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Abstract: A flexible approach for geometric modelling of point clouds obtained from Terrestrial
Laser Scanning (TLS) is by means of B-splines. These functions have gained some popularity in
the engineering geodesy as they provide a suitable basis for a spatially continuous and parametric
deformation analysis. In the predominant studies on geometric modelling of point clouds by B-
splines, uncorrelated and equally weighted measurements are assumed. Trying to overcome this,
the elementary errors theory is applied for establishing fully populated covariance matrices of TLS
observations that consider correlations in the observed point clouds. In this article, a systematic
approach for establishing realistic synthetic variance–covariance matrices (SVCMs) is presented and
afterward used to model TLS point clouds by B-splines. Additionally, three criteria are selected to
analyze the impact of different SVCMs on the functional and stochastic components of the estimation
results. Plausible levels for variances and covariances are obtained using a test specimen of several
dm—dimension. It is used to identify the most dominant elementary errors under laboratory
conditions. Starting values for the variance level are obtained from a TLS calibration. The impact
of SVCMs with different structures and different numeric values are comparatively investigated.
Main findings of the paper are that for the analyzed object size and distances, the structure of the
covariance matrix does not significantly affect the location of the estimated surface control points,
but their precision in terms of the corresponding standard deviations. Regarding the latter, properly
setting the main diagonal terms of the SVCM is of superordinate importance compared to setting
the off-diagonal ones. The investigation of some individual errors revealed that the influence of
their standard deviation on the precision of the estimated parameters is primarily dependent on the
scanning distance. When the distance stays the same, one-sided influences on the precision of the
estimated control points can be observed with an increase in the standard deviations.

Keywords: B-spline; control points; TLS point cloud; stochastic model; variance–covariance matrix

1. Introduction

Usually, Terrestrial Laser Scanning (TLS) point clouds are not the desired end product
in an area-wise structural deformation analysis. Either geometric primitives or free-form
surfaces are estimated based on the aforementioned point cloud in order to reduce the data
volume and measurement noise. These can be later used for an area-wise deformation
analysis, allowing for a parameter-based and statistically validated deformation analysis.
In many studies, methods for retrieving deformations have been developed [1–3]. Among
the recent ones, B-spline based methods have gained importance, as they enable the mod-
elling of particularly complex structures [4]. Currently, these methods focus on aspects of
functional modelling such as introducing adequate parametrization techniques [5], deter-
mining optimal knots vectors [6–8] or establishing a suitable number of control points [9].
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All these studies adopt the simplifying assumption of uncorrelated and equally weighted
measurements. However, a comprehensive and realistic geometrical modelling of TLS
point clouds requires accounting for the stochastic properties of the TLS measurements.
One way to achieve this is to use synthetic variance–covariance matrices (SVCMs). They are
established based on the elementary error model introduced in [10–12] in Geodesy. Other
ways of defining TLS stochastic models are based on Monte Carlo simulations [13] or inten-
sities [14]. Each of the latter two has its own drawbacks: Monte Carlo simulations require a
priori knowledge regarding the probability distributions of the measurement uncertainties
as well as a high computational power for large datasets, whereas the intensity-based
models neglect instrumental systematic errors, reflect only the signal-to-noise ratio and do
not consider existing correlations in the point cloud. Contrarily, by using the elementary
error theory, a fully populated SVCM can be directly defined, modelling also existing
correlations, given that they are known. Further exhaustive comparisons between these
three stochastic models are not treated in this paper.

In previous studies on this topic [15], unrealistic effects such as constant offsets of the
estimated surface w.r.t to the original point cloud have been obtained for real measurements,
implying that assumptions for the measurements’ variance and covariance level based on
literature are not appropriate for the specific scanner and cause these effects. However,
simulations show improvements in terms of no significant bias and a lower variance level of
the estimated parameters, when introducing an SVCM that correctly reflects the stochastic
relationships among the observations.

The primary aim of this article is to describe a systematic approach of establishing
realistic SVCMs and to introduce them for modelling measured TLS point clouds from a
panoramic scanner by B-spline free-form elements. To obtain plausible levels for variances
and covariances, a small-scale reference object of several dm—dimensions—is used to
identify the realistic noise level as well as the most dominant correlating elementary
errors. For this purpose, TLS scans of the test specimen with known B-spline geometry
are performed under laboratory conditions with varying distances from 6 m to 44 m. A
second aim of this contribution is to investigate the impact of fully populated SVCMs and
other VCMs derived from it, e.g., diagonal matrices with heterogeneous variances on the
estimated control points, as well as on their corresponding VCMs. It is shown how the
a posteriori variance factor can be used to determine the variance level of instrumental
errors. Variance levels for three different instrumental errors are intentionally increased to
assess the effect of errors’ magnitudes on the estimation results.

