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Abstract: The COVID-19 pandemic puts significant stress on the viral testing capabilities of many
countries. Rapid point-of-care (PoC) antigen tests are valuable tools but implementing frequent
large scale testing is costly. We have developed an inexpensive device for pooling swabs, extracting
specimens, and detecting viral antigens with a commercial lateral flow test for the nucleocapsid
protein of SARS-CoV-2 as antigen. The holder of the device can be produced locally through 3D
printing. The extraction and the elution can be performed with the entire set-up encapsulated in a
transparent bag, minimizing the risk of infection for the operator. With 0.35 mL extraction buffer and
six swabs, including a positive control swab, 43 ± 6% (n = 8) of the signal for an individual extraction
of a positive control standard was obtained. Image analysis still showed a signal-to-noise ratio of
approximately 2:1 at 32-fold dilution of the extract from a single positive control swab. The relative
signal from the test line versus the control line was found to scale linearly upon dilution (R2 = 0.98),
indicating that other pooling regimes are conceivable. A pilot project involving 14 participants and
18 pooled tests in a laboratory course at our university did not give any false positives, and an
individual case study confirmed the ability to detect a SARS-CoV-2 infection with five-fold or six-fold
pooling, including one swab from a PCR-confirmed COVID patient. These findings suggest that
pooling can make frequent testing more affordable for schools, universities, and similar institutions,
without decreasing sensitivity to an unacceptable level.
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1. Introduction

Identifying asymptomatic spreaders of viral infections is an important task in a pan-
demic. This is particularly true for COVID-19, a viral disease with many ‘silent spreaders’
that is proving difficult to control within a population [1,2]. Frequent testing of a large
portion of the population is expected to reduce the spread of the disease, because spreading
events can be avoided. Monitoring is most effective when testing is performed frequently,
and when an approach is employed that provides results quickly after collecting the spec-
imens, even if the method is less sensitive than RT-PCR [3]. Lateral flow assays (LFAs)
that detect a viral antigen are among the rapid tests that are attractive in this context [4].
They produce results within 15–30 min, without the need for a laboratory, and can show
high specificity [5]. Several studies have validated lateral flow rapid antigen tests in the
current pandemic, focusing on the comparison between different test systems, validation
in non-clinical settings, or correlation with infectivity in vitro [6–10].

Even though lateral flow antigen tests can be mass-produced, the cost of mass testing
individuals on a regular basis can become prohibitive, even for developed countries [2,11].
Pooling of samples that are then analyzed in a single procedure is known to lower the cost
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of testing in scenarios with low incidence [12]. Further, pooled testing reduces the effort for
participants, making it easier to monitor over extended periods of time. Pooling has been
reported for PCR tests detecting SARS-CoV-2 [13–16]. A recent report from a company
suggests that pooled samples can successfully be analyzed by lateral flow point of care
(PoC) test cassettes [17], but pooling has not become an established practice for rapid
antigen tests. One reason for this may be the need for biosafety measures and laboratory
equipment to perform the pooling steps, which counterbalances the ease of use for LFAs
at the point of need. Such complications may be overcome by a device suitable for the
pooling, extraction and analysis of specimens. Here we report such a device, together with
results from pooling experiments in a laboratory setting, a pilot project in a university
course, and a case study involving swabs from a PCR-confirmed COVID-19 patient.

