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Abstract This work presents a contribution to the active image stabilization of optical sys-
tems, involving model development, control design, and the hardware setup. A laboratory
experiment is built, which demonstrates the vibration sensitivity of a mechanical-optical
system. In order to stabilize the undesired image motion actively, a model-based compensa-
tion of the image vibration is developed, realized and tested. Beside a linear actuator motion
system, a force sensor system and a position sensor system are introduced and analyzed. In
particular, various low-cost hardware components of the Arduino platform are used, which
support the deployment of the controller software based on Matlab-Simulink. The remain-
ing image motion is measured with a high-speed vision sensor system and the performance
of the overall system is assessed.

Keywords Multibody system · Optical lenses · Dynamics of optical systems · Control of
mechanical-optical systems · Hardware experiment

1 Introduction and modeling

Many optical instruments are sensitive with respect to mechanical vibrations and dynamic
disturbances since they have to meet strong requirements in sometimes rough environments.
For instance, such an optical system can be a lithographic objective for the exposure of
wafers, a ground-based or space-based telescope, or an optical metrology instrument. Fig-
ure 1 sketches some examples of mechanical models, whereby the elasticity of bodies can
also be taken into account, depending on the intended investigation. By means of an opti-
cal system, an object is projected to the image plane and the light passes through optical
elements like lenses or mirrors. However, during the operation time, even small mechan-
ical disturbances and displacements of the optical elements can be sufficient to produce
unacceptably aberrated, disturbed images. In order to reduce such effects and to improve
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Fig. 1 Schematic illustration of a mechanical model of a lithography objective [4] in (a), a single mounted
lens in (b) and a ground-based telescope in (c)

the overall mechanical-optical robustness, strategies like vibration isolation [1], structural
optimization [2], or active vibration compensation [3] can be considered.

In this work, methods and procedures are investigated and applied in order to design an
active image stabilization for an exemplary mechanical-optical system. Furthermore, a lab-
oratory experiment is designed, which should demonstrate the real behavior and validate the
developed models and control strategies. Another purpose of this project is to provide a test
setup for student training and laboratory education based on low-cost controller hardware,
similar to [5, 6]. Therefore, the capability and suitability of components from the Arduino
platform [7] have to be investigated in addition. As a consequence, the final demonstrator
can be used to transfer knowledge in the scope of mechanics, optics, electronics, and control.

First, the previous, initial setup of the experiment is introduced, which is followed by the
description of the new active control extension. Second, the different hardware subsystems
are arranged, tested, and explained. Third, the main control strategy of the dynamical-optical
compensation is designed, simulated, and implemented. Finally, the experimental results are
presented and assessed.

1.1 Previous test setup

In a previous work according to [2, 8], an experimental setup has been planned and built,
which demonstrates passive suppressing of optical aberrations, i.e., an image stabilization,
by means of a structural optimization changing masses and stiffnesses. The setup is roughly
derived from a lithographic objective with six projection lenses, whereby the lateral dy-
namical behavior of the six lenses, the six mountings and the joint housing is represented
by a rigid multibody system according to [9] using 13 generalized coordinates q(t). Thus,
the out-of-plane displacement of lenses within an objective due to lateral dynamical dis-
turbances is regarded, similar to Fig. 1(b). The rotational components and the longitudinal
displacements of the lenses are not considered in this experiment, since they usually have a
smaller optical impact than the lateral displacements.

The main structure of the realized setup is illustrated in Fig. 2. On the left-hand side,
the object is represented by a transparent circle with a radius of 5 mm and with a light
source behind, so that this light point is propagating through the glass lenses onto the image
plane on the right-hand side. There, a paper screen is used to make the image of the light
point visible, with a radius of approximately 2.5 mm. The image motion a(t) is caused
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Fig. 2 Principle of the measurement setup: the coupled lenses with peripheral measurement devices, accord-
ing to [2]

by the lateral oscillations of the lenses in one direction due to a hammer impulse, which
imitates a disturbance. In the case of small motion, the equations of motion are linear as is
the relationship between the displacement of the lenses and the resulting optical aberrations.
This relationship can be ascertained by experiment or simulation and one can express it
by the kinematic-optical sensitivities collected in the matrix Ca , as proposed in [10]. The
image displacement is here the only regarded optical aberration, hence, Ca is a vector and
the system output is

a(t) = Ca · q(t). (1)

In order to simplify the construction, the six lenses are supported with k-indexed pendulae,
which are coupled via springs to intermediate masses and the housing. Hence, the mechani-
cal system has 13 rotational degrees of freedom (DOF). Since the springs with the different
stiffnesses κLk and κMk are exchangeable, and the moments of inertia Ik are modifiable, it
is possible to create different test systems, e.g., with low frequencies and high amplitudes.
Anyway, the equations of motion result with the structure