Continuing this paper, Section 2 starts with a short review of the necessary theoretical
background and presents a motivational example using simulated data. Next, Section 3
presents the laboratory measurement concept and the criteria used to assess the results. In
Section 4, results are presented and discussed in parallel. The iterations that lead to optimal
parameter sets for the SVCM are summarized here. Ending this contribution, Section 5
shortly poses the findings and highlights open questions as well as possible improvements.

2. Functional and Stochastic Model
2.1. Point Cloud Approximation with B-Spline Surfaces

A B-spline surface is usually defined by means of its tensor product representation [16,17]:

Ŝ(u, v) = S(u, v) + ε(u, v) =
n

∑
i=0

m

∑
j=0

Ni,p(u) Nj,q(v) Pi,j (1)

According to Equation (1), an estimated surface point Ŝ(u, v) is computed as the
weighted average of the (n + 1) · (m + 1) control points Pi,j. The corresponding weights
are the functional values of the B-spline basis functions Ni,p(u) and Nj,q(v) which can be
recursively computed (cf. [18,19]) and which are functions of the surface parameters u and
v, locating a surface point on the surface. The basis functions are uniquely defined by their
degree p and q, respectively, as well as by the corresponding knot vectors U and V .
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When using B-spline surfaces to approximate point clouds, the noisy data points
S(u, v) enter as observations, differing from the estimated surface points by the noise ε(u,v).
Here, the point-related S(u, v) stands for the coordinate triple x(u, v), y(u, v) and z(u, v)
and, thus, Equation (1) is set-up point-wise for all points of the approximated point cloud.
Only the control points’ positions P̂ are usually estimated in a linear Gauß–Markov model,
where the coordinate-wise defined design matrix

Ax = Ay = Az =

 N0,p(u1) ∗ N0,q(v1) · · · Nn,p(u1) ∗ Nm,q(v1)
...

. . .
...

N0,p(uα) ∗ N0,q(vα) · · · Nn,p(uα) ∗ Nm,q(vα)

 (2)

describes the functional relationship between α observation points and the unknowns
(cf. [17]). For a simultaneous estimation of all components, the design matrix A is obtained
by multiplying each element from Ax by the (3 × 3)-identity matrix Ie via the Kronecker
product:

A = Ax ⊗ Ie. (3)

The A matrix is established solely by means of B-spline basis functions, which is
treated in detail in [17]. In order to determine the remaining parameter groups, further
analysis steps complement the adjustment problem. The first step in this analysis chain is
the parametrization, during which appropriate surface parameters u and v are allocated to
the observations (cf. [5]). Based on the surface parameters, the knot vectors are determined
within a knot adjustment (cf., e.g., [6,16,20]). The choice of the appropriate number of
control points to be estimated can be interpreted as a model selection task and can be solved
by means of information criteria or by means of structural risk minimization (cf. [9,21]).
The latter also allows for the inclusion of the degrees p and q in the model selection task
(cf. [22]). Alternatively, the choice of cubic B-splines (p = q = 3) is a generally accepted
choice, resulting in B-spline surfaces with at least C2—continuity (cf. [16]).

In this work, due to the exact knowledge of the required parameter groups (knot
vector, number of control points, degrees p and q) of the investigated test specimen (see
Section 3.1), further analysis steps were not necessary and the focus was only on the
estimation of the control points.

2.2. Synthetic Variance–Covariance Matrix as TLS Stochastic Model

As mentioned above, an approach for defining a stochastic model for geodetic obser-
vations was the elementary error model. The model itself is described by a SVCM with
its adherent groups of matrices. However, it is beyond the purpose of this contribution
to comprehensively present the establishment of the SVCM; therefore, only a very short
review is given. For more details, the reader should refer to [12,23–25].

The impact of elementary errors on the observations’ stochastics is modelled by error
vectors and influencing matrices. Three types of impacts are considered: non-correlating
error vectors δk, functional correlating error vector ξ and stochastic correlating error vectors
γh [23]. The current contribution treated only instrument-dependent non-correlating and
functional correlating elementary errors (cf. [12]); therefore, γh was not discussed as it is
the subject of future research. For each error type, corresponding influencing matrices
are defined as follows: s matrices Dt (t = 1, . . . , s) for non-correlating errors, one matrix
F for functional correlating errors. These influencing matrices have different structures
depending on the elementary errors’ effects on the observations, a fact that will be detailed
later. The resulting SVCM is then defined by:

Σll =
s

∑
t=1

Dt·Σδδ,t·DT
t + F·Σξξ ·FT , (4)

where, additional to the aforementioned terms, Σδδ is the VCM for the non-correlating er-
rors and Σξξ is the VCM for the functional correlating errors. Due to the sum in Equation (4),
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the resulting matrices have the following form: for non-correlating errors—a diagonal
matrix (cf. [26])—and for functional correlating errors—fully populated matrices. Thus, the
SVCM Σll is also fully populated and illustrates existing variances and covariances and,
consequently, also the correlations of the observations.

