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Abstract

Developing AI planning-based applications is a challenging task, which requires expertise both in
planning and software engineering. It demands proficiency in architecture design, integration of
planning functionalities, utilization of service-oriented technologies, deployment solutions, etc.

To uncover the challenges of building systems and applications involving AI planning, three separate
software projects with varying scenarios are implemented and analyzed. Each of the projects is
built with a different architecture: monolithic, Service-Oriented Architecture and microservices
architecture, and integrates several planning tools. Subsequently, such findings of this practical
research as: the importance of patterns in architecture design, the difficulties of planner selection,
the utilization of service and deployment technologies are discussed and summed up.

Additionally, this thesis contains an attempt to formulate guidelines for planning technology
selection. They cover determining whether a planner is up to date, its availability, compatibility,
and usability.
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Kurzfassung

Die Entwicklung planungsbasierter KI-Anwendungen ist eine anspruchsvolle Aufgabe, die das Fach-
wissen sowohl in der Planung als auch in der Softwareentwicklung benötigt. Sie erfordert Kenntnisse
im Architekturdesign, der Integration von Planungsfunktionen, der Nutzung serviceorientierter
Technologien, den Lösungen zur Softwarebereitstellung usw.

Um die Herausforderungen beim Aufbau von Systemen und Anwendungen mit KI-Planung
aufzudecken, werden drei separate Softwareprojekte mit unterschiedlichen Szenarien implementiert
und analysiert. Jedes der Projekte basiert auf einer anderen Architektur: monolithischer, serviceori-
entierter Architektur und Microservices-Architektur und integriert mehrere Planungswerkzeuge.
Anschließend werden solche Erkenntnisse dieser praktischen Forschung wie die Bedeutung von
Patterns im Architekturdesign, die Schwierigkeiten bei der Planerauswahl, die Nutzung von Service-
und Softwarebereitstellungstechnologien diskutiert und zusammengefasst.

Darüber hinaus enthält diese Arbeit einen Versuch, Richtlinien für die Planung der Technolo-
gieauswahl zu formulieren. Sie umfassen die Feststellung, ob ein Planer auf dem neuesten Stand ist,
seine Verfügbarkeit, Kompatibilität und Benutzerfreundlichkeit.
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1 Introduction

The first chapter of this thesis explains the necessity for investigation of challenges which developers
are confronted with in the field of Artificial Intelligence (AI) planning applications. It also provides
the objectives that the thesis is meant to achieve, and a short summary of the following chapters.

1.1 Motivation

AI is one of the newer fields both in science and technology. Beginning with the first work generally
recognized as AI, a model of artificial neurons proposed in 1943, the field grew and is utilized today
in many different areas, like robotics, speech recognition, game playing, planning, etc. [RN10]

Building applications based on AI planning is a challenging task. It requires not only an expertise
in Knowledge Engineering in Planning and Scheduling (KEPS) [VK20] but also in software
engineering. A developer must be familiar with the implementation and integration of planning
functionalities, architecture design, employment of service-oriented technologies, cloud computing,
and deployment solutions [GB21]. As result, it is important to understand the types of challenges
that are faced by developers of applications which make use of AI planning.

To name a few fields involving AI-planning applications: smart energy systems [AFG21], for taking
advantage of the automation and optimization opportunities given by the digitalization, autonomous
driving [AGPA22], for increasing the driver’s trust in the vehicle’s capabilities, and office activity
recognition [Geo22a], for dealing with all the characteristics of the office activity recognition
problem.

1.2 Goals

The main goal of this thesis is the exploration of challenges encountered when engineering planning-
based applications. The exploration is concerned with several implementation stages: starting with
design, continuing with building and integration, and ending with deployment of an application.

For this purpose, scenarios for different implementations of planning-based applications are
designed, which are based either on the existing literature or on popular architectural styles, e.g.,
Service-Oriented Architecture (SOA). The scenarios are also meant to be diverse, with the intent
being the coverage of different types of planning functionalities, different types of interaction and
varying complexity of applications. The resulting applications include both simple planners and
composite applications with multiple components and planning functionalities.
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1 Introduction

Once the work on the implementation of scenarios is completed, the challenges encountered during
each scenario are analyzed. Design choices, necessary preparations, implementation decisions,
limitations, encountered issues and general experiences are documented and discussed. The
discussion ends by providing key observations and key recommendations.

Additionally, as a consequence of requiring planning technologies for the development of planning-
based applications, this thesis investigates the process of planner selection. It attempts to formulate
guidelines for determining whether a planning technology is suitable for integration into an
application or a system.

1.3 Outline

The thesis contains the following chapters:

Chapter 2 - Background provides the background information on Artificial Intelligence, AI
planning and scheduling and planning types.

Chapter 3 - State of the Art lists several related papers on the subject of planning-based applications
and a few software examples offering multiple planning capabilities.

Chapter 4 - Which Planning Tools to Use? investigates the difficulties of planning technology
selection, proposes adjustments to a software development cycle reliant only on available planning
tools and demonstrates the planning tools used in the following chapters.

Chapter 5 - Project 1: Monolithic Architecture describes and analyzes a project based on a
monolithic architecture.

Chapter 6 - Project 2: Service-Oriented Architecture describes and analyzes a project based on
a Service-Oriented Architecture.

Chapter 7 - Project 3: Microservice Architecture describes and analyzes a project based on a
microservices architecture.

Chapter 8 - Conclusion wraps up the thesis by providing a summary of the done work and an
outlook.
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2 Background

Chapter 2 provides the general details about Artificial Intelligence, planning and scheduling,
planning types and planning languages. This background information is meant to lay out the basics
of planning for non-experts.

2.1 Artificial Intelligence

According to Russel and Norvig [RN10] there are historically four approaches to AI:

• Acting humanly: the Turing Test approach.

In 1950 Alan Turing designed the “Turing Test”, which purpose is to provide an operational
definition of intelligence. If a person cannot distinguish between a computer and another
person, the computer passes the test. For this, a computer would require four disciplines:
natural language processing, knowledge representation, automated reasoning and machine
learning.

• Thinking humanly: the cognitive modeling approach.

This approach requires determining how humans think before being able to express it as a
computer program. The three ways to model cognition are: introspection, psychological
experiments and brain imaging.

• Thinking rationally: the “laws of thought” approach.

The laws of thought were an attempt by Aristotle to codify the reasoning process, the study
of those laws is the field called “logic”. There are two problems with this approach: first,
transforming informal knowledge into formal terms, and second, solving a problem “in
principle” vs. solving it in practice.

• Acting rationally: the rational agent approach.

A rational agent is a computer that can act to achieve the best outcome. For this purpose, it
needs to be able to operate autonomously, perceive its environment, persist over a prolonged
time period, adapt to change, and create and pursue goals.

Today AI is utilized in many fields: robotics, robotic vehicles, autonomous planning and scheduling,
logistics planning, game playing, speech recognition, machine translation and more. [RN10]
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2 Background

2.2 AI planning and scheduling

Planning is a synthesis task, involving formulating a course of action to reach some desired objective.
One example of such an objective in a planning problem is achieving a defined set of goals. In
practical terms, the form of a plan is often a simple sequence of orderings or actions. [SFJ00]

AI planning entails generating a plan by solving a given problem and providing a possible solution.
An AI planning system expects a twofold input: actions, usually described as preconditions and
effects, and a problem, containing an initial state description and a goal. The generated plan is a
collection of actions and is a solution to the input problem. [HTD90]

Scheduling involves defining resource and temporal constraints, which are applied to activities
meant to achieve a particular goal [VK20]. According to Smith et al. [SFJ00] there are three
important things about scheduling to consider:

• The core of scheduling problems is the reasoning about time and resources.

• Scheduling problems are usually optimization problems, concerned not just with finding a
solution, but with finding an optimal solution.

• Scheduling problems involve choices, with potentially several alternative resources with
different costs and/or durations being available.

Where scheduling is often focused on developing optimized techniques for specific classes of
scheduling problems, the field of AI scheduling is more focused on general representations and
techniques that cover a range of different types of scheduling problems. [SFJ00]

2.3 Planning types

There are multiple different ways to solve a given problem in order to achieve a goal, resulting in
different planning types. Section 2.3 provides information on a few of them.

2.3.1 Classical planning

In classical planning the objective is to achieve a given set of goals. The goals, as well as the
initial state of the world, are expressed as a set of positive and negative literals [SFJ00]. Those
literals are usually described with the help of a language called the Planning Domain Definition
Language (PDDL).

PDDL is based on the concepts introduced in the STRIPS (STanford Research Institute Problem
Solver) problem-solving program, proposed in 1971 by Fikes and Nilsson [FN71]. It is used to
define the properties of a domain (see Appendix B.1) by defining predicates, possible actions, and
the preconditions and effects of those actions [GKW+98]. It is also used to define the properties of
a problem (see Appendix B.2), which are an initial state and a goal, as mentioned previously.
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2.4 Software engineering

To date, the original PDDL 1.2 language has been extended with additional features, resulting in
multiple versions: PDDL 2.1 [FL03], PDDL+ [FL02], PDDL 2.2 [Ede04], PDDL 3.0 [GL05] and
PDDL 3.1 [Hel08]1.

2.3.2 Hierarchical planning

Hierarchical Task Network (HTN) planning differs from classical planning in regard to the problem
solving approach. While it also requires a description of an initial state and the objective to
be achieved, instead of a set of actions it deals with a task network consisting of primitive and
compound tasks. A problem is solved not by arranging actions to reach certain goals, but by
reducing the compound tasks of the initial task network into primitive tasks – a hierarchical
decomposition. [GA15]

The Hierarchical Domain Definition Language (HDDL) is an extension to the PDDL language. It
was proposed in 2020 by Höller et al. [HBB+20] and it serves as a common input language for
hierarchical planning problems. It is based on the input language of PANDA (see Appendix C.2).
An example of an HDDL domain can be found in Appendix B.3 and an HDDL problem example in
Appendix B.4.

2.3.3 Other planning types

There are more planning types than classical and hierarchical, handling different aspects of planning
models. As they are less relevant for this thesis, this section contains only an short list of other
planning types with short clarifications. Those types include, but are not limited to:

• Temporal planning: models must specify what actions and events are caused at various points
during an action’s performance. [GNT16; Rin07]

• Non-deterministic planning: models can predict alternative options, meaning that an action
applied in a state can result in multiple possible states. [GNT16; MMB12; MR15]

• Probabilistic planning: models are necessarily incomplete, as the future is not entirely
predictable, and the possible action outcomes are not equally likely. [GNT16]

• Decision-theoretic planning: models have actions with uncertain effects, and different factors
lead to solutions of varying quality. [BDH99]

2.4 Software engineering

In this thesis it is assumed that the reader is at least somewhat familiar with such software engineering
aspects as architectural styles and communication technologies and principles. However, should
that not be the case, in Appendix A one can find short definitions on a few of those subjects, which
are used in later chapters.

1https://ipc08.icaps-conference.org/deterministic/PddlExtension.html
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3 State of the Art

With the goal of this thesis being the exploration of challenges which are encountered during
designing, building, integrating, and deploying planning-based applications, Chapter 3 lists several
scientific papers concerned with applications and architectures making use of AI planning, and
provides a few software examples with multiple planning capabilities.

3.1 Related papers

“SOA-PE: A service-oriented architecture for Planning and Execution in
cyber-physical systems”

[FMJB15] proposes a Service Oriented Architecture for Planning and Execution (SOA-PE), to
provide separation between domain modeling, planning, execution, monitoring and evaluation
services. The functions supported by each service are as follows:

A. The Domain Management Service manages domains and provides an Application Program-
ming Interface (API) for designing domain models. It allows to check them for consistency,
correctness and completeness.

B. The Planning Service takes domain and problem as input, generates a plan as output. The
API offers such functions as selection of planning engine and parameters, selection of
output format, translation of output plans, refactoring of existing plans, decomposition and
composition of plans.

C. The Execution Service executes the generated plan by parsing it and scheduling the individual
plan steps.

D. The Domain Sensing Service builds the state of the world as per the domain model, which
requires interfacing with Internet of Things (IoT) Services.

E. The Domain Actuation Service is invoked to execute plan steps.

F. The Monitor Service supervises the state of the plan and the state of world during plan
execution.

G. The Application Controller Service handles external requests to incorporate new goals,
enforces specified policies for planning, execution and actuation services.
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3 State of the Art

“A Vision for Composing, Integrating, and Deploying AI Planning Functionalities”

In [GB21] a vision for designing and deploying integrated and composed AI planning systems is
presented. It includes 3 steps:

1. Creation of a Logical Composition Model by a user, consisting of a graph with nodes
representing planning tools. Their functionalities are specified by unique names, and the
nodes are interconnected with weighted edges representing composition relationships.

2. Automated generation of a Logical Composition Model, which is the updated graph from
step 1 with additional nodes. The new model is based on messaging technology with the
added nodes signifying such components as queues, Message Routers, Message Translators,
etc.

3. Automated transformation into an Executable Deployment Model, which an updated previous
graph. The newly added nodes represent services to be deployed, with the edges representing
relationships between those services.

Figure 3.1 shows the diagram of a messaging-based system employing planning technology described
in step 2.

Figure 3.1: Excerpt: diagram of a system with planning services. [GB21]

“Towards Engineering AI Planning Functionalities as Services”

[Geo22b] provides an overview of the challenges related to engineering and use of AI planning
tools:

• Architecture:

– Component Complexity: existing planners are often complicated with intertwined
algorithms.

– Interoperability: a common syntax of input of different planners does not guarantee that
they are able to communicate with each other.

– Reuse: planners employ functionalities, e.g., parsing, that could be reused between
different tools, which is difficult to accomplish due to the planning tools’ complexity.
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3.1 Related papers

• Development and Deployment:

– Integration: different planners use different data models, algorithms and domain models,
while lacking APIs for controlling interactions.

– Composition: the mechanisms for enabling the composition of custom planning systems
or extending existing ones have not been investigated.

– Deployment: the mechanisms for deployment, including versioning, performance
measurement and raising warnings have not been established.

• Process:

– Heterogeneity: the diversity of planning functionalities, the multitude of existing
planning tools, and the various classes of planning makes identification, selection and
management of planning functionalities difficult.

– Set Up: figuring out the requirements, managing dependencies and lackluster instructions
makes setting up planners into a challenge.