2. Materials and Methods

Components of the Panbio™ COVID-19 Ag Rapid Test Device were used (Abbott
Rapid Diagnostics Jena GmbH, Jena, Germany), for which the manufacturer reports a
sensitivity of 91.4% (nasopharyngeal swab versus nasopharyngeal PCR) and a specificity
of 99.8% (https://www.globalpointofcare.abbott/en/product-details/panbio-covid-19-ag-
antigen-test.html, accessed on 16 July 2021). Alternatively, the SARS-CoV-2 rapid antigen
test, manufactured by SD Biosensors (Suwon-si, Gyeonggi-do, Korea) and distributed
by Roche Diagnostics GmbH (Mannheim, Germany) was used. Both the Abbott and
the Roche tests detect the nucleocapsid protein of SARS-CoV-2 as antigen and contain a
control line detecting chicken IgY. The laboratory experiments were performed with the
nasopharyngeal version of the test, whereas the pilot project and case study used the nasal
version. The supplier of the tests confirmed that the two versions of the test are identical,
except for the swabs. According to the manual, the extraction buffer of the test kit contains
tricine as buffer component, NaCl, Tween 20 as non-ionic surfactant, sodium azide as
bacteriostatic (listed as <0.1%), and Proclin 300 as other preservatives/biocides. Dilution
experiments with water used Kabi Ampuwa sterile water (Fresenius Kabi Deutschland
GmbH, Bad Homberg, Germany) for injection purposes. Positive control swabs provided
with the Abbott kits were used as a source of SARS-CoV-2 antigen. Either the Noble
Biosciences NFS-1 nasopharyngeal swabs supplied with the Abbott test kit (nasopharyngeal
version) were used (‘50 µL swabs’) or singly wrapped, sterile, cotton wool swabs (5 mm
head) with a wooden stem (150 mm length) from neoLab (Heidelberg, Germany) as larger
specimen alternatives (‘100 µL swabs’). For laboratory experiments, nasopharyngeal or
oropharyngeal swab specimens were self-collected from healthy volunteers among the
authors who had tested negative in professional tests performed by physicians, using
the Roche test. Specimens for the pilot project and the case study were collected by first
wetting the swabs with saliva in the buccal cavity for 30 s, followed by oropharyngeal
and then nasopharyngeal swabbing, as typically performed when collecting specimens
for PCR analysis, and were analyzed using the Abbott PanBio test cassettes. Extraction
buffer was the unmodified buffer from the Abbott PanBio test. Plastic bags were zip
lock all-purpose/freeze bags made of polyethylene suitable for transporting liquids in
carry-on luggage in the EU, holding either up to 1 L volume or up to 3 L volume (both
from QuickPack, Renningen, Germany). Syringes were 10 mL Amefa LUER single-use
sterile syringes (B. Braun, Melsungen, Germany). The holder for the syringe body acting
as pooling container and the lateral flow test cassette was produced by 3D printing on a
Prusa MK2S printer with PLA (polylactide) as material, instructed by CAD data in STL
format. All photographs of the laboratory study were taken with the camera of a Samsung
Galaxy S20+ (SM-G985F) cellular phone, whereas images of the pilot project study and
the case study were a variety of different smartphones. All image analysis was performed
using the free program ImageJ (NIH). Details of the image analysis are provided in the
Supplemental Material.

https://www.globalpointofcare.abbott/en/product-details/panbio-covid-19-ag-antigen-test.html
https://www.globalpointofcare.abbott/en/product-details/panbio-covid-19-ag-antigen-test.html
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3. Results

Pooling Set-up. We defined the following criteria for the test method to be developed:
The method had to use inexpensive materials, including sterile, singly wrapped swabs and
a sterile mixing container. The analytical procedure had to be based on a commercial, well
established LFA system, and all steps had to be feasible without additional biochemical
components and without the need for laboratory equipment. These criteria led to the
system described here.

Figure 1 shows two core components of our device. One of those components is a
syringe for medical use that functions as a container for the swabs and as vessel in which
the mixing occurs. With the goal to achieve pooling for at least five specimens, we tested
several syringe sizes and swabs and settled on 10 milliliter (mL) syringes with the central
plunger removed as containers. They will hold approximately ten flocked nylon swabs
of the type included in both the Abbott PanBio and the Roche rapid antigen tests or six
conventional sterile flocked cotton swabs with wooden stem, without losing the mobility
necessary for thorough mixing. The latter swabs cost a fraction of the nylon swabs, hold
twice as much specimen, and are more pleasant when used in the mouth.
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sette is held in place. Further, there is a small indentation at the center bottom of the base 
plate, into which a stabilizing bar is pushed to provide mechanical stability to the assem-
bly and to prevent it from tipping over during the extraction and elution steps. While 
initial prototypes were made of solid PVC, both the main holder and the stabilizing bar 
are now produced by us by 3D printing in an inexpensive printer. In our currently pre-
ferred method for testing, the holder is disinfected and recycled when the test outcome is 
negative but is disposed of when a test is positive. Our cost of the material for printing 
both holder and stabilizing bar is currently 1.54 €, so that the method is inexpensive, even 
if the holder is treated as a disposable item in each test with swab pooling. 

