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Abstract

Subsurface flow and geomechanics are often modeled with sequential approaches. This can be computationally beneficial
compared with fully coupled schemes, while it requires usually compromises in numerical accuracy, at least when the
sequential scheme is non-iterative. We discuss the influence of the choice of scheme on the numerical accuracy and the
expected computational effort based on a comparison of a fully coupled scheme, a scheme employing a one-way coupling,
and an iterative scheme using a fixed-stress split for two subsurface injection scenarios. All these schemes were implemented
in the numerical simulator DuMu*. This study identifies conditions of problem settings where differences due to the choice of
the model approach are as important as differences in geologic features. It is shown that in particular transient and multiphase
flow, effects can be causing significant deviations between non-iterative and iterative sequential schemes, which might be
in the same order of magnitude as geologic uncertainty. An iterated fixed-stress split has the same numerical accuracy as a
fully coupled scheme but only for a certain number of iterations which might use up the computational advantage of solving
two smaller systems of equations rather than a big monolithical one.

Keywords Flow and geomechanics - Fully coupled and sequential schemes - Fixed-stress scheme - Numerical accuracy -

Geologic uncertainty

1 Introduction

Fluid injection into the subsurface is common to different
scenarios, often related to the world’s energy consumption
which relies heavily on the utilization of the subsurface.
Coal, oil, and natural gas account for 81-85% of the
world’s primary energy consumption in 2017 [13, 25].
Often, the extraction of these raw materials requires
fluid injections into the subsurface: in the context of the
production of shale gas through hydraulic fracturing or
in form of wastewater disposal from conventional and
unconventional oil and gas production. Geological gas
storage or geothermal systems also involve the injection
of fluids. Injections affect the field of fluid pressures
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as well as the stresses and deformations of aquifers and
caprocks. Caprock integrity might be compromised. Thus,
the need to understand the coupling between hydraulics and
geomechanics is evident. Numerical simulation of coupled
hydraulic and geomechanical processes requires the choice
of an appropriate coupling scheme. This can be discussed by
balancing numerical accuracy and computational efficiency
and might depend on the temporal and spatial scales of the
application, on the complexity of the relevant physics, on
the heterogeneity, or on other scenario-specific aspects.
The classical approaches for flow and geomechanics fall
into two categories: fully coupled and sequential methods.
While different naming for these schemes is in use, as stated
in White et al. [47], the differences are clear: The unknowns
of flow and geomechanics are either solved simultaneously
for one time step (termed fully coupled or monolithic)
or sequentially by splitting up the coupled problem into
sub-problems. One of the simplest sequential schemes is
the one-way coupling. It starts with the fluid-flow sub-
problem and determines the effect on the geomechanics
afterwards in a post-processing step. The flow problem
might also account for the increase in pore volume as a
result of increased pore pressures using an approach for pore
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compressibility. For such a scheme, the pressure evolution
and the storage capacity for CO; injections have been
studied using the TOUGH2 simulator (e.g., Zhou et al. [50],
Birkholzer et al. [6]), as well as the geomechanical impact
of injections in the context of hydraulic fracturing [41] and
CO; storage [39] with the TOUGH-FLAC code. In this
conceptional idea, the geomechanics part can give feedback
to the flow calculation via an adapted permeability from the
solution of the geomechanics sub-problem in the previous
time step.

Similar, but more accurate, is a scheme where flow
and geomechanics are iterated within the same time step.
Preisig and Prévost [37] compare the results of a one-way
coupling method, an iterative approach, and a fully coupled
approach with the analytical solution of Mandel’s problem.
They arrive at the conclusion that a large number of
iterations is needed to get accurate results for the sequential
scheme. Thus, they only include a one-way coupling and
a fully coupled approach for their investigation of the CO;
injection at In Salah, Algeria. Sequential schemes were
significantly improved by Kim et al. [27, 28] and Mikeli¢
and Wheeler [34]. They revealed that the undrained split
and the fixed-stress split are preferable over the drained split
and the fixed-strain split due to their convergence behavior
and stability. This explains the large number of iterations
reported by Preisig and Prévost [37]. Yoon and Kim [49]
contributed to this analysis with a comparison of the fixed-
stress and the fully coupled approach with respect to the
stability of the different discretization schemes.

In the context of sequential schemes, it is a special
case of iterative coupling when the calculation of flow
and mechanics is not repeated within the same time step
but instead information of the mechanics is passed back
into the fluid-flow calculation only for the subsequent time
step. In contrast to the pure one-way coupling, such a
scheme thus includes a feedback of the mechanics part
onto the fluid-flow equation. We denote this special case
here as an explicit coupling. The aforementioned coupling
via permeability updates within the TOUGH-FLAC code is
in that sense an explicit coupling in the same way as the
recent expansion to include a correction term based on the
fixed-stress approximation [7, 29].

There is a variety of possibilities in developing the details
of a sequential scheme; therefore, we put the focus of this
study on the end members of the sequential spectrum: the
one-way coupling and the fully iterated fixed-stress scheme.

This study evaluates suitability of solution schemes for
flow and geomechanics by analyzing how the numerical
accuracy in describing the relevant physical processes can
be affected by the choice of scheme. The implementations
are done in the numerical toolbox DuMu* [1, 18, 19].
We show briefly that DuMu* can correctly reproduce (a)
the analytical solution for Mandel’s problem and (b) the
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results of a one-way coupled version of TOUGH-FLAC
for a homogeneous single-phase injection scenario. Then,
only with the respective implementations in DuMu*, a
comparison is made between the one-way coupling scheme,
an iterative sequential scheme, and a fully coupled scheme
for the same homogeneous single-phase example as before
and for a CO3 injection test case. A focus will be on single-
phase versus multiphase physics, which has not been done
so far in a systematic manner, and on the importance of
transient effects where we will show that the schemes most
notably differ. After that, there are some considerations on
numerical efficiency provided before conclusions are drawn
and an outlook is given.