– Monitoring: deployed planners require performance monitoring, event logging and
error tracking.

“Conceptualising Software Development Lifecycle for Engineering AI Planning
Systems”

In [Geo23] a development lifecycle with ten phases for AI planning software is proposed:

a) Requirements Analysis: identification of requirements by relevant stakeholders. The
requirements are functional, non-functional, goal-oriented, and user-related.

b) Planning Model Selection: definition of a planning model is based on the requirements from
hase a) and requires expertise and experience in planning.

c) Domain Model Design: domain information is derived from phase a) requirements and then
formalized in a planning syntax.

d) Architecture and Design: the phase b) planning model imposes conditions on the interaction
model between planning components.

e) Planning Technology Selection: exploration of existing planning tools, selection if available.

f) Implementation: the planning system is implemented following the architecture design.
Components without available planning technology are developed as well.

g) Testing: the developed planning system must fulfil the requirements from phase a).

h) Deployment: manual or automated deployment to make the planning system ready for
execution.

i) Monitoring: collecting data specific to planning and storing it for analysis.

j) Analysis: identification of problems and generation of relevant insights for planning system
improvement.
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3 State of the Art

3.2 Related software

planutils

planutils1 [MPSK22] is a library for developing, running, and evaluating planners. While it is not a
system that enables interaction between planning components, it allows installation of and access to
multiple existing planners from a single Command-Line Interface (CLI). Examples of planutils’
utilization can be found in Appendix C.4.

Planning.Domains

Planning.Domains2 [ML20] is a browser tool providing domain modeling and plan generating
capabilities, among other things. It consists of four principal components:

1. “A programmatic interface3 to all existing planning problems.”

2. “An open and extendable interface4 to a planner-in-the-cloud service.”

3. “A fully featured editor5 for creating and modifying PDDL.”

4. “A central source6 for educational resources for planning.”

CPEF

Continuous Planning and Execution Framework (CPEF) [Mye99] is a system with multiple planning
capabilities. It is a composition of multiple components and can be applied to solve planning
problems to generate plans, execute plans, monitor plan execution, and repair complex plans. As it
was developed in 1999, it does not employ a SOA architecture.

PELEA

PELEA [GAP+12] is an online planning architecture presented in 2012. It is a domain-independent
and component-based architecture, offering modeling, solving, execution, monitoring, repairing,
and learning capabilities. It employs a continuous planning approach, combining planning and
execution, and works both with PDDL- and HTN-based planning.

1https://github.com/AI-Planning/planutils
2http://planning.domains
3http://api.planning.domains
4http://solver.planning.domains
5http://editor.planning.domains
6http://education.planning.domains
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4 Which Planning Tools to Use?

When designing a system with planning capabilities one may want to make use of one or more
planning tools to avoid having to implement own ones. Doing so without making sure that the
required tools are available beforehand is not the best course of action, which may lead to multiple
issues later. The following sections contain the guidelines, which have emerged while researching
and testing available planning tools, and an adjusted software development cycle for applications
based only on available planners. In addition to that, the chapter lists the details of several tested
planning tools, which are used in the three projects described in the following chapters.

4.1 Selecting planning tools

During the research of planning technologies one should ask themself the following questions:

1. What type of planning is required?

As described previously in Section 2.3 on page 22, there are many types of planning, e.g.,
classical, hierarchical, temporal. Deciding on the planning type best suited for a specific
purpose is the prerequisite of all following steps.

2. What tools are available for the selected planning type?

Over the years a multitude of planning and scheduling tools, e.g., at International Conference
on Automated Planning and Scheduling (ICAPS) competitions1, have been developed. For
example, a variety of tools exist for classical planning: Fast-Forward (see Appendix C.1),
Fast Downward (see Section 4.4.2), LAMA (see Appendix C.4.1), PRP (see Appendix C.4.5),
etc. Having a wide selection of tools available increases the chances of finding one best
suited for one’s purposes.

3. Are selected tools compatible?

When selecting multiple tools to work together, their compatibility should be verified. For
example, even if two or more chosen tools are employing classical planning, they may still be
using different PDDL versions. If the intent is to make use of features of later PDDL versions,
one should make sure they are supported by all employed tools.

4. Is the selected tool up to date?

Any software can become outdated, and the planning tools are no exception. Before investing
any time into designing a system depending on a specific planning tool, it is advisable to
ensure that it and its dependencies are not out of date.

1https://www.icaps-conference.org/competitions/
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4 Which Planning Tools to Use?

4.1 How old is the repository/executable?

The most obvious sign of an outdated or abandoned tool is the age of its repository or
the release date of its executable. Before deciding to settle for a planning tool developed
over a decade ago, it may be worth it to research more recent alternatives. Even if an
old planning tool still provides viable solutions, an improved implementation of the
same/similar algorithm can exist somewhere else.

4.2 Is any documentation available?

The importance of documentation cannot be overstated. Having instructions on required
dependencies, building, execution, expected parameters, input format restrictions,
expected output, etc., reduces developer’s workload and stress. Missing documentation
is also another sign of an outdated or abandoned tool.

4.3 Is the documentation sufficiently detailed?

If documentation is available, it is worthwhile to ensure that it is sufficiently detailed,
e.g., having nothing but installation instructions may not be enough for proper operating
of the planning tool. Missing guidelines can cost development time when solving an
unexpected tool behavior. A rule of thumb: the more extensive the documentation is,
the better are the chances that the tool is still maintained.

4.4 What is the required operating system (OS) architecture?

It is possible that an older tool is still reliant on an OS with an outdated architecture.
Developing a system working in a 64-bit environment could be problematic if a planning
tool works only in a 32-bit environment.

4.5 How old are the dependencies?

Similar to the planning tool’s repository age should the age of the required dependencies
be considered. Older versions of dependencies may be unavailable or have security
vulnerabilities, which have been patched in later versions. If an application is not
intended for personal use, integrating a planning tool requiring such dependencies
should be reconsidered.

4.6 Are the dependencies compatible with my application?

While a planning tool can function without issues on its own, its dependencies can
come in conflict with the application the tool is supposed to be integrated with. For
example, PANDA (Appendix C.2) requires the environment to run Java 82, which will
cause compatibility issues if one’s application is being developed using Java 193.

5. Is the selected tool operable?

Once it has been determined that the selected planning tool is not outdated, it is a good idea
to test it hands-on: cloning the source code, building or downloading the tool’s executable,
and running the tool. After all, it does not matter if the tool is new or well documented if it
refuses to function.

2https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html
3https://www.oracle.com/java/technologies/javase/jdk19-archive-downloads.html
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4.1 Selecting planning tools

5.1 Is the tool’s executable available?

To state the obvious, before a tool can be executed, its executable must be acquired. If
the planning tool’s repository offers a release executable, it can just be downloaded,
otherwise one may need to clone the tool’s source code and build it manually. In the
latter case, engaging the build scripts can uncover multiple issues, e.g., errors in the
source code, broken build scripts, missing or wrong dependencies, or unspecified build
arguments not mentioned in the documentation.

5.2 Can the tool be executed?

It would be a mistake to assume that just because an executable is available, the tool is
in a working condition. The executable may not have been built correctly, its download
could be corrupted, or it could show problems during runtime. Alternatively, if the
executable is functioning, it could be difficult to run it properly if the documentation
omits some critical information, e.g., expected arguments.

5.3 Is the tool working correctly?

Once the tool can be executed successfully, one needs to determine whether it also
delivers correct results. For this purpose, it is advisable to use inputs which deliver a
known output, similar to writing software tests.

5.4 Does the tool work with varied inputs?

It should not be assumed that a planning tool is working perfectly after one successful
test. Before relying on a tool, it should be tested with multiple different inputs, e.g.,
testing a problem solver by using simple and complex problems requiring different
processing times, resulting in both short and long plans. It may very well be the case
that a tool works fine with simpler problems but freezes when calculating larger or more
complex ones.

6. What is the tool’s output?

After determining that a tool is in a functioning condition and is performing as well as
expected, one should consider the type of output it produces. A tool may simply write its
output in the terminal, show it in a GUI (Graphical User Interface), produce new files, etc.
Depending on the application, which will have to make use of the planning tool’s output, a
specific output type can cause difficulties or be of an advantage.

7. Is changing the tool’s output type possible?

The output can require format transformation before it can be used further. For example,
if all output of a process ends up in the terminal, both logs and results, then the necessary
information will have to be extracted manually. Such output parsing can be unreliable,
especially if the output format varies or is not well documented. It could prove worthwhile
investigating the possibility of altering the tool’s source code to change its output type, instead
of having to accommodate for it later.
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8. How large is the tool?

Lastly, the planning tool’s size should be taken into consideration. The amount of space a
tool requires can vary significantly, e.g., LPG-td (see Appendix C.3) needs less than 2 MB,
while Fast Downward requires almost 800 MB. A larger size can prove problematic, e.g.,
when adding the tool to a Docker image.

9. Can the tool be downsized?

Should a tool’s size prove too large for an intended purpose, then perhaps it can be reduced.
An application may not necessarily require all functionality of a tool, instead making use
only of one of its features. If a tool has multiple executables or many additional resources,
then removing them without affecting the necessary functionality might be possible.

4.2 Discussion

The following paragraphs contain additional guidelines and findings from a non-expert point of
view, which have arisen while researching planning tools.

4.2.1 Knowing when to move on

A situation can occur when one is faced with an older planning tool, which simply refuses to
execute, despite following the documentation instructions to the letter. Even after multiple attempts
an executable fails to build, does not run, or just throws cryptic error messages. In such a case one
may be tempted to continue tinkering with the tool in the attempt to locate and fix the error.

With new planners being developed constantly there are currently over a hundred of different
planning tools available (an incomplete list can be found on the unofficial Planning Wiki4). This
means that there is a good chance that a suitable alternative to the broken tool is available. Unless
one needs that specific planning tool, it may be best to stop wasting time and effort and move on to
a substitute.

4.2.2 Documenting progress

If one elects to abandon a planning tool, as mentioned above, it is still worth documenting any
proceedings and/or results. The number of available planners is large, but it is not unlimited,
meaning that some specific use cases may not have a large variety of tools available. There is a
possibility in which one may have no choice but to revisit a previously rejected planner, in which
case having notes will make that easier.

4https://planning.wiki/ref/planners/atoz
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4.3 Software development cycle reliant on available planning tools

4.2.3 Automated problem generation

During the preparation for Project 1 Scenario 1 (see Section 5.2 on page 38) it was initially assumed
that some sort of automated generation of problem PDDL files would take place. While there are
problem generators5 6 for specific domains available, no domain-independent generators could
be found. The question arises whether there is a reason for it or whether it is a gap in software
solutions, which could be filled.

When looking at the basic PDDL 1.2 format one can see that besides the problem- and the
corresponding domain-name, a problem PDDL needs only 3 types of arguments:

• “objects” can be constructed from domain’s “types”.

• “init” can be combined from domain’s “predicates” and problem’s “objects”.

• “goal” can be combined in the same manner as problem’s “init”.

Of course, most problems generated in such a way would most likely have no valid plan solutions.
But it can be assumed that they could still find a use, e.g., for some sort of automated fuzz testing of
PDDL solvers.

4.3 Software development cycle reliant on available planning tools

As described previously in Section 3.1, an AI planning software development cycle is proposed in
[Geo23]. This development cycle requires not only system engineering expertise, since the phase
f) Implementation also “includes developing components for planning functionalities for which no
available technology can be found”. Development of planning algorithms and functionalities is not
a trivial task, requiring proficiency in planning technologies or a planning expert. If one were to
develop a system relying only on available planning technologies, of which there is a large number
available, the development cycle would be as follows:

a) Requirements Analysis

b) Planning Model Selection

c) Planning Technology Selection and Adjustment

d) Domain Model Design

e) Architecture and Design

f) Implementation

g) Testing

h) Deployment

i) Monitoring

5https://github.com/AI-Planning/pddl-generators
6https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html
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j) Analysis

The change is twofold: first, it involves moving the Planning Technology Selection from phase e)
to phase c). A developer, who is a non-expert in the field of AI planning, would not be familiar
with planning technologies. It makes sense to research available planners which are suitable for the
selected planning model first, before beginning the Domain Model Design and Architecture and
Design phases. Discovering that a planner is unavailable afterwards could entail both architecture
and domain model redesign. Additionally, a planning tool could end up imposing rules or limitations
on the architecture design.

Second, the Planning Technology Selection phase is extended to include a potential modification of
the selected planning tool, becoming Planning Technology Selection and Adjustment. As discussed
in Section 4.1, the output of the selected planner may be delivered in an unreliable manner. In that
case, the possibility of adjusting the output delivery method could be worth investigating.

4.4 Planners used in Projects 1, 2 and 3

Section 4.4 contains the description of the four planning tools used in Project 1, Project 2 and
Project 3 (see Chapter 5, Chapter 6 and Chapter 7). The tools were tested in a VirtualBox7 instance
running a Debian8 11 64-bit (amd64) environment. A list of other planners that were investigated
can be found in Appendix C.

4.4.1 pddl

The pddl tool is a parser supporting the features of PDDL 3.1, its source code9 is obtainable from
GitHub10. It can be used to model PDDL domains and problems programmatically by employing
it as a library in a Python11 script. Additionally, it can also be used as a CLI tool to validate and
format PDDL domain and problem files. The installation12 of pddl is done through Python Package
Index (PyPI)13 and may require adding the tool’s executable to the PATH variable.

When utilizing the tool for modeling purposes, it is used to import the required classes, as shown in
Listing 4.1. Listing 4.2 contains an example of using the tool as a validator of domain and problem
PDDL files.

7https://www.virtualbox.org
8https://www.debian.org
9https://github.com/AI-Planning/pddl

10https://github.com
11https://www.python.org
12https://pypi.org/project/pddl/
13https://pypi.org
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from pddl.logic import Predicate, constants, variables

from pddl.core import Domain, Problem, Action, Requirements

from pddl.formatter import domain_to_string, problem_to_string

...

Listing 4.1: Using pddl as a library.

$ pddl domain domain.pddl

...

$ pddl problem problem.pddl

Listing 4.2: Using pddl as a CLI validator.

Whether modeling or validating domains and problems, the tool’s output ends up in the terminal.
Since the Python script, which is used for modeling, is edited by the user, it is possible to insert
markers into the output to make it easier to extract results.