M(Ik) · q̈(t) + D · q̇(t) + K(κLk, κMk) · q(t) = B̄uF(t) (2)

with the inertia-depending mass matrix M , the damping matrix D, the spring-depending
stiffness matrix K , and the mechanical input matrix B̄ . The related force of the impact
hammer, which acts as the system input uF(t), is measured as during an usual experimental
modal analysis. To identify the image motion resulting as a system output, a high speed
camera with a Camera Link interface is used in combination with a frame grabber card. The
latter is connected to a computer and triggered via the modal analyzer. After the recording
of the frames, the image processing for the motion identification of the light point is done.
With the knowledge of the force input and image motion output of the mechanical-optical
system, the dynamical-optical transfer function can be experimentally identified.

Since the dynamical behavior of the mechanical system can be adjusted via the exchange-
able springs and modifiable moments of inertia, an optimization can be performed with the
18 design parameters given by κLk , κMk and Ik , see [8].
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Fig. 3 The realization of a single mass–spring component of the experimental setup in (a), and a photograph
of the initial setup for the passive suppression of the optical aberrations in (b)

The actual realization of the setup with horizontal lens motions is shown in Fig. 3. De-
spite of the pendulum design and the use of translational springs according to Fig. 3(a),
the mechanical system can be considered to behave linear for small excitations and dis-
placements, as investigated in [11]. Most of the construction parts shown in Fig. 3(b) are
designed by means of computer-aided design, realized with acrylic glass and manufactured
with a laser cutting machine. This initial test setup was used to demonstrate the influence of
a structural optimization based on a dynamical-optical simulation model [2, 8], but will be
extended as follows.

1.2 Active control extension

The purpose of the extended setup is, to realize and demonstrate an actively controlled image
stabilization experiment based on a dynamical-optical simulation model, an actuator, and
different sensors. Therefore in particular, the 5th lens according to Fig. 4 is mounted on
a linear actuator stage in order to compensate the optical aberrations actively. Since this
lens has a high kinematic-optical sensitivity, the correcting motion is small and fast [11].
Furthermore, the position of the 4th lens is measured to allow a model-based estimation of
the light point motion. In the chosen stiffness configuration, this lens is strongly coupled
to the other bodies, so its motion is quite large and suitable to sense [12]. Additionally, the
hammer impact is detected and both signals are later used as inputs for the Kalman–Bucy
filter.

At first, the changed mechanical multibody system without the 5th lens and its interme-
diate mass is derived and identified in the form of the equations of motion (2) with 11 DOF.
For the stiffnesses and moments of inertia the initial design parameters according to [8] are
chosen. Figure 5 compares the image motion calculated by the simulation model with the
results of the vision sensor system. For this, the Rayleigh damping parameters α = 0.03 s−1

and β = 3 · 10−4 s are estimated, which leads to the damping matrix D = αM + βK . Fur-
thermore, the controller is deactivated and a hammer shock is applied as later studied in
Fig. 11. The results in Fig. 5 indicate that the simulation model meets the real system behav-
ior quite well, especially shortly after the impact and in terms of the frequencies. However,
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Fig. 4 Principle of the extended setup. It is partly based on the previous experiment but contains an active
compensating controller, which steers a lens actuator

Fig. 5 Comparison of the simulated and measured image motion due to a hammer shock for the model with
11 DOF

the simulation-based result diverges after the first few seconds, since the linear model of the
free-running pendulae is only a simplified approximation of the real behavior, e.g., since the
bearing friction is neglected.

According to Fig. 4 and in contrast to the previous setup, the control setup looks quite
complicated, although the image stabilization strategy seems to be straightforward. Actually,
the force-induced image error, denoted as displacement aF, has to be negatively superposed
with the image error aM caused by the shift of the compensation lens. In order to extinguish
the total imaging error a according to Eq. (1), it yields

a(t) = aF(t) + aM(t)
!= 0. (3)

With the kinematic-optical sensitivity sL5 of this compensation lens, obtained by ex-
periments [8] and simulations [11], the required position of the related actuator results
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in

yM,target(t) = −aF(t)

sL5
. (4)

This finding can be used to estimate the requirements for the actuator system, as investigated
in [11]. The required travel range is approximately 6 mm and the potential velocity should
be at least 100 mm/s.