2 Model and numerical solution schemes

The numerical simulator DuMu* [1, 18, 19] is an open-
source package designed to model flow and transport
processes in porous media. It is based on the Distributed
and Unified Numerics Environment (DUNE) [3, 4, 8, 9].
The DUNE-ALUGrid module [2] was used as the grid
manager in this study. Except for the fully coupled model,
which was already implemented within the doctoral thesis
of Darcis [17], all models on top of DuMu* and DUNE were
developed within the scope of this work.

2.1 Governing equations

The mass balance equation for multiple fluid phases in
porous media and the momentum balance for the solid
are introduced. The concept of effective porosity is key to
describing the coupling of flow and mechanics.

Mass balance equation of the fluid: For a fluid phase «, the
mass balance equation is:

9 (¢S00u)
ot

¢ is the porosity, o, the density, and S, the saturation of
phase «. v, is the Darcy velocity of a phase o:

+ div(oave) + 90 =0, « € {w,n}. ey

kro
vp, o = —— Ki(grad py — 0 &) 2)
Mo

and the sources and sinks of a phase « are denoted by g¢,.
The indices w and n are for wetting and non-wetting phases,
respectively. Inserting Darcy’s Law in the mass balance
equation gives:
9(Ppa Sa)
ot

. k
_d1v{,oafK (grad py —pag)} +qgo« =0
o

o € {w,n}. (3)
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Effective porosity Let us briefly recapitulate the concept
of effective porosity. In general, constitutive relations of
poroelastic materials can be formulated dependent on
dynamic variables, like stress or pressure, and on kinematic
quantities, like strain or velocities. The recent paper of
Steeb and Renner [42] provides a review of mechanics
of poroelastic media. They highlight the role of porosity
in linear poroelasticity and demonstrate how alternative
pairs of kinematic variables can be used for formulating
constitutive relations. In our case here, we follow the
approach of Han and Dusseault [22] in our brief outline
below, but we note that alternative formulations are found in
the literature.

The constituents of the porous medium show different
responses to stress and pressure changes. The resulting
change in porosity can be defined as:

_ (Y _d%  dW
d¢_d(%>— 2 g @)

Vp is the pore volume and the bulk volume is V4. These
volumes deform differently; hence, different bulk moduli
for the drained and undrained porous medium as well as
for the solid grains, the fluid, and the pore volume are
defined. The porosity change is then a function of the pore
pressure p and the volumetric (or mean) stress oy (positive
for compression):

1 1
do = (K—dr(l —¢) - Z) (—doy +dp) &)
This employs the drained bulk modulus Kg4; and the bulk
modulus K of the solid grains. The bulk modulus of the
fluid is implicitly considered in our equations where the
fluid density is formulated dependent on pressure. Han and
Dusseault [22] further replace the stress with volumetric
strain, so Eq. 5 becomes:

dp = (1 Kar d Ly 6
o= (1= —0) (ot o). ®

The relation in Eq. 6 is dependent on the dynamic variable
pressure and the kinematic variable strain. For rigid grains
(Ks — 00, equivalent to a Biot’s &« = 1), this reduces to:

dp = — (1 — @) dey. (N

Now, the effective porosity ¢efr can be obtained from the
volumetric strain €, and the initial porosity ¢y (assuming
€v.0 = 0):

¢m=%1“—a (8)

or as a function of the displacements by referring to the
volumetric strain €y as div u:
¢o —divu

. 8b
1 —divu (8b)

Gett =

In case the denominator in Eqs. 8a and 8b is considered
negligible, it is simply:

Gett = Po — €. )]

An alternative to deriving the porosity change from
the interacting components of the porous material and
their respective bulk moduli is the definition of a pore
compressibility:

dvp 1 1 d¢

Cpn——m—m™m—m— /™ — — — ,
P Ve dp ¢ dp
dependent only on the changes in pore pressures and
ignoring the stress contribution. The pore compressibility is
related to K, the bulk modulus of the pores, and Ky, by:

1 1
Cp = — = .
Kp dKar
In a linearized form, the effective porosity is then obtained

from the difference between the initial pressure pg and the
current pressure p:

(10)

Y

1
$ett = b0 + (P — po)- 12)
dr

As indicated further above, there are many more pos-
sibilities to formulate the incremental effects of changing
fluid pressures and stresses on porosity. Later on, we use
e.g. also, in order to match the analytical solution of Man-
del’s problem Phillips and Wheeler [35], an approach for
the porosity that is expressed in terms of the Skempton coef-
ficient, which in turn is related to the bulk modulus of the
fluid, the porosity, and the undrained modulus. We shall
briefly come back to this discussion then.

The change in porosity affects also the permeability
tensor, so the intrinsic permeability tensor K becomes
an effective permeability tensor K. A classical and
commonly employed approach is the Kozeny-Carman
relationship [14, 30].

The balance equation is then written as:

0 (@etrPaSe)
ot

, k
—div {paf Kerr (grad py — Qu g)} +qo =0
o
o € {w,n}. (13)

If the effective porosity is considered to be only a function
of pressure, it can be calculated from Eq. 12, while a
dependence of the porosity on the volumetric strain (8b)
introduces the displacements as additional unknowns. These
are provided by the momentum balance equation for the
rock matrix.

