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Abstract

Full configuration interaction quantum Monte Carlo (FCIQMC) is an elec-

tronic structure method that has been applied to a variety of ab initio molec-

ular and solid-state systems as well as the Hubbard model in delocalised

bases. In this thesis, the behaviour of FCIQMC in the Hubbard model in

the real-space formulation is investigated. A special emphasis is put on the

consequences of the fermionic sign problem.

Firstly, a classification of Hubbard lattice geometries based on their

strength of the sign problem is performed. It is discovered that the commonly

used ground state of the so-called stoquastic version of the Hamiltonian is

not a good predictor for the difficulty to resolve the sign problem in FCIQMC

in general. The notion of size-extensive and non-size-extensive behaviour of

the sign problem is established. It is shown that although the vast majority

of non-trivial fermionic systems suffer from the fermion sign problem when

attempting to solve them using quantum Monte Carlo (QMC) methods, there

are certain system configurations in the Hubbard model systems that are

sign-problem-free.

In principle, this allows for the unbiased treatment of systems with

very large Hilbert space sizes in FCIQMC. However, attempting to solve

these systems uncovers a new systematic bias in the FCIQMC algorithm, the

population control bias. This is a bias that has been observed previously in

other QMC methods, like diffusion Monte Carlo. A method that allows for the

removal of this bias entirely with negligible computational overhead, mainly

through introducing importance sampling to FCIQMC, is presented. This

allows for the calculation of ground-state energies of the one-dimensional

Hubbard model with up to 150 sites at and close to half-filling in the difficult

intermediate interaction regime. Also, the fundamental many-particle gaps

between the ground states of the half-filled and the system with one hole

are calculated for up to 102 sites.

Moving to sign-problematic systems, it is shown that the usual method

of controlling the sign problem in FCIQMC, the initiator method, performs

poorly in weakly sign-problematic Hubbard systems. Instead, it is demon-

strated how applying the newly developed importance-sampled FCIQMC

together with the exact non-initiator algorithm greatly reduces the minimum

number of walkers necessary to obtain an unbiased ground-state energy in
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real-space Hubbard models. This allows for the calculation of numerically

exact ground-state energies for width-two Hubbard ladders – which exhibit

a size-extensive yet very weak sign problem – in the intermediate interaction

regime at half-filling and with one hole. Again, this makes the calculation of

the fundamental many-particle gaps possible.

Finally, to deal with full two-dimensional Hubbard systems, a way to

define fixed initiator subspaces in FCIQMC based on analytic wavefunction

ansatzes is presented. This leads to far superior results compared to the usual

population-based initiator criterion. Additionally, the newly developed two-

shift method allows for the perturbative inclusion of the entire non-initiator

space. This new scheme is shown to be compatible with importance sampling.

Furthermore, an extrapolation scheme to the exact ground-state energy is

presented. This allows for the estimation of the ground-state energy for

systems up to 32 sites in the honeycomb lattice geometry.



Zusammenfassung

Full configuration interaction quantum Monte Carlo (FCIQMC) ist eine Me-

thode der Elektronenstrukturtheorie, die bereits auf eine Vielzahl von Ab-

initio-Quantensystemen (Molekül- als auch Festkörpersysteme) und das

Hubbardmodell in delokalisierten Basen angewandt wurde. In dieser Arbeit

wird das Verhalten von FCIQMC bei Behandlung des Hubbardmodells in sei-

ner Realraum-Formulierung untersucht. Ein besonderer Schwerpunkt wird

auf die Konsequenzen des Fermionen-Vorzeichenproblems gelegt.

Als erstes wird eine Klassifizierung von Gittergeometrien des Hubbard-

modells aufgrund der jeweiligen Stärke des Vorzeichenproblems vorgenomen.

Es wird festgestellt, dass der häufig genutzte Grundzustand der so genann-

ten stoquastischen Version des Hamiltonoperators keine gute Vorhersage

darüber erlaubt, wie aufwändig es ist, das Vorzeichenproblem in FCIQMC zu

überwinden. Das Konzept des extensiven und nicht-extensiven Verhaltens

von Vorzeichenproblemen wird eingeführt. Es wird gezeigt, dass obwohl

die große Mehrheit von nicht-trivialen fermionischen Systemen ein Vorzei-

chenproblem bei Benutzung von Quanten-Monte-Carlo-Algorithmen (QMC-

Algorithmen) aufweist, eine Reihe von Systemkonfigurationen unter Hub-

bardmodellen existieren, die nicht mit dem Vorzeichenproblem behaftet sind.

Dies erlaubt es im Prinzip, dass ein solches System ohne systematische

Fehler auch in sehr großen Hilberträumen mittels FCIQMC gelöst werden

kann. Bei der Behandlung von vorzeichenproblemfreien Systemen wird je-

doch eine neue Quelle eines systematischen Fehlers in FCIQMC aufgedeckt.

Dabei handelt es sich um einen Fehler aufgrund der Populationskontrolle im

FCIQMC-Algorithmus. Ein ähnlicher Fehler wurde bereits in verwandten

QMC-Methoden wie Diffusions-Monte-Carlo beobachtet und untersucht.

Es wird eine Methode zur Entfernung dieses systematischen Fehlers mit

vernachlässigbarem Rechenaufwand präsentiert, was hauptsächlich durch

die Einführung von Stichprobennahme nach Wichtigkeit (Importance Samp-

ling) möglich gemacht wird. Das erlaubt es, die Grundzustandsenergien

von halb- oder nahezu halbgefüllten eindimensionalen Hubbardmodellen

mit bis zu 150 Gitterplätzen im schwierig zu behandelnden Regime mittler-

er Interaktionsstärke zu berechnen. Außerdem werden die fundamentalen

Vielteilchen-Bandlücken zwischen dem Grundzustand des halbgefüllten Sy-
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stems und dem des Systems mit einem Loch für bis zu 102 Gitterplätze

berechnet.

Für Systeme mit Vorzeichenproblem wird gezeigt, dass die übliche Metho-

de das Vorzeichenproblem in FCIQMC zu kontrollieren, die Initiator-Methode,

nur unzureichend in den schwach vorzeichenproblembehafteten Hubbard-

systemen funktioniert. Stattdessen wird gezeigt, wie das neu entwickelte

Importance Sampling in Verbindung mit FCIQMC ohne Initiator-Näherung

die Mindestanzahl der benötigten Walker, um die Grundzustandsenergie ohne

systematischen Fehler zu berechnen, in Hubbardsystemen in der Realraum-

Basis drastisch reduziert. Dies erlaubt es, die numerisch exakten Grundzu-

standenergien für halbgefüllte Hubbardsysteme und Hubbardsysteme mit

einem Loch in der Leitergeometrie mit Breite zwei bei mittlerer Interaktions-

stärke zu berechnen. Die Leitersysteme weisen ein extensives, jedoch sehr

schwaches Vorzeichenproblem auf. Wiederum erlaubt dies die Berechnung

der fundamentalen Bandlücken.

Schließlich wird ein Weg präsentiert, wie auf analytischen Ansatzen

für die Vielteilchenwellenfunktion beruhende feste Initiator-Unterräume

definiert werden können, um volle zweidimensionale Hubbardsysteme zu

behandeln. Dies führt zu deutlich besseren Resultaten als die übliche popu-

lationsbasierte Initiator-Bedingung. Zusätzlich erlaubt die neu entwickelte

Zwei-Shift-Methode die perturbative Miteinbeziehung des gesamten Nicht-

Initiator-Raumes. Es wird gezeigt, dass diese Methode mit Importance Samp-

ling vereinbar ist. Außerdem wird eine Methode zur Extrapolation zur exak-

ten Grundzustandsenergie präsentiert. Dies erlaubt es, die Grundzustands-

energie für Systeme bis hin zu 32 Gitterplätzen in der Honigwabengittergeo-

metrie zu berechnen.
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1 Introduction

“More is different” is the seemingly simple title of an article by later Nobel

laureate P. W. Anderson published in Science in 1972 [1]. In this primarily

philosophical paper, Anderson argues against the widespread perception that

the more fundamental a scientific field and the more universal a law of nature

is the more important it is. Instead, with every layer of complexity added to

a system not only the scientific principles of the constituent parts need to be

applied but also new laws emerge and are to be discovered. These emergent

laws can be of equal significance as the most fundamental principles.

When Anderson wrote the article in the 1970s, computational methods

to solve scientific questions were still in their infancy. Nowadays, with both

powerful hardware and sophisticated algorithms available the familiarity

with the emergent laws of complex systems is more important than ever.

This is especially true in the fields of electronic structure theory, quan-

tum chemistry, and computational solid state physics, the topics this thesis

will touch on. Even though the complexity of the calculations that can be

performed on modern computers has increased tremendously over the past

decades, there are countless systems that still evade a precise analysis with

computational methods. Because of the exponential scaling of computational

complexity with increasing system size, there is no other way forward than

to improve our understanding of the laws of the interplay of the electrons

and exploit them to come up with efficient algorithms.

Therefore, starting from a brief overview of the fundamental physical

laws we are dealing with – the Schrödinger equation – I will introduce one

of the many complications that arise from the interaction of electrons, the

main topic of this thesis: the fermionic sign problem in quantum Monte

Carlo methods.

1.1 Schrödinger Equation and Many-Electron Problem

As opposed to classical mechanics where the state of a dynamical system

at time 𝑡 is fully characterised by the positions 𝒓𝑖(𝑡) and momenta 𝒑𝑖(𝑡),
the state of a quantum system is described by the many-particle wavefunc-

tion Ψ({𝒓𝑖}, 𝑡) [2]. In the Copenhagen interpretation of quantum mechanics,|Ψ⟩ itself is not experimentally observable. ||Ψ({𝒓𝒊}, 𝑡)||2 can be interpreted as
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a probability density and therefore can be measured as an average over mul-

tiple measurements. The dynamics of |Ψ⟩ is governed by the time-dependent

Schrödinger equation iℏ 𝜕𝜕𝑡 |Ψ(𝑡)⟩ = �̂� |Ψ(𝑡)⟩ (1.1)

where ℏ is the reduced Planck constant and �̂� is the Hamiltonian operator [3].

The Hamiltonian operator – mostly just called the Hamiltonian – can be

derived from the classical Hamiltonian function and contains information

about the involved particles and their interactions.

For time-independent Hamiltonians, the solutions of the Schrödinger

equation can form standing waves, so-called stationary states. The stationary

states are the eigenfunctions of �̂� because

�̂� |Ψ𝑘⟩ = 𝐸𝑘 |Ψ𝑘⟩ . (1.2)

This equation is called the stationary Schrödinger equation. The correspond-

ing eigenvalues 𝐸𝑘 are the energies of the system. Additionally, it is possible

to express the continuous Hamiltonian in a discrete and approximate fashion

in a finite basis. In this way, the complicated partial differential equation (1.1)

is reduced to a standard problem of linear algebra: the diagonalisation of a

matrix. Still, despite the apparent simplicity of equation (1.2) and the well-

understood form of the problem, the numerically exact solution of realistic

systems – even medium-sized atoms, not to mention molecules and solids –

poses a huge challenge, even on today’s computer hardware. This is due to

the fact that the dimension of the basis the Hamiltonian has to be represented

in scales exponentially with system size. Therefore, accurate approximations

and efficient algorithms are an inevitable necessity [4].

A very important and usually good approximation when attempting to

solve the aforementioned atoms, molecules, and solid-state systems is the

Born–Oppenheimer approximation [5, 6]. It separates the motion of the two

constituents of these systems: the slow motion of the nuclei and the fast

motion of electrons. The Hamiltonian in Born–Oppenheimer approximation

in atomic units reads

�̂�elec = −∑𝑖 12∇̂2𝑖 −∑𝑖,𝐾 𝑍𝐾𝑟𝑖𝐾 +∑𝑖>𝑗 1̂𝑟𝑖𝑗 + ∑𝐾>𝐿 𝑍𝐾𝑍𝐿𝑟𝐾𝐿 . (1.3)

Here, 𝑟𝑎𝑏 = ||�̂�𝑎 − �̂�𝑏|| is the spatial distance of two particle wherein a lower-

case index indicate electronic positions, upper-case indices stands for nuclear

positions. 𝑍𝐾 is the electric charge of nucleus 𝐾 .
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The electronic part of the Schrödinger equation is crucially important

since electrons play a key role in phenomena like electricity, magnetism, in

thermal properties, and in all of chemistry. Developing efficient yet accurate

approximations to the true solution of electronic structure problems and

therefore expanding the scope of physical and chemical systems that can be

predicted and analysed with computational methods is performed within the

scientific field of electronic strucure theory which is a sub-field of quantum

chemistry [7, 8]. Conversely, looking for ways to reduce the complexity of the

electronic structure problem cannot only lead to quantitative improvements

but also allows one to gain qualitative insights into the physics and chemistry

of the systems at hand.

One important qualitative differentiation of electronic systems is the

distinction between strongly and weakly correlated systems [9, 10]. If the

electron correlation is weak, each electron can be treated to a good approx-

imation as if it moves according to the mean field of all other electrons

without introducing a large bias. These methods are comparatively easy

to treat with mean-field methods like Hartree–Fock theory [11, 12]. On the

other hand, systems in which the motion of electrons is highly correlated

require much more expensive and sophisticated methods. One class among

the many computational methods that try to tackle strongly correlated sys-

tems is quantum Monte Carlo (QMC) [13–15]. One particular QMC method,

namely full configuration interaction QMC (FCIQMC), will be analysed and

used as a tool throughout this thesis [16–18].

1.2 Fermions and Pauli Exclusion Principle

A fundamental fact of nature, that creates the structure of matter as we

know it, is the fermionic nature of electrons. It acts on top of the Schrö-

dinger equation (1.1) and puts an additional constraint on the many-particle

wavefunction |Ψ⟩. It is of particular importance for the analysis of electronic

structure by QMC methods as it is the root cause for the infamous fermionic

sign problem which will be the main topic of this thesis.

There are two fundamental classes of sub-atomic particles in the world.

Every known particle is either a boson or a fermion [19]. The spin–statistics

theorem provides a deep connection between the spin of a particle (a magnetic

property that can only be correctly described in the context of quantum

mechanics) and the particle statistics they obey – a concept that is only

meaningful when dealing with multiple indistinguishable particles [20, 21].
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While bosons have integer spin quantum numbers (𝑆 = 0, 1,… ) and adhere

to Bose–Einstein statistics, fermions have half-integer quantum numbers

(𝑆 = 12 , 32 ,… ) and follow Fermi–Dirac statistics. This has major consequences

for the structure of the physical world that we observe: While multiple

bosons can occupy the same quantum state, the Pauli exclusion principle –

that is a direct consequence of the Fermi–Dirac statistics – forbids this for

fermions [22–24].

The Pauli exclusion principle can be formulated in many ways. For

electrons in atoms, the exclusion principle states that no two electrons can

have all equal quantum numbers (which are the principal quantum number 𝑛,

the azimuthal quantum number 𝓁, the 𝑧-projection the azimuthal quantum

number 𝑚𝓁, the spin quantum number 𝑠 and the 𝑧-projection of the spin

quantum number 𝑚𝑠) [25].

Another more formal way to define the Pauli exclusion principle is to

put an additional sign constraint on the many-particle wavefunction |Ψ⟩.
While a many-particle wavefunction of bosons remains unchanged when

two particles are exchanged, i.e.

Ψbos(𝒓1, 𝑠1; … ; 𝒓𝑖, 𝑠𝑖; … ; 𝒓𝑗 , 𝑠𝑗 ; … ; 𝒓𝑛, 𝑠𝑛)= Ψbos(𝒓1, 𝑠1; … ; 𝒓𝑗 , 𝑠𝑗 ; … ; 𝒓𝑖, 𝑠𝑖; … ; 𝒓𝑛, 𝑠𝑛) , (1.4)

a fermionic wavefunction changes its sign in this case, i.e.

||Ψferm(𝒓1, 𝑠1; … ; 𝒓𝑖, 𝑠𝑖; … ; 𝒓𝑗 , 𝑠𝑗 ; … ; 𝒓𝑛, 𝑠𝑛)⟩= − ||Ψferm(𝒓1, 𝑠1; … ; 𝒓𝑗 , 𝑠𝑗 ; … ; 𝒓𝑖, 𝑠𝑖; … ; 𝒓𝑛, 𝑠𝑛)⟩ . (1.5)

In other words, a fermionic wavefunction needs to be antisymmetric with

respect to the exchange of particles. When trying to solve the stationary

Schrödinger equation numerically, this constraint of the wavefunction can

be built into a finite basis quite straightforwardly, e.g. by using Slater determi-

nants [26–28]. However, the sign problem that is rooted in this antisymmetry

property of fermionic wavefunctions lies much deeper and turns out to be

NP-hard [29–32]. Being NP-hard however does not mean insoluble and that

it cannot be remedied at least. In this thesis, the manifestations, implications,

and possible mitigations of the sign problem in FCIQMC will discussed in

detail.
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1.3 Lattice Models

Although the Born–Oppenheimer approximation is already a significant

simplification of an atomic or molecular Hamiltonian, it is still hard to solve

when the number of electrons and orbitals becomes large. Especially in

solids – which can be seen as macroscopic periodic molecules – solving

the ab initio Hamiltonian from equation (1.3) is impossible when going

beyond the mean-field approximation. Interesting physical effects like Mott

insulating states, superconductivity etc. however occur precisely because of

electron correlation effects.

It is therefore useful to further simplify the ab initio Hamiltonian and

only let contributions remain that are necessary for a certain effect to occur.

This not only makes numerical calculations easier, it also allows qualitative

insights into which effective interactions are responsible for observed physi-

cal effects with more clarity, without the complication of irrelevant ab initio

interaction terms.

Two examples of effective model Hamiltonians for solids are the Heisen-

berg [26] and the Hubbard model [33–35]. The Heisenberg model describes

the magnetic interaction of localised spins on a lattice. Due to the localisation

of the spins, the Heisenberg model can only describe insulating materials in

a qualitatively correct fashion. For metals, kinetic movement of electrons

across lattice sites has to be captured in the model. This is modeled in the

Hubbard Hamiltonian where electrons can hop from one lattice sites to an-

other while experiencing an on-site interaction on doubly occupied sites.

The Heisenberg model is a limiting case of the Hubbard model for an infinite

on-site interaction strength as the electrons become localised again.

1.4 Context and Structure of the Thesis

The focus of this thesis will be the application of FCIQMC to real-space

lattice models. FCIQMC is a method that has been successfully applied to a

variety of real systems, mostly in its initiator formulation [17, 36, 37]. While

in principle the Hamiltonians of lattice models can be treated like the usual

ab initio Hamiltonian, there are certain key differences. These differences are

rooted in the fact that the structure of the wavefunction is different when

using a real-space basis [38, 39]. Also, the strength of the sign problem is

strongly affected. In this thesis, the FCIQMC method will be adapted and new

features will be added in order to successfully tackle this class of problems,

most of them dealing with overcoming the sign problem.
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In part I Theory & Foundations, I will first introduce the foundations

of QMC algorithms with a detailed introduction to FCIQMC, focusing on

manifestations and existing ways of controlling the sign problem. I will also

give a detailed overview of the real-space Hubbard lattice model.

In part II Concepts & Results, I will first present a classification of real-

space Hubbard lattice geometries based on their respective strength of their

sign problem in chapter 5. Ground-state eigenvalues of stoquastised Hamil-

tonians will be used for this purpose [38]. It will be found that there are

certain non-trivial, yet sign-problem-free configurations. Also, the notion of

non-size-extensive and size-extensive sign problems will be introduced.

I will then discuss the behaviour of FCIQMC in the special case of sign-

problem-free systems. The absence of a sign problem allows for the cal-

culation of very large lattices with an equally large number of electrons.

However, these calculations uncover a new type of systematic bias in the

FCIQMC algorithm that was previously masked by larger biases in the usual

sign-problematic case. The bias is caused by walker population control. Sim-

ilar biases have been shown to occur in diffusion Monte Carlo (DMC) [40–

43] and Green’s function Monte Carlo (GFMC) [44]. In chapter 6, large

non-trivial sign-problem-free systems will be calculated. The results will be

unbiased with respect to the population control bias by combining the newly

introduced importance sampling with Gutzwiller-type guiding wavefunc-

tions [34] and an a-posteriori reweighting scheme similar to one developed

for DMC [40]. Importance sampling is widely used in other QMC methods

like GFMC [45], DMC [46–49], and auxiliary-field QMC (AFQMC) [50–53]

but has not been found useful in a systematic manner in FCIQMC thus far.

This will lead to chapter 7 where importance sampling with a Gutzwiller-

like guiding wavefunction is applied to weakly sign-problematic systems

like two-legged Hubbard ladders in the challenging intermediate interac-

tion regime [54]. I will show how initiator-FCIQMC performs poorly in

the treatment of these weakly sign-problematic systems. Instead, impor-

tance sampling has a significant and systematically beneficial effect onto the

convergence of the ground-state energies. This allows for the calculation

of the many-particle fundamental gaps which requires calculations at and

close to half-filling in a numerically unbiased fashion. Unlike in other ap-

proaches where one attempts to reduce the gap between the ground-state

energies between the stoquatised and the true Hamiltonian, respectively [55],

through basis rotations, in case of importance sampling this gap is left un-
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changed. Instead the efficiency of FCIQMC’s discrete annihilation procedure

is enhanced.

If one wants to tackle larger systems, new approximations are needed.

In chapter 8, I will show how the usual population-based criterion can be

effectively replaced by a criterion that is only based on the occupation struc-

ture of a Slater determinant itself. Unlike in a previously presented scheme

where the initiator space has been defined based on prior selected configu-

ration interaction (SCI) calculations [56], the selection of the fixed initiator

space is based on analytical wavefunction ansatzes for the Hubbard model,

feature-based, and therefore fast-to-evaluate. This way, a large portion of

the correlation energy can be covered with only experiencing a very weak

sign problem. This new method is subsequently combined with importance

sampling. Lastly, I will introduce the two-shift expansion of FCIQMC, a way

of perturbatively including the neglected space when using fixed initiator

spaces. Unlike in previous approaches to correct for the bias caused by

the initiator approximation – like the adaptive-shift method [57, 58] and a

second-order Epstein–Nesbet (EN2) correction [59] – the two-shift method is

specifically designed for the weak-sign-problem real-space Hubbard systems.

Results for systems up to the 32-site Hubbard model in honeycomb geometry

for intermediate interaction are presented.





PART I

THEORY & FOUNDATIONS





2 Basic Concepts of Electronic Systems

As already outlined in chapter 1, the fundamental goal in the field of electronic

structure theory is to solve the electronic part of the ab initio Hamiltonian.

In this chapter, I will present some basic concepts that are common to all

approaches to the problem. I will also give an overview of two of these

approaches that will be relevant in this thesis:∙ the class of quantum Monte Carlo (QMC) methods to which full con-

figuration interaction QMC (FCIQMC) belongs and∙ density matrix renormalisation group (DMRG) which will be used as a

benchmarking method at many points.

2.1 The Second-Quantisation Formalism

A very useful and insightful mathematical concept in the context of quantum

many-body physics is the second quantisation formalism. In this formalism,

bosonic many-particle states and operators are expressed in terms of creation

operators �̂�†𝑖𝜎 and annihilation operators �̂�𝑖𝜎 . Their fermionic counterparts

are named 𝑐†𝑖𝜎 and 𝑐𝑖𝜎 . One can interpret the action of �̂�†𝑖𝜎 (𝑐†𝑖𝜎) as creating a

boson (fermion) in basis state 𝑖 with spin 𝜎. Similarly, one can interpret the

adjoint 𝜎, �̂�𝑖𝜎 (𝑐𝑖𝜎) as annihilating a boson (fermion) in basis state 𝑖with spin 𝜎
(if present). Because of this property, they are also called ladder operators.

2.1.1 Commutation and Anticommutation Relations

The crucial advantage of this formulation is the fact that the symmetry or

antisymmetry of |Ψ⟩ with respect to particle exchange can be readily included

into the commutation relations of the respective creation and annihilation

operators. The commutation relations for the bosonic operators are given by

[�̂�†𝑖𝜎 , �̂�†𝑖′𝜎′] = [�̂�𝑖𝜎 , �̂�𝑖′𝜎′] = 0 , (2.1a)[�̂�𝑖𝜎 , �̂�†𝑖′𝜎′] = 𝛿𝑖𝑖′𝛿𝜎𝜎′ . (2.1b)



12 basic concepts of electronic systems

Here, 𝛿𝑎𝑏 is the usual Kronecker delta with

𝛿𝑎𝑏 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑎 = 𝑏,0 else.

(2.2)

[�̂�, �̂�] = �̂��̂� − �̂��̂� is the usual commutator of two operators �̂� and �̂�. For

fermions, one simply has to replace the commutator by the anticommutator

defined as
{�̂�, �̂�} = �̂��̂� + �̂��̂�. This means that{𝑐†𝑖𝜎 , 𝑐†𝑖′𝜎′} = {𝑐𝑖𝜎 , 𝑐𝑖′𝜎′} = 0 , (2.3a){𝑐𝑖𝜎 , 𝑐†𝑖′𝜎′} = 𝛿𝑖𝑖′𝛿𝜎𝜎′ . (2.3b)

So in reordering two fermionic ladder operators that create or annihilate

particles in different single-particle basis states (𝑖𝜎 ≠ 𝑖′𝜎′), a factor of −1
arises. As any fermionic many-body wavefunction can be written as

𝑁el∏𝑛=1 𝑐†𝑖𝑛𝜎𝑛 |⟩ , (2.4)

i.e. the action of fermionic creation operators onto the vacuum state, this

exactly ensures the antisymmetry property. 𝑁el denotes the number of

electrons in the system.

2.1.2 Ab Initio Hamiltonian in Second Quantisation

With this knowledge, we can now construct the electronic part of the ab initio

Hamiltonian from equation (1.3) in terms of the second-quantised operators:

�̂�elec = ∑𝑖𝑎𝜎 ℎ𝑎𝑖 𝑐†𝑎𝜎𝑐𝑖𝜎 + 12 ∑𝑖𝑗𝑎𝑏𝜎𝜎′ 𝑉 𝑎𝑏𝑖𝑗 𝑐†𝑎𝜎𝑐†𝑏𝜎𝑐𝑗𝜎′𝑐𝑖𝜎′ . (2.5)

Here, 𝑖, 𝑗 , 𝑎, and 𝑏 index the spatial single-particle basis functions, called

orbitals. The coefficients ℎ𝑎𝑖 and 𝑉 𝑎𝑏𝑖𝑗 of the operator products are the integrals

ℎ𝑎𝑖 = ∫ d𝒓 𝜑∗𝑎(𝒓)[−∇22 −∑𝐾 𝑍𝐾||𝒓 − 𝑹𝐾 || ]𝜑𝑖(𝒓) , (2.6a)

𝑉 𝑎𝑏𝑖𝑗 = ∫ d𝒓1 d𝒓2 𝜑∗𝑎(𝒓1)𝜑∗𝑏(𝒓2)𝜑𝑖(𝒓1)𝜑𝑗 (𝒓2) 1||𝒓1 − 𝒓2|| (2.6b)
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where 𝜑𝑖(𝒓) are the spatial orbitals chosen. 𝑹𝐾 are the positions of the

nuclei with charges 𝑍𝐾 . 𝜑∗ indicates the Hermitian conjugate of the orbital

function 𝜑.

Equation (2.5) also shows another distinct advantage of second quan-

tisation: The information about the system’s geometry and the orbital set

is contained in the integrals from equation (2.6) entirely. The structure of

the electronic Hamiltonian itself remains unchanged. This allows for the

invention of generic solution algorithms.

2.1.3 FCI Wavefunction and Slater Determinants

Electronic wavefunctions can be represented in various ways. One of the

most commonly used representations in quantum chemistry is the full con-

figuration interaction (FCI) expansion

|Ψ0⟩ = ∑𝑖 𝐶𝑖 |𝐷𝑖⟩ . (2.7)

This is a full expansion of the ground-state wavefunction in terms of Slater

determinants |𝐷𝑖⟩. A Slater determinant describes a wavefunction of multiple

fermions in a way that the fermionic antisymmetry condition from equa-

tion (1.5) is automatically fulfilled [26–28]. As its name suggests, it is defined

as the determinant of matrix. In a set of 2𝑁orb spin orbitals
{𝜑𝑛(𝒓)}, out

of which the orbitals 𝑛 = 𝑛1, 𝑛2,… , 𝑛𝑁 are occupied by 𝑁el electrons, it is

defined as

⟨𝒓1𝒓2… 𝒓𝑛𝑁 ||𝐷⟩ = 1√𝑁 !
|||||||||||
𝜑𝑛1(𝒓1) 𝜑𝑛2(𝒓1) … 𝜑𝑛𝑁 (𝒓1)𝜑𝑛1(𝒓2) 𝜑𝑛2(𝒓2) … 𝜑𝑛𝑁 (𝒓2)⋮ ⋮ ⋱ ⋮𝜑𝑛1(𝒓𝑁el) 𝜑𝑛2(𝒓𝑁el) … 𝜑𝑛𝑁 (𝒓𝑁el)

|||||||||||= 1√𝑁 ! |||𝜑𝑛1𝜑𝑛2 … 𝜑𝑛𝑁el

|||= ⟨𝒓1𝒓2… 𝒓𝑛𝑁 || 𝑛1, 𝑛2,… , 𝑛𝑁el⟩ .
(2.8)

The expressions in the second and third lines are used as short forms if it

is clear that wavefunction in question is a Slater determinant. One can see

that the number of Slater determinants, i.e. the size of the Hilbert space ||,
scales combinatorially as

|| = (𝑁orb𝑁↑ )(𝑁orb𝑁↓ ) (2.9)
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where 𝑁orb denotes the number of orbitals. 𝑁↑ (𝑁↓) is the number of ↑-

electrons (↓-electrons). This scaling behaviour makes determining the exact

FCI expansion hard even for small system sizes and approximate methods

have to be used.

Alternatively, totally antisymmetric states can also be expressed in terms

of the second-quantisation formalism. In this case, a set of fermionic creation

operators 𝑐†𝑛 that each create an electron in spin orbital 𝑛 act onto the vacuum

state |⟩. With this the definition of a fermionic many-particle state using

second quantisation and using the above definition of a Slater determinant

are equivalent: 𝑁el∏𝑛 𝑐†𝑛 |⟩ = |𝑛1, 𝑛2,… , 𝑛𝑁 ⟩ . (2.10)

The antisymmetry of the wavefunction in this formalism is already built

in via the anticommutation relation. The determinant does not need to be

evaluated explicitly.

Slater determinants are eigenfunctions of the 𝑆𝑧 operator which is the

observable that encodes the projection of the spin onto the 𝑧 axis. However,

not every Slater determinant is an eigenfunction of the total spin operator 𝑆2.
Since the electronic ab initio Hamiltonian from equation (1.3) commutes

with 𝑆2, [�̂� , 𝑆2] = 0, it already becomes clear that the solution of a general

ab initio Hamiltonian cannot consist of a single Slater determinant. Trun-

cations of the FCI expansion from equation (2.7) can have significant spin

contamination, unless carefully constructed to take of this. That means that

the truncated CI wavefunction is not an eigenstate of 𝑆2.
2.1.4 Building the Many-Body Hamiltonian

With the ingredients introduced in the previous sections, we can now con-

struct the many-body Hamiltonian in Slater determinant space which will

be diagonalised by methods like FCIQMC. There are two parts to building

the many-body Hamiltonian:∙ the interaction strength which will be calculated using the integrals

from equation (2.6) using the Slater–Condon rules [60] and∙ the Fermi phase which is a direct consequence of the antisymmetry

constraint and depends on the chosen ordering of orbitals.

As the fermionic sign problem plays an important role in this work, the

Fermi phase of the matrix elements merits further discussion.
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When defining a many-particle state, one has to establish a convention

for the ordering of the spin orbitals. In principle, one can choose any ordering

but there are two principal ways of doing it:∙ orbital-first ordering in which a Slater determinant in second quantisa-

tion is defined as 𝑐†𝑖1𝜎1𝑐†𝑖2𝜎2 … 𝑐†𝑖𝑁𝜎𝑁 |⟩ (2.11)

and∙ spin-first ordering in which a Slater determinant is defined as

𝑐†𝑎1↑𝑐†𝑎2↑… 𝑐†𝑎𝑛↑𝑐†𝑏1↓𝑐†𝑏2↓… 𝑐†𝑏𝑛↓ |⟩ . (2.12)

𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑁 are the spatial orbitals that are occupied by the𝑁el electrons,

each with their spin projection 𝜎𝑖. 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 in the second represen-

tation are the spatial orbitals occupied with ↑-electrons, 𝑏1 ≤ 𝑏2 ≤ ⋯ ≤ 𝑏𝑛
are the ones occupied with ↓-electrons. ↑ and ↓ are the spin projections of

the respective electrons. Using the fermionic commutation relations from

equation (2.3), we can already see that by transforming equations (2.11)

and (2.12) into each other the different representations do not have the same

sign. Let us look at a minimal example with three electrons in spin orbitals𝑎1 ↑, 𝑎2 ↑, and 𝑏1 ↓. In orbital-first ordering, the corresponding many-particle

state is given by 𝑐†𝑎1↑𝑐†𝑏1↓𝑐†𝑎2↑ |⟩. To obtain spin-first ordering, the operators𝑐†𝑏1↓ and 𝑐†𝑎1↑ have to be exchanged. Thus, according to equation (2.3), a factor

of −1 is picked up:

𝑐†𝑎1↑𝑐†𝑏1↓𝑐†𝑎2↑ |⟩ = −𝑐†𝑎1↑𝑐†𝑎2↑𝑐†𝑏1↓ |⟩ . (2.13)

Let us now look at matrix elements in different orbital orderings. Suppose

we are looking at a single-electron excitation of an ↑-electron from spatial

orbital 2 to 3 starting from determinant |𝐷𝑖⟩ = |1 ↑ 2 ↑ 2 ↓⟩ with amplitude 𝑡.
This means that we are exciting to |𝐷𝑗 ⟩ = |1 ↑ 2 ↓ 3 ↑⟩. The matrix element

of this excitation in orbital-first ordering (of) is given by

𝐻of𝑖𝑗 = ⟨𝐷of𝑗 ||| �̂� |||𝐷of𝑖 ⟩ = ⟨|||←−−−−−−𝑐†3↑𝑐†2↓𝑐†1↑|||𝑡−−−−−−−−−−−−→𝑐†3↑𝑐2↑𝑐†1↑𝑐†2↑𝑐†2↓|||⟩= 𝑡⟨|||𝑐3↑𝑐2↓𝑐1↑𝑐†3↑𝑐2↑𝑐†1↑𝑐†2↑𝑐†2↓|||⟩= 𝑡⟨|||𝑐3↑𝑐2↓𝑐1↑𝑐†1↑𝑐†3↑𝑐†2↓ |||⟩= −𝑡 .
(2.14)
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Conversely, the matrix element in spin-first ordering (sf) is

𝐻 sf𝑖𝑗 = ⟨𝐷sf𝑗 ||| �̂� |||𝐷sf𝑖 ⟩ = ⟨|||←−−−−−−𝑐†2↓𝑐†3↑𝑐†1↑|||𝑡−−−−−−−−−−−−→𝑐†3↑𝑐2↑𝑐†1↑𝑐†2↑𝑐†2↓|||⟩= 𝑡⟨|||𝑐2↓𝑐3↑𝑐1↑𝑐†3↑𝑐2↑𝑐†1↑𝑐†2↑𝑐†2↓|||⟩= 𝑡 . (2.15)

Arrows above operators indicate the direction they are applied in. No arrow

means that the operators are applied to the right. Curved arrows below

indicate possibly sign-changing commutations of operators. Therefore, these

equations show that the sign of the matrix elements in Slater determinant

space ⟨𝐷𝑗 |�̂� |𝐷𝑖⟩ is not independent of the choice of the ordering.

The Hamiltonian matrices 𝐇𝑜 and 𝐇𝑜′ that are representated in Slater

determinant bases with different orderings 𝑜 and 𝑜′ are connected via sim-

ilarity transformations by a purely diagonal matrix 𝐃. Since a change of

ordering does not affect the magnitudes of the matrix elements, the diagonal

elements of 𝐃 are either +1 or −1. This can be written as

𝐇𝑜′ = 𝐃𝐇𝑜𝐃 . (2.16)

As we will see in section 3.2, this means that a change in ordering does not

change the severity of the QMC sign problem in methods that diagonalise

the Hamiltonian in Slater determinant space, like FCIQMC.

2.2 Overview of QMC Methods

The general idea behind Monte Carlo methods (MC methods) is the following:

Instead of solving the problem either analytically or numerically by using

deterministic algorithms, Monte Carlo methods use random samples of the

defining equation of the respective problem [61, 62]. For a large number of

samples, the numerical results will approach the true solution on average if

certain conditions are met. A basic paradigmatic example of applying MC

methods is the estimation of π by filling a 1 × 1 quadrant with random points

with coordinates (𝑥𝑖, 𝑦𝑖). The ratio of the number of random points that fulfill√𝑥2𝑖 + 𝑦2𝑖 ≤ 1, i.e. that are contained in a quadrant of a unit circle, to the total

number of points approaches π4 . Ultimately, what has been done here is the

MC evaluation of a two-dimensional integral over a constant function.

