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Abstract
We propose a field-theoretic thermodynamic uncertainty relation as an extension of the one
derived so far for a Markovian dynamics on a discrete set of states and for overdamped
Langevin equations. We first formulate a framework which describes quantities like current,
entropy production and diffusivity in the case of a generic field theory. We will then apply
this general setting to the one-dimensional Kardar–Parisi–Zhang equation, a paradigmatic
example of a non-linear field-theoretic Langevin equation. In particular, we will treat the
dimensionless Kardar–Parisi–Zhang equation with an effective coupling parameter measur-
ing the strength of the non-linearity. It will be shown that a field-theoretic thermodynamic
uncertainty relation holds up to second order in a perturbation expansion with respect to a
small effective coupling constant. The calculations show that the field-theoretic variant of the
thermodynamic uncertainty relation is not saturated for the case of the Kardar-Parisi-Zhang
equation due to an excess term stemming from its non-linearity.

Keywords Field theory · Non-equilibrium dynamics · Thermodynamic uncertainty
relation · Kardar–Parisi–Zhang equation

1 Introduction

The thermodynamic uncertainty relation (TUR) in a non-equilibrium steady state (NESS)
provides a bound on the entropy production in terms of mean and variance of an arbitrary
current [1]. Specifically, in the NESS, after a time t a fluctuating integrated current X(t) has
a mean 〈X(t)〉 = j t , and a diffusivity D = limt→∞

〈
(X(t) − j t)2

〉
/(2 t). With the entropy
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production rate σ the expectation of the total entropy production in the NESS is given by σ t .
These quantities satisfy the universal thermodynamic uncertainty relation

σ ≥ j2

D
,

i.e. σ is bounded from below by j2/D. The TUR has been proven for a Markovian dynamics
on a general network byGingrich et al. [2,3] and further investigated for a number of different
settings, both in the classical (see, e.g., [4–15]) and the quantum domain (see, e.g., [16–22]).
It has led to a deeper understanding of systems far from equilibrium as it introduces a lower
bound on the dissipation given the knowledge of the occurring fluctuations. Such a relation
is of interest for the modeling and analysis of e.g. biomolecular processes, which may often
be described as a Markov network (see e.g. [23–25]).

Of particular interest is the work by Gingrich et al. [8], where the authors extend the
relation from mesoscopic Markov jump processes to overdamped Langevin equations. Here
a temporal coarse-graining procedure is described, which allows the formulation of a discrete
Markov jump process in terms of an overdamped Langevin equation for themesoscopic states
of themodel. These authors observe that for purely dissipative dynamics the TUR is saturated.
An additional spatial coarse-graining performed in [8] results in a macroscopic description,
where it is found that the tightness of the resulting uncertainty relation increases with the
strength of the Gaussian potential wells (see [8], fig. 9).

In this work, we present a field-theoretic equivalent to the TUR. Such a thermody-
namic uncertainty relation for general field-theoretic Langevin equations may prove helpful
in further understanding complex dynamics like turbulence for fluid flow or non-linear
growth processes, described by the stochastic Navier-Stokes equation (e.g. [26]) or the
Kardar–Parisi–Zhang equation [27], respectively. Both are prominent representatives of field-
theoretic Langevin equations. For the latter, we highlight the recent progress concerning a
study of the inward growth of interfaces in liquid crystal turbulence as an experimental real-
ization [28]. On the theory side, analytic results on the effect of aging of two-time correlation
functions for the interface growth were found [29]. Furthermore we refer the reader to three
review articles [30–32] concerning the latest developments around the Kardar–Parisi–Zhang
universality class. Recently, ‘generalized TURs’ have been derived from fluctuation relations
[33,34]. For current-like observables, the original TUR [1] is stronger than the ‘generalized
TURs’. In our manuscript we use these current-like observables and thus we focus on the
original TUR.

The paper is organized as follows. In order to state a field-theoretic version of the ther-
modynamic uncertainty relation, we translate in Sect. 2 the notion of current, diffusivity and
entropy production known from the setting of coupled Langevin equations to their respective
equivalents for general field-theoretic Langevin equations. As an illustration of the general-
izations introduced in Sect. 2, we will then study the one-dimensional Kardar–Parisi–Zhang
(KPZ) equation as a paradigmatic example of such a field-theoretic Langevin equation. As
the calculation of the current, diffusivity and entropy production in the NESS requires a solu-
tion to the KPZ equation, we will use spectral theory and construct an approximate solution
in the weak-coupling regime of the KPZ equation in Sect. 3. With this approximation, we
will then derive in Sect. 4 the thermodynamic uncertainty relation to quadratic order in the
coupling parameter.

123



1144 O. Niggemann, U. Seifert

2 Thermodynamic Uncertainty Relation for a Field Theory

In this section, we will present a generalization of the thermodynamic uncertainty relation
introduced in [1] to a field theory. Consider a generic field theory of the form

∂tΦγ (r, t) = Fγ

[{Φμ(r, t)}] + ηγ (r, t),
〈
ηγ (r, t)

〉 = 0,
〈
ηγ (r, t)ηκ(r′, t ′)

〉 = K (r − r′)δγ, κδ(t − t ′).
(1)

Here Φγ (r, t) is a scalar field or the γ -th component of a vector field (γ ∈ [1, n]; n ∈ N)

with r ∈ Ω ⊂ Rd , Fγ

[{Φμ(r, t)}] represents a (possibly non-linear) functional of Φμ

and ηγ (r, t) denotes Gaussian noise, which is white in time, and with K (r − r′) as spatial
noise correlations. Prominent examples of (1) are the stochastic Navier–Stokes equation for
turbulent flow (see e.g. [26]) or the Kardar–Parisi–Zhang equation for non-linear growth
processes [27] to name only two. The latter will be treated in the subsequent sections within
the framework established in the following.

Let us begin with the introduction of some notions. A natural choice of a local fluctuating
current j(r, t) is

j(r, t) ≡ ∂t�(r, t), (2)

with �(r, t) = (Φ1(r, t), . . . , Φn(r, t))�. The local current j(r, t) is fluctuating around its
mean, i.e.

j(r, t) = 〈j(r, t)〉 + δj(r, t), (3)

with δj(r, t) denoting the fluctuations. Given that the system (1) possesses a NESS, the
long-time behavior of the local current (2) can be described as

j(r, t) = J(r) + δj(r, t), (4)

with δj(r, t) being now a stationary stochastic process with zero mean and with

J(r) = lim
t→∞ 〈∂t�(r, t)〉 = lim

t→∞
〈�(r, t)〉

t
. (5)

Here 〈·〉 denotes averages with respect to the noise history. Thus, in a NESS, the local current
j(r, t) = ∂t�(r, t) is in a statistically stationary state, i.e. becomes a stationary stochastic
process with mean J(r). As the thermodynamic uncertainty relation in a Markovian network
is formulated for some form of integrated currents, we define in analogy the projection of
the local current onto an arbitrarily directed weight function g(r)

jg(t) ≡
∫

Ω

dr j(r, t) · g(r). (6)

The integral in (6) represents the usualL2-product of the two vector fields j(r, t) and g(r)with
j(r, t) · g(r) = ∑

k jk(r, t)gk(r) as the scalar product between j and g. With this projected
current jg(t), we associate a fluctuating ‘output’

Ψg(t) ≡
∫

Ω

dr�(r, t) · g(r). (7)

Hence jg(t) = ∂tΨg(t) and in the NESS

Jg ≡ lim
t→∞

〈
Ψg(t)

〉

t
. (8)
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The fluctuating output Ψg(t) provides us with the means to define a measure of the precision
of the system output, namely the squared variational coefficient ε2, as

ε2 ≡
〈(

Ψg(t) − 〈
Ψg(t)

〉)2〉

〈
Ψg(t)

〉2 . (9)

If the system is in its non-equilibrium steady state, we can rewrite (9) as

ε2 =
〈(

Ψg(t) − Jg t
)2〉

(
Jg t

)2 . (10)

Let us now connect the variance of the output Ψg(t) to the Green–Kubo diffusivity given by

Dg ≡
∫ ∞

0
dt

〈
δ jg(t) δ jg(0)

〉
. (11)

Using (6) and (2), it is straightforward to verify that
∫ t

0
dt ′ δ jg(t

′) = Ψ̃g(t) − 〈
Ψ̃g(t)

〉
, Ψ̃g(t) ≡ Ψg(t) − Ψg(0).

Thus,
〈(

Ψ̃g(t) − 〈
Ψ̃g(t)

〉)2〉 =
∫ t

0
dr

∫ t

0
ds

〈
δ jg(r)δ jg(s)

〉
. (12)

By dividing both sides of (12) by 2t and taking the limit of t → ∞ it is found in analogy to
[35], that

lim
t→∞

∫ t
0 dr

∫ t
0 ds

〈
δ jg(r)δ jg(s)

〉

2t
= Dg,

with Dg from (11) and therefore

Dg = lim
t→∞

〈(
Ψ̃g(t) − 〈

Ψ̃g(t)
〉)2〉

2t
. (13)

Since in the NESS Ψg(t) is stochastically independent of the initial configuration Ψg(0), we
can simplify the expression for the diffusivity in the NESS according to

Dg = lim
t→∞

〈(
Ψg(t) − 〈

Ψg(t)
〉)2〉

2t
. (14)

With the result of (14) and ε2 from (9), an alternative formulation of the precision in a NESS
is

ε2 =
〈(

Ψg(t) − 〈
Ψg(t)

〉)2〉

〈
Ψg(t)

〉2 = 2
Dg

J 2
g

1

t
. (15)

We proceed with expressing the total entropy production Δstot. The total entropy production
is given by the sum of the entropy dissipated into the medium along a single trajectory, Δsm,
and the stochastic entropy, Δs, of such a trajectory; see e.g. [36]. The medium entropy is
given by,

Δsm ≡ ln
p[�(r, t)|�(r, t0)]
p[�̃(r, t)|�̃(r, t0)]

. (16)
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1146 O. Niggemann, U. Seifert