However, an actuator and vision sensor behave time-delayed due to the subordinate motor
control, the intrinsic latency of the camera, the image acquisition, and the expensive image
processing. According to empirical investigations of the overall dynamical system, the vi-
sion sensor system requires a maximum sample time of 5 ms and real-time capability in
order to provide a stabilizing feedback. Therefore, an appropriate industrial machine vision
system with a high performance processor should be used, as explained in [13]. By means
of the low-cost vision system Basler ace-acA800-200gm used in this work for educational
purpose, it is not possible to fulfill the real-time and sample time requirements. As a result,
the vision sensing system is only used for the offline assessment of the image stabilization
task. Nevertheless, in order to realize the dynamical-optical control based on feedback, the
following approach is chosen.

A real-time capable control unit system Arduino Due with a sample time of 2–8 ms is
used in combination with a position sensor at the 4th lens. The related model-based con-
troller takes the signal uF of the disturbance and the signal yL4 of the position sensor sub-
system as inputs, estimates the expected image aberration by means of a state observer and
commands the actuator subsystem with the output signal uM accordingly. The corresponding
subsystems are indicated with labeled boxes in Fig. 4.

2 Arrangement of the hardware systems

The hardware setup of the final system is shown in Fig. 6 and discussed within this section.
At the lower left, the linear actuator stage is illustrated, which mounts the compensation
lens. This motor is driven and positioned by the related motor controller. It steers the stage
according to a given analog input, which represents the commanded trajectory given from
the main control unit system. The latter is realized by means of the Arduino Due. In order
to provide a lens position feedback for the dynamical-optical control, a Hall-effect sensor is
utilized, which is monitored by an Arduino Uno. For the transmission of the position data
to the Arduino Due, a digital–analog converter is used, which provides the information by
means of an analog signal.

At the upper left, the devices for sensing the force are depicted. Since the modal ham-
mer has a force sensor included, which is based on the integrated circuit piezoelectric (ICP)
technology, it needs to be supplied by an ICP conditioner. This device supplies the sensor
and further amplifies the small force signal to a recognizable analog signal. In order to pre-
vent the occurrence of high voltages, a protection shield is interposed and in addition, a
comparator shield is used to trigger the feedforward control within the Arduino Due. During
the deployment of the software on the microcontrollers, they have to be connected to the
notebook. Also for the configuration of the motor controller, it must be plugged to the note-
book. Finally, for offline verification purposes the Basler GigE camera can be connected to
the notebook, which further can perform an image processing. As a consequence, the note-
book is only used for the post-processing of the camera images and for the uploading of the
controller software.
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Fig. 6 Overview of the hardware realization of the dynamical-optical control: the main devices and the
signal flows for the communications. In addition, the most important analog signals uF, yL4, uM, and yM are
highlighted, which can be monitored with an oscilloscope

2.1 Lens actuator system

The actuator system is realized with the V-528.1 PIMag Linear Stage [14] and the related
C-413.20A PIMag Motion Controller [15]. This motor meets the requirements formulated in
Sect. 1.2, since it has suitable dynamical properties like a nominal force of 2.3 N, a maximal
velocity of 250 mm/s and a travel range of 20 mm at a high precision. The compensation
lens is mounted onto the motor stage by means of a stiff and lightweight construction, as
shown in Fig. 12. It consists of acrylic glass and aligns the 5th lens with the other lenses
on the optical axis for the initial position yM = 0 mm. In order to power, to position, and
to move the stage, an appropriate motor controller has to be used. In particular, the chosen
type of device can also handle analog inputs and can report information by means of analog
outputs. Thus, it can control the stage position according to a commanded position uM and
the actual value yM of the position encoder can be monitored.

For the configuration of the related parameters as well as for basic tests, the motion con-
troller can be connected to a computer via USB. The supplemented PIMikroMove software
allows not only to adjust the trajectory tracking control based on a PID cascade, but also to
change the filter settings. On the one hand, this can reduce the noise of the incoming signal,
and, on the other hand, it can introduce an undesirable phase shift causing a time lag. Thanks
to a dynamic link library, which is also provided by the manufacturer, the configuration and
quasi-static actuator position can be adjusted using Matlab or LabView.

Furthermore, the integrated Profile Generator is enabled by default, which plans a
smooth trajectory according to the given input signal. However, for a fast response behavior
this should be deactivated, since it results in a significant delay between the analog input
signal of commanded position and the actual position of the stage. As a result, the trajectory
tracking control is mainly determined by the servo PID-control parameters and low-pass
filter settings, which are tuned empirically.

Next, the behavior of the closed-loop lens actuator system is identified for further simu-
lations. In order to analyze the noisy analog signals recorded by an oscilloscope, a 5th-order
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Fig. 7 Comparison of the step
response of the measured and the
identified system

Fig. 8 Pole–zero map of the
identified system

Butterworth filter with a cutoff frequency of 100 Hz is applied. The resulting data is used
to estimate a simplified closed-loop transfer function of the actuator system by means the
instrumental variable (IV) method [16]. This method is implemented in the tfest function
of the System Identification Toolbox in Matlab.