In general, MC can be used to solve arbitrary integrals

𝐼 = ∫Ω d𝒓 𝑓 (𝒓) (2.17)
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of arbitrary dimension. To do this, the integrand 𝑓 (𝒓) is rewritten as 𝑓 (𝒓)𝑝(𝒓)𝑝(𝒓).
Here, 𝑝(𝒓) is a probability distribution, i.e.

∫Ω d𝒓 𝑝(𝒓) = 1 and 𝑝(𝒓) ≥ 0 for all 𝒓. (2.18)

The MC approximation to the integral is then given by

𝐼𝑛 ≈ 1𝑛 𝑛∑𝑖=1 𝑓 (𝒓𝑖) (2.19)

where 𝒓𝑖 are random samples drawn from 𝑝(𝒓) and 𝑛 is the number of

random samples. 𝐼𝑛 converges to 𝐼 for large 𝑛 independent of the choice of𝑝(𝒓) as long as it fulfills the criteria from equation (2.18). The expectation

value 𝐼𝑛 = 𝐼 for all 𝑛. The variance of the estimate 𝐼𝑛 for finite 𝑛 however

strongly depends on the choice of 𝑝(𝒓). In general, the variance of 𝐼𝑛 can

be determined using the central limit theorem (CLT). The CLT states that

when summing up independent random variables that are not necessarily

drawn from a normal distribution – like in equation (2.19) where 𝑓 (𝒓𝑖) can

be distributed arbitrarily – the sample mean 𝐼𝑛 is distributed according to a

normal distribution with mean 𝐼 and standard deviation

𝜎𝑛 = 𝜎𝑓√𝑛 . (2.20)

𝜎𝑓 is the standard deviation of the function 𝑓 . As a consequence of the CLT,

the 1/√𝑛 scaling is universally observed in all MC methods. When 𝑝(𝒓)
is chosen equal to 𝑓 (𝒓), then 𝜎𝑓 = 0 and thus 𝜎𝑛 = 0 for all 𝑛. Selecting

a sampling distribution as close as possible to the sampled function 𝑓 is

therefore desirable and is called importance sampling [63].1 Selecting a 1 Applying importance sampling
to FCIQMC will play an important
role throughout part II.sequence of configurations 𝒓𝑖 for arbitrary probability distributions 𝑝(𝒓) is

non-trivial, especially if 𝒓 has a large dimension. This problem is solved in

general by the Metropolis–Hastings algorithm which can be applied even if

the normalisation of 𝑝(𝒓) is unknown [64, 65]. It is an algorithm that creates

a Markov chain of 𝒓𝑖 samples, i.e. 𝒓𝑗+1 only depends on its predecessor 𝒓𝑗 . If

one is dealing with a discrete and normalised distribution, the efficient alias

method can be used instead [66].

As solving the Schrödinger equation (1.2) can be regarded as an inte-

gration problem, among the countless solution methods quantum Monte

Carl (QMC) methods play an important role. In this section, I will give a

brief overview of some of the most widely used QMC methods. This is to

put FCIQMC – that will be discussed in detail in chapter 3 – into a more
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general context and explore similarities and differences. I will touch on the

following methods:∙ Variational Monte Carlo (VMC) which optimises the parameters of

a wavefunction ansatz with respect to the variational energy or its

variance. This plays a role in part II when optimising wavefunction

ansatzes for importance sampling.∙ Diffusion Monte Carlo (DMC) which is closely related to FCIQMC as it

is also a projector QMC technique and it also uses stochastic walkers

to sample the wavefunction. Also, a similar bias to the population

control in FCIQMC that will be discussed in chapter 6 has been known

in DMC before.∙ Auxiliary-field QMC (AFQMC) which solves the Schrödinger equation

in a space of so-called auxiliary fields. Its special significance lies

in the fact that the two-dimensional Hubbard model at half-filling is

sign-problem-free which is not the case in FCIQMC.

2.2.1 Variational Monte Carlo

In variational Monte Carlo (VMC), a trial wavefunction |Ψt(𝒂)⟩ is optimised

according to the variational principle [15, 67, 68]. 𝒂 is a vector of parameters

the trial wavefunction depends on. The variational principle says that the

variational energy 𝐸(𝒂) = ⟨Ψt(𝒂) ||| �̂� |||Ψt(𝒂)⟩⟨Ψt(𝒂) |Ψt(𝒂)⟩ (2.21)

is minimal if and only if |Ψt(𝒂)⟩ ∝ |Ψ0⟩, the true ground-state wavefunction.

In VMC, the variational energy integral from equation (2.21) is evaluated

using Monte Carlo sampling. To do this, it has to be expressed like the

integral in equation (2.17). This leads to

𝐸(𝒂) = ∫ d𝒓1…d𝒓𝑁 |||Ψt({𝒓𝑖}, 𝒂)|||2 �̂�Ψt ({𝒓𝑖}, 𝒂)Ψt ({𝒓𝑖}, 𝒂)∫ d𝒓1…d𝒓𝑁 |||Ψt({𝒓𝑖}, 𝒂)|||2 . (2.22)

Here, 𝑝({𝒓𝑖}) = |||Ψt({𝒓𝑖}, 𝒂)|||2∫ d𝒓1…d𝒓𝑁 |||Ψt({𝒓𝑖}, 𝒂)|||2 (2.23)
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obviously has the properties of a probability density from equation (2.18).

This means that the function

𝐸loc({𝒓𝑖}, 𝒂) = �̂�Ψt({𝒓𝑖}, 𝒂)Ψt({𝒓𝑖}, 𝒂) (2.24)

can be sampled by drawing positions 𝒓𝑖 from the distribution 𝑝({𝒓𝑖}), e.g.

by using the Metropolis–Hastings algorithm. As mentioned before, it is not

even necessary to know the normalisation factor in this case. 𝐸loc is called

the local energy. The energy is thus given as the sum over the local energies:

𝐸(𝒂) = 1𝑛 𝑛∑𝑗=1 𝐸loc({𝒓𝑖}𝑗 , 𝒂) . (2.25)

{𝒓𝑖}𝑗 denotes the 𝑗-th sample of the electronic positions. Accordingly, the

parameter vector 𝒂 can be optimised by minimising 𝐸(𝒂) directly. It is also

possible to not optimise 𝐸(𝒂) itself but rather minimise the variance of the

local energy. The variance of 𝐸loc with respect to the spatial coordinates {𝒓𝑖}
is given by

var[𝐸loc](𝒂) = ∫ d𝒓1…d𝒓𝑁 |||Ψt({𝒓𝑖}, 𝒂)|||2𝐸2loc({𝒓𝑖}, 𝒂)∫ d𝒓1…d𝒓𝑁 |||Ψt({𝒓𝑖}, 𝒂)|||2 − 𝐸2(𝒂) . (2.26)

Because the local energy is a constant when the trial wavefunction equals

the exact ground-state wavefunction,�̂�Ψ0({𝒓𝑖})Ψ0({𝒓𝑖}) = 𝐸0 , (2.27)

the variance is not only minimal but zero in this case. Further, the minimi-

sation of the variance can also be applied to excited states [69]. However,

empirically it is found that in most cases the trial wavefunction is better

able to estimate other properties when the energy is minimised instead of

the variance. Alternatively, a linear combination of 𝐸(𝒂) and var[𝐸loc](𝒂)
can be optimised. Finding the best optimisation procedure of VMC trial

wavefunctions is still an active research topic.

A commonly used trial wavefunction for ab initio systems is the Slater–

Jastrow wavefunction [70]. Its functional form is given by

ΨSJ
t = exp( ) 𝑁det∑𝑖=1 𝐶𝑖 |𝐷𝑖⟩ . (2.28)



20 basic concepts of electronic systems

The Jastrow correlation factor  is of the form

 = ∑𝑖𝑗𝐴𝐵 𝑢1(𝑅𝑖𝐴) + 𝑢2(𝑟𝑖𝑗 ) + 𝑢3(𝑟𝑖𝑗 , 𝑅𝑖𝐴, 𝑅𝑗𝐵) + … (2.29)

where 𝑟 and 𝑅 denote electron–electron and 𝑅 the electron–nucleus distances

in a molecule. Wavefunction ansatzes for the lattice models are discussed in

detail in part II as they are used in a novel fashion in FCIQMC as well.All VMC calculations in this
thesis were conducted using a
VMC code by P. López Ríos.

2.2.2 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is the Monte Carlo that is conceptionally

closest to FCIQMC as it is also a projector technique, i.e. it also uses the

imaginary-time projection of the Schrödinger equation to project out the

ground state [46–49]. Also DMC, like FCIQMC, has the concept of stochastic

walkers propagating according to a master equation. Due to the similarities,

problems and biases like the population control bias that are observed in DMC

are also observed in FCIQMC, as we will see in part II. We will also see there

how concepts like importance sampling that are used routinely in DMC can

also be applied in FCIQMC and lead to algorithmic improvements. There are

also considerable differences between the algorithms. As will be discussed in

detail in chapter 3, FCIQMC works in a discrete set of Slater determinants to

stochastically represent the FCI wavefunction from equation (2.7). Walkers in

DMC propagate in a continuous space. In contrast, the discrete propagation

of walkers in FCIQMC has significant advantages in mitigating the sign

problem through annihilations. Based on the annihilation algorithm, we can

further improve the mitigation of the sign problem in FCIQMC. Therefore, it

is necessary to give a brief overview of the DMC algorithm and introduce

the concepts mentioned above in this context.

Basic Algorithm

DMC attempts to solve the stationary Schrödinger equation (1.1) in imaginary

time 𝜏 = i𝑡 which is called a Wick rotation [71]. When writing |Ψ(𝜏)⟩ in a

real-space basis, this leads to

−𝜕Ψ({𝒓𝑖}, 𝜏)𝜕𝜏 = (�̂� − 𝐸t)Ψ({𝒓𝑖}, 𝜏) . (2.30)
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𝐸t is the trial energy that will be defined later on. Inserting the Hamiltonian

in the Born–Oppenheimer approximation from equation (1.3) and separating

it into a kinetic part �̂� and a potential part �̂� leads to

−𝜕Ψ({𝒓𝑖}, 𝜏)𝜕𝜏 = (�̂� + �̂� − 𝐸t)Ψ({𝒓𝑖}, 𝜏)= −12∇2𝑖Ψ({𝒓𝑖}, 𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusion

+ [𝑉 ({𝒓𝑖}) − 𝐸t]Ψ({𝒓𝑖}, 𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
branching

. (2.31)

The kinetic part �̂� , which equals the off-diagonal elements in a Slater de-

terminant basis, leads to a differential equation that describes a diffusion

process. The potential part �̂� , which equals the diagonal elements, describes

a branching process. Integrating equation (2.31) and using the Trotter decom-

position

exp[𝜏(�̂�+�̂� )] ≈ [exp(Δ𝜏�̂� ) exp(Δ𝜏�̂� )]𝑛 with 𝜏 = Δ𝜏𝑛 andΔ𝜏 ≪ 𝜏 (2.32)

allows for the stepwise solution of the differential equation. The wavefunc-

tion is propagated from the 𝑁el electron positions {𝒓′𝑖 } at imaginary time 𝜏 to

the positions {𝒓𝑖} at time 𝜏 + Δ𝜏 according to

Ψ({𝒓𝑖}, 𝜏 + Δ𝜏)= ∫ d𝒓′1…d𝒓′𝑁 ⟨𝒓𝑖 ||| exp(Δ𝜏�̂� ) ||| 𝒓′𝑖⟩ exp[Δ𝜏(�̂� − 𝐸t)]Ψ({𝒓′𝑖 }, 𝜏) . (2.33)

Algorithmically, in each timestep the wavefunction is represented by

a set of walkers that have spatial coordinates {𝒓𝑖} assigned to them. Their

propagation is implemented as follows:∙ In the diffusion step, every walker is propagated according to

𝒓𝑖 = 𝒓′𝑖 +√Δ𝜏𝜂(𝜏) . (2.34)

𝜂 is a random number drawn from a Gaussian distribution. This is the

solution to the diffusion part of the propagation. Significantly larger

time steps can be used when adding a Metropolis-like accept/reject

step [40].∙ The branching step can be called a “birth and death” step and is ac-

counted for by creating

𝑁w({𝒓𝑖}) = exp[Δ𝜏(�̂� ({𝒓𝑖}) − 𝐸t)] (2.35)
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copies of a walker with positions {𝒓𝑖}.
It is easy to see that the algorithm is trivially parallelisable as the operations

purely act on individual walkers. This means that each walker can be assigned

to a specific parallel process with load-balancing every couple of iterations.

Hashing and all-to-all communications of spawned particles like in FCIQMC

are not required (see section 3.1.3).

Importance Sampling

With the scheme presented so far, the algorithm is exact. Usually when the

algorithm is applied in this simple form, the total walker number 𝑁tot fluctu-

ates strongly. This is especially a problem when the wavefunction is sampled

close to points where it has a cusp, e.g. at the nucleus. This can be improved

by applying importance sampling. Instead of the wavefunction Ψ({𝒓𝑖}), the

product of Ψ and a trial wavefunction Ψt

𝑓 ({𝒓𝑖}, 𝜏) = Ψ({𝒓𝑖}, 𝜏)Ψt({𝒓𝑖}) (2.36)

is sampled. The master equation of the product function then reads

− 𝜕𝑓 ({𝒓𝑖}, 𝜏)𝜕𝜏 = −12∇2𝑖 𝑓 ({𝒓𝑖}, 𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusion

−∇[𝑓 ({𝒓𝑖}, 𝜏)∇ lnΨt({𝒓𝑖})]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
drift+ [𝐸loc({𝒓𝑖}) − 𝐸t]𝑓 ({𝒓𝑖}, 𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

branching

. (2.37)

The local energy 𝐸loc has the same definition as it has already been intro-

duced for VMC in equation (2.24). In contrast to the master equation (2.31),

importance sampling adds a drift to the diffusion step according to

𝒓𝑖 = 𝒓′𝑖 + Δ𝜏∇ lnΨt(𝒓′𝑖 ) +√Δ𝜏𝜂(𝜏) . (2.38)

Intuitively, the drift pushes the walkers to locations where the trial wave-

function is large. Evaluating the trial wavefunction at the walker positions

takes up most of the computing time in DMC.

Population Control

With the algorithm as presented so far, the total number of walkers is not

conserved. This means that the total walker number can grow beyond
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available computational resources or die out completely, even when applying

importance sampling. Therefore, population control is mandatory [72].

The most commonly used population control algorithm is the following:

The trial energy 𝐸t is adjusted according to

𝐸t(𝜏) = 𝐸DMC(𝜏) + 𝛾Δ𝜏 𝑁tot𝑁target
. (2.39)

The total walker population is given by

𝑁tot = ∫ d𝒓1…d𝒓𝑁 |||𝑓 ({𝒓𝑖}, 𝜏)||| . (2.40)

𝑁target is the desired target walker population. 𝐸DMC is the best estimate

of the total energy and can be calculated by averaging the local energy

according to

𝐸DMC(𝜏) = ∫ d𝒓1…d𝒓𝑁 𝑓 ({𝒓𝑖}, 𝜏)𝐸loc({𝒓𝑖})∫ d𝒓1…d𝒓𝑁 𝑓 ({𝒓𝑖}, 𝜏) . (2.41)

𝛾 is a damping parameter. The calculation of 𝑁tot and 𝐸DMC requires commu-

nication of information between walkers that, in a parallel implementation,

might be located on different computational processes.

Population control introduces a bias in the sampled wavefunction [41–

43]. In chapter 6, we will discover a similar bias in FCIQMC as well. There,

it will also be compared to the population control bias in DMC.

Fixed-Node Approximation

Like any other QMC method, DMC also suffers from the sign problem when

trying to solve a general fermionic system. The direct cause for this problem

in DMC is the fact that the sampled function – 𝑓 in the case of importance

sampling – is not positive everywhere. Therefore, it is not a proper prob-

ability distribution. If no further measures are taken, Ψ would collapse to

the solution of the stoquastised Hamiltonian.2 To mitigate the problem, the 2 For a detailed discussion see
section 3.2 and part II.fixed-node approximation has been introduced [69, 73, 74]. In this scheme,

the nodes of the sampled wavefunction are not allowed to change. This

is ensured by one additional algorithmic step after the diffusion and drift

step that moves an electron from 𝒓′𝑖 to 𝒓𝑖: It is checked whether the sign

of Ψt({𝒓𝑖}) agrees with the sign of Ψt({𝒓′𝑖 }). If it does not, i.e. a node is

crossed, the move is rejected and the algorithms jumps to the next walker.

By applying this constraint a systematic bias is introduced.
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Generally, the fixed-node approximation becomes better when the nodes

of the trial wavefunction are more accurate, e.g. by using a CI wavefunction

with a large number of Slater determinants. They, however, are usually

hard to obtain. The fixed-node approximation can be weakened at the price

of reducing the size of the treatable systems: In the released-node method,

the simulation is first equilibrated in the fixed-node approximation [75–

78]. Subsequently, the walkers are allowed to cross the nodes of the trial

wavefunction. If the fixed nodes are close to the true nodes, the simulation

is stable for a short period of imaginary time and a released-node energy can

be obtained.

2.2.3 Auxiliary-Field QMC

Auxiliary-Field QMC (AFQMC) is another QMC method that will be discussed

in the context of this work to contrast it with FCIQMC. Like FCIQMC, it is a

projector QMC method that uses the imaginary-time propagation according

to equation (3.2) [50–53]. Another similarity lies in the fact that it operates

in a space of Slater determinants (see section 2.1.3).

However, unlike FCIQMC which uses a linearised version of the expo-

nential propagator which is stochastically applied as shown in equation (3.3),

AFQMC sticks to the exponential propagator. Instead, AFQMC exploits

the fact that for an arbitrary single-particle operator �̂�1 = ∑𝑖𝑗 𝑂𝑖𝑗 𝑐†𝑖 𝑐𝑗 the

exponential operator exp(�̂�1) is simply an orbital rotation. It means that

exp(�̂�1)||𝜑𝑛1𝜑𝑛2 … 𝜑𝑛𝑁 || = ||𝜑′𝑛1𝜑′𝑛2 … 𝜑′𝑛𝑁 || , (2.42)

i.e. the exponential of a single-particle operator maps a single Slater determi-

nant in an orbital basis
{𝜑𝑛(𝒓)} onto another single Slater determinant in a

different orbital basis
{𝜑′𝑛(𝒓)}. As we have already seen before, generic quan-

tum chemistry as well as model Hamiltonians can be written as �̂� = �̂� + �̂� .�̂� again is a kinetic one-body operator, �̂� is a potential-energy two-body

operator. In AFQMC, the two-body operator �̂� is mapped onto one-body

operators using a Hubbard–Stratonovich transformation.

Hubbard–Stratonovich Transformation

First, the exponential propagator exp(−𝜏�̂�) = exp[−𝜏(�̂� + �̂� )] needs to

be decomposed into a product. Like in DMC, this is done using a Trotter

decomposition as shown in equation (2.32). To evaluate the effect of the prop-
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agation of the two-body part �̂� for a small time step Δ𝜏, i.e. of exp(−Δ𝜏�̂� ),�̂� is rewritten as �̂� = ∑𝑖 𝜆𝑖�̂�2𝑖 (2.43)

where �̂�𝑖 are one-body operators. This is possible for all two-body operators.

The Hubbard–Stratonovich of one of these factors after the Trotter breakup

is then given by

exp(Δ𝜏2 𝜆𝑖�̂�2𝑖) = ∫ ∞−∞ d𝑥√2π exp(−𝑥22 ) exp(√−Δ𝜏𝜆𝑖𝑥�̂�𝑖) . (2.44)

This means that the exponential of a two-body operator is now expressed as

an integral over infinitely many single-particle operators [79, 80]. 𝑥 is called

the auxiliary-field variable. There is one of these auxiliary-field integrals for

each 𝜆𝑖. The entire exponential propagator, including the one-body part and

all auxiliary-field integrals from the two-body part, can then be rewritten as

exp(−𝜏�̂�) = ∫ d𝒙 𝑝(𝒙)�̂�(𝒙) . (2.45)

𝒙 is the vector of all auxiliary-field variables. 𝑝(𝒙) = (2π)− 12 exp(−𝒙2/2) is a

multi-dimensional standard Gaussian probability distribution while �̂�(𝒙) is

a product of single-particle operators. The imaginary-time projection of an

initial state |Ψ0⟩, which is a superposition of Slater determinants |𝐷0𝑖 ⟩,
|Ψ0⟩ = lim𝜏→∞∫ d𝒙 𝑝(𝒙)�̂�(𝒙) |Ψ𝑛⟩ (2.46)

just like in FCIQMC ultimately leads to the true ground-state solution. Since

the integrals are of the type that have already been introduced in equa-

tion (2.17), they can be evaluated using MC sampling. As the single Slater

determinants perform random walks, they are often called walkers. They

should not be mistaken with DMC walkers – that consist of positions in real-

space as wavefunction coordinates – or FCIQMC walkers – that randomly

sample coefficients of an FCI expansion and reside on Slater determinants. A

walker 𝑖 in iteration 𝑛, i.e. a specific Slater determinant |𝐷𝑛𝑖 ⟩ is propagated

to another – possibly non-orthogonal – Slater determinant |𝐷𝑛+1𝑖 ⟩ by draw-

ing an 𝒙 according to the distribution 𝑝(𝒙) and applying �̂�(𝒙) to it. The

wavefunction estimate in iteration 𝑛 is then given by

|Ψ𝑛⟩ = ∑𝑖 𝑤𝑖 ||𝐷𝑛𝑖 ⟩ (2.47)
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where𝑤𝑖 are scalar weights. The ground-state energy can simply be estimated

by projecting �̂� |Ψ𝑛⟩ onto a trial wavefunction |Ψt⟩ like

𝐸𝑛AFQMC = ⟨Ψt
||| �̂� |||Ψ𝑛⟩⟨Ψt |Ψ𝑛⟩ , (2.48)

just like the trial energy in FCIQMC as given in equation (3.15). Like any

other MC method, AFQMC suffers from the sign problem which manifests

as the phase problem in the most general case which will be discussed later.

Importance Sampling

The sampling distribution 𝑝(𝒙) so far does not incorporate any information

about the sampled wavefunction. Even though the algorithm is exact in

principle, sampling might be inefficient and unimportant determinants might

be sampled often. So just like in DMC, to improve the sampling efficiency

importance sampling is applied. This means that the sampling distribution

is scaled to incorporate information about the ground state according to

�̃�(𝒙) = ⟨Ψt ||𝐷𝑛+1𝑖 ⟩⟨Ψt ||𝐷𝑛𝑖 ⟩ 𝑝(𝒙) . (2.49)

|Ψt⟩ again is a trial wavefunction that should have a large overlap with the

true ground state |Ψ0⟩. Also, |Ψt⟩ should allow for an efficient calculation of

the overlaps ⟨Ψt|𝐷𝑛𝑖 ⟩.
The importance-sampled imaginary-time projection is then given by|||Ψ̃0⟩ = lim𝜏→∞∫ d𝒙 �̃�(𝒙)�̂�(𝒙) |Ψ𝑛⟩ (2.50)

where instead of |Ψ0⟩ the rescaled ground-state wavefunction

|Ψ0⟩ = ∑𝑖 ⟨Ψt |𝐷𝑖⟩𝑤𝑖 |𝐷𝑖⟩ (2.51)

is approached in the infinite-𝜏 limit. For |Ψt⟩ = |Ψ0⟩, the weights 𝑤𝑖 remain

constant. Thus, all walkers |𝐷𝑛𝑖 ⟩ contribute equally to the calculation of

the energy according to equation (2.48) after equilibration. Therefore, the

variance approaches zero.

The Phase Problem

When looking at the Hubbard–Stratonovich transformation in equation (2.44),

it is evident that the exponential one-body operator exp (√−Δ𝜏𝜆𝑖𝑥�̂�𝑖) can

be complex as the 𝜆𝑖 can either be positive or negative. This means that
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Slater determinants will pick up complex phases when propagated along the

auxiliary-field paths according to equation (2.46). As there is an infinite set

of equally valid solutions to the Schrödinger equation that only differ by a

complex phase exp(i𝜑) with 𝜑 ∈ [0, 2π), the phase of the AFQMC-sampled

solution is not predefined. Therefore, the propagated determinants will

all assume near-random phases and all walkers will be distributed almost

uniformly in the complex plane with exponentially decaying signal-to-noise

ratio in the large-𝜏 limit.

As in other QMC methods, there are methods that mitigate the sign

problem at the cost of introducing a systematic bias. To understand the

mitigation procedures, one has to discriminate the different ways a sign

problem can occur in AFQMC. This depends on the structure of the auxiliary

field coefficients 𝜆𝑖 which are system-dependent:∙ In Hubbard-like systems at half-filling, the calculations are entirely

sign-problem-free and no mitigation procedure is required [54, 81, 82].∙ In Hubbard-like systems at arbitrary fillings, 𝜆𝑖 ≤ 0 for all 𝑖. Therefore,

the auxiliary fields are purely real and there are no complex phases.

However, there is still the coexistence of the solutions |Ψ⟩ and −|Ψ⟩.
The general phase problem then reverts back to the usual sign prob-

lem where there is only a superposition of two instead of infinitely

many solutions. In this case, the constrained-path approximation (CP

approximation) can be applied [83–85]. In this approximation, the sign

constraint ⟨Ψt ||𝐷𝑛𝑖 ⟩ > 0 (2.52)

is imposed for all walkers 𝑖, i.e. the overlap with the trial wavefunction

cannot change sign throughout all iterations 𝑛. In the limit of small Δ𝜏,

this prevents |Ψ𝑛⟩ from crossing the nodal surface, i.e. the path of

the random walk is constrained to either |Ψ⟩ or −|Ψ⟩. This comes at

the cost of introducing a systematic bias and increasing the energy

estimate above the exact energy. The approximation is improved if

the trial wavefunction resembles the exact ground state more closely.

It is exact for |Ψt⟩ = |Ψ0⟩.∙ For a general Hamiltonian, the 𝜆𝑖 can be positive and negative. Thus,

the auxiliary fields can be complex which leads to the general phase

problem. In this case, the phaseless approximation can be used to

reduce the exponentially increasing signal-to-noise ratio. Roughly
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speaking, the approximation consists of three steps: First, a gener-

alised importance sampling method with complex overlaps between

trial wavefunction and sampled Slater determinants is developed. This

leads to walker weights that are rescaled by the local energy every

iteration where the local energy has a definition like in DMC according

to equation (2.24). Second, the complex local energy is approximated

by its real part. Third, walkers that undergo phase rotations of more

than ±π2 are discarded, analogous to the sign constraint from equa-

tion (2.52). The phaseless approximation is a true generalisation of

the CP method as it reverts back to it for real auxiliary fields. Unlike

importance sampling and CP-like constraints, the phaseless approxi-

mation will have no equivalent method developed for FCIQMC in this

thesis. Therefore, the reader is referred to the corresponding literature

for a more detailed presentation [53, 86–88].

2.3 Density-Matrix Renormalisation Group

In contrast to QMC, density-matrix renormalisation group (DMRG) is a de-

terministic method to perform quantum-chemical calculations. DMRG will

be used as a benchmark method at multiple points in this thesis and both

results and necessary computational resources will be compared. Therefore,

I will give a brief overview of the method.

DMRG has its roots in the 1990s in pioneering work of S. R. White in

condensed matter physics [89, 90]. White himself based the work on the

renormalisation group approach by K. G. Wilson on the Kondo problem [91,

92] to which the modern formulation of DMRG is only loosely connected.

A more wavefunction-based view has allowed for a wider range of applica-

tion in quantum chemistry and electronic structure theory [93]. This brief

overview will go along the lines of this wavefunction-based view of DMRG.

As in the QMC methods, the goal of DMRG is to find a good approximate

solution to the electronic Hamiltonian from equation (1.3). Like FCIQMC

(see chapter 3), DMRG is based on the FCI expansion of a many-particle

quantum state that has been introduced in equation (2.7). To better suit the

derivation of DMRG, the FCI wavefunction can be written as

|Ψ⟩ = ∑𝑛1𝑛2…𝑛𝑆 𝐶𝑛1𝑛2…𝑛𝑆 |𝑛1𝑛2… 𝑛𝑆⟩ . (2.53)

In contrast to equation (2.7), the coefficients will be indexed by the occupation

numbers but have the same meaning. The 𝑛𝑖 indicate how each orbital 𝑖
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is occupied: empty (|0⟩), with an ↑ electron (|↑⟩), with a ↓ electron (|↓⟩), or

doubly occupied (|↑↓⟩). 𝑆 is the number of orbitals.

2.3.1 Matrix Product States

According to equation (2.9), the Hilbert space size grows combinatorially

and as such, not all coefficients can be kept in memory for sufficiently

large systems. While in FCIQMC only a stochastic representation of walker

populations is stored at every instant, DMRG uses so-called matrix product

states (MPS) to compactify and approximate the information contained in

the wavefunction [94, 95]. The simplest MPS would be the full factorisation

of the coefficients according to

𝐶𝑛1𝑛2…𝑛𝑆 ≈ 𝐶𝑛1𝐶𝑛2 …𝐶𝑛𝑆 . (2.54)

This is memory-efficient as only 4𝑆 coefficients need to be stored but it is also

a crude approximation. A gradual improvement of the approximation with a

controlled increase in memory can be achieved by moving from scalars 𝐶𝑛𝑖
to matrices 𝐶𝑛𝑖𝑘𝑘′ . 𝑘 and 𝑘′ are then contracted over like

𝐶𝑛1𝑛2…𝑛𝑆 ≈ ∑𝑘1𝑘2…𝑘𝑆−1 𝐶𝑛1𝑘1𝐶𝑛2𝑘1𝑘2𝐶𝑛3𝑘2𝑘3 …𝐶𝑛𝑆𝑘𝑆−1 with 𝑘𝑖 = 1,… , 𝑀 for all 𝑖. (2.55)

Inserting these coefficients into equation (2.53) then leads to the DMRG

wavefunction ansatz

|ΨDMRG⟩ = ∑𝑛1𝑛2…𝑛𝑆 ∑𝑘1𝑘2…𝑘𝑆−1 𝐶𝑛1𝑘1𝐶𝑛2𝑘1𝑘2 …𝐶𝑛𝑆𝑘𝑆−1 |𝑛1𝑛2… 𝑛𝑆⟩ . (2.56)

This definition explains the name MPS as a quantum state is approximated by

a product of matrices. 𝑀 is called the bond dimension of the MPS, a parameter

which determines the accuracy and storage requirement. The dimension of

the tensors 𝐶𝑛𝑖𝑘𝑘′ is 4𝑀2 so for the total wavefunction 4𝑀2𝑆 numbers have to

be stored.

In the same way as MPS, operators can be represented as matrix product

operators (MPO) [96]. A generic operator �̂� in the occupation number basis

can be written as

�̂� = ∑𝑛1𝑛2…𝑛𝑆 ∑𝑛′1𝑛′2…𝑛′𝑆 𝐶𝑛1𝑛2…𝑛𝑆 ,𝑛′1𝑛′2…𝑛′𝑆 |𝑛1𝑛2… 𝑛𝑆⟩ ⟨𝑛′1𝑛′2… 𝑛′𝑆 | . (2.57)
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Again, the factor 𝐶𝑛1𝑛2…𝑛𝑆 ,𝑛′1𝑛′2…𝑛′𝑆 can be approximated as a matrix product

𝐶𝑛1𝑛2…𝑛𝑆 ,𝑛′1𝑛′2…𝑛′𝑆 ≈ ∑𝑘1𝑘2…𝑘𝑆−1 𝐶𝑛1𝑛′1𝑘1 𝐶𝑛2𝑛′2𝑘1𝑘2 𝐶𝑛3𝑛′3𝑘2𝑘3 …𝐶𝑛𝑆𝑛′𝑆𝑘𝑆−1 (2.58)

of bond dimension 𝑀 . In contrast to an MPS, the MPO matrices have two

instead of one uncontracted indices.

With this, DMRG, like FCIQMC, keeps all the advantages of FCI-based

methods. It allows for the variational evaluation of the energy and can ex-

press wavefunctions with arbitrarily strong multireference character as the

reference Slater determinant does not have special significance. Additionally,

DMRG wavefunctions are size-consistent in localised bases [93]. All impor-

tant properties, like the energy, an be calculated without ever evaluating full𝐶𝑛1𝑛2…𝑛𝑆 coefficients but rather from the 𝐶𝑛𝑖𝑘𝑘′ tensors directly. This allows

for a memory-efficient calculation of properties in cases where the true co-

efficients are approximated by matrix products with small 𝑀 well. This is

true in cases where the correlations between different orbitals are small and

therefore the entanglement entropy is small [97, 98]. This is typically the case

in one-dimensional lattice systems without periodic boundary conditions

that will be studied in part II.

2.3.2 Sweeping Algorithm

MPS can be optimised in a stepwise fashion in so-called sweeps [99, 100].

Mostly, an MPS is optimsed such that the variational energy

𝐸DMRG = ⟨ΨDMRG
||| �̂� |||ΨDMRG⟩ (2.59)

is optimised. The representation of an MPS is not unique. The individual

matrices 𝐶𝑛𝑖 that make up the matrix product can be transformed with

specific transformations and |ΨDMRG⟩ is invariant under those. To resolve

this ambiguity, the canonical representation for a given orbital 𝑎 is defined as

|Ψ𝑎
DMRG⟩ =∑𝑛1…𝑛𝑎…𝑛𝑆 ∑𝓁1…𝓁𝑎−1 ∑𝑟𝑎…𝑟𝑆−1 𝐿𝑛1𝓁1 … 𝐿𝑛𝑎−1𝓁𝑎−2𝓁𝑎−1𝐴𝑛𝑎𝓁𝑎−1𝑟𝑎𝑅𝑛𝑎+1𝑟𝑎𝑟𝑎+1 …𝑅𝑛𝑆𝑟𝑆−1 |𝑛1… 𝑛𝑎… 𝑛𝑆⟩ . (2.60)

The matrices 𝐿 are the site matrices to the left of site 𝑖, the matrices 𝑅 are

the ones to the right thereof. The 𝐿 and 𝑅 matrices are orthogonal, i.e.

∑𝓁𝑛 𝐿𝑖𝓁𝑛,𝓁′𝐿𝑖𝓁𝑛,𝓁′′ = 𝛿𝓁′𝓁′′ (2.61a)
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and

∑𝑟𝑛 𝑅𝑖𝑟 ′,𝑟𝑛𝑅𝑖𝑟 ′′,𝑟𝑛 = 𝛿𝑟 ′𝑟 ′′ . (2.61b)

Here, the occupation indices 𝑛𝑖 are grouped with the lower indices to obtain

a true two-dimensional matrix: 𝐋𝑖 = 𝐿𝑖𝓁𝑛,𝓁′ = 𝐿𝑛𝑖𝓁𝓁′ and 𝐑𝑖 = 𝑅𝑖𝑟 ′,𝑟𝑛 = 𝑅𝑛𝑖𝑟 ′𝑟 ,
respectively.

Since |ΨDMRG⟩ is defined to be invariant with respect to the site for which

the canonical representation is defined, the following wavefunctions are

equivalent:

∑ 𝐋1… 𝐋𝑎−1𝐀𝑎𝐑𝑎+1𝐑𝑎+2…𝐑𝑆 |𝑛1… 𝑛𝑎… 𝑛𝑆⟩ (2.62a)=∑ 𝐋1… 𝐋𝑎−1𝐋𝑎𝐀𝑎+1𝐑𝑎+2…𝐑𝑆 |𝑛1… 𝑛𝑎… 𝑛𝑆⟩ . (2.62b)

The lower indices are omitted for the sake of notational simplicity. This

means that 𝐀𝑎𝐑𝑎+1 = 𝐋𝑎𝐀𝑎+1 (2.63)

That leads to the fact that the canonical form of |ΨDMRG⟩ at site 𝑎 can be

transformed to the canonical representation at site 𝑎 + 1 via a singular value

decomposition (SVD) according to

𝐴𝑎𝓁𝑛,𝑟 = ∑𝓁′ 𝐿𝑎𝓁𝑛,𝓁′𝜎𝓁′𝑉𝓁′𝑟 (2.64a)

and

𝐴𝑎+1𝓁,𝑟𝑛 = ∑𝑟 ′ 𝜎𝓁𝑉𝓁𝑟 ′𝑅𝑎+1𝑟 ′,𝑟𝑛 . (2.64b)

With this knowledge about the transformations between canonical rep-

resentations of adjacent sites, an MPS can be optimised in sweeps. This

means that |ΨDMRG⟩ is first represented in the canconical representation for

orbital 𝑎 = 𝑎0. In this representation the respective site matrix 𝐀𝑎0 is opti-

mised for some criterion. Then the representation is changed to 𝑎 = 𝑎0 + 1
and so on until the last orbital is reached. Then, the MPS is optimised back-

wards until convergence is achieved. In most cases, the variational energy is

minimised so that

⟨Ψ𝑎
DMRG

||| �̂� − 𝐸0 |||Ψ𝑎
DMRG⟩ = 0 (2.65)

is the criterion for which the 𝐀𝑎 is optimised.
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2.3.3 Graphical Representations of MPS and MPO𝑘1 𝑘2 𝑘3𝑛1 𝑛2 𝑛3 𝑛4
|Ψ⟩

𝑘1 𝑘2 𝑘3𝑛1
𝑛′1

𝑛2
𝑛′2
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𝑛′3

𝑛4
𝑛′4

�̂�
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𝑘′1

𝑘′′1
𝑘2
𝑘′2

𝑘′′2
𝑘3
𝑘′3

𝑘′′3𝑛1
𝑛′1

𝑛2
𝑛′2

𝑛3
𝑛′3

𝑛4
𝑛′4

⟨Ψ ||| �̂� |||Ψ⟩
Figure 2.1. Graphical representa-
tion of a matrix product state |Ψ⟩,
a matrix product operator �̂�, and
an expectation value ⟨Ψ|�̂�|Ψ⟩.
Dots indicate orbital matrices,
connected lines indicate con-
tracted indices, and open-ended
lines indicate non-contracted in-
dices.