Momentum balance equation for the rock matrix Assuming
quasi-static conditions, the conservation of momentum is

divo +0g=0. (14)
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g is the gravity vector here. The bulk density op of
the porous medium can be calculated from the weighted
densities of the fluid phases oy, oy and the rock matrix gypy:

b = ¢ (Swow + Snon) + (1 — @) orm (15)

The effective stress tensor ¢’ accounts for the contribution
of the pore pressure p:

o =0—pl (16)

The pore pressure is calculated as the effective pore pressure
Peff-

Deft = SwPw + SnPn a7
With this, Eq. 14 becomes:
div (6" + perrI) + b2 =0 (18)

This momentum balance equation can be linearized by
subtracting the initial state (subscript 0) for effective stress,
effective pressure, and the bulk density:

Ad' = o' -0, (19)
ADeff = PDeff — Peff,0 (20)
Agb = 0b—0b,0 (2D
This yields:
div(Ac’ + Aper I) — Aopg = 0. 22)

Under the assumption of small porosity changes (A¢ =~
0, A(1 — ¢) =~ 0) and a constant density of the rock matrix
(Aom = 0), the bulk density change becomes:
Agp = AP (Swow + Snon) + dA(Swow + Snon)
+A( —¢)os + (1 — P) Aoy

~ ¢A(Swow + Snon) (23)
and further simplifies to
Agp ~ ¢ (ASn(on — 0w) + SnAon) . (24

assuming a compressible non-wetting phase and an
incompressible wetting phase in the linearization of op.
With these simplifications, the momentum balance of the
rock matrix is finally:

diV(AU’ + ApettD) + ¢ (ASn(on — ow) + Sulon) g =0.
(25)

Constitutive equations and supplementary constraints The
system of equations is completed by employing the
following constitutive equations and constraints: The strain
€ is derived from the displacement vector u as:

1
€ = E(gradu + gradTu). (26)

Linear elastic behavior of the rock obeying Hooke’s Law
is assumed. Young’s modulus E and Poisson’s ratio v are
used as the two required elastic constants.
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The sum of the fluid saturations adds up to 1:
Z S, =1 (27)
o

The pressures for the different phases are connected via
the capillary pressure, calculated here after van Genuchten
[44]):

1 _ 1/
pe=— (s —1) 28)
avVG
. SW - Srw
th S¢ = ——— 29
w1 e 1= S (29)

with the parameters avg, mvg, and nyg characterizing
porous media properties and the residual wetting-phase
saturation Sy .

The Van-Genuchten formulation is also used for the
relative permeability:

o = VS (1= (1-s2m)"Y (30)

2,
km = (1= 5013 (1= s1")" (31)
2.2 Discretization and solution schemes

Using an equal-order approximation of the pressure and
the solid displacement in the monolithic setting is known
to create stability problems and is addressed by a
staggered-grid approach by [26]. Darcis [17] avoided the
encountered spurious pressure oscillations by discretizing
the balance equation of the fluid phases with the Box
method (cf. [23]) and the momentum balance equation with
the Standard-Galerkin finite-element method. By applying
different weighting functions, this leads to a quasi-staggered
approach that allows for a nodal-based approximation of
all primary variables. In this way, we achieve stability for
the monolithic setting although we cannot prove this in
a rigorous manner. Many well-established software codes
such as Eclipse by Schlumberger or TOUGH2 by the
Lawrence Berkeley National Laboratory [38] use the cell-
centered finite-volume method, e.g., [15]. The fixed-stress
approach for this study is implemented in DuMu* for both
the Box method and a cell-centered finite-volume method
for the two-phase flow equations. A fully implicit Euler
scheme is used to for time discretization.

The discretized mass balance equation for the fluid
phases as in Eq. 13 contains the vector of pressure values
of the wetting phase and the saturation values of the
non-wetting phase as primary unknowns. For convenience,
the suffix “2p” will be used when referring to the two-
phase equations while “el” refers to the momentum balance
equation of the solid in Eq. 25.
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Combining the two balance equations yields their left-
hand sides as a residual vector r(w"~! w") with the
components r3p and rej:

1 r
r(w"” ”)—[3})}:0 (32)
el

Here, the residual vector r(w"~!, w") is a function of the
solution vectors w"~! and w”, which contain the discrete
values of two subsequent time steps #"~! and " for all
nodes. Both solution vectors (exemplarily written here only
for w") include a 2p part w5, with p, and S} and an elastic
part w}, with u":

n
w" = [wip] 33)
W
with
n
wy, = [’;W} and w’| = u". (34)
n
In the following, we omit the time-step index n for
simplicity.

As this system of residual equations is strongly non-
linear, a Newton scheme is employed. For the k-th Newton
iteration, w* is the k-th estimate of the solution. To
determine the new solution for k + 1, the Jacobian matrix Jk
is used. Here, J¥ is the matrix of all first-order derivatives
of the residual vector at the k-th iteration:

v (or\f
r- () 5

The new solution vector w**! is then determined by solving

JAaw = —rF (36)

and by adding the update Aw to the previous solution vector
k
w

w ! = wk + Aw. (37)

Equation 32 describes the block-wise structure of the
residual vector r. In the same sense, the Jacobian system
solved in each Newton update can be expressed as:

k k
J2p,2p J2p,el Awpp | rp
= — , (38)
Jel,2p Jel,el Awg Tel
where J, 5 denotes balance equation a differentiated with
respect to solution vector b. As an example, J2p 2p is the
derivative of the fluid’s mass balance equation with respect

to p,, and Sy. The components Jop ¢ and Je) 2p account for
the flow-geomechanics coupling.