The step response of the estimated transfer function

GM,est(s) = −0.04976s3 + 87.1s2 − 5.239 · 104s + 2.161 · 107

s3 + 490s2 + 1.502 · 105s + 2.142 · 107
(5)

with rounded constants is illustrated in Fig. 7 in comparison to the measurement yM. It is
obvious, that the main behavior is well approximated, despite of the rough estimation with
only three poles and three zeros, as represented in Fig. 8. The initial direction of the simu-
lated step response followed by a direction reversal is due to the positive zeros of the transfer
function [17]. Since the real lens actuator system in the closed-loop mode behaves actually
nonlinear, the estimated step response is only representative for steps of around 1 mm, as
regarded. In addition, higher steps are investigated during the system identification process.
However, it turns out during the later dynamical-optical control, that the motor behavior
is quite well represented by means of the considered transfer function scaled by a factor
of 0.97, as plotted in Fig. 9. Broadly speaking, the time difference between the signals uM(t)

and yM(t) for the target travel profile is about 8 ms.
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Fig. 9 Measured response during the hammer impulse of the closed-loop lens actuator system in comparison
to the response simulated with the identified transfer function

Fig. 10 Mounted modal hammer with integrated piezoelectric force sensor (a) and the related ICP condi-
tioner (b)

2.2 Force sensor system

In order to excite the mechanical system with a detectable force, a modal hammer is uti-
lized. It is installed in a pendulum mechanism according to Fig. 10(a) for the generation
of a reproducible impulse. The related ICP conditioner according to [18] is illustrated in
Fig. 10(b). It not only powers the corresponding force sensor at the hammer tip, but it also
provides a signal proportional to the force and a further amplification can be applied, e.g.,
by a factor of 100. However, if the hammer shock is accidentally strong, too strong voltages
can cause damage at the sensitive microcontroller input. In order to limit the voltage signal,
a protection shield based on a Zener diode can be realized.
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Fig. 11 The measured hammer
force Fh is plotted against time
during an impulse excitation. In
addition, the approximated
function Fh,approx is shown and
Fh,eq�t indicates the area of an
equivalent force impact,
estimated by means of the energy
equilibrium

Since the sensor sensitivity in unit mV/N is specified by the manufacturer, the actual
force distribution Fh(t) can be translated by means of the measured voltage, as shown in
Fig. 11. In addition, the force distribution can be approximated by the analytical function

Fh,approx(t) = p3

(
t

p1

)(p2−1)

e
−( t

p1
)p2

(6)

with the parameters p1 = 0.0032 s, p2 = 2.065, and p3 = 48.55 N. This simplifies the nu-
merical simulation and prevents the use of a lookup-table.

The magnitude of excitation does not change due to the determined mechanism. There-
fore, the computational effort for the later used control unit can be reduced, since the change
of momentum can also be replaced by a constant equivalent force of 19 N acting for a sam-
ple time of �t = 4 ms, which is also indicated in Fig. 11. Consequently, the control unit
only needs to get a trigger signal immediately when the hammer is hitting the main body.
Therefore, one can use a comparator circuit consisting of an operation amplifier and several
resistors [19].

2.3 Position sensor system

A position sensor is utilized to observe the behavior of the mechanical system and to es-
timate the image displacement by means of a Kalman–Bucy filter. Therefore, the low-cost
AS5306 magnetic incremental linear position sensor according to [20], which is based on
the Hall-effect, is installed at the 4th pendulum, see [21]. In combination with the Magnetic
Multipole Strip MS12-15, described in [22] and shown in Figs. 12(a) and 12(b), a wide range
of displacements can be detected. Each pole of the corresponding magnet strip has a length
of 1.2 mm, and since they are next to each other, the vertical component of the magnetic
field Bpk is changing with respect to the axial location. The considered Hall-effect sensor
transforms this change to a digital signal with four connectors, two for the power supply and
the other two provide a quadrature incremental output. This output consists of the quadrature
signal A and the 90◦-shifted signal B , which further allows to identify the travel direction.
Figure 12(c) indicates an exemplary measurement nearby a pole pair.

Thanks to an included interpolation circuit, the length of a pole pair is divided into 160
positions and it is further decoded into 40 quadrature pulses, see also [20]. As a result, the
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Fig. 12 Illustrations of the operating principles of the Hall-effect sensor in (a), (b), and (c). A photograph of
the setup during the validation of the sensor by means of the firmly connected actuator is presented in (d)

sensor resolution yields approximately 15 µm. The magnetic strip is slightly bended and
glued to the bottom of the 4th pendulum. Furthermore, the Hall-effect sensor is fixed to the
ground, as shown in Fig. 12(d). Hence, the constant gap between the magnet and the chip of
about 0.5 mm can be ensured.