4.4.2 Fast Downward

Fast Downward [Hel11] is a domain independent classical planning system, with the source code14

and several releases15 available on GitHub, and with an extensive Wiki16. It supports PDDL 2.2
and the feature “:action-costs” from PDDL 3.1, with a few limitations17.

To obtain18 the tool, the following dependencies are required: git, cmake, make, g++ and python3.
After cloning the source code from GitHub, the tool can be built by executing the “build.py” script
located in the root directory.

An example of the utilization of Fast Downward to solve a problem and generate a plan is provided
in Listing 4.3. The [--search] option is used to select a search engine19, without it no plan will be
created.

$ ./fast-downward.py domain.pddl problem.pddl --search "astar(blind())"

Listing 4.3: Executing Fast Downward to generate a plan.

The output of the solver is a text document named “sas_plan”, generated at the location from
where the tool’s executable was called. Should the solving process fail, an intermediate file named
“output.sas” can be found at the location instead.

14https://github.com/aibasel/downward
15https://github.com/aibasel/downward/releases
16https://www.fast-downward.org
17https://www.fast-downward.org/PddlSupport
18https://www.fast-downward.org/ObtainingAndRunningFastDownward
19https://www.fast-downward.org/Doc/SearchEngine
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4.4.3 VAL

VAL [HLF04] is a plan validation system, for plans generated from PDDL 2.2 domains and problems.
Its source code20 is available on GitHub and requires the following dependencies for compilation
and execution: cmake, make, g++, mingw-w64, flex and bison.

Once the dependencies are installed, the source code is cloned and the tool is compiled using an
appropriate build script, e.g., “build_linux64.sh” for an installation on a Linux OS. As can be seen
in Listing 4.4, the build script requires two input arguments: a rule for the build target and the build
directory name. The documentation omits this information for an unknown reason, and it had to be
discovered manually.

$ ./build_linux64.sh all release

Listing 4.4: Compiling VAL to the “release” directory.

The tool’s validation functionality is used by running the “Validate” executable, located in the
generated build directory. An example is provided in Listing 4.5.

$ ./Validate domain.pddl problem.pddl plan.txt

Listing 4.5: Executing VAL to validate a plan.

For output, the tool determines whether a plan could be executed successfully and whether its goal
was satisfied and writes the results to the terminal. As for errors in the provided files: a mistake in
the domain definition will be detected, whereas a mistake in the problem definition will cause a
segmentation fault.

4.4.4 Lilotane

Lilotane (Lifted Logic for Task Networks) [Sch21] is a planner for totally-ordered HTN planning
problems. Its source code21 22 can be found on GitHub or GitLab23 and the tool requires the
dependencies cmake and make for building an executable.

Listing 4.6 provides an example of utilizing Lilotane to generate a plan from domain and problem
HDDL files.

$ ./lilotane domain.hddl problem.hddl

Listing 4.6: Executing Lilotane to generate a plan.

If a plan is created, it is output in the terminal. The tool detects mistakes in both domain and
problem HDDL files during parsing.

20https://github.com/KCL-Planning/VAL
21https://github.com/domschrei/lilotane
22https://gitlab.anu.edu.au/u1092535/htn2020-competitor-1
23https://about.gitlab.com
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5 Project 1: Monolithic Architecture

For the first project a monolith application is selected for implementation, the reasoning being
that the monolithic architecture is one of the most basic and traditional use cases in software
development. This application combines several planning tools and permits the user to operate
them from a single interface. The user can create a PDDL domain and problem, then solve the
problem to generate a plan, and finally to validate that plan. Figure 5.1 shows a screenshot of the
application’s main menu UI (User Interface).

Figure 5.1: Project 1: UI screenshot.

5.1 Tools

The three AI planning tools, which are integrated within the monolith application and their purposes
are listed in Table 5.1.

Planner name Purpose Description

pddl PDDL domain and problem generation and validation. Section 4.4.1
Fast Downward Plan generation from PDDL files. Section 4.4.2

VAL Plan validation with PDDL files. Section 4.4.3

Table 5.1: Project 1: integrated planning tools.
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5 Project 1: Monolithic Architecture

Since every selected planning tool is a CLI tool, the decision is made to implement Project 1 in the
same manner, using Bash scripting. Bash1 is a command language freely available in many Linux
distributions, fitting the “basic use case” theme of the monolith application.

The application deployment is realized through Docker2, ensuring that the application can run
in different environments. While the development is being performed in a Debian 11 64-bit
environment, the resulting Docker image is tested in a Windows3 10 64-bit environment.

5.2 Scenario 1: domain and problem modeling

Scenario 1 consists of setting up the pddl tool, used both as a modeler and a validator, and
implementing a wrapper using the Bash command language. Through a text-based UI (see
Figure 5.1) a user can create a custom modeler Python script and then to run that script, generating
a domain and a problem PDDL files. Additionally, the user has the option to validate the previously
generated domain and problem files, by employing the validation functionality of the pddl tool.

To make it easier for the user to create a custom modeler script the user is provided with a stub
file, containing an example of working modeling instructions. Revisiting the earlier created custom
modeler scripts for any editing purposes is also possible.

Once the user has completed a modeler script, it can be executed by providing its name, resulting in
generated PDDL domain and/or problem files, depending on the instructions in the script. Since the
output of the Python script ends up in the terminal, the results cannot be simply saved as files. The
output needs to first be captured and then parsed using regular expressions.

The secondary use of the pddl tool is domain/problem validation. After accessing this functionality
through the application’s UI, the user needs to provide the corresponding file name to initiate that
file’s validation.

5.3 Scenario 2: plan generation

For Scenario 2 a second planning tool – Fast Downward – is set up and integrated into the application.
This tool adds the problem-solving functionality for plan generation.

When accessing that functionality, the user is first shown a list of existing PDDL domain and
problem files to choose from. Then the user is prompted to input a name for the future plan file
and to select a search parameter. With all the execution requirements satisfied, the tool attempts
to generate a plan. If the execution fails, any leftover temporary files are cleaned up, otherwise a
successfully produced plan is saved under the previously provided name.

Additionally, the user is also provided with the means to access Fast Downward’s full functionality.
Through this alternative access it is possible to input more options and parameters than described
above.

1https://www.gnu.org/software/bash/
2https://www.docker.com
3https://www.microsoft.com/de-de/windows
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5.4 Scenario 3: plan validation

Scenario 3 consists of setting up and integrating the third planning tool – VAL – and deploying the
application by using Docker. Through VAL the application provides the ability to validate plans.

To execute the validation functionality the user needs to input the names of PDDL domain, problem,
and plan files. All files which the application has access to are displayed to allow for easier selection.
Once the validation process is completed, the user is informed whether a plan executes successfully,
fails to execute or if a provided file contains an error.

For the application deployment via Docker, a Dockerfile is created which includes:

• Setting up a Debian environment.

• Installing dependencies for building and running the application, the pddl tool, the Fast
Downward tool and the VAL tool.

• Cloning and building the three planning tools.

• Removing the no longer necessary build dependencies.

• Copying the application’s source code and example files to the Docker image.

• Specifying the entry point.

5.5 Discussion

The following sections contain design decisions, necessary preparations and encountered issues of
Project 1.

5.5.1 Bash scripting

Writing an application as a CLI tool using Bash requires both a proper environment and some
experience with Bash scripting. Should a Linux environment be unavailable, due to one’s workstation
running a Windows or a Mac4 OS, then setting up a VirtualBox instance with, e.g., Debian, Ubuntu5,
Arch6, is sufficient.

As for using Bash for writing code, fortunately, there is plenty of documentation7, tutorials and code
examples on that matter available, with Bash being a popular tool with widespread use. Additionally,
having even a basic understanding of Linux terminal commands is advantageous.

4https://www.apple.com/macos/ventura/
5https://ubuntu.com
6https://archlinux.org
7https://www.gnu.org/software/bash/manual
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5 Project 1: Monolithic Architecture

5.5.2 CLI planner output

As expected from a CLI tool, the integrated planning tools display their output in the terminal. As
such output often contains progress and other superfluous information, extracting the necessary
result, e.g., domain, problem, plan, can pose a challenge. That challenge can be mitigated if there is
a way to alter the output, e.g., when writing a modeler Python script for the pddl tool it is possible
to insert markers to be shown in the output. Being able to mark the beginning and the end of both
the domain and the problem content makes parsing that output a non-issue.

However, other tools, like VAL, do not have a simple way of altering output and such a change
would require updating the tool’s source code. Depending on the difficulty of output parsing, such
an endeavor may be worth considering.

5.5.3 Docker image

The utilization of Docker for application deployment requires expertise in engineering a Dock-
erfile, used to produce a Docker image. Should one lack experience in that area, the extensive
documentation8 should provide sufficient help with that issue.

When writing and executing the Dockerfile, one encountered issue was the larger than expected
size of the resulting image, caused by some Dockerfile idiosyncrasies. For example, writing “RUN”
instructions separately causes the Dockerfile to create additional layers in the image, requiring
more disk space. Instead, one should attempt to put as many instructions as possible in a single
command.9

Another reason for the increased Docker image size are the planning tools. As the application
requires the tools’ executables to employ the said tools, they are cloned and built for the image, as
mentioned in the Section 5.4 on the preceding page. The Fast Downward tool, for example, requires
close to 800 MB of space “out of the box”, significantly inflating the image’s size. To mitigate that
problem, one would need to determine whether a planning tool can be somehow downsized, since
only a part of its functionality may be required in the first place.

5.5.4 Docker persistent storage

Once the Docker image was up and running, one issue that became apparent was the lack of
persistent storage for any newly created files. One solution is to utilize a directory stored locally in
the image’s current environment. This permits easy access to any files produced by the tool and
allows manual insertion of new files in the directory. Another solution is to use the container of the
Docker image as file storage. However, in that case, one needs to make sure that the container is not
removed between application’s uses, but instead reused each time.

8https://docs.docker.com/engine/reference/builder
9https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#minimize-the-number-of-layers
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5.6 Key observations

Employed technologies

The two technologies used for building and running the monolith application are Bash scripting
and Docker. Even if one is lacking the experience in utilizing those technologies, because of their
documentation and tutorials being widely available online, learning those technologies does not
pose much of a challenge.

Planner integration

Integration of a CLI planning tool within an application is no different than using any other external
executable. In the end, it is just a process that must be initiated, possibly with a specific input, and
which then provides some form of output.

5.7 Key recommendations

Integration of multiple planners

When integrating multiple planning tools, which are supposed to be working with each other, it is
important to ensure their compatibility. For example, even if employing only PDDL tools, they may
be using different PDDL versions, limiting each other’s capabilities.

Planner selection

Before settling on a specific planner, its other characteristics besides its main function should be
investigated. The tool’s size, its dependencies, the format of the required arguments, the output
type, etc., can make a tool’s integration difficult.

41
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Project 2 consists of building a loose-coupled (see Appendix A.1) application using the SOA (see
Appendix A.2) architectural style. The main idea is to employ the same planners that were used
in the first project, the monolith application (see Chapter 5), but this time as a distributed system.
Afterwards, the system is extended with a new planning tool providing new functionality.

The utilized planners are integrated in services, which are built using the patterns described in
“Enterprise Integration Patterns” [HW04]. The communication between the frontend and the services
is routed through a message middleware using message queues, ensuring that it is asynchronous.
The frontend application, the message middleware and the services are hosted in separate and
independent environments.

6.1 Tools

The services containing the planning tools and the message middleware are implemented with the
Java1 programming language and Gradle2 for build automation, using the IntelliJ3 IDE (Integrated
Development Environment) with the free student license4. The frontend application is implemented
through the React5 framework with the use of the TypeScript6 programming language and npm7

package manager. The application’s GUI design is improved with a light use of CSS (Cascading
Style Sheets)8, and the work on the frontend is carried out in the WebStorm9 IDE, also with the free
student license. GitLab10 is used for development and version control of all system components.

1https://www.java.com/en/
2https://gradle.org
3https://www.jetbrains.com/idea/
4https://www.jetbrains.com/community/education/#students
5https://react.dev
6https://www.typescriptlang.org
7https://www.npmjs.com
8https://developer.mozilla.org/en-US/docs/Learn/CSS
9https://www.jetbrains.com/webstorm/

10https://about.gitlab.com
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The message communication between the services and the frontend functions via the Simple Queue
Service (SQS)11 of Amazon Web Services (AWS). This is a service for hosting message queues
which allows for secure and asynchronous message exchange between systems or components12.
The pricing scheme AWS Free Tier13 includes one million requests over SQS each month free of
charge14.

For deployment, each service and the frontend are hosted in independent Amazon Elastic Compute
Cloud (EC2)15 instances. EC2 offers virtual computing environments with various preconfigured
templates, persistent storage volumes, scaling and other features16. The AWS Free Tier includes
750 hours of instances runtime monthly free of charge17.

Table 6.1 lists the four AI planning tools, which are integrated in the services of Project 2.

Planner name Purpose Description

pddl PDDL domain and problem generation. Section 4.4.1
Fast Downward Plan generation from PDDL files. Section 4.4.2

VAL Plan validation with PDDL files. Section 4.4.3
Lilotane Plan generation from HDDL files. Section 4.4.4

Table 6.1: Project 2: integrated planning tools.

6.2 Scenario 1

The first scenario of the second project consists of the implementation of multiple components:
the frontend application, the message middleware and the solver service. Initially, the frontend
application was planned to include the pddl tool, used as a modeler of PDDL domains and problems,
to allow the user an easier and faster way to create them. But for reasons discussed in the following
sections the modeling functionality was decoupled into a separate modeler service.

Scenario 1 also includes the creation of a message format and SQS message queues for communica-
tion, as well as the deployment of the implemented services and the frontend application on EC2
instances. Figure 6.1 shows the corresponding system diagram.

11https://aws.amazon.com/sqs/
12https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
13https://aws.amazon.com/free/
14https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-pricing.html
15https://aws.amazon.com/ec2
16https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
17https://aws.amazon.com/ec2/pricing
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Figure 6.1: Project 2, scenario 1: system diagram.
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6.2.1 Message format

The SQS message format consists of message attributes and a message body. Since all messages
between the frontend application and the services are routed through the message middleware,
custom message attributes are used to indicate which services should receive each message. Those
attributes contain “true” or “false” values, but as the SQS message attribute data types do not
support Booleans18, those values are saved as strings. Additional attributes are created for the
message ID (Identifier) and error occurrence indication. Table 6.2 lists the custom created message
attributes.