Figure 1. Principle of pooling and extraction in a syringe acting as a container and elution onto a lateral flow assay (LFA)
cassette for analysis. (A) Container in extraction mode; thorough mixing is induced by rotating the bundle and moving
individual swabs. (B) Elution, induced by rotating the syringe by 180◦ to allow for the extract to drip onto specimen well of
the LFA cassette.

Figure 2 shows the holder of the device and the final form of the syringe, as employed
in our current procedure. The holder shown in Figure 2A has an arm with a circular
opening for the syringe and indentations next to this opening that arrest the syringe in
extraction or elution mode. The base of the holder has another indentation, where the
LFA cassette is held in place. Further, there is a small indentation at the center bottom of
the base plate, into which a stabilizing bar is pushed to provide mechanical stability to
the assembly and to prevent it from tipping over during the extraction and elution steps.
While initial prototypes were made of solid PVC, both the main holder and the stabilizing
bar are now produced by us by 3D printing in an inexpensive printer. In our currently
preferred method for testing, the holder is disinfected and recycled when the test outcome
is negative but is disposed of when a test is positive. Our cost of the material for printing
both holder and stabilizing bar is currently 1.54 €, so that the method is inexpensive, even
if the holder is treated as a disposable item in each test with swab pooling.
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sulating bag after 15 min. 

Figure 2. Components of the device. (A) Technical drawings showing the dimensions (in mm) of the main holder, the
stabilizing bar of the holder, and (B) photograph of an unmodified 10 mL syringe next to a syringe used as pooling and
extraction container that had its LUER fit pruned to reduce void volume. The length ruler next to the pruned syringe shows
the length in cm.

One modification was made to the commercial 10 mL syringes used as container. Their
LUER fit tip was pruned to avoid retention of a significant fraction of the extract in the
form of the void volume of the device. Fully removing the tip led to uncontrolled elution
and very large drops. Leaving the LUER opening unchanged retained too much of the
valuable extract. The best performance was achieved with tips pruned to a length of 4 mm,
as shown in Figure 2B. With this size opening, the volume of 100 µL, which is required for
the lateral flow assay to function properly, elute in three large drops that can be visually
observed, even if the entire set-up is encapsulated in a transparent polypropylene bag
(Figure 3). We do the pruning of the tip with the blade of a carpet cutter, previously treated
with disinfectant, while the syringe is in a steel holder (see Supplementary Material), but
pruning may also be performed in a simpler, hand-held fashion.
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Figure 3. Photographs of testing with the device in a polyethylene bag with zip lock for encapsulation after loading. (A)
Device loaded with five 100 µL flocked cotton swabs holding specimen and one positive control swab (red). (B) Close-up
showing elution of the extract after thoroughly mixing for 3 min. Three drops are required to elute 100 µL from the pruned
syringe, corresponding to 5 drops from the original Abbott extraction container. (C) Result of a test, viewed through the
encapsulating bag after 15 min.
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The syringe acting as container is held at a 40◦ angle to the LFA cassette. There are
two positions for the syringe. In extraction mode, the LUER fit opening at the tip of the
syringe is at its highest position to prevent premature leaking of the extract. Our preferred
procedure involves self-sampling under the supervision of a medically trained member
of the team (‘superuser’) undergoing pooled testing. The superuser sets up the device,
drips the necessary volume of extraction buffer into the syringe, places the set-up in the
transparent bag and supervises the collection of the specimens. Sampling occurs in a fume
hood or well-ventilated area with a minimum distance of 3 m between individual team
members and superuser. The members of the team enter their swabs into the container, one
by one, wearing an inexpensive polyethylene glove on the hand with which they handle
the swab, and the superuser, wearing medical-grade gloves and a surgical mask or FFP2
mask, then closes the bag and sprays it down with disinfectant from the outside. After
a brief interval to allow for evaporation of the alcohol-based disinfectant, the superuser
performs the extraction, elution and analysis while the entire set-up is inside the closed
bag (Figure 3).