MPS and MPO can be represented in a visual way [101]. This makes it

easier to understand contractions of different MPS and MPO which may get

convoluted due to the many contracted and uncontracted indices involved.

This representation will make is easy to calculate the memory demand of

DMRG calculations which will be compared with FCIQMC in section 6.3.

The basic idea behind the graphical representation is that dots ( ) repre-

sent general 𝐶𝑛𝑛′𝑘𝑘′ tensors. Lines that originate at a dot indicate indices. Lines

that connect to another dot ( ) are contracted over. Open-ended lines

( ) are uncontracted indices. Examples are shown in figure 2.1.



3 Full Configuration Interaction Quantum Monte Carlo

Full configuration interaction quantum Monte Carlo (FCIQMC) is a QMC

method that was first published in 2009 [16] and has been applied and devel-

oped since then. In contrast to other QMC methods, FCIQMC is formulated

in a finite basis set – originally in Slater determinants but recently also

in configuration state functions (CSFs). FCIQMC has its roots in Green’s

function Monte Carlo (GFMC) [102–105]. There are two major implementa-

tions of FCIQMC available: NECI [18] and HANDE [106]. Also available is the

Dice code, containing FCIQMC as part of a broader ab initio QMC frame-

work [107], and the Rimu code, allowing to use FCIQMC in systems with

bosons and fermions in model systems [108]. All numerical FCIQMC results

in this thesis were obtained using NECI. After the general introduction into

QMC methods in section 2.2, I will give a detailed overview of the FCIQMC

algorithms with special emphasis on the manifestation of the fermion sign

problem.

3.1 The FCIQMC Algorithm

FCIQMC is a stochastic method to solve the stationary Schrödinger equa-

tion (1.2) for the lowest eigenvalue 𝐸0 with eigenfunction |Ψ0⟩. To do this,

FCIQMC uses imaginary-time projection. The fundamental working equation

of imaginary-time projector techniques can be derived from equation (1.1)

by defining the imaginary time 𝜏 = i𝑡. It is given by𝜕𝜕𝜏 |Ψ⟩ = −(�̂� − 𝑆1̂) |Ψ⟩ . (3.1)

𝑆 is called the shift and will be used for walker population control later on.

At this stage, it is a simple scalar diagonal shift of �̂� as 1̂ denotes an identity

matrix of the same size as �̂� . Solving this differential equation leads to

|Ψ(𝜏)⟩ = exp[−𝜏(�̂� − 𝑆1̂)] |Ψ(𝜏 = 0)⟩= ∑𝑛 exp[−𝜏(𝐸𝑛 − 𝑆)] |Ψ𝑛⟩ ⟨Ψ𝑛 |Ψ(𝜏 = 0)⟩ (3.2)

where in the second line the equation was expanded in the eigenbasis {|Ψ𝑛⟩}
of �̂� with respective eigenvalues 𝐸𝑛 in ascending order. 𝐸0 denotes the
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ground-state energy. For 𝜏 → ∞, all basis states with 𝑛 ≥ 1 are projected out

and |Ψ(𝜏)⟩ converges to the ground state |Ψ0⟩ if the starting guess |Ψ(𝜏 = 0)⟩
has non-zero overlap with |Ψ0⟩.

Originally, FCIQMC was formulated with discrete integer walkers [16, 17].

Later, it has been generalised with walker populations that can assume any

real number [109] which removes the stochasticity from some algorithmic

steps but keeps it in others. In the following, I will only describe the latter,

continuous-walker formulation of FCIQMC which is also used in the practical

implementation in NECI.

3.1.1 Stochastic Evaluation of the Imaginary-Time Propagation

While the imaginary-time projection approach is common to all projector

Monte Carlo methods, one of the unique features of FCIQMC is the repre-

sentation of the wavefunction. In FCIQMC, the instantaneous wavefunction

is represented using walkers that reside on Slater determinants |𝐷𝑖⟩. The

number of walkers 𝑁𝑖 on |𝐷𝑖⟩ is an estimate of the 𝐶𝑖 coefficient in the FCI

expansion from equation (2.7) such that the long-time average 𝑁𝑖 = 𝐶𝑖.33 FCIQMC can also be used not
in a basis of Slater determinants
but in configuration state func-
tions (CSF) that are eigenfunctions
of 𝑆2 using the graphical unitary
group approach (GUGA) [110–
114]. This adds some complica-
tions to the algorithm and will not
be used in this thesis.

The dynamics of these walkers in FCIQMC is given by a linearised version

of equation (3.2). The continuous imaginary time is discretised into small

time steps Δ𝜏. This leads to

Δ𝑁𝑖(𝜏) = −Δ𝜏[∑𝑗≠𝑖 𝐻𝑖𝑗𝑁𝑗 (𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
spawning

+ (𝐻𝑖𝑖 − 𝑆)𝑁𝑖(𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
death/cloning

] . (3.3)

Δ𝑁𝑖(𝜏) is the number of walkers that is added to the population 𝑁𝑖 in an

iteration. The two terms are applied stochastically in the FCIQMC algorithm

in two distinct steps called spawning and death/cloning. They govern the

dynamics of the walkers and will be discussed in the following.

Spawning Step

The spawning step stochastically applies the off-diagonal term of the discrete

master equation (3.3), Δ𝜏∑𝑖≠𝑗 𝐻𝑖𝑗 , to the walker occupation vector 𝑁𝑗 (𝜏)
in a given iteration 𝑝 = 𝜏Δ𝜏 . The stochastic application works as follows:

The algorithm loops through all determinants in memory which have non-

zero walker population. At a given determinant |𝐷𝑗 ⟩ in the loop, another

determinant |𝐷𝑖⟩ that is connected to |𝐷𝑗 ⟩ via a non-zero Hamiltonian ma-

trix element 𝐻𝑖𝑗 is selected at random for each integer walker on |𝐷𝑗 ⟩. For

fractional walkers sitting on |𝐷𝑗 ⟩, i.e. the remaining part 𝑁𝑖 − ⌊𝑁𝑖⌋, a random
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number 𝑅 ∈ [0, 1] is drawn. A spawning attempt for the fractional walker

is conducted only if 𝑅 ≥ 𝑁𝑖 − ⌊𝑁𝑖⌋ such that the spawning procedure is

unbiased on average.4 4 This convention is a compro-
mise between reducing stochastic
noise and reducing computational
effort. In principle, the algorithm
would also be unbiased if only
one connected determinant would
be chosen for each occupied de-
terminant or if more connected
determinants would be drawn.
All that is required is that the
spawned walkers are scaled ac-
cordingly.

Δ𝑁𝑖 = −Δ𝜏𝐻𝑖𝑗 sgn𝑁𝑗𝑝gen(𝑖∣𝑗) (3.4)

walkers are then added to a separate spawn vector which will be added to

the main occupation vector at the end of the iteration. sgn (𝑁𝑗 ) is the sign

of the walkers on |𝐷𝑗 ⟩. Therefore, the sign of the spawned walkers created

from |𝐷𝑗 ⟩ onto |𝐷𝑖⟩ is given by the product

sgnΔ𝑁𝑖 = − sgn𝐻𝑖𝑗 sgn𝑁𝑗 . (3.5)

𝑝gen(𝑖 ∣ 𝑗) is the probability with which |𝐷𝑖⟩ has been selected from |𝐷𝑗 ⟩.
Any non-zero choice of generation probabilities leaves the algorithm un-

biased. However, it is advantageous if 𝑝gen(𝑖 ∣ 𝑗) is chosen approximately

proportional to 𝐻𝑖𝑗 such that the ratio Δ𝑁𝑖 is constant. This reduces sta-

tistical fluctations in the walker occupations which is especially important

when applying the initiator approximation (see section 3.2.3). It is however

computationally prohibitive to choose 𝑝gen(𝑖 ∣ 𝑗) exactly proportional to 𝐻𝑖𝑗
in general. This requires the evaluation of the column sum ∑𝑘 𝐻𝑖𝑘 which is

needed as a normalisation factor and scales as (𝑁 2𝑀2). Therefore, meth-

ods that approximate the optimal 𝑝gen are available. These methods are

called excitation generators. Examples are the heat-bath, Cauchy–Schwarz,

and Power–Pitzer excitation generators which can also be combined with

each other and can be used in either an on-the-fly and or precomputed fash-

ion [115, 116]. For the model systems that will play the main role in this

thesis however, a uniform excitation generator is sufficient. In the real-space

Hubbard model all the off-diagonal elements have the same magnitude so

the uniform excitation generator is already optimal.

Death/Cloning Step

The death/cloning step is the application of the diagonal part of equation (3.3).

The death/cloning step happens before the contributions from the spawning

step – saved in the spawn vector – are added into the main wavefunction

vector. In this step, the algorithm again loops through all determinants with

non-zero walker occupations. The walkers on every determinant are multi-

plied by 1 − Δ𝜏[𝐻𝑖𝑖 − 𝑆(𝜏)]. 𝑆 is a simulation parameter that is dynamically

adjusted during the simulation so that the total walker population is held
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approximately constant. It will be discussed in the respective section. Gener-

ally speaking, this way energetically unfavourable determinants with large

diagonal elements die off quicker.

Cloning of walkers occurs when 𝐻𝑖𝑖−𝑆(𝜏) is negative. Cloning events are

rare during the simulation of realistic systems. They typically occur during

the equilibration phase when the instantaneous wavefunction is different

from the sought-for solution and 𝑆 therefore can become large.

Annihilation Step

The annihilation step is an important part of the algorithm that controls

the fermion sign problem in FCIQMC which will be discussed in section 3.2.

Annihilation means that walker contributions from existing walker popula-

tions on determinants 𝑁𝑖(𝜏) and the newly spawned contributions Δ𝑁𝑖(𝜏)
will be added with their respective sign. This means that walkers of opposite

signs cancel out. In contrast to other QMC methods discussed in section 2.2,

annihilations are straightforwardly possible in FCIQMC since it works in

a finite basis of Slater determinants. For example, due to the continuous

representation of the wavefunction in DMC, which is also a projector-QMC

method, an annihilation step is not as easy to realise [117].

In a practical implementation, annihilations take part in two steps:

1. Newly spawned walkers of opposite signs in the spawn vector directly

annihilate immediately there.

2. When the spawn vector is added to the main occupation vector, two

contributions of opposite signs also annihilate.

Details on when and how these annihilations take place in a parallel compu-

tation on multiple CPU cores are given in section 3.1.3.

Stochastic Rounding

An additional stochastic step taking place after the conclusion of the anni-

hilation step is the stochastic rounding of walker populations. Again, the

algorithm loops through all occupied determinants which now also includes

determinants that were previously unoccupied and have now been spawned

upon. To this end, the occupation threshold 𝑡occ which is chosen to be 1 in
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most cases is defined. All determinants that have an occupation of ||𝑁𝑖|| < 𝑡occ

after annihilation are now rounded according to the following provision:

𝑁 ′𝑖 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑡occ with probability 𝑁𝑖𝑡occ

,0 with probability 1 − 𝑁𝑖𝑡occ
.

(3.6)

In practice, this is achieved by drawing a random number 𝑟𝑖 between 0 and 1
from a uniform distribution for each occupied determinant |𝐷𝑖⟩. If 𝑟𝑖 > 𝑁𝑖𝑡occ

,

the occupation is rounded up. If 𝑟𝑖 < 𝑁𝑖𝑡occ
, the occupation is rounded to zero.

Whenever a determinant’s occupation is rounded to zero, it is removed from

memory. It is only added again when it gets spawned upon in a later iteration

once more. The stochastic rounding step is crucial as it ensures that in every

iteration only a very small fraction of all determinants is stored in memory.

This makes the FCIQMC algorithm highly memory-efficient at the expense

that the instantaneous wavefunction only contains limited information about

the wavefunction and its properties. Still, averaged quantities show high

precision.

The Shift

As introduced before, the shift 𝑆 is a global scalar parameter in the algorithm.𝑆 shifts the diagonal elements and enters the calculation in the death/cloning

step according to equation (3.3). An FCIQMC run is usually started with a

constant shift 𝑆 = 𝑆0. If 𝑆0 is larger than the true ground-state energy, the

total walker population

𝑁tot(𝜏) = ∑𝑖 ||𝑁𝑖(𝜏)|| (3.7)

will grow on average. The larger 𝑆0 is chosen, the faster 𝑁tot will grow. This

phase of the simulation is called the walker-growth phase.

As soon as a certain fraction of the desired total population 𝑁target is

reached, the algorithm will subsequently enter variable-shift mode. In this

mode, the shift is dynamically updated every 𝐴 iterations according to

𝑆(𝜏 + 𝐴Δ𝜏) = 𝑆(𝜏) − 𝛾𝐴Δ𝜏 ln(𝑁tot(𝜏 + 𝐴Δ𝜏)𝑁tot(𝜏) ) . (3.8)

The second term is responsible for keeping the shift at a constant value and

counters the exponential growth of walkers. 𝛾 is a damping parameter.
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With this way of updating the shift, one can only approximately converge

to the desired population. If initial walker growth is rapid, then the walker

number may severely overshoot the target number. As the computational

effort roughly scales linearly with 𝑁tot, this can lead to the problem that the

assigned hardware capacity is exceeded and the simulation runs slowly or

crashes when the available memory is exceeded. Especially in the model

systems I wish to study, fast walker growth in the constant-shift phase and

overshooting the total population are common. To remedy this, the shift-

update formula (3.8) was extended by an additional term [118]. The shift is

then updated using

𝑆(𝜏 + 𝐴Δ𝜏) = 𝑆(𝜏) − 𝛾𝐴Δ𝜏 ln(𝑁tot(𝜏 + 𝐴Δ𝜏)𝑁tot(𝜏) )
− 𝜒𝐴Δ𝜏 ln(𝑁tot(𝜏 + 𝐴Δ𝜏)𝑁target ) . (3.9)

The additional term in the equation takes care that the shift converges

to 𝑁target in the large-𝜏 limit. In this scheme, no initial walker-growth phase

is necessary as the additional term is large for low walker numbers that differ

much from 𝑁target. This way, the initial walker growth is still fast but slows

down as soon as 𝑁tot approaches 𝑁target. 𝜒 is an additional free damping

parameter but it can be determined as a function of 𝛾 when assuming a

scalar model of walker population dynamics. In this model, it is assumed

that equation (3.3) is applied deterministically instead of stochastically and

that the initial walker distribition is already proportional to the true solution

– which is approximately true when the simulation is already equilibrated.

The master equation then reduces to the differential equation of the damped

harmonic oscillator in 𝑁tot. The solution of this differential equation has

three fundamental regimes: overdamped, underdamped, and critical. The

convergence of 𝑁tot to 𝑁target is fastest in the critical-damping case. This is

the case when 𝜒 = 𝛾24 . (3.10)

Therefore, this choice of 𝜒 will be used whenever the improved shift-update

formula (3.9) will be used throughout this thesis.

A third way of controlling the population and adapting the shift is the

fixed-𝑁0 method. In this scheme, not the overall population 𝑁tot is fixed

but rather the population 𝑁0 on a prespecified reference determinant |𝐷0⟩.
The reference determinant is usually chosen to be the determinant that is
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expected to have the largest weight in the FCI expansion. A constant 𝑁0 can

be achieved by updating the shift according to

𝑆(𝜏) = ∑𝑗 𝐻0𝑗𝑁𝑗 (𝜏)𝑁0(𝜏) . (3.11)

Here, again an initial growth phase with 𝑆 = 𝑆0 like in the original shift-

update scheme is required until 𝑁0 reaches its target value. 𝐻0𝑗 are all the

matrix elements connecting the reference determinant. When inserting

equation (3.11) into equation (3.3), it is easy to see that this way of updating𝑆 keeps 𝑁0 constant:

Δ𝑁0(𝜏) = −Δ𝜏[(𝐻00 − ∑𝑗 𝐻0𝑗𝑁𝑗 (𝜏)𝑁0(𝜏) )𝑁0(𝜏) +∑𝑗≠0 𝐻0𝑗𝑁𝑗 (𝜏)] = 0 . (3.12)

The shift update schemes according to equations (3.8) and (3.9) only lead

to a constant 𝑁tot. In contrast, equation (3.12) indicates that 𝑁0 is held

exactly constant in the fixed-𝑁0 scheme. 𝑁tot however still fluctuates after

equilibration. The value to which 𝑁tot will eventually converge cannot be

predicted a priori. This constitutes a disadvantage of the fixed-𝑁0 method as

the total memory requirement cannot be determined beforehand. The fixed-𝑁0 method is one possibility to determine the minimum walker number that

still ensures a sign-coherent wavefunction. Sign coherence means that only

one of the possible solutions |Ψ⟩ and −|Ψ⟩ is sampled and the sign problem

is overcome. This will be discussed in section 3.2 in more detail.

3.1.2 Energy Estimators and Properties

As mentioned before, the shift can be used as an estimator for the ground-

state energy of a Hamiltonian in FCIQMC. Regardless on how the shift

is calculated, in equilibrium it will always converge to and then fluctuate

around the sought-for ground-state energy. Still, there are other independent

ways of estimating the ground-state energy. In the context of this thesis,

different energy estimators may be required to judge whether an FCIQMC

run has converged properly in an unbiased manner, especially with respect

to the sign problem (see section 3.2). The different energy estimators are

affected by different systematic biases in different ways, as we will see in

part II. Statistical uncertainties are estimated using the blocking analysis

which is described in appendix A.2.
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The Projected Energy

The most commonly used energy estimator in FCIQMC is the projected energy.

The projected energy in iteration 𝑝 is given by

𝐸proj = ⟨𝐷0 ||| �̂� |||Ψ(𝑝Δ𝜏)⟩⟨𝐷0 |Ψ(𝑝Δ𝜏)⟩ . (3.13)

If |Ψ(𝜏)⟩ equals the ground state |Ψ0⟩ exactly, i.e. is an eigenstate of �̂� , 𝐸proj

equals the exact ground-state energy 𝐸0. If |Ψ(𝜏)⟩ only approximately equals|Ψ0⟩, as it is the case in every FCIQMC simulation due to the stochastic nature

of the algorithm, 𝐸proj is a non-variational estimator of 𝐸0. The advantage of

the projected energy is that it can be obtained with minimal overhead. When

writing the projected energy in terms of instantaneous walker populations,

𝐸proj = ∑𝑗 𝐻0𝑗𝑁𝑗 (𝑝Δ𝜏)𝑁0(𝑝Δ𝜏) , (3.14)

and comparing it with the FCIQMC master equation (3.3), we can see that the

numerator is simply given by the spawns onto the reference determinant |𝐷0⟩.
This makes the calculation of the projected energy possible with almost no

overhead.

The calculation of 𝐸proj is only possible when there is at least one per-

manently occupied determinant. When a system has a sign problem, which

is usually the case, this is a necessity for an unbiased calculation. For sign-

problem-free system however, it is possible that the simulation is unbiased

without a permanently occupied determinant. In these cases, the only usable

energy estimator is the shift (also see section 3.2).

When comparing equations (3.11) and (3.14), one can see that they are

equivalent. So when using the fixed-𝑁0 way of updating the shift, there is

also only a single energy estimator.

The Trial Energy

In systems where the population 𝑁0 on the reference determinant is low, it

can be useful to project the vector �̂� |Ψ(𝜏)⟩ not only onto a single determinant

but onto a linear combination of many. In this case, one is dealing with the

trial energy 𝐸t = ⟨Ψ ||| �̂� |||Ψ(𝑝Δ𝜏)⟩⟨Ψ ||Ψ(𝑝Δ𝜏)⟩ . (3.15)
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 denotes a subspace of the full Hilbert space  called the trial space [119].

It is advantageous be  be chosen such that it contains the 𝑁  determinants

with the largest coefficients in the FCI expansion.  can be determined

approximately by simply taking the 𝑁  determinants with the largest walker

occupations 𝑁𝑖 in an iteration after the initial FCIQMC equilibration phase.

After the trial space has been defined, the Hamiltonian constrained to 
is constructed which will be called �̂� . �̂� is then diagonalised exactly once

after  has been determined to acquire|||Ψ ⟩ = ∑𝑖∈ 𝐶𝑖 |𝐷𝑖⟩ (3.16)

which is the ground state in the subspace with a ground-state energy 𝐸 .

Like for the projected energy, we can write 𝐸t in terms of instantaneous

FCIQMC walker populations as

𝐸t = 𝐸 + ∑𝑗∈ 𝐶𝑗𝑉𝑗∑𝑖∈ 𝐶𝑖𝐶𝑖 (3.17a)

with

𝑉𝑗 = ∑𝑖∈ ⟨𝐷𝑗 ||| �̂� |||𝐷𝑖⟩𝐶𝑖 , |𝐷𝑖⟩ ∈  and ||𝐷𝑗⟩ ∈ . (3.17b)

 is the space of determinants connected to  via �̂� , not including  itself

and containing 𝑁  determinants. The 𝐶𝑖 coefficient (an array of length 𝑁  )

and the 𝑉𝑗 (an array of length 𝑁 ) are kept in memory during the entire

simulation. Since typically 𝑁  ≫ 𝑁  , the storage of the vector 𝑽 is the

bottleneck in the calculation of 𝐸t.

3.1.3 Parallel Implementation

A huge advantage of the FCIQMC algorithm lies in the fact that it can be

implemented in parallel on a large number of CPU cores in a distributed-

memory architecture [120]. Near-linear scaling with the number of CPU

cores has been shown in up to 24 000 cores using the NECI code [18].

However, FCIQMC is not what is typically called “embarrassingly paral-

lel”. “Embarrassingly parallel” is a term used when an algorithm can be easily

divided into subtasks that can be executed largely independently without

depending on results from other subtasks, i.e. no or little communication

between processes is required and there is no computational overhead caused
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by a parallel implementation [121]. The aforementioned estimation of π using

MC in section 2.2 is an example of an embarrassingly parallel algorithm.

FCIQMC can be most efficiently parallelised using a paradigm that resem-

bles domain decomposition [122, 123]. In domain decomposition, an entire

boundary value problem is subdivided into local subdomains with each sub-

domain also being a boundary value problem. The algorithm is iterated once

on the subdomains in parallel and then the results are communicated be-

tween adjacent subdomains. The result of the adjacent subdomains enter as

boundary values for the next iteration. A typical example for this procedure

is the solution of a (partial) differential equation on a grid [124, 125].

To implement parallelism, NECI uses the message passing interface (MPI)

computational standard [126]. MPI implements distributed-memory paral-

lelism, i.e. each process, each of which runs on exactly one physical CPU

core, has its own share of memory. Information that is needed by another

process needs to be sent there using MPI routines first.55 There exist limited read-only
ways of sharing memory between
different processes in the MPI
standard. In NECI, this is used for
the storage of the integrals for
example.

In FCIQMC, the basis functions, which are Slater determinants in the

cases considered in this thesis, can be regarded as the domains. FCIQMC

differs from domain decomposition in the following ways:∙ Only a small fraction of Slater determinants are kept in memory at any

given iteration and that the occupied Slater determinants can change

from iteration to iteration.∙ The annihilation step requires a communication from all processes to

all other processes which cannot be circumvented.

In this section, I will describe how these differences are handled in a memory-

and CPU-efficient manner.

3.1.4 Hashing, Local Spawning, and Death/Cloning Step

For FCIQMC to work efficiently, the determinants need to be distributed

as equally as possible amongst the MPI processes. In the computational

implementation, the Slater determinants are represented as bit strings. Since

the sampled wavefunction typically lives in only a small part of the Hilbert

space, the instantaneously occupied determinants are all similar. To ensure

this, the occupied determinants are assigned hash values using a hashing

function. The crucial property of hash functions exploited here is the follow-

ing: It assigns Slater determinants that have similar bit strings uniformly

distributed hash values ℎ(𝑖) between 0 and 1. The processor 𝑝 on which the
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𝑖-th determinant is stored and where it performs its algorithmic steps is then

determined by 𝑝(𝑖) = ⌊ℎ(𝑖)𝑛proc⌋ (3.18)

with 𝑛proc being the total number of processes. Together with the determi-

nant’s bit string, all other determinant-related information is stored in the

memory assigned to 𝑝(𝑖). This includes the instantaneous walker population

and flags which are boolean variables that contain information about the

determinants status in the calculation. These flags will become crucial when

adaptations to the algorithm will be made to control the sign problem.

The spawning step is then performed on every process fully indepen-

dently in parallel by looping through all determinants on a respective process.

The information about new spawns that have been generated according to

the first term of equation (3.3) is stored locally first. Subsequently, the death/-

cloning step according to the second term of equation (3.3) is also performed

locally and in parallel.

3.1.5 All-to-All Communication and Annihilation

The annihilation step is the most computationally expensive step in parallel

FCIQMC because it requires communication of the spawn arrays from each

process to all others. In MPI language, this is called an all-to-all communica-

tion. The parallel annihilation step is performed as follows: The hash value

and thus the respective process is looked up for each determinant in the

spawn array according to equation (3.18). Then, the send spawn table is par-

titioned by destination MPI process index.6 The newly spawned contribution 6 Local annihilation already on
the parent process is possible
when using a hash table only for
the spawn array. This is not done
routinely, however.

is written into the partition given by its hash value. All new contributions

and the already existing walker number are then added locally. This way,

walkers of opposite signs annihilate. Global simulation variables like the

shift are computed once on the head process and then communicated across

after the conclusion of the iteration. One is again left with the situation that

each determinant is located on a unique process which allows for parallel

spawning in the next iteration.

3.2 The Sign Problem in FCIQMC

When trying to solve for the ground or any excited state of a general Hamil-

tonian, FCIQMC, like any other QMC method, suffers from the infamous

sign problem. The underlying reason of the problem is always the same:

when diagonalising a Hamiltonian with positive and negative off-diagonal



44 full configuration interaction quantum monte carlo

matrix elements, in most cases large positive and large negative contribu-

tions need to be summed up with their respective sign. The result of this

summation, i.e. the true weight of the contribution, might be comparatively

small, however. This is not a problem in deterministic methods as long as

no numerical overflows occur in a practical implementation because then

all occuring signed sums are computed numerically exactly. However, in

stochastic methods it is a problem because sums are evaluated stochastically.

If large positive and large negative cancelling weights are summed by using

infrequent sampling, i.e. using a small number of stochastic walkers, the

signal-to-noise ratio becomes very small. This then leads to long integration

times which for sizeable systems can become computationally prohibitive.

3.2.1 Stoquastic and Stoquastised Matrices

A more quantitative approach to understanding the sign problem is based

on the notion of stoquastic matrices. A stoquastic matrix 𝐒 is defined as

a matrix that only contains off-diagonal matrix elements of one sign. If𝑆𝑖𝑗 > 0 for all 𝑖 ≠ 𝑗 , then the largest eigenvalue can be found without a sign

problem. Since in electronic-structure problems, one is mostly interested in

low-lying eigenvalues, the case 𝑆𝑖𝑗 < 0 for all 𝑖 ≠ 𝑗 is the relevant one. In

this case of a stoquastic matrix, the solution for the smallest eigenvalue is

sign-problem-free.77 These are only the trivial cases
where a sign problem is absent.
There are also matrices that do
not have a sign problem that
are not stoquastic. They will be
discussed in part II.

Based on this definition, the concept of stoquastised matrices can be

introduced. It applies to any real matrix 𝐌. The matrix elements of the two

stoquastised versions 𝐌stoq,± of 𝐌 are defined as

𝑀stoq,±𝑖𝑗 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
±||𝑀𝑖𝑗 || for 𝑖 ≠ 𝑗 ,𝑀𝑖𝑗 for 𝑖 = 𝑗 . (3.19)

Since we are only interested in cases where the solution is sign-problem-free

for the lowest eigenvalue, for the remainder of the thesis we will only refer

to the minus-sign version 𝐌stoq,− =∶ 𝐌stoq as the stoquastised version of 𝐌.

In words, building the stoquastised version of a matrix means flipping the

sign of all positive off-diagonal elements such that the resulting matrix is

stoquastic.

For the quantitative understanding of the sign problem, it is crucial

to note that 𝜆stoq0 ≤ 𝜆0, i.e. that the lowest eigenvalue of the stoquastised

version 𝐌stoq is always lower than or equal to the lowest eigenvalue of

the original matrix 𝐌. This is easy to see with the following argument [38]:
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Suppose, 𝒗0 = 𝑐𝑖0𝒃𝑖 is a normalised eigenvector with eigenvalue 𝜆0, the lowest

eigenvalue of 𝐌. 𝑐𝑖0 are the real coefficients and 𝒃𝑖 is a set of basis vectors.

When 𝐌 is expressed in the same basis, we can then write the corresponding

eigenvalue as 𝜆0 = ∑𝑖𝑗 𝑐𝑖0𝑀𝑖𝑗 𝑐𝑗0 . (3.20)

Let us now consider the vector −||𝒗0|| = −||𝑐𝑖0||𝒃𝑖 which can be considered as the

stoquastised version of the ground state of the non-stoquastised matrix 𝐌.

First, we note that for the expectation value of 𝐌stoq with respect to this

vector we find ∑𝑖𝑗 ||𝑐𝑖0||𝑀stoq𝑖𝑗 ||𝑐𝑗0|| ≤ ∑𝑖𝑗 𝑐𝑖0𝑀𝑖𝑗 𝑐𝑗0 (3.21)

using the definition of a stoquastised matrix from equation (3.19). By applying

the variational principle, we also find for the lowest eigenvalue of 𝐌stoq that

𝜆stoq0 ≤ ||𝑐𝑖0||𝑀stoq𝑖𝑗 ||𝑐𝑗0|| . (3.22)

Combining equations (3.20) to (3.22), we conclude that

𝜆stoq0 ≤ 𝜆0 (3.23)

which is what we wanted to prove.

3.2.2 The Role of Annihilations

To see what is the significance of the stoquastised Hamiltonian �̂� stoq and

its relationship with the annihilation step in the FCIQMC algorithm, let

us imagine a simulation with an extremely low walker population (close

to the limit of a single walker). This is such that the Hilbert space is only

populated by so few walkers such that annihilation events never occur for

all 𝜏. It is apparent that in this edge case of zero annihilations – even though

the propagation of the imaginary-time projection is governed by −�̂� , the

signed, true Hamiltonian – the sign information loses importance when

calculating the shift estimator. The algorithm cannot distinguish between

ground-state solutions of �̂� and of the stoquastised version �̂� stoq. The

stoquastised solution is given by |Ψstoq0 ⟩ = (𝑁+𝑖 + 𝑁−𝑖 ) |𝐷𝑖⟩ instead of the

true fermionic solution |Ψ0⟩ = (𝑁+𝑖 − 𝑁−𝑖 ) |𝐷𝑖⟩. 𝑁+𝑖 are the positive walker

contributions, 𝑁−𝑖 are the negative walker contributions. In the former case,

it is obvious that the sign information is disregarded since the two types of

walker contributions are simply summed up. Since the ground state of �̂� stoq is



46 full configuration interaction quantum monte carlo

always lower than the ground state of �̂� and FCIQMC is a projector method

that projects out all but the state with the lowest energy, the algorithm

evolves according to the incorrect master equation

Δ(𝑁+𝑖 + 𝑁−𝑖 )(𝜏) = −Δ𝜏[∑𝑖≠𝑗 𝐻 stoq𝑖𝑗 (𝑁+𝑗 + 𝑁−𝑗 )+
(𝐻 stoq𝑖𝑖 − 𝑆)(𝑁+𝑖 + 𝑁−𝑖 )] . (3.24)

The shift energy estimator 𝑆 converges to the ground-state energy of �̂� stoq

and the signal of true fermionic ground state is lost in noise.

When adding more walkers that simultaneously occupy the Hilbert

space, the likelihood of annihilation events increases. This means that the

ground state of �̂� stoq is now penalised through annihilation events. This

penalty procedure can be regarded as a damping term in the evolution of

the undesired stoquastised solution according to

Δ(𝑁+𝑖 + 𝑁−𝑖 )(𝜏) = Δ𝜏[∑𝑖≠𝑗 𝐻 stoq𝑖𝑗 (𝑁+𝑖 + 𝑁−𝑖 )𝑁𝑗 (𝜏)+
(𝐻 stoq𝑖𝑖 − 𝑆)(𝑁+𝑖 + 𝑁−𝑖 )] + 𝜅𝑁+𝑖 𝑁−𝑖 (3.25)

where 𝜅 is an average annihilation rate of positive and negative walkers [38].

The emergence of the true solution 𝑁+𝑖 −𝑁−𝑖 according to the desired master

equation driven by �̂� is not affected by annihilations as walkers of opposite

signs do not contribute here anyway. This way, annihilation events stabilise

the true fermionic solution.

It is important to note that there is a system-dependent minimum number

of walkers 𝑁min above which the different energy estimators converge to

the exact energy. It is a crucial observation that not the entire Hilbert space

needs to be occupied with walkers such that the fermionic instead of the

stoquastised solution emerges. In some cases, less than 1 % of the Hilbert

space needs to be occupied such that enough annihilation events occur on

average to ensure that the simulation converges to the fermionic solution.

However, there are also other cases where almost the entire Hilbert space

needs to be filled with walkers. In these cases, an additional way to control

the sign problem is necessary which will be discussed in the next section.

Empirically, in most ab initio systems and some model systems – especially

when they are formulated in delocalised orbitals – one can find that during
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the walker-growth phase, during which a constant shift 𝑆(𝜏) = 𝑆0 is kept,

an annihilation plateau occurs. The walker-growth rate 𝑁tot(𝜏 + Δ𝜏)/𝑁tot(𝜏)
is slowed down during the plateau phase which can be observed in the

simulation dynamics. During the plateau phase, more annihilations take

place and thus the correct sign structure emerges [38]. For a walker number

below the annihilation plateau, the sign problem is still unresolved and only

biased results can be obtained. For any walker number above the plateau, any

sign-problem-related bias is removed. Often in systems that are formulated

in terms of localised orbitals, the annihilation plateau cannot be observed

and therefore cannot be used to determine 𝑁min. When using the shift update

equation equation (3.9) without a walker-growth phase with constant shift,

an alternative method to determine the height of the annihilation plateau

has been presented [118].

3.2.3 The Initiator Approximation

The initiator method is the standard way of controlling the sign problem

in FCIQMC [17, 36, 37]. It is used when reaching 𝑁min is computationally

impossible which is the case for most systems of interest. Unlike the discrete

annihilation mechanism, the initiator approximation – as the name suggests

– introduces a systematic bias into the sampled wavefunction and thus the

extracted properties. The bias is called the initiator bias.

When using the standard initiator method, the notion of initiators is

introduced. A Slater determinant |𝐷𝑖⟩ is called an initiator in iteration 𝑝 if its

absolute population ||𝑁𝑖(𝑝Δ𝜏)|| > 𝑡init. 𝑡init is called the initiator threshold. It is a

real number that is specified at the beginning of the simulation. Additionally,

a determinant is defined as an initiator if it has been spawned upon by two or

more different determinants, the so-called multiple-spawns rule. The space

of initiators can change in every iteration depending on the instantaneous

occupations. The initiator approximation modifies the spawning step of the

FCIQMC algorithm depending on whether a determinant is an intiator or

not:∙ Initiators can spawn freely to any other determinant.∙ Non-initiators can only spawn to already occupied determinants.

The initiator method typically allows for convergence of the simulation

at walker numbers well below 𝑁min. This is because determinants that have

a well-established population of one sign are sign-coherent with respect to

the average signs of all other determinant populations. Therefore, a correct
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global sign structure has been formed inside the intiator subspace. The global𝑡init, for which the number of sign-coherent determinants is large enough

such that the sign problem is resolved, in principle depends on the system

and the total population used. Also, the initiator bias increases for larger 𝑡init.

In practice however, the value for which the sign problem is overcome and

the magnitude of the initiator bias are rather insensitive with respect to 𝑡init.

Typically, 𝑡init is chosen between 1 and 10.

Effectively, the initiator method is similar to a truncation of the Hilbert

space. There are, however, two key differences to a strict truncation:∙ Non-initiators can passively acquire walker population. This walker

population contributes to all estimators of wavefunction properties

and spawns onto occupied determinants are possible.∙ The initiator space is dynamically changing and depends on the total

population 𝑁tot.

In the limit 𝑁tot → ∞, the initiator bias approaches zero as the population

on all determinants exceeds the initiator threshold. Due to the similarity to a

strict truncation, the initiator bias in most cases introduces a positive shift to

the energy estimators shift, projected energy, and trial energy. The energy

estimates then converge monotonically to the exact ground state energy as a

function of 𝑁tot. In some rare cases however, the initiator bias is negative and

the energy estimates converge from below. Typically, an extrapolation to the

exact ground-state energy is not possible due to an irregular convergence of

the initiator bias with respect to the total walker number.