Attribute Name Type Value

MESSAGE_ID string UUID
ERROR string true/false

GOTO_MODELER_PDDL string true/false
GOTO_SOLVER_PDDL string true/false

Table 6.2: Project 2, scenario 1: SQS message attributes.

The message body is a JSON (JavaScript Object Notation)19 containing the following fields:
“ERROR_MESSAGE” in case of an error occurrence, “MODELER_PDDL_SCRIPT” for a Python
modeler script, “DOMAIN” for a PDDL domain, “PROBLEM” for a PDDL problem, and “PLAN”
for a generated plan. All information is encoded as Base6420 strings. The custom message body is
shown in Listing 6.1.

1 {

2 "ERROR_MESSAGE": "<Base64 string>",

3 "MODELER_PDDL_SCRIPT": "<Base64 string>",

4 "DOMAIN": "<Base64 string>",

5 "PROBLEM": "<Base64 string>",

6 "PLAN": "<Base64 string>"

7 }

Listing 6.1: SQS message body, scenario 1.

6.2.2 Frontend application

The frontend application consists of a GUI with text fields for user input and the SQS communication
logic for message creation and processing. The GUI design is kept simplistic, employing a small
measure of CSS for a few visual improvements. A screenshot of the GUI of the application is shown
in Figure 6.2.

18https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-message-metadata.html
19https://www.json.org/json-en.html
20https://developer.mozilla.org/en-US/docs/Glossary/Base64
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6.2 Scenario 1

Figure 6.2: Project 2: GUI screenshot.

Through the GUI the user has the ability to select services to which the frontend application will
send messages, which can be either one or multiple services. In the former case, for example, the
user might want to just generate a PDDL domain and problem from a modeler Python script, or to
just generate a plan from the provided PDDL domain and problem. Meanwhile in the latter case the
user might want to engage the whole chain of services with one action, for example: creating a
PDDL domain and problem and then immediately generating a plan from them, before the frontend
receives a response message.

Also included in the GUI are a few prepared inputs for demonstration purposes:

• A Python modeler script stub, its PDDL domain and problem, the generated plan and plan
validation.

• A Python modeler script, its PDDL domain (see Appendix B.1) and problem (see Ap-
pendix B.2) for the “Tower of Hanoi” puzzle, a generated plan and plan validation.

• An HDDL domain (see Appendix B.3) and problem (see Appendix B.4) for a delivery robot,
and a generated plan.
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The SQS messages for queue communication are constructed based on user input. Sending and
receiving messages works via the two custom-created SQS queues, one for request and the other for
response messages.

The sequence for frontend message communication is as follows: first, the user needs to provide an
input and select at least one service. Then, a unique ID which is required for response message
identification – a UUID (Universally Unique Identifier) – is generated. Of course, SQS provides
its own message identifier mechanism21, but since messages are consumed and recreated multiple
times throughout the communication, using that ID here is not viable. The information of the
selected service and the UUID are converted into the message attribute values, meanwhile the
provided input is encoded as Base64 string/s, from which the message body is built, thus resulting in
a new SQS message. This message is then put into the request queue and is expected to be received
by the message middleware.

Afterwards, the frontend application begins to poll the response queue for messages with corre-
sponding UUID. Once such a message is found, its payload is extracted, decoded, and then displayed
for the user in the GUI. Only then is the processed response message deleted from the response
queue to ensure that messages are not lost, e.g., in case of an application crash.

The application is deployed on a custom created EC2 instance running a Debian 11 64-bit
environment. The instance contains AWS credentials to permit SQS access, and application
dependencies: Node.js22 and npm23. Once the application build is uploaded to the instance, the
PM224 process manager is used to run it in background permanently as a daemon process.

6.2.3 PDDL modeler service

The PDDL modeler service contains access to the planning tool pddl. Its purpose is to use a Python
modeler script, provided through an SQS message, to generate a domain and a problem PDDL.

As mentioned previously, the planning tool was initially supposed to be a part of the frontend appli-
cation to give the user a quicker access to its modeling capabilities without the SQS communication
waiting times. But instead, the tool has been exported into a separate service, with the main reason
for this being that the React application would be running in the browser and thus would not be able
to access the terminal to run the CLI tool. Additionally, the separation also makes sense in terms
of producing cleaner code and results in an independent service, which can be reused or scaled if
necessary.

For communication the service employs SQS, using the SQS Software Development Kit (SDK), and
two SQS queues, one for requests the the other for responses. The SQS request queue is continuously
polled for messages. Once a message is received, it is processed: the message attributes and
the message JSON body are extracted, the Base64 string containing the Python modeler script is

21https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-queue-message-
identifiers.html

22https://nodejs.org/en
23https://www.npmjs.com
24https://pm2.keymetrics.io
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decoded and saved locally as a “.py” file. This script file is then executed, producing a domain and
a problem PDDL as output. Since the output is provided only in the terminal, the service has to
catch and parse it.

Afterwards, a new SQS message is created using the received message attributes and body JSON.
The request message attributes need to be preserved, so that the subsequent message flow is not
disrupted. The one exception is the “GOTO_MODELER_PDDL” attribute, which is consumed,
meaning its value is set to “false”, thus preventing the message being sent back to the PDDL modeler
service. Meanwhile, the body is updated with the generated domain and problem, encoded as
Base64 strings. The newly created response SQS message is then put into the response SQS queue,
to be received by the message middleware. At this point the request message can be safely deleted
from the request queue and the remaining local file, the Python modeler script, cleaned up.

In case of an error at any point in the process after receiving a request message, an error message is
created. It contains the request message ID and the error attribute with the value “true”, but all
other attributes are set to “false” to prevent the message being sent to any other services and ensure
it is sent to the fronted application instead. The exception message is encoded as a Base64 string
and saved in the JSON body.

As with the frontend application, to host the PDDL modeler service an EC2 instance is created,
which runs a Debian 11 64-bit environment. The instance contains credentials for SQS access, a
Java Development Kit (JDK) for the service itself and the pddl tool dependency pip25. Once the
dependencies are taken care of, the pddl tool is cloned and built, and the service Java Archive (JAR)
is uploaded to the EC2 instance. The service is then run as a background daemon process using the
PM2 process manager.

6.2.4 PDDL solver service

The purpose of the PDDL solver service is to generate a plan from the provided domain and problem
PDDL files. It contains access to the Fast Downward planner.

Same as the PDDL modeler service, this service uses SQS for communication via the SQS SDK
and two custom SQS message queues. It polls the request queue, then processes received messages
by extracting the payload, a domain and a problem PDDL, and then decodes and saves them locally
as “.pddl” files. The files are necessary, because the Fast Downward CLI solver requires files
as input arguments. Using the saved files, the tool is executed, generating a plan which the tool
automatically saves locally as a new file.

An SQS response message is constructed with its JSON body containing the newly generated
plan. The attribute “GOTO_SOLVER_PDDL” is consumed while the other message attributes are
preserved. Once the response message is put into the SQS response queue, the request message is
safely deleted from the request queue. The local files: domain, problem, and plan are no longer
necessary and are deleted as well.

25https://pypi.org/project/pip/
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Error handling in the PDDL solver service functions the same way as for the PDDL modeler service,
as does deployment: an EC2 instance with a Debian 11 environment. The only difference in this
case are the dependencies required by Fast Downward.

6.2.5 Message middleware

The message middleware is a service for routing all messages between the frontend application
and the other services. Similar to the other services, it uses an SQS SDK for message polling,
sending and deletion. The message middleware has no own custom SQS queues, instead it polls the
response queues of other services and sends messages to their request queues. The communication
with the frontend application is slightly different, here the middleware polls the request queue and
sends messages to the response queue.

To decide where a received message should be sent, the middleware acts as a message router
employing the Content-Based Router pattern26 [HW04]. The message recipient is determined by
the message “GOTO_[...]” attributes.

In the case that the values of multiple attributes are set to “true”, meaning that multiple services are
intended to receive the message, the message middleware needs to regulate with which service to
communicate first. For that purpose, it employs a service priority ranking, which is determined
logically, e.g., domain and problem generation should come before plan generation, which requires
those domain and problem.

Should a message be received with its “ERROR” attribute set to “true”, it is returned directly to the
frontend application. To ensure this behavior, all other attributes indicating which services were
supposed to receive that message are ignored.

The message middleware is hosted in its own EC2 instance with a Debian 11 64-bit environment.
The only required dependency is a JDK for the service JAR and the service process is daemonized
through the PM2 manager.

6.3 Scenario 2

Scenario 2 consists of the implementation and integration of a new service, which grants access to
the plan validator tool, VAL. This scenario’s purpose is to discover challenges occurring during
integration of a new service into the established system of planning tools. The updated system
diagram is shown in Figure 6.3.

26https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
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Figure 6.3: Project 2, scenario 2: system diagram.
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6.3.1 Message format

The message format used for SQS communication is updated to accommodate for the new plan
validation service. A new message attribute, “GOTO_PLAN_VALIDATOR”, is introduced, used
to signify whether the message needs to be sent to that service. Same as the other attributes with
a similar purpose, it holds a “true”/“false” value of type string. Table 6.3 displays the updated
message attributes.

Attribute Name Type Value

MESSAGE_ID string UUID
ERROR string true/false

GOTO_MODELER_PDDL string true/false
GOTO_SOLVER_PDDL string true/false

GOTO_PLAN_VALIDATOR string true/false

Table 6.3: Project 2, scenario 2: SQS message attributes.

Since the message payload now needs to include plan validation data, the JSON body is extended
with a new field, “PLAN_VALIDATION”. It, too, holds information encoded as a Base64 string.
The updated body format is displayed in Listing 6.2.

1 {

2 "ERROR_MESSAGE": "<Base64 string>",

3 "MODELER_PDDL_SCRIPT": "<Base64 string>",

4 "DOMAIN": "<Base64 string>",

5 "PROBLEM": "<Base64 string>",

6 "PLAN": "<Base64 string",

7 "PLAN_VALIDATION": "<Base64 string>"

8 }

Listing 6.2: SQS message body, scenario 2.

Once the message format changes are determined, the messaging logic must be updated in the
frontend application and in all services. The service priority ranking in the message middleware,
which determines the order of services when routing messages intended for multiple services, is
updated as well. As the plan evaluation tool requires a PDDL domain, a PDDL problem and the
resulting plan, the PDDL modeler service and the PDDL solver service from Scenario 1 need to
have a higher priority. Thus, the new service is assigned the lowest priority.

6.3.2 Plan validation service

The plan validation service is implemented using the Java programming language, same as the other
services. It uses two new SQS queues for communication: polling, sending, and deleting messages
in the same manner.

52



6.4 Scenario 3

The PDDL plan validator requires a plan, as well as the corresponding domain and problem PDDL,
to determine whether that plan is a valid solution. Those are provided by the SQS message payload,
they need to be extracted, decoded and saved locally as files, since the validator CLI tool expects
files as input arguments. After the tool’s execution, the terminal output is parsed, and the resulting
validation information is saved in the JSON body of the SQS response message.

Afterwards, the plan validation service proceeds in the same manner as the other services, sending
the response message and cleaning up both the request message and the locally saved files: domain,
problem and plan. The consumed message attribute in this case is “GOTO_PLAN_VALIDATOR”.

Error handling and service deployment is realized as stated in the sections describing the other
services. Setting up the VAL tool, however, has to proceed differently, as the tool’s build scripts
refuse to build the executable in the EC2 environment, for reasons which could not be determined.
Because of this, the tool is built in a test environment – a VirtualBox instance, also running
Debian 11 64-bit – and the executables are then copied to the EC2 instance.

6.4 Scenario 3

Scenario 3 consists of several tasks. First, the extraction of all SQS communication logic required
by a service into a separate messaging endpoint, as per the Message Endpoint27 [HW04] pattern.
The endpoint also employs the Messaging Gateway28 [HW04] pattern to encapsulate the SQS
messaging-specific method calls. Additionally, the conversion of the objects into the message format
is encapsulated using the Messaging Mapper29 [HW04] pattern. The endpoint is implemented as a
Java library.

Second, the implementation and integration of a new service, the HDDL solver service, into the
established system. This service grants access to the planning tool Lilotane and is required to make
use of the new message endpoint. An HTN tool is chosen for the purpose of discovering challenges
which may occur when integrating a tool which requires “.hddl” files into a system previously
working only with “.pddl” files.

For the final task, the message endpoint is integrated into the other services: the message middleware,
the PDDL modeler service, the PDDL solver service and the plan validator service. The updated
system diagram is shown in Figure 6.4.

27https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageEndpoint.html
28https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingGateway.html
29https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessagingMapper.html
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Figure 6.4: Project 2, scenario 3: system diagram.
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6.4 Scenario 3

6.4.1 Message format

To accommodate for the new service, the message format is updated with a new attribute –
“GOTO_SOLVER_HDDL”. It is used by the message middleware to determine whether the message
needs to be routed to the HDDL solver service. The updated and final version of the message
attributes is shown in Table 6.4.

Attribute Name Type Value

MESSAGE_ID string UUID
ERROR string true/false

GOTO_MODELER_PDDL string true/false
GOTO_SOLVER_PDDL string true/false

GOTO_PLAN_VALIDATOR string true/false
GOTO_SOLVER_HDDL string true/false

Table 6.4: Project 2, scenario 3: SQS message attributes.

As for the message body, it is kept the same as in Listing 6.2. Since the new HDDL solver service
requires a domain and a problem file, same as the PDDL solver service, no new fields in the body
JSON are necessary. Instead, the already established “DOMAIN” and “PROBLEM” fields are
reused.

6.4.2 Message endpoint

The message endpoint is a library implemented with the Java programming language. It contains
all the communication code that the services require to make use of the SQS queues.

Utilizing the SQS SDK, the endpoint builds an SQS client and enables message polling, sending,
and deleting. It also handles both the payload extraction of the received request messages and the
construction of the attributes and the body of the response messages. The error handling process
and the construction of SQS error messages is implemented in the message endpoint as well.