Fully coupled scheme In the fully coupled scheme, the
primary unknowns py, and S, for the two-phase flow and
u for the geomechanics are solved simultaneously for each
time step. This means that every Newton update is computed
from the linear system in Eq. 38. The use of the full matrix

J explains why this scheme is also often referred to as
monolithic.

Fixed-stress scheme A scheme where the unknowns for
flow and geomechanics are solved sequentially requires to
split up the full problem into a flow and a geomechanics
sub-problem. We denote here a coupling step as including
first the flow problem, then the geomechanics sub-problem.
The simplest version of an iterative coupling would be a
transfer of py and S, to the geomechanics, then inserting
calculated stress and strain back into the flow problem
for the next iteration. Such a drained-split scheme is only
conditionally stable. A scheme with unconditional stability
is the fixed-stress split [28, 34]. The scheme requires that
the difference between the volumetric stress of the flow
problem o l2p and the volumetric stress o, él_l of the
previous geomechanical solution is O:

a;‘;e";l — 0y, =0 (39)

Here, i is the index of the coupling step. Since a coupling
starts with the flow problem, the last geomechanical
solution was obtained in the previous coupling step and thus
is denoted with the index i — 1. For the geomechanical
problem, the pressure of the previous flow problem is
prescribed, so pel " and p2 " are equal within a coupling step
i
P’ =y (40)

Thus, one can express Eq. 39 by the pressures pgl’)i and

n,i— -1
Py ! and the volumetric strains e 2p and ev el s

—1 n,i—1
(Kar 6\, el — Py ) —

(Kar el s — Py =0, (41)
Here, Kg4 is the drained bulk modulus and the Biot
coefficient « is assumed to be 1. Let us briefly note that
for consolidated rocks where further pore compression
is inhibited, Biot’s o maybe less than 1, e.g., shown
in Ingraham et al. [24] as dependent on reservoir stress
conditions. In such cases, a more consistent account would
require the Biot coefficient to be considered throughout the
above derivation.

The coupling within the flow part arises from the
dependence of the porosity on the volumetric strain
(8b). With Eq. 41, the flow problem can be formulated
independent of the current displacement vector u by
calculating the volumetric strain €’ 2p of the flow problem
in the current coupling step i from the pressure difference
p;[’)’ - pgp’)“l of the current and the previous coupling
step of the flow problem and from the volumetric strain
€™ determined in the previous coupling step for the

v,el
geomechanics:

n,i—

i 1 Ji—1
v,2p T _K_dr(p2p - Pzp ) + en : (42)

v, el
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For the two-phase system, the mass and momentum
balances then depend on the primary variables pw' and
Sn'', as the pressure p becomes the effective pressure pefs:

Pett = SwPw+SnPn, (17 revisited)

neglecting the interfacial energy term in the equivalent
pressure concept by Coussy et al. [16]. After solving the
flow problem altered by the fixed-stress assumption, P’
and Sp°' are inserted into the momentum balance of the
geomechanics, where only the displacement vector u™’
remains as the primary variable. With this, two separate
non-linear problems are formulated and yield the following
linear systems to be solved in each step of the corresponding
Newton scheme:

. k k
][]l

[ea] 11 =~ trat (44)

Here, J 2p.2p and J elel denote the derivatives of the
modified balance equations: jzp,zp contains the fixed-stress
assumption, so the volumetric strain of the current coupling
step i and the current Newton iteration k for a time step 7 is
calculated from:

n,ik __ n,i,k

Sop T Kar (peff, 2p

= Defr 2p) + Ev o (45)

and the effective pressure values from the flow problem are
prescribed within jel,el.

When the porosity update is calculated using Eq. 9, it
is worth noting that a fixed-stress split with just one single
coupling step is identical to a calculation of the porosity
change from the pore compressibility (cf. Eq. 12). The
previous coupling step becomes the previous time step for
zero iterations. Thus, ei_l is equal to O for the first time step
and dependent only on the pressure difference between the
previous and the current time steps for all following time
steps. As these collapse to the difference between the initial
and the current pressures, this simplified sequential scheme
becomes equivalent to using the pore compressibility or the
drained bulk modulus, respectively:

¢§ff = ¢o — €&
n—1

— G0+ —— (i 2 — Plihy) — €
= @0 K, Deft, 2p — Peff, 2p v, el
—1
=do+t — (Peff 2p — Peft, 2p)
2 )
(peff 2p pgtf 2p) 63, el
) 2
= ¢o + (Peff 2p = Pt 2p) — €y ol
_ L no 0 46
= ¢o+ X (Petr, 2p — Per, 2p) (46)
dr
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Figure 1 further illustrates the differences between the
discussed numerical coupling schemes. The top panel
shows a numerical routine as it can be found, for
example, in the original version of TOUGH-FLAC (a
sequential combination of the TOUGH2 multiphase fluid
and heat transport code with the commercial FLAC3D
geomechanical simulator as described in [40]), where the
pore compressibility is used to calculate the porosity
changes within the flow problem. At time ", the porosity
is a function of the current effective pore pressure pl.
Next, pi, and S are transferred to the momentum balance
equation to calculate the solution at time 7. A feedback of
the mechanics to the flow can be achieved via the transfer
of a changed permeability Ak, which is used in the next
flow time step. If the permeability is constant, the mechanics
are just a post-processing step and this one-way coupling
scheme will be referred to as a zero-iteration case here.

