1774088.1774153.

https://doi.org/10.1109/52.469759
https://doi.org/10.1007/978-3-662-57878-0
https://doi.org/10.1007/978-3-662-57878-0
https://doi.org/10.1109/FTCSH.1995.532603
https://doi.org/10.2514/6.2017-1553
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1109/MS.2006.114
https://doi.org/10.1145/1774088.1774153
https://doi.org/10.1145/1774088.1774153

336 Bibliography

[90] Edith Maurer et al. “TerraSAR-X Mission Planning System.

Automated Command Generation for Spacecraft Operations”.

In: IEEE Transactions on Geoscience and Remote Sensing 48

(Feb. 2010), pp. 642–648. doi: 10.1109/TGRS.2010.2040699.

[91] Ernst Messerschmid and Stefanos Fasoulas. Raumfahrtsys-

teme. Berlin, Germany: Springer, 2017. isbn: 978-3-662-49637-

4.

[92] Sreeja Nag et al. “Autonomous Scheduling of Agile Spacecraft

Constellations with Delay Tolerant Networking for Reactive

Imaging”. In: International Conference on Automated Plan-

ning and Scheduling SPARK Workshop (July 2019).

[93] Kshirasagar Naik and Priyadarshi Tripathy. Software Testing

and Quality Assurance: Theory and Practice. Wiley, 2008.

isbn: 9780471789116.

[94] James M. Neighbors. “Software Construction Using Compo-

nents”. PhD thesis. Irvine, CA, USA: Department of Infor-

mation and Computer Science, University of California, 1980.

[95] Gregorius Ongo and Gede Putra Kusuma. “Hybrid Database

System of MySQL and MongoDB in Web Application Devel-

opment”. In: International Conference on Information Man-

agement and Technology (ICIMTech). Jakarta, Indonesia: IEEE,

Sept. 5, 2018. doi: 10.1109/ICIMTech.2018.8528120.

[96] Rafael Vázquez Osorio et al. “SCOS-2000 Release 4.0. Multi-

Mission/Multi-Domain Capabilities in ESA SCOS-2000 MCS

Kernel”. In: 2006 IEEE Aerospace Conference. Big Sky, MT,

USA: IEEE, July 24, 2006. doi: 10 . 1109 / AERO . 2006 .

1656141.

[97] Sebastian Oster. “Feature Model-based Software Product Line

Testing”. PhD thesis. Darmstadt, Germany: TU Darmstadt,

Dec. 16, 2011.

https://doi.org/10.1109/TGRS.2010.2040699
https://doi.org/10.1109/ICIMTech.2018.8528120
https://doi.org/10.1109/AERO.2006.1656141
https://doi.org/10.1109/AERO.2006.1656141

Bibliography 337

[98] Thorsten Ottosen. Pointer Container Library. Ed. by boost

C++ Libraries. 2007. url: https://www.boost.org/doc/

libs/1_74_0/libs/ptr_container/doc/ptr_container.

html.

[99] Raja Parasuraman, Thomas B. Sheridan, and Christopher D.

Wickens. “A Model for Types and Levels of Human Interac-

tion with Automation. Part A: Systems and Humans”. In:

IEEE Transactions on Systems, Man, and Cybernetics 30 (3

May 2000), pp. 286–297. doi: 10.1109/3468.844354.

[100] Steve Pearson, Simon Reid, and Wernke zur Borg. “A Full

End-to-end Automation Chain with MOIS, PLUTO, MA-

TIS, SMF and SCOS-2000”. In: SpaceOps 2014 Conference.

Pasadena, CA, USA, May 2, 2014. doi: 10.2514/6.2014-

1833.

[101] Chris Peat. Flying Laptop - Orbit. Heavens-Above GmbH.

Oct. 7, 2021. url: https://heavens-above.com/orbit.

aspx?satid=42831&lat=0&lng=0&loc=Unspecified&alt=

0&tz=UCT.

[102] Deqayne E. Perry and Gail E. Kaiser. “Adequate Testing

and Object-Oriented Programming”. In: Journal of Object-

Oriented Programming 2.5 (1990).