Once implemented, the message endpoint library is added to every service, as can be seen in
Figure 6.4. Although making changes to the already working and tested software requires additional
time, both for the implementation and more testing, it results in a significant reduction of code,
which previously was duplicated throughout the services.

6.4.3 HDDL solver service

The final service of Project 2, the HDDL solver service, is implemented using Java, same as the
other services. Similarly, it employs a custom SQS queue for requests and another for responses.
Unlike the other services, it makes use of the message endpoint library from the beginning. That
means the service relies on the endpoint for all its SQS communication needs: handling request,
response and error messages.
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Once a request message is received and processed, its payload, containing an HDDL domain and
problem, is saved locally. The Lilotane planning tool, similar to the other CLI planning tools,
requires its input arguments to be files. Afterwards, the resulting terminal output needs parsing to
extract the generated plan.

With a plan available, the message endpoint takes over again to create the response message and
consume the “GOTO_HDDL_SOLVER” message attribute. After the response message is put into
the SQS response queue, the local files are cleaned up and the HDDL solver service is ready to
process the next request message.

The deployment of the server proceeds in the same manner as the other services. It is hosted on a
custom EC2 instance in a Debian 11 environment, containing the Lilotane tool executable and the
service JAR file managed by PM2.

6.5 Discussion

Section 6.5 contains the reasoning behind design choices, implementation decisions, encountered
difficulties, and experiences the were made during the realization of Project 2.

6.5.1 Amazon Web Services

Before work could begin on the SOA-based Project 2, it was necessary to select a fitting infrastructure
for the application’s needs. With the Amazon Web Services offering solutions for queue-based
communication and application hosting, the decision was made to make use of it.

The following are a few additional reasons in favor of that decision:

• Popularity: similarly to Project 1, one of the goals was to carry out any implementation using
only freely available, proven tools and means. With AWS being available since 200630 and
being used by multiple companies31, that goal was satisfied.

• Documentation: solutions, their features, and the specifics of their utilization are extensively
documented32 with code examples in multiple programming languages33.

• Pricing: when planning Project 2, another goal was to avoid any hosting or service expenses.
As the AWS Free Tier offers 750 hours of EC2 usage and up to 1,000,000 SQS requests
each month free of charge, this goal could be achieved. Additionally, the transparency of the
pricing scheme also spoke favorably for AWS.

• Scaling: although the application is not intended to be offered to any users, one of the goals
was for it to be potentially scalable. Hosting the frontend application and its services on EC2
instances makes that possible34.

30https://web.archive.org/web/20121005123855/http://aws.amazon.com/about-aws/
31https://aws.amazon.com/ec2/customers/
32https://docs.aws.amazon.com
33https://github.com/awsdocs/aws-doc-sdk-examples
34https://aws.amazon.com/ec2/autoscaling/
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• Experience: getting familiar with a large service like AWS requires a significant time
investment. However, since some experience with the AWS solutions was already acquired
from the lecture “Cloud Computing: Concepts and Technologies”35, that time investment
was reduced.

Once the technologies for the project were selected, it was necessary to acquire both theoretical
knowledge and practical skills with them. That means reading the AWS SQS and the AWS EC2
documentation, learning the capabilities and requirements of those services and studying the
available code examples in the project specific programming language.

After accumulating enough theoretical background knowledge, it needed to be put into practice. That
includes creating a new AWS account, getting familiar with the AWS console, figuring out security
roles and acquiring security credentials, setting up EC2 instances with selected environments and
SSH (Secure Shell Protocol) access, setting up SQS queues and creating some SQS messages for
testing, and more.

6.5.2 AWS billing

As mentioned previously, with the AWS Free Tier it is possible to make use of multiple solutions
without any monetary expenses. It is important, however, to remember the limits of the free offer.

In particular, the 750 hours of free monthly use of EC2, which translates to just over 31 days, is
enough to run one EC2 instance permanently for one month. But when working on Project 2 it was
not considered that multiple instances are required: one for the frontend application and one for
each service, as showcased in Figure 6.5. And since those instances were not stopped between tests,
the 750 hours limit was reached within a week. This led to incurred costs of approximately $10.

Figure 6.5: Project 2: EC2 instances screenshot.

Alternatively, the amount of SQS requests accumulated during testing was only about 25,000 in
total, which is still well under the 1,000,000 requests limit. However, it is strongly advisable to not
lose track of such limits when working with AWS solutions.

35https://www.iaas.uni-stuttgart.de/en/teaching/lectures/2021_ws/cc/
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6.5.3 AWS security

Services running in EC2 instances require security credentials to send, receive and delete messages
to/from SQS queues. To achieve that, an Identity and Access Management (IAM) user with limited
access, namely just the SQS access, was created. Those user credentials were then uploaded to each
EC2 instance, permitting their SQS access.

While there may be better security practices36, a deeper dive into the AWS security peculiarities
was deemed to be outside the project scope. Additionally, such research would have pushed the
project over its allotted time budget.

6.5.4 Dead-Letter Queue

One useful tool both in testing and production when using SQS is the Dead-Letter Queue (DLQ)37.
The way it works is that a queue is designed a DLQ and the other queues are provided with its
address. SQS allows specifying the maximum number of times a message can be polled, and once
this amount is exceeded the message is automatically transported from its original queue to the
DLQ. There it remains for a certain period, which can be specified in the queue’s settings, before
being purged. The queues created for Project 2, including the DLQ, can be seen in Figure 6.6.

Figure 6.6: Project 2: SQS queues screenshot.

The DLQ ensures that when a message cannot be processed by a recipient, that message does not
end up clogging the queue, being unnecessarily polled, and attempted to be processed repeatedly.
Simultaneously, transporting the erroneous message to a special queue, instead of outright deleting
it, preserves it for debugging purposes.

36https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
37https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
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However, it is important to make sure not to remove messages from the normal message flow
too early. When multiple consumers poll a queue for messages, SQS employes the Competing
Consumers38 [HW04] pattern. As an example, that means that there could be multiple instances of
the frontend application, all polling the same queue, awaiting a response message with a specific
UUID. This can lead to a message being received and rejected by several application instances,
reaching its polling limit and ending up in the DLQ, without ever being polled by the one instance
which possesses its UUID.

Another case, when a valid response message may end up in the DLQ, is if the frontend application
crashes. Since the UUID is not preserved, e.g., in a database, it would be lost. This means that
when the frontend application comes back online, it can no longer retrieve the response, as it no
longer possesses the response’s UUID.

6.5.5 Message polling

Continuous message polling produces a lot of unnecessary requests which return nothing if there
are few messages present in the queues. Not only does this waste processing power, it also counts
towards the SQS request limit of the AWS Free Tier.

A better solution for a system with fewer messages would be to employ the Event-Driven Con-
sumer39 [HW04] pattern instead of the Polling Consumer40 [HW04] pattern. However, the SQS
documentation does not mention any event-driven solutions, instead, the answer would be to employ
Amazon Simple Notification Service (SNS)41 or Amazon EventBridge42.

6.5.6 Error handling

There are multiple types of errors a service can encounter under workload. Errors can occur during
message handling, e.g., when polling/processing/creating/sending/deleting messages, or during
the execution of the planning tool integrated in that service, e.g., when providing input arguments
or parsing the tool’s output. But whichever is the case, the question arises how to handle those
errors.

In terms of the Project 2 application, it has been elected to cancel the current flow of messages in
case of an error and return an error message to the frontend application. For example, a message
could be intended to be sent to the solver service first, to generate a plan, and then sent to a validation
service, to make sure that the plan is valid. If an error occurs in the solver service, then it makes
sense to abort this message flow instead of proceeding to the validation service, because there is no
plan to validate.

38https://www.enterpriseintegrationpatterns.com/patterns/messaging/CompetingConsumers.html
39https://www.enterpriseintegrationpatterns.com/patterns/messaging/EventDrivenConsumer.html
40https://www.enterpriseintegrationpatterns.com/patterns/messaging/PollingConsumer.html
41https://aws.amazon.com/sns/
42https://aws.amazon.com/eventbridge/
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However, in another system, e.g., with multiple different solver services, aborting the message flow
could be counterproductive. In such a scenario, a message could be intended to go through multiple
solver services, generating several (different) plans, before proceeding to a validation service. This
would require a more advanced mechanism of error type recognition, to keep track of each failed
solver service and to stop the message flow only if all have failed.

It gets even more complicated when one considers that the previously mentioned solver services
can fail not due to the integrated planner, but because of some unrelated internal error. In this case
it might make sense to let a service attempt to process a message more than once before moving
on. And since each service is meant to be stateless, all that error information would need to be
contained within the message, either in the attributes or in the payload, or in a database.

6.5.7 CLI planner output

One difficulty which became apparent when working with CLI planning tools was the necessity to
process their output, as mentioned previously in Section 5.5.2 on page 40. While such tools like
Fast Downward save their output in a new file, making it simple to access and process it, others
do not make it so easy. The output of such tools is only accessible directly through the terminal,
meaning it needs to be caught and parsed first. Unfortunately, building a reliable parser can be
difficult, as not all possible output cases are known and must be discovered manually.

As an alternative to output parsing, one may consider updating the planning tool to change its output
type. While this would involve accessing and altering the tool’s source code, it would increase the
reliability of the service which provides access to that planning tool.

6.5.8 Loose coupling of components

As mentioned in the description of Project 2, the system is meant to be loosely coupled (see
Appendix A.1 on page 89). The following points describe how the loose coupling of components
has been handled.

• Reference Autonomy: neither the frontend application nor the services know the addresses of
their communication partners or are aware where they are hosted. The only known addresses
are those of the SQS queues, thus fulfilling the autonomy aspect’s requirement.

• Time Autonomy: this autonomy aspect is respected, since the communication through
messaging is asynchronous. The system components poll SQS queues and process messages
at their own pace, meaning that they do not need to be online at the same time.

• Platform Autonomy: the frontend application is implemented with TypeScript, whereas the
services are implemented with Java. This fact, however, does not influence communication
in any way, leading to platform autonomy.

• Format Autonomy: although this aspect requires the system components to use different
formats of exchanged data, the decision was made to utilize only one message format instead.
Because of this, the format autonomy aspect is not respected in this project, resulting in a
tighter coupling of components. The reasons that led to this decision are explained in the
next section.
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6.5.9 Single message format

One of the features implemented in Project 2 is the ability to communicate with a chain of services
by initiating only a single request. Those services are selected with the toggle buttons in the
frontend’s GUI and the request is initiated with the “Execute” button. Having each service use
the same message format containing a predetermined set of attributes and body fields is a simple
mechanism to help messaging multiple services in a row. Without it, tracking which services are to
take part in a communication sequence would have to be done in a different manner than saving that
information in the message attributes, e.g., by coupling the message middleware with a database
and storing the information there.

Another reason for using a single message format is that each component of the SOA application
was developed by a single developer. In a real-world scenario, a system may be worked on by
multiple developers or even by multiple teams, meaning that components can be in development
independently from each other. This leads to the source code of those components being unknown
or inaccessible to other developers. In this case, it is unrealistic to expect every component to
use the same message format and then to be able to quickly adapt to any changes. One solution
for such an issue is to implement message translators using the Message Translator43 [HW04]
pattern. However, since there was only one developer working on the Project 2 application, having
access to the source code of each component would have made introducing message translators just
unnecessarily increase the overall system complexity.

Using the single message format approach instead of message translators means having to add new
attributes and/or body fields to the message format for each new service, as mentioned in Scenario 2
and Scenario 3 of Project 2. This also means that whenever a new service is added to the system,
the code handling the communication in each previous service and the frontend application requires
an update. But it is worth noting that utilizing message translators would not necessarily reduce that
workload. Introducing a new service would mean that the translators need to be updated instead
of the services, but in the end, updating is required in either case. The amount of work needed
for updating the services was mitigated through the use of the message endpoint library, since all
communication code is contained within.

The final reason in favor of a single message format is the reduced number of messages that need to
be created during one communication sequence. As can be observed in the example in Figure 6.7, a
communication sequence is initiated with the intent to first produce domain and problem files, then
a plan and then to validate said plan. For that purpose, after receiving a request from the frontend
application, the message middleware needs to communicate with three services: the modeler service,
the solver service and the validation service, before returning a response to the frontend application.
This results in 2𝑛 + 2 number of messages for 𝑛 services.

In comparison to that number, the implementation of message translators for every service would
possibly require the creation of additional SQS queues to decouple the translators from the services.
This would lead to two more queues being located between each translator and its corresponding
service. Those additional queues would result in 4𝑛 + 2 number of messages for 𝑛 services,
increasing the overall AWS SQS costs and the communication latency.

43https://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageTranslator.html
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Figure 6.7: Project 2: communication sequence example.
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6.5.10 Code changes

In Scenario 3, the implementation of the message endpoint library and, consequently, the need
to update the existing services with it led to many code changes. Those changes resulted in code
quality improvements, like the extraction of all communication code into a separate component and
the reduction of code duplication. However, they also required a significant rework of the software,
which was already functioning and tested, potentially breaking some components.

Several days were spent on error fixing and re-testing, making sure the updated services functioned
as well as previously. Such effort and time investment can be avoided if the changes are instead
part of the initial system design. While this may be an obvious recommendation, it is important to
remember to give the system design plenty of thought from the beginning.

6.5.11 Deployment on EC2

During the deployment of services with planners in EC2 instances it was necessary to provide
the corresponding planning tool executables. One possibility is to clone the planner and build it
directly in the instance, another is to build the planner in another environment and then to upload
the executable to the instance.

The first approach, although simpler, requires installing build dependencies in the EC2 instance.
Additionally, the planning tool may simply refuse to build, as mentioned previously in Section 6.3.2
on page 52. As a reminder, the issue was that the VAL planning tool would fail to build within the
EC2 instance and had to be built separately, leading to the second approach.

Building a planner executable separately requires an environment identical to the EC2 environment.
Setting up a VirtualBox instance running Debian 11 64-bit allowed building the necessary VAL
executable. Another benefit of this additional effort was that the installation of any build dependencies
on the EC2 instance could be omitted.

6.5.12 Testing

The importance of testing is well known and doesn’t need advocating. But when dealing with AWS
it is highly advisable to thoroughly test one’s application before and after deploying it in an EC2
environment.