Figure 3A shows how the extraction set-up is inserted into the sealable, transparent
polyethylene bag of sufficient mechanical stability and optical transparency. Mixing is
achieved by rotating and laterally moving the swabs immersed in the buffer for 3 min. This
step requires some dexterity and experience to ensure that the extract is as homogeneous
as possible. It is easier to perform this step with more liquid, but dilution lowers the
concentration of the antigen and is therefore undesirable. After mixing, the syringe is
switched into elution mode by rotating it 180◦, so that the LUER fit is in its lowest position,
allowing the extract to drip into the specimen well of the cassette. To ensure that the
necessary volume is liberated, the swabs should be slightly moved up to avoid blockage
of the exit port, and the swabs should be gently squeezed against the wall of the syringe.
Again, this calls for dexterity and may be rehearsed without potentially infectious material
first by operators new to the extraction device. It is also critical to perform the elution with
close visual inspection to ensure that the necessary number of drops is applied.

Extraction and Analytical Assay. Pooling is expected to increase the total volume
of the extract. To minimize the resulting loss in signal, the concentration of the antigen
should be kept as high as possible. To achieve this, the analytical procedure was optimized.
First, we gravimetrically determined the volume absorbed by swabs upon immersion in
water for 5 s, with the aid of an analytical balance. We found that the NFS-1 flocked style
nylon swabs provided with the Abbott test kit absorb 56.7 ± 3.0 µL under those conditions.
Given the uncertainty of the viscosity of the real specimen, we refer to these swabs as ‘50 µL
swabs’, assuming that they will take up approximately 50 µL specimen. The less expensive
5 mm cotton wool swabs with wooden stem take up 101.3 ± 4.1 µL of water under the
same conditions, and we refer to those swabs as ‘100 µL swabs’.

We assumed that thorough mixing after pooling of the swabs produces a homoge-
neous liquid as extract. The total volume of this extract will be the sum of the volume
of the extraction buffer employed and the volume entered with the specimens. Again,
for simplicity, we assumed that the latter volume is either 50 µL or 100 µL per person
participating in the pooled test. The standard protocol, as described in the user manual
for the Abbott Panbio COVID-19 Ag Rapid Test, calls for 300 µL extraction buffer. The
bottle provided with the test kit (25 tests) contains 9 mL or 360 µL per test. Assuming that
leaving no more than a small residual volume in the buffer bottle is not critical, we used up
to 350 µL extraction buffer per pooled test. We determined that this equals 13 drops from
the Abbott bottle. Unless otherwise noted, one positive control swab was included in all
laboratory assays as a constant source of antigen to be detected.

Figure 4 shows results from laboratory assays performed with our device, and Table 1
lists the corresponding data numerically. The numerical values for signal intensities of
the test (SARS-CoV-2 antigen) and control lines were obtained by analyzing photographs
taken with the camera of a smartphone with the free software ImageJ, available from the
National Institutes of Health, as detailed in the Supplementary Information. The plots
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below each photograph of the read-out window of the test cassettes in Figure 4 are the
results of the integration of the gray value data calculated with ImageJ.
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Figure 4. Representative results from rapid antigen tests with or without pooling. Photographs of the read-out window of
lateral flow assay cassettes are shown, together with signal intensity plots for each test results, as obtained by integration
with ImageJ. Except when otherwise noted, photographs were taken 15 min after the start of the assay using the Abbott
PanBio test. (A) Standard Roche test with a single positive control swab. (B) Same as (A) but after 30 min. (C) Abbott assay
with a positive control swab only. (D) Pool of five nasopharyngeal 50 µL swabs from healthy volunteers and one positive
control swab. (E) Five cotton wool 100 µL swabs and one positive control swab. (F) Same as (E), but with 32-fold dilution
with extraction buffer. An expanded view of the integration plot is shown below the original plot. (G) Six pooled cotton
wool swabs from healthy volunteers. An expanded view of the integration plot is shown below the original plot. See Table 1
for numerical values obtained by integration and further experimental details.
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Table 1. Results of rapid antigen test with or without pooling of swabs.