In order to obtain the actual measured position, an Arduino Uno microcontroller is used,
which runs an interrupt-based quadrature decoding algorithm. Due to a production-related
deviation of the pole length and the slight bending of the magnetic strip, the default step
width of 15 µm of the sensor leads to inaccurate results. Using the linear actuator system,
the accuracy is measured and the step width is empirically adjusted to 13.6 µm.

In order to transfer the lens position in a range of [−8, 8] mm to the control unit, an
external 10 bit digital–analog converter (DAC) is utilized. It is connected via a serial pe-
ripheral interface (SPI) to the Arduino Uno and is realized with a Microchip Technology
MCP4911 according to [23]. The analog output is determined in the range of [0, 3.3] V,
which is suitable for the analog input of the Arduino Due.

2.4 Control unit system

The main control task is performed by the Arduino Due board. It not only provides multi-
ple analog inputs but also two analog outputs, all of them with 12 bit resolution. With the
clock speed of 84 MHz and flash memory of 512 KB, it is a powerful Arduino board that is
compatible with the Simulink Support Package for Arduino Hardware, see also [24]. Thus,
a control algorithm can be graphically developed by means of Simulink. As a result, it is
well suited to visualize the structure of a control strategy and to demonstrate the change
of parameters, for instance, during a student training in the laboratory. Based on the de-
signed model, the Simulink Support Package is generating C-code, performs a compilation
appropriately to the processor, and deploys the result to the USB-connected board. It is even
possible to integrate custom Arduino libraries in Simulink via the S-Function Block Builder,
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Fig. 13 The final hardware box containing the Arduino microcontrollers and the additional boards for the
signal processing

as explained in [25]. The minimal value of the constant sample time depends on the expenses
of the algorithm and it is limited by the performance of the microcontroller. For instance, if
the model size is huge and the numerical integration cannot be performed within the deter-
mined sample time, it is automatically increased by the microcontroller. Hence, one should
check the actual sample time, e.g., by means of a periodic step signal at a digital output.

The final hardware box is pictured in Fig. 13, which contains not only the control unit
board, but also the introduced shields and devices of the other subsystems. Furthermore
a switch, a button, a rotary potentiometer and a display are installed for the activation of
the controller, the reset of the systems, the adjustment of the measurement magnitude and
information about the current control algorithm.

2.5 Vision sensor system

Next, the vision sensor system is described. It utilizes a Basler ace-acA800-200gm camera
according to [26] in combination with a FL-CC1614A-2M lens with a focal length of 16 mm.
The camera is connected to a common notebook via Ethernet. On the one hand, it can be
powered over Ethernet (PoE), whereby a special Ethernet port has to be available. On the
other hand, a separate power supply can be used. At the full resolution of 800 × 600 pixel,
the maximum rate of monochrome images is 200 frames/s. This image acquisition is tested
by means of the supplemented Pylon Viewer software and in combination with the Pylon
GigEVision Driver, see also [27].

This low-cost vision sensor system is only intended for the offline assessment of the
dynamical-optical control. Only if it were possible to acquire and process one image within
5 ms, it would be feasible to use the vision feedback directly for the control. Another issue is
to communicate the detected position feedback within this time step to the control unit sys-
tem which commands the actuator. In order to meet such a requirement, the regarded camera
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should be operated in combination with a high-performance embedded system, which has
to be real-time capable [13] or an FPGA based system.

The horizontal light point motion of about ±4 mm can be captured with the full width of
the sensor. The image area of interest (AOI) is further adjusted to 800 × 200 pixel. For the
vision measurement, the single frames are recorded and stored in the video container format
AVI. Afterwards, an image processing can be performed in order to obtain the motion of
the light point. The calibration of the vision sensor system is performed in order to get the
relation between the measured position in pixel and the actual position in mm. Fortunately,
the kinematic-optical sensitivities are accurately known. Thus, the 5th lens can be displaced
by means of the actuator and the actual image position can be estimated with a ≈ sL4yM.

3 Development of the control strategy

Beside the fundamentals of the related theory and the controller design, the prepared simu-
lation model and the tuning of the controller are described within this section. Finally, the
implementation on the hardware is discussed.