An extension of the initiator method is available with the adaptive-shift

algorithm. It includes spawning events that are rejected due to the initiator

criterion into the diagonal elements of non-initiators [57, 58, 127, 128]. Fur-

thermore, a second-order Epstein–Nesbet correction has been used to correct

for the initiator bias [59]. Also, selected configuration interaction (SCI) cal-

culations have previously been used to preselect initiator spaces [56] where

the SCI space has been constructed using the heat-bath technique [129–131].

A related approach will be used in chapter 8 where fixed initiator spaces will

be built based on analytical fast-to-evaluate wavefunction ansatzes instead.
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Figure 3.1. Model of imaginary-
time propagation according to
the toy Hamiltonian from equa-
tion (3.26). If the Hilbert space
is saturated with walkers and
all possible spawns are realised,
which effectively corresponds to
a deterministic propagation, the
sign problem is resolved in every
iteration due to annihilations.
However, if the wavefunction
is represented in a stochastic
manner in a low-walker regime,
spawning can lead to the propaga-
tion of wrong signs.

|𝐷0⟩
−

|𝐷1⟩

−

|𝐷2⟩

−

|𝐷3⟩
−

(a) Eigenvector corresponding to the lowest eigenvalue. All coefficients are negative
which, however, does not indicate that there is no sign problem.|𝐷0⟩

−

+ |𝐷1⟩

−

|𝐷2⟩

−

|𝐷3⟩

−− −

+

(b) Deterministic imaginary-time propagation with Δ𝜏 = 1. Only spawns to |𝐷0⟩ from all
other basis functions are shown. Due to opposite-sign contributions, an annihilation takes
place (indicated by the orange crosses).|𝐷0⟩+ |𝐷1⟩ |𝐷2⟩ |𝐷3⟩

−
+

(c) Stochastic imaginary-time propagation with Δ𝜏 = 1. Here, for low 𝑁tot it can happen
that |𝐷0⟩, |𝐷1⟩, and |𝐷2⟩ are unoccupied in a given stochastic snapshot. Still, |𝐷3⟩ can spawn
to |𝐷0⟩, leading to a wrong sign in the next iteration.
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3.2.4 Toy Example

Let us make a small practical example of how the sign problem emerges in

FCIQMC. For this, I define the matrix

�̂� =
|𝐷0⟩ |𝐷1⟩ |𝐷2⟩ |𝐷3⟩⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
𝑑 −1 −1 +1−1 𝑑 −1 −1−1 −1 𝑑 −1+1 −1 −1 𝑑

(3.26)

with the four basis vectors |𝐷0⟩, |𝐷1⟩, |𝐷2⟩, and |𝐷3⟩ which would correspond

to Slater determinants in actual FCIQMC calculations of fermionic systems.𝑑 is some diagonal element that is not relevant for the consideration here as

the sign problem is mainly a feature of the off-diagonal part of a matrix.

The eigenvector corresponding to the lowest eigenvalue 𝐸0 = −2.2361+𝑑
is given by

|Ψ0⟩ = −0.372 |𝐷0⟩ − 0.602 |𝐷1⟩ − 0.602 |𝐷2⟩ − 0.372 |𝐷3⟩ . (3.27)

It is depicted in figure 3.1a. Even though there are coefficients of only one

sign, this does not mean there is no sign problem.

To see this, let us look at one application of the off-diagonal part of −�̂� ,

corresponding to one step in the imaginary-time propagation with Δ𝜏 = 1.

For an equilibrated walker-saturated simulation, which means that all basis

functions are already occupied with a walker weight proportional to their𝐶𝑖 weight, the part of this application that involves spawning events to|𝐷0⟩ is shown in figure 3.1b. This corresponds to a deterministic (i.e. non-

stochastic) evolution. It becomes evident that there are opposite-sign walker

contributions that are added with their respective sign. The walkers therefore

annihilate.

Figure 3.1c shows the situation in which the Hilbert space is only occu-

pied by a small number of walkers. In the instantaneous snapshot of the

wavefunction depicted, |𝐷0⟩, |𝐷1⟩, and |𝐷2⟩ are unoccupied. A spawning

event from |𝐷3⟩ to |𝐷0⟩ leads to a walker on |𝐷0⟩ with a wrong positive sign

which will be present in the next iteration (unless removed due to the di-

agonal death/cloning step). This is a manifestation of the sign problem in

the low-walker limit and causes noise that makes trial energy estimators

unusable. Also, the shift energy estimator will be biased as the walker growth
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rate 𝑁tot(𝜏 + Δ𝜏)/𝑁tot(𝜏), which is measured by the shift, is too large due to

non-occuring annihilations. This leads to a too low shift value.

3.2.5 Practical Implications of the Sign Problem

Now that the sign problem in FCIQMC has been discussed fundamentally,

I will look at how the sign problem affects actual FCIQMC calculations.

Figure 3.2 shows the behaviour of important simulation variables that are

influenced by the sign problem for a simple, yet non-trivial example system:

the Hubbard model at interaction strength 𝑈/𝑡 = 8 with a 4 × 4 square lattice

geometry with periodic boundary conditions. The Hubbard model will be

introduced in chapter 4, however here it is just used as a placeholder for

any kind of FCIQMC-simulable system. The simulations are conducted at

two different walker numbers that each are targeted by using the improved

population control according to equation (3.9), respectively: one at 𝑁tot =1 × 106 < 𝑁min and the other at 𝑁tot = 5 × 106 > 𝑁min. 𝑁min, as defined

above, is the minimum number of walkers above which the sign problem is

overcome and the correct wavefunction is sampled.

One can now judge from the behaviour of

(a) the population on the determinant with the highest population, the

reference determinant,

(b) the projected energy, and

(c) the shift

whether the sign problem is overcome or not when 𝑁min is unknown. As

visualised in figure 3.2, for 𝑁tot < 𝑁min the simulation variables show the

following behaviour:

(a) The population on the reference drops to and then fluctates around 0,

with no properly established consistent sign.8

8 In principle, the overlap with
the reference determinant and
the sampled wavefunction ⟨𝐷0|Ψ⟩
can vanish and the simulation can
still be sign-coherent. This occurs
when there is a better trial wave-
function |Ψt⟩ such that ⟨Ψt|Ψ⟩, the
denominator of the trial energy,
still has a well-established sign
and is non-zero. The sign problem
is unresolved if no trial wavefunc-
tion can be found (except for the
exact ground-state wavefunction)
such that the overlap shows this
behaviour. However, the refer-
ence population is usually a good
approximation and can be deter-
mined with no computational
overhead.

(b) The projected energy fluctuates wildly and is undefined when the

reference population is exactly zero.

(c) The shift is below the exact energy 𝐸0 and does not agree with the av-

erage projected energy. It lies above the stoquastised energy, however.

This is due to the fact that some but not all necessary annihilation

events take place during the run.

For 𝑁tot ≥ 𝑁min, the variables show the following behaviour:
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Figure 3.2. Simulation variables
(reference population, projected
energy, and shift) as a function
of imaginary time in an actual
FCIQMC simulation of a 4 × 4
Hubbard model at 𝑈/𝑡 = 8 with
periodic boundary conditions.
Two total walker populations are
looked at: 𝑁tot = 1 × 106 which
is below the minimum walker
population 𝑁min, where the sign
problem is still unresolved, and𝑁tot = 5 × 106 which is above 𝑁min.

0 10 20 30 40 50 60�
0
50
100
150

N 0(�)

Ntot = 1 × 106Ntot = 5 × 106

(a) Reference population 𝑁0 as a function of imaginary time 𝜏. For 𝑁tot ≥ 𝑁min, 𝑁0 ap-
proaches a constant value of one sign. For 𝑁tot < 𝑁min, 𝑁0 vanishes and fluctuates around
zero with both signs being present.

0 10 20 30 40 50 60�
−20−100
1020

E proj(�)

E0 = −8.4689

(b) Projected energy 𝐸proj as a function of 𝜏. For 𝑁tot ≥ 𝑁min, 𝐸proj approaches the correct
ground-state energy 𝐸0 on average. For 𝑁tot < 𝑁min, 𝐸proj fluctuates strongly due to a
vanishing 𝑁0 and its average does not approach 𝐸0.

0 10 20 30 40 50 60�
−10
−5
0

S(�)

Estoq0

(c) Shift 𝑆 as a function of 𝜏. For 𝑁tot ≥ 𝑁min, 𝑆 like 𝐸proj converges to 𝐸0 on average. For𝑁tot < 𝑁min, the 𝜏-averaged 𝑆 converges to a value lower than 𝐸0 due to the unresolved
sign problem.
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Figure 3.3. FCIQMC simula-
tion runs when applying the
initiator approximation with𝑡init = 3. When using the ini-
tiator method, one observes
convergent behaviour also for𝑁tot = 1 × 106 < 𝑁min, unlike
in the full scheme shown in fig-
ure 3.2. This comes at the expense
of introducing a bias in the energy
estimators. The biases vanish in
the limit of infinite total popu-
lation but are still non-zero for𝑁tot = 5 × 106 > 𝑁min.0 10 20 30 40 50 60�−8.6

−8.4
−8.2
−8.0
−7.8
−7.6

E(�)
E0S, Ntot = 1 × 106S, Ntot = 5 × 106Eproj, Ntot = 1 × 106Eproj, Ntot = 5 × 106

(a) The population on the reference fluctuates around a non-zero value

and does not change sign during the entire simulation.

(b) The projected energy fluctuates around 𝐸0.
(c) The shift also fluctuates around 𝐸0 and on average agrees with the

projected energy. When increasing 𝑁tot, the average shift does not

change.

Examples for FCIQMC runs on the same system with the initiator method

are shown in figure 3.3. Unlike the full unbiased algorithm with annihilations

only, the algorithm shows converging behaviour not only for 𝑁tot ≥ 𝑁min

but also for 𝑁tot < 𝑁min: Also for 𝑁tot = 1 × 106, the reference population has

a well-established sign and the projected energy and the shift converge to

the same value on average. As discussed before, this comes at the expense of

a systematic bias in the wavefunction and especially the energy estimates. It

is important to note that the energy estimators converge to the exact energy

for 𝑁tot → ∞. However, the energy is still biased for 𝑁tot ≥ 𝑁min alone

when applying the initiator approximation. In this case, it is advantageous

to revert back to the full method. Especially in the lattice model systems that

will be introduced in chapter 4, the convergence behaviour with respect to𝑁tot can be problematic and too slow. This is the main justification for the

introduction of improved approximations in chapter 8.





4 The Hubbard Model

Realistic physical systems are hard to treat numerically, regardless of the

numerical method and approximations applied. This is true for any sizable

molecule but it is especially true for macroscopic solids. However, macro-

scopic solids have a key feature that can be exploited when attempting to

study them: their periodicity. Macroscopic solids consist of an almost infinite

number of ever-repeating primitive cells. This limit of infinite number of

primitive cells is called the thermodynamic limit.

Even when limiting a calculation to a finite number of primitive cells, the

problem can still be hard to treat if all constituent particles in a large number

of orbital basis functions have to be treated. This is one of the reasons for

the success of lattice model systems throughout theoretical sciences. The

foundation of the lattice models is again the Born–Oppenheimer approxi-

mation. Solids can be well approximated by negatively-charged electrons

moving in a field of positively-charged ions that form a static periodic lattice

which is the first defining feature of lattice models. The geometrical shape of

this lattice emerges from the chemical constituents of the solids but is simply

imposed upon the lattice model by construction. The second feature that

defines lattice models is the fact that they are model systems. This means

that – aside from the Born–Oppenheimer approximation – also some degrees

of freedom of the electronic part of the ab initio Schrödinger equation are

removed. This has three reasons:

1. Removing degrees of freedom typically reduces the computational cost

in simulating the system with high accuracy. Phenomenona observed

in experiments can often be observed in simulations, even when some

interactions are not simulated.

2. Inversely, models reduce the complexity and therefore enhance fun-

damental understanding. When a realistic system is simplified and

a specific phenomenological effect is still observed, the underlying

mechanisms can be pinpointed more easily. Complex interactions

can possibly be quantified and classified by introducing effective in-

teraction parameters as we will see in the Hubbard and Heisenberg

model.
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3. Due to their universality, model systems are ideal when used as bench-

marking systems.

In this chapter, I will introduce the Hubbard model in more detail. This

is the system in which the numerical studies in part II will be conducted.

The Hubbard model is one of the most well-known and well-studied

lattice model systems. It was independently introduced by J. Hubbard, M.

Gutzwiller, and H. Kanamori [33–35] in 1963 and was subsequently refined

by J. Hubbard in a series of articles [132–136].

It is a simplified model of a real periodic solid, consisting of only two

energetic contributions in the Hamiltonian: the kinetic part which describes

hopping processes of electrons between ionic sites and the potential part

which describes the on-site interaction between electrons. The kinetic part is

parametrised by the hopping parameter 𝑡. The potential part is parametrised

by the correlation parameter 𝑈 .

4.1 Derivation of the Hubbard Hamiltonian

To introduce the approximations of the general ab initio Hamiltonian from

equation (1.3) that lead us to the simplified Hubbard Hamiltonian, let us

start from its second quantised version introduced in section 2.1.2 [137].

Since we are dealing with a periodic system, the electronic Hamiltonian from

equation (2.5) is modified slightly to become

�̂�lattice = ∑𝑖𝑎 ∑𝜇 ∑𝜎 𝑡𝑎𝜇𝑖𝜇 𝑐†𝑎𝜇𝜎𝑐𝑖𝜇𝜎 + 12 ∑𝑖𝑗𝑎𝑏 ∑𝜇𝜈𝛼𝛽∑𝜎𝜎′ 𝑈 𝑎𝛼,𝑏𝛽𝑖𝜇,𝑗𝜈 𝑐†𝑎𝛼𝜎𝑐†𝑏𝛽𝜎′𝑐𝑗𝜈𝜎′𝑐𝑖𝜇𝜎 . (4.1)

Every creation and annihilation operator 𝑐(†)𝑖𝜇 now not only carries a site

index 𝑖 but also a band index 𝜇. The site index numbers the ionic sites as

positions in real space, the band index numbers the occupied energy band.

Thus the transition amplitudes are – analogously to equation (2.6) – given

by

𝑡𝑎𝜇𝑖𝜇 = ∫ d𝒓 𝜑∗𝜇(𝒓 − 𝑹𝑎)ℎ̂1𝜑𝜇(𝒓 − 𝑹𝑖) , (4.2a)𝑈 𝑎𝛼,𝑏𝛽𝑖𝜇,𝑗𝜈 = ∫ d𝒓1 d𝒓2 𝜑∗𝛼(𝒓1 − 𝑹𝑎)𝜑∗𝛽(𝒓2 − 𝑹𝑏)ℎ̂2𝜑𝜇(𝒓1 − 𝑹𝑖)𝜑𝑗 (𝒓2 − 𝑹𝑗 ) .
(4.2b)
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ℎ̂1 and ℎ̂2 are again the one- and two-body parts of the Hamiltonian, respec-

tively. The orbital functions 𝜑𝜇(𝒓) in the case of a periodic lattice are given

by the Wannier functions that are defined as

𝜑𝜇(𝒓 − 𝑹) = 𝐿− 12 ∑𝒌 exp(−i𝒌 ⋅ 𝑹)𝜓𝜇𝒌(𝒓) (4.3)

where 𝐿 is the number of primitive cells considered. They form an orthogonal

set of one-body basis functions and they are strongly localised around 𝒓 = 𝑹,

similar to localised molecular orbitals. The operators 𝑐†𝑖𝜇𝜎 and 𝑐𝑖𝜇𝜎 therefore

create and annihilate an electron in the Wannier orbital 𝜑𝜇(𝒓 − 𝑹𝑖) with

spin 𝜎, respectively. 𝜓𝜇𝒌 in turn are a set of Bloch functions. Bloch’s theorem

states that for a periodic potential – as it is obviously present in a periodic

lattice – the eigensolutions of the Schrödinger equation are of the form

𝜓𝜇𝒌(𝒓) = exp(i𝒌 ⋅ 𝒓)𝑢𝜇𝒌(𝒓) . (4.4)

𝑢𝜇𝒌 are functions that have the periodicity of the lattice. 𝜇 numbers the

different solution to the eigenvalue equation

ℎ̂1𝜓𝜇𝒌(𝒓) = 𝜀𝜇𝒌𝜓𝜇𝒌(𝒓) . (4.5)

𝜀𝜇𝒌 thus define the energy bands, i.e. they are the dispersion relations and

define the relation between the single-particle energy and the quasi momen-

tum 𝒌 in energy band 𝜇.

4.1.1 The Hubbard Hamiltonian in the Real-Space Basis

Now that we have established the basic form of the electronic Hamiltonian

in a periodic system and defined the Wannier functions as basis states, we

can now introduce the Hubbard approximations to equation (4.1). When all

electron–electron interactions 𝑈 𝑎𝛼,𝑏𝛽𝑖𝜇,𝑗𝜈 = 0 are small compared to all 𝑡𝑎𝜇𝑖𝜇 , it is a

good approximation to ignore them. This corresponds to the band picture

of a solid. In the Hubbard model however, it is assumed that the electron–

electron interactions are not negligible but they are local. This means that

the on-site interactions dominate all other interactions. Therefore, only the𝑈 𝑖𝛼,𝑖𝛽𝑖𝜇,𝑖𝜈 are chosen to be non-zero. Furthermore, the Hubbard model assumes

that only one band is close to the Fermi level. Thus, we are only left with

the interaction terms 𝑈 𝑖𝜇,𝑖𝜇𝑖𝜇,𝑖𝜇 . The effect of the higher-energy bands can be

included in the hopping and interaction parameters of the one conduction

band considered, making them effective parameters. Since all ions are of the
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same type, the single effective interaction parameter can simply be written

as 𝑈 . Therefore, we are left with the general Hubbard Hamiltonian

�̂�Hubbard, general = ∑𝑖𝑎𝜎 𝑡𝑎𝑖 𝑐†𝑎𝜎𝑐𝑖𝜎 + 𝑈 ∑𝑖 𝑐†𝑖↑𝑐†𝑖↓𝑐𝑖↓𝑐𝑖↑ . (4.6)

Here, also the factor 1/2 has been absorbed into 𝑈 .

Additional constraints can also be put on the kinetic part of the Hamilto-

nian. Accounting for the the fact that the Wannier basis functions are typi-

cally localised around 𝒓 = 𝑹, hopping processes between nearest-neighbour

lattice sites usually dominate. Therefore, in the so-called tight-binding ap-

proximaton the general amplitudes 𝑡𝑎𝑖 are restricted to be non-zero only if 𝑖
and 𝑎 are the indices of neighbouring lattice sites. These combinations are

denoted as ⟨𝑖𝑎⟩ and the hopping amplitude is chosen to be −𝑡 for all of those.

With this, we finally arrive at

�̂�Hubbard = −𝑡 ∑⟨𝑖𝑎⟩𝜎 𝑐†𝑎𝜎𝑐𝑖𝜎 + 𝑈 ∑𝑖 �̂�𝑖↑�̂�𝑖↓ (4.7)

where also the occupation number operators �̂�𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎 are used to simplify

the notation. This is the form of the Hubbard model that will be used in

the remainder of the thesis. Despite its apparent simplicity and the many

approximations that have been made, the Hubbard model still exhibits a very

rich spectrum of physical phenomena, as will be discussed in section 4.2.

It is also numerically hard or even impossible to solve for a general lattice

geometry and for arbitrary hopping and interaction parameters. Even though

the Hubbard model in tight-binding approximation only has one effective

parameter 𝑈/𝑡, both the physical behaviour and the most efficient ways to

solve it numerically differ vastly for different 𝑈/𝑡. For 𝑡 > 0 and 𝑈 > 0, the

system is called repulsive. For 𝑈 < 0, it is attractive.

When expanding the Hubbard Hamiltonian in a many-particle basis

of Slater determinants, the potential part will become the diagonal and

the kinetic part will become the off-diagonal contributions. It is therefore

apparent that �̂�Hubbard becomes purely diagonal for 𝑈/𝑡 → ∞. It is purely

off-diagonal for 𝑈/𝑡 = 0. This case however can be solved by a basis rotation

analytically which will be discussed in the next section.

4.1.2 The Hubbard Hamiltonian in the Reciprocal-Space Basis

To diagonalise the Hamiltonian for 𝑈/𝑡 = 0, a basis transformation into

reciprocal space needs to be performed. This leads to a different representation
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of the Hubbard Hamiltonian, also for 𝑈/𝑡 ≠ 0. To do this, we will use the

Bloch functions defined in equation (4.4) directly instead of the localised

Wannier functions from equation (4.3). The Bloch functions can be obtained

from the Wannier functions by inverse Fourier transformation according to

𝜓𝒌(𝒓) = 𝐿− 12 ∑𝑹 exp(i𝒌 ⋅ 𝑹)𝜑(𝒓 − 𝑹) . (4.8)

The band index is neglected here. Accordingly, also the creation and an-

nihilation operators in Wannier space and in Bloch space are connected

via 𝑐(†)𝒌𝜎 = 𝐿− 12 ∑𝑖 exp(i𝒌 ⋅ 𝑹𝑖)𝑐(†)𝑖𝜎 . (4.9)

𝑐(†)𝒌𝜎 now annihilates (creates) an electron with quasi momentum 𝒌 and spin 𝜎
in the delocalised Bloch orbital 𝜓𝒌. Inserting this definition into equation (4.7)

and using

𝐿−1∑𝑹 exp[(𝒌 − 𝒌′) ⋅ 𝑹𝑖] = 𝛿𝒌𝒌′ and (4.10a)

𝐿−1∑𝒌 exp[𝒌 ⋅ (𝑹 − 𝑹′)] = 𝛿𝑹𝑹′ , (4.10b)

we arrive at

�̂� 𝑘-space
Hubbard = ∑𝒌𝜎 𝜀𝒌�̂�𝒌𝜎 + 𝑈𝐿 ∑𝒌𝒌′𝒒𝜎𝜎′ 𝑐†(𝒌−𝒒)𝜎𝑐†(𝒌′+𝒒)𝜎′𝑐𝒌′𝜎′𝑐𝒌𝜎 . (4.11)

We can see that for a non-interacting system with 𝑈/𝑡 = 0, the Hamiltonian

is already diagonal in this basis. 𝜀𝒌 again is the single-particle dispersion

relation. For a lattice with lattice vectors 𝒂𝑖, it is given by

𝜀𝒌 = −2𝑡∑𝑖 [cos(𝒌 ⋅ 𝒂𝑖)] . (4.12)

The interacting part of the Hamiltonian leads to off-diagonal elements in the

many-particle basis. It describes a scattering process of two electrons with

opposite spins.

4.2 Physical Features of the Hubbard Model

Despite the many approximation steps taken from the original multiband,

multiorbital ab initio Hamiltonian in equation (4.1) to the Hubbard Hamilto-

nians in equations (4.7) and (4.11), the Hubbard model exhibits many striking
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features of more complex solid-state systems. Solely by introducing a finite

repulsive on-site interaction 𝑈 > 0, the system’s collective behaviour can

change fundamentally depending on the system’s characteristics. A Hubbard

system in the tight-binding approximation can be characterised by∙ the number of sites 𝑁s and the lattice geometry,∙ the ratio of the on-site interaction to the hopping amplitude 𝑈/𝑡,∙ the filling given as the ratio between number of electrons and number

of sites 𝑛f = 𝑁el/𝑁s, and∙ the inverse temperature 𝛽 in a canonical ensemble.

It is unquestionably impossible to give an exhaustive overview of the phe-

nomenology and applications of the Hubbard model in this thesis. I will

therefore just give a brief overview to explain why it is highly relevant to

the field of solid state physics and chemistry. The systems considered in this

thesis are all at 1/𝛽 = 0, do have repulsive interaction (𝑈/𝑡 > 0), and are

close to half-filling.

One of the most crucial features that is correctly described by the Hubbard

model is the existence of a Mott insulator transition [138, 139]. A Mott

insulator is an electronic system that would be expected to be a conductor

in a mean-field picture purely judging by the band structure but turns out to

be a insulator due to the electron correlation. This is a feature of Hubbard

systems: The kinetic part of the tight-binding Hubbard Hamiltonian clearly

is conducting. In a one-dimensional lattice geometry however, one finds that

despite this fact the system is insulating for all 𝑈/𝑡 > 0. For two-dimensional

systems, the phase diagram is more involved.

Apart from mottism, unconventional superconductivity [140, 141] with𝑑-wave pairing away from half-filling [142, 143], striped states [144, 145],

charge and spin density waves [146], and pseudogaps have been observed in

the Hubbard model phase diagram.

4.3 Numerical Solution

As mentioned before, the solution of the Hubbard model in general is very

challenging numerically. In the special case of one-dimensional systems, an

analytical solution using the Bethe ansatz exists. It allows for the derivation

of a set of algebraic equations, the Lieb–Wu equations, that can be solved

analytically in the thermodynamic limit. In three and more dimensions,
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a mean-field description is typically a sufficiently accurate approximation.

Therefore, methods like dynamical mean-field theory (DMFT) can be applied

successfully in these cases [147]. The two-dimensional case turns out to be

by far the most challenging one. This is especially true in the intermediate

interaction regime for 4 ≲ 𝑈/𝑡 ≲ 12 for which both the non-interacting

case – where the 𝑘-space description becomes exact – as well as the infinite-

interaction case – where the system becomes the Heisenberg or 𝑡–𝐽 model

(see section 4.4), respectively – are bad approximations.

There are countless computational methods to solve the Hubbard model,

all with their own strengths and weaknesses. Although there are overlaps,

roughly speaking they can be organised into three categories [54]:∙ Embedding methods approximate properties of a desired infinite sys-

tem by solving the problem for a finite embedded system that is

self-consistently optimised. Examples are the density matrix em-

bedding theory (DMET) [148], the dynamical cluster approximation

(DCA) [149], and the dual fermion method (DF) [150].∙ Green’s function-based methods stochastically evaluate the so-called

many-body perturbation series and provide the self energies and

Green’s functions. Properties on the real-frequency axis can be evalu-

ated subsequently but limit the system size the method can be applied

to. Diagrammatic Monte Carlo (DiagMC) [151, 152] is an example, but

also DCA and DF make use of Green’s function techniques.∙ Wavefunction-based methods calculate an approximation of the ground-

state wavefunction of the system. Examples are unrestricted coupled

cluster theory including singles and doubles (UCCSD) [153–155], dif-

fusion Monte Carlo with fixed nodes (DMC) [45], multireference pro-

jected Hartree–Fock (MRPHF) [156], density matrix renormalisation

group (DMRG) [157], auxiliary-field QMC (AFQMC) [82, 158, 159], and

also FCIQMC [112, 160, 161].

DMC, AFQMC, and DMRG have already been presented in more detail in

chapter 2. Apart from the analytical Bethe ansatz, DMRG performs well in

one-dimensional (1-d) and close-to-1-d systems due to its reliance on locality

in the MPS description. Monte Carlo methods typically exhibit a sign problem

because the standard Hubbard model deals with fermions. AFQMC however

has the special feature that it is sign-problem-free for 𝑛f = 1 (half-filling) on

bipartite lattices. This is due to a special symmetry that makes all auxiliary

fields positive (see section 2.2.3).
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In chapter 5, it will be shown that FCIQMC can also treat very large one-

dimensional systems with more than 100 sites because of a non-extensive

sign problem. I will also demonstrate how the FCIQMC algorithm can be

adapted to deal with the weak sign roblem in Hubbard systems close to

half-filling which exhibit a highly spread-out wavefunction.

4.4 Large-Interaction Limit

For 𝑈/𝑡 → ∞, the Hubbard model transforms into the Heisenberg model.

Even though it was described in the 1920s already, it can be seen as a special

case of the Hubbard model [26, 28, 162–164]. It is derived considering the

the kinetic term as a perturbation to the on-site interaction term and then

doing second-order perturbation theory [165]. The resulting Hamiltonian is

given by �̂�Heisenberg = 𝐽 ∑⟨𝑖𝑗⟩ �̂�𝑖 ⋅ �̂�𝑗 . (4.13)

⟨𝑖𝑗⟩ again defines the sum over nearest-neighbouring sites 𝑖 and 𝑗 . 𝐽 is the

isotropic interaction parameter. 𝐽 > 0 leads to antiferromagnetic coupling,

the case mostly studied. �̂�𝑖 = (𝑆𝑥𝑖 , 𝑆𝑦𝑖 , 𝑆𝑧𝑖 ) is the spin operator on site 𝑖. �̂�2𝑖 has

the well-known eigenvalues 𝑆(𝑆 + 1) with 𝑆 ∈ { 12 , 1, 32 ,…}
. Here, the focus

will on the case 𝑆 = 12 , i.e. there is a single electron on each site.99 There are also anisotropic gen-
eralisations of the model: If there
are separate 𝐽𝑥 , 𝐽𝑦 , and 𝐽𝑧 for each
direction of the spin, the model is
called the XYZ Heisenberg model.
If 𝐽𝑥 = 𝐽𝑦 , it is called the XXZ
Heisenberg model.

The Heisenberg Hamiltonian describes magnetic interactions of quantum-

mechanical spins that are localised at their respective lattice site. Like the

Hubbard model, it is an effective model neglecting most of the degress of free-

dom but still carrying the most fundamental parts. There is a variety of one-

dimensional [166–168], two-dimensional [169–171], and three-dimensional

systems [172, 173] that show a behaviour that can be well described by the

Heisenberg model. Like the Hubbard model, the Heisenberg model can be

solved analytically in one dimension using the Bethe ansatz [174–178].

With respect to the success of QMC methods in treating the Heisenberg

model, it is important to note that the Heisenberg model on a bipartite lattice

is sign-problem-free in any number of dimensions. A proof for this will be

given in section 5.1.2. It explains heuristically why the sign problem of the

Hubbard model in the real-space basis decreases with increasing 𝑈/𝑡.
4.5 Energy Units

All energies given for the Hubbard model throughout this thesis will be given

as total energies in units of 𝑡.
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5 Classification of the Sign Problem in Model Systems

With its annihilation step in a discrete basis, as described in sections 3.1.1

and 3.2.2, FCIQMC possesses the ability to mitigate the sign problem in

a non-biasing fashion. This enables results to be obtained with a walker

number 𝑁min that is only a fraction of the Hilbert space size. Additionally,

there is the initiator approximation, as discussed in section 3.2.3, which

allows stable sign-coherent sampling at even lower walker numbers at the

expense of introducing a bias in the sampled wavefunction, the initiator bias. Parts of the results presented
in this chapter are also con-
tained in ref. 179. Collaborators:
K. Ghanem and A. Alavi.

The strength of the sign problem is typically quantified in terms of the

gap between the true ground-state energy of the full Hamiltonian 𝐸0 and the

ground-state energy of the stoquastised version of the Hamiltonian 𝐸stoq0 as

defined in section 3.2.1. The minimum walker number 𝑁min strongly depends

on this gap, even though the compactness of the wavefunction also has an

influence. This will be studied and exploited in chapter 7. The initiator

approximation works best for compact wavefunctions where the majority

of the wavefunction’s 𝓁1 norm is contained within few excitations of the

reference Slater determinant.

Typically, molecular ab initio systems exhibit strong sign problems with

large stoquastised gaps and relatively compact wavefunctions [39, 56]. The

same is true for the Hubbard model in a reciprocal-space basis [38, 160, 180].

In this chapter, I will describe how the sign problem behaves in real-space

lattice models. The stoquastised gap in systems of this kind strongly de-

pends on the lattice geometry and how much the excitations are constrained

compared to the ab initio Hamiltonian from wich the model systems are

derived:

∙ For a one-dimensional (1-d) Hubbard model with nearest-neighbour

hopping, there is even the possibility that the system can be solved

without a sign problem which will be proven in section 5.1. The same

is true for the 2-d Heisenberg model on a square lattice. These systems

will be used as a paradigm to study the FCIQMC population control

bias in chapter 6.∙ Hubbard chains that are not sign-problem-free show another interest-

ing feature: Their sign problem is not size-extensive, i.e. larger systems
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closer to the thermodynamic limit can be easier to solve than smaller

ones. This counterintuitve behaviour will be explained in section 5.2.1.∙ All other Hubbard systems show an extensive sign problem, yet it is

typically weak compared to the ab initio case. The strength of the

sign problem strongly depends on the lattice geometry in these cases,

especially on the length of the innermost cycle. This will be discussed

in section 5.2.2.

5.1 Sign-Problem-Free Systems in FCIQMC

In this section, I will provide a proof about how some 1-d Hubbard systems

and the 2-d Heisenberg model is sign-problem-free. I will also describe

a rule that can be applied to determine which 1-d Hubbard systems are

sign-problem-free.

5.1.1 One-Dimensional Hubbard Model

Whether the 1-d Hubbard model is sign-problem-free or not depends on the

boundary conditions imposed and on the filling. It is sign-problem-free∙ for open boundary conditions (i.e. the first and the last site of the chain

are not connected via hopping terms) for any filling,∙ for periodic boundary conditions (i.e. the first and the last site are

connected via a hopping term with amplitude −𝑡) only for an odd

number of ↑-electrons (𝑁↑) and an odd number of ↓-electrons (𝑁↓), and∙ for antiperiodic boundary conditions (i.e. the first and the last site are

connected with amplitude +𝑡) only for an even 𝑁↑ and an even 𝑁↓.
To prove this, I will use the representation of a Slater determinant as

a product of creation operators according to equation (2.10). In spin-first

ordering, a Slater determinant written as

|𝐷𝑖⟩ = 𝑁↑∏𝑝=1 𝑐†𝛼𝑝↑ 𝑁↓∏𝑞=1 𝑐†𝛽𝑞↓ |⟩ (5.1)

is defined with a positive sign. 𝛼𝑝 and 𝛽𝑞 are spatial sites in ascending order.

Since we are dealing with a Hubbard Hamiltonian with nearest-neighbour
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interactions only, without loss of generality we can write an excitation of an↑-electron from site 𝑗 to one of its neighbours 𝑗 ± 1 as

𝑐†𝑗±1↑𝑐𝑗↑𝑐†𝛼1↑… 𝑐†𝑗↑… 𝑐†𝛼𝑁↑↑𝑐†𝛽1↓… 𝑐†𝛽𝑁↓↓ |⟩= 𝑐†𝛼1↑… 𝑐†𝑗±1↑ 𝑐𝑗↑𝑐†𝑗↑⏟⏞⏞⏞⏟⏞⏞⏞⏟=1
… 𝑐†𝛼𝑁↑↑𝑐†𝛽1↓… 𝑐†𝛽𝑁↓↓ |⟩ . (5.2)

Of course, site 𝑗 ± 1 needs to be unoccupied in this case. As long as the exci-

tation does not move an electron from the end of the chain to the beginning

or vice versa, both the creation operator 𝑐†𝑗±1↑ and the annihilation operator𝑐𝑗↑ have been anticommuted with the same number of creation operators.

Therefore, there is no sign change due to fermionic antisymmetry. Trivially,

the same is true for a ↓-electron. Therefore all Hubbard chains with open

boundary conditions are sign-problem-free.

When using periodic boundary conditions, exciting an ↑-electron from

site 𝓁 to site 1 leads to

𝑐†1↑𝑐𝓁↑𝑐†𝛼1↑… 𝑐†𝓁↑𝑐†𝛽1↓… 𝑐†𝛽𝑛↓↓ |⟩ = (−1)𝑁↑−1𝑐†1↑𝑐†𝛼1↑… 𝑐𝓁↑𝑐†𝓁↑⏟⏞⏞⏞⏟⏞⏞⏞⏟=1 𝑐†𝛽1↓… 𝑐†𝛽𝑁↓↓ |⟩ . (5.3)

The factor (−1)𝑁↑−1 occurs because the creation operator 𝑐𝓁↑ has been com-

muted with 𝑁↑ − 1 creation operators. The creation operator 𝑐†1↑ is already

at its correct position and does not need to be commuted. This means that

there is a sign change for even 𝑁↑. Equally, moving a ↓-electron from site 𝓁
to site 1 leads to

𝑐†1↓𝑐𝓁↓𝑐†𝛼1↑… 𝑐†𝛼𝑛↑↑𝑐†𝛽1↓… 𝑐†𝓁↓ |⟩= (−1)2𝑁↑+𝑁↓−1𝑐†𝛼1↑… 𝑐†𝛼𝑛↑↑𝑐†1↓𝑐†𝛽1↓… 𝑐𝓁↓𝑐†𝓁↓⏟⏞⏞⏞⏟⏞⏞⏞⏟=1 |⟩ . (5.4)

The same rule follows.