Here p[�(r, t)|�(r, t0)] denotes the functional probability density of the entire vector field
�(r, t), i.e. the field configuration after some time t has elapsed since a starting-time t0 < t ,
conditioned on an initial value �(r, t0), i.e. a certain field configuration at the starting time
t0. In contrast, p[�̃(r, t)|�̃(r, t0)] is the conditioned probability density of the time reversed
process, i.e. starting in the final configuration at time t0 and ending up in the original one at
time t . For the sake of simplicity, we will write in the following p[�] and p[�̃] instead of
p[�(r, t)|�(r, t0)] and p[�̃(r, t)|�̃(r, t0)], respectively. The functional probability density
can be expressed via a so-called action functional, S[�], according to

p[�] ∝ exp [−S[�]] . (17)

For the system (1), the action functional (see e.g. [36–44] and references therein) is given by

S[�] = 1

2

∑

γ

∫ t

t0
dt ′

∫
dr

(
Φ̇γ (r, t ′) − Fγ [{Φμ(r, t ′)}])

×
∫

dr′ K −1(r − r′)
(
Φ̇γ (r′, t ′) − Fγ [{Φμ(r′, t ′)}]) ,

(18)

where K −1(r− r′) is the inverse of the noise correlation kernel K (r− r′) from (1). The two
integral kernels fulfill

∫
dr′′ K (r − r′′)K −1(r′′ − r′) = δd(r − r′). (19)

Before we proceed with the calculation of the medium entropy, let us give the following gen-
eral remarks. Throughout the paper, stochastic integrals are interpreted in the Stratonovitch
sense, i.e. mid-point discretization is used. This is essential for the calculation of the
medium entropy Δsm via (16), where Ito discretization may lead to incompatibilities. Using
Stratonovitch discretization, however, gives rise to an additional term in the action functional
(18), which is given by the functional derivative of the generalized force term F from (1)
with respect to the field �. This contribution stems from the Jacobian ensuing from the
variable transformation from the noise field to the field � in the functional integral used for
calculating expectation values of path dependent observables. As this addition to the action
functional does not contribute to the medium entropy (cf. [36,45]) it is neglected in (18).

Inserting (17), (18) into (16) and noticing that only the time-antisymmetric part of the
action functional (18) and its time-reversed counterpart survives, leads to (see also [36,45,46])

Δsm = 2
∑

γ

∫ t

t0
dt ′

∫
dr

∫
dr′ Φ̇γ (r, t ′)K −1(r − r′)Fγ [{Φμ(r′, t ′)}]. (20)

Δsm is a measure of the energy dissipated into the medium during the time interval [t0, t],
in analogy to the Langevin case. The stochastic entropy change Δs for the same trajectory,
is given by (see also [45])

Δs ≡ − ln p[�(r, τ )]
∣∣∣
t

t0
. (21)

Thus, the total entropy production Δstot reads

Δstot = 2
∑

γ

∫ t

t0
dt ′

∫
dr

∫
dr′ Φ̇γ (r, t ′)K −1(r − r′)Fγ [{Φμ(r′, t ′)}]

− ln p[�(r, τ )]
∣∣∣
t

t0
.

(22)
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With (22) we may also define the rate of total entropy production σ in a NESS according to

σ = lim
t→∞

〈Δstot〉
t

. (23)

The expressions stated in (9) and (22) provide us with the necessary ingredients to formulate
the field-theoretic thermodynamic uncertainty relation as

〈Δstot〉 ε2 = 2 Dg σ

J 2
g

≥ 2, (24)

with σ from (23), Dg from (13) and Jg from (8). The higher the precision, i.e. the smaller
ε2, the more entropy 〈Δstot〉 is generated, i.e. the higher the thermodynamic cost. Or, in
other words, in order to sustain a certain NESS current Jg , a minimal entropy production rate
σ ≥ J 2

g /Dg is required. We anticipate that for the case of the KPZ equation, the constant on
the right hand side of (24) will turn out to be equal to five (see (111)), i.e. the TUR given in
(24) is not saturated. As will be discussed below, we can attribute this greater value to the
KPZ non-linearity.

3 Theoretical Background

Within this section we will lay the groundwork for the calculation of the quantities entering
the TUR for the KPZ equation. The main focus thereby is on the perturbative solution of the
KPZ equation in the weak-coupling regime and the discussion of issues with diverging terms
due to a lack of regularity.

3.1 The KPZ Equation in Spectral Form

Consider the one-dimensional KPZ equation [27] on the interval [0, b], b > 0, with Gaussian
white noise η(x, t)

∂ h(x, t)

∂t
= L̂ h(x, t) + λ

2

(
∂ h(x, t)

∂x

)2

+ η(x, t)

〈η(x, t)〉 = 0
〈
η(x, t) η(x ′, t ′)

〉 = Δ0δ(x − x ′)δ(t − t ′),

(25)

subject to periodic boundary conditions and, for simplicity, vanishing initial condition
h(x, 0) = 0, x ∈ [0, b] (i.e. the growth process starts with a flat profile). Here L̂ = ν∂2x is a
differential diffusion operator, Δ0 a constant noise strength, and λ the coupling constant of
the non-linearity.

A Fourier-expansion of the height field h(x, t) and the stochastic driving force η(x, t)
reads

h(x, t) =
∑

k∈Z
hk(t)φk(x),

η(x, t) =
∑

k∈Z
ηk(t)φk(x).

(26)
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1148 O. Niggemann, U. Seifert

The set of {φk(x)} is given by

φk(x) ≡ 1√
b

e2π ikx/b k ∈ Z, (27)

and thus hk(t),ηk(t) ∈ C in (26).A similar proceeding for the case of theEdwards–Wilkinson
equation was used in [47–50]. Inserting (26) into (25) leads to

∑

k∈Z
ḣk(t)φk(x)

=
∑

k∈Z
hk(t)L̂φk(x) + λ

2

∑

l,m∈Z
hl(t)hm(t)∂xφl(x)∂xφm(x) +

∑

k∈Z
ηk(t)φk(x)

=
∑

k∈Z
hk(t)μkφk(x) − 2π2 λ

b2
∑

l,m∈Z
l m hl(t)hm(t)φl(x)φm(x)

+
∑

k∈Z
ηk(t)φk(x),

with {μk} defined as
μk ≡ −4π2 ν

b2
k2 k ∈ Z. (28)

For the {φk(x)} the relation φl(x)φm(x) = φl+m(x)/
√

b holds and thus the double-sum
in the Fourier expansion of the KPZ equation can be rewritten in convolution form setting
k = l + m. This yields

∑

k∈Z
ḣk(t)φk(x)

=
∑

k∈Z
hk(t)μkφk(x) − 2π2 λ

b5/2

∑

k,l∈Z
l(k − l)hl(t)hk−l(t)φk(x)

+
∑

k∈Z
ηk(t)φk(x),

(29)

which implies ordinary differential equations for the Fourier-coefficients hk(t),

ḣk(t) = μkhk(t) − 2π2 λ

b5/2

∑

l∈Z
l(k − l)hl(t)hk−l(t) + ηk(t). (30)

The above ODEs (30) are readily ‘solved’ by the variation of constants formula, which leads
for flat initial condition hk(0) ≡ 0 to

hk(t) =
∫ t

0
dt ′eμk (t−t ′)

⎡

⎣ηk(t
′) − 2π2 λ

b5/2

∑

l∈Z\{0}
l(k − l)hl(t

′)hk−l(t
′)

⎤

⎦ , (31)

k ∈ Z. Note, that the assumption of flat initial conditions is not in conflict with (21) as in the
NESS, in which the relevant quantities will be evaluated, the probability density becomes
stationary. With (31), a non-linear integral equation for the k-th Fourier coefficient has been
derived. In Sect. 3.4, the solution to (31) will be constructed by means of an expansion in a
small coupling parameter λ. We close this section with the following general remarks.

123



Field-Theoretic Thermodynamic Uncertainty... 1149

(i) Equation (31) has been derived on a purely formal level. In particular, the integral∫
dt ′eμk (t−t ′)ηk(t ′) has to be given a meaning. In a strict mathematical formulation,

this integral has to be written as
∫ t

0
eμk (t−t ′)dWk(t

′), (32)

which is called a stochastic convolution (see e.g. [51–54]). [Note that due to the deter-
ministic integrand of (32), the integral can optionally be interpreted in the Ito or
Stratonovitch sense, respectively [51]]. This has its origin in the fact that the noise
η(x, t) in (25) is mathematically speaking a generalized time-derivative of a Wiener
process W (x, t) (see also Sect 3.2, (35)). In this spirit, (31) with the first integral on the
right hand side replaced by (32) may be called the mild form of the KPZ equation (in
its spectral representation) and h(x, t) = ∑

k∈Z hk(t)φk(x), hk(t) solution of equation
(31), is then called a mild solution of the KPZ equation. In mathematical literature,
proofs of existence and uniqueness of such a mild solution can be found for various
assumptions on the spatial regularity of the noise (see e.g. [53,55,56] and references
therein). In particular, these assumptions are reflected by conditions for the explicit
form of the spatial noise correlator K (x − x ′) from (1) (see (46)). An assumption will
be adopted (see Sect. 3.2), which guarantees the existence of ‖h(x, t)‖L2([0,b]), i.e. the
norm on the Hilbert space of square-integrable functions L2. This norm, or respec-
tively the corresponding L2-product, denoted in the following by (·, ·)0, of h with any
L2-function g, i.e. (h, g)0, will be used in Sect. 4.1 and Sect. 4.4 to calculate the neces-
sary contributions to a field-theoretic thermodynamic uncertainty relation. Furthermore,
with this assumption on the noise, it is shown in Appendix C for the mild solution that
almost surely h(x, t) ∈ C([0, T ],L2([0, b])), T > 0, i.e. the trajectory t �→ h(x, t) is a
continuous function in time t with values h(·, t) ∈ L2([0, b]). This justifies the choice
H = L2([0, b]) in the following calculations.

(ii) The Fourier expansion applied above can be understood in a more general sense. For the
case of periodic boundary conditions, the differential operator L̂ possesses the eigen-
functions {φk(x)} and corresponding eigenvalues {μk} from (27) and (28), respectively.
It is well-known that the set {φk(x)} constitutes a complete orthonormal system in the
Hilbert space L2(0, b) of all square-integrable functions on (0, b). Thus the Fourier-
expansion performed above can also be interpreted as an expansion in the eigenfunctions
of the operator L̂ .