3.1 Fundamentals

It is the main computational task of the control unit to reconstructed the motion of the light
point with the help of a state observer. For this purpose, a static Kalman filter according
to [28] is used, which is also called Kalman–Bucy filter or linear quadratic estimator (LQE).
It is basically an observer, which optimally estimates unknown states by means of noisy
measurements and an approximated dynamical system model. On the one hand, the error
of the measurements are described as the observation noise v(t), and, on the other hand,
the approximation errors of the model are represented by the process noise w(t). For the
derivation of the method it is assumed, that both types can be represented by white Gaussian
noise. Hence, for the covariance and expectation value of the stochastic noises, they can be
considered at two arbitrary time instants t1 and t2. According to [29], it yields

cov
{
w(t1),w(t2)

} = E
{
w(t1) · wᵀ(t2)

} = Q δ(t1 − t2) , (7)

cov
{
v(t1),v(t2)

} = E
{
v(t1) · vᵀ(t2)

} = R δ(t1 − t2) (8)

with the Dirac δ-function. The matrices Q and R represent the constant power spectral den-
sity matrices of the process noise w(t) and the observation noise v(t), i.e., they characterize
the inaccuracies of the model states and of the measurements. Since the inaccuracies are
commonly not known, they are chosen and adjusted as weighted matrices for the regarded
application [29]. The linear state-space model can be written as

ẋ(t) = A · x(t) + B · u(t) + G · w(t), (9)

y(t) = C · x(t) + v(t) (10)

with the system matrix A, the input matrix B , the noise input matrix G, and the output
matrix C. In order to solve the estimation problem optimally, an estimator whose output x̂(t)

converges to the actual state x(t) has to be designed. Therefore, the observer dynamics is
formulated as

˙̂x(t) = A · x̂(t) + B · u(t) + Lopt ·
(
y(t) − ŷ(t)

)
(11)
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Fig. 14 Block diagram of the control strategy, which is mainly based on a Kalman–Bucy filter, a future
integration and a feed forward block. The blocks representing the real mechanical-optical system and the real
lens actuator are indicated by mean of the adjacent pictures

with the constant observer gain matrix Lopt. This matrix affects the error-correcting portion
and has to be calculated by means of the Riccati equation, see [29].

The filter yields the exact conditional probability estimate in the special case that the
errors are normally distributed and zero-mean. This cannot be proven in most cases, but
the assumption of Gaussian noise and the resultant Kalman–Bucy filter usually lead to a
reasonable performance [29].

3.2 Controller design

The actual design of the control strategy is shown in Fig. 14. The main structure is not only
based on the Kalman–Bucy Filter (KF) block, but also on a future integration (FI) block and
a feed forward (FF) control.

First, the system equations of the coupled lenses in analogy to Eqs. (2) and (1) can be
formulated in the state-space representation

⎡
⎣q̇

q̈

⎤
⎦

︸︷︷︸
ẋ

=
⎡
⎣ 0 I

−M−1 · K −M−1 · D

⎤
⎦

︸ ︷︷ ︸
A

·
⎡
⎣q

q̇

⎤
⎦

︸︷︷︸
x

+
⎡
⎣ 0

M−1 · B̄

⎤
⎦

︸ ︷︷ ︸
b

uF. (12)

Since the complete lens system is mechanically coupled, the observability condition is sat-
isfied for the measurement of a single and arbitrary state. The motion yL4 of the 4th lens due
to the excitation uF has a significant influence on the image aberration, so it is chosen for
the position measurement, as explained in Sect. 2.3. Hence, the KF according to Eq. (11)
results in the state space representation with

˙̂x = (A − Lopt · C)︸ ︷︷ ︸
AKF

·x̂ + [
B Lopt

]
︸ ︷︷ ︸

BKF

·
[

uF

yL4

]
︸ ︷︷ ︸

u

. (13)
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This differential equation can be solved by means of a numerical integration. Furthermore,
the image aberration due to the force excitation can be approximately ascertained with

âF(t) = Coptic · x̂(t) , (14)

whereby Coptic contains the kinematical-optical sensitivities with respect to the mechanical
DOF of the related state space, specified in [10].

Second, the design is extended by the FI block, as indicated in Fig. 14. It should estimate
the system behavior of the future time step x̂k+1 by means of the discrete model equations

x̂k+1 = eAKF Td︸ ︷︷ ︸
AKF,d

·x̂k + A−1
KF · (eAKF Td − I

) · BKF︸ ︷︷ ︸
BKF,d

·uk (15)

as derived in [30]. As a result, the signal latency due to the position measurement and lens
actuator system can be reduced by the use of the future aberration âF,k+1, which is expected
after the next sampling period Td. In order to estimate even another step further, one could
neglect the change of the input with the assumption uk+1 ≈ uk . This is only valid if the
sample time is relatively small compared to the dynamics of the input signal. Hence, it
would yield

x̂k+2 ≈ A2
KF,d · x̂k + (AKF,d + I ) · BKF,d · uk. (16)

Third, the design of the FF control is discussed. Fortunately, the transfer function GM,est(s)

of the lens actuator system is identified according to Fig. 7. Hence, the performance of the
trajectory tracking control can be improved by means of a preceding system containing the
inverse behavior. As a consequence, the original zeros become the new poles, and vice versa.
However, they are interchanged to the right-hand side of the pole-zero map and, therefore,
an unstable filter would result. In order to solve this issue, an approximated filter based on
an all-pass [31] can be designed with

G−1
M,est(s) ≈ (−1)npoles gain

{
GM,est(s)

} poles{GM,est(s)}
−zeros{GM,est(s)} . (17)

The number of poles is denoted with npoles and the gain of the original transfer function has
also to be taken into account.