5.1.2 Two-Dimensional Heisenberg Model

It is easy to see that the Heisenberg model on a square-lattice geometry is

sign-problem-free when taking the linearised imaginary-time Schrödinger

equation (3.3), that e.g. FCIQMC is based on, as a foundation. Qualitatively

speaking, in this way the ground state is reached by subsequent applications

of −�̂� . Suppose, the lattice is divided in two sublattices 𝐴 and 𝐵 such that a

site in sublattice 𝐴 only has neighbours of sublattice 𝐵 and vice versa. This



68 classification of the sign problem in model systems

way, in the Neél state one sublattice, say 𝐴, is only occupied by ↑-electrons

and the other sublattice, say 𝐵, is only occupied by ↓-electrons. This can

be written as 𝑁𝐴↓ = 𝑁 𝐵↑ = 0 where 𝑁 𝑠𝜎 is the number of 𝜎-spin electrons on

sublattice 𝑠. Since only exchange interactions are present, one application

of −�̂�Heisenberg will change these numbers to 𝑁𝐴↓ = 𝑁 𝐵↑ = 1. Since 𝐽 > 0,

every application of −�̂�Heisenberg will introduce a sign change. If −�̂�Heisenberg

is applied again, this leads to either 𝑁𝐴↓ = 𝑁 𝐵↑ = 0 or 𝑁𝐴↓ = 𝑁 𝐵↑ = 2. This way,

it is possible to identify whether an even or an odd number of applications 𝑝
of the Hamiltonian have been necessary to reach a configuration merely by

counting 𝑁𝐴↓ or 𝑁 𝐵↑ , respectively. Since every application of the Hamiltonian

is sign-changing, the contributions onto a configuration can only ever have

the sign of (−1)𝑝. Therefore, the Hilbert space can be subdivided into two

disjoint subspaces, one subspace only getting contributions with positive

and the other only getting contributions with negative sign. This implies the

absence of a sign problem.

Because the Heisenberg model describes the 𝑈/𝑡 → ∞ case of the Hub-

bard model (see section 4.4), this gives a hint for why the sign problem

decreases with increasing 𝑈/𝑡. Amongst other observations, a more quanti-

tative discussion of this fact will be given in section 5.2.1.

5.2 Size-Extensivity of the Hubbard Sign Problem

To understand how the sign problem emerges in the Hubbard model and

how it behaves as a function of system size, let us first make a couple of

basic considerations using a path-integral-type argument. According to

equation (3.3), the amplitude of a single walker propagated from a Slater

determinant |𝐷𝑖⟩ to another Slater determinant |𝐷𝑗 ⟩ in a single time step Δ𝜏
is given by 𝑃𝑗𝑖 = ⟨𝐷𝑗 ||| 1 − Δ𝜏�̂� |||𝐷𝑖⟩ . (5.5)

The amplitude of a set of walkers is then given by the sum over all connected

Feynman paths 𝑃 (𝐾)𝑗𝑖 = ∑𝑘,𝓁,…,𝑦,𝑧⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟𝐾
𝑃𝑗𝑧𝑃𝑧𝑦 … 𝑃𝓁𝑘𝑃𝑘𝑖 . (5.6)

In the large-𝜏 limit, one also approaches the large-𝐾 limit. Therefore, I define

the total transition amplitude as

𝐶𝑗𝑖 = lim𝐾→∞ 𝑃 (𝐾)𝑗𝑖 . (5.7)
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Figure 5.1. Stoquastised
gaps Δ𝐸stoq of periodic 1-d Hub-
bard systems with increasing
chain lengths 𝓁 with one hole and
at half-filling [179]. While there
are certain chain lengths in the
half-filled system where the gap
is exactly zero, i.e. the system is
sign-problem-free, all other sys-
tems show a non-size-extensive
sign problem. The stoquastised
gaps close with increasing system
size. The gaps in the one-hole
case are generally larger com-
pared to the half-filled case. Gaps
for 𝑈/𝑡 = 8 are generally larger
compared to 𝑈/𝑡 = 16.
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Analogously, the amplitude of a set of walkers for the stoquastised Hamil-

tonian is given by

𝑃 (𝐾), stoq𝑗𝑖 = ∑𝑘,𝓁,…,𝑦,𝑧⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟𝐾
|||𝑃𝑗𝑧𝑃𝑧𝑦 … 𝑃𝓁𝑘𝑃𝑘𝑖||| (5.8)

and the total transition amplitude thus is

𝐶stoq𝑗𝑖 = lim𝐾→∞ 𝑃 (𝐾), stoq𝑗𝑖 . (5.9)

A sign problem that opens up the gap between fermionic and stoquastised

ground state emerges when there is at least one 𝐾 for which

𝑃 (𝐾), stoq𝑗𝑖 − |||𝑃 (𝐾)𝑗𝑖 ||| > 0 , (5.10)

i.e. 𝐶stoq𝑗𝑖 > |||𝐶𝑗𝑖||| . (5.11)

5.2.1 Systems with Non-size-extensive Sign Problems

For one-dimensional systems that are not sign-problem-free according to

the rules from section 5.1.1, let us first collect data from some numerical

experiments. Figure 5.1 shows the stoquastised gaps Δ𝐸stoq = 𝐸0 − 𝐸stoq0 of

Hubbard chains of increasing length 𝓁, each with one hole and at half-filling.
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The half-filled systems with 𝓁 = 4𝑛 + 2, 𝑛 ∈ N0 are sign-problem-free as

they contain an odd number of electrons of each spin species. As expected,

chains of other lengths show a non-zero stoquastised gap. It is decreasing

with increasing 𝓁, almost going to zero for 𝓁 ≥ 16. An additional observation

is that the gaps are much smaller for 𝑈/𝑡 = 16 compared to 𝑈/𝑡 = 8.

In the one-hole case, Δ𝐸stoq is roughly an order of magnitude larger

than in the half-filled case. Also, as expected the gaps are no longer zero

for 𝓁 = 4𝑛 + 2. However, there still seems to be a spurious influence of the

sign-problem-free half-filled chains as in these cases the gap is smaller than

a simple extrapolation would predict. Also here, the gaps decrease with

increasing 𝓁. A larger 𝑈/𝑡 seems to imply smaller gaps.

How can these observations be explained? To illustrate this, let us study

pathways from |𝐷𝑖⟩ to |𝐷𝑗 ⟩ via the 1-d Hubbard Hamiltonian. Without loss

of generality, I consider a system with an odd number of ↓-electrons and an

even number of ↑-electrons with periodic boundary conditions. Let us also

say that the determinants are given by

|𝐷𝑖⟩ = 𝑐†𝛼1↑… 𝑐𝑝↑… 𝑐†𝛼𝑁↑↑𝑐†𝛽1↓… 𝑐†𝛽𝑁↓↓ |⟩ and (5.12a)|𝐷𝑗 ⟩ = 𝑐†𝛼1↑… 𝑐𝑞↑… 𝑐†𝛼𝑁↑↑𝑐†𝛽1↓… 𝑐†𝛽𝑁↓↓ |⟩ , (5.12b)

i.e. |𝐷𝑖⟩ and |𝐷𝑗 ⟩ only differ in the position of a single ↑-electron which is

moved from site 𝑝 to one of its neighbouring sites 𝑞. Following the argument

for when a system is sign-problem-free, a sign problem emerges when there

are multiple distinct pathways from |𝐷𝑖⟩ to |𝐷𝑗 ⟩, leading to opposite-sign

contributions at |𝐷𝑗 ⟩. In a periodic 1-d situation, there are only two such

pathways: one exploiting the periodic boundary conditions and one direct

pathway. By using the FCIQMC master equation equation (3.3), it is possible

to quantify the magnitudes of the different contributions as a function of the

system parameters.

When not exploiting the boundary conditions and according to the defi-

nition in equation (5.6), the contribution from |𝐷𝑖⟩ onto |𝐷𝑗 ⟩ is given by

𝑃 𝑗𝑖non-periodic = (Δ𝜏𝑡)|𝑝−𝑞|[1 − Δ𝜏(𝑁docc + 1)𝑈]𝑁 𝑝𝑞↓ [1 − Δ𝜏𝑁docc𝑈]|𝑝−𝑞|−𝑁 𝑝𝑞↓ .
(5.13)𝑁s is the number of lattice sites. In this case, I am only selecting the dominant

pathway out of the 𝐾 pathways described above to simplify the illustration.

This is because each application of the off-diagonal part of −�̂� contributesΔ𝜏𝑡 and each application of the diagonal part contributes 1 − Δ𝜏(𝑁docc + 1)𝑈
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Figure 5.2. Ladder-like lattice
geometry with length 𝓁. This lat-
tice shape is used as a paradigm
for a Hubbard system with weak
yet extensive sign problems. The
sign problem is weak because the
geometry is still close to 1-d. It is
extensive because the number of
sign-problematic four-site plaque-
ttes (indicated in orange with an
arrow) increases proportionally
with respect to 𝓁.

𝓁
if the moving electron’s position is already occupied by an opposite-spin

electron. Otherwise, the diagonal part contributes 1 − Δ𝜏𝑁docc𝑈 . 𝑁docc is the

number of doubly occupied sites between sites 𝑝 and 𝑞 in |𝐷𝑖⟩. 𝑁 𝑝𝑞↓ is the

number of sites between 𝑝 and 𝑞 that are singly occupied by a ↓-electron. The

product of all these contributions leads to the total contribution onto |𝐷𝑗 ⟩.
When exploiting periodic boundary conditions and after a similar con-

sideration, the contribution from |𝐷𝑖⟩ onto |𝐷𝑗 ⟩ amounts to

𝑃 𝑗𝑖periodic = −(Δ𝜏𝑡)𝑁s−|𝑝−𝑞|
[1 − Δ𝜏(𝑁docc + 1)𝑈]𝑁↓−𝑁 𝑝𝑞↓ [1 − Δ𝜏𝑁docc𝑈](𝑁s−|𝑗−𝑖|)−(𝑁↓−𝑁 𝑝𝑞↓ ) . (5.14)

According to equations (5.3) and (5.4), the periodic and the non-periodic

contributions have opposite signs in the one-hole system.

The total contribution of these two paths onto |𝐷𝑗 ⟩ is thus given by

𝑃 𝑗𝑖 = 𝑃 𝑗𝑖periodic + 𝑃 𝑗𝑖non-periodic . (5.15)

The stoquastised contribution is given by

𝑃 𝑗𝑖, stoq = |||𝑃 𝑗𝑖periodic
||| + |||𝑃 𝑗𝑖non-periodic

||| . (5.16)

The larger the difference 𝑃 𝑗𝑖, stoq − 𝑃 𝑗𝑖, the stronger is the contribution of

these pathways to the opening of the stoquastised gap and therefore the sign

problem. From this, one can conclude the following:∙ The opposite-sign contribution of 𝑃 𝑗𝑖periodic decreases with increasing𝑁s

so 𝑃 𝑗𝑖, stoq − 𝑃 𝑗𝑖 shrinks and the sign problem becomes weaker.∙ The fewer opposite-spin electrons there are between sites 𝑝 and 𝑞
compared to the total number of opposite-spin electrons, the smaller

is 𝑃 𝑗𝑖, stoq − 𝑃 𝑗𝑖.∙ The same is true for increasing 𝑈 .

Table 5.1. Stoquastised
gaps Δ𝐸stoq of the 4×4 Hubbard lat-
tice at 𝑈/𝑡 = 4 and 8 both in the
real- and the reciprocal-space ba-
sis. Clearly, when using Δ𝐸stoq as
a measure for the strength of the
sign problem, the sign problem
in the real-space basis is much
weaker than in the reciprocal-
space basis. This is the case even
for 𝑈/𝑡 = 4 where the reciprocal
space is the basis representation
that leads to significantly more
compact wavefunctions.

𝑈/𝑡 real reciprocal4 8.401 40.7208 3.792 97.201
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Figure 5.3. Stoquastised
gaps Δ𝐸stoq of periodic Hubbard
ladder systems with increasing
chain lengths 𝓁 with one hole and
at half-filling [179]. For all sys-
tem parameters, Δ𝐸stoq increases
with 𝓁, making the sign problem
size-extensive. Again, the gaps in
the one-hole case are larger com-
pared to the half-filled case. Gaps
for 𝑈/𝑡 = 8 are larger compared
to 𝑈/𝑡 = 16.
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5.2.2 Systems with Extensive Sign Problems

In proper 2-d lattices, the sign problem is extensive, i.e. it grows with system

size. First, it has to be noted that the Hubbard model in a real-space basis

has a comparatively weak sign problem. To show this, I compare the sto-

quastised gaps of 4 × 4 Hubbard square lattices at 𝑈/𝑡 = 4 and 8 both in a

real- and a reciprocal-space formulation in table 5.1. For 𝑈/𝑡 = 8, Δ𝐸stoq is

almost two orders of magnitude smaller for the real-space basis compared

to the reciprocal-space basis. Even for 𝑈/𝑡 = 4 where the reciprocal-space

representation leads to a much more compact ground-state wavefunction

representation, the sign problem, measured by Δ𝐸stoq, is much weaker in the

real-space case.

I will illustrate this empirically by looking at a two-dimensional system

that is still close to a 1-d system: the ladder-like geometry. A sketch of the

lattice is shown in figure 5.2.10

10 A synopsis of all lattice geome-
tries used throughout the thesis is
given in appendix A.1.

The ladder systems consist of 2 × 𝓁 sites

consisting of four-site square plaquettes.

The stoquastised gaps for Hubbard ladders with increasing 𝓁 are shown

in figure 5.3. Again, I look at systems at half-filling and with one hole at𝑈/𝑡 = 8 and 16, respectively. Unlike in the 1-d case, the gaps increase with

system size in all four cases.

Figure 5.4. Honeycomb lattice
geometry. Physically, it is a sys-
tem of great interest because it
resembles the lattice structure of
graphene. From a sign-problem
perspective, the honeycomb lat-
tice differs from the square lattice
in the fact that the innermost loop
consists of six instead of four sites.
Both the increased length but also
the fact that the six-site half-filled
periodic chain is sign-problem-
free according to section 5.1.1
make the sign problem of honey-
comb systems weaker for an equal
number of lattice sites.

Qualitatively, the main contribution to the sign problem comes from the

shortest-possible sign-problematic loops. The contribution of each pathway

in equations (5.6) and (5.8) decreases with each necessary application of the

Hamiltonian due to the diagonal death step. In 1-d lattices, this shortest

cycle has the length of the entire chain. In a square 2-d lattice, the short-

est cycles are always the four-site plaquettes the lattice is made up of, as
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indicated in figure 5.3. Increasing the system size means that more of the

four-site plaquettes are added while obviously not increasing the length of

the innermost loop. In 𝓁 × 𝓁 square lattices, this problem is emphasised as the

number of four-site plaquettes does not grow linearly but quadratically in 𝓁.
The observation that the stoquastised gap is larger for the one-hole system

and for larger 𝑈/𝑡 still holds also in the case of extensive sign problems.

This insight leads us to the conclusion that increasing the length of the

innermost plaquettes in a 2-d lattice will lead to a weaker sign problem

compared to a system with an equal number of sites but made up of four-site

plaquettes. A physically relevant lattice type in this regard is the honeycomb

lattice structure. The primitive cell of the honeycomb lattice is depicted in

figure 5.4. The honeycomb structure has gained significant interest in solid-

state research because it is the lattice structure of graphene [181, 182]. It

consists of two-dimensional sheets of sp3-hybridised carbon. Among other

special features in the phase diagram, the Hubbard model in honeycomb ge-

ometry shows signs of spin liquid behaviour between the antiferromagnetic

and semimetallic phase [183–185].
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Figure 5.5. Synopsis of stoquastised gaps for ladder systems and 16- and 18-site 2-d lattices with different lattice geometries and
orbital representations at 𝑈/𝑡 = 8 [179]. The ladder geometry but also the honeycomb geometry show weaker sign problems than
lattices made up of four-site plaquettes. This shows that the sign problem in Hubbard systems is mainly influenced by the number
and size of the innermost loop as defined in the main text.

Figure 5.5 summarises the stoquastised gaps for the ladder systems for𝓁 = 6, 8, and 10 and for 16- and 18-site lattices at 𝑈/𝑡 = 8 at half-filling

and with one hole. Δ𝐸stoq for 16-site lattices is given both for a square
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and a honeycomb geometry. One can clearly observe the influence of the

lattice geometry on the strength of the sign problem as discussed above.

For comparison, also the stoquastised gap of the 16-site lattice with square

plaquettes in a reciprocal-space basis is shown. It is about an order of

magnitude larger as already shown in table 5.1.



6 Population Control Bias and Importance-Sampled FCIQMC

As established in chapter 5, the overwhelming majority of electronic structure

problems of interest, be it ab initio or model systems, show a sign problem.

This depends on the gap between the ground-state energy of the stoquastised

Hamiltonian �̂� stoq, as defined in equation (3.19), and the ground-state energy

of the fermionic Hamiltonian �̂� and the structure of the wavefunction itself.11 11 The dependency of the
FCIQMC-related sign problem
on the shape of the wavefunc-
tion will be discussed in detail in
chapter 7.

The sign problems can be either strong or weak and they can behave in a

size-extensive and non-size-extensive manner.

In this chapter however, the focus will be on the calculation of the one-

dimensional (1-d) Hubbard model with nearest-neighbour hopping which

is sign-problem-free at half-filling for special configurations according to

section 5.1.1. Furthermore, large 1-d Hubbard systems with one hole can be

calculated due to the non-size-extensive sign problem. Parts of the results presented
in this chapter are also con-
tained in ref. 186. Collaborators:
K. Ghanem and A. Alavi. In this
chapter, the analytical derivations
and the implementation of the
a-posteriori correction weights in
a Python script for NECI postpro-
cessing were done by K. Ghanem.

A system is sign-problem-free in FCIQMC if the stoquastised ground-

state energy 𝐸stoq0 equals the true ground-state energy 𝐸0. This implies that

there are strictly zero annihilations throughout an FCIQMC run when start-

ing the simulation from a single Slater determinant or from a superposition

of Slater determinants that already has the correct sign structure. This is

because there is no possibility that opposite-sign contributions meet on any

Slater determinant. Naively, one would expect that therefore convergence

to the correct ground state can be achieved with an arbitrarily low number

of walkers with a stochastic error only (that scales as 𝑛− 12 with the number

of samples 𝑛) but with no systematic error. In practice however, this is not

the case. Calculations of the aforementioned sign-problem-free systems

show that there is a systematic positive bias in the energy estimators for

low walker numbers. This bias will be called population control bias which

will be justified during the analysis. This bias scales with system size which

inhibits calculations of systems with more than approximately 50 sites with

affordable hardware.

The goal of this chapter is to show∙ that the population control can be corrected for by the application

of importance sampling to FCIQMC and the development of an a-

posteriori correction method and
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Figure 6.1. Biased average
shifts 𝑆 as a function of the total
walker number 𝑁tot for two Hub-
bard chains with lengths 𝓁 = 14
and 18, respectively, at 𝑈/𝑡 = 8.
This is not expected as the sys-
tems are sign-problem-free. Un-
like the bias caused due to a sign
problem, 𝑆 is larger than the
respective true ground-state ener-
gies 𝐸0.
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Figure 6.2. Uncorrected ground-
state energies obtained with
FCIQMC for 1-d Hubbard sys-
tems with increasing length 𝓁 at𝑈/𝑡 = 8 for 𝑁tot = 500 and 1000,
respectively. They are compared
with converged ground-state en-
ergies 𝐸0. Clearly, the bias in the
total energies is not scaling lin-
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∙ that with this correction systems up to 150 sites in the 1-d Hubbard case

can be calculated to high numerical accuracy with a highly memory-

efficient stochastic description of the wavefunction.

6.1 Understanding the Bias

After assessing that there are certain sign-problem-free lattice geometries

in the Hubbard and Heisenberg model in chapter 5, it is a natural question

to ask whether these kinds of systems can in principle be solved using

FCIQMC with arbitrarily low walker numbers. So far, the only known

systematic bias to FCIQMC is caused by the sign problem due to unresolved

annihilations and ambiguous global sign structure. This however is not the

case: Figure 6.1 shows the convergence of the shift and projected energy

estimators with respect to walker number for the sign-problem-free 14- and

18-site 1-d Hubbard models at 𝑈/𝑡 = 8 at half-filling. As this chain contains𝑁↑ = 𝑁↓ = 7 or 9 electrons of each spin species, i.e. both are odd, according

to the rules established in section 5.1.1 the systems are sign-problem-free.
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Still, the energy estimates for low walker numbers show a positive bias.

Figure 6.2 shows the scaling of the bias with increasing system size for

sign-problem-free chains for walker numbers 𝑁tot = 500 and 1000.

Let us make some empirical observations about this bias:∙ There are zero annihilations occuring during the run which confirms

the fact that the system is sign-problem-free.∙ The bias is independent of 𝜏 so it is not a time discretisation issue.∙ The bias is positive and larger for the shift energy estimator compared

to the projected energy.

How can these empiric observations be understood? Is there a possibility to

quantify the error? And finally, is there even a way to correct for it?

To analyse this, let us go back to the FCIQMC master equation (3.2).

The master equation governs the evolution of walkers and is correct for a

constant shift 𝑆 = 𝐸0 with 𝐸0 being the exact ground-state energy. When

calculating ground-state energies and properties however, one is interested

in averaging the energy estimators as a single shift or projected energy value

does not have significance. Therefore, let us look at the averaged master

equation − dd𝜏 |Ψ(𝜏)⟩ = �̂� |Ψ(𝜏)⟩ − 𝑆(𝜏) |Ψ(𝜏)⟩ (6.1)

where 𝑥(𝜏) indicates ensemble-averaged properties in imaginary time. Since

both 𝑆(𝜏) and Ψ(𝜏) depend on the instantaneous walker populations 𝑁𝑖(𝜏),
they are correlated and cannot simply be factorised. The non-vanishing

covariance needs to be added according to

− dd𝜏 |Ψ(𝜏)⟩ = �̂�Ψ(𝜏) − 𝑆(𝜏) |Ψ(𝜏)⟩
with 𝑆(𝜏) |Ψ(𝜏)⟩ = 𝑆(𝜏) |Ψ(𝜏)⟩ + Cov(𝑆(𝜏), |Ψ(𝜏)⟩) . (6.2)

The additional covariance acts like a walker source term and explains the

origin of the aforementioned bias in FCIQMC. As the bias is associated with

the shift that is necessary to control the walker population, this bias will be

called population control bias.

6.1.1 Population Control Bias in DMC

Population control biases are not unknown in other QMC methods. This

is especially true in DMC where, like in FCIQMC, an effective population

control is essential (see section 2.2.2). This population control has been shown
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Figure 6.3. Data from figure 6.1
(average shifts 𝑆 of Hubbard
chains with lengths 𝓁 = 14 and 18
at 𝑈/𝑡 = 8) plotted as a function
of the inverse total walker num-
ber 1/𝑁tot and fitted accordingly.
This confirms that the popula-
tion control bias in the Hubbard
chains follows the estimated1/𝑁tot scaling from equation (6.7).
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to introduce a systematic positive 1/𝑁tot population control bias in the energy

estimate (with 𝑁tot being the DMC walker population in this section) [187].

This problem becomes especially prominent when trying to tackle a bosonic

system where, in the absence of a sign problem, no fixed-node approximation

is required [43]. Furthermore, even in model systems like the 𝑑-dimensional

harmonic oscillator, where the exact form of the ground-state wavefunction

is known and therefore no population control is required, a positive bias

to the energy estimate has been observed [41]. It can be mitigated but not

entirely removed by employing a good-quality trial wavefunction. Also,

a reweighting scheme to correct for the population control bias has been

developed previously [40]. Unlike the former population control bias, this

systematic error is introduced by non-negligible correlation times of walkers

caused by the DMC branching process [42].

6.1.2 Effects and Scaling Behaviour of the Population Control Bias

When considering the dynamics of the individual walker populations instead

of the entire wavefunction like in equation (3.3), one arrives at

− dd𝜏𝑁𝑖(𝜏) = [𝐻𝑖𝑖 − Cov(𝑆(𝜏), 𝑁𝑖(𝜏))𝑁𝑖(𝜏) − 𝑆(𝜏)]𝑁𝑖(𝜏) +∑𝑗≠𝑖 𝐻𝑖𝑗𝑁𝑗 (𝜏) . (6.3)

Clearly, the additional covariance term acts in the diagonal part of the master

equation, i.e. the population control bias is rooted in an effective modification

of the diagonal matrix elements of the Hamiltonian.
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To analyse the scaling behaviour of the bias, the covariance term is

expressed more explicitly by inputting the shift update equation (3.8). It

directly follows that

𝑆(𝜏 + 𝐴Δ𝜏) + 𝛾𝐴Δ𝜏 ln(𝑁tot(𝜏 + 𝐴Δ𝜏)) = 𝑆(𝜏) + 𝛾𝐴Δ𝜏 ln(𝑁tot(𝜏)) (6.4)

and therefore Cov[𝑁𝑖, 𝑆(𝜏) + 𝛾𝐴Δ𝜏 ln(𝑁tot(𝜏))] = 0 . (6.5)

When expanding ln𝑁tot around its mean, this leads to

Cov(𝑆(𝜏), 𝑁𝑖(𝜏)) = − 𝛾𝐴Δ𝜏 Cov[ln(𝑁tot(𝜏)), 𝑁𝑖(𝜏)]≈ − 𝛾𝐴Δ𝜏 Cov[ln(𝑁tot) + 𝑁tot(𝜏) − 𝑁tot𝑁tot
, 𝑁𝑖(𝜏)]= − 𝛾𝐴Δ𝜏 Cov(𝑁tot(𝜏), 𝑁𝑖(𝜏))𝑁tot

. (6.6)

As the diagonal elements are modified according to

𝐻 ′𝑖𝑖 = 𝐻𝑖𝑖 − 1𝑁𝑖 Cov(𝑆(𝜏), 𝑁𝑖(𝜏))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=∶𝑏𝑖≈ 𝐻𝑖𝑖 + 𝛾𝐴Δ𝜏 1𝑁𝑖 Cov(𝑁tot(𝜏), 𝑁𝑖(𝜏))𝑁tot
, (6.7)

one can see that the shift of the diagonal elements scales as 𝑁tot
−1. IfCov(𝑁tot(𝜏), 𝑁𝑖(𝜏)) is independent of 𝑁tot, it means that also the bias of the

energy estimators scales as 𝑁tot
−1. In the Hubbard chains considered here,

the 𝑁tot
−1 scaling of the shift estimator can be observed in actual simulations

in good agreement. This is shown in figure 6.3 for 𝓁 = 14 and 18.

Let us now analyse how the implicit modification of the diagonal el-

ements due to population control affects the energy estimators. For this,

assume the edge case that the biasing term 𝑏𝑖 is the same for all determi-

nants |𝐷𝑖⟩ (𝑏𝑖 ≡ 𝑏). In this case, the bias would just be a constant diagonal

shift of the Hamiltonian. This means that the sampled wavefunction itself is

unbiased, implying that all its associated energy estimators, like the projected

energy 𝐸proj as defined in equation (3.14), are unbiased. However, the shift

energy estimator is still biased according to

𝑆 − 𝐸proj = 𝑏 . (6.8)
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This hints that in general 𝑆 is especially susceptible to the population control

bias.

In the case of determinant-dependent covariances, the difference be-

tween the average shift and the trial energy according to equation (3.15)

can be expressed by projecting equation (6.2) onto a trial wavefunction |Ψt⟩
according to 𝑆 − 𝐸t = −Cov(𝑆(𝜏), ⟨Ψt|Ψ(𝜏)⟩)⟨Ψt|Ψ(𝜏)⟩ . (6.9)

Since we are mainly dealing with sign-problem-free problems in this chapter,

as the systematic biases due to the sign problem are typically masking the

much weaker population control bias (see chapter 7), it is possible to define a

trial wavefunction |Ψ±⟩ with ⟨𝐷𝑖|Ψ±⟩ = ±1. The signs are defined according

to the predictable signs in the true solution |Ψ0⟩ which is possible if there is

no sign problem. Thus, ⟨Ψ±|Ψ(𝜏)⟩ = 𝑁tot(𝜏) is easy to calculate and the bias

of the shift with respect to 𝐸± = ⟨Ψ±|�̂� |Ψ⟩ is given by

𝑆 − 𝐸± = −Cov(𝑆(𝜏), 𝑁tot(𝜏))𝑁tot
. (6.10)

This is an easy way to correct the maximally biased 𝑆 partly. In the next

section, ways to improve the algorithm and correct for the population control

bias completely will be presented.

6.2 Correcting the Bias

In this section, the two means of correcting the population control bias will

be discussed. It consists of∙ amending the FCIQMC algorithm by introducing importance sampling

using the Gutzwiller ansatz and its easy-to-calculate approximation,

the Gutzwiller-like guiding wavefunction, and∙ introducing an a-posteriori way of reweighting the biased wavefunc-

tion and correct it and the energy estimators.

The introduction of importance-sampled FCIQMC in this chapter will also

lay a foundation for its application to sign-problematic systems in chapters 7

and 8.

6.2.1 Importance Sampling

Importance sampling – which can be pictured as increasing MC sampling

frequency in regions of importance – is widely used in QMC methods, as its
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principles have been introduced in section 2.2. Only recently has importance

sampling been applied in FCIQMC in ab initio simulations [39]. Also it has

been used in Green’s Function Monte Carlo (GFMC) which can be seen as a

predecessor of FCIQMC [45]. The main ingredient of importance sampling

is a guiding wavefunction |Ψg⟩ that has to be similar to the true solution.

Similarity of |Ψg⟩ with |Ψ0⟩ can be defined in multiple ways. The simplest

way is to maximise the overlap ⟨Ψg|Ψ0⟩, although this is not possible without

the knowledge of |Ψ0⟩. Another more indirect way would be to choose a

wavefunction ansatz that is energy- or variance-optimised with respect to the

same Hamiltonian. As discussed in section 2.2.1 however, a well-optimised

wavefunction ansatz with respect to energy or variance does not necessarily

yield similar wavefunctions with large overlap with the true solution. If |Ψg⟩
exactly equals the true solution |Ψ0⟩, MC sampling of an integral typically

leads to a variance of zero (see section 2.2).

Introducing Importance Sampling to FCIQMC

Introducing importance sampling to FCIQMC is conceptually simple. Instead

of diagonalising the Hamiltonian matrix 𝐇 directly, a similarity-transformed

version 𝐇′ is treated which is given by

𝐇′ = 𝐃−1𝐇𝐃 . (6.11)

Similarity transformations leave the spectrum unchanged. Similarity trans-

formations have been studied in FCIQMC both in the Hubbard model in a

reciprocal-space basis for 𝑈 ≤ 4 [160], in atomic and molecular systems [188,

189], in periodic ab initio systems [190], and in the uniform electron gas [191].

In those cases, the similarity transformation is used to factor out correlations

in the wavefunction explicitly and treat them analytically. This ansatz is

called transcorrelation [192–194]. This leads to significantly more compact

solutions that reduce the initiator bias in initiator-FCIQMC (see section 3.2.3)

at the expense of having to negotiate three-body excitations.

Importance sampling alone, as it will be introduced in the following and

will be studied both in the context of the population control bias here as well

as with respect to weak-sign-problem systems in chapter 7, does not have
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this complication. In these cases, the matrix 𝐃 and therefore also 𝐃−1 are

simple purely diagonal matrices with diagonal entries

𝐷𝑖𝑖 = ⟨𝐷𝑖 ||Ψg⟩ and (6.12a)𝐷−1𝑖𝑖 = 1⟨𝐷𝑖 ||Ψg⟩ . (6.12b)

This means that the entries of the similarity-transformed Hamiltonian are

given by 𝐻 ′𝑖𝑗 = ⟨𝐷𝑖 ||Ψg⟩⟨𝐷𝑗 ||Ψg⟩𝐻𝑖𝑗 (6.13)

where 𝐻 ′𝑖𝑗 is now the matrix element that is used for spawns from |𝐷𝑗 ⟩ to |𝐷𝑖⟩,
i.e. 𝐻 ′𝑖𝑗 = ⟨𝐷𝑖 ||| �̂� ′ |||𝐷𝑗⟩ . (6.14)

The right eigenfunctions of 𝐇 and 𝐇′, which is now an important distinction

as 𝐇′ is no longer Hermitian, are also related in a simple manner. The

coefficients in an FCI expansion of 𝐇′ are transformed to

𝐶′𝑖 = ⟨𝐷𝑖 ||Ψg⟩𝐶𝑖 . (6.15)

Algorithmically, the only change that is necessary in FCIQMC is in the

spawning step. The number of walkers Δ𝑁𝑗 spawned onto |𝐷𝑗 ⟩ by a walker

sitting on |𝐷𝑖⟩, is scaled by the weight

𝑤𝑖𝑗 = ⟨𝐷𝑖 ||Ψg⟩⟨𝐷𝑗 ||Ψg⟩ . (6.16)

Because this ratio has to be evaluated at every spawning attempt, it is crucial

that the evaluation of the guiding wavefunction is fast to keep the algorithm

efficient.

Before considering specific choices for |Ψg⟩ and practical implementa-

tions, let us study the effect of importance sampling in FCIQMC by looking

at the special case |Ψg⟩ = |Ψ0⟩. In this case, the transformed matrix elements

are given by

𝐻 ′𝑖𝑗 = ∑𝑘 ⟨𝐷𝑖 |Ψ0⟩∑𝑘′ ⟨𝐷𝑗 ||Ψ0⟩𝐻𝑖𝑗
= ∑𝑘 𝐶𝑘 ⟨𝐷𝑖 |𝐷𝑘⟩∑𝑘′ 𝐶𝑘′ ⟨𝐷𝑗 ||𝐷𝑘′⟩𝐻𝑖𝑗
= 𝐶𝑖𝐶𝑗 𝐻𝑖𝑗 . (6.17)
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This leads to the fact that the column sums of 𝐇′ are

∑𝑖 𝐻 ′𝑖𝑗 = ∑𝑖 𝐶𝑖𝐻𝑖𝑗𝐶𝑗 = 𝐸0 (6.18)

which is exactly the expression for the projected energy with |𝐷𝑗 ⟩ as reference

determinant according to equation (3.14). That makes 𝐇′ a column-stochastic

matrix. Also, according to equation (6.15) the FCI coefficients in this case are

given by 𝐶′𝑖 = 𝐶2𝑖 , (6.19)

i.e. the wavefunction is compactified. The compactification leads to the fact

that important determinants are more permanently occupied for low walker

numbers and are less often stochastically rounded. Also, according to the

FCIQMC master equation equation (3.3) the average total contribution of|𝐷𝑖⟩ is given by

∑𝑖 1 + Δ𝜏(𝐻 ′𝑖𝑗 − 𝑆) = 1 + Δ𝜏(𝐸0 − 𝑆) (6.20)

which is a constant. This removes the need for population control for perma-

nently occupied determinants, therefore leading to Cov(𝑆(𝜏), 𝑁𝑖(𝜏)) = 0 and

removing the population control bias. In actual simulations, not all deter-

minants will be permanently occupied due to the stochastic rounding step.

Therefore, there is still the need for population control and and a non-zero

covariance, even if the exact solution would be used as a guiding wavefunc-

tion. Therefore, an a-posteriori reweighting procedure will be presented in

the next section. However, the numerical results for large systems, which

will be presented in section 6.3, will show that in practice the bias due to the

remaining covariance is small.

Gutzwiller and Gutzwiller-like Guiding Wavefunction

Especially in the strongly correlated case at around 𝑈/𝑡 = 8, only approxi-

mations to the true solution are known and can be used. This is particularly

true when considering the practical constraint that the guiding wavefunction

has to be evaluated often and therefore efficiently.

One of the simplest approaches to the true ground-state solution in the

Hubbard model is the Gutzwiller wavefunction

|ΨG⟩ = 𝑁s∏𝑖=1 exp(−𝑔𝑈 �̂�𝑖↑�̂�𝑖↓) |Ψ0(𝑈/𝑡 = 0)⟩ (6.21)
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where |Ψ0(𝑈/𝑡 = 0)⟩ is the ground-state solution of the non-interacting Hub-

bard model [34]. In words, the Gutzwiller ansatz equals the non-interacting

solution where real-space configurations with double occupancies are ex-

ponentially suppressed. As we have seen in section 4.1, the non-interacting

Hubbard Hamiltonian at 𝑈/𝑡 = 0 can be diagonalised analytically using

the transformation from site orbitals in real space to delocalised orbitals

in reciprocal space according to equation (4.9). To calculate the overlaps⟨𝐷𝑖|ΨG⟩ with real-space basis functions |𝐷𝑖⟩, which is needed to calculate the

weights 𝑤𝑖𝑗 , the non-interacting solution in the reciprocal-space basis

|Ψ0(𝑈/𝑡 = 0)⟩ = ∏𝜎={↑,↓} 𝑁𝜎∏𝑚=1 𝑐†𝒌𝑚𝜎𝜎 |⟩ (6.22)

needs to be expressed in the real-space basis [70]. Here, the 𝒌𝑚𝜎 vectors

number the energetically lowest reciprocal-space spatial orbitals. 𝑁𝜎 denotes

the number of 𝜎-spin electrons. Thus, we write the non-interacting ground

state as |Ψ0(𝑈/𝑡 = 0)⟩ = ∏𝜎={↑,↓} 𝑁𝜎∏𝑚=1( 𝑁s∑𝑖=1 𝑈 𝜎𝑖𝑚𝑐†𝑖𝜎) |⟩ (6.23)

where, according to equation (4.9),

𝑈 𝜎𝑖𝑚 = 𝐿− 12 exp(i𝒌𝑚𝜎 ⋅ 𝑹𝑖) (6.24)

are the matrix elements of two matrices 𝐔𝜎 of size 𝑁s × 𝑁𝜎 . 𝑹𝑖 are the lattice

site positions in real space. The overlap of a real-space Slater determinant |𝐷⟩
with the non-interacting ground-state solution is then given by

⟨𝐷 |Ψ0(𝑈/𝑡 = 0)⟩ = ∏𝜎={↑,↓} ⟨| 𝑁𝜎∏𝑛=1 𝑐𝑗𝑁𝜎𝜎 𝑛𝜎∏𝑚=1( 𝑁s∑𝑖=1 𝑈𝑖𝑚𝑐†𝑖𝜎) |⟩
= ∏𝜎={↑,↓} det �̃�𝜎 . (6.25)

𝑗𝑛𝜎 are the lattice sites of |𝐷⟩ occupied by an electron with spin 𝜎. �̃�𝜎 are two𝑁𝜎 × 𝑁𝜎 submatrices of 𝐔 where only the rows of the matrix corresponding

to the lattice sites occupied with 𝜎-spin electrons are selected. The matrix

elements are given by �̃� 𝜎𝑛𝑚 = 𝑈 𝜎𝑗𝑛𝜎𝑚 . (6.26)

The alternating sign of the determinant sign is caused by the commutation

relations of fermionic operators.
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Computationally, when evaluating the importance-sampling weights 𝑤𝑖𝑗 ,
the overlap ⟨𝐷𝑗 |ΨG⟩ for every occupied determinant, i.e. the denominator

of 𝑤𝑖𝑗 , only needs to be calculated once and can be stored for the entire

lifetime of |𝐷𝑗 ⟩. The numerator ⟨𝐷𝑖|ΨG⟩ however needs to evaluted at every

spawning attempt. The evaluation of a determinant of an 𝑁 ×𝑁 -sized matrix

via LU decomposition through Gaussian elimination scales as (𝑁 3) [195].12

12 There are algorithms to calcu-
late determinants of size-𝑁 square
matrices that scale as efficiently
as (𝑁 2.376) [196]. They are im-
practical to implement however.
Therefore, for the purpose of im-
portance sampling in NECI, the
usual procedure using LU decom-
position is used.)