(iii) With this interpretation, (31) also holds for a ‘hyperdiffusive’ version of the KPZ equa-
tion in which the operator L̂ is replaced by L̂ p ≡ (−1)p+1∂

2p
x , with p ∈ N and adjusted

eigenvalues {μp
k }. Thismay be used to introduce a higher regularity to theKPZ equation.

(iv) Besides the complex Fourier expansion in (26) with coefficients hk(t) ∈ C, the real
expansion h(x, t) = ∑

k∈Z h̃k(t)γk(x), h̃k(t) ∈ R (e.g. [53]) and

γ0 = 1√
b
, γk =

√
2

b
sin 2πk

x

b
, γ−k =

√
2

b
cos 2πk

x

b
k ∈ N, (33)

will be used in the next section. The relationship between hk(t) and h̃k(t) reads

hk(t) = h̃−k(t) − i h̃k(t)√
2

, h−k(t) = h̃−k(t) + i h̃k(t)√
2

= hk(t), (34)

with hk(t) as the complex conjugate.
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3.2 A Closer Look at the Noise

In the following discussion of the noise it is instructive to pretend, for the time being, that
the noise is spatially colored with noise correlator K (x − x ′) instead of assuming directly
spatially white noise.

The noise η(x, t) is given by a generalized time-derivative of a Wiener process W (x, t) ∈
R [26,51–53], i.e.

η(x, t) = √
Δ0

∂ W (x, t)

∂t
. (35)

Such a Wiener process W (x, t) can be written as (e.g. [51,53])

W (x, t) =
∑

k∈Z
αkβk(t)γk(x). (36)

Here {αk} ∈ R are arbitrary expansion coefficients that may be used to introduce a spatial
regularization of the Wiener process, {βk(t)} ∈ R are stochastically independent standard
Brownian motions and {γk(x)} from (33). A well-known result for the two-point correlation
function of two stochastically independent Brownian motions βk(t) reads [51]

〈
βk(t) βl(t

′)
〉 = (t ∧ t ′) δk,l , (37)

with (t ∧ t ′) = min(t, t ′).
In the following it will be shown that the noise η defined by (35) and (36) possesses the

autocorrelation 〈
η(x, t) η(x ′, t ′)

〉 = K (x − x ′)δ(t − t ′), (38)

which for K (x − x ′) = Δ0δ(x − x ′) results in the one assumed in (25). Furthermore, an
explicit expression of the kernel K (x − x ′) by means of the Fourier coefficients {αk} of
W (x, t) from (36) will be given.

To this end, first an expression for the two-point correlation function of theWiener process
itself can be derived according to

〈
W (x, t) W (x ′, t ′)

〉 = t ∧ t ′

b

[

α2
0 +

∑

k∈N

[
α2−k + α2

k

]
cos 2πk

x − x ′

b

+
∑

k∈N

[
α2−k − α2

k

]
cos 2πk

x + x ′

b

]

.

(39)

To represent the noise structure dictated by (25), the expression in (39) has to be an even,
translationally invariant function in space. Thus, the following relation has to be fulfilled

α−k = αk ∀ k ∈ N. (40)

Then the two-point correlation function of the Wiener process is given by

〈
W (x, t) W (x ′, t ′)

〉 = t ∧ t ′

b

[

α2
0 + 2

∑

k∈N
α2

k cos 2πk
x − x ′

b

]

. (41)

With W (x, t) = ∑
k∈Z Wk(t)φk(x), φk(x) from (27), equation (41) implies for the two-point

correlation function of the Fourier coefficients Wk(t)
〈
Wk(t) Wl(t

′)
〉 = αk αl (t ∧ t ′) δk,−l , k, l ∈ Z. (42)
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This result leads immediately to

〈
ηk(t) ηl(t

′)
〉 ≡ Δ0

∂ 2
〈
Wk(t) Wl(t ′)

〉

∂t ∂t ′
= Δ0αk αl δk,−l δ(t − t ′), k, l ∈ Z, (43)

using ∂t∂t ′(t ∧ t ′) = δ(t − t ′).
For the relation between (41) and the noise from (38), we differentiate (41) with respect

to t and t ′ yielding

〈
η(x, t) η(x ′, t ′)

〉 = Δ0
∂ 2

〈
W (x, t) W (x ′, t ′)

〉

∂t ∂t ′

= Δ0

b

[

α2
0 + 2

∑

k∈N
α2

k cos 2πk
x − x ′

b

]

δ(t − t ′).
(44)

The following identification can be made

K (x − x ′) = Δ0

b

[

α2
0 + 2

∑

k∈N
α2

k cos 2πk
x − x ′

b

]

= K (|x − x ′|), (45)

which structurally represents the standard implicit assumption that K (x−x ′) is translationally
invariant, positive definite and even. Note, that the regularity of the noise-kernel K (|x − x ′|)
is given by the behavior of the set of {αk} for k → ∞, where {αk} are the dimensionless
Fourier coefficients of the underlying Wiener process from (36) for all k. For the case of
αk = 1 ∀ k ∈ Z, spatially white noise is obtained.

Thus, the derivation via the Wiener process has indeed led to a translationally invariant
real-valued two-point correlation function for η(x, t), given by (38), with K (|x − x ′|) from
(45), which describes white in time and spatially colored Gaussian noise. In the following,
we will use (45) to approximate spatially white noise to meet the required form in (25).

Now the assumption mentioned in the remarks in Sect. 3.1 can be made more precise. In
the following it will be assumed that (see Appendix C)

∑

k∈Z
|k|χα2

k < ∞, χ > 0. (46)

This assumption excludes spatially white noise, but via the introduction of a cutoff parameter
Λ ∈ N, Λ � 1 arbitrarily large but finite, for the range of k, white noise is accessible, i.e.
for k ∈ R with

R ≡ [−Λ,Λ]. (47)

Note that for the linear case, i.e. the Edwards–Wilkinson model, the authors of [48] also
introduce a cutoff, albeit in a slightly different manner. Such a cutoff amounts to an orthog-
onal projection of the full eigenfunction expansion of (25) to a finite-dimensional subspace
spanned by the eigenfunctions φ−Λ(x), . . . , φΛ(x). Mathematically, this projection may be
represented by a linear projection operator PΛ, which maps the Hilbert space L2(0, b) to
span{φ−Λ(x), . . . , φΛ(x)}, acting on (29). This mapping, however, causes a problem in the
non-linear term of (29), where by mode coupling the k-th Fourier mode (−Λ ≤ k ≤ Λ)
is influenced also by modes with |l| > Λ. This issue can be resolved by choosing Λ large
enough, for modes with hl(t) ∼ exp[μl t], μl from (28), (61), |l| > Λ will be damped out
rapidly so that the bias introduced by limiting l to the interval R is small. Note that the
restriction to h ∈ span{φ−Λ, . . . , φΛ} also implies the introduction of restricted summation
boundaries in the convolution term in (31), namely
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∑

l∈Z
l(k − l)hl hk−l −→

∑

l∈Rk\{0,k}
l(k − l)hl hk−l , k ∈ R,

with Rk defined by

Rk ≡ [max(−Λ,−Λ + k),min(Λ,Λ + k)] , k ∈ R. (48)

This restriction to finitely many Fourier modes is not as harsh as it might seem, since for very
large wavenumbers the dynamics of the KPZ equation is dominated by its diffusive term and
the non-linearitymay safely be neglected. This reasoning is based on arguments for turbulence
theory in e.g. [26,57–59] and for the KPZ-case e.g. [60], where amomentum-scale separation
is in effect. Specifically, in the case of the one-dimensional Burgers equation, the momentum
scale is divided into a small-wavenumber regime where the non-linearity is dominant and a
large-wavenumber regimewhere dissipation dominates (see also [61–64]).Hence, in the latter
wavenumber range the KPZ equation reduces to the Edwards–Wilkinson equation, which,
due to its equilibrium behavior, does not affect the thermodynamic uncertainty relation (24).

With the cutoff Λ, condition (46) is of course fulfilled for αk = 1 ∀ k ∈ R and αk = 0 ∀k
/∈ R. Inserting this choice of αk into (45) yields

K (x − x ′) = Δ0

b

[

1 + 2
Λ∑

k=1

cos 2πk
x − x ′

b

]

= Δ0δ(x − x ′)
∣∣∣
span{φ−Λ,...,φΛ}. (49)

Also, the choice of αk = 1 ∀ k ∈ R implies for the correlation function of the Fourier
coefficients ηk(t) from (43)

〈
ηk(t)ηl(t

′)
〉 = Δ0δk,−lδ(t − t ′) k, l ∈ R. (50)

To end this section, a noise operator K̂ describing spatial noise correlations will be introduced
as

K̂ (·) ≡
∫ b

0
dx ′K (x − x ′)(·)(x ′), (51)

with kernel K (x − x ′) from (49) and its inverse K̂ −1 given by

K̂ −1(·) =
∫ b

0
dx ′K −1(x − x ′)(·)(x ′), (52)

where its kernel reads K −1(x − x ′) = Δ−1
0 δ(x − x ′)

∣∣∣
span{φ−Λ,...,φΛ}.

3.3 Dimensionless Form of the KPZ Equation

Before the KPZ equation is analyzed further, it is prudent to relate all physical quantities to
suitable reference values so that the scaled quantities are dimensionless and that the equation
is characterized by only one dimensionless parameter. In anticipation of the calculations
below, we choose this parameter to represent a dimensionless effective coupling parameter
λeff, that replaces the coupling constant λ from (25). To this end the following characteristic
scales are introduced,

h = Hhs ; η = Nηs ; x = bxs ; t = T ts. (53)
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Here H is a characteristic scale for the height field (not to be confused with the notation for
the Hilbert space), N a scale for the noise field, b is the characteristic length scale in space
and T the time scale of the system. Choosing the three respective scales according to

H =
√

Δ0 b

ν
, N =

√
Δ0 ν

b3
, T = b2

ν
, (54)

leads to the dimensionless KPZ equation on the interval x ∈ [0, 1]

∂tshs(xs, ts) = ∂2xshs(xs, ts) + λeff

2

(
∂xshs(xs, ts)

)2 + ηs(xs, ts), (55)

〈ηs(xs, ts)〉 = 0, (56)
〈
ηs(xs, ts)ηs(x ′

s, t ′s)
〉 = Ks(xs − x ′

s)δ(ts − t ′s). (57)

Here, the effective dimensionless coupling constant is given by

λeff = λΔ
1/2
0

ν3/2
b1/2, (58)

and

Ks(xs − x ′
s) = 1 + 2

Λ∑

k=1

cos 2πk(xs − x ′
s). (59)

The effective coupling constant λeff is found in various works concerning the KPZ–Burgers
equation; see e.g. [40,65–67].