Entry No. Manufacturer No. of
Swabs (a)

Type of Swabs
Used [µL

Capacity] (b)

Estimated
Vtot [µL]

Incl.
Specimen

Dilution
with

Additional
Liquid

Relative
Intensity

Test/Control
[%]

Signal
Relative to

Simplex
Assay (c) [%]

1 Roche 1 50 350 - 53 -
2 (d) Roche 1 50 350 - 75 -

3 Abbott 1 50 300 - 86 100
4 Abbott 6 50 600 - 47 55
5 Abbott 6 100 1100 (e) wet swabs (f) 32 37
6 Abbott 6 100 850 - 37 ± 5 (g) 43 ± 6 (g)

7 Abbott 6 (h) 100 950 - 0 -
8 Abbott 6 100 850 2-fold (i) 24 28
9 Abbott 6 100 850 4-fold (i) 13 15

10 Abbott 6 100 850 8-fold (i) 7 8
11 Abbott 6 100 850 16-fold (i) 4 5
12 Abbott 6 100 850 32-fold (i) 3 4

(a) Unless otherwise noted, one of the swabs was a positive control swab (Abbott). (b) Positive control swab was added in dry form. (c)

Simplex assay is an assay with a single swab, according to the manufacturer’s manual of the Abbott LFA test (related to entry No. 1). (d)

Same experiment as for entry No. 1 but after 30 min. (e) 300 µL extraction buffer plus 300 µL sterile water. (f) Pre-hydrated with sterile
water prior to sampling. (g) Mean ± one standard deviation from eight experiments. (h) No positive control swab included. (i) Extract
prepared as for entry No. 6, but then diluted with extraction buffer.

For the conventional, single-swab assay, run with the positive control swab alone,
as recommended in the user manual of the Panbio Abbott test, the intensity of the test
line was 86% of that found for the control line after 15 min assay time (Figure 4A and
entry 1 of Table 1). Next, five 50 µL swabs with specimens from healthy volunteers
among the authors plus the dry positive control swab were extracted with 350 µL of the
extraction buffer (600 µL total volume, Vtot), a signal corresponding to 55% of that for the
individual test was measured (entry 2 of Table 1). This is the expected value, based on the
approximately two-fold dilution.

We then performed an individual test with the Roche test, and found less signal (entry
3 of Table 1). Visual inspection indicated an increase in intensity for the test line of the
Roche test when allowed to develop longer than 15 min. This prompted us to collect a
series of images over time in order to obtain the kinetics of colloid binding to the test line.
The results for the Abbott and the Roche test are shown in Figure 5. The signal for the
SARS-CoV-2 antigen did indeed rise more slowly for the latter assay, and even after 30 min
(the upper time limit for read-out specified by the manufacturer), the value was below that
for the PanBio test (entry 4, Table 1). Since rapid testing is desirable, we decided to focus
on the Abbott test in all subsequent work.