Testing the software in a VirtualBox instance with the same environment as the future EC2 instance,
as mentioned in the previous section, will prevent unnecessarily using up the resources of the AWS
Free Tier. Additionally, testing locally can save a lot of time, which would otherwise be wasted,
e.g., on uploading a JAR file to the EC2 instance, testing it, applying a fix in the source code, and
then having to generate a new JAR and upload it to the instance again.

Inversely, just because the software functions in its test environment does not necessarily mean it
will do so in its production environment. As an example, the service containing the HDDL solver
Lilotane would have no problem generating plans from provided domain and problem files in a
VirtualBox instance. But when that service was hosted in an EC2 instance, which ran the same OS
and used the same dependencies, suddenly there were cases when the service would not produce a

63



6 Project 2: Service-Oriented Architecture

plan. Instead, the solving process would simply get stuck and never complete. The exact reason for
this behavior could not be determined, perhaps the instance was lacking in memory or processing
power.

6.6 Key observations

AWS pricing

While building an application making use of the AWS solutions one should be aware of their costs.
If one is employing the AWS Free Tier, it is important to keep track of its limits, otherwise the free
offer can run out unexpectedly. Alternatively, if using an AWS pricing scheme, the future expenses
should be carefully estimated using the pricing information provided by Amazon44.

Planner integration

Integrating CLI planners into services is very similar to integrating them into a monolithic application.
One still has to provide input arguments in the expected format, while catching and parsing output
in the terminal.

Importance of testing

When deploying an planning component in a production instance it would be a mistake to assume it
will be functioning exactly as it did in its test environment. As discussed in Section 6.5.12, testing
in a local environment first saves time, while testing in the production environment afterwards
ensures the component is still working as intended.

6.7 Key recommendations

System design

When working on a larger project, especially one with multiple separate components, it is important
to spare no effort on the system design. Attempting to save time on this phase might result in having
to make significant changes later, even to the components that were already functioning. As shown
in Section 6.5.10 on the preceding page, a thought-out system design is well worth the effort.

44https://calculator.aws/#/?nc2=pr
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6.7 Key recommendations

Pattern utilization

Many of the problems one can find themself facing when designing system architecture may already
have been solved by others. It is highly advisable to research applicable design patterns before
attempting solutions which only end up “reinventing the wheel”.

“If it ain’t broken, don’t fix it”

While viewing an established system, one may feel tempted to try and improve it. But, when
considering any big changes to the system’s architecture, it is advisable to weigh out the advantages
as well as the disadvantages carefully. Every big change can lead to unexpected behaviors, errors,
system downtime and the necessity to re-test many, if not all, system components. An attempt to
improve what is already working can end up breaking it.

Message handling

When implementing a distributed system, which employs messaging, one should make an effort
to determine the messaging system’s intricacies early on. The design of message routing, format,
transformation, etc., should not be done as an afterthought. A wrong decision in this area can
lead to cumbersome and error-prone updates, or unnecessarily increased expenses, as discussed in
Section 6.5.9 on page 61.
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7 Project 3: Microservice Architecture

Project 3 consists of the implementation of a distributed application based on the microservices
architecture (see Appendix A.3). Similar to Project 1 (see Chapter 5) and Project 2 (see Chapter 6)
the idea is to create a system employing the same planning tools as before but utilizing microservices.
The system is using REST (see Appendix A.4) as a lightweight communication mechanism.

The system components include: a frontend application, for initializing requests and displaying
response results, an API gateway, for routing requests and controlling the communication flow,
a service discovery, for registration and discovery of microservices, and several microservices,
offering different planning capabilities.

7.1 Tools

The frontend application is developed using the React framework, the TypeScript programming
language, the npm package manager and the WebStorm IDE. Other components of the system,
namely the gateway, the service discovery, and the microservices, are implemented using the Spring
Boot1 framework, the Java programming language, and the IntelliJ IDE. Initialization of those
components is assisted by the online tool Spring Initializr2 and build automation is done using
Maven3 for some components and Gradle for others. The project’s version control is managed by
using GitLab.

As a lightweight communication mechanism, REST is used for sending requests from the frontend
application to the microservices. Each system component is deployed by hosting in a Docker
container, with the initialization of all Docker images and containers controlled by a single Docker
Compose4 file.

The planning tools, which are integrated into the microservices, are listed in Table 7.1.

7.2 Scenario 1

Scenario 1 begins with the design of the overall system architecture and communication mechanisms.
It includes the implementation of the frontend application, the API gateway, the service discovery,
and two microservices, both of which make use of the pddl planning tool. Afterwards, the system
components are deployed using Docker. Figure 7.1 showcases the system diagram of Scenario 1.

1https://spring.io
2https://start.spring.io
3https://maven.apache.org
4https://docs.docker.com/compose/
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Figure 7.1: Project 3, scenario 1: system diagram.

68



7.2 Scenario 1

Planner name Purpose Description

pddl PDDL domain and problem generation and validation. Section 4.4.1
Fast Downward Plan generation from PDDL files. Section 4.4.2

VAL Plan validation with PDDL files. Section 4.4.3
Lilotane Plan generation from HDDL files. Section 4.4.4

Table 7.1: Project 3: integrated planning tools.

7.2.1 Frontend application

The frontend application is, for the most part, based on Project 2 frontend. As can be seen in the
screenshot in Figure 7.2, it employs a very similar GUI, with the difference being that the execution
options are selected with radio buttons instead of toggle buttons. The intention behind this change is
to prevent the API gateway being blocked by multiple consequent requests, since the communication
is synchronous.

Figure 7.2: Project 3: GUI screenshot.
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To communicate via REST, Fetch API5 is utilized for creation of request and response objects. The
communication process is as follows: user input is gathered from the GUI’s text fields, the payload
is encoded as Base64 strings and inserted into the JSON request body. Then a request is created and
sent to the API gateway with the “fetch()” method, and a response with a Base64 encoded payload
is received and decoded. Finally, the response data or an error message is displayed through the
GUI.

The API gateway address and the URL (Uniform Resource Locator) paths of the microservices
are contained in a separate “config.json” file. This allows for easy changes of addresses without
affecting the rest of the code, e.g., if the gateway is hosted using a domain name instead.

The application’s dependencies and deployment are handled by Docker through a custom Dockerfile.
By using the serve6 npm package, the frontend is served as a static server inside its Docker
container.

7.2.2 Service discovery

The service discovery is a service for registration and discovery of microservices. Its purpose within
the project is to assign ports to the microservices, preventing fixed addresses. The API gateway
utilizes the discovery registry to look up those addresses during request routing. Other than that,
the service does not take part in the communications of the rest of the system.

The registry and discovery functionalities are provided by Netflix Eureka Server7. Aside from the
usual main method and the “@EnableEurekaServer” Spring framework annotation, no additional
Java code is required. Unlike the microservices, the registry runs on the fixed 8761 port, which is
the default Eureka Server port. The service is deployed via Docker.

7.2.3 API gateway

The API gateway is a reverse proxy8 based on the Gateway Routing9 pattern, located between the
frontend and the microservices. It receives every request sent from the frontend application and
uses the registry of the service discovery to look up the port assigned to the required microservice.
Using that port and a predefined URL path, the gateway forwards the requests to the corresponding
microservice.

In this project, the API gateway runs on port 8080, since the frontend application needs to know
where to send its requests. It also handles Cross-Origin Resource Sharing (CORS)10 permissions
for request origins, headers and methods, which allows accepting cross-origin requests from the
frontend application. Like the other services, the gateway is deployed in its own Docker container.

5https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
6https://www.npmjs.com/package/serve
7https://cloud.spring.io/spring-cloud-netflix/reference/html/#spring-cloud-eureka-server
8https://developer.mozilla.org/en-US/docs/Web/HTTP/Proxy_servers_and_tunneling#reverse_proxies
9https://learn.microsoft.com/en-us/azure/architecture/patterns/gateway-routing

10https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
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7.2.4 Tools library

The tools library contains tools which are used by the microservices with an integrated planner in
Project 3. Its purpose is to reduce code duplication by offering functionalities required by multiple
services. It is imported into the microservices as an external JAR.

The library includes such tools as: Base64 request decoder and response encoder, file creator for
saving files for CLI tools and file remover for cleaning up processed files, custom exceptions and
their payload format.

7.2.5 PDDL domain-problem modeler microservice

The first implemented microservice – the PDDL domain-problem modeler – provides access to the
modeling functionality of the pddl planning tool for PDDL domains and problems. The microservice
does not possess a fixed port, instead it registers with the service discovery and is assigned a
port. The Spring framework handles the registration automatically, it requires only the Netflix
Eureka Client11 dependency and an “@EnableDiscoveryClient” Spring framework annotation in
the code.

During communication the microservice receives a “PUT” request containing a Python modeler
script in its JSON body, encoded as a Base64 string. That script is extracted, decoded, and saved
locally as a file, which is then executed via a terminal command. The resulting output is caught
and parsed, with the parser expecting specific markers to recognize the PDDL domain and/or
problem within the output: “DOMAIN START” and “DOMAIN END”, “PROBLEM START”
and “PROBLEM END”. Afterwards, a response JSON is created, containing the Base64 encoded
domain and/or problem, depending on whether one or both were present in the output. The response
to the “PUT” request is then returned to the frontend through the API gateway and the locally saved
modeler script is deleted.

Should an error occur during request processing, an error response is returned instead of the
usual response. The error handling is taken care of by the Spring framework through the use of
the “@ExceptionHandler” Spring framework annotation. The microservice is hosted in a Docker
container as specified by its Dockerfile.

7.2.6 PDDL domain-problem validator microservice

The PDDL domain-problem validator microservice grants access to the pddl planning tool, similar
to the PDDL domain-problem modeler microservice, but with a few differences. First, the service
employs a separate functionality of the planning tool, namely its capability to validate PDDL
domains and programs. Second, during request processing the pddl tool is not used as a library in a
script but is accessed directly through a console command. Third, the microservice provides two
separate endpoints, one for domain validating, the other for problem validating.

11https://cloud.spring.io/spring-cloud-netflix/reference/html/#service-discovery-eureka-clients
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The communication process is as follows: a “PUT” request is received either on the domain or the
problem endpoint. Its decoded payload is saved as a local file and the CLI pddl tool is executed
with the corresponding domain or problem argument. The output is checked for either a successful
validation or a validation error and a response JSON with a Base64 encoded payload is created.
Once the response is returned to the frontend, the locally saved file is cleaned up.

The service registration and port assignment are enabled by the Netflix Eureka Client dependency
and the service discovery. The microservice is hosted in a Docker container.

7.2.7 Docker Compose

Once every component of Scenario 1 is implemented and hosted via Docker, five separate Docker
containers require managing. For automating the process of building the Docker images and
containers from the Dockerfile of each system component, a custom Docker Compose file is
created.

The “docker-compose.yml” omits the ports mapping in the definitions of microservices, which
allows the service discovery registry to assign ports to the microservices and their containers. This
also enables potential horizontal scaling of microservices, as multiple containers running the same
microservice but with different ports would not block each other.

Lastly, the “docker-compose.yml” enables communication between Docker containers. For this
purpose, a custom network is defined within it.

7.3 Scenario 2

Scenario 2 adds PDDL plan generation and validation capabilities to the current system. This
entails implementing, integrating, and deploying two new microservices – the PDDL plan solver
and the PDDL plan validator. Additionally, the new microservices require updating the API gateway
and the frontend application with new URL paths. The system diagram of Scenario 2 is displayed
in Figure 7.3.
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7.3.1 PDDL plan solver microservice

The PDDL plan solver microservice utilizes the Fast Downward planning tool to generate plans
from the provided PDDL data. It registers with the service discovery and is assigned a port, same as
the microservices implemented in Scenario 1. It also makes use of the tools library JAR for request
processing.

In a received “PUT” request’s JSON body, the microservice expects Base64 encoded PDDL domain
and problem. The decoded and locally saved domain and problem files are used as arguments to
execute the CLI Fast Downward tool. As mentioned in Project 2, this tool saves its output plan as a
file on its own, meaning that no output parsing is necessary. The content of the plan file is encoded
as a Base64 string and inserted into the response JSON body, which is then returned to the frontend.
At this point the request has been processed and the domain, problem and plan files can be safely
removed.

Error handling is taken care of by the Spring framework with the help of the “@ExceptionHandler”
Spring framework annotation and the microservice is deployed in a Docker container, same as the
other system components.

7.3.2 PDDL plan validator microservice

The validation of plans, generated from PDDL domains and problems, is enabled by the PDDL
plan validator microservice with the integrated VAL planning tool. Any received “PUT” request
is expected to provide the following data: PDDL domain, PDDL problem and the resulting plan.
Decoding and saving the request payload as three separate files allows executing the VAL tool via a
terminal command with the required arguments. The tool’s process can result in several output
cases, depending on the provided input: valid plan, invalid plan, invalid domain, or invalid problem.
In either case, the output is parsed, the result is sent back to the frontend application in the response
JSON body encoded as a Base64 string, and the processed local files are deleted.

Other details of the microservice are handled as described previously in the sections on the other
microservices: registration and port assignment through the service discovery, error handling
assisted by the Spring framework, deployment through Docker.

7.3.3 System update

Once the two new microservices are implemented, their integration into the system requires a few
additional changes. Their URL paths are added to the API gateway and the frontend application is
updated to handle new requests/responses for PDDL plan generation and validation. Additionally,
the Docker Compose file is extended to automate the creation of two new Docker images and to
give the new containers access to the communication network.
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7.4 Scenario 3

Scenario 3 consists of providing the system with the functionality to generate plans from HDDL
domains and problems. Afterwards, the system components are updated to be able to communicate
with the new microservice. The finalized system diagram can be seen in Figure 7.4.

7.4.1 HDDL plan solver microservice

The fifth and final microservice, the HDDL plan solver, gives access to the Lilotane planning tool.
The microservice provides an endpoint for a “PUT” request with HDDL domain and problem as its
payload. The domain and problem are then prepared to be used as CLI tool arguments, by being
decoded from Base64 strings and saved as local files. After Lilotane’s execution, the resulting
plan needs to be extracted from the terminal output, which is assisted by the planning tool labeling
the beginning and the end of the plan with “==>” and “<==” strings. The generated plan is then
returned to the frontend and the locally saved HDDL domain and problem files are removed in
preparation for the next request.

Other aspects of the microservice, like the registration at service discovery, utilization of the
tools library, and Docker deployment, are implemented in the same manner as with the other
microservices.