In the following sections we will perform all calculations for the dimensionless KPZ
equation. This requires one simple adjustment in the linear differential operator L̂ on xs ∈
[0, 1], which is now given by

L̂s = ∂2xs , (60)

with eigenvalues
μs, k = −4π2 k2 (61)

to the orthonormal eigenfunctions

φs, k(xs) = e2π ikxs . (62)

Furthermore, the noise correlation function in Fourier space from (50) now reads
〈
ηs, k(ts)ηs, l(t

′
s)
〉 = δk,−lδ(ts − t ′s). (63)

The scaling also affects the noise operators defined in (51), (52) at the end of Sect. 3.2. The
scaled ones read

K̂s(·) =
∫ 1

0
dx ′

s Ks(xs − x ′
s)(·)(x ′

s), (64)

and

K̂ −1
s (·) =

∫ 1

0
dx ′

s K −1
s (xs − x ′

s)(·)(x ′
s), (65)

with Ks(xs−x ′
s) from (59) and K −1

s (xs−x ′
s) is defined via the integral-relation

∫
dys Ks(xs−

ys)K −1
s (ys − zs) = δ(xs − zs).

Note that for the sake of simplicity the subscript s will be dropped in the calculations
below where all quantities are understood as the scaled ones.
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3.4 Expansion in a Small Coupling Constant

Returning to the nonlinear integral equation of the k-th Fourier coefficient of the heights
field, hk(t) from (31), now in its dimensionless form and with the restricted spectral range
given by

hk(t) =
∫ t

0
dt ′eμk (t−t ′)

⎡

⎣ηk(t
′) − 2π2λeff

∑

l∈Rk\{0,k}
l(k − l)hl(t

′)hk−l(t
′)

⎤

⎦ , (66)

k ∈ R, with {μk} from (61),Rk from (48) and all quantities dimensionless, an approximate
solution will be constructed. Note, that the summation of the discrete convolution in (66) is
chosen such that it respects the above introduced cutoff in l as well as k−l, i.e. |l|, |k−l| ≤ Λ.
For small values of the coupling constant we expand the solution in powers of λeff, i.e.

hk(t) = h(0)
k (t) + λeffh

(1)
k (t) + λ2effh

(2)
k (t) + O(λ3eff), (67)

with

h(0)
k (t) =

∫ t

0
eμk (t−t ′)dWk(t

′), (68)

h(1)
k (t) = −2π2

∑

l∈Rk\{0,k}
l(k − l)

∫ t

0
dt ′eμk (t−t ′)h(0)

l (t ′)h(0)
k−l(t

′), (69)

h(2)
k (t) = −2π2

∑

l∈Rk\{0,k}
l(k − l)

∫ t

0
dt ′eμk (t−t ′)

×
(

h(0)
l (t ′)h(1)

k−l(t
′) + h(1)

l (t ′)h(0)
k−l(t

′)
)

(70)

Thus every h(n)
k , n > 1, can be expressed in terms of h(0)

m , m ∈ R, i.e. the stochastic
convolution according to (32), which is known to be Gaussian.

In the following calculations multipoint correlation functions have to be evaluated, which

can be simplified byWick’s theorem, where a recurring term reads
〈
h(0)

k (t)h(0)
l (t ′)

〉
. It is thus

helpful to determine this correlation function in general once and use this result later on.
With (63) and k, l ∈ Z (and therefore also for k, l ∈ R) it follows that:

〈
h(0)

k (t)h(0)
l (t ′)

〉
= eμk t eμl t ′

∫ t

0
dr

∫ t ′

0
ds e−μkr e−μl s 〈ηk(r)ηl(s)〉

= eμk t eμl t ′δk,−l
1 − e−(μk+μl )(t∧t ′)

μk + μl
= Πk,l(t, t ′)δk,−l ,

with

Πk,l(t, t ′) ≡ eμk t eμl t ′ 1 − e−(μk+μl )(t∧t ′)

μk + μl
. (71)

Since for the auxiliary expression Πk,l the symmetries

Πk,l(t, t ′) = Πk,−l(t, t ′) = Π−k,l(t, t ′) = Π−k,−l(t, t ′) (72)
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hold, it is found that

〈
h(0)

k (t)h(0)
l (t ′)

〉
=
〈
h(0)

k (t)h(0)
l (t ′)

〉
= Πk,l(t, t ′)δk,−l;

〈
h(0)

k (t)h(0)
l (t ′)

〉
=
〈
h(0)

k (t)h(0)
l (t ′)

〉
= Πk,l(t, t ′)δk,l .

(73)

4 Thermodynamic Uncertainty Relation for the KPZ Equation

In this section we will show that the thermodynamic uncertainty relation from (24) holds for
the KPZ equation driven by Gaussian white noise in the weak-coupling regime. In particular,
the small-λeff expansion from Sect. 3.4 will be employed.

To recapitulate, the two ingredients needed for the thermodynamic uncertainty relation
are (i) the long time behavior of the squared variation coefficient or precision ε2 of Ψg(t)
from (9); (ii) the expectation value of the total entropy production in the steady state, 〈Δstot〉
from (22).

4.1 Expectation andVariance for the Height Field

With (7) adapted to the KPZ equation, namely

Ψg(t) =
∫ 1

0
dx h(x, t)g(x), (74)

with g(x) as any real-valued L2-function fulfilling
∫ 1
0 dxg(x) �= 0, i.e. g(x) possessing

non-zero mean, we rewrite the variance as
〈(

Ψg(t) − 〈
Ψg(t)

〉)2〉 =
〈(

Ψg(t)
)2〉 − 〈

Ψg(t)
〉2

. (75)

As is shown below, ε2 can be evaluated for arbitrary time t > 0. However, the final interest
is on the non-equilibrium steady state of the system. Therefore, the long-time asymptotics
will be studied.

4.2 Evaluation of Expectation andVariance

In the small-λeff expansion, the expectation of the output Ψg(t) from (74), with h(x, t)
solution of the dimensionless KPZ equation (55) to (57) reads:

〈
Ψg(t)

〉 =
∑

k,l∈R
〈hk(t)〉 gl

(
e2π ikx , e2π ilx

)

0

= λeff
∑

k∈R
gk

〈
h(1)

k (t)
〉
+ O(λ3eff),

(76)

where gk and gk are the k-th Fourier coefficient of the weight function g(x) and its complex
conjugate, respectively. Here the result from (68) is used as well as the fact that odd moments
of Gaussian random variables vanish identically. Replacing h(1)

k (t) by the expression derived
in (69) and using (73) leads to
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〈
h(1)

k (t)
〉
= −2π2eμk t

∫ t

0
dt ′ e−μk t ′ ∑

l∈Rk\{0,k}
l(k − l)

〈
h(0)

l (t ′)h(0)
k−l(t

′)
〉

= −2π2
∑

l∈Rk\{0,k}
l(k − l)

[
e(μl+μk−l )t − eμk t

(μl + μk−l)(μl + μk−l − μk)

− eμk t − 1

(μl + μk−l)μk

]
δ0,k .

(77)

Note, that in the case of k = 0 the second term in the last line of (77) is evaluated in the limit
μk → 0, which yields t . Since the interest is in the NESS-current, the long-time asymptotics
of the two expressions in (77) above is studied. So, eq. (76) yields

〈
Ψg(t)

〉 �
⎡

⎣2π2g0λeff
∑

l∈R\{0}

l2

2(−μl)
+ O

(
λ3eff

)
⎤

⎦ t, for t � 1, (78)

where gk = g−k ∀k as g(x) ∈ R. Note, that the formulation of (78) reflects our claim, that〈
Ψg(t)

〉 ∼ t for t � 1, see also the related reasoning in Appendix D. Using the explicit form
of μk from (61), the expression in (78) can be simplified according to

〈
Ψg(t)

〉 =
[

g0
λeff

2
Λ + O

(
λ3eff

)]
t, for t � 1, (79)

with Λ from (47). Equivalently, the steady state current from (8) reads

Jg = g0
λeff

2
Λ + O

(
λ3eff

)
. (80)

The first term of the variance as defined in (75) reads in the small-λeff expansion

〈(
Ψg(t)

)2〉 =
〈
∑

k,l∈R
hk(t)gkhl(t)gl

〉

=
∑

k,l∈R
gk gl

[〈
h(0)

k (t)h(0)
l (t)

〉
+ λ2eff

(〈
h(1)

k (t)h(1)
l (t)

〉

+
〈
h(0)

k (t)h(2)
l (t)

〉
+
〈
h(2)

k (t)h(0)
l (t)

〉)
+ O(λ4eff)

]
,

(81)

where moments proportional to λeff (and λ3eff) vanish due to (68) and (69) as the two-point

correlation function
〈
h(0)

k h(1)
l

〉
and its complex conjugate are odd moments.

In Appendix A, we present the rather technical derivation of

〈(
Ψg(t)

)2〉 � g2
0

⎡

⎣1 − 2(2π2)2λ2eff

∑

l∈R\{0}

l4

8μ3
l

⎤

⎦ t

+ g2
0λ

2
eff

∑

k∈R

∣∣∣
〈
h(1)

k (t)
〉∣∣∣
2 + O(λ4eff) for t � 1.

(82)
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Subtraction of (78) squared from (82) leads to
〈(

Ψg(t)
)2〉− 〈

Ψg(t)
〉2

�
⎡

⎣g2
0

⎛

⎝1 − 2(2π2)2λ2eff

∑

l∈R\{0}

l4

8μ3
l

⎞

⎠ + O(λ4eff)

⎤

⎦ t, for t � 1.
(83)

Here,
〈(

Ψg(t)
)2〉 − 〈

Ψg(t)
〉2 ∼ t , t � 1 is expected due to our reasoning in Appendix D.