A more recent version of TOUGH-FLAC [7] transfers
a correction term for the porosity calculated by using the
fixed-stress assumption back into the flow problem (see
Fig. 1, middle). Again, it is important to note that this
correction becomes active only in the next time step of the
flow problem. Thus, the porosity within each flow time step
is a function of the current effective pore pressure pgff and
the volumetric strain of the previous time step ev el As
explained earlier, this is denoted here as an explicit coupling
approach.

An iterative fixed-stress scheme repeats the coupling
steps several times until convergence (see Fig. 1, bottom).
Within the flow problem, the volumetric strain ev p is
calculated from Eq. 42. This implies (i) that the porosity
depends on the values of pZ; and ev’ p of the current time
step, given that at least one iteration is performed; and (ii)
that the approximated ev 2 becomes ec’ o Of the geome-
chanics when the iteration is continued until convergence.

In summary, the use of the pore compressibility and
the subsequent solution of the mechanics represents the
simplest scheme. The coupling can be strengthened by
a feedback of the mechanics back to the flow for
the next time step via an update of permeability or
porosity. A sophisticated iterative scheme requires to
repeat the coupling step several times within each time
step. In this study, we examine the end members of
the spectrum, i.e., the first and the last schemes, and
show for selected scenarios the circumstances under which
significant deviation between the schemes occurs.

3 Verification of DuMu* implementations
Before we elaborate on the occurrence of differences

for the investigated schemes, we choose to verify our
implementations in DuMu* against the analytical solution
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o 7 Vel’¢(vel) ’6V,€1’¢( v,el) o, Vel’¢(vel)

—> progress in time

of Mandel’s problem and a simplified one-way coupling
mode of the well-established codes TOUGH-FLAC for
a homogeneous single-phase scenario. Later on, we
analyze then the schemes by using only the respective
implementations in DuMu*.

» parameter transfer

3.1 Mandel’s problem: comparison
with the analytical solution

Mandel’s problem was originally described in Mandel [32]
and is a widely used setup to verify an implemented model

@ Springer
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for

Fig.2 Setup of Mandel’s problem

(e.g., [10, 29, 35]). It consists of a poroelastic specimen
with rectangular cross section of 2a in x-direction, 2b
in y-direction, and infinite length in the z-direction. It is
sandwiched in between two rigid plates and compressed by
forces normal to those plates. For symmetry reasons, the
computational domain can be limited to one-quarter of the
physical domain (see Fig. 2).

Regarding our implementation of the effective porosity,
we use here a formulation from Phillips and Wheeler [35]
who summarize the analytical solution of Mandel’s problem
and use a fixed value of B = 0.833 for Skempton’s
coefficient. We have elaborated on the effective porosity
before in Section 2.1. We use here the incremental fluid
content ¢ which relates to the effective porosity via the
difference in volumetric strains of fluids and porous matrix.
For an initial reference pressure p = 0, as we apply it
in Mandel’s problem, the time derivative of ¢ is balanced
with the divergence of the Darcy velocities and is thus
used instead of porosity in the mass balance equation.
For the necessary algebra and the details of transforming
the formulations of poroelasticity dependent on different
dynamic or kinematic variables and the various coefficients
of stress-strain relations, we refer again to Steeb and Renner
[42]. This formulation to model Mandel’s problem then
expresses incremental fluid content ¢ as a function of
Skempton’s parameter B and the undrained bulk modulus:

1-B @7
= ———p— €.
‘=BR,PT
IIB’;KIZ can also be interpreted as the specific storage

capacity, which is the inverse of the storage modulus M used
by Biot [5].

The pressure evolution given by the analytical solution
and the numerical results obtained with the fully coupled
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Fig. 3 Pressure evolution in Mandel’s problem normalized with

respect to the initial pressure over the x-coordinate divided by the
horizontal length a of the domain (right)

scheme implemented in DuMu* are shown in Fig. 3 for
different points in time. The numerical pressure evolution
is in excellent agreement with the analytical solution. This
verifies the implementation and allows to proceed with a
more application-based scenario.

3.2 Homogeneous test case: comparison
with TOUGH-FLAC

Scenario description Water is injected into a homogeneous,
two-dimensional domain fully saturated with water. The
domain is 2 km x 2 km in size and located at a depth of
500 to 2500 m. The pressure distribution is hydrostatic
(9.81 MPa/km) and atmospheric pressure of 0.1 MPa is
assigned to the ground surface. This results in a pressure
of 5 MPa at the top and 24.6 MPa at the bottom. More
details can be found in Fig. 4. The grid for this domain
is the same as in Fig. 8b and is later on used to include
a fault in the scenario (Section 4.2); thus, this feature and
the corresponding refinement is included already here. In
total, 0.2 kg/s/m is injected into the two cells with the
center coordinates (6.25, 2.5) and (6.25, —2.5). The rate
is high enough to produce a noticeable pressure response
throughout the system.

The time steps were chosen to be the same for all
schemes, also for the comparison study discussed later on,
to achieve a better comparability. They are small at the
beginning (starting with 8.64 s) and increase over the course
of the simulation.

DuMu* versus TOUGH-FLAC in one-way coupling mode For
the verification, we compare here simplified coupling
strategies in DuMu* and TOUGH-FLAC [40]. Both are
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Fig.4 Setup of the homogeneous single-phase test case

run here in one-way coupling mode, which means that
permeability remains constant and porosity changes are
simply dependent on the pore compressibility. For DuMu*,
we use also the denotation “fixed-stress, zero iteration” to
distinguish from the iterated fixed-stress scheme.