7.4.2 System update

To allow routing of requests from the frontend to the new microservice, its URL path is added to
the API gateway. Likewise, the frontend application is extended with a new “PUT” request factory.
Finally, the Docker Compose file is updated to include building the Docker image of the HDDL
plan solver microservice.
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7.5 Discussion

The following sections describe system properties, design difficulties and decisions made during
the implementation of Project 3.

7.5.1 Adherence to the microservices properties

As per the definition of microservices in Appendix A.3, they are expected to have certain properties.
But how well does the Project 3 application adhere to those properties?

• “a single application as a suite of small services”: the application is built as a distributed
system, with several services providing functionalities of integrated planning tools.

• “each [service is] running in its own process”: through the use of separate Docker containers
each microservice is running independently, unaffected by other containers.

• “[each service is] communicating with lightweight mechanisms”: communication is kept
lightweight by using REST requests instead of setting up and employing the Enterprise
Service Bus [Cha04].

• “services are built around business capabilities”: each microservice is built around a single
planner, offering only one of its functionalities through one (or two) endpoint/s.

• “[services are] independently deployable by automated deployment machinery”: although
the microservices are deployed by using a “docker-compose.yml” file, each can be deployed
separately through its own Dockerfile. As for the automated deployment, that functionality
was not implemented in the project, but it would still be possible to add it.

• “bare minimum of centralized management of [...] services”: excepting the service discovery
registry, the microservices do not need additional management.

• “[services] may be written in different programming languages”: all microservices in Project 3
are implemented with Java and Spring Boot, but another programming language and/or
framework would also have been acceptable. The language only needs to be able to use
REST, execute commands in the terminal and access a Eureka Client library.

• “[services] may use different data storage technologies”: while none of the microservices
utilize any storage technologies, their addition is possible.

7.5.2 Microservice granularity

As mentioned in the previous section, microservices are meant to be kept small. Consequently,
this leads to an additional design challenge, namely deciding on the proper granularity of the
microservices being implemented.
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For example, the planner pddl offers both modeling and validating of PDDL domains and problems.
Although it is a single tool, it was decided that its two provided functionalities are different enough
to warrant the creation of two separate microservices: the PDDL domain-problem modeler and the
PDDL domain-problem validator. The reasoning was that those functionalities might as well have
been provided by two different planners and should not be merged into one microservice.

Continuing with the PDDL domain-problem validator microservice, it offers two endpoints for
requests: one for validating PDDL domains and the other for validating PDDL problems. While
those are technically two different functionalities, they only differ in their execution commands:
“pddl domain domain.pddl” and “pddl problem problem.pddl”. Which is why it was decided that
creating two microservices, with the only real difference between them being the “domain” or the
“problem” argument string, was not worth it.

7.5.3 Loosening the tight coupling of microservices

Although the services built in compliance with the microservice architectural style can become
tightly coupled, it is possible to take steps towards mitigating that. The following points explore
whether the autonomy aspects of loose coupling (see Appendix A.1 on page 89) are respected in
Project 3.

• Reference autonomy: the autonomy aspect is respected, since the microservices possess no
fixed addresses. They register with the service discovery and are assigned ports, as displayed
in Figure 7.5, which are then looked up by the API gateway. The frontend is aware only of
the gateway’s address.

• Format autonomy: unlike the Project 2 application, there is no reason to keep to a single
message format. As result, each microservice expects requests and produces responses
containing only specific information.

• Platform autonomy: with the frontend being implemented in TypeScript and the backend
in Java, with additional microservices being possible in other programming languages, the
platform autonomy is respected.

• Time autonomy: contrary to messaging, the communication via REST is synchronous, in
violation of the time autonomy. However, the microservices are horizontally scalable, meaning
that at least it is possible to prevent requests getting blocked during multiple simultaneous
communication exchanges.

7.5.4 Setting up communication

Speaking in practical terms, although communication via REST is more lightweight than com-
munication via messaging, e.g., AWS SQS, setting it up is not without difficulties. In the case of
SQS, it involves getting familiar with the documentation and AWS SDK code examples, handling
security, creating messaging queues and enabling the system components to interact with them.
This endeavor requires a meaningful time investment to get communication working properly.
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Figure 7.5: Project 3: service discovery registry screenshot.

Compared to that, handling URL paths, routing, REST request and response mechanisms may not
require reading an extensive documentation or employing any AWS solutions, but it can still be
time consuming and error prone. Setting up custom networking is not easy and involves avoiding
several pitfalls, e.g., correctly handling microservices port assignment, enabling CORS preflight
requests12 and creating a Docker container network.

7.5.5 Sidecar pattern

Through the use of the Sidecar13 pattern, the microservice endpoint logic, e.g., configuration, routing,
message transformation, can be decoupled into a separate component. The sidecar component
runs as a separate process in its own container, while sharing the lifecycle of its parent component.
Making the sidecar be responsible for communication of the parent component results in reduced
coupling.

The decision not to employ the Sidecar pattern for Project 3 was made for several reasons. First,
there is no need for extra code for the implementation of service discovery, as the registration of
the microservice is done automatically through the “@EnableDiscoveryClient” Spring framework
annotation. Similarly, no additional message routing is required, since every REST response is sent
back to the API gateway. In this regard there is no logic to decouple.

Second, sidecar components are useful when the source code of the parent component is inaccessible,
which is not the case in Project 3. Employing sidecar components would mean running extra
processes and handling communication between the sidecar and the parent components. Not only
would this unnecessarily increase the system complexity but also the communication latency.

Finally, the tools required for request payload handling and transformation are implemented as
a Java library instead. As the library turned out to be quite small, decoupling it in a separate
component was not worth the effort. In addition to that, since all microservices are built with Java
in this project, the library can be used in each of them, without requiring a separate component.

12https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
13https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

79



7 Project 3: Microservice Architecture

7.5.6 Gateway

The purpose of a gateway in a system architecture is to permit communication with multiple
services from a single address and route incoming requests to the appropriate services. A gateway
can be combined with a load balancer, e.g., Nginx14, to manage traffic and handle horizontally
scaled services. Other uses of gateways include encryption, decryption and validation of content,
authentication, authorization, logging, monitoring, etc.

In the microservices architecture design15, the gateway is usually the only backend component that
is known to the frontend. In Project 3, the API gateway runs on the fixed 8080 port to allow the
frontend application to send requests through it. However, in a real-world scenario the gateway
might instead use a domain name, e.g., “www.example.com”.

One advantage of using a domain name is that it makes it possible for the system to run multiple
API gateway instances on different ports. If the gateway is not horizontally scaled, it becomes
a single point of failure and in case of its crash the whole system would come to a standstill.
Additionally, since the system employs REST communication, which is synchronous, multiple
gateway instances would allow multiple frontend application instances to communicate with the
backend simultaneously.

Speaking of synchronous communication, one disadvantage of employing a gateway is that it
increases latency. As the API gateway is an additional component located between the frontend
application and the microservices, routing communication through it requires additional requests
and responses.

7.5.7 Integration of new microservices

As the system design respects (for the most part) the loose coupling autonomy aspects (see
Section 7.5.3 on page 78), integrating new microservices into the system does not influence the
existing ones. However, even if the previous microservices do not need to be updated, the API
gateway and the front application do. The gateway is extended with the URL paths of the new
microservices and the frontend application is added the ability to send requests to them.

7.6 Key observations

Employing a gateway

When designing a system with the microservices architectural style, one may contemplate omitting
building a gateway component. But based on the experiences made during the work on Project 3
(and Project 2), the advantages of a gateway outweigh the increased latency and the danger of
introducing a single point of failure.

14https://www.nginx.com
15https://learn.microsoft.com/en-us/azure/architecture/microservices
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Designing fine-grained microservices

According to the microservices definition, they are meant to be kept small and built around business
capabilities. Designing a fine-grained microservice, however, is not easy. On the one hand, it should
not become bloated with features, and on the other hand, dividing similar features between multiple
microservices can lead to unnecessary code duplication and overcomplication of the resulting
system.

CLI planners integration

As with the monolithic application in Project 1 and the services in Project 2, the integration of CLI
planners into microservices is faced with the same difficulties. Catching and parsing their output,
without adjusting the planner’s source code, remains unreliable.

Microservices’ integration

In a properly designed system, the integration of new microservices is simple and does not require
many adjustments. Using a lightweight communication mechanism means that once the gateway
is extended with the new URL path/s for routing, the frontend is free to communicate with the
microservice.

7.7 Key recommendations

Researching microservices architecture

Before attempting to design a system using the microservices architectural style, one should get
familiar with its properties and limitations. Otherwise, for example, one may end up reinventing
SOA when attempting to improve communication by turning it into asynchronous messaging.

Learning communication intricacies

While REST is a more lightweight communication mechanism than messaging queues, it can be
difficult to implement correctly. It is advisable to make sure one understands the intricacies of
HTTP (Hypertext Transfer Protocol) communication, e.g., CORS.

Reducing tight coupling

As a result of using synchronous communication, the microservices have tighter coupling. But it is
worth loosening those couplings, at least in other areas than communication, like port assignment,
as it enables the scaling of microservices.
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Determining pattern usefulness

Even though there are many advantages to using patterns, one should determine whether they suit
the system’s needs before making use of them. As shown with the Sidecar pattern example in
Section 7.5.5 on page 79, even though the pattern is useful in theory, in given circumstances it was
determined not to be a good fit for the system.
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8 Conclusion

The final chapter of this thesis concludes with a summary of the done research, implemented
projects and findings. Additionally, it provides a perspective on possible future work.

8.1 Summary

The goal of the thesis is to uncover the challenges of planning-based application engineering in
regard to design, integration and deployment. For that purpose, three projects with several scenarios
have been implemented, partaking in each of the mentioned engineering aspects.

To summarize:

• The three projects have been designed in different architectural styles: monolithic, SOA and
microservices architecture.

• Integration of planning components has been carried out using different technologies: message
queueing and REST.

• The project components have been deployed via EC2 and Docker.

In terms of design, the importance of a robust architecture design cannot be overstated. In this
regard it helps greatly to adhere to proven patterns and guidelines, instead of committing design
faux pas. To be able to employ patterns, e.g., Messaging Patterns1, a suitable platform is required,
demanding a certain level of know-how. Learning and setting up technologies, e.g., AWS SQS,
Spring Boot and custom networking, may not be trivial, but is still feasible after a sufficient time
investment. The biggest challenge during the design phase involving planning tools is their selection
process. This endeavor includes researching available planners, their set up, determining their
usability and ensuring their compatibility, ending up requiring more effort than initially predicted.

Integrating a planning tool CLI executable in an application or a system component is similar to
using any other external executable: it requires a certain input and provides some output. However,
as the tool does not offer an API, the only way to provide said input is through command line
commands with arguments. Since the output is supplied through the terminal as well, it is often
interlaced with additional logging information, making it difficult to discern the actual process
results. In the implementation of the three projects, the output is caught and parsed manually by
using regular expressions. This method has proven itself to be unreliable, as the employed planning
tools do not conform to a singular output format. This leads to the necessity to cover all possible

1https://www.enterpriseintegrationpatterns.com/patterns/messaging/
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process results, e.g., success, failure, problems with input or execution, and unexpected planning
tool crash. As the planner documentation rarely covers every possible form of output, manual tool
testing is required to be able to anticipate possible outputs.

Concerning deployment, a large part of the challenge involves learning the correct use of deployment
technologies, e.g., AWS EC2 and Docker. Other than that, an additional problem arises when
managing the dependencies of the utilized planning technologies. Although which dependencies
are necessary should become clear during planner set up in the design phase, ensuring that they are
functioning, e.g., in a Dockerfile, sometimes requires additional tweaking.

8.2 Future work

Each of the three implemented projects includes a logical sequence of planning technologies:

• Domain and problem modeling through pddl.

• Domain and problem validation through pddl.

• Problem solving for plan generation through Fast Downward.

• Plan validation through VAL.

This chain of planners can be extended through a plan execution tool, an execution monitoring tool,
etc. Although, judging by the experiences made during project implementation, the integration of
those tools would not proceed in a different manner than with the previous tools, it is possible that
some new insights may be uncovered.

In addition to the employed classical planning tools, a hierarchical planner Lilotane was added
to two projects. Its purpose was to determine whether such an addition would require different
integration techniques or pose different challenges. Although that was not the case, integrating
tools with other planning types, e.g., temporal, could result in different findings.

As mentioned in Section 4.2.3, no tools for automated problem generation could be found.
The reasons for their absence and the usefulness of a potential implementation may warrant
investigation.
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A Definitions

A.1 Loose coupling

The loose coupling core principle: reduce number of assumptions two parties make about each
other when they exchange information.

The loose coupling autonomy aspects:

• Reference Autonomy: Producers and consumers don’t know each other.

• Time Autonomy: Producers and consumers access channel at their own pace.

• Format Autonomy: Producers and consumers may use different formats of data exchanged.

• Platform Autonomy: Producers and consumers may be in different environments, written in
different languages, etc.

The information on loose coupling provided in this section is taken from the lecture “Loose Coupling
and Message-based Applications”1.

A.2 SOA

Service-Oriented Architecture (SOA) is an architectural style for realizing distributed computing
by implementing business processes as distinct services, which are loosely coupled.

A service is a function which is provided at a network address, is always available and can be
communicated with through various transports and formats.

The information on SOA provided in this section is taken from the lecture “Service Computing”2.

Further reading: [Pap12].

1https://www.iaas.uni-stuttgart.de/en/teaching/lectures/2021_ws/lcm/
2https://www.iaas.uni-stuttgart.de/en/teaching/lectures/2021_ws/sc/
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A Definitions

A.3 Microservices

“In short, the microservice architectural style is an approach to developing a single application as a
suite of small services, each running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built around business capabilities
and independently deployable by fully automated deployment machinery. There is a bare
minimum of centralized management of these services, which may be written in different
programming languages and use different data storage technologies.”

– James Lewis and Martin Fowler, “Microservices” (2014) 3 4

Further reading: [New15; Ric15].

A.4 REST

Representational State Transfer (REST) is an architectural style for developing web services.

Key aspects of REST:

• Stateless interaction: requests do not depend on the state of the request’s recipient.

• Uniform interface: standard communication between client and server across platforms.