Again, with μk from (61), the above expression in (83) can be reduced to

〈(
Ψg(t)

)2〉 − 〈
Ψg(t)

〉2 =
[

g2
0

(

1 + λ2eff

32π2H
(2)
Λ

)

+ O(λ4eff)

]

t . (84)

Here H(2)
Λ = ∑Λ

l=1 1/l2 is the so-called generalized harmonic number, which converges to
the Riemann zeta-function ζ(2) for Λ → ∞. Using (13), eq. (84) yields the diffusivity Dg ,

Dg = g2
0

2

[

1 + λ2eff

32π2H
(2)
Λ

]

+ O(λ4eff). (85)

With (84) and (79) squared, the first constituent of the thermodynamic uncertainty relation,
ε2 = Var[Ψg(t)]/

〈
Ψg(t)

〉2 from (9), is given for large times by

ε2 � 4 + λ2eff/(8π
2)H(2)

Λ

λ2eff Λ
2

1

t
. (86)

Note, since ε2 ≈ 4/(λ2efft), the long time asymptotics of the second term has to scale as
〈Δstot〉 ∼ λ2efft for the uncertainty relation to hold. Note further, that the result for the
precision of the projected output Ψg(t) in the NESS is independent of the choice of g(x).

4.3 Alternative Formulation of the Precision

Before we continue with the calculation of the total entropy production, we would like to
mention an intriguing observation. From the field-theoretic point of view, it seems natural to
define the precision ε2 as

ε2 ≡
〈‖h(x, t) − 〈h(x, t)〉‖20

〉

‖〈h(x, t)〉‖20
. (87)

This is due to the fact that the height field h(x, t) is at every time instant an element of the
Hilbert-spaceL2([0, 1]) as mentioned in Sect. 3.1. Hence, the difference between h(x, t) and
its expectation is measured by itsL2-norm. Also the expectation squared is in this framework
given by the L2-norm squared. At a cursory glance, the definitions in (87) and (9) seem to be
incompatible. However, for the case of the above calculations of ε2 for the one-dimensional
KPZ equation, it holds up to O(λ3eff) in perturbation expansion that

〈(
Ψg(t) − 〈

Ψg(t)
〉)2〉 = g2

0

〈‖h(x, t) − 〈h(x, t)〉‖20
〉

for t � 1,
〈
Ψg(t)

〉2 = g2
0 ‖〈h(x, t)〉‖20 .

(88)

Thus, with (88), it is obvious that in terms of the perturbation expansion both definitions of
the precision, as in (9) and (87), respectively, are equivalent. Equation (88) can be verified
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by direct calculation along the same lines as above in this section. By studying these calcula-
tions it is found perturbatively that the height field h(x, t) is spatially homogeneous, which
is reflected by 〈hk(t)hl(t)〉 ∼ δk,−l (see (73)) for the correlation of its Fourier-coefficients.
Further, the long-time behavior is solely determined by the largest eigenvalue of the differ-
ential diffusion operator L̂ = ∂2x , namely by μ0 = 0 (see e.g. (78) and (83), the essential
quantities for deriving (88)).

In the following, we would like to give some reasoning why the above two statements
should also hold for a broad class of field-theoretic Langevin equations as in (1). For sim-
plicity, we restrict ourselves in (1) to the case of one-dimensional scalar fields Φ(x, t) and
F[Φ(x, t)] = L̂Φ(x, t) + N̂ [Φ(x, t)]. Here L̂ denotes a linear differential operator and N̂ a
non-linear (e.g. quadratic) operator. L̂ should be selfadjoint and possess a pure point spectrum
with all eigenvaluesμk ≤ 0 (e.g. L̂ = (−1)p+1∂

2p
x , p ∈ N, i.e. an arbitrary diffusion operator

subject to periodic boundary conditions). For this class of operators L̂ there exists a complete
orthonormal system of corresponding eigenfunctions {φk} in L2(Ω). If it is further known,
that the solutionΦ(x, t) of (1) belongs at every time t toL2(Ω), we can calculate e.g. the sec-
ondmoment of the projected outputΨg(t) according to

〈
(Ψg(t))2

〉 = 〈
(
∫
Ω

dx Φ(x, t)g(x))2
〉
,

where g(x) ∈ L2(Ω) as well. As is the case in e.g. equation (81), the second moment is
determined by the Fourier-coefficients Φk(t) of Φ(x, t) and gk of g(x), namely

〈(
Ψg(t)

)2〉 =
∑

k,l

gk gl 〈Φk(t)Φl(t)〉 . (89)

Like the KPZ equation, (1) is driven by spatially homogeneous Gaussian white noise η(x, t)
with two-point correlations of the Fourier-coefficients ηk(t) given by 〈ηk(t)ηl(t)〉 ∼ δk,−l .
Therefore, we expect the solution to (1) subject to periodic boundary conditions to be spatially
homogeneous as well, at least in the steady state, which implies

〈Φk(t)Φl(t)〉 ∼ δk,−l , (90)

see e.g. [57,58]. Hence, with (90), the expression in (89) becomes
〈(

Ψg(t)
)2〉 = g2

0

〈
(Φ0(t))

2〉 +
∑

k �=0

|gk |2 〈Φk(t)Φ−k(t)〉 . (91)

Comparing (91) to
〈‖Φ(x, t)‖20

〉
, which is given by

〈‖Φ(x, t)‖20
〉 =

∑

k

〈Φk(t)Φ−k(t)〉 = 〈
(Φ0(t))

2〉 +
∑

k �=0

〈Φk(t)Φ−k(t)〉 , (92)

we find in the NESS 〈(
Ψg(t)

)2〉 � g2
0

〈‖Φ(x, t)‖20
〉
, (93)

provided that the long-time behavior is dominated by the Fourier-mode with largest eigen-
value, i.e. k = 0 with μ0 = 0. Under the same condition, the first moment of the projected
output reads in the NESS

〈
Ψg(t)

〉 =
∑

k

gk 〈Φk(t)〉 � g0 〈Φ0(t)〉 , (94)

and thus (〈
Ψg(t)

〉)2 � g2
0 (〈Φ0(t)〉)2 . (95)
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Similarly,
‖〈Φ(x, t)〉‖20 =

∑

k

|〈Φk(t)〉|2 � (〈Φ0(t)〉)2 for t � 1, (96)

which implies (〈
Ψg(t)

〉)2 � g2
0 ‖〈Φ(x, t)〉‖20 . (97)

Note, that g0 and Φ0(t) have to be real throughout the argument (which is indeed the case
for expansions with respect to the eigenfunctions of the general diffusion operators L̂ from
above). Hence, under the assumption that the prior mentioned requirements are met, which,
of course, would have to be checked for every individual system (as was done in this section
for the KPZ equation), the asymptotic equivalence in (93) and (97) validates the statement
in (88) (and therefore, in the NESS, also (87)) for a whole class of one-dimensional scalar
SPDEs from (1).

4.4 Total Entropy Production for the KPZ Equation

The total entropy production for the KPZ equation is obtained by inserting
Fγ [hμ(r, t)] = ∂2x h(x, t) + λeff

2 (∂x h(x, t))2 and the explicit expression for the one-
dimensional stationary probability distribution ps[h] into (22). The form of the latter is
given in the following.

4.4.1 The Fokker–Planck Equation and its 1D Stationary Solution

Let us briefly recapitulate the Fokker–Planck equation and its stationary solution in one
spatial dimension for the KPZ equation.

The Fokker–Planck equation corresponding to (55) for the functional probability distri-
bution p[h] reads, e.g. [32,43,68–70],

∂ p[h]
∂t

= −
∫ 1

0
dx

δ

δh

[(
∂2x h(x, t) + λeff

2
(∂x h(x, t))2

)
p[h] − 1

2

δ p[h]
δh

]

= −
∫ 1

0
dx

δ j[h]
δh

, (98)

j[h] ≡
(

∂2x h(x, t) + λeff

2
(∂x h(x, t))2

)
p[h] − 1

2

δ p[h]
δh

, (99)

with j[h] as a probability current.
It is well known that for the case of pure Gaussian white noise, a stationary solution, i.e.

∂t ps[h] = 0, to the Fokker–Planck equation is given by [32,68,70]

ps[h] ≡ exp
[−‖∂x h‖20

]
. (100)

This stationary solution is the same as the one for the linear case, namely for the Edwards–
Wilkinson model. Note that in (100) we denote by ‖·‖20 the standard L2-norm.
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4.4.2 Stationary Total Entropy Production

With (22), the total entropy production in the NESS for the KPZ equation reads

Δstot = Δsm + Δs = 2
∫ t

0
dt ′

(
ḣ,

[
∂2x h + λeff

2
(∂x h)2

])

0
− (

h, ∂2x h
)
0

=
[
2
∫ t

0
dt ′

(
ḣ, ∂2x h

)
0 − (

h, ∂2x h
)
0

]
+ λeff

∫ t

0
dt ′

(
ḣ, (∂x h)2

)
0 .

(101)

Using
(
ḣ, ∂2x h

)
0 = 1

2
d
dt

(
h, ∂2x h

)
0, and the initial condition h(x, 0) = 0, the first term in

(101) vanishes and thus

Δstot = λeff

∫ t

0
dt ′

(
ḣ(x, t ′),

(
∂x h(x, t ′)

)2)

0
. (102)

For Gaussian white noise, the expectation value of (102) is given by

〈Δstot〉 = λeff

∫ t

0
dt ′

〈(
ḣ(x, t ′),

(
∂x h(x, t ′)

)2)

0

〉

= λ2eff

2

∫ t

0
dt ′

〈∥∥∥
(
∂x h(x, t ′)

)2∥∥∥
2

0

〉
.

(103)

For a derivation of this result see Appendix B. Note that (103) and its derivation remains true
for h ∈ span{φ−Λ, . . . , φΛ}. More generally, the expectation of the total entropy production
may also be written as

〈Δstot〉 = λ2eff

2

∫ t

0
dt ′

〈((
∂x h(x, t ′)

)2
, K̂ −1 (∂x h(x, t ′)

)2)

0

〉
, (104)

with K̂ −1 from (65).