The pressure evolution at the injection is shown in Fig. 5.
Panel (a) displays the entire simulation time of 1800 days.
The pressure increases rapidly, then slows down and reaches
a plateau value when a state of equilibrium for the injection
and the outflow through the model boundaries is achieved.
There is hardly any difference visible between the differ-
ent datasets. Both one-way coupled schemes (TOUGH2
using the pore compressibility and the fixed-stress imple-
mentation with zero iterations in DuMu*) are in excellent
agreement.

The results of the zero-iteration fixed-stress scheme
in DuMu* and TOUGH-FLAC match perfectly also for
the displacement and the volumetric strain as Fig. 6
shows.

In summary, the results of a zero-iteration fixed-
stress scheme implemented in DuMu* can be verified
with those obtained with TOUGH-FLAC using the pore
compressibility.

4 Different coupling schemes: results

4.1 Homogeneous test case

We still consider the homogeneous test case as in the
verification example above.

45.07 [0} o e e e
a) _o——-
(@),
40.0 1 /
[
< 390 |
s |
= 3001 |
g
=925.01 {
| —-+— TOUGH-FLAC, pore comp.
20.01 | === DuMu* CC, fixed-stress, 0 It.
150 | -== DuMu* CC, fixed-stress
0 500 1000 1500
time in days
45.0 7 (b)
40.0 1 _ oS
e
350
£ ';"’”
=300 b
R
=250 l,
I —+— TOUGH-FLAC, pore comp.
20.01 | === DuMu* CC, fixed-stress, 0 It.
1501 | -=-= DuMu* CC, fixed-stress

0 20 40 60 80
time in days
Fig. 5 Full pressure evolution (a) and details of the increase (b) at
the injection simulated using TOUGH-FLAC, and the cell-centered
(CC) discretization in DuMu* for a fixed-stress scheme with just

one coupling step (equal to zero iterations) and a fully converged
simulation

A detailed look during the first 80 days in Fig. 5b
proves that an iterated fixed-stress scheme shows a small
deviation during the transient period of the pressure
increase. Both one-way coupled models underestimate the
pressure increase during this period compared with the
iterated fixed-stress scheme.

The underestimated pressure of the zero-iteration fixed-
stress scheme and the pore compressibility approach, in
comparison with the iterated scheme, also affects the results
of the geomechanics as seen in the displacement in x-
direction and the volumetric strain in Fig. 6. Figure 7a
shows the evolution of the pressure over the iterations of
the fixed-stress scheme for the first time step. The zeroth
iteration underestimates the pressure in comparison with the
fully coupled value. In other words, this corresponds to an
overestimated porosity change due to the pressure change.
As soon as this is corrected in the first iteration by the
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volumetric strain value obtained from the previous solution
of the geomechanics, the pressure estimate improves
significantly. After the fourth iteration, the values are
almost identical. After a sufficient number of iterations,
the results of the iterated fixed-stress scheme are identical
to those of the fully coupled model. This confirms that
the underestimation observed for the one-way couplings,
i.e., pore compressibility or zero fixed-stress iterations,
is a result of the simplified representation of the flow-
geomechanics coupling. A variation of this plot in Fig. 7
(right) displays exemplarily the results of the drained-
split scheme where the flow problem is solved using
the strain and stress fields of the previous geomechanics
iteration, while the pressure is kept constant during the
geomechanical step. It is obvious why Kim et al. [28] refer
to this scheme as being, at best, conditionally stable.

In summary, for the transient phase of the simulation,
a small but noticeable underestimation of the one-way
coupling schemes was observed relative to a fixed-stress
scheme with iterations.
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Fig. 7 Evolution of the pressure p at the injection depending on

the number of sequential iterations for fully coupled and fixed-stress
scheme (a) and for fully coupled, fixed-stress, and drained split scheme

(b)

4.2 CO, injection heterogeneous test case

Scenario description This scenario involves the injection
of CO; into a geological formation. This adds complexity
in two aspects compared with the previous scenario: first,
it is a multiphase flow system, and second, it includes
heterogeneities in the form of different layers and a fault
zone (see Fig. 8). Similar setups have been used in previous
studies, e.g., [33] and [39].

The point of injection is located in the center of a
sandstone reservoir with a permeability of 1 - 1071% m?
and a thickness of 100 m. Above and underneath the target
reservoir is a 150-m-thick shale layer serving as a caprock
with a permeability of 1 - 1071 m?. A 1-km-long fault
zone dipping 80° cuts through the reservoir and the shale
layers. Its midpoint is at a depth of 1500 m and at a
horizontal distance of 500 m from the injection point. With
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Fig.8 Setup of the CO; scenario (a) and domain discretization (b)

a permeability of 1 - 10715 m?, it is less permeable than
the target reservoir but more permeable than the shales.
Table 1 lists the parameters assigned to the different layers.
The temperature is increasing with depth from 22.5 to
72.5 °C. The values for the viscosity and the density are
temperature dependent, but the simulation itself solves no
thermal energy balance equation.

For the capillary pressure-saturation relationship and the
relative permeability, the formulations by van Genuchten
[44] are used (see Egs. 28, 30, and 31).

The injection rate is here at 0.02 kg/s/m. The grid is the
same as before (see Fig. 8) and the Box method is used for
the discretization of the two-phase flow equations.

Time steps are again the same for all scenarios and
increase over the course of the simulation.

Results Figure 9 illustrates how the CO; saturation S,
and the water pressure p,, evolve in the domain. Their

distribution is shown after 200 days and 1800 days. To
highlight the location of the fault and the shale layers, a gray
filter with different opacities was added. The less permeable
a cell is, the more opaque it is.