[103] Kattia Flores Pozo and Adriana Fukuzato. “Too Many Satel-

lites to Operate? How Planet Successfully Operates 100’s

of Satellites using Agile Aerospace”. In: 69th International

Astronautical Congress (IAC). IAC-18.B6.2.1X46924. Inter-

national Astronautical Federation (IAF). Bremen, Germany,

Oct. 2018.

[104] Robert Ramey. Serialization. Overview. Ed. by boost C++

Libraries. 2004. url: https://www.boost.org/doc/libs/

1_72_0/libs/serialization/doc/index.html.

[105] Brandon Craig Rhodes. PyEphem. Astronomy Library for

Python. 2020. url: https://rhodesmill.org/pyephem/.

https://www.boost.org/doc/libs/1_74_0/libs/ptr_container/doc/ptr_container.html
https://www.boost.org/doc/libs/1_74_0/libs/ptr_container/doc/ptr_container.html
https://www.boost.org/doc/libs/1_74_0/libs/ptr_container/doc/ptr_container.html
https://doi.org/10.1109/3468.844354
https://doi.org/10.2514/6.2014-1833
https://doi.org/10.2514/6.2014-1833
https://heavens-above.com/orbit.aspx?satid=42831&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
https://heavens-above.com/orbit.aspx?satid=42831&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
https://heavens-above.com/orbit.aspx?satid=42831&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT
https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html
https://rhodesmill.org/pyephem/

338 Bibliography

[106] Brandon Craig Rhodes. Skyfield. Elegant Astronomy for Py-

thon. 2020. url: https://rhodesmill.org/skyfield/.

[107] Shamim Ripon et al. “Automated Requirements Extraction

and Product Configuration Verification for Software Product

Line”. In: Automated Software Testing. Ed. by Ajay Kumar

Jena, Himansu Das Durga, and Prasad Mohapatra. Singa-

pore: Springer, 2020. isbn: 978-981-15-2455-4.

[108] Stefan Röß. “Development of a Simple Env/Dyn-Model for

the Simulation of a Small Satellite”. MA thesis. Stuttgart,

Germany: University of Stuttgart Institute of Space Systems,

Nov. 9, 2016.

[109] RTEMS Project and contributors. RTEMS User Manual (5.1).

2020. url: https://ftp.rtems.org/pub/rtems/releases/

5/5.1/docs/html/user/index.html.

[110] Jeff Rubin and Dana Chisnell. Handbook of Usability Testing:

How to Plan, Design, and Conduct Effective Tests. 2nd ed.

Indianapolis, IN, USA: Wiley, 2008. isbn: 978-0-470-18548-3.

[111] Shadman Salih. “Selection of Computer Programming Lan-

guages for Developing Distributed Systems”. PhD thesis. Le-

icester, UK: Department of Software Engineering, Universi-

tyof De Montfort, May 15, 2014.

[112] Luca Save. “Not all or nothing, not all the same: classifying

automation in practice. Safety and Automation”. In: Hind-

Sight 20 (Dec. 2014). Ed. by Tzvetomir Blajev, pp. 64–68.

[113] Luca Save and Beatrice Feuerberg. “Designing Human-Auto-

mation Interaction. A new level of Automation Taxonomy”.

In: Human Factors: a view from an integrative perspective.

Ed. by Dick de Waard. 2012.

[114] Benjamin Schoch et al. “Towards a CubeSat Mission for a

Wideband Data Transmission in E-Band”. In: IEEE Space

https://rhodesmill.org/skyfield/
https://ftp.rtems.org/pub/rtems/releases/5/5.1/docs/html/user/index.html
https://ftp.rtems.org/pub/rtems/releases/5/5.1/docs/html/user/index.html

Bibliography 339

Hardware and Radio Conference (SHaRC). IEEE. San Anto-

nio, TX, USA, Jan. 29, 2020.

[115] Ken Schwaber and Jeff Sutherland. The Scrum Guide. Nov.