Since at every spawning attempt an 𝑁↑ × 𝑁↑ and an 𝑁↓ × 𝑁↓ matrix needs

to be evaluated, the algorithm now formally scales as [max (𝑁 3↑ , 𝑁 3↓ )], in

additition to the linear scaling with total walker number.

To avoid this computational overhead, that can be especially problematic

for large systems with many electrons, I will introduce the Gutzwiller-like

wavefunction. It has the simple form

|ΨGL⟩ = ∑𝑖 exp(−𝑔𝐻𝑖𝑖) |𝐷𝑖⟩ . (6.27)

It is similar to the full Gutzwiller wavefunction |ΨG⟩ but instead projecting

out the double occupancies in |ΨHF⟩, the uniform wavefunction

|Ψuniform⟩ = ∑𝑖 |𝐷𝑖⟩ (6.28)

is used. It is easy to see that the overlaps

⟨𝐷𝑖 |ΨGL⟩ = exp(−𝑔𝐻𝑖𝑖) (6.29)

solely depend on the diagonal Hamiltonian matrix element of |𝐷𝑖⟩. The

weights are thus easily calculated via

𝑤𝑖𝑗 = ⟨𝐷𝑖|ΨGL⟩⟨𝐷𝑗 |ΨGL⟩= exp[−𝑔(𝐻𝑖𝑖 − 𝐻𝑗𝑗)]= exp[−𝑔𝑈𝑡 (𝑑𝑖 − 𝑑𝑗)] (6.30)

where 𝑑𝑘 is the number of doubly occupied sites in determinant |𝐷𝑘⟩. Since

the calculation of diagonal elements of occupied determinants is anyway

necessary for the death/cloning step, the computational complexity only

increases for excitation attempts to determinants |𝐷𝑖⟩ that are rejected in the

spawning step. Also, the calculation of diagonal elements in the Hubbard

model is inexpensive since it only requires the number of double occupancies,
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so applying importance sampling with the Gutzwiller-like guiding wave-

function can be implemented with virtually no overhead.

Numerical Experiment

Figure 6.4 shows the significantly improved convergence both when using

the easy-to-evaluate Gutzwiller-like guiding wavefunction |ΨGL⟩ and the full

Gutzwiller wavefunction |ΨG⟩, both with Gutzwiller paramter 𝑔 = 0.15. For

example, for 𝑁tot = 100 the deviation of the average shift 𝑆 is reduced fromΔ𝐸 = 0.58(3) to Δ𝐸GL = 0.18(1) with Gutzwiller-like importance sampling,

so the bias is more than halved. For the full Gutzwiller wavefunction it is

even reduced to Δ𝐸G = 0.078(7). Still, for very low walker numbers there is

still some bias left with both considered wavefunctions. That is why there is

still the need for an additional way to remove the remaining bias. This will

be derived in section 6.2.2.

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.02001/Ntot

−5.75−5.50−5.25−5.00−4.75
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Gutzwiller, g = 0.15

50801003005005000 Ntot

Figure 6.4. Improved convergence of the average shift estimator 𝑆 to the exact ground-state energy 𝐸0 with respect to total walker
number 𝑁tot for the 18-site Hubbard chain at 𝑈/𝑡 = 8 with importance sampling. Both the full Gutzwiller and the Gutzwiller-like
guiding wavefunction reduce the population control bias significantly. The full Gutzwiller performs even better than the Gutzwiller-
like, is more expensive to evaluate however.

Figure 6.5 compares the computational scaling of importance sampling

with the full Gutzwiller and the Gutzwiller-like guiding wavefunction. It

shows the actual time per iteration 𝑇 of a NECI FCIQMC calculation of

half-filled Hubbard chains with increasing chain length 𝓁. The 𝑇 for the

Gutzwiller-like calcuation are fitted with a linear function. Due to the addi-

tional (𝑁 3) scaling, the Gutzwiller iteration times at half-filling are fitted

with the polynomial 𝑇 (𝓁) = 𝑎𝓁3 + 𝑏𝓁 + 𝑐 . (6.31)
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Table 6.1. Comparison of
ground-state energies per
site 𝐸0/𝑁sites obtained with
importance-sampled FCIQMC
using the Gutzwiller-like and the
full Gutzwiller guiding wavefunc-
tion, respectively, for roughly
equal iteration times 𝑇 on 16 com-
puting nodes with 320 cores in
total. The amount the population
control bias is corrected by is al-
most the same.

guiding wavefunction 𝑇 [s] 𝐸0/𝑁sites

Gutzwiller-like, 𝑔 = 0.15, 𝑁tot = 3 × 107 1.3492(2) −0.327 54(1)
Gutzwiller, 𝑔 = 0.15, 𝑁tot = 4 × 105 0.9282(1) −0.327 52(2)

Figure 6.5. Time per iteration 𝑇
on a fixed computational resource
(single processor) as a function
of the Hubbard chain length 𝓁 at𝑈/𝑡 = 8 for the full Gutzwiller
and the Gutzwiller-like guiding
wavefunction in comparison for
half-filled systems for 𝑁tot = 500
and 1000. For the Gutzwiller-
like guiding wavefunction, 𝑇
only grows linearly with a small
prefactor when increasing 𝓁. This
is the expected behaviour as there
are some operations in the NECI
implementation of FCIQMC that
linearly depend on the length of
the bit strings that encode the
Slater determinants. The full
Gutzwiller guiding wavefunction
requires the calculation of the
determinants of two 𝑁el/2 ×𝑁el/2 matrices for each spawning
attempt, thus it was fitted with a
third-order polynomial in 𝓁 with
vanishing second-order term.
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For 𝓁 = 102, one of the system sizes we want to study in more detail later on,

the fits roughly predict a 74-fold increase when moving from the Gutzwiller-

like to the full Gutzwiller guiding wavefunction.

To test which of the guiding wavefunctions to choose for the large-scale

calculations, a 3 × 107-walker calculation with the Gutzwiller-like guiding

wavefunction is conducted. It is compared to a 4×105-walker calculation with

the full Gutzwiller guiding wavefunction. 4×105 walkers roughly equals a 74-

fold reduction of the original 3 × 107 walkers such that the expected iteration

times are approximately equal. The results of the test calculations are shown

in table 6.1. The full Gutzwiller wavefunction has a slightly lower 𝑇 as one

would expect from the third-order polynomial fit in figure 6.5. The obtained

ground-state energies agree within statistical errorbars. Therefore, one can

conclude that the two guiding wavefunctions roughly perform equally. For

simplicity, in all other large-scale calculations the Gutzwiller-like guiding

wavefunction will be used.

Optimisation of the Gutzwiller Parameter

There are various ways to optimise the parameter 𝑔 in the wavefunction

ansatzes to achieve this. Two examples are the following:∙ VMC, as introduced in section 2.2.1, can be used to optimise the wave-

function ansatz, either with respect to the variational energy or its

variance.
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Figure 6.6. Average shift 𝑆 as a
function of the Gutzwiller param-
eter 𝑔 using the Gutzwiller-like
guiding wavefunction |ΨGL⟩ and
the full Gutzwiller wavefunc-
tion |ΨG⟩ for an 18-site Hubbard
chain at 𝑈/𝑡 = 8 with 𝑁tot = 500.
The population control bias as
well as the standard error of
the estimates (shown as error-
bars) is minimal roughly be-
tween 𝑔 = 0.05 and 0.25 for
the Gutzwiller-like and roughly
between 𝑔 = 0.05 and 𝑔 = 0.20
for the full Gutzwiller wave-
function. This indicates that the
correction is rather insensitive
to the choice of the 𝑔 parameter.
Also shown is a VMC-optimised
value for 𝑔 for the full Gutzwiller
wavefunction |ΨG⟩ which is lo-
cated at the top end of the plateau
region, slightly overestimating
the optimal value for 𝑔 . This
could be due to the fact that the
energy-optimised ansatz does not
necessarily yield the best accuracy
in the wavefunction.
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∙ A simple bootstrapping procedure can also be used, i.e. multiple low-

resource calculations at low walker numbers are performed for various

values of 𝑔 . The value that yields the lowest energy, i.e. reduces the

population control bias most, is then chosen to perform a larger-scale

calculation with.

As shown paradigmatically in figure 6.6 for the 18-site Hubbard chain for𝑁tot = 500, there is an extended plateau region where both the Gutzwiller-

like and the full Gutzwiller guiding wavefunction minimise the population

control bias by roughly the same amount. Therefore, there is no necessity for

precisely optimising 𝑔 . The VMC energy optimisation of the true Gutzwiller

wavefunction yields an optimised value that is located at the top end of

the plateau region. The optimal 𝑔 is slightly overestimated. As outlined

already in section 2.2.1, this could be caused by the fact that a wavefunction

ansatz optimised with respect to the variational energy does not necessarily

imply maximal similarity between the optimised and the true ground-state

wavefunction.

6.2.2 A-Posteriori reweighting Procedure

As shown previously, the population control bias can be significantly re-

duced by using importance sampling. Since only approximate wavefunctions

can be used efficiently, there is still a remaining bias however which can

make converging large sign-problem-free systems with affordable walker

numbers impossible. Following the argument from section 6.2.1, the need

for population control is entirely removed only if no stochastic rounding

step is necessary. This means that the population control bias is not entirely

removed if not the entire Hilbert space is occupied with walkers, even when

using the exact solution as the guiding wavefunction.
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Equation (6.10) has shown a simple way to correct the maximally biased

shift with respect to 𝐸± by calculating the covariance between shift and total

walker number. This will be extended to a correction not only to 𝐸± but to

the exact ground-state energy 𝐸0. It is possible to do this in an a-posteriori

way, i.e. finish the (importance-sampled) calculation and then use the logged

progression of 𝑆(𝜏) and 𝑁tot as a function of 𝜏. A similar reweighting scheme

has been applied to DMC previously [40].

Correcting the Wavefunction

The starting point of the reweighting procedure is the imaginary-time prop-

agation. Instead of the actually used linear propagator, the derivation will be

based on the exponential propagation

|Ψ(𝜏 + Δ𝜏)⟩ = exp[−Δ𝜏(�̂� − 𝑆(𝜏))] |Ψ(𝜏)⟩ (6.32)

Although this is the exact propagator, this makes the correction equations a

small approximation. The propagator can be straightforwardly split into a

constant part and a fluctuating part according to

exp[−Δ𝜏(�̂� − 𝑆(𝜏))] = exp[−Δ𝜏(�̂� − 𝐶)] exp[−Δ𝜏(𝐶 − 𝑆(𝜏))] (6.33)

Inserting this into equation (6.32) leads to

exp[−Δ𝜏(𝐶 − 𝑆(𝜏))] |Ψ(𝜏 + Δ𝜏)⟩ = exp[−Δ𝜏(�̂� − 𝐶)] |Ψ(𝜏)⟩ . (6.34)

Averaging both sides leads to

exp[−Δ𝜏(𝐶 − 𝑆(𝜏))]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=∶𝑋𝐶(𝜏)
|Ψ(𝜏 + Δ𝜏)⟩ = exp[−Δ𝜏(�̂� − 𝐶)]|Ψ(𝜏)⟩ (6.35)

since the exponential term on the right-hand side is a constant term by

construction. The left-hand side contains the reweighting factor 𝑋𝐶(𝜏) such

that 𝑋𝐶(𝜏) |Ψ(𝜏 + Δ𝜏)⟩ is the unbiased evolution of |Ψ(𝜏)⟩. The ground-state
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solution is obtained by repeated application of the propagator. This leads us

to

exp[−Δ𝜏 𝑛∑𝑝=1(𝐶 − 𝑆(𝜏 − 𝑝Δ𝜏))]|Ψ(𝜏)⟩ = exp[−Δ𝜏(�̂� − 𝐶)]𝑛|𝜓(𝜏 − 𝑛Δ𝜏)⟩ ,
𝑛∏𝑝=1 𝑋𝐶(𝜏 − 𝑝Δ𝜏)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟=∶𝑊𝐶,𝑛(𝜏)

|Ψ(𝜏)⟩ = exp[−Δ𝜏(�̂� − 𝐶)]𝑛|𝜓(𝜏 − 𝑛Δ𝜏)⟩ .
(6.36)

That means that the true ground state can be obtained by repeatedly applying

the reweighting factors to the sampled wavefunction according to

lim𝑛→∞𝑊𝐶,𝑛 |Ψ(𝜏)⟩ = |Ψ0⟩ . (6.37)

In practice, of course it is not possible to go to infinite correction order 𝑛 so

a large but finite 𝑛 will be used as an approximation.

Correcting the Energy Estimators

Trial energies according to equation (3.15) can be obtained in a simple manner

when the reweighted wavefunction is known. One simply projects onto the

corrected wavefunction obtained using equation (6.37) according to

𝐸corr
t = ∑𝐿𝑝=1𝑊𝐶,𝑛(𝜏𝑝)⟨Ψt ||| �̂� |||Ψ(𝜏𝑝)⟩∑𝐿𝑝=1𝑊𝐶,𝑛(𝜏𝑝)⟨Ψt ||Ψ(𝜏𝑝)⟩ . (6.38)

As mentioned before, trial energies and especially the projected energy are

problematic to calculate in large systems with low walker populations. For

large systems, the Hilbert space cannot be populated by enough walkers

such that there is a permanently occupied reference determinant or trial

space which would allow for the calculation of a projected or trial energy,

respectively. However, the shift can still be used in these cases. Therefore, it is

necessary to find a way to derive a corrected shift 𝑆corr from the weights𝑊𝐶,𝑛.
The shift is a special case of what is called a growth estimator because

it measures the tendency of walkers to grow in order to use it for popu-

lation control. A general growth energy estimator projected onto a trial

wavefunction |Ψt⟩ is given by

𝐸growth = 𝐶 − 1Δ𝜏 ln ⎡⎢⎢⎣⟨Ψt
||| exp[−Δ𝜏(�̂� − 𝐶)] |||Ψ0⟩⟨Ψt|Ψ0⟩ ⎤⎥⎥⎦ (6.39)
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It can be derived from the exponential operator applied onto the exact solu-

tion like

exp[−Δ𝜏(�̂� − 𝐶)] |Ψ0⟩ = exp[−Δ𝜏(𝐸0 − 𝐶)] |Ψ0⟩ (6.40)

and subsequently projecting the equation onto |Ψt⟩. Inserting the reweighted

FCIQMC-sampled wavefunction from equation (6.37) leads to

𝐸growth = 𝐶 − 1Δ𝜏 log[∑𝐿𝑝=1𝑊𝐶,𝑛+1(𝜏𝑝+1)⟨Ψt ||Ψ(𝜏𝑝+1)⟩∑𝐿𝑝=1𝑊𝐶,𝑛(𝜏𝑝)⟨Ψt ||Ψ(𝜏𝑝)⟩ ] . (6.41)

To make this general growth estimator usable to correct the average shift 𝑆,

two choices need to be made: the value of 𝐶 and the trial wavefunction |Ψt⟩.
If 𝐶 is chosen to be 𝑆, the logarithmic term in equation (6.41) directly

yields the corrections to the shift estimator. Choosing 𝐶 = 𝑆 also minimises

the variance of the weight factors as their squared distance to the sampled

shift values 𝑆(𝜏𝑝) are reduced.

About the choice of the trial wavefunction, the same argument as in the

correction of the shift to 𝐸± from equation (6.10) can be used: In sign-problem-

free systems, it is possible to predict the sign structure of the solution. In this

case, one can project onto |Ψ±⟩. Then, ⟨Ψt|Ψ(𝜏𝑝)⟩ simply becomes 𝑁tot(𝜏𝑝).
Inserting both into equation (6.41) ultimately leads to

𝑆corr = 𝑆 − 1Δ𝜏 [∑𝐿𝑝=1𝑊𝑆,𝑛+1(𝜏𝑝+1)𝑁tot(𝜏𝑝+1)∑𝐿𝑝=1𝑊𝑆,𝑛(𝜏𝑝)𝑁tot(𝜏𝑝) ] . (6.42)

Clearly, to calculate 𝑆corr, only the trajectory of the total walker number 𝑁tot

as the weights 𝑊𝐶,𝑛 as a function of 𝜏 needs to be known. 𝑊𝐶,𝑛 itself, as

defined in equation (6.36), only depends on the trajectory of 𝑆(𝜏). This allows

for the correction of the shift by analysing global simulation parameters

alone which does not increase the amount of data that needs to be written

out during an FCIQMC run.

The correction procedure has also introduced an additional technical

parameter, the correction order 𝑛. 𝑛 introduces a tradeoff between how much

the population control bias is corrected (smaller bias) and the statistical

noise of 𝑆corr (larger variance). Small 𝑛 limit the correction as, according to

equation (6.37), the true ground-state only emerges in the infinite-𝑛 limit.

Large 𝑛 effectively undoes the effects of population control, thus increasing

the fluctuations of the reweighted wavefunction. A larger total integration
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Figure 6.7. Corrected average
shifts 𝑆corr as a function of the cor-
rection order 𝑛 for the 𝑁tot = 100
calculations of the half-filled 18-
site Hubbard chain at 𝑈/𝑡 = 8 (for
convergence of 𝑆 see figure 6.4).
The three cases no, Gutzwiller-
like, and full Gutzwiller impor-
tance sampling are shown. With
no importance sampling, it is not
possible to reach an accurate esti-
mate of the ground-state energy
as the fluctuations in the weights
become large. With Gutzwiller-
like importance sampling, the
exact ground-state energy is ob-
tained for 𝑛 ≳ 300. With the more
exact full Gutzwiller importance
sampling, the exact ground-state
energy with even smaller stan-
dard deviation is reached for𝑛 ≳ 40 already.
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time 𝜏tot = 𝐿Δ𝜏 also improves the ability to remove the bias as more terms

in the summations in equation (6.42) can be taken into account.

6.2.3 Numerical Example

Figure 6.7 shows an example of the a-posterori correction applied to a half-

filled 18-site 1-d Hubbard model in simulations with 𝑁tot = 100 walkers. The

corrected shift estimator is plotted as a function of the correction order 𝑛.

Figure 6.8 shows the convergence of the corrected shift as a function of the

inverse walker number for different correction orders for the same system.

Despite the fact that in theory the a-posteriori correction is able to remove

the population control bias entirely for arbitrarily low walker numbers and

large shift–wavefunction covariances, in practice this is not possible without

attaining strongly fluctuating weights and slow convergence with respect

to 𝑛. With no importance sampling at low walker numbers, one would

require very long total integration times to obtain a correct estimate of the

ground-state energy with acceptable errorbars. This underlines the necessity

for importance sampling. Using a Gutzwiller-like guiding wavefunction, with𝑁tot = 100 convergence to the exact ground-state energy can be obtained for𝑛 ≳ 300. With the higher-quality full Gutzwiller guiding wavefunction, the

exact ground-state energy can be obtained for 𝑛 ≳ 40 already.
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Figure 6.8. Convergence of the corrected shift 𝑆corr after the a-posteriori correction with respect to the inverse total walker num-
ber 1/𝑁tot for different correction orders 𝑛 with no, Gutzwiller-like, and full Gutzwiller importance sampling for the half-filled
18-site Hubbard chain at 𝑈/𝑡 = 8. The performance of the a-posteriori correction is clearly improved when using more accurate
guiding wavefunctions.
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Table 6.2. Results showing the correction of the population control bias in large-scale one-dimensional Hubbard models without
a sign problem [186]. “FCIQMC (original)” indicates a plain non-initiator calculation without any corrections where the results
strongly deviate from the reference DMRG and Bethe ansatz results. “FCIQMC (guided)” implies that importance sampling with
the Gutzwiller-like factor has been used which brings the energy estimates already within two to three standard deviations of
the reference results. “FCIQMC (corrected)” indicates that an a-posteriori correction on top of the importance sampling has been
performed, yielding highly accurate results. Technical details for the FCIQMC calculations are given in table 6.4. Again, DMRG
calculations were conducted with up to 𝑀 = 6000 until there was convergence within 𝐸DMRG0 /𝑁sites = 1 × 10−4. Chain lengths of ∞
indicate calculations in the thermodynamic limit. 𝑀𝑠 is the spin-projection quantum number.

system sites method energy/site (pbc) energy/site (obc)

𝑈/𝑡 = 4
half-filling

102 DMRG −0.573 79 −0.570 13
FCIQMC (original) −0.570 76(40) −0.566 80(50)
FCIQMC (guided) −0.573 71(8) −0.570 11(7)
FCIQMC (corrected) −0.573 75(8) −0.570 17(9)∞ Bethe ansatz −0.573 73

𝑈/𝑡 = 8
half-filling

102 DMRG −0.327 57 −0.325 50
FCIQMC (original) −0.322 99(49) −0.321 19(43)
FCIQMC (guided) −0.327 54(1) −0.325 48(2)
FCIQMC (corrected) −0.327 55(3) −0.325 49(3)

150 DMRG −0.327 55
FCIQMC (original) −0.302 54(154)
FCIQMC (guided) −0.327 39(6)
FCIQMC (corrected) −0.327 54(9)∞ Bethe ansatz −0.327 53

𝑈/𝑡 = 8
4 holes (𝑀𝑠 = 0) 102 DMRG −0.392 29 −0.390 04

FCIQMC (original) −0.388 52(32) −0.387 09(39)
FCIQMC (guided) −0.392 28(3) −0.390 02(2)
FCIQMC (corrected) −0.392 29(3) −0.390 03(2)

6.3 Applications

In the following, I will demonstrate the effectiveness of both importance

sampling and the a-posteriori correction on top in correcting the population

control bias in large sign-problem-free systems and large sign-problematic

systems with non-size-extensive sign problems. The results will be compared

with DMRG and the analytical Bethe ansatz in the thermodynamic limit.

6.3.1 One-Dimensional Half-Filled Hubbard Model

Table 6.2 shows numerical results for some large sign-problem-free paradig-

matic systems. The ground-state energies for half-filled Hubbard chains

with 102 and 150 sites, respectively, as well the 102-site system with four

holes are given. The results are both given for open and periodic bound-

ary conditions. These half-filled systems have 𝑁↑ = 𝑁↓ = 51 and 75 elec-

trons of each spin species, respectively. For the four-hole system, there are
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Table 6.3. Results showing the correction of the population control bias in large-scale one-dimensional Hubbard models with one
hole. The systems with open boundary conditions (obc) are sign-problem-free. The systems with periodic boundary conditions
(pbc) in principle show a sign problem, however the sign problem is not size-extensive. Therefore, also these systems are calculable
with importance-sampled FCIQMC and the results agree well with the DMRG benchmarks. “FCIQMC (guided)” again indicates that
importance sampling with the Gutzwiller-like factor has been used which brings the energy estimates already within two to three
standard deviations of the reference results. “FCIQMC (corrected)” indicates the a posteriori correction on top of the importance
sampling, yielding highly accurate results. Technical details for the FCIQMC calculations are given in table 6.4. Again, DMRG
calculations were conducted with up to 𝑀 = 6000 until there was convergence within 𝐸DMRG0 /𝑁sites = 1 × 10−4. 𝑀𝑠 is the spin-projection
quantum number.

system sites method energy/site (pbc) energy/site (obc)𝑈/𝑡 = 8
1 hole (𝑀𝑠 = 1/2) 102 DMRG −0.343 73 −0.351 52

FCIQMC (guided) −0.343 76(2) −0.351 68(2)
FCIQMC (corrected) −0.343 77(1) −0.351 68(3)𝑈/𝑡 = 16

1 hole (𝑀𝑠 = 1/2) 102 DMRG −0.188 59 −0.187 54
FCIQMC (guided) −0.188 60(1) −0.187 57(2)
FCIQMC (corrected) −0.188 60(1) −0.187 57(1)

𝑁↑ = 𝑁↓ = 49 electrons. According to the rules established in chapter 5,

these are sign-problem-free in a real-space basis for all 𝑈/𝑡 for both open

and periodic boundary conditions. Results are given for Hubbard on-site

interaction parameters 𝑈/𝑡 = 4 and 8 which both lie in the intermediate in-

teraction regime. This regime is challenging because neither the solutions in

the 𝑈/𝑡 → ∞ limit – where the real-space basis diagonalises the Hamiltonian

– nor the ones in the 𝑈/𝑡 = 0 limit – where the reciprocal-space basis diago-

nalises the Hamiltonian – are good approximations and the wavefunctions

are highly spread-out in both bases.

Table 6.3 shows the results for 102-site Hubbard chains at 𝑈/𝑡 = 8 and 16,

this time each with one hole. While according to section 5.1.1 the chains with

open boundary conditions do not have a sign problem in all configurations,

according to section 5.2.1 the periodic one-hole systems have one but it is

not size-extensive. Therefore, for systems close to the thermodynamic limit

both boundary conditions can be converged in good agreement with the

DMRG benchmarking results.

The results for the half-filled are benchmarked with the analytical so-

lution of the Bethe ansatz in the thermodynamic limit. The ground-state

energy per site for the 1-d Hubbard model can be obtained via𝐸Bethe0𝑁sites
= −4𝑡 ∫ ∞0 d𝜔 𝐽0(𝜔)𝐽1(𝜔)1 + exp(𝜔𝑈2𝑡 ) (6.43)

where 𝐽𝑛 are the 𝑛-th order Bessel functions of first kind [137, 197].
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Table 6.4. Technical details for
the FCIQMC calculations of the
large-scale one-dimensional Hub-
bard model from table 6.2 [186].𝑁tot is the number of walkers,𝑔 is the Gutzwiller parameter,
and 𝑛 is the number of terms in
the population control bias cor-
rection. Listed are the number
of walkers 𝑁tot, the Gutzwiller
parameter 𝑔 and the number of
terms 𝑛 in the expansion of the
a-posteriori correction. 𝑔 is cho-
sen within the plateau region
obtained in the bootstrapping
optimisation.

system sites 𝑁tot/106 𝑔 𝑛𝑈/𝑡 = 4, half-filling 102 50 0.17 2560𝑈/𝑡 = 8, half-filling 102 30 0.15 5120150 50 0.15 5120𝑈/𝑡 = 8, 4 holes (𝑀𝑠 = 0) 102 30 0.15 2560𝑈/𝑡 = 8, 1 hole (𝑀𝑠 = 1/2) 102 50 0.17 2560𝑈/𝑡 = 16, 1 hole (𝑀𝑠 = 1/2) 102 50 0.17 2560
All systems were also benchmarked using DMRG. As described in sec-

tion 2.3, DMRG is an ideal solver for one-dimensional systems as there is

a unambiguous site ordering – neighbouring sites are placed next to one

another – such that the locality can be exploited. This leads to low entan-

glement entropies which allows for an accurate description with an MPS

already for low bond dimensions 𝑀 .

Analysis

When analysing the results that are all obtained using the same 𝑁tot and

equal total integration time 𝜏tot, it becomes clear that for systems this large –

with Hilbert spaces up to 8.62 × 1087 Slater determinants for the half-filled

150-site system – the plain FCIQMC results are strongly biased compared to

the reference results. Also the statistical errorbars are on the order of 10−4
per site and therefore quite large. Applying importance sampling using the

Gutzwiller-like guiding wavefunction from equation (6.27), the population

control bias is removed almost entirely and tames down the statistical error-

bars to the order of 10−6 per site. Additional a-posteriori correction leads to

FCIQMC results that lie within statistical errorbars of the DMRG reference

results. Also, it becomes clear that calculations of systems with 102 or more

sites already approximate the thermodynamic limit well.

Technical details for the FCIQMC calculations – i.e. the total walker

number, the optimised Gutzwiller correlation factor, and the correction order

in the a-posteriori correction – are given in table 6.4. Calculations of the

half-filled and four-hole 102-site systems at 𝑈/𝑡 = 8 were conducted with𝑁tot = 3 × 107 walkers. The one-hole 102-site calculations were conducted

with 5 × 107 walkers to remove any potential bias due to the small remaining

sign problem. The 150-site problem at 𝑈/𝑡 = 8 is also solved with 5 ×107 walkers because of the significantly larger Hilbert space which increases

the population control bias. For 𝑈/𝑡 = 4, the 𝑁tot was increased to 5 ×107 walkers as well. Since all calculations in table 6.2 are integrated over

(roughly) the same imaginary time 𝜏tot, the statistical errors are increased
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slightly. This is due to the fact that the real-space basis is less suitable in

the low-𝑈/𝑡 case, leading to more spread-out wavefunctions. This in turn

leads to more stochastic rounding processes that lead to an increased need

for population control which increases the population control bias.

Comparison of Memory Usage

The accuracy and precision of the ground-state energies are not the only

things that can and should be compared when benchmarking FCIQMC

against DMRG. DMRG is a close-to-optimal solver of 1-d systems because the

representation of the DMRG wavefunction as an MPS exploits the locality

and therefore reduces the required memory so much that a deterministic

optimisation of the ground state is readily possible. FCIQMC uses a very

different approach as it only stores a low-memory instantaneous stochas-

tic snapshot. Let us therefore estimate the memory requirements of both

algorithms and compare them.

Since the wavefunction representations are closely linked to the algo-

rithms they are used within, it is not reasonable to only consider the storage

requirements of the wavefunctions themselves. Rather, the additional essen-

tial data that are necessary to perform the respective FCIQMC or DMRG run

will also be added.

In FCIQMC, memory is required to store∙ a list of the instantaneously occupied Slater determinants (which is

done in a binary representation which scales linearly in the number

of sites 𝓁),∙ the walker occupation of each occupied Slater determinant (which is a

floating point number),∙ the spawn array (which in a conservative estimate requires an addi-

tional 110 of the storage of the main walker list), and∙ the hash table without which the algorithm would be inefficient (re-

quiring two integers per hash table entry and an additional integer to

store empty spots; all roughly scaling with the number of occupied

determinants).

This amounts to the formula

𝑛FCIQMC
int64 = [(1 + 110)(⌈ 2𝓁64⌉ + 1) + 3] × 𝑁max

dets (6.44)
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where 𝑛FCIQMC
int64 is the number of 64-bit integers that need to be stored maxi-

mally during an FCIQMC run. 𝑁max
dets is the maximum number of occupied

Slater determinants during a particular simulation of a system.

In turn, for a DMRG run of an 𝓁-site 1-d Hubbard model one needs to

store∙ the MPS |ΨDMRG⟩ itself (which consists of 4𝓁 matrices of dimension𝑀 ×𝑀),∙ the derivatives at each lattice site (which consist of 4𝑀2 floating point

numbers), and∙ a contraction of the expectation value ⟨ΨDMRG|�̂� |ΨDMRG⟩ over right

and left neighbours for each site (which leads to additional 2𝓁𝑀2𝐷�̂�
floating point numbers where 𝐷�̂� is the bond dimension of the 1-d

Hubbard Hamiltonian when conjugate terms are evaluated on the fly

and not stored).

The entire formula for the DMRG memory requirement is thus given by

𝑛DMRG
doubles = 𝑀2[4(𝓁 + 1) + 2𝓁𝐷�̂�] (6.45)

with 𝑛DMRG
doubles being the number of double-precision floating point numbers

to be stored.

With these formulas, let us now explicitly calculate the memory require-

ments for the calculation of the half-filled periodic 102-site system at 𝑈/𝑡 = 8
with the technical simulation parameters taken from table 6.4:∙ In the corresponding FCIQMC calculation, 𝑁tot = 3 × 107 walkers

were used. Due to the low walker number compared to the huge

Hilbert space, this amounts to 𝑁max
dets ≈ 𝑁min. Therefore, according to

equation (6.44), this amounts to 𝑛FCIQMC
int64 = 2.55 × 108 64-bit integers

which requires 2.04GB of storage.∙ In the DMRG benchmarking results, 𝑀min = 2000 was necessary

to achieve convergence. Inserting this into equation (6.45) adds up

to 4.91 × 109 double-precision floating point numbers which require39.3GB of storage.

This leads to the conclusion that an instantaneous snapshot of a stochas-

tically evoluting wavefunction whose sampling ultimately leads to correct

ground-state energies can be more memory-efficient than an MPS, even in
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Figure 6.9. Fundamental many-
particle gaps Δ𝐸fund for Hubbard
chains at 𝑈/𝑡 = 8 and 16 with
open (obc) and periodic boundary
conditions (pbc). The dashed line
indicates the Bethe ansatz result
in the thermodynamic limit (tdl)
using equation (6.48). While the
obc case is sign-problem-free at
any length, the periodic chains
even up to more than 100 sites
can only be converged due to
the vanishing sign problem for𝓁 → ∞.
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cases where this representation is close-to-optimal due to low entanglement

entropies.

6.3.2 Fundamental Many-Particle Gaps of Hubbard Chains

The fundamental many-particle gap is defined as

Δ𝐸fund = 𝐸0(+1) + 𝐸0(−1) − 2𝐸0(0)= 2[𝐸0(−1) − 𝐸0(0)] + 𝑈 (6.46)

where 𝐸0(0), 𝐸0(−1), and 𝐸0(+1) are the ground-state energies at half-filling,

with one hole, and with one excess electron, respectively. It is the many-

particle equivalent to the band gap in a mean-field picture. The second

equivalence is true because for the Hubbard model

𝐸0(+1) = 𝐸0(−1) + 𝑈 . (6.47)

The calculation of Δ𝐸fund is challenging because the ground-state energies

need to be resolved with high precision as their difference is usually very

small. Also, they cannot be calculated in a sign-problem-free manner even

with AFQMC as it involves the calculation of the ground-state energy of a

system off-half-filling.

In figure 6.9, Δ𝐸fund is shown for 1-d Hubbard systems at 𝑈/𝑡 = 8 and 16
with open (obc) and periodic boundary conditions (pbc) for up to 102 sites.

The results were taken from tables 6.2 and 6.3, respectively, i.e. they were
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obtained using importance sampling and a-posteriori correction combined.

Also shown is an analytical reference for Δ𝐸fund in the thermodynamic limit

(tdl) obtained via the Bethe ansatz. It is given by

Δ𝐸fund, Bethe = 𝑈 − 4𝑡 + 8𝑡 ∫ ∞0 d𝜔 𝐽1(𝜔)𝜔[1 + exp(𝜔𝑈2𝑡 )] (6.48)

where again 𝐽1(𝜔) is the first-order Bessel function of first kind [198].



7 Importance Sampling in Sign-Problematic Cases

In chapter 6, it was shown how importance sampling with a fast-to-evaluate

Gutzwiller-like guiding wavefunction is highly effective in reducing the

population control bias in FCIQMC. A natural question to ask is what effect

importance sampling has when dealing with sign-problematic systems, as it

is known to increase the sampling effectiveness in other QMC methods. Parts of the results presented
in this chapter are also con-
tained in ref. 179. Collaborators:
K. Ghanem and A. Alavi.

However, the first thing to note is that the importance-sampled Hamilto-

nian as defined in equation (6.11) – which, as we know, leaves the spectrum

unchanged – also does not change the stoquastised gap. This is easy to

see: By definition, the matrix elements of the stoquastised version of the

similarity-transformed Hamiltonian �̂� ′ are given by

[𝐻 ′𝑖𝑗]stoq = [exp[𝑔(𝐻𝑗𝑗 − 𝐻𝑖𝑖)]𝐻𝑖𝑗]stoq

(7.1)

Since the exponential prefactor in front of each matrix element is positive

only, the stoquastised version of the similarity-transformed Hamiltonian

and the similarity-transformed version of the stoquastised Hamiltonian are

equal:

exp[𝑔(𝐻𝑗𝑗 − 𝐻𝑖𝑖)]𝐻 stoq𝑖𝑗 = [exp[𝑔(𝐻𝑗𝑗 − 𝐻𝑖𝑖)]𝐻𝑖𝑗]stoq . (7.2)

Thus, the stoquastised spectrum is the same as in the non-stoquastised

version.13 13 It is noted that, even for
signed guiding wavefunctions,Δ𝐸stoq is left unchanged. Apply-
ing importance sampling with a
guiding wavefunction |Ψg⟩ with⟨𝐷𝑖|Ψg⟩ < 0 is equivalent to mul-
tiplying all elements of the 𝑖-th
column and row of 𝐇 with −1.
This simply flips the sign of the𝐶𝑖 coefficient without affecting its
magnitude, leaving the difference||𝐶′𝑖 − |𝐶𝑖||| and therefore Δ𝐸stoq

unchanged.