Driven by buoyancy, a large portion of the CO;
accumulates right underneath the shale caprock. The
maximum values of CO; saturation at the end of the
simulation after 1800 days are S, = 0.56 above the point
of injection and S, = 0.54 within the fault zone. Upon CO,
reaching the fault, it moves also upward there as can be seen
in Fig. 9, bottom left. The right column of Fig. 9 shows
the corresponding pressure distribution in the domain. The
injection pressurizes the reservoir section bounded by shale
layers and the fault and also the fault itself. The wetting
pressure py, reaches a peak value between 100 and 200 days
and then declines.

The results as presented up to now were obtained with
the fully coupled approach. We have shown before in the
homogeneous setup that the results of the fully coupled
scheme and the iterated fixed-stress scheme are in total
agreement. The same holds true for this case here as Fig. 10
shows.

The plot shows again that the pressure at the point
of injection is underestimated when no iterations are
performed. Dependent on the desired accuracy, it might be
sufficient to use three or four iteration steps.

In the homogeneous single-phase scenario, we observed
the most distinguishable differences between the zero-
iteration scheme and the fully coupled scheme during the
transient evolution of the system. This behavior is even more
pronounced in this scenario here with layers of different
hydraulic and mechanical properties, with a fault-zone
feature and a second fluid phase as can be seen in Fig. 11a.

The CO; arrives roughly 50 days later at the fault in
the zero-iteration case (see Fig. 11, right). In addition to
the temporal evolution in Fig. 11, the spatial distribution of
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the differences in pressure and saturation between the fully
coupled and the zero-iteration fixed-stress schemes is shown
in Fig. 12. After 100 days, the relative differences in the
wetting-phase pressure p,, are the highest in the vicinity of
the reservoir/shale layer contact (see Fig. 12, upper).

The absolute differences in the non-wetting phase
saturation Sy after 200 days displayed in Fig. 12 (lower) are
concentrated at the CO; front.

Scenario variations The pressure peak, and the following
decline, is remarkably different from the behavior observed

15.18 1
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Fig. 10 Pressure at the injection over sequential iterations for fully
coupled and fixed-stress schemes
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in the homogeneous case. We discuss now some variations
of the scenario aiming (i) at elaborating a better understand-
ing of the different effects introduced by adding the layers
and the fault as well as a second fluid phase and (ii) at get-
ting a feeling for the order of uncertainty that is introduced
by the numerical scheme, fully coupled/ iterated fixed-stress
versus non-iterated scheme, compared with the changes due
to added physical complexities (geologic uncertainty Walter
et al. [45]).

Figure 13a shows pressure over time for a single-phase
water injection compared with the pressure during the
CO» injection with everything else in the setup identical.
As in the homogeneous case, single-phase injection leads
to a pressure plateau also in this heterogeneous setup.
The fault has an effect comparable with the constant-
pressure boundary in the homogeneous setup. It leads
to a quasi-constant pressure in the single-phase case
as soon as an equilibrium between the injection and
the flow leaking through the fault is established. The
two-phase case is distinctly different with an increase
and subsequent decline caused by relative permeability.
Initially, with no CO; in the reservoir, the CO; relative
permeability is close to zero and a high resistance to
CO; flow is given. Accordingly, the injection pressure
rises sharply. Subsequently, CO, saturation and relative
permeability increase; thus, resistance becomes less and
pressure required to uphold the injection flux declines.

Two further scenario variations aimed at investigating
the role of the fault: (i) an increased fault permeability of
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coupled and the fixed-stress schemes with zero iterations

1 - 107 m? and (ii) without a fault. Without the fault,
the pressure evolution is only influenced by the confining
shales and the constant-pressure boundary condition. This
leads to lower pressures as seen in Fig. 13b. The observed
pressures are even lower for the high permeable fault, which
lets us conclude that the fault’s breaching of the caprock
outweighs the barrier effect of the fault itself since it makes
a larger volume accessible for the fluids to give away for the
injection.

In summary, comparing the pressure deviations in the
order of 0.1-1.0 MPa between the cases of zero iteration
and fully coupled with those deviations we observed above
in varying the geological features, we find them in the same
order of magnitude. Thus, the point we want to make here
is that not iterating between flow and geomechanics may
lead to comparable compromises in the accuracy of results
as does a disregard of a geological feature like a fault.

relative difference in %

Fig. 12 Spatial distribution of the relative difference in p,, at t =
100 days (upper) and the absolute difference in the CO, saturation Sy,
att = 200 days (lower) for the zero-iteration fixed-stress scheme with
respect to the fully coupled solution

5 Efficiency considerations

Let us extend the comparison of the different schemes
by adding some comments on the efficiency of the fully
coupled and the sequential schemes. We will only treat the
case of employing direct solvers as an academic exercise
to represent a reference. Concerning iterative solvers, the
situation becomes more involved and is therefore beyond
the scope of this study. We refer here to related studies on
iterative solvers and preconditioners, e.g., in Gaspar and
Rodrigo [20], White et al. [47, 48]. The key difference
between the approaches with respect to efficiency is the size
of the linear systems to be solved. According to Golub and
van Loan [21], it requires 2N pq floating-point operations to
solve a linear system of N unknowns with a direct solver.
p and g are upper and lower limits of the bandwidth. In
our two-dimensional case, the ideal bandwidth would be
V/N. The required operations O for a linear system of
N unknowns should then be proportional to 2N? in an
asymptotic consideration:

O =C-N? (48)

with C as the unknown proportionality constant including
also the factor 2.