2017. url: https://scrumguides.org/docs/scrumguide/

v2017/2017-Scrum-Guide-US.pdf.

[116] SFC. git homepage. Ed. by Software Freedom Conservancy.

2020. url: https://git-scm.com/.

[117] Graeme B. Shaw, D. W. Miller, and D. E. Hastings. “General-

ized Characteristics of Communication, Sensing, and Naviga-

tion Satellite Systems”. In: Journal of Spacecraft and Rockets

37.6 (Dec. 2000), pp. 801–811. doi: 10.2514/2.3638.

[118] Thomas B. Sheridan and William L. Verplank. Human and

Computer Control of Undersea Teleoperators. Tech. rep. Cam-

bridge, MA, USA: Man-Machine Systems Laboratoatory, MIT,

July 1978.

[119] Michael Shpilt. 9 Must Decisions in Web Application Devel-

opment. Sept. 2019. url: https://michaelscodingspot.

com/web-application-development/#spa.

[120] Marc Costa Sitjà. “SPICE for ESA Planetary Missions. ge-

ometry and visualization support to studies, operations and

data analysis within your reach”. In: SpaceOps 2018 Confer-

ence. Marseille, France: AIAA, May 25, 2018. doi: 10.2514/

6.2018-2553.

[121] Harry M. Sneed and Mario Winter. Testen objektorientierter

Software. Das Praxishandbuch für den Test objektorientierter

Client-Server-Systeme. München, Germany: Hanser, 2002. isbn:

3-446-21820-3.

[122] Stephan Speidel. “Conceptual Approach of a Thermal Model

for Satellite Simulation”. MA thesis. Stuttgart, Germany:

University of Stuttgart Institute of Space Systems, Apr. 15,

2018.

https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://git-scm.com/
https://doi.org/10.2514/2.3638
https://michaelscodingspot.com/web-application-development/#spa
https://michaelscodingspot.com/web-application-development/#spa
https://doi.org/10.2514/6.2018-2553
https://doi.org/10.2514/6.2018-2553

340 Bibliography

[123] Herbert Stachowiak. Allgemeine Modelltheorie. Vienna, Aus-

tria: Springer, 1973. isbn: 3-211-81106-0.

[124] Bjarne Stroustrup. The C++ Programming Language. 3rd ed.

Boston, MA, USA: Addison-Wesley, 2001. isbn: 0-201-88954-

4.

[125] Terma. Data sheet - CCS5 and TSC. Aarhus, Denmark, 2020.

[126] Georg Erwin Thaller. Software-Test. Hannover, Germany: Heinz

Heise, 2000. isbn: 3-88229-183-4.

[127] The PostgreSQL Global Development Group. PostgreSQL

Documentation. Aug. 12, 2021. url: https://www.postgresql.

org/docs/.

[128] Thomas Uhlig, Florian Sellmaier, and Michael Schmidhuber.

Spacecraft Operations. Ed. by German Space Operations Cen-

ter (GSOC). Ed. by German Aerospace Center (DLR). Vi-

enna, Austria: Springer, 2015. isbn: 978-3-7091-1802-3. doi:

10.1007/978-3-7091-1803-0.

[129] Yuri Ulybyshev. “Long-Term Formation Keeping of Satellite

Constellation Using Linear-Quadratic Controller”. In: Jour-

nal of Guidance, Control, and Dynamics 21.1 (May 23, 2012),

pp. 109–115. doi: 10.2514/2.4204.

[130] David A. Vallado and Paul Crawford. “SGP4 Orbit Deter-

mination”. In: AIAA/AAS Astrodynamics Specialist Confer-

ence. Honolulu, Hawaii, USA: AIAA, June 15, 2012. doi:

10.2514/6.2008-6770.

[131] Anthony Walsh et al. “The European Ground Systems Com-

mon Core (EGS-CC) Initiative”. In: SpaceOps 2012 Confer-

ence. Stockholm, Sweden, June 2012. doi: 10.2514/6.2012-

1282732.