4.4.3 Evaluating the Expectation of the Stationary Total Entropy Production

Above, an expression for the stationary total entropy production Δstot and its expectation
value were derived (see eq. (103)). Inserting the Fourier representation from (26) and (62)
into (103) leads to

〈Δstot〉

= (4π2)2
λ2eff

2

∫ t

0
dt ′

∫ 1

0
dx

∑

k∈R

∑

m∈R
e2π i x(k−m)

×
〈

∑

l∈Rk\{0,k}
l(k − l)hl(t

′)hk−l(t
′)

∑

n∈Rm\{0,m}
n(m − n)hn(t ′)hm−n(t ′)

〉

= (4π2)2
λ2eff

2

∫ t

0
dt ′

∑

k∈R

∑

l,n∈Rk\{0,k}
l(k − l)n(k − n)

× 〈
hl(t

′)hk−l(t
′)hn(t ′)hk−n(t ′)

〉
,

(105)
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with Rk from (48). As (105) above is already of order λ2eff, it suffices to expand the Fourier
coefficients hi (t ′) to zeroth order, which yields

〈Δstot〉 = (4π2)2
λ2eff

2

∫ t

0
dt ′

∑

k∈R

∑

l,n∈Rk\{0,k}
l(k − l)n(k − n)

×
〈
h(0)

l (t ′)h(0)
k−l(t

′)h(0)
n (t ′)h(0)

k−n(t ′)
〉
+ O(λ4eff),

(106)

with h(0)
i (t ′) given by (68). Via a Wick contraction and using (73), the four-point correlation

function in (106) reads
〈
h(0)

l (t ′)h(0)
k−l(t

′)h(0)
n (t ′)h(0)

k−n(t ′)
〉

= Πl,k−l(t
′, t ′)Π−n,n−k(t

′, t ′)δ0,k + Πl,−n(t ′, t ′)Πk−l,n−k(t
′, t ′)δl,n

+ Πl,n−k(t
′, t ′)Πk−l,−n(t ′, t ′)δn,k−l .

(107)

Inserting (107) into (106) leads to the following form of the total entropy production in the
NESS,

〈Δstot〉

=
⎡

⎣(4π2)2
λ2eff

2

⎛

⎝
∑

l,n∈R\{0}

l2n2

4μlμn
+ 2

∑

k∈R

∑

l∈Rk\{0,k}

l2(k − l)2

4μlμk−l

⎞

⎠ + O(λ4eff)

⎤

⎦ t .

(108)

Note, 〈Δstot〉 ∼ t for t � 1 is expected to hold due to our reasoning in Appendix D. Note
further, that the long timebehavior of 〈Δstot〉 is indeed of the form required, i.e. 〈Δstot〉 ∼ λ2efft
(see remark after (86)), for the uncertainty relation to hold.Withμk from (61), the expression
for the total entropy production from (108) reads

〈Δstot〉 =
[

λ2eff

2

(
Λ2 + 3Λ2 − Λ

2

)
+ O(λ4eff)

]

t . (109)

Thus, with (23) and (109), the total entropy production rate becomes

σ = λ2eff

2

[
Λ2 + 3Λ2 − Λ

2

]
+ O(λ4eff). (110)

With (86) and (109), or, equivalently, (80), (85) and (110), the constituents of the thermo-
dynamic uncertainty relation are known. Hence, the product entering the TUR from (24) for
the KPZ equation reads

〈Δstot〉 ε2 = 2σ Dg

J 2
g

= 2 +
(
3 − 1

Λ

)
+ O(λ2eff). (111)

Note, that the result given in (111) holds strictly for ‘almost’ white noise only, i.e. for
the truncated noise spectrum with cutoff Λ (see e.g. (49) and (50)). However, we choose
Λ = Λ0 large enough, such that all contributions from modes with |k| > Λ0 are expected to
be dominated by the diffusive term of the KPZ equation, hence, be effectively described by
the Edwards–Wilkinson equation (see further the comments below (48)). As for very large
times t , the Edwards–Wilkinson model displays a genuine equilibrium, it does not contribute
to the current (80) nor the entropy production rate (110). Consequently, modes with |k| > Λ0
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do not affect the TUR in (111) and thus we expect it to hold also for ‘fully’ white noise, i.e.
without the need to increase the cutoff parameter Λ. The TUR in (111) is the central result
of this paper.

Note further, that in (111), we deliberately refrain from writing 〈Δstot〉 ε2 = 5 − 1/Λ
as this would somewhat mask the physics causing this result. This point will be discussed
further in the following.

4.5 Edwards–WilkinsonModel for a Constant Driving Force

To give an interpretation of the two terms in (108) and consequently in (111), we believe it
instructive to briefly calculate the precision and total entropy production for the case of the
one-dimensional Edwards–Wilkinson model modified by an additional constant non-random
driving ‘force’ v0 and subject to periodic boundary conditions. To be specific, we consider

∂t h(x, t) = ∂2x h(x, t) + v0 + η(x, t) x ∈ [0, 1], (112)

already in dimensionless form and with space-time white noise η. The stochastic partial
differential equation in (112) has the same form like the KPZ equation from (55) but with
the non-linearity replaced by v0. This ensures a NESS, such that quantities like current
and entropy production can be calculated, without the difficulties of the mode-coupling
encountered with the KPZ non-linearity. We denote (112) in the sequel with FEW for
‘forced Edwards–Wilkinson equation’. Following the same procedure as described in Sect. 3,
we find as an integral expression for the k-th Fourier coefficient of the height field in
FEW,

hk(t) = eμk t
∫ t

0
dt ′ e−μk t ′ [v0δ0,k + ηk(t

′)
]
, (113)

where again a flat initial configuration was assumed andμk = −4π2k2 as above.With (113),
we get immediately in the NESS

〈
Ψg(t)

〉 = g0v0t = Jgt, (114)

and thus
〈
Ψg(t)

〉2 = g2
0v

2
0 t2 as well as

〈(
Ψg(t)

)2〉

=
∑

k,l∈R
gk gl 〈hk(t)hl(t)〉

=
∑

k,l∈R
gk gle

(μk+μl )t
∫ t

0
dr

∫ t

0
ds e−μkr−μl s

(
v20δ0,kδ0,l + 〈ηk(r)ηl(s)〉

)

= g2
0v

2
0 t2 +

∑

k∈R
|gk |2 e2μk t − 1

2μk

= g2
0v

2
0 t2 + g2

0 t, for t � 1.

Thus,

ε2 =
〈(

Ψg(t) − 〈
Ψg(t)

〉)2〉

〈
Ψg(t)

〉2 � t

v20 t2
= 1

v20

1

t
. (115)
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As already discussed above in Sect. 3, the Fokker–Planck equation corresponding to (112)
has the stationary solution ps[h] = exp

[− ∫
dx (∂x h)2

]
and thus, with (22) and (113), the

total entropy production reads in the NESS

〈Δstot〉 = 2
∫ 1

0
dx 〈h(x, t)〉 v0 = 2 v20 t . (116)

With (115) and (116), the TUR product for (112) is given by

〈Δstot〉 ε2 = 2, (117)

i.e. the thermodynamic uncertainty relation is indeed saturated for the Edwards–Wilkinson
equation subject to a constant driving ‘force’ v0. For the sake of completeness we state the
expressions for the current, diffusivity and rate of entropy production in the non-equilibrium
steady state, namely

JFEW
g = g0v0, DFEW

g = g2
0

2
, σ FEW = 2 v20 . (118)

With the calculations for FEW, we can now give an interpretation of the two terms in (109)
and (111). The first term in the inner brackets in (109) originates from the first term of (108),
where the latter represents the action of all higher-order Fourier modes on the mode k = 0
(see (107)). To illustrate this point further, observe that, in the NESS, we get according to
(76) to (80) for the current:

Jg = 2π2g0λeff

⎛

⎝
∑

l∈R\{0}

l2

2(−μl)

⎞

⎠ = g0
λeff

2
Λ, (119)

and from the calculation above we see that it contains only the impact of Fourier modes l �= 0
on the mode k = 0, which belongs to the constant eigenfunction φ0(x) = 1. In other words,
the modes l �= 0 act like a constant external excitation, just in the same manner as v0 acts for
FEW in (114). Comparing (119) to (114), we may set

v0 = 2π2λeff

⎛

⎝
∑

l∈R\{0}

l2

2(−μl)

⎞

⎠ = λeff

2
Λ, (120)

and get Jg = g0v0 in both cases.
Following now the calculations for FEW, we would expect from (116)

〈Δstot〉 = 2v20 t = (4π2)2
λ2eff

2

⎛

⎝
∑

l∈R\{0}

l2

2(−μl)

⎞

⎠

2

t = λ2eff

2
Λ2 t, (121)

which is in fact exactly the first term in the inner brackets from (108) and (109), respectively.
Since with (120) also the expression for ε2 from (115) coincides with the first summand on
the r.h.s. of (86), it is clear that both cases result in the saturated TUR. This explains the
value 2 on the r.h.s. of (111).

Turning to the second term of (109), we see that it stems from the second term in (108). In
contrast to the first λ2eff-term in (108), the second one does not only measure the effect of the
modes on the k = 0 mode but also on all other modes k �= 0. It further features interactions
of the k and l modes among each other via mode coupling. Hence, the mode coupling seems
responsible for the larger constant on the right hand side of (111), since by neglecting the
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1164 O. Niggemann, U. Seifert

mode coupling term in (109), the thermodynamic uncertainty relation was saturated also for
the KPZ equation up to O(λ2eff). To conclude this brief discussion, we give the respective
relations of the KPZ current (80), diffusivity (85) and total entropy production rate (110) to
FEW, namely

JKPZ
g = JFEW

g + O(λ3eff),

DKPZ
g = DFEW

g + g2
0

λ2eff

64π2H
(2)
Λ + O(λ4eff),

σKPZ = σ FEW + λ2eff
3Λ2 − Λ

4
+ O(λ4eff),

(122)

with JFEW
g , DFEW

g and σ FEW from (118). We see that the additional mode coupling term in
KPZ leads to corrections in DKPZ

g and σKPZ of at least second order in λeff. For the case
of λeff → 0 the KPZ equation becomes the standard Edwards–Wilkinson equation (EW),
namely ∂t h(x, t) = ∂2x h(x, t)+ η(x, t), which possesses a genuine equilibrium steady state.
Therefore, for the standard EW we have JEW

g = 0, σEW = 0 and DEW
g = g2

0/2. From
(122) it follows that for λeff → 0, (Jg, σ, Dg)KPZ → (Jg, σ, Dg)FEW and from (118), (120)
that (Jg, σ, Dg)FEW → (Jg, σ, Dg)EW = (0, 0, g2

0/2). Hence, the non-zero expressions for
JKPZ

g and σKPZ result solely from the KPZ non-linearity. The impact of the latter on the
k = 0 Fourier mode (i.e. the spatially constant mode) results in contributions to JKPZ

g and
σKPZ that can be modeled exactly by FEW, the Edwards–Wilkinson equation driven by a
constant force v0 from (112).