The stoquastised gap has been established as the main quantifiable indica-

tor of the strength of the sign problem as it both describes sign-problem-free

situations correctly and allows us to classify sign-problematic systems based

on their lattice geometry as shown in chapter 5. In the literature, it has been

shown that the stoquastised gap in Hubbard systems can be reduced by basis

rotations [55]. These facts may lead to the conclusion that it is not possible

to reduce the computational effort to solve sign-problematic systems merely

by introducting importance sampling. This does not capture the complete

picture however, as I will demonstrate in this chapter.
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7.1 FCIQMC-Related Strength of the Sign Problem

Apart from calculating the stoquastised gap, empirically one can determine

the actual computational effort required to resolve the sign problem and

determine the correct ground-state energy. As explained in section 3.2.2,

in many systems the minimum walker number 𝑁min to overcome the sign

problem can be determined by inspecting the rate of walker growth during

the constant-shift phase at the beginning of the simulation. The annihilation

plateau however does typically not occur in the weak-sign-problem real-

space model systems considered in this thesis.

Alternatively, as hinted in section 3.1.1, the fixed-𝑁0 method can be used.

With this method, the shift is adapted such that the reference population 𝑁0
is held constant after it has grown to its target value. With this, of course

also the sign of 𝑁0 is fixed. This then also fixes the signs of all connected

determinants which again fixes the signs of their connections and so on.

Therefore, the global sign of the wavefunction is fixed, leading to a resolved

sign problem. The algorithm will therefore converge to an average total

walker number 𝑁tot ≥ 𝑁min for any non-zero 𝑁0. Theoretically, running

a fixed-𝑁0 calculation with 𝑁0 = 𝑡occ would exactly yield 𝑁tot = 𝑁min. In

practice however, fixed-𝑁0 calculations with very low 𝑁0 lead to very large

flucuations in all simulation parameters. Therefore, in this chapter I will use𝑁0 = 50 in all determinations of 𝑁min which leads to slight overestimations.

This way, fluctuations are limited while still allowing comparisons between

similar systems and giving correct orders of magnitude.

With this definition of 𝑁min, it is then possible to define the FCIQMC-

related relative strength of the sign problem by relating 𝑁min and the Hilbert

space size ||: 𝑠 = 𝑁min|| . (7.3)

The Hilbert space size is given by

|| = (𝑁sites𝑁↑ )(𝑁sites𝑁↓ ) . (7.4)
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Figure 7.1. Minimum number
of walkers 𝑁min and FCIQMC-
related relative strength of the
sign problem 𝑠 as a function of
the stoquastised gap Δ𝐸stoq on a
logarithmic scale [179]. Both the
relation between 𝑁stoq and Δ𝐸stoq

and between 𝑠 and Δ𝐸stoq are not
monotonic across the systems
considered here, as one would
assume from a simple picture
that is based on average walker
dynamics. Instead, the structure
of the sampled wavefunction and
its relation to the stoquastised
solution play a crucial role. The
dashed lines are exponential fits
used as a guide to the eye.

7.1.1 Two-Dimensional Systems

Figure 7.1 shows 𝑁min and 𝑠 determined using the fixed-𝑁0 method using𝑁0 = 50 as a function of Δ𝐸stoq for the systems already shown in figure 5.5.

Clearly, both𝑁min and 𝑠 do not monotonically depend on Δ𝐸stoq as one would

naively assume from the general considerations about the emergence of the

FCIQMC sign problem in section 3.2.2. For example, 𝑁min for the larger2 × 10 system is larger than for the smaller 16-site system, even though the

stoquastised gap is smaller. Instead, as the length of the ladder systems is

increased, the relative strength of the sign problem even decreases. This

means that for an increase of the Hilbert space by some factor, the required

walker number grows by less than this factor, even though the stoquastised

gap grows. On the other hand, when removing an electron from the system,

both 𝑠 and Δ𝐸stoq are increased for a given lattice in all systems considered.

This leads to the conclusion that the required computational effort to

solve a system with FCIQMC does not solely depend on Δ𝐸stoq which can

be considered an averaged quantity. It also depends on the structures of the

sampled wavefunction and its stoquastised counterpart which determine the

effectiveness of the annihilation step. Thus, it is justified to study the effect

of importance sampling also in sign-problematic systems.
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Figure 7.2. Minimum number
of walkers 𝑁min and FCIQMC-
related relative strength of the
sign problem 𝑠 as a function of
chain length 𝓁 for 1-d Hubbard
systems at 𝑈/𝑡 = 8, each with
one hole, on a logarithmic scale.
Despite the non-size-extensivity
of the sign problem for the 1-d
Hubbard model as demonstrated
in section 5.2.1 and a monoton-
ically decreasing 𝑠, 𝑁min grows
exponentially. This indicates that
also the computational effort to
resolve the sign problem might
grow exponentially. However, the𝑁min obtained with fixed-𝑁0 > 1
is only an approximation that
overestimates the true minimum
number of walkers, especially
for very spread-out wavefunc-
tions. Furthermore, for very large
Hubbard chains (𝓁 ≳ 100), the
stoquastised gap has closed to
practically zero, meaning that a
constant reference population is
no longer necessary to achieve
convergence.
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7.1.2 One-Dimensional Systems

In section 5.2.1, it is shown that 1-d Hubbard chains show a non-size-

extensive sign problem which is defined as a decreasing gap Δ𝐸stoq with

increasing chain length 𝓁. But, as just discussed, the monotonically decreasing

stoquastised gap does not automatically translate into a decreasing difficulty

to resolve the sign problem with FCIQMC. Even a small Δ𝐸stoq can pose

a problem in large Hilbert spaces. This problem is illustrated in figure 7.2

where both 𝑁min and 𝑠 are plotted for Hubbard chains with 𝓁 = 10, 12, 14, 16,
and 18, each with one hole which are sign-problematic configurations. Even

though the relative strength of the sign problem decreases, like in the 2-d lad-

ders, the required population𝑁min to achieve a constant reference population

of 𝑁0 = 50 increases exponentially.

Table 7.1. Comparison of
FCIQMC and DMRG results for
the ground-state energy 𝐸0 of
periodic 1-d Hubbard chains at𝑈/𝑡 = 8 with one hole. Also given
is the stoquastised ground-state
energy 𝐸stoq0 , also calculated with
FCIQMC. Clearly, the FCIQMC
result for 𝐸0 of the 50-site sys-
tem is still biased, even for a
fairly large walker number. For
the same walker number, the
result for the 102-site system is
already converged as the non-size-
extensive stoquastised gap has
already closed to within statistical
errorbars. Importance sampling
with a Gutzwiller-like guiding
wavefunction with 𝑔 = 0.17 has
been applied to correct for the
population control bias.

𝓁 𝐸0 (FCIQMC) 𝐸stoq0 (FCIQMC) 𝐸0 (DMRG)50 −18.0338(4) −18.0339(5) −18.0188𝑁tot = 5 × 107 𝑁tot = 1 × 106 𝑀 = 2000102 −35.0637(46) −35.0639(49) −35.0601𝑁tot = 5 × 107 𝑁tot = 5 × 107 𝑀 = 6000
Does this mean that the correct energy for large 1-d systems close to

the thermodynamic limit cannot be obtained? The answer is no because

the simple picture shown figure 7.2 is lacking some detail. Firstly, any 𝑁min

obtained with 𝑁0 > 𝑡occ is only an approximation to the true walker number

above which convergence can be achieved (also see figure 7.4). 𝑁0 = 𝑡occ

however is typically not calculable due to large fluctuations. Secondly, for a
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Figure 7.3. 𝐶𝑖 coefficients of a2 × 3 Hubbard model at 𝑈/𝑡 = 8,
both without and with similar-
ity transformation using |ΨGL⟩
with 𝑔 = 0.1 and 0.2 [179]. The
wavefunctions were obtained
with exact diagonalisation and
normalised according to their𝓁1 norm. Applying the similarity
transformation increases the com-
pactness.100 101 102i

10−6
10−4
10−2

C̃ i g = 0g = 0.1g = 0.2
large enough 𝓁 the stoquastised gap becomes so small that 𝐸stoq0 equals 𝐸0
within statistical errors. Therefore, in practice no sign problem needs to be

overcome. No constant reference population of one sign is required anymore

and the definition of 𝑁min loses its significance. However, this means that

chains of intermediate lengths can be problematic or even impossible to

solve as the Hilbert space is already too large. Not enough annihilations can

be achieved to resolve the sign problem (even with importance sampling;

see next section). The stoquastised gap however still has not fully closed so

there is an unresolved bias in all calculations with an achievable total walker

number. This is the case for 50-site system as can be seen in table 7.1.

7.2 Weakly Sign-Problematic Systems

Let us now see in a numerical experiment what is the effect of using im-

portance sampling with a Gutzwiller-like guiding wavefunction |ΨGL⟩ – as

defined in equation (6.27) – in non-initiator FCIQMC calculations of weakly

sign-problematic systems.

To get a better understanding of the effects of importance sampling, let us

look how the diagonal similarity transformation affects the FCI expansion of

an exactly diagonalisable wavefunction. Figure 7.3 shows the 𝐶𝑖 coefficients

of a 2×3Hubbard ladder system with || = 400 at 𝑈/𝑡 = 8. The wavefunction

– normalised according to the 𝓁1 norm to resemble the 𝐶𝑖 coefficients obtained

with FCIQMC at different 𝑁tot – becomes more compact as 𝑔 is increased.
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Figure 7.4. Convergence of the
average shift 𝑆 with respect to
the total number of walkers 𝑁tot

for a half-filled 2 × 8 Hubbard
ladder at 𝑈/𝑡 = 8 and with one
hole [179]. The different curves
show results obtained with no
importance sampling and with
importance sampling using |ΨGL⟩
as a guiding wavefunction with𝑔 = 0.1 and 0.2. Importance
sampling improves convergence
significantly. The vertical lines
show the 𝑁min, obtained using the
fixed-𝑁0 = 50 method. The true𝑁min is slightly overestimated as
expected. Yet, they allow for good
comparability of 𝑁min among
different systems of similar type.
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7.2.1 Improved Convergence of the Shift Estimator

Figure 7.4 shows the convergence of the average shift 𝑆 for a 2 × 8 weakly

sign-problematic Hubbard ladder at 𝑈/𝑡 = 8 both at half-filling (top) and

with one hole (bottom) with respect to the total number of walkers 𝑁tot.

The convergence is studied for standard non-initiator FCIQMC as well as

importance-sampled FCIQMC using |ΨGL⟩ as a guiding wavefunction with

correlation parameters 𝑔 = 0.1 and 0.2. As explained in section 3.2, 𝑆 con-

verges from below from somewhere close to 𝐸stoq to the exact energy at𝑁min. 𝑆 = 𝐸stoq would be reached in the low-walker limit which cannot be

performed in practice due to large stochastic fluctuations. In this case, no

annihilations would take place and the shift estimator would not be able to

distinguish between �̂� and �̂� stoq.

Clearly, applying importance sampling improves the convergence in

both examples with 𝑔 = 0.2, performing even better than 𝑔 = 0.1. In

the half-filled case, for 𝑔 = 0.2 the exact energy is obtained already with

less than 3 × 104 walkers. Without importance sampling, approximately2 × 105 walkers are necessary. In the one-hole case, the required number

of walkers decreases from roughly 1 × 106 without importance sampling to

approximately 3 × 105 walkers. This goes in line with the values for 𝑁min

determined using fixed-𝑁0 = 50 which are indicated in the plot with vertical

lines. As expected, the fixed-𝑁0 method leads to estimations of 𝑁min that are

above the true minimum number of walkers but allow for good comparability

among different system setups.
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Figure 7.5. Annihilation rates 𝑎
for the half-filled 2 × 8 Hubbard
ladder system at 𝑈/𝑡 = 8 with no
importance sampling and impor-
tance sampling using |ΨGL⟩ with𝑔 = 0.1 and 0.2 as a function of
the total walker number 𝑁tot [179].
For a larger 𝑔 value the annihila-
tion rate is increased. This leads
to an improved resolution of the
sign problem for low 𝑁tot.
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How the increased compactness reduces the number of walkers required

to resolve the sign problem can partly be understood from inspecting the

average number of annihilations per iteration. For the calculations of the

half-filled 2×8 ladder from figure 7.4, the corresponding average annihilation

rates 𝑎(𝜏) are shown in figure 7.5. The annihilation rate in an iteration at

imaginary time 𝜏 is given by

𝑎(𝜏) = 𝑁dets∑𝑖=1 (||𝑁𝑖(𝜏 − Δ𝜏)|| +∑𝑗≠𝑖 ||Δ𝑁𝑖𝑗 (𝜏)||)−|||||𝑁𝑖(𝜏 − Δ𝜏) +∑𝑗≠𝑖 Δ𝑁𝑖𝑗 (𝜏)||||| (7.5)

where Δ𝑁𝑖𝑗 (𝑝Δ𝜏) is the number of spawned walkers from |𝐷𝑗 ⟩ to |𝐷𝑖⟩ in

iteration 𝑝. As before, 𝑁𝑖(𝑝Δ𝜏) is the number of walkers residing on |𝐷𝑖⟩ in

iteration 𝑝. For a larger value of 𝑔 and given 𝑁tot, the annihilation rate is

increased. Already for 𝑁tot = 2.5 × 104 walkers, the annihilation rate in the𝑔 = 0.2 calculation surpasses the one for 𝑁tot = 1 × 105 in the no-importance-

sampling case. This is mirrored also in the values for 𝑆 where in the former

case, the estimator is already converged to the true solution whereas the

latter case is still biased. This indicates that the annihilation rate is boosted

due to the increased compactness of the sampled wavefunction and therefore

the fermionic solution can emerge for lower walker numbers.

7.2.2 Tradeoff between Compactness and Noise

As established in the previous section by considering the annihilation rates,𝑁min is lowered due to the increased compactness while not affecting the

stoquastised gap. This is confirmed by the data given in figure 7.6 where𝑁min

is given as a function of 𝑔 . These FCIQMC calculations were again conducted

in the small 2 × 3 toy system. 𝑁min was obtained using fixed-𝑁0 = 10 000.

The small size of the system and the large fixed-𝑁0 value are necessary for

this demonstration to obtain data for values of 𝑔 up to 0.5. For 𝑔 = 0.5, large

fluctuations are introduced due to a highly unbalanced Hamiltonian. The
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Figure 7.6. Minimum required
walker number 𝑁min to obtain𝑁0 = 10 000 in a 2 × 3 Hubbard
toy system at 𝑈/𝑡 = 8 as a func-
tion of the Gutzwiller correlation
parameter 𝑔 [179]. The horitzon-
tal dashed line indicates 𝑁min for
when the exact ground-state so-
lution |Ψ0⟩ is used as a guiding
wavefunction. The vertical line
indicates the optimal value for 𝑔
in a full Gutzwiller ansatz |ΨG⟩
energy-optimised by VMC. Al-
though the exact guiding wave-
function presents a lower bound
for 𝑁min in this case, the increas-
ing compactness for increasing 𝑔
further lowers 𝑁min, even far away
from 𝑔VMC.
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small system size also allows one to use the exact solution |Ψ0⟩ as a guiding

wavefunction.

Clearly, 𝑁min decreases with increasing 𝑔 . The dashed horizontal line

indicates 𝑁min for when |Ψ0⟩ is used as a guiding wavefunction. This is

counter-intuitive as a VMC optimisation of the Gutzwiller wavefunction for

this system yields 𝑔VMC = 0.2037. Although a VMC energy optimisation does

not necessarily lead to the optimal wavefunction, this cannot explain why

the value for which the 𝑁min approach each other are vastly different. So

unlike for the population control bias where the bias was maximally reduced

for 𝑔 ≈ 𝑔VMC, here the compactification itself plays a crucial role.

To better understand the tradeoff between similarity of the guiding

wavefunction and the true ground state – which influences the fluctuations

according to the considerations in section 6.2.1 – and compactness, let us look

at the actual FCIQMC dynamics of the simulations for the values of 𝑔 from fig-

ure 7.6. These are shown in figure 7.7. It is obvious that for a Gutzwiller-like

guiding wavefunction, 𝑁tot decreases at the cost of introducing significant

fluctuations because of correlations between the shift and the wavefunction

as expected. Using the exact wavefunction as a guiding wavefunction leads

to both the lowest 𝑁tot as well as low fluctuations.

This implies that at some point one is suffering from diminishing returns

when further increasing 𝑔 because the total wall-clock time needs to be in-

creased quadratically according to equation (2.20) to reach a certain accuracy

for increased fluctuations.

This tradeoff is illustrated for the larger 2 × 8 Hubbard ladder in fig-

ure 7.8. The top part again illustrates that 𝑁min decreases monotonically for

increasing 𝑔 . The bottom part shows the standard error 𝜎 of the shift energy

estimator for equal wall-clock times 𝑇 . Lower walker numbers allow for

averaging over more samples for same 𝑇 (and also longer 𝜏tot for equal Δ𝜏)
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Figure 7.7. Dynamics of the total
walker population 𝑁tot in actual
FCIQMC dynamics of the small2 × 3 Hubbard system at 𝑈/𝑡 = 8
with importance sampling with𝑔 = 0.1… 0.5 and using the exact
solution |Ψ0⟩, respectively [179].𝑁tot decreases with increasing 𝑔 ,
although fluctuations are in-
troduced as the Gutzwiller-like
guiding wavefunction deviates
more and more from the true solu-
tion. Using |Ψ0⟩ leads to both the
lowest 𝑁tot and low fluctuations.0 25 50 75 100 125 150

iteration ×1020.0
0.5
1.0
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2.0
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Figure 7.8. 𝑁min obtained via
fixed-𝑁0 = 50 (top) and standard
error for fixed wall-clock time
(bottom) for the 2 × 8 Hubbard lad-
der at 𝑈/𝑡 = 8 [179]. As expected
from the 2 × 3 toy system, 𝑁min

decreases with increasing 𝑔 . How-
ever, the lowest standard error
and therefore the optimal tradeoff
between lowering 𝑁min and noise
is given for 𝑔 ≈ 0.125. Energy-
optimised VMC overestimates the
optimal 𝑔 with 𝑔VMC = 0.1863.
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Figure 7.9. Fundamental many-
particle gaps Δ𝐸fund for 2 × 𝓁
(𝓁 = 6, 8, 10, 12) Hubbard ladders
at 𝑈/𝑡 = 8 and 16 with periodic
boundary conditions as a function
of the inverse length 1/𝓁 [179].
Since these systems show an in-
evitable but weak sign problem,
the calculations are conducted
in a non-initiator fashion using
importance-sampled FCIQMC
with the Gutzwiller-like guiding
wavefunction |ΨGL⟩. Raw num-
bers and technical details for the𝑈/𝑡 = 8 calculations are given in
table 7.2.

12.0
12.2
12.4

ΔEfund

U/t = 16

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.1751/�
4.8
5.0
5.2

ΔEfund
U/t = 8

681012 �

but above a certain 𝑔 the fluctuations become dominant. The optimal tradeoff

is reached for 𝑔 ≈ 0.125. When one can accept a larger uncertainty in the

energy estimate however, it can be advised to use a larger-than-optimal 𝑔
because it allows to reach the required precision for lower 𝑇 . This is used

in the next sections where I will calculate large ladder systems using the

importance-sampling method. Again, VMC with energy optimisation over-

estimates the optimal point with 𝑔VMC = 0.1863, not returning the optimal

wavefunction.

7.3 Applications

In this section, I will apply the previous findings to find the fundamental

many-particle gaps of Hubbard ladder systems in the intermediate (𝑈/𝑡 = 8)

and strong (𝑈/𝑡 = 16) interaction regime. I will also calculate the ground-

state energy of the 32-site honeycomb system in the difficult intermediate

interaction regime 𝑈/𝑡 = 8, a system well beyond the capabilites of exact

diagonalisation and out of reach with plain FCIQMC with currently available

hardware capabilities.

7.3.1 Fundamental Many-Particle Gaps of Hubbard Ladders

By using importance sampling in sign-problematic systems, we can now

calculate the fundamental many-particle gaps Δ𝐸fund, like in section 6.3.2,

also for the ladder systems according to equation (6.46).



applications 111

Figure 7.10. Convergence of the
DMRG benchmark for the 2 × 12
Hubbard ladder with one hole at𝑈/𝑡 = 8 with respect to the in-
verse bond dimension 1/𝑀 [179].
Fiedler-type ordering is used.
Agreement with FCIQMC within
statistical errorbars is reached for𝑀 ≳ 4000. As the ladder systems
are geometrically close to a 1-d
system, DMRG still benefits from
a small entanglement entropy.
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Figure 7.9 shows Δ𝐸fund for 2× 𝓁 ladders for 𝓁 = 6, 8, 10, and 12 at 𝑈/𝑡 = 8
and 16 for periodic boundary conditions. Importance sampling with the

Gutzwiller-like guiding wavefunction |ΨGL⟩ is used to reduce 𝑁min signifi-

cantly. The ground-state energies for the 𝑈/𝑡 = 8 case are given in table 7.2,

also comparing the respective 𝑁min for fixed-𝑁0 = 50 with and without

importance sampling (where accessible) and the value for 𝑔 used. Especially

the 2 × 12 system at 𝑈/𝑡 = 8 with one hole, which is beyond the scope of

exact diagonalisation [199], could not be be calculated using plain FCIQMC

because well beyond 1 × 109 walkers would be required. For comparison, the

convergence of the ground-state energy using DMRG with respect to the

bond dimension 𝑀 is shown in figure 7.10. The DMRG calculations were

again conducted using the BLOCK code and Fiedler-type ordering of the lattice

sites was used [200, 201]. Agreement between FCIQMC and DMRG within

statistical errobars is reached for 𝑀 ≳ 4000. DMRG still performs relatively

well as the two-legged ladders’ geometries are still somewhat close to 1-d.

Therefore, the entanglement entropy is still relatively small.
Table 7.2. Raw numbers for
the ground-state energy esti-
mate 𝐸0 and the minimum walker
numbers 𝑁min with and without
importance sampling [179]. Also
given is the Gutzwiller correlation
parameter 𝑔 used for 2 × 𝓁 Hubbard
ladders at 𝑈/𝑡 = 8. The 𝑁min are
obtained with fixed-𝑁0 = 50. 𝑁min

numbers are not available for 2×12
systems as this exceeds available
hardware capacity. 𝑔 = 0.15 is
close to the value where there
is an optimal tradeoff between
noise and reduction of 𝑁min (see
section 7.2.2). For the most dif-
fult system, 2 × 12 with one hole,
a larger 𝑔 is chosen to further
reduce 𝑁min while slightly increas-
ing the variance of the energy
estimate.

filling lattice 𝐸0 𝑁min [×103] 𝑁min [×103] 𝑔
using |ΨGL⟩

half-filling

2 × 6 −5.1600 48 11 0.152 × 8 −6.8469 718 97 0.152 × 10 −8.5382 12 638(2) 1085(1) 0.152 × 12 −10.2353 n.a. 21 275(10) 0.15
one hole

2 × 6 −6.6890 149 55 0.152 × 8 −8.4518 3168(1) 627 0.152 × 10 −10.1687 80 494(10) 13 410(5) 0.152 × 12 −11.8794 n.a. 297 850(9774) 0.25
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Figure 7.12. Convergence of
the DMRG ground-state en-
ergy of the half-filled 32-site
honeycomb Hubbard system at𝑈/𝑡 = 8. Also shown is the re-
sult 𝐸0 = −14.085(41) and the
respective errorbars obtained with
importance-sampled FCIQMC
using the Gutzwiller-like guid-
ing wavefunction with 𝑔 = 0.25.
The linearly extrapolated DMRG
for 1/𝑀 → 0 agrees with the
FCIQMC result within statistical
errors.
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7.3.2 Half-Filled 32-Site Honeycomb System

Figure 7.11. Lattice structure of
the 32-site honeycomb system.
Due to the six-site innermost
loops, the system has a very weak
sign problem. Thus, it can be
effectively solved for the ground
state using importance-sampled
FCIQMC.

The half-filled 32-site honeycomb lattice has a very weak sign problem due

to the fact that its innermost loop consists of six instead of four sites. A

more detailed discussion about the effect of this is given in section 5.2.2. The

lattice structure is depicted in figure 7.11.

The 32-site honeycomb lattice at 𝑈/𝑡 = 8 with 32 electrons cannot be

converged with 𝑁tot ≲ 1 × 109 walkers. When applying importance sampling

with 𝑔 = 0.25 however, 𝑁min is reduced to 1.3432 × 108 walkers. A ground-

state energy of 𝐸FCIQMC0 = −14.085(41) is obtained. Some precision had to

be sacrificed, i.e. larger errorbars had to be accepted, to lower 𝑁min to a

manageable value. The value obtained with FCIQMC agrees well with the

DMRG benchmark which is shown in figure 7.12: For 𝑀 = 6000 one obtains

an unconverged ground-state energy 𝐸DMRG0 = −14.047. Linear extrapolation

for 1/𝑀 → 0 results in 𝐸DMRG, extrapol0 = −14.115(30). With this, the half-filled

32-site honeycomb Hubbard model is the largest 2-d model system solvable

with FCIQMC in an unbiased fashion so far.



8 Fixed Initiator Spaces and Two-Shift Method

In systems with compact ground-state solutions, the initiator method is a

good approximation, mostly insensitive to the strength of the sign prob-

lem [17, 36, 37]. However, in real-space Hubbard systems we find that the

initiator energies only converge very poorly compared to reciprocal or ab

initio systems. Figure 8.1 shows the convergence of the energies obtained by

the initiator method with respect to the total walker number of the systems

for which the stoquastised gaps were already shown in figure 5.5.

Real-space calculations allow for an initiator threshold of 𝑡init = 1 which,

in the case of the standard occupation threshold of 𝑡occ = 1, is the smallest

possible 𝑡init. This means that every determinant that is occupied by slightly

more than one walker is marked as an initiator. But even then, it is apparent

that convergence is poor compared to the reciprocal basis problem even

though, when looking at the 𝑁min, the situation is actually the other way

around.

Along this line, one can conjecture that compactness of a ground-state

wavefunction and the strength of the sign problem are inversely related

in many realistic cases. On top of the numbers presented in this thesis for

lattice models, a similar observation has been made in ab initio systems

when comparing localised with delocalised orbitals [39]. On the other hand,

we have seen in chapter 7 that increasing the compactness by a diagonal

similarity transformation leaves the stoquastised gap of the respective Hamil-

tonian unchanged and even lowers the FCIQMC-related strength of the sign

problem as defined there.

Both observations can be explained using the following argument: Let us

consider an equilibrated FCIQMC simulation where the total walker number

is chosen large enough such that the entire Hilbert space is occupied with

walker numbers 𝑁𝑖 that are proportional to the 𝐶𝑖 coefficients of the exact

FCI expansion. Therefore, the net change of walkers on determinant |𝐷𝑖⟩ isΔ𝑁𝑖 = 0. According to equation (3.3), the equilibrated walker number is then

given by 𝑁𝑖 = −∑𝑖≠𝑗 𝐻𝑖𝑗𝑁𝑗𝐻𝑖𝑖 − 𝑆 . (8.1)

A wavefunction is compact if a lot of 𝑁𝑖 are small. 𝑁𝑖 is small in the following

cases:
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Figure 8.1. Convergence of the
initiator biases Δ𝐸 with respect
to the total walker number 𝑁tot

in FCIQMC initiator calculations
of the 4 × 4 Hubbard model. Ini-
tiator thresholds of 𝑡init = 1 for
the real-space and 𝑡init = 1.3 for
the reciprocal space problems are
chosen, respectively. Also shown
are the walker numbers above
which a full calculation without
initiator approximation of the
real-space systems would be exact.
The annihilation plateau for the𝑈/𝑡 = 4 system in the reciprocal
basis lies well outside of the scope
of this plot, indicating that the ini-
tiator method is very useful. On
the other hand, initiator calcula-
tions in the real-space basis show
very slow convergence. Here, it is
much more useful to use the full
method.
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1. The diagonal element 𝐻𝑖𝑖 is large.

2. The connecting matrix elements 𝐻𝑖𝑗 are all small.

3. There are a lot of opposite-sign contributions 𝐻𝑖𝑗𝑁𝑗 that lead to anni-

hilations on |𝐷𝑖⟩.
In the case of the diagonal similarity transformation, only the denominator

is modified so there is no increased necessity for sign cancellations. When

changing the basis however, compactness in the wavefunction can be intro-

duced because of the third case, causing a more severe sign problem.

Therefore, in case of weak-sign-problem systems like the real-space

Hubbard model, it is much more feasible to use the full FCIQMC method.

However, for larger systems it might be computationally unaffordable to

reach 𝑁min and below 𝑁min the simulation is uncontrolled and does not

return a viable approximation. In chapter 7, I have shown how importance

sampling can be used to reduce the mimumum number of walkers to achieve

convergence in FCIQMC. Here, I will introduce an approximate method for

when on the one hand the ground-state wavefunction is spread-out and thus

the initiator approximation performs poorly but on the other hand the sign

problem is relatively weak. It can be readily combined with importance

sampling.

8.1 Finding Subspaces with Very Weak Sign Problems

The criterion to distinguish strongly and weakly sign-problematic systems

using the gap between stoquastised and fermionic ground-state energy does

not only hold on the global level. Also individual determinants |𝐷𝑖⟩ can be

characterised as strongly or weakly sign-problematic by looking at the ratio

𝑟stoq𝑖 = ||||| 𝐶𝑖𝐶stoq𝑖
||||| (8.2)
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Figure 8.2. Gap between 𝐸0 and𝐸stoq0 for different truncations
of the Hamiltonian of the 3 × 2
real-space Hubbard rectangle
at 𝑈/𝑡 = 8. It is apparent that
both the truncations based on𝑟 stoq𝑖 and on 𝑓𝑖 can reduce the
gap significantly by only biasing
the true fermionic energy 𝐸0
negligibly. The non-annihilated
flux 𝑓𝑖 is defined in equation (8.3).
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(a) Truncation based on 𝑟 stoq𝑖 in ascending order.
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(b) Truncation based on FCIQMC-acquired average flux of non-annihilated walkers 𝑓𝑖. In
the plot, determinants with 𝑓𝑖 smaller than the given value on the abscissa are truncated.

between the ground-state wavefunction coefficients 𝐶𝑖 of �̂� and 𝐶stoq𝑖 of�̂� stoq, respectively. If 𝑟stoq𝑖 is small, it means that a lot of annihilations have

to take place to sample the correct amplitude of the fermionic ground-state

wavefunction instead of the stoquastised one. These determinants are the

reason why the Hilbert space has to be occupied by a larger number of

walkers simultaneously. When the Hilbert space is truncated by the |𝐷𝑖⟩
with small 𝑟stoq𝑖 , this significantly reduces the sign problem and the global

stoquastised gap. On the other hand, determinants with low 𝑟stoq𝑖 have

comparably lower 𝑁𝑖 because of the exact same reason. This means that

removing them not only severely pushes up 𝐸stoq0 but might also only affect 𝐸0
slightly. This is desirable because a good approximate ground-state energy

could be obtained with only a small number of walkers.

To illustrate this, let us look again at a very small paradigmatic system

– the 2 × 3 Hubbard rectangle with 400 Slater determinants – where exact

diagonalisation is easily possible. In this system, we now look at both the

fermionic and the stoquastised ground-state energies for different trunca-

tions of the Hamiltonian. Figure 8.2a shows 𝐸0 and 𝐸stoq0 for a truncated
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Hamiltonian based on 𝑟stoq𝑖 in ascending order. This means that the Hamilto-

nian of the respective system is diagonalised only in the subspace where 𝑟stoq𝑖
exceeds a certain threshold. It is apparent that by roughly truncating the

150 determinants with lowest 𝑟stoq𝑖 , the true fermionic 𝐸0 is only biased by a

small amount but the sign problem, measured by 𝐸0 − 𝐸stoq0 , is significantly

reduced.

Figure 8.2b shows that similar truncations can also be achieved by using

an FCIQMC-inherent parameter. Additional to the normal global statistics,

determinant-specific statistics has been acquired, namely the average flux of

non-annihilated walkers onto a respective determinant |𝐷𝑖⟩. It is defined as

𝑓𝑖(𝜏) = 1 − 𝑎𝑖(𝜏)Δ𝑁𝑖(𝜏) (8.3)

with 𝑎𝑖(𝜏) = (||𝑁𝑖(𝜏 − Δ𝜏)|| +∑𝑗≠𝑖 ||Δ𝑁𝑖𝑗 (𝜏)||)−|||||𝑁𝑖(𝜏 − Δ𝜏) +∑𝑗≠𝑖 Δ𝑁𝑖𝑗 (𝜏)|||||
with Δ𝑁𝑖(𝑝Δ𝜏) being the total spawned walkers onto |𝐷𝑖⟩ in iteration 𝑝 andΔ𝑁𝑖𝑗 (𝑝Δ𝜏) the spawns from |𝐷𝑗 ⟩ to |𝐷𝑖⟩. 𝑁𝑖(𝑝Δ𝜏) is the number of walkers

already sitting on |𝐷𝑖⟩ in iteration 𝑝. With this, 𝐴𝑖(𝑝Δ𝜏) is the number of

annihilations on |𝐷𝑖⟩ in iteration 𝑝.

The truncation of the Hamiltonian in this plot is done based on the

average quantity 𝑓𝑖 in ascending order. By truncating all determinants with𝑓𝑖 ≲ 0.8, the gap between 𝐸0 and 𝐸stoq0 is reduced to 1/10 of the size when

looking at the full space. However, 𝐸0 alone is only biased negligibly.

The existence of such truncations in small paradigmatic systems indicates

that there might also be truncations of Hamiltonians of larger Hubbard

lattices that remove determinants that only have a minor effect on the sought-

for energy but reduce the sign problem and therefore the annihilation plateau

significantly. 𝑟stoq𝑖 cannot be known a priori of course. Also sampling 𝑓𝑖 is not

feasible for large systems since empty determinants and all their determinant-

related data have to be removed from memory in the FCIQMC algorithm to

keep it memory-efficient.

To predict low-amplitude determinants, known analytical wavefunc-

tion ansatzes of the Hubbard model can be used instead. A possible simple

ansatz was already presented in equation (6.21): the Gutzwiller ansatz. Other

ansatzes include that the system favours configurations where doubly occu-

pied sites (doublons) are spatially close to empty sites (holons) [202, 203]. The

addition of this term is important for the correct description of Mott-insulator
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transitions in two-dimensional half-filled square Hubbard models [204, 205].

This can be expressed as

|Ψdh⟩ = exp[𝑘max∑𝑘>0 𝑐𝑘 ∑𝑖𝑗 𝛿𝑟𝑖𝑗𝑘�̂�𝑖↑�̂�𝑖↓(1 − �̂�𝑗↑)(1 − �̂�𝑗↓)] |ΨHF⟩ (8.4)

where 𝑟𝑖𝑗 is the spatial distance between site 𝑖 and site 𝑗 . 𝑐𝑘 are real coefficients

for the contributions of different distances 𝑘 between doublons �̂�𝑖↑�̂�𝑖↓ at

site 𝑖 and holons (1 − �̂�𝑗↑)(1 − �̂�𝑗↓) at site 𝑗 up to a certain distance 𝑘max.

VMC optimisations of the parameters 𝑐𝑘 indicate that they decrease with

increasing 𝑘. Another known wavefunction ansatz is one that enforces

antiferromagnetic order. Configurations with adjacent singly occupied sites

are favoured when they have opposite spin and suppressed when they are

same spins. This can be written as

|Ψaf⟩ = exp[(𝑎∑⟨𝑖𝑗⟩(�̂�𝑖↑�̂�𝑗↑+�̂�𝑖↓�̂�𝑗↓))+(𝑏∑⟨𝑖𝑗⟩(�̂�𝑖↑�̂�𝑗↓+�̂�𝑖↓�̂�𝑗↑))] |ΨHF⟩ (8.5)

with 𝑎 < 𝑏.
Table 8.1 shows a combined VMC optimisation with respect to the

variational energy using the Gutzwiller ansatz |ΨG⟩, the doublon–holon

ansatz |Ψdh⟩, and the antiferromagnetic ansatz |Ψaf⟩ for the 2 × 8 Hubbard

ladder at 𝑈/𝑡 = 8. Configurations with larger doublon–holon distances are

less important than the ones with small distances. Antiferromagnetic pairing

is favoured over ferromagnetic pairing.