[132] Joachim Weiß. Duden - Das Neue Lexikon. 3rd ed. Vol. 5:

Indi - Lau. Mannheim, Germany: Bibliographisches Institut

& F. A. Brockhaus AG, 1996. isbn: 3-411-04353-9.

https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://doi.org/10.1007/978-3-7091-1803-0
https://doi.org/10.2514/2.4204
https://doi.org/10.2514/6.2008-6770
https://doi.org/10.2514/6.2012-1282732
https://doi.org/10.2514/6.2012-1282732

Bibliography 341

[133] Sebastian Wenzel et al. “Pointing Enhancement for an Opti-

cal Laser Downlink Using Automated Image Processing”. In:

Small Satellite Conference. SSC20-WKVIII-05. Logan, UT,

USA, July 28, 2020.

[134] James R. Wertz. Space Mission Engineering: The New SMAD.

Ed. by James R. Wertz. Ed. by David F. Everett. Ed. by

Jeffery J. Puschell. Hawthrone, CA, USA: Microcosm Press,

2011. isbn: 978-1-881-883-15-9.

[135] Karl Wiegers and Joy Beatty. Software Requirements. 3rd ed.

Redmond, WA, USA: Microsoft Press, 2013.

[136] Wikipedia. Complexity. Dec. 30, 2019. url: https://en.

wikipedia.org/wiki/Complexity.

[137] Wikipedia. JavaScript Object Notation. Oct. 3, 2021. url:

https://de.wikipedia.org/wiki/JavaScript_Object_

Notation.

[138] Lukas Wunderlich. “Systemsimulation einer Satellitenkonstel-

lation basierend auf dem Kleinsatelliten Flying Laptop”. BA

thesis. Stuttgart, Germany: University of Stuttgart Institute

of Space Systems, June 2020.

[139] Wu Yu. “Modification and Installation of a Small Satellite

On-Board Software on an Emulated Processing Unit”. MA

thesis. Stuttgart, Germany: University of Stuttgart, Institute

of Space Systems, Apr. 17, 2017.

[140] Olivier Zanon. “The SimTG Simulation Modeling Framework:

A domain specific language for space simulation”. In: 2011

Spring Simulation Multi-conference. DBLP. Boston, MA, USA,

Jan. 2011.

https://en.wikipedia.org/wiki/Complexity
https://en.wikipedia.org/wiki/Complexity
https://de.wikipedia.org/wiki/JavaScript_Object_Notation
https://de.wikipedia.org/wiki/JavaScript_Object_Notation

342 Bibliography

Image References

Figure (4.1): William E. Hill. My wife and my mother-in-law. In:

Puck. Vol. 78. Nov. 6, 1915, p. 11, GRANGER - Historical Pic-

ture Archive / Alamy Stock Photo, book print and/or digital license.

Figures (5.8), (5.12), (5.17), (5.34), (6.2), (6.16), and (6.27) use icons

from Flaticon.com.