5 Conclusion

Wehave proposed an analog of the TUR [1,2] in a general field-theoretic setting (see (24)) and
shown its validity for the Kardar–Parisi–Zhang equation up to second order of perturbation.
To ensure convergence of the quantities entering the thermodynamic uncertainty relation, we
had to introduce an arbitrarily large but finite cutoffΛ of the corresponding Fourier spectrum,
which restricted the considered Gaussian white-in-time noise to be only ‘almost white’ in
space. However, the cutoff was chosen large enough such as to guarantee the dominance of
the diffusive term over the non-linear term. This led us to expect our field-theoretic TUR to
hold for spatially ‘fully white’ noise as well (see the reasoning below (111)).

To circumvent the introduction of a cutoff for ensuring convergence, a possible solution
may be to induce a higher regularity by treating spatially colored noise instead of Gaussian
white noise and/or choosing a higher order diffusion operator L̂ (see e.g. [71,72]) . This is
currently under investigation.

As is obvious from (111), the field-theoretic version of the TUR is not saturated for the
KPZ equation. This is due to the mode-coupling of the fields as a consequence of the KPZ
non-linearity. To illustrate this point, we also treated the Edwards–Wilkinson equation in
Sect. 4.5, driven out of equilibrium by a constant velocity v0, see (112). By identifying v0
with the influence of higher-order Fourier modes on the mode k = 0, we may interpret the
first λ2eff-term in (108) as the contribution from the forced Edwards–Wilkinson equation, for
which the TUR is saturated (see (117)), an observation which is in accordance with findings
in [8] for finite dimensional driven diffusive systems. The second λ2eff-term in (108) is the
contribution to the entropy production made up by the interaction between Fourier modes
of arbitrary order, which is due to the mode-coupling generated by the KPZ non-linearity.
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It is this additional entropy production that leads to the TUR being not saturated. Note, that
also the first term in (108) is due to the mode-coupling, however is special in thus far that it
measures only the impact of the other modes on the zeroth k-mode and does not include a
response of the mode k = 0.

Regarding future research, an intriguing topic is the question as to whether the findings in
[8] concerning conditions for the saturation of the dissipation bound in the TUR for an over-
damped two-dimensional Langevin equation can be recovered in the present field-theoretic
setting. Furthermore, it would be of great interest to employ the developed framework to
other spatio-temporal noise systems in order to observe the resulting dissipation bounds in
the corresponding TURs. Of special interest in this context is the stochastic Burgers equation,
excited by a noise term suitable for generating turbulent response (see [59]). A comparison
of the predictions made in the present paper to numerical simulations of the KPZ equation
seems to be another intriguing task, currently under investigation. Besides numerical calcu-
lations, it would also be of great interest to test our predictions via experimental realizations
of KPZ interfaces. Lastly, the formulation of a genuine non-perturbative, analytic formalism
would also be of utmost interest.
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Appendix A: Evaluation of (81)

Using (73), the first term in (81) reads

〈
h(0)

k (t)h(0)
l (t)

〉
= Πk,l(t, t)δk,−l = e(μk+μl )t 1 − e−(μk+μl )t

μk + μl
δk,−l . (123)

Note that the case of k = 0 is treated like in (77). The second term in (81) is given by
〈
h(1)

k (t)h(1)
l (t)

〉

= (2π2)2
∑

m∈Rk\{0,k}
m(k − m)

∑

n∈Rl\{0,l}
n(l − n)

∫ t

0
dt ′ eμk (t−t ′)

∫ t

0
dr eμl (t−r)

×
〈
h(0)

m (t ′)h(0)
k−m(t ′)h(0)

n (r)h(0)
l−n(r)

〉

= −2(2π2)2
∑

m∈Rk\{0,k}
m2(k − m)(l + m)

∫ t

0
dt ′ eμk (t−t ′)

∫ t

0
dr eμl (t−r)

× Πm,m(t ′, r)Πk−m,l+m(t ′, r)δk,−l

+ (2π2)2
∑

m∈Rk\{0,k}
m(k − m)

∑

n∈Rl\{0,l}
n(l − n)

∫ t

0
dt ′ eμk (t−t ′)

∫ t

0
dr eμl (t−r)

× Πm,k−m(t ′, t ′)Πn,l−n(r , r)δ0,kδ0,l ,

(124)
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where we used Wick’s-theorem, (73) and (69). Note that the two Kronecker-deltas in the last
term of (124) can also be written as δ0,kδ0,lδk,−l , such that the whole expression is multiplied
by δk,−l . Again with Wick’s-theorem, (73) and (70) we can calculate the third and forth term
of (81) accordingly and find

〈
h(0)

k (t)h(2)
l (t)

〉

= 4(2π2)2
∑

m∈Rl\{0,l}
ml(l − m)(m − l)

∫ t

0
dt ′ eμl (t−t ′)

∫ t ′

0
dr eμm (t ′−r)

× Πk,l(t, r)Πl−m,l−m(t ′, r)δk,−l ,
〈
h(2)

k (t)h(0)
l (t)

〉

= 4(2π2)2
∑

m∈Rk\{0,k}
mk(k − m)(m − k)

∫ t

0
dt ′ eμk (t−t ′)

∫ t ′

0
dr eμm (t ′−r)

× Πk,l(t, r)Πk−m,k−m(t ′, r)δk,−l .

(125)

As can be seen from (123) to (125), all four terms in (81) contain a δk,−l and thus (81) reduces
to

〈(
Ψg(t)

)2〉 =
∑

k∈R
|gk |2

[〈
h(0)

k (t)h(0)
−k(t)

〉
+ λ2eff

(〈
h(1)

k (t)h(1)
−k(t)

〉

+
〈
h(0)

k (t)h(2)
−k(t)

〉
+
〈
h(2)

k (t)h(0)
−k(t)

〉)
+ O(λ4eff)

] (126)

The first term of (126) is readily evaluated with (123) as

〈
h(0)

k (t)h(0)
−k(t)

〉
= Πk,−k(t, t)δk,k = e2μk t − 1

2μk
=
{

t for k = 0,

− 1
2μk

for k �= 0 and t � 1.
(127)

The second term of (126) reads with (124):
〈
h(1)

k (t)h(1)
−k(t)

〉

= 2(2π2)2
∑

m∈Rk\{0,k}
m2(k − m)2

∫ t

0
dt ′ eμk (t−t ′)

∫ t

0
dr eμk (t−r)

× Πm,m(t ′, r)Πk−m,k−m(t ′, r)

+ (2π2)2
∑

m∈R\{0}
m2

∑

n∈R\{0}
n2

∫ t

0
dt ′ Πm,m(t ′, t ′)

∫ t

0
dr Πn,n(r , r)

(128)

Hence, with
〈
h(1)

k (t)
〉
from (77), the expression in (128) becomes

〈
h(1)

k (t)h(1)
−k(t)

〉

= 2(2π2)2e2μk t
∑

m∈Rk\{0,k}

m2(k − m)2

4μmμk−m

∫ t

0
dt ′

∫ t

0
dr e(μm+μk−m−μk )(t ′+r)

×
(
1 − e−2μm (t ′∧r) − e−2μk−m (t ′∧r) + e−2(μm+μk−m )(t ′∧r)

)
+
〈
h(1)

k (t)
〉2

.

(129)
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Here the choice of the minimum of (t ′ ∧ r) is arbitrary, since for (t ′ ∧ r) = r the other case
is obtained by simply interchanging r ↔ t ′ under the integral and vice versa; thus the results
for both choices are equivalent. In the following (t ′ ∧ r) = r is chosen. Hence, the integral
expression in (129) can be evaluated as

e2μk t
∫ t

0
dt ′ e(μm+μk−m−μk )t ′

∫ t ′

0
dr

×
(

e(μm+μk−m−μk )r − e(−μm+μk−m−μk )r − e(μm−μk−m−μk )r + e−(μm+μk−m+μk )r
)

�
{

− t
2μm

for k = 0
1

2μk (μm+μk−m+μk )
for k �= 0

for t � 1.

(130)

Thus, with (129) and (130), the long time behavior of
〈
h(1)

k (t)h(1)
−k(t)

〉
is given by

〈
h(1)

k (t)h(1)
−k(t)

〉

�
〈
h(1)

k (t)
〉2 + 2(2π2)2 ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
−∑

l∈R\{0} l4

8μ3
l

]
t for k = 0,

∑
l∈Rk\{0,k}

l2(k−l)2

4μlμk−l

1
2μk (μl+μk−l+μk )

for k �= 0,

(131)

where we changed m → l. To save computational effort, rewrite the last two terms of (126)
in the following way

〈
h(0)

k (t)h(2)
−k(t)

〉
+
〈
h(2)

k (t)h(0)
−k(t)

〉
= 2Re

[〈
h(0)

k (t)h(2)
k (t)

〉]
. (132)

Hence, it suffices to calculate one of the two expectation values. With (125) we see that

〈
h(0)

k (t)h(2)
k (t)

〉

= −16π4eμk t
∫ t

0
dt ′ e−μk t ′ ∑

m∈Rk\{0,k}
km2(k − m)eμk−m t ′

∫ t ′

0
dr e−μk−mr

× Πk,k(t, r)Πm,m(t ′, r),

(133)

where we substituted m → k − m and used the symmetry of Πk,l(t, t ′) from (72). Note that
for k = 0, the above expression in (133) vanishes. Thus in the following calculations k �= 0
is assumed. In this setting, (133) reads with (73)

− 16π4eμk t
∫ t

0
dt ′ e−μk t ′ ∑

l∈Rk\{0,k}
kl2(k − l)eμk−l t ′

∫ t ′

0
dr e−μk−l rΠk,k(t, r)Πl,l(t

′, r)

= −16π4
∑

l∈Rk\{0,k}

kl2(k − l)

4μkμl

1

2μk(μl + μk + μk−l)
for k �= 0 and t � 1,

(134)
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where we changed summation index m → l. Thus, with the results from (127), (131), (132)
and (134), the expectation value of (81) reads in the long-time asymptotics

〈(
Ψg(t)

)2〉 � g2
0

⎡

⎣1 − 2(2π2)2λ2eff

∑

l∈R\{0}

l4

8μ3
l

⎤

⎦ t + g2
0λ

2
eff

∑

k∈R

∣∣∣
〈
h(1)

k (t)
〉∣∣∣
2 + O(λ4eff).