We next studied how dilution affects the signal in the lateral flow test. For this, we
switched to the 100 µL swabs, which have a larger capacity and thus the potential to
compensate for dilution. Only the positive control swab was left unchanged, as no larger
volume version of this was available to us. In the first set of experiments, we used wet
100 µL swabs, pre-hydrated with sterile water and an extraction buffer diluted two-fold
with the same water. This gave 37% of the control signal, i.e., considerably more than the
27% expected based on the estimated dilution factor but was not pursued further over
concerns that the dilution may change the characteristics of the extraction medium [10]
and that the extra cost (and effort) to provide individual sterile vials with dilution water to
each participant would become prohibitive. Still, it is an interesting finding, as it suggests
stronger binding of the antigen-loaded gold nanoparticles to the surface-immobilized
antibodies in medium with lower ionic strength than in standard medium. Our previous
studies with DNA-coated gold nanoparticles on other surfaces [18,19] gave the opposite
effect when lowering the salt concentration, which may be due to the different biopolymers
involved and characteristics of the corresponding molecular recognition events. There
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was also the possibility that the signal may not increase linearly with concentration due to
multivalency effects, [20] which motivated dilution experiments (vide infra).
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Figure 5. Kinetics of binding of colloids at the test and control lines of the PanBio test from Abbott, or the Rapid Antigen
test from Roche Diagnostics, as determined by image analysis of photographs taken at stated intervals after applying the
antigen-containing extract of the Abbott test to the test cassettes. Five specimens of healthy and negatively tested volunteers
among the authors and one positive control swab (Abbott) were extracted with the buffer of the Abbott test in the device of
Figures 1–3. The extracts were then applied to each of the test cassettes. Data collection started 10 min after the extracts
were applied. Black boxes are experimental data points and red lines are fit to an exponential kinetic model using the fit
equation y = ymax · (1 − exp(kapp · t)), where y are the intensity values, t is the time of data acquisition, ymax is calculated
maximum intensity at infinite time, and kapp is the apparent rate constant for the process. Boxes below each plot give the
numerical values obtained. The apparent rate constant for the Abbott control line is not defined by a sufficient number of
early data points and is therefore reported in parentheses. (A) Abbott test line, (B) Abbott control line, (C) Roche test line,
and (D) Roche control line. Note the different scales of the y-axes for the different plots.

In experiments performed with dry 100 µL swabs, we noted that incomplete hydration
during sample collection occasionally led to difficulties in obtaining sufficient extract to
apply to the test cassette. Therefore, we adopted a procedure starting with wetting the
swabs with saliva for 30 s, followed by oro- and nasopharyngeal sampling. The saliva
makes nasopharyngeal sampling less painful and avoids that partially wetted swabs take up
too much of the buffer solution. The combined oro- and nasopharyngeal sampling is similar
to what is typically done with smaller, dry swabs when collecting specimen for PCR tests.
Our procedure that involves saliva plus specimen collected by swabbing is in agreement
with the recommendations of a study with 659 patients that employed the Panbio test
and that showed high sensitivity for the combination of saliva and nasal sampling [21].
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The ability to detect infections with saliva was also confirmed by others [22,23]. Using
this approach for sampling, combined with the 350 µL of extraction buffer available from
the test kit, the 100 µL extract necessary for running the lateral flow assay was obtained
without the need for any additional fluid. We considered this the optimal procedure under
our conditions and opted for six-fold pooling with 100 µL swabs as our preferred mode of
performing pooled tests.

When the optimized team test was performed eight times with samples from volun-
teers among the authors, we obtained a signal intensity of 43 ± 6% (mean ± one SD) of that
for the single swab standard procedure (entry No. 6, Table 1). A negative control swab or
six specimen-holding swabs from healthy, negatively tested volunteers gave no detectable
signal (entry 7 of Table 1). We then performed exploratory experiments to determine the
limit of detection. For this, the extract from an assay performed as for entry 6 of Table 1,
was diluted with extraction buffer in 1:2 dilution steps, resulting in extracts with 2-, 4-, 8-,
16-, and 32-fold lower antigen concentration (entries 8–12, Table 1). Even for the most dilute
extract, a positive result was detectable when using image analysis after photography, with
a signal-to-noise ratio of approximately 2:1 (Figure 4F). Zooming in on the baseline of the
negative control assay did not show maxima of similar intensity (Figure 4G).

A quantitative analysis of the results of the kinetics study with a monoexponential
model, using the software Origin Pro, version 8.0, gave the numerical data presented in the
boxes of Figure 5. Except for the control line of the Abbott test, where almost full signal
intensity had been reached at the starting point of data collection, satisfactory fits were
obtained with this simplified model of colloid binding (R2 values > 0.97). The apparent rate
constant of binding (kapp) was found to be approximately 2.5-fold larger for the Abbott test
than for the Roche test. The absolute value of the maximum signal intensity was found to
be 1.17-fold higher for the Abbott test versus the Roche test. The calculated relative signal
intensity (test versus control line) at infinite time was determined as 0.79 for the Abbott test
and 0.63 for the Roche test, confirming the conclusions from the initial qualitative analysis
mentioned above.