343

Index

A

Abstraction 155

Ground-to-Ground 159

Space-to-Ground . .145, 159,

179, 181

Abstraction Layer.155

Acceptance Test 75

Activity 130, 139, 177, 181

Interface 159

Link 208

Maneuver 210

State 198

Agent 98, 130

Architecture 48, 142

Automation 91, 130

Taxonomy 96

B

Backlog . 46

C

Class . 73

Test . 73

Command 156

Interface 157

Complexity 3

Consistency 107

Constellation 2, 26

Planning Tool 228

D

Data Handling Simulation . . 253

Debris . 323

Distributed System 25

Domain . 50

Analysis 52, 112

Design 56

Engineering 50

E

Emulation 246

End-to-End Test 246

Entity . 163

Environment Dynamics 240

Epic . 48

Error . 64

F

Failure . 64

344 Index

Fault . 64

Feature . 53

Model 53

Tree 53, 173

Flight Dynamics 126

Flying Laptop 12

Formation. .1

G

Graphical User Interface 225

Ground Segment 114

I

Implementation 57

Integration Test74

Interface . 153

L

Link . 208

M

Maneuver 210

Middleware 150

Mission

Control 116

Information Base . . 109, 175

Planning 133, 179

Planning Tool 212

Model . 82

MoSCoW . 48

O

On-Board Computer Model . 249

On-Board Schedule 205

Operations 36

Orchestration 173, 231

P

Pass . 208

Project Organization 41

R

Reliability 106

Requirement 55, 90

Resource.188

S

Scalability 100

Schedule 134, 163, 223

Scrum . 43

Serialization.112, 154, 170

SimTG . 76

Simulated Mission Time 86

Simulation 76

Model 238

Runtime.85

Simulator 256

Session Time 85

Space

-to-Grnd. Abstraction . 145,

159, 179, 181

Segment.113

System 112, 173

System . 115

Information Base 173

Index 345

Simulation 238

Test . 75

T

Telemetry Archive 123

Test

Environment 71

Item . 71

Testing . 63

U

Unit Test . 73

V

V-Model . 69

Validation 64

Verification 64

Version Control 60

Virtual Machine 247

Z

Zulu-Time 85

Each space system is divided into two main parts: the space

segment, and the ground segment. While most space

segments used to consist of just one single satellite, this

thesis considers the growing case of a space segment

featuring an arbitrary multiple of satellites. This is the case under two

circumstances: The space segment is either a constellation, or a number

of independent satellite missions are operated in parallel, which is

referred to as multi-mission operations. From an operational perspective

this leads to a series of challenges, which are addressed, handled, and

solved by the work described in this thesis.

Following a holistic approach, this work addresses the

design of a system for the operations of multiple satellites

in parallel. The work was done under the assumption that

a complex system like a constellation cannot be operated

efficiently without automation, where automation is not just understood

as an additional feature, but as a holistic process that involves the entire

space system including the complete ground infrastructure, as well as the

operated satellites.

University of Stuttgart

Institute of Space Systems

Stuttgart – 2023

	Abstract
	Kurzfassung
	Acronyms & Abbreviations
	Introduction
	Motivation
	Best Practices in Constellation Operations
	Scope and Research Hypothesis
	Structure – A Guide Through this Thesis

	Background
	Flying Laptop
	Space Segment
	Ground Segment

	Upcoming Missions
	EIVE
	SOURCE
	Ground Station Network

	The New Operations System

	Objectives
	Paradigm Shifts in Satellite Mission Operations
	Reference Mission Architecture
	Size
	Spacial Distribution
	Operating Principle
	Architectural Homogeneity
	Service Availability

	Summary
	Top-Level Requirements

	Methodology
	The Wife and the Mother-in-Law
	Project Organization
	Agile vs. Process Oriented
	Agile Methods

	Domain Engineering
	Domain Analysis
	Domain Design

	Implementation
	Selection of a Programming Language
	Source-Control Management

	Test and Verification
	Terminology and Fundamental Aspects of Software Testing
	Test Items and Verification Process
	System Simulation

	MMOS Domain Engineering
	Quality Requirements
	Runtime Requirements
	Non-Runtime Requirements

	Domain Analysis
	Space System Breakdown
	MMOS Subsystems

	Design
	System Architecture
	Interfaces
	System Configuration

	Mission Planning
	Value of the Mission Planning Tool
	The Activity
	Inheritance
	Class Diagram
	Resource Demand
	State
	Nested Activities
	Derived Activities (Examples)

	Mission Planning Tool Architecture
	Configuration Layer
	Scheduling Layer
	Operative Layer
	Interface Layer
	Communication Layer

	The Schedule
	Graphical User Interface

	Constellation Planning
	Layout
	Reflection of Architecture Requirements

	System Test and Verification Environment
	System Simulation
	Model Libraries
	OBC Emulation

	Simulation Infrastructure
	Simulator Checkout System
	System Simulation Network

	Simulated Mission
	Scenario
	Final Setup

	Summary
	Outlook
	Information Used
	List of Satellite Constellations
	The LOAT Matrix

	MPT Implementation
	mpt Requirement Backlog
	MPT Activity Management Flow Diagrams

	Space Debris
	Bibliography
	Index