Ideally, it should be expected that for a direct solver
in a two-dimensional case, the computational cost of the
fully coupled scheme with twice the number of unknowns
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Fig. 13 Pressure evolution at the injection for a CO, and a water
injection (a) and for two different fault zone permeabilities and no fault
zone (b)

is fourfold compared with just solving for py, and Sy
using the fixed-stress scheme. The same is true for solving
only the geomechanics for the two components of the
displacement. But since a coupling step requires solving
both flow and geomechanics, its cost is the sum of solving
both parts, being then computation-wise half as expensive
as the fully coupled scheme. Theoretically, this means that
two coupling steps, i.e., one iteration, can be performed until
this advantage is used up. Taking into account the results
obtained for the convergence of the fixed-stress scheme over
the iterations, as in Figs. 7 and 10, one iteration might not
be sufficient in terms of accuracy.

In three dimensions, the ideal bandwidth is N % The
difference in unknowns, i.e., 5 for the fully coupled scheme
and two plus three for the flow and geomechanics sub-
problems of the fixed-stress scheme, results in a speedup
factor of 2.37 for the fixed-stress scheme (57/3 / (273 +

@ Springer

37/ 3)). Thus, if more than two iterations are performed, this
gain is again used up.

The sequential scheme’s main advantage is the possibil-
ity of combining different simulation codes. Nonetheless,
its structure of nested iterations, i.e., iterations to solve each
sub-problem, e.g., via Newton’s scheme, as well as itera-
tions between the sub-problems, leaves room for creativity
and possible efficiency gains. For instance, Borregales et al.
[10] propose a partially parallel-in-time fixed-stress splitting
method for better parallelization. Solving flow and mechan-
ics using an inexact Newton scheme for a certain number of
iterations and only solving them exactly for later iterations
between flow an mechanics could be an option, too.

6 Conclusions and outlook

This comparative study has put the focus on the end
members of the spectrum of approaches to solve flow
and geomechanics represented by the one-way coupling
using pore compressibility (or zero-iteration fixed stress) on
the one hand, and the iterated fixed-stress scheme which
has been shown to achieve identical accuracy as the fully
coupled scheme on the other hand.

A comparison with the analytical solution of Mandel’s
problem has verified this new implementation of a model
for hydro- and geomechanical processes in the simulator
DuMu*. The simulation of a homogeneous numerical test
case with a one-way coupled version of DuMu* and the
established TOUGH-FLAC code serves the same purpose.

As should be expected, for the homogeneous scenario,
this implementation of the iterated fixed-stress scheme and
the fully coupled scheme can produce identical results after
a certain number of iterations.

The heterogeneous setup introduced different layers, a
fault zone, and a second fluid phase, thus increasing the
physical complexity and allowing quantitatively comparing
errors introduced by not-considered geologic features and
physics with errors due to inaccurate coupling. The one-
way coupling with the pore compressibility and without
iterations can lead to considerable deviations from the fully
coupled solution in particular since transient effects are not
captured accurately. The effect of relative permeability in
this setup with two fluid phases has a particular pressure
curve over time featuring a peak value of pressure and
subsequent decline, which is notably distinct from a single-
phase system. This study demonstrates the importance of
accurate coupling schemes to capture this transient period
properly.

Of course, often uncertainty in the geologic parameters,
like permeability, porosity, elastic constants, etc., may
dominate over the errors introduced by an “inaccurate”
coupling scheme. However, the heterogeneous scenario
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with CO; injection scenario revealed pressure differences
between the schemes were at times in the same order as
the geologic uncertainty. A difference in pressure prediction
of 1 MPa might be considered small relative to the total
pressure of several tens of megapascal. However, if it
concerns, for example, the assessment of the potential for
induced earthquakes, 1 MPa can be decisive for the failure
criterion to be surpassed or not.

Theoretical considerations on computational efficiency
suggest that a potential advantage of the sequential scheme
is used up by the iterations required to reach better accuracy.
However, the gain in accuracy with only one iteration
is already significant; it seems a good trade-off between
computational costs and numerical accuracy to run the
fixed-stress scheme with one iteration.

Explicit coupling schemes might also be an option. They
update porosity and permeability to be effective only in the
next time step by using the result of the geomechanics from
the previous one. Thus, they are situated in-between the
zero-iteration and one-iteration fixed-stress schemes.

As an outlook: there are further options that might
be studied. Implementing an algebraic multigrid solver
[43] or applying the fixed-stress as a pre-conditioner as
suggested by White and Borja [46] could increase the
efficiency of the fully coupled model even more. Both
et al. [12] applied the fixed-stress scheme to a sequential
scheme coupling linear elasticity and flow in unsaturated
porous media modeled by the Richards equation. As they
encountered difficulties when using Newton’s method, they
propose using the L-scheme for the Richards equation
[31, 36] which can be described as a standard Picard
iteration with additional diagonal stabilization, resulting in
an efficient and robust decoupling of the equations for
geomechanics and flow. The same group also developed
an optimized tuning parameter, which depends on all
mechanical parameters and replaces the classically used
drained bulk modulus in the fixed-stress scheme [11]. These
are promising new developments that could be incorporated
into the existing approaches. This study could show that it is
important to put effort into developing accurate and efficient
numerical schemes for the coupled solution of flow and
geomechanics.

Code availability The numerical simulator DuMuX used
in this study can be obtained at http://www.dumux.org/
download.php. The specific code used is available at https://
git.iws.uni-stuttgart.de/dumux-pub/beck2018a
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