Table 8.1. Wavefunction param-
eters for a paradigmatic VMC
energy optimisation of the wave-
function ansatzes |ΨG⟩, |Ψdh⟩, and|Ψaf⟩ combined of a half-filled 2 × 8
Hubbard ladder at 𝑈/𝑡 = 8. Small
doublon–holon distances as well
as antiferromagnetic pairing are
favoured.

|ΨG⟩ 𝑔 0.2388
|Ψdh⟩ 𝑐1 5.0989𝑐2 1.5951𝑐3 −3.5017
|Ψaf⟩ 𝑎 9.8641𝑏 1.4307

8.1.1 Truncation Based on Doublon–Holon Distances

Let us first consider ansatz |Ψdh⟩. The wavefunction is truncated based on the

doublon–holon criterion above a certain 𝑘. In other words, I only consider a

subspace dh(𝑘max) of �̂� in a basis of Slater determinants in which a holon

and the respective doublon only moved away from each other by a spatial

distance up to 𝑘max. From an algorithmic perspective, this truncation only

creates a small computational overhead. Although every determinant that is

created as a possible excitation in the spawning step has to be checked for

whether it is still contained in the selected subspace, this is typically fast.

Only the one electron that is moved has to be checked for whether its move

violates the truncation criterion. This makes it an (1) operation since the

check is independent of system size.
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Figure 8.3. Hilbert space sizes
and energies for increasing
lengths of Hubbard ladder sys-
tems with 2 × 𝓁 sites for the full
space and for a subspace based on
the doublon–holon criterion with𝑘max = 1. Also the 𝑘max = 1 sub-
space scales exponentially so the
truncation is extensive. This leads
to the fact that roughly a constant
ratio of the ground-state energy
is recovered in the 𝑘max = 1 sub-
space. This is not true for the
automatically sampled initiator
subspace, regardless of the num-
ber of walkers.
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It is also noted that this truncation is applied in an initiator-like fashion.

This means that it is not applied as a strict truncation, i.e. all spawns to

determinants that are not contained in  are strictly rejected, but rather

occupation of every determinant in the full space is allowed. However, only

determinants that are contained in  are allowed to spawn onto empty

determinants. Determinants not contained in  can only spawn onto de-

terminants in  . Thus, only these determinants can propagate their sign

through the Hilbert space whilst the non-spawning occupation of determi-

nants not contained in  still gives a small energy correction, just like in

the usual population-based initiator criterion. Furthermore, the population-

based initiator criterion with 𝑡init = 1.3 is applied on top. Every determinant

on which the instantaneous population exceeds this threshold is treated like

it would be contained in  . This also gives a small energy correction without

affecting 𝑁min because these determinants can be deemed sign-coherent with

a high probability.

As briefly described in section 3.2.3, a related preselection of initiator

subspaces based on selected configuration interaction (SCI) in ab initio sys-

tem has been presented previously [56]. While some observations, like the

reintroduction of a weak sign problem in the fixed initiator space, nicely

agree, there are key differences: The scheme presented in this thesis relies

on analytical wavefunction ansatzes to determine the fixed space while the

SCI-based truncation is founded on a preceding heat-bath SCI calculation.
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Figure 8.4. Ground-state energies
of the 4 × 4 real-space Hubbard
lattice at 𝑈/𝑡 = 8 calculated
with full FCIQMC for different
extensive truncations based on
the doublon–holon criterion
and with initiator-FCIQMC, re-
spectively. The points for the
extensive truncations are put at
the 𝑁min of the respective sub-
space. Population-based initiator
calculations are performed for the
same walker numbers. For the
extensive spaces, numbers with
and without importance sampling
using |ΨGL⟩ are compared. Impor-
tance sampling is not effective in
initiator-FCIQMC.
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(a) Without importance sampling.
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(b) With importance sampling using the Gutzwiller-like guiding wavefunction.

The analytical wavefunction ansatzes can be evaluated in a discrete feature-

based manner which allows for fast on-the-fly calculations. This also means

that extensive, exponentially scaling subspaces can be selected which is

necessary in the real-space Hubbard model with its spread-out ground-state

wavefunctions.

Figure 8.3 shows that subspaces truncated based on this criterion are

indeed extensive. To demonstrate this, we again use Hubbard lattices in

ladder geometry. Due to the exponential scaling, the ground-state energy 𝐸0
of the subspace in this case roughly recovers a constant amount of the

energy 𝐸0. Dynamically sampled initiator subspaces based on the usual

population-based initiator criterion do not scale exponentially. Therefore,𝐸0/𝐸0 always falls off at some 𝓁, regardless of the number of walkers.
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Figure 8.5. Size of the sub-
space | | as a fraction of the com-
plete Hilbert space size || for a2 × 8 ladder-type Hubbard lattice
as a function of 𝑎max. For the blue
curve, af is the only constraint.
For the orange curve, there is the
additional dh constraint with𝑘max = 1 which restricts | | even
for maximum 𝑎max which is 48 for
this lattice.
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This then leads to the observation that an extensive truncation based

on |Ψdh⟩ leads to improved results also for larger 𝑘max when comparing them

for the same number of walkers. This is shown in figure 8.4a for a 4 × 4
lattice at 𝑈/𝑡 = 8. The energy in the subspace is calculated and 𝑁min in

the subspace is determined. Subsequently, an initiator calculation for that

number of walkers is performed and the obtained energies are compared.

One can see that for 𝑘max ≥ √2, the energy of the extensive subspace is

consistently better than the result of initiator-FCIQMC. Furthermore, it

is possible to lower 𝑁min in the extensive subspaces by using importance

sampling with |ΨGL⟩ which is shown in figure 8.4b. The extensive spaces

now give a better energy estimate for all 𝑘max.

8.1.2 Truncation Based on Antiferromagnetic Wavefunction Ansatz

The truncation inspired by |Ψaf⟩ works in a similar fashion as the doublon–

holon criterion. To this end, we define a penalty score 𝑎. It is defined as

𝑎 = ∑⟨𝑖𝑗⟩ 𝑠𝑖𝑗 + 𝑁links (8.6)

with 𝑠𝑖𝑗 =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1 if 𝑖 = |↑⟩ , 𝑗 = |↓⟩ or 𝑖 = |↓⟩ , 𝑗 = |↑⟩ ,0 if 𝑖 = |⋅⟩ , 𝑖 = |↑↓⟩ , 𝑗 = |⋅⟩ , or 𝑗 = |↑↓⟩ ,1 if 𝑖 = 𝑗 = |↑⟩ or 𝑖 = 𝑗 = |↓⟩ .

𝑁links is the total number of links between sites. For a genuine 2-d square

lattice, it is 2𝑁s; for a honeycomb lattice, it is 1.5𝑁s. Again, ⟨𝑖𝑗⟩ is the sum

over nearest neighbours. 𝑎 is small if there are many ↑-electrons surrounded

by many ↓-electrons in a given determinant or vice versa. For the half-

filled case, 𝑎 = 0 is only true for the two Néel determinants; the maximum



the two-shift method 121

possible value is 2𝑁links. The fixed initiator subspace af(𝑎max) only includes

determinants for which 𝑎 ≤ 𝑎max.

Again, af is extensive, i.e. scales exponentially with system size. It has

to be noted that the Hilbert space size does not scale linearly with 𝑎max

but is rather a sigmoid function. The change in Hilbert space size from𝑎max to 𝑎max + 1 is largest for intermediate 𝑎max. The sigmoid function is

not symmetric around the inflection point due to the existence of doubly

occupied sites that do not contribute to 𝑎. The size ||af|| – both with and

without the additional dh(1) constraint – as a fraction of the size of the

whole space || is shown in figure 8.5 for a 2 × 8 ladder geometry.

8.2 The Two-Shift Method

Although we have shown that applying FCIQMC in subspaces based on

truncation criteria from analytical wavefunction ansatzes lead to improved

results compared to initiator-FCIQMC, so far these results are not systemati-

cally improvable by adding more walkers. If the wavefunction ansatz is too

coarse, adding more determinants into the subspace may be too expensive

in terms of the sign problem but necessary to get a satisfactory result. To

this end, I will introduce a scheme where one can still benefit from knowing

important subspaces with a very weak sign problem but the outside space

can be included in a perturbative manner. This inclusion will happen in an

approximate way to not let the sign problem of the remaining part dominate

the simulation.

The method will be based on the initiator-like method with a fixed

initiator subspace  that was presented in section 8.1. The original initiator

scheme as described in section 3.2.3 is depicted in figure 8.6a. It strictly

truncates all spawns from non-initiators (all determinants not contained in 
or fulfilling the occupation criterion 0 < 𝑁𝑖 ≤ 𝑡init) to empty determinants.

This constraint will now be relaxed in a controlled manner.

In a first step, the spawning constraints are released all together. With a

too small number of walkers, there would not be enough annihilations to

stabilise the fermionic solution. As described in section 3.2, one would get a

meaningless superposition of |Ψ⟩ and −|Ψ⟩. Like in chapter 7, also here the

fixed-𝑁0 method, that employs a shift update according to equation (3.11), will

be used to ensure a sign-coherent solution in the subspace  . If not specified

otherwise, fixed-𝑁0 = 50 will be used for all calculations as a compromise
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Figure 8.6. Comparison of the
initiator-like method with a fixed
very-weak-sign-problem sub-
space  and its extension by the
two-shift method.

fixed space  𝑁𝑖 > 𝑡init 0 < 𝑁𝑖 ≤ 𝑡init
if not in fixed space

unoccupied

initiators non-initiators

(a) Original initiator-like method with fixed  . No spawns are allowed from non-initiators
onto empty determinants (with the exception of the multiple-spawns rule). The global
shift 𝑆 is applied to every occupied determinant.

fixed space  𝑁𝑖 > 𝑡init 0 < 𝑁𝑖 ≤ 𝑡init
if not in fixed space

spawned by 1a

0 < 𝑁𝑖 ≤ 𝑡init
if not in fixed space

spawned by 1b or 2

unoccupied

type 1a type 1b type 2

(b) Two-shift method. All spawns are allowed. Shift 𝑆1 is applied to type-1 determinants
to target a minimum population on the reference determinant to ensure sign coherence.
Shift 𝑆2 is applied to type-2 determinants to target a total overall population 𝑁tot.

between minimising the necessary total population and controlling stochastic

noise.

8.2.1 Application of Different Shifts Depending on Determinant History

As mentioned before,𝑁min of the overall space may be too large.  however is

specifically designed such that𝑁min is reachable with available computational

resources. Therefore, a shift 𝑆1 is applied only to the determinants in the

extensive subspace  and the dynamically changing additional determinants

that fulfill 𝑁𝑖 > 𝑡init. These determinants will be called type-1a determinants.

Additionally, 𝑆1 is applied to determinants that have been spawned from

initiators. In the original scheme, they are called non-initiators. Here, they

will be called type-1b determinants.

By construction, the outside space c ∶=  ⧵  with 𝑁𝑖 ≤ 𝑡init has a

comparatively strong sign problem but relatively weak contributions into

the ground-state wavefunction. We therefore apply a dynamically adjusted

second shift 𝑆2 to determinants that are neither type-1a nor type-1b deter-

minants. They will be called type-2 determinants. In line with the above

definitions, these are determinants that have either been spawned by type-1b

or other type-2 determinants. If an already occupied type-2 determinant

is subsequently spawned upon by a type-1a determinant, it is marked as a

type-1b determinant. If a type-1b or a type-2 determinant exceeds 𝑡init at the
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end of an iteration, it is marked as a type-1a determinant for the subsequent

iteration.

It is noted that for 𝑆2 → −∞ the two-shift method reverts back to the

original initiator-like method with fixed  with the type-1 determinants

being initiators, type-1b determinants being non-initiators and type-2 de-

terminants being constantly unoccupied. On the other hand, for 𝑆2 = 𝑆1
we recover the full method without approximation. This can be used for

extrapolation purposes as we will see later.

Figure 8.7. Simulation dynamics
of the shifts 𝑆1 and 𝑆2 and the
walker numbers 𝑁tot,1, 𝑁tot,2, and𝑁tot in a two-shift calculation as a
function of imaginary time 𝜏. The
system is the half-filled 18-site
2-d Hubbard model at 𝑈/𝑡 = 8.𝑁tot = 5 × 106 walkers is chosen.
Since 𝑁tot < 𝑁min, 𝑆1 > 𝐸0 and𝑆2 < 𝐸0. 𝑁tot,1 and 𝑁tot,2 add up to
the desired 𝑁tot.
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We will now discuss how the shifts 𝑆1 and 𝑆2 are adjusted during a

simulation. 𝑆1 is adjusted according to equation (3.11). It fixes the population

on the reference determinant which has to be contained in  . It ensures sign

coherence in the type-1 space and therefore will lead to a population 𝑁tot,1(𝜏).
After the equilibration period, it will fluctuate around an average population

of 𝑁tot,1. Also defined is a total number of walkers 𝑁tot that can be handled by

the computational resources at hand. It has to be larger than the maximum

value of 𝑁tot,1 at (almost) every given 𝜏 during the simulation, otherwise the

run is not stable and the simulation variables cannot be averaged.

The excess walkers can be used in the type-2 space to correct the residual

bias that comes from the truncation of the type-1 space. 𝑆2 is adjusted in
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Figure 8.8. Average number of
walkers on type-1 determinants
(𝑁tot,1) and on type-2 determi-
nants (𝑁tot,2), respectively, as a
function of the total number of
walkers 𝑁tot for a half-filled 18-
site tilted real-space Hubbard
system at 𝑈/𝑡 = 8. |Ψg⟩ is ap-
plied with 𝑔 = 0.15. |Ψdh⟩ with𝑘max = 1 is used to define the
subspace  . 𝑁tot,1 increases be-
cause more walkers are required
to compensate for the non-sign-
coherent influx from the type-2
space when increasing 𝑁tot. Still,
the largest fraction of the increase
in 𝑁tot goes into the increase of𝑁tot,2 which corrects the energy
estimator 𝑆1.
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every iteration such that the population in the type-2 space is given by𝑁tot,2(𝜏) = 𝑁tot − 𝑁tot,1(𝜏). This can be achieved by updating 𝑆2 according to

𝑆2(𝜏) = 𝑆2(𝜏 − Δ𝜏) − 𝛾Δ𝜏 ln( 𝑁tot,2(𝜏)𝑁tot,2(𝜏 − Δ𝜏)) − 𝛾24Δ𝜏 ln( 𝑁tot,2(𝜏)𝑁tot − 𝑁tot,1(𝜏)) .
(8.7)

Instead of just leading to a constant population with only the first two terms,

the shift update now takes the total population to the target population

specified in the denominator of the logarithm 𝑁tot − 𝑁tot,1(𝜏). As introduced

in section 3.1.1, the prefactor 𝛾2/4 is chosen to achieve critical damping. In

our case, the denominator is not constant but rather changes due to stochastic

fluctuations of 𝑁tot,1. Yet, after the equilibration period also 𝑁tot,2 fluctuates

around a constant average number 𝑁tot,2.
The sign problem is not fully resolved in the type-2 space if 𝑁tot is below𝑁min of the entire system. Therefore, 𝑆2 < 𝑆1 in that regime because there

are excess walkers in the type-2 space that are not annihilated due to under-

population. If 𝑁tot = 𝑁min, 𝑆2 = 𝑆1. For 𝑁tot > 𝑁min, consequently 𝑆2 > 𝑆1.
Figure 8.7 shows the simulation dynamics of both shifts 𝑆1 and 𝑆2 and

the walker numbers 𝑁tot,1, 𝑁tot,2, and 𝑁tot for a target population 𝑁tot =5 × 106 < 𝑁min. As expected, 𝑆1 fluctuates around a value larger than 𝐸0,𝑆2 fluctuates around a value smaller than 𝐸0. Due to the interdependent

population control, 𝑁tot,1 and 𝑁tot,2 add up to the desired 𝑁tot.

Below 𝑁min, 𝑆1 is used as an approximate estimator to the exact energy.

As the type-1 space now gets additional contributions from the type-2 space

that were not there in the original method, 𝑆1 is always lowered compared

to the ground-state energy 𝐸0 of  alone. It has to be noted that there can

be spawns from the type-2 into the type-1 space that are not sign-coherent.

Thus, increasing 𝑁tot will also increase 𝑁tot,1 starting from 𝑁
min of  because

more walkers are needed in the type-1 space to guarantee sign coherence
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Figure 8.9. Average shifts 𝑆1
and 𝑆2 for a half-filled 18-site
tilted real-space Hubbard system
at 𝑈/𝑡 = 8 calculated with the
two-shift method with respect to
the total number of walkers. The
green and blue curves are based
on calculations with subspaces
based on the doublon–holon
(𝑘max = 1) and the antiferromag-
netic (𝑎max = 18 and 𝑎max = 36,
respectively) truncation criterion,
respectively. The yellow curve
is based on the doublon–holon
criterion with 𝑘max = 1 only. A
smaller subspace leads to a worse
energy estimate via 𝑆1 for the
same 𝑁tot. All curves intersect at
the exact energy for a number
of walkers at the system’s 𝑁min

with the Gutzwiller-like guiding
wavefunction |ΨGL⟩ with 𝑔 = 0.15
applied.
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126 fixed initiator spaces and two-shift method

there. Figure 8.8 shows 𝑁tot,1 and 𝑁tot,2 for increasing 𝑁tot for a half-filled

18-site real-space Hubbard lattice.

Figure 8.9 shows the convergence of the average shifts 𝑆1 and 𝑆2 with

respect to 𝑁tot for different choices of the subspace  . For a larger  , the

energy estimates via 𝑆1 are consistently lower for all walkers numbers below𝑁min. The shifts 𝑆2 acting in the type-2 space are also consistently lower

for larger  . Regardless of  , 𝑆1 and 𝑆2 intersect at 𝑁tot = 𝑁min (for a given

guiding wavefunction) with 𝑆1 and 𝑆2 being on top of the exact energy.

The two-shift method is related to the adaptive-shift method [57, 58] and

the initiator-FCIQMC method corrected by second-order Epstein–Nesbet

perturbation theory (EN2) [59]. The key difference to the adaptive-shift

algorithm lies in the fact that the two-shift method allows for free spawning

in the entire Hilbert space. Thus, it provides a correction accounting for

contributions from all of the outside space. The adaptive-shift algorithm

only corrects for contributions in the direct vicinity of the initiator space.

Due to the spread-out nature of the sampled wavefunctions, this is not very

effective in the real-space Hubbard model. The EN2-corrected initiator-

FCIQMC method relies on the replica method [206] because two statistically

independent samples of the wavefunction are required to evaluate the second-

order energy contribution. This poses a problem for the real-space Hubbard

model as the overlap between two independent samples of the wavefunction

at a given instance typically goes to zero when using extensive initiator

spaces. The two-shift method presented here does not rely on the replica

method.

Similar in spirit is the usage of a sign-flip potential to remove the sign

problem [39]. In this scheme, sign-violating off-diagonal contributions are

zeroed and folded into the diagonal matrix elements. This however requires

the knowledge of a highly accurate trial wavefunction, both with respect

to the sign and the amplitude structure. Furthermore, the trial wavefunc-

tion needs to be evaluated many times to determine the sign-flip potential

as sums over all connected determinants need to be evaluated for every

occupied determinant. This prohibits large-scale calculations. In contrast,

the wavefunction ansatzes used to determine  in the two-shift method are

feature-based and can be evaluated highly efficiently.

8.2.2 Extrapolation to the Unbiased Ground-State Energy

So far, fixed initiator subspaces, guiding wavefunctions, and the two-shift

method have greatly improved the best approximate ground-state energy
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Figure 8.10. Extrapolation to
the exact ground-state energy
for the half-filled 18-site system
at 𝑈/𝑡 = 8 with 𝑔 = 0.15 for
different subspace choices. The
points in this plot are taken from
the data shown in figure 8.9 at the
respective total walker numbers.
For 𝑆1/𝑆2 = 1, both shifts equal
the exact energy but a linear
extrapolation is possible for lower
walker numbers. The dashed lines
show extrapolations from 1 × 107
to 1.5 × 107 walkers for the green,
from 5 × 106 to 1 × 107 walkers for
the blue and from 2 × 106 to 5 × 106
walkers for the yellow curve.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1S1/S2
−10.2−10.0−9.8−9.6−9.4−9.2−9.0−8.8
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−9.8695S1,  = dh(1) ∩ af(18)S1,  = dh(1) ∩ af(36)S1,  = dh(1)

Table 8.2. Extrapolated ener-
gies 𝐸extrapol0 for different subspace
choices for the half-filled 18-site
Hubbard model at 𝑈/𝑡 = 8. The
linear extrapolation allows to de-
termine the ground-state energy
within a relative error Δ𝐸/𝐸0 of
less than 0.1 % with walker num-
bers below 𝑁min. For the largest
subspace, an extrapolation from2 × 106 to 5 × 106 walkers is al-
ready sufficient. For the smallest
subspace dh(1) ∩ af(18), only
extrapolations close to 𝑁min (at1.62 × 107 walkers for 𝑔 = 0.15)
return accurate results.

extrapolation
 from . . . to . . . walkers 𝐸extrapol0 Δ𝐸/𝐸0

dh(1) ∩ af(18) 2 × 106 5 × 106 −9.5107 3.64 %5 × 106 1 × 107 −9.8051 0.65 %1 × 107 1.5 × 107 −9.8705 0.01 %dh(1) ∩ af(36) 2 × 106 5 × 106 −9.8205 0.50 %5 × 106 1 × 107 −9.8611 0.08 %1 × 107 1.5 × 107 −9.8532 0.17 %dh(1) 2 × 106 5 × 106 −9.8681 0.01 %5 × 106 1 × 107 −9.8608 0.08 %1 × 107 1.5 × 107 −9.8703 0.01 %
FCIQMC can return for systems with weak sign problems but very spread-

out wavefunctions. Still, our solutions still have a systematic bias. Now, the

fact that the shifts 𝑆1 and 𝑆2 intersect at the exact energy will be exploited

for extrapolation.

An extrapolation to the point of equality is either possible using the

difference 𝑆1 − 𝑆2 or the ratio 𝑆1/𝑆2. We observe that the ratio actually enters

a linear regime well below 𝑁min as can be seen in figure 8.10 for the half-filled

18-site problem. This allows for a linear extrapolation to 𝑆1/𝑆2 = 1. It is

apparent that the linear regime is reached for a higher number of walkers

the smaller  is chosen. Therefore, it is always beneficial to use the largest

possible subspace in which 𝑁min is still reached with the requested total

number of walkers 𝑁tot. The numerical extrapolation results are listed in

table 8.2.
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Figure 8.11. Extrapolation to
the exact ground-state energy
for the 18-site system with one
hole at 𝑈/𝑡 = 8 with 𝑔 = 0.15
for a subspace choice dh(1). The
extrapolation using calculations
with only up to 5 × 106 walkers
allows one to calculate a ground-
state energy of −11.728(2) which
corresponds to a relative error of0.5 %.

0.5 1.0 1.5 2.0 2.5 3.0 3.5Ntot ×107
−11.8
−11.6
−11.4S 1

(a) Total walker numbers used.

0.0 0.2 0.4 0.6 0.8 1.0S1/S2
−11.8
−11.7
−11.6
−11.5
−11.4
−11.3
−11.2

S 1

0.00
0.01
0.02
0.03
0.04
0.05

ΔE/E 0

(b) Extrapolation.

8.3 Results for Systems with One Hole

In this section, I will present results on the 18-site tilted square lattice and 32-

site honeycomb lattice systems in the challenging intermediate interaction

regime at 𝑈/𝑡 = 8, each with one hole. These systems show a sign problem

even in AFQMC (see section 2.2.3). The 32-site system is well beyond the

scope of exact diagonalisation.

8.3.1 18-Site Tilted Lattice

I will first look at the 18-site tilted lattice at 𝑈/𝑡 = 8 again but now with

one hole. This system has a stoquastised gap of Δ𝐸stoq = 5.287, compared

to Δ𝐸stoq = 3.697 for the half-filled system. With importance sampling with𝑔 = 0.15, 𝑁min is located at 3.36 × 107 walkers.

Figure 8.11 shows both 𝑆1 as a function of 𝑁tot and the extrapolation of𝑆1 as a function of 𝑆1/𝑆2. The subspace used for the type-1a determinants is

dh(1) without a truncation based on the antiferromagnetic criterion. From

three calculations with walker numbers 𝑁tot = 3 × 106, 4 × 106, and 5 × 106, a

linear extrapolation to 𝐸extrapol0 = −11.728(2) is possible. When comparing to

the converged ground-state energy 𝐸0 = −11.7902(8), this is a relative error
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Figure 8.12. Extrapolation to the
exact ground-state energy for the
32-site honeycomb system with
one hole at 𝑈/𝑡 = 8 with 𝑔 = 0.15
for a subspace choice dh(2) ∩af(34). Linearly extrapolating
to 𝑆1/𝑆2 leads to an estimate of
the ground-state energy that
agrees with an 𝑀 = 6000 DMRG
reference within statistical errors.
The errors were obtained using
linear error fits (light grey) that
were chosen to match with the
statistical errors of the individual
calculations.
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(b) Extrapolation.

of Δ𝐸/𝐸0 = 0.5 % with Δ𝐸 = 𝐸extrapol0 − 𝐸0. This is a significant reduction

when comparing to a single-shot two-shift calculation with 5 × 106 walkers

which yields 𝐸0(𝑁tot = 5 × 106) = −11.357 which corresponds to a relative

error of Δ𝐸/𝐸0 = 3.7 %.

8.3.2 32-Site Honeycomb Lattice

The half-filled 32-site problem on a honeycomb structure, with its lattice

structure depicted in figure 7.11, has been calculated in an exact manner

using importance-sampled FCIQMC in section 7.3.2. For the system with one

hole, this is no longer possible. Even when applying importance sampling

using the Gutzwiller-like guiding wavefunction, 𝑁min cannot be reduced

sufficiently to match available computational resources. Due to the very

weak sign problem due to the six-site smallest loop (see section 5.2.2) however,

the two-shift method together with the extrapolation scheme can be applied

to get a ground-state energy estimate.
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Figure 8.12 again shows 𝑆1 as a function of the 𝑁tot used (between 1 × 108
and 6 × 108 walkers) and the extrapolation of 𝑆1 as a function of 𝑆1/𝑆2.
Empirically, it is found that a subspace choice dh(2) ∩ af(34) is optimal

for a walker number regime on the order of 108 walkers. Especially, it is

superior to restricting the subspace to dh(1) and releasing the af constraint.

Extrapolating between 3 × 108 and 6 × 108 walkers leads to an estimated

ground-state energy 𝐸FCIQMC, extrapol0 = −15.864(49). The error was obtained

using the error fits shown in light grey. A DMRG benchmarks yields a

variational ground-state energy 𝐸DMRG0 = −15.8861 for 𝑀 = 6000 which lies

within statistical errorbars of the FCIQMC extrapolated estimate. Linearly

extrapolating the DMRG energies as a function of 1/𝑀 from 𝑀 = 5000
to 6000 yields 𝐸DMRG, extrapol0 = −15.9665. This is not a variational estimator

however and may not be reliable as the linear regime of DMRG might not

have been reached for these bond dimensions.



9 Summary & Outlook

In this thesis, the applicability of FCIQMC was enlarged beyond the scope

of ab initio systems and the reciprocal-space Hubbard model. The special

characteristics of the real-space Hubbard model in conjunction with the

FCIQMC algorithm were studied. Due to this, it was possible to develop

algorithms to reduce or even remove systematic biases that are unusually

strong in these kinds of systems.

9.1 Summary

Firstly, the emergence of a sign problem in the aforementioned lattice models

was studied. It was established that there are certain non-trivial sign-problem-

free lattice systems in FCIQMC: Apart from the already widely known fact

that the 2-d Heisenberg model is sign-problem-free, it was proven that there

are certain 1-d Hubbard systems that also do not exhibit a sign problem. A

rule for when this is the case that only depends on the number of ↑- and↓-spins was given: For periodic (antiperiodic) boundary conditions, a 1-d

Hubbard chain is sign-problem-free for an odd (even) number of ↑- and an

odd (even) number of ↓-electrons. In 1-d Hubbard systems that do show a

sign problem, it was found that the stoquastised gaps, which are important

and easy-to-calculate estimators of the strength of the sign problem, decrease

with system size, i.e. the sign problem is non-size-extensive. The influence

of other system parameters such as filling and on-site interaction strength

was studied. Moving to 2-d systems, in FCIQMC there is an inevitable size-

extensive sign problem. Compared to ab initio systems and the Hubbard

model in a reciprocal-space basis however, the sign problem is weak in

comparison. Its strength is mainly determined by the number and the size

of the innermost sign-problematic loops. Therefore, it was found that 2-d

ladder systems and the honeycomb lattice structure both show especially

weak sign problems.

Secondly, when trying to solve large sign-problem-free systems, it was

discovered that the results are biased due to a systematic effect in the FCIQMC

algorithm. This had previously been masked by other systematic biases

mainly caused by the sign problem. It was established that the newly discov-

ered bias is caused by a non-vanishing covariance between the population
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control parameter, the shift, and the sampled wavefunction. Thus, it was

named population control bias. It was found that the bias could be reduced

substantially by introducing importance sampling to FCIQMC. Already a sim-

ple Gutzwiller-like guiding wavefunction that could be evaluated with almost

no computational overhead sufficed to remove the population control bias

by large amounts. The Gutzwiller-like guiding wavefunction was compared

to the full Gutzwiller wavefunction that generates system-size-dependent

overhead. By employing an a-posteriori reweighting procedure that removed

the remaining correlation between the shift and the wavefunction, the bias

could be removed practically entirely. With this, it was possible to calculate

the ground-state energies of the 1-d Hubbard model at 𝑈/𝑡 = 8 and 4 with

102 lattice sites at half-filling and with four holes and of the half-filled 150-site

Hubbard model at 𝑈/𝑡 = 8 in good agreement with DMRG benchmarks and

analytical results from the Bethe ansatz. Furthermore, the fundamental gaps

of the 1-d Hubbard chains were calculated. They were calculable close to the

thermodynamic limit at 102 sites due to the non-size-extensive character of

the sign problem. The many-particle gaps calculated using FCIQMC are in

good agreement with other high-accuracy methods.

Thirdly, the effect of applying importance sampling to sign-problematic

systems was studied. It was discovered that applying a Gutzwiller-like

guiding wavefunction significantly reduces the minimum number of walkers

to obtain an unbiased ground-state energy in weakly sign-problematic cases.

This happens even though the stoquastised gap remains unchanged when

sampling according to the respective similarity-transformed Hamiltonian

which led to the definition of the FCIQMC-related (relative) strength of the

sign problem. The reason for the reduction of the minimum walker number

to resolve the sign problem was found in the fact that the effectiveness of the

annihilation process is significantly improved. This is because the 𝓁1 norm of

the wavefunction is shifted towards Slater determinants with small diagonal

element which corresponds to a compactification of the wavefunction. With

this, it was possible to calculate the fundamental many-particle gaps of2 × 𝓁 Hubbard ladder systems in the intermediate interaction regime up

to 𝓁 = 12. Additionally, the ground-state energy of a 32-site honeycomb

lattice at 𝑈/𝑡 = 8, a large yet very weakly sign-problematic system, could be

calculated using importance-sampled FCIQMC.

Fourthly, a new approximate method was developed that is specifically

tailored towards weakly sign-problematic Hubbard systems: the two-shift

method. The two-shift method is complementary to the usual population-
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based initiator method which turns out to be a crude approximation in

systems like the real-space Hubbard model with highly spread-out wave-

functions. The two-shift method is based on the predefinition of initiator

subspaces with very weak sign problems that already contain a large fraction

of the total wavefunction weight. The predefinition of initiator subspaces also

allows for the use of the previously developed importance sampling using a

Gutzwiller-like guiding wavefunction. To define these, Hubbard wavefunc-

tion ansatzes like the doublon–holon and the antiferromagnetic ansatz were

used. Wavefunction contributions from outside the exactly treated subspace

are included in a perturbative manner by applying a separate shift to them,

still allowing them to contribute but preventing the dominating stoquastised

signal from growing. It was also shown that extrapolation to the unbiased

ground-state energy is possible which allowed ground-state calculations of

systems with one hole with up to 32 sites in a honeycomb lattice geometry.

9.2 Future Outlook

The fundamental understanding and algorithmic developments about weak

sign problems in real-space lattice systems in this thesis opens up related

research topics and, among others, will have to be persued in future work:∙ With the ability to calculate unbiased ground-state energies more sign-

problem-free systems, especially systems containing bosons instead of

fermions, can be studied. It remains an open question whether simple

guiding wavefunctions, like the ones applied in this thesis, will be

sufficient also in other systems.∙ The effect of more sophisticated wavefunction ansatzes compared

to the Gutzwiller-like guiding wavefunction could be evaluated for

sign-problematic lattice models.∙ The work on lattice model systems with quantum-chemical methods

quite naturally leads to the question whether the newly developed

concepts can be applied to molecular ab initio systems as well. In a

previous work, it was shown that in a variety of systems choosing

localised orbitals leads to weaker sign problems compared to a set of

delocalised orbitals [39]. It will be interesting to see whether concepts

like importance sampling or the two-shift method also work in these

kinds of systems and which wavefunction ansatzes will work well.





A Appendix

A.1 Lattice Geometries

In figure A.1, a synopsis of all lattice structures used throughout this thesis

is shown. Lattice sites highlighted in orange are part of the respective finite

bulk. Grey solid lines indicate nearest-neighbour connections. Dashed lines

indicate possible periodic boundary conditions.

Figure A.1. Overview over the
lattice geometries used through-
out the thesis.

𝓁 𝓁
chain of length 𝓁 ladder of length 𝓁

16-site (4 × 4) square lattice 18-site (3√2 × 3√2) tilted lattice

16-site honeycomb lattice 32-site honeycomb lattice

A.2 Blocking Analysis

Calculating the mean of a time series of data points 𝑑(𝑡𝑖) is simple. The

sample mean is given by 𝑑 = 1𝑛 𝑛∑𝑖 𝑑(𝑡𝑖) (A.1)
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where 𝑛 is the number of data points. In this thesis, mostly energy estimators

like the shift or projected energies are estimated using averaging. In practice,

averaging estimators in FCIQMC runs is begun after an equilibration period

when all simulation variables have settled to a constant value.

To determine the amount of dispersion of a data set, which can be used

as a measure for the precision of the mean, the standard deviation can be

used. It is defined as

𝜎 = √ 1𝑁 𝑁∑𝑖=1(𝑥𝑖 − 𝑥)2 = √ 1𝑁 (𝑥2 − 𝑥2) (A.2)

where 𝑁 is the size of the entire population. When estimating the standard

deviation from a sample with sample size 𝑛, one typically uses the corrected

sample standard deviation which is given by

𝑠𝑑 = 1𝑛 − 1 𝑛∑𝑖=1(𝑑(𝑡𝑖) − 𝑑)2 = √ 1𝑛 − 1(𝑑2 − 𝑑2) . (A.3)

This is Bessel’s correction.14 The errorbars are then best estimated by14 While 𝑠2𝑑 is an unbiased estima-
tor of the variance, 𝑠𝑑 itself is still
biased. Further corrections are de-
pendent on the actual distribution
of 𝑑.

Δ𝑑 = 𝑠𝑑√𝑛 (A.4)

It has to be noted that the mean value is independent of correlations

within the time series [69, 207]. This is not true for the standard deviation of

the mean. In FCIQMC calculations, one deals with time series with non-zero

autocorrelation 𝑅(𝑠) = 1𝑛 − 2𝑠 𝑛−𝑠∑𝑖=1 𝑑(𝑡𝑖)𝑑(𝑡𝑖+𝑠) (A.5)

which is the covariance of the data with itself 𝑠 instances later. For Markov

processes, the autocorrelation falls off exponentially as a function of 𝑡, i.e.

𝑅(𝑡) ∝ exp(−𝑡/𝑡corr) . (A.6)

In this case, the best estimate of the standard deviation is given by

𝑠𝑑 = √1 + 2𝑡corrΔ𝑡𝑛 − 1 (𝑑2 − 𝑑2) (A.7)

with the time step Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖. For 𝑡corr ≪ Δ𝑡, the autocorrelated standard

deviation estimator reverts back to the uncorrelated one.
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Figure A.2. Errorbars Δ𝑆 of the
shift estimator as a function of
block sizes 𝑛b for the periodic
14-site Hubbard chain at 𝑈/𝑡 = 8.
The dashed line indicates the
value chosen for the errorbar of
the mean 𝑆.
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In the usual case of 𝑡corr ≫ Δ𝑡, evaluating equation (A.7) is impractical.

Instead, one arranges the sample data into 𝑛b blocks of increasing sizes 𝑛/𝑛b

and for each block size calculates

𝑠𝑑(𝑛b) = √ 1𝑛b − 1 𝑛b∑𝑗=1(𝑑𝑗 − 𝑑)2 (A.8)

where 𝑑𝑗 is the mean value in the 𝑗-th block. For small blocks, the stan-

dard deviation is underestimated due to the autocorrelation. The errorbar𝑠𝑑(𝑛b)/√𝑛b saturates if the block size is large enough such that the blocks

become uncorrelated.

Therefore, in practice a calculation needs to be run until the saturation

occurs. Subsequently, the largest 𝑠𝑑(𝑛b)/√𝑛b value is chosen as the statistical

errorbar for the respective calculation. An example of how the errorbar of

the shift estimator in an FCIQMC calculation is chosen is shown in figure A.2.
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