Fundamental methods of REST-based interfaces:

• GET: retrieve resource.

• POST: create resource.

• PUT: update resource.

• DELETE: delete resource.

The information on REST provided in this section is taken from the lecture “Service Computing”5.

Further reading: [All10; Mas11; WRP10].

3https://martinfowler.com/microservices
4https://martinfowler.com/articles/microservices.html
5https://www.iaas.uni-stuttgart.de/en/teaching/lectures/2021_ws/sc/
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B Domain and Problem Examples

B.1 PDDL domain

(define (domain hanoi_domain)

(:requirements :strips)

(:predicates (clear?x) (on?x?y) (smaller?x?y))

(:action move

:parameters (?disc ?from ?to)

:precondition (and (smaller ?to ?disc) (on ?disc ?from) (clear ?disc) (clear ?to))

:effect (and (clear ?from) (on ?disc ?to) (not (on ?disc ?from)) (not (clear ?to)))

)

)

Listing B.1: Example of a PDDL domain1 for the “Tower of Hanoi” puzzle.

1https://github.com/AI-Planning/classical-domains/tree/main/classical/hanoi
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B.2 PDDL problem

(define (problem hanoi_problem)

(:domain hanoi_domain)

(:objects d1 d2 d3 d4 d5 peg1 peg2 peg3)

(:init

(clear d1)

(clear peg2)

(clear peg3)

(on d1 d2)

(on d2 d3)

(on d3 d4)

(on d4 d5)

(on d5 peg1)

(smaller d1 d1)

(smaller d2 d1)

(smaller d2 d2)

(smaller d3 d1)

(smaller d3 d2)

(smaller d3 d3)

(smaller d4 d1)

(smaller d4 d2)

(smaller d4 d3)

(smaller d4 d4)

(smaller d5 d1)

(smaller d5 d2)

(smaller d5 d3)

(smaller d5 d4)

(smaller peg1 d1)

(smaller peg1 d2)

(smaller peg1 d3)

(smaller peg1 d4)

(smaller peg1 d5)

(smaller peg2 d1)

(smaller peg2 d2)

(smaller peg2 d3)

(smaller peg2 d4)

(smaller peg2 d5)

(smaller peg3 d1)

(smaller peg3 d2)

(smaller peg3 d3)

(smaller peg3 d4)

(smaller peg3 d5)

)

(:goal (and (on d5 peg3) (on d4 d5) (on d3 d4) (on d2 d3) (on d1 d2)))

)

Listing B.2: Example of a PDDL problem2 for the “Tower of Hanoi” puzzle.

2https://github.com/AI-Planning/classical-domains/tree/main/classical/hanoi
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B.3 HDDL domain

B.3 HDDL domain

(define (domain delivery_robot_domain)

(:requirements

:negative-preconditions

:hierarchy

:typing

:universal-preconditions

:method-preconditions

)

(:types PACKAGE ROOM ROOMDOOR)

(:predicates

(armempty)

(rloc ?loc - ROOM)

(in ?obj - PACKAGE ?loc - ROOM)

(holding ?obj - PACKAGE)

(closed ?d - ROOMDOOR)

(door ?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

(goal_in ?obj - PACKAGE ?loc - ROOM)

)

(:task achieve-goals :parameters ())

(:task release :parameters ())

(:task pickup_abstract :parameters (?obj - PACKAGE))

(:task putdown_abstract :parameters ())

(:task move_abstract :parameters ())

(:task open_abstract :parameters ())

(:method release-putdown_abstract

:parameters (?loc - ROOM ?obj - PACKAGE)

:task (release)

:precondition (and (rloc ?loc) (holding ?obj) (goal_in ?obj ?loc))

:ordered-tasks (and (putdown_abstract) (achieve-goals))

)

(:method release-move

:parameters ()

:task (release)

:ordered-tasks (and (move_abstract) (release))

)

(:method release-open

:parameters ()

:task (release)

:ordered-tasks (and (open_abstract) (release))

)

(:method achieve-goals-pickup

:parameters (?loc - ROOM ?obj - PACKAGE)

:task (achieve-goals)
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:precondition (and (rloc ?loc) (in ?obj ?loc) (not (goal_in ?obj ?loc)))

:ordered-tasks (and (pickup_abstract ?obj) (release))

)

(:method achieve-goals-move

:parameters ()

:task (achieve-goals)

:ordered-tasks (and (move_abstract) (achieve-goals))

)

(:method achieve-goals-open

:parameters ()

:task (achieve-goals)

:ordered-tasks (and (open_abstract) (achieve-goals))

)

(:method finished

:parameters ()

:task (achieve-goals)

:ordered-subtasks (and)

)

(:method newMethod22

:parameters (?obj - PACKAGE ?loc - ROOM)

:task (pickup_abstract ?obj)

:ordered-subtasks (pickup ?obj ?loc)

)

(:method newMethod23

:parameters (?obj - PACKAGE ?loc - ROOM)

:task (putdown_abstract )

:ordered-subtasks (putdown ?obj ?loc)

)

(:method newMethod24

:parameters (?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

:task (move_abstract )

:ordered-subtasks (move ?loc1 ?loc2 ?d)

)

(:method newMethod25

:parameters (?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

:task (open_abstract )

:ordered-subtasks (open ?loc1 ?loc2 ?d)

)

(:action pickup

:parameters (?obj - PACKAGE ?loc - ROOM)

:precondition (and (armempty) (rloc ?loc) (in ?obj ?loc))

:effect (and (not (in ?obj ?loc)) (not (armempty)) (holding ?obj))

)

(:action putdown
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:parameters (?obj - PACKAGE ?loc - ROOM)

:precondition (and (rloc ?loc) (holding ?obj) (goal_in ?obj ?loc))

:effect (and (not (holding ?obj)) (armempty) (in ?obj ?loc))

)

(:action move

:parameters (?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

:precondition (and (rloc ?loc1) (door ?loc1 ?loc2 ?d) (not (closed ?d)))

:effect (and (rloc ?loc2) (not (rloc ?loc1)))

)

(:action open

:parameters (?loc1 - ROOM ?loc2 - ROOM ?d - ROOMDOOR)

:precondition (and (rloc ?loc1) (door ?loc1 ?loc2 ?d) (closed ?d))

:effect (and (not (closed ?d)))

)

)

Listing B.3: Example of an HDDL domain3 for a delivery robot.

3https://github.com/panda-planner-dev/ipc2020-domains/tree/master/total-order/Robot
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B.4 HDDL problem

(define (problem delivery_robot_problem)

(:domain delivery_robot_domain)

(:objects o1 o2 o3 o4 o5 - PACKAGE c r1 r2 r3 - ROOM d01 d13 d12 - ROOMDOOR)

(:htn

:ordered-tasks (and (task0 (achieve-goals)))

)

(:init

(rloc c)

(armempty)

(door c r1 d01)

(door r1 c d01)

(door r1 r2 d12)

(door r1 r3 d13)

(door r2 r1 d12)

(door r3 r1 d13)

(closed d01)

(in o1 r3)

(in o2 r3)

(in o3 r1)

(in o4 r2)

(in o5 r2)

(goal_in o1 r3)

(goal_in o2 r3)

(goal_in o3 r3)

(goal_in o4 r1)

(goal_in o5 r3)

)

(:goal (and (in o1 r3) (in o2 r3) (in o3 r3) (in o4 r1) (in o5 r3)))

)

Listing B.4: Example of an HDDL problem4 for a delivery robot.

4https://github.com/panda-planner-dev/ipc2020-domains/tree/master/total-order/Robot
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C Tested Planning Tools

The following are some of the planners that were tested during the work on this thesis. Most of the
tools were tested in a Debian 11 64-bit (amd64) environment, with a few exceptions.

C.1 Fast-Forward

Fast-Forward1 [HN11] is a domain independent planning system, that can handle classical STRIPS
planning tasks specified in PDDL.

The homepage offers several versions of its source code, in this case the patched version of FF-v2.3
by Robert Goldman is used. The downloaded archive contains a ready executable, which requires
no additional dependencies, but since it is a 32-bit executable, it needs either a 32-bit OS or a
64-bit OS with added 32-bit architecture. Listing C.1 shows an example of using the tool to solve a
problem and generate a plan.

$ ./ff -p path/to/directory/ -o domain.pddl -f problem.pddl

Listing C.1: Executing Fast-Forward to generate a plan.

The steps of the generated plan are output in the terminal, with some additional information.

C.2 PANDA

The PANDA2 [HBBB21] project consists of multiple components. The PANDA planner, which
is presented in this section, is a hierarchical planning system for solving hierarchical planning
problems.

The homepage provides the source code, also found on GitHub3, and a JAR executable, which is
used here for testing. The JAR executable requires no additional dependencies and was tested on
Debian 11 64-bit and Windows 10 64-bit. However, during testing it would produce plans only
when using Java 8 and refused to work properly when using Java 11 or Java 19.

Information on the tool can be acquired by running the executable with the [-help] option. Listing C.2
shows the command for plan generation.

1https://fai.cs.uni-saarland.de/hoffmann/ff.html
2https://www.uni-ulm.de/en/in/ki/research/software/panda/
3https://github.com/galvusdamor/panda3core
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$ java -jar PANDA.jar domain.hddl problem.hddl

Listing C.2: Executing PANDA to generate a plan.

The output is provided through the terminal, with the plan steps beginning after the “SOLU-
TION SEQUENCE” string. Besides the plan, the output contains additional information on
copyright, configurations, parsing and compilation.

C.3 LPG-td

LPG-td4 [GS02] is a planner that can solve both plan generation and plan adaptation problems. It is
an extension of LPG (Local search for Planning Graphs) for handling the features of PDDL 2.2,
while the previous tool version handles PDDL 2.1.

The executable code of LPG-td is found on the tool’s homepage, with a 1.4 release compiled for
Linux Ubuntu and a 1.0 release compiled for Linux Debian 3.0 and Windows 2000. The executable
requires no dependencies, an example execution command is shown in Listing C.3. The [-n] option
denotes the desired number of solutions.

$ ./lpg-td -o domain.pddl -f problem.pddl -n 1

Listing C.3: Executing LPG-td to generate a plan.

The tool displays problem solving process information in the terminal and the generated plan is saved
in a “.SOL” file in the directory of the domain and problem files, which are used as arguments.

C.4 planutils

planutils5 [MPSK22] is a library for developing, running, and evaluating planners. It can be utilized
through Docker or installed and accessed through the terminal. The installation can be done via the
PIP package manager6, after which the system must be rebooted. Afterwards, an installation of
apptainer7 is required as well.

The list of planning tools, that can be installed with planutils can be found in its GitHub archive8.
The installation command is shown in Listing C.4:

$ planutils install <planner_name>

Listing C.4: Executing planutils to install a planner.

A few of the planning tools, which were tested through planutils, are described in the following
sections.

4https://lpg.unibs.it/lpg/
5https://github.com/AI-Planning/planutils
6https://pypi.org/project/planutils/
7https://github.com/apptainer/apptainer/releases
8https://github.com/AI-Planning/planutils/tree/main/planutils/packages
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C.4 planutils

C.4.1 LAMA

LAMA9 [RW10] is a classical planning system, built on the Fast Downward planning system. To
execute LAMA via planutils requires the command in Listing C.5:

$ planutils run lama domain.pddl problem.pddl

Listing C.5: Executing LAMA through planutils to generate a plan.

The generated plan is output in the terminal, among other logging information, and saved as a
“sas_plan.1” file at the location of the provided input files.

C.4.2 Fast Downward

Fast Downward is described in Section 4.4.2. Unlike LAMA, which employs it for plan generation,
using Fast Downward directly through planutils runs into a problem. Besides the “planutils run
downward” command, planutils allows only two arguments: for domain and problem files. Fast
Downward, however, also expects a [-- search] option with a value, e.g., “astar(cegar())”. Without
those additional arguments no plan is generated.

C.4.3 Fast-Forward

A description of Fast-Forward can be found in Appendix C.1. The tool is executed through planutils
with the command found in Listing C.6.

$ planutils run ff domain.pddl problem.pddl

Listing C.6: Executing Fast-Forward through planutils to generate a plan.

The generated plan is output in the terminal.

C.4.4 OPTIC

OPTIC (Optimizing Preferences and TIme dependent Costs)10 [BCC12] is a temporal planner.
It solves problems which involve plan costs determined by preferences or time-dependent goal-
collection costs. The command to execute the tool through planutils can be found in Listing C.7.

$ planutils run optic domain.pddl problem.pddl

Listing C.7: Executing OPTIC through planutils to generate a plan.

Even though the tool generates a plan and outputs it in the terminal, the solving process does not
terminate and must be interrupted manually. Whether the problem lies with the planner itself or
with planutils has not been investigated.

9https://github.com/rock-planning/planning-lama
10https://nms.kcl.ac.uk/planning/software/optic.html
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C.4.5 PRP

PRP (Planner for Relevant Policies)11 [MMB12] is a fully observable non-deterministic planner.
Information on the tool’s usage, changes, relevant papers, etc., can be found its Wiki12. The
command to run the tool via planutils is listed in Listing C.8.

$ planutils run prp domain.pddl problem.pddl

Listing C.8: Executing PRP through planutils to generate a plan.

During testing, the tool solved given problems and provided generated plans through the terminal,
together with process logs.

C.5 myPDDL

myPDDL13 [SK15] is a modular toolkit for developing and manipulating PDDL domains and
problems. Using the tool requires installing Sublime Text14.

Once the tool and Sublime Text are set up, PDDL stubs can be created by switching the “Syntax”
setting inside the “View” dropdown to “PDDL”. Afterwards, one needs to start typing, e.g.,
“domain”, and to confirm the appearing suggesstion by pressing the tab key. Listing C.9 shows a
PDDL domain stub generated by myPDDL.

(define (domain domain-name)

(:requirements

:typing

)

(:types

subtype1 subtype2 subtype3 - object

)

(:predicates

(predicateName ?x - object ?y - object)

)

(:action action-name

:parameters ()

:precondition ()

:effect ())

)

Listing C.9: Example of a PDDL domain stub generated by myPDDL.

11https://github.com/QuMuLab/planner-for-relevant-policies
12https://github.com/QuMuLab/planner-for-relevant-policies/wiki
13https://github.com/Pold87/myPDDL
14https://www.sublimetext.com/docs/linux_repositories.html
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