3.3 Simulation and tuning

In order to apply and investigate the control strategy of Fig. 14, it is implemented in
Simulink. The actuator and pendulae systems are represented by the use of mathematical
models. Furthermore, the observer gain matrix Lopt within the KF according to Eq. (13) has
to be computed. Thereby, the noise input matrix is determined as an identity matrix G = I ,
i.e., all states are considered to have independent process noise w(t). In addition, the weight-
ing matrices Q and R must be chosen, which characterize the model and measurement in-
accuracies. The guess of the latter is based on the performance of the position sensor system
according to Sect. 2.3 and is further explained in [10]. As a result, the regarded matrix yields

R = cov
{
yL4(t1), yL4(t2)

} = σ 2
v ≈ 1 · 10−9 m2 . (18)

In the confidence that the measurement is quite accurate compared to the just roughly ap-
proximated model, the inaccuracy of the later should be higher penalized, which means
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Fig. 15 Simulation results aF(t) of the designed Kalman–Bucy filter in comparison to the vision measure-
ment

‖Q‖ � ‖R‖. This gives more weight to the measurement and the estimation accuracy than
to the model accuracy. The final matrix Q = diag{5 · 10−8}22×22 is determined by means of
a parameter tuning study in [12].

The corresponding simulation results of the reconstructed light point position based on
the yL4(t)-measurement are shown within the first three seconds in Fig. 15. Thereby, the KF
is simulated in combination with, and without the measured excitation uF(t). In addition,
the measurement of the vision sensor and the response of the coupled lens system according
to Eq. (12) are presented. As expected, the KF without the input uF initially differs from
the measurement and from the other curves, since the hammer excitation is thereby not
considered. But already after 0.5 s, the actual light point position is quite well estimated by
the KF, no matter if with, or without the excitation knowledge. One can also recognize, that
the estimation without the KF drifts away from the measurement after a while.

Furthermore, the target motor position ŷM,target, which is based on the estimated light
point motion according to Eq. (4) can be calculated, as illustrated in Fig. 16. If this signal
is directly commanded to the motor, the actual position yM,actual due to the delayed motor
behavior occurs. However, according to the controller design in Sect. 3.2, the FI and FF can
provide a signal uM,FF+FI with a future guess and a considered motor behavior. As a result,
the simulated motor response yM,FF+FI perfectly meets the target position, so it is expected,
that the light point motion can be compensated quite well.

If one superposes this motor-generated light point motion with the aberration measured
by the camera, the remaining error can be assessed. It is depicted in Fig. 17 and is mainly
caused by the estimation error of the KF. Even a time shift of +2 ms or −2 ms between the
two signals cannot improve the resulting behavior. This indicates, that it is not possible to
compensate the motion of light point completely within this experiment. Anyway, the mean
value and standard deviation of the measured impulse response is at least reduced by a factor
of almost 4, according to this prediction.

For this simulations, a constant sample time of Td = 2 ms and the ode3-solver according
to the Bogacki–Shampine method [32] is used, in order to perform the FF+FI control in
correspondence to Eqs. (17) and (16).
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Fig. 16 Simulation results of the commanded and expected motor motions, which are based on the
Kalman–Bucy filter with uF, as well as the Future Integration and Feed Forward control

Fig. 17 Remaining error based on simulation results, which is expected for the designed dynamical-optical
compensation. During this investigation, the Kalman–Bucy filter in combination with the known input uF is
used. (Color figure online.)

4 Experimental investigation

Now, the developed algorithm has to be implemented on the real-time capable control unit.
As soon as this is done, the improvement of the optical compensation due to the realized
control can be assessed.

4.1 Deployment on hardware

Since the control unit is based on the Arduino Due, it is actually only necessary to ex-
tend the developed Simulink model by means of the specific Arduino blocks. Then, one
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can automatically generate the code for the microcontroller and deploy it on the hard-
ware.