We then asked whether the effect of dilution is predictable. For this, we decided to
plot the relative signal (test versus control strip) from the dilution series against the relative
concentration of the antigen. The relative concentration was calculated from the total
volume of the initial extract and subsequent dilution steps and expressed as a percentage of
the concentration in the standard extract of the positive control swab. A linear correlation
with an R2 value of 0.98 was found (Figure 6).
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A full clinical validation was beyond the scope of our study. However, a SARS-CoV-2
infection among the authors (unrelated to our experiments) provided the data for a case
study. Upon onset of symptoms, a commercial rapid antigen test (Lyher Covid-19 Antigen
Rapid test) was performed that gave a positive result (Figure 7A). While the symptoms
were increasing, a test with 5-fold pooling (four from a healthy volunteer among the
authors, one from the patient) was then run approximately 5 h after the initial test. This test
employed the Abbott PanBio cassette and our extraction device and gave a strong positive
signal, despite the pooling (Figure 7B). The patient underwent PCR testing with NSP swab
collection of specimens by health care professionals on the subsequent day, confirming the
COVID-19 diagnosis. Seven days after the onset of symptoms and the first rapid antigen
tests, a second set of tests was run. This time, both the individual and the pooled test
employed the Abbott Panbio system. Both specimens were taken from the same nostril,
with the first swab for the individual test being applied immediately prior to that for the
pooled test, which employed five swabs from the same healthy volunteer as in the 5-fold
pooling assay run earlier. As expected, the individual test (Figure 7C) gave a stronger
signal than the pooled test (Figure 7D), and a clear positive signal was obtained in either
case. The patient was free of symptoms after ten days, and an individual test run at this
time point with another commercial test gave little signal. All photographs were taken at
the point of care, without an attempt to control the illumination of the test cassettes, unlike
the laboratory experiments described above. As expected for different tests systems and
regimes of this ad hoc validation, there are quantitative differences between individual and
pooled tests. Importantly, unambiguously positive signals were obtained in either of the
tests with swab pooling.
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individual or pooled tests with one swab from the patient and four or five swabs from a healthy volunteer among the
authors at the time point after onset of symptoms given. (A) Individual test with Lyher Covid-19 Antigen Rapid test at noon
on the day of onset of symptoms, (B) pooled assay with Abbott test five hours after the individual test, (C) individual test
with Panbio Abbott system after one week, (D) six-fold pooling test after one week, immediately after the individual test.

Finally, we performed a pilot project in a laboratory course at the University of
Stuttgart. For this, groups of five or six persons were assigned, including students (master
program) and teaching assistants and/or faculty members. Written consent was obtained
from all participants, and each team performed two tests per week for the duration of
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the three-week course. Each participant was issued one swab on the day of testing. All
tests used the settings of entry 6 of Table 1. The results are compiled in chapter 4 of the
Supplementary Material. No false positive results were obtained, and the protocol was
deemed suitable for practical courses at institutions of higher learning by the participants.

4. Discussion

Our data indicate that swab pooling in a device is a valid option for routine monitoring
in settings where the available resources limit the frequent use of individual lateral flow
tests. We note that the results of Table 1 should be regarded as the lower limit of the
signal we expect for a positive specimen in real life monitoring set-ups. The positive
control swab from Abbott is designed for an assay with 50 µL swabs, but 100 µL swabs are
employed in our preferred tests with swab pooling. So, while the total volume has gone
up approximately three-fold with six-fold pooling, the amount of specimen is increasing
approximately two-fold over that of the standard swab, resulting in a numerical decrease
in concentration of antigens by a factor of 1.5 only.

In our current testing regime, the operators of the team test obtained a 90 min in-
person training by a health care professional on the use of rapid antigen tests (Roche). In
house-training on the use of our device for pooling and analysis, as well as data analysis,
took another 60 min. Instructing the team members without operator status and obtaining
informed consent required approximately 30 min, so that the overall time effort is limited.
The recommended conditions for testing (temperature, humidity etc.) are not different
from those recommended by the manufacturer of the test cassette and should be obtained
from the manuals of respective tests.