(135)

Appendix B: Expectation of the Total Entropy Production

The Fokker–Planck equation for the KPZ equation from (55) reads, like in Sect. 4.4.1,

∂t p[h] = −
∫ 1

0
dx

δ

δh

[(
∂2x h + λeff

2
(∂x h)2

)
p[h] − 1

2

δ p[h]
δh

]
. (136)

Due to the conservation of probability, there is a current j[h] given by

j[h] =
(

∂2x h + λeff

2
(∂x h)2

)
p[h] − 1

2

δ p[h]
δh

=
(

∂2x h + λeff

2
(∂x h)2

)
p[h] − 1

2

δ ln p[h]
δh

p[h]

=
[(

∂2x h + λeff

2
(∂x h)2

)
− 1

2

δ ln p[h]
δh

]
p[h] (137)

≡ v[h]p[h]. (138)

Following [36], expectation values of expressions like
〈
ḣG[h]〉 are interpreted as

〈
ḣG[h]〉 = 〈v[h]G[h]〉 =

∫
D[h] v[h]G[h]p[h] (139)

⇔ 〈
ḣG[h]〉 =

∫
D[h] j[h]G[h]. (140)

Since the goal is to find an expression for the expectation value of the total entropy production
in the stationary state, Δstot, it is useful to choose p[h] as being the stationary solution ps[h]
of the one-dimensional Fokker–Planck equation, which is given by

ps[h] = exp
[−‖∂x h‖20

]
. (141)

Inserting this in (137) yields for the stationary probability current

j s[h] = λeff

2
(∂x h)2 ps[h], (142)

where it was used that
δ ps[h]

δh
= 2ps[h]∂2x h. (143)

Using the result from (140) and (142) leads to

〈
ḣG[h]〉 =

∫
D[h] j s[h]G[h] = λeff

2

∫
D[h] (∂x h)2G[h]ps[h] = λeff

2

〈
(∂x h)2G[h]〉 .

(144)
Here it is understood that 〈·〉 now denotes the expectation value with regard to the stationary
distribution ps[h].
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The total stationary entropy production Δstot is given by (see (102))

Δstot = λeff

∫ t

0
dt ′

∫ 1

0
dx ḣ(x, t ′)(∂x h(x, t ′))2. (145)

Hence its expectation value reads

〈Δstot〉 = λeff

∫ t

0
dt ′

∫ 1

0
dx

〈
ḣ(x, t ′)(∂x h(x, t ′))2

〉
, (146)

which is evaluated with the aid of (144):

〈Δstot〉 = λ2eff

2

∫ t

0
dt ′

〈∥∥∥
(
∂x h(x, t ′)

)2∥∥∥
2

0

〉
. (147)

Appendix C: Regularity Results for the one-dimensional KPZ Equation

Dealing with the one-dimensional KPZ equation allows us to make use of the equivalence
to the stochastic Burgers equation and adapt the regularity results for the latter from [53,55,
56,73,74]. In Sect. 3.1 and Sect. 3.2, we found that our operators L̂ and K̂ share the same
set of eigenfunctions, which simplifies the results obtained by the authors of [55,56] to the
following. Under the assumption that

∑

k∈N
k2ρ−2(αB

k )2 < ∞ for some ρ > 0, (148)

it is guaranteed almost surely that the mild solution u(x, t) of the one-dimensional noisy
Burgers equation u ∈ C([0, T ], H), T > 0, with H = L2([0, 1]) or even H = C([0, 1]) and
the spectral Galerkin approximation converges in H to the solution u. Utilizing the mapping
from KPZ to Burgers via u(x, t) ≡ −∂x h(x, t), with h solution to the KPZ equation, which
implies

ηB(x, t) = −∂xη
KPZ(x, t), (149)

and therefore
αB

k ∼ k αKPZ
k , (150)

we get the following result for the 1d-KPZ equation:
∑

k∈N
kχ (αKPZ

k )2 < ∞ (χ = 2ρ > 0) ⇒ h ∈ C ([0, T ], H1([0, 1])) . (151)

Here H1([0, 1]) denotes the Sobolev space of order one on [0, 1], i.e. f ∈ H1([0, 1]) ⇔
‖ f ‖L2([0,1]) < ∞ and ‖ f ′‖L2([0,1]) < ∞, where f ′ is understood as the weak derivative of
f . It holds that H1([0, 1]) ⊂ L2([0, 1]), which is what we used in Sect. 3.2.
As spatial white noise is excluded by (151), we introduced a finite cutoff Λ of the Fourier

spectrum instead of using our approximation to the KPZ solution as a spectral Galerkin
scheme and letting Λ → ∞. However, for the KPZ equation driven by spatially colored
noise satisfying (151) or even an adapted version of (151) to a higher order diffusion operator
as defined in Sect. 3.1 (see e.g. [71,72]), in future work we want to derive a TUR taking the
full Fourier spectrum into account.

We would like to conclude with the following remark. Since a couple of years, there
exists a complete existence and regularity theory for the KPZ equation driven by space-time
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white noise introduced by Hairer [75] (see also [76,77] and for further reading on the so-
called regularity structures developed in [75] see [78]). In [75] it is shown that the solutions
of the KPZ equation with mollified noise converge after a suitable renormalization to the
solution of the renormalized KPZ equation with space-time white noise, when removing the
regularization. It is due to this renormalization procedure (where a divergent quantity needs
to be subtracted) and the poor regularity of the solution, that at present it is not obvious to us
how the method developed in [75] can be of use for constructing a TUR.

Appendix D: Long-Time Behavior of 〈h〉,1stot and
〈
(h − 〈h〉)2〉

We present a more detailed reasoning for the claim made in the text that 〈h〉, Δstot,〈
(h − 〈h〉)2〉 ∼ t for t � 1 to arbitrary order in the perturbation expansion with respect
to λeff (see eqs. (78), (83) and (108)). Our argument uses the relation between the KPZ and
Burgers equation, respectively, in one spatial dimension, i.e. by setting u(x, t) = −∂x h(x, t)
the KPZ equation becomes the Burgers equation with the velocity field u(x, t) solution to the
Burgers equation excited with ηB = −∂xη

KPZ. It is known from e.g. [79] that the two-point
velocity correlation function in Fourier-space, C(q, ω), is given by

C(q, ω) = 〈u(q, ω)u(−q,−ω)〉 = a |q|3/2
ω2 + b |q|3 , (152)

where a, b denote positive constants calculated explicitly in [79] but their exact form is
irrelevant for our argument. With (152) the energy spectrum E(q) can be calculated via an
integration over ω and yields a momentum independent constant [79]. Thus, the velocity–
velocity correlation function becomes a constant, namely

〈
(u(x, t))2

〉 ∼ K , t � 1, (153)

with K essentially the kinetic energy [65,79]. We use this result to find a solution to

〈∂t h(x, t)〉 = ∂2x 〈h(x, t)〉 + λeff

2

〈
(∂x h(x, t))2

〉
, (154)

i.e. to the averaged, dimensionless KPZ equation from (55). Taking the long-time limit of
(154) and employing (153), with, again u(x, t) = −∂x h(x, t), it follows that

∂t 〈h(x, t)〉 � ∂2x 〈h(x, t)〉 + λeff

2
K , t � 1. (155)

The PDE in (155) is readily solved for 〈h(x, 0)〉 = 0 (i.e. flat initial condition) and yields

〈h(x, t)〉 ∼ K t, t � 1. (156)

Hence, it is to be expected that in the perturbation expansion

〈h(x, t)〉 =
∑

k∈R

∑

n∈N
λn
eff

〈
h(n)

k (t)
〉

e2π ikx , (157)

〈
h(n)

k (t)
〉
∼ t for t � 1 holds for all non-vanishing

〈
h(n)

k (t)
〉
. Thus, we factored out the time

t in (78) and (79). A similar argument explains the form of the total entropy production in
(108) and (109).
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For the case of the variance of h(x, t) we use the shorthand notation h̃ = h − 〈h〉, so
var[h] = 〈

(h − 〈h〉)2〉 = 〈̃
h2
〉
and, again, the velocity correlation function (152). Thus, with

u = −∂x h we get

〈
(̃h(x, t))2

〉 =
∫

dq
∫

dω q−2C(q, ω) =
∫

dq
∫

dω
a |q|−1/2

ω2 + b |q|3 . (158)

Let us now introduce a small wavenumber 0 < q0 � 1 and split up the momentum integral
according to

〈
(̃h(x, t))2

〉 =
∫

|q|>q0
dq

∫
dω

a |q|−1/2

ω2 + b |q|3 +
∫ q0

−q0
dq

∫
dω

a |q|−1/2

ω2 + b |q|3

= c1 + 4 lim
ω0→0

∫ q0

0
dq

∫ ∞

ω0

dω
a |q|−1/2

ω2 + b |q|3 ,

(159)

with c1 > 0 a constant. Using now that |q|3 → 0 in the momentum interval [0, q0], we
neglect the second term in the denominator of the integrand in the last line of (159), which
yields

〈
(̃h(x, t))2

〉 = c1 + c̃2 lim
ω0→0

√
q0

ω0
= c1 + c2 lim

t0→∞ t0, (160)

where it was used that ω0 ∼ t−1
0 and c̃2, c2 positive constants in frequency, time respectively.

Hence, in the limit of large times we get

var[h] = 〈
(̃h(x, t))2

〉 = c2 t . (161)

The finding in (161) explains the form of (83) and (84) in the text above. Finally, let us remark
that the general form in (160) is also found in the calculations in Appendix A, specifically, the
constant c1 in (160) corresponds to the contributions from modes with k �= 0 in Appendix A
and the constant c2 in (160) to the k = 0 mode, which is the only mode yielding contributions
linear in t .
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