However, due to the limited performance of the Arduino Due, it is not possible to run the
complete FF+FI control at the sample time of Ts = 2 ms and with the chosen ode3-solver,
as simulated in Sect. 3.3. Unfortunately, there is a conflict between the FF control and FI
method. On the one hand, the two-step FI with 22 states is computationally expensive so that
the sample time has to be increased, and, on the other hand, the numerical integration of the
all-pass based FF control becomes unstable for an enlarged time step. Despite of the usage
of solvers like the ode2 or the ode1 with lower computational effort, this issue cannot be
resolved. As a result, the control strategies are separated, so that either the

• FF model with uF and the ode3-solver at Ts = 2 ms, or the
• FI model without uF and the ode3-solver at Ts = 8 ms

is running on the hardware. Further deployments with a varied sample time and different
solver types are also tested, but are not presented in this work. The Arduino Mega 2560,
Arduino Uno and Arduino Leonardo [7] can also not stably realize the designed FF+FI
control since they are not powerful enough.

Anyway, the Simulink model of the pure FF model, without the FI part, is realized. The
sensor signals can be received by means of a related analog input block and the signal for the
motor navigation can be transferred with an analog output block. The digital inputs are used
for the force detection and the realization of a switch. For the monitoring of the real-time
capability, an pulse is reported via a digital output. Furthermore, the analog signals have to
be scaled to their physical units, in order to match the model equations based on SI-units.

The final FI model looks quite similar. It includes the discrete model equations instead
of the FF and in particular, it does not take the detected force uF into account. The latter is
neglected due to the fact, that the KF estimation with, and without the consideration of uF is
quite similar shortly after the force excitation. Besides, the force peak takes only 4 ms and
the reliable detection by means of the controller with a fixed sample time of 8 ms is quite
tough.

4.2 Measurement results

The remaining optical aberration a(t), which is represented by the light point displacement,
is shown in Fig. 18 for both, the FF model and the FI model. In order to clarify the effect
of the control, the uncontrolled impulse response aF (t) is additionally plotted. Obviously,
the magnitudes of the motion is sufficiently reduced for both control concepts by a factor of
approximately 4. The FF model demonstrates its advantage by the fast reaction directly after
the initial force peak and keeps a remarkable compensation behavior. Since the force peak is
not considered in the FI model, it has a worse performance at the beginning. But after only
one second, it performs at least as good as the other model.

Figure 19 visualizes the peak to peak values and the standard deviation of the light point
motion in percentage. The latter is computed for the time range t > 1 s, so that the initial
behavior is neglected. It is obvious that the FF model reduces both values to about 30%,
whereas the peak to peak value during the FI model results at 54% because of the poor
behavior at the beginning. The pleasant surprise is the reduction of the standard deviation
down to 17% within the FI model for t > 1 s. Thus, the choice of the controller model
depends on whether an improved behavior should be present directly after the excitation or
for later times.
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Fig. 18 Plot of the remaining error due to controlled Feed Forward and Forward Integration models in
comparison to the uncontrolled motion of the light point

Fig. 19 The peak to peak values
of the light point vibration are
illustrated in percentage. In
addition, the standard deviation
for the time range t > 1 s is
calculated. The values are not
only evaluated for the Feed
Forward model, but also for the
Forward Integration model

5 Conclusions

The successful realization and methodical development of an active image stabilization sys-
tem was presented in this work. On the one hand, the built laboratory experiment demon-
strates the vibration sensitivity of a mechanical-optical system, and, on the other hand, the
image vibration was reduced by means of the model-based compensation control.

After the introduction and modeling of the test setup, the active control strategy was
explained. Furthermore, the related hardware components and subsystems were arranged
and investigated. The development of the control strategy was performed by means of sim-
ulations and it is mainly based on a Kalman–Bucy filter. During the deployment of the
designed model onto the real-time capable control unit based on components of the Arduino
platform, some limitations regarding the sample time became clear. However, the use of the
corresponding low-cost controller hardware also leaded to advantages with respect to the
convenient development and code-generation in Simulink.

Finally, two different control models for the latency-included system were deployed and
tested. The first is based on a feed forward control and the second involves a discrete future
integration step. The remaining image motion was measured with a high-speed vision sensor
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system and a significant reduction of the image vibration was proven. In some cases it was
decreased down to 17% of the initial error.

In further studies, the experiment can be extended with additional sensors and actuators,
in order to observe and control the system behavior more precisely. By the use of a more
powerful microprocessor, e.g., one of the future Arduino versions, or the utilization of a
single-board computer, like the Raspberry Pi, the control unit could be capable to run en-
hanced control strategies, which can further improve the compensation performance. As an
alternative, one might move the more complex calculations, like the time integration, on a
Raspberry Pi, and use the Arduino mostly for the simple tasks of handling the analog inputs
and outputs.
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