Even though only fluids intended by the original procedure are being used, a valida-
tion of the pooling in a full clinical study or field study is required. Assuming that this
validation will confirm the results of our exploratory experiments, a ‘team test’ approach
may facilitate surveillance for viral infections at approximately five-fold reduced costs at
the six-fold pooling level. In an in-house validation, we experience better compliance with
a twice weekly voluntary test regime when testing was performed as a team test than with
individual tests requiring medical appointments. For ordinary team members, the time
effort is well below 5 min per test, and the effort of the ‘superuser’ is approximately 30
min per team test, 15 min of which is waiting time for the test to develop. The ability to
run the tests at the workplace with low set-up costs and minimized infection risk due to
encapsulation, as well as the self-sampling option, contribute to the attractiveness of the
pooling approach. Follow-up in positive cases should be done with more sensitive methods,
such as RT-PCR, and negative results should not be the basis for medical decisions or a
reduction or protective measures, such as mask wearing. In our laboratories, we agreed
on the following measures. When a team test gives a positive result, all members of the
team leave the premises and self-isolate until they have undergone individual tests at
an official testing site or clinic. The encapsulated test set-up, including the holder, are
thoroughly disinfected from the outside and disposed of as mandated by local regulations
for infectious material.

The goal of monitoring is to detect infectious individuals early, using a process that is
sustainable, both financially and in terms of the time effort involved. The manual of the
Panbio test states that it has a detection limit of 2.5 × 101.8 TCID50 of SARS-CoV-2 and a
sensitivity of 94.1% ‘with samples of Ct values ≤ 33’. Data from an early study [7], as well
as data from a more recent field study [24], indicate that the Abbott Panbio rapid antigen
test reliably detects ≥ 90% of individuals with a viral load corresponding to a Ct value of
≥ 28. A multicenter study found a sensitivity of 95.8% for Ct values below 25 when testing
within the first 7 days after onset of symptoms [25]. A viral load of Ct > 28 is at the upper
limit of what is believed to make a person infectious [7,9,26,27]. Therefore, we have reason
to believe that the approximately two-fold drop in sensitivity observed for six-fold pooling
keeps the detection limit within the range that successfully identifies active spreaders of
the SARS-CoV-2 virus, particularly when combined with the gain in sensitivity that can
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be achieved with image analysis. We expect the uncertainty associated with sampling
by oro- and nasopharyngeal swab probing to be reduced when including saliva, as in
our preferred procedure. The uncertainty may be reduced further with improvements
over standard swabs [28] or extraction buffer composition, as discussed for tests detecting
nucleic acids [29]. We note that our procedure deviates from that recommended by Abbott
and that a clinical study is planned to obtain more robust data from outbreaks of COVID-19.
With such data, it will be easier to provide more safety to families, work teams, musicians,
and other groups threatened with the spread of viral infections through frequent testing
with swab pooling.

5. Conclusions

With the pooling strategy described here, a roughly five-fold reduction in material cost
may be achieved, while the accompanying reduction in sensitivity is only approximately
two-fold, depending on the type of swabs employed. This reduction in sensitivity corre-
sponds to approximately one Ct number (or ‘average ct’) [24] and may be compensated
by increasing the sensitivity via quantitative image analysis, using a smartphone and free
image analysis software. In the absence of a digital camera, only operators with unimpaired
vision should read out the test result. Even without compensating measures, a reduction
by only one Ct number should not outweigh the gain in practicability, which results from a
simple, rapid, point-of-need procedure that does not require medical personnel or labora-
tory infrastructure. Pooling not only reduces the cost, but also allows the testing of more
people when the availability of LFA test cassettes is limiting. Our approach minimizes the
risk of infection when supervised self-sampling at a safe distance is practiced, and when
the analytical procedure is performed in a sealed bag. Independent of the details of the
protocol, the inexpensive device described here may help to reduce the transmission of
SARS-CoV-2 and other viruses that threaten the livelihood of many communities. Our
method should be validated further.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/diagnostics11071290/s1: the protocols for image analysis, data plotting and the pruning of
syringes, as well as the results of the pilot project in the laboratory course.
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