In principle, this stochastic model can be applied to all kinds of observations if their
nature is known, but the upcoming paragraph focuses solely on TLS polar observations
(λ—horizontal angle; θ—zenith angle; R—range) together with a panoramic TLS calibration
model. The first challenge was to find appropriate variances and covariances for the Σδδ and
Σξξ matrices. They may be extracted from instrument manufacturers’ reports, empirical
values or estimated based on the maximum error impact (cf. [24]). In the first group, the
angular measurement noise σλ, σθ , and the range noise σR were classified as non-correlating
elementary errors. Each of the s matrices Σδδ contained the aforementioned three variances
on the main diagonal. Furthermore, the Dt matrices were equal to the identity matrix
because each non-correlating error (noise) influenced exactly one observation functionally.
Therefore, one exemplary matrix of an observation triplet has the following form:

Σδδ = diag
(

σ2
λ σ2

θ σ2
R
)
. (5)

As regards the F matrix, a functional model describing the influence of the elementary
errors on the observations was needed. Unlike in [15], a more recent model was used. This
was defined by [27] and we used a set of 18 calibration parameters (CPs) to specifically
model the instrumental errors of panoramic laser scanners. Throughout this contribu-
tion, these CPs were the equivalent of the instrument-related elementary errors, but they
will be further addressed as CPs to maintain coherence with other publications. Not all
18 parameters were determinable through typical calibration routines. For this reason, a
simplified version of this model has been adapted by [28]. In this case, 10 relevant CPs
for high-end scanners were used to reduce systematic instrumental errors (cf. [29]). It is
arguable that not all possible instrument-related errors were taken into consideration, e.g.,
the scale factor for distances or tumbling error. Nevertheless, the effect of these additional
error parameters did not play an important role for the current set-up.

The CPs were mathematically modelled as influence on the polar coordinates. Only
correction terms are given here:

∆λ =
x1z

R tan θ
+

x3

R sin θ
+

x5z − x7

tan θ
+

2x6

sin θ
+

x1n
R

, (6)

∆θ =
(x1n + x2) cos θ

R
+ x4 + x5n cos θ − x1z sin θ

R
− x5z sin θ, (7)

∆R = x2 sin θ + x10. (8)

where the CP’s meanings are summarized after [29] in Table 1.

Table 1. Parameter of TLS calibration model.

CP Tilts/Angular Errors CP Offsets/Metric Errors

x4 Vertical index error x1n Horizontal beam offset
x5n Horizontal beam tilt x1z Vertical beam offset
x5z Vertical beam tilt x2 Horizontal axis offset
x6 Collimation axis error x3 Mirror offset
x7 Horizontal axis error (tilt) x10 Zero point error

For detailed explanations of the CPs and their effects on the measurements, the reader
is advised to consult [27,28]. Recently, it has been shown that some CPs present different
short- and long-time variance levels (cf. [30]). It is therefore, interesting to analyze the
impact of the variance level on the SVCM and later on the estimated surface. To do so,
the CPs were classified as functional correlating errors and their variances were set in
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the Σξξ matrix on the main diagonal. This was an approximation, since the results of
a calibration showed correlations between some CPs, but only the estimated value and
standard deviations of the CPs were currently available. Therefore, correlations between
CPs were neglected in this contribution and their consideration is the aim of future research.
Influencing matrices F (see Equation (10)), therefore, contained the partial derivatives of
Equations (6)–(8) with respect to each CP. For completeness, an example is given for a
single observation triplet (see Equations (6)–(8)). When the VCM for functional correlating
errors is arranged such as:

Σξξ = diag
(

σ2
x1n σ2

x1z σ2
x2 σ2

x3 σ2
x4 σ2

x5n σ2
x5z σ2

x6 σ2
x7 σ2

x10
)
, (9)

then F has the following form:

F =


1
R

1
R tan θ 0 1

R sin θ 0 0 1
tan θ

2
sin θ − 1

tan θ 0
cos θ

R − sin θ
R

cos θ
R 0 1 cos θ − sin θ 0 0 0

0 0 sin θ 0 0 0 0 0 0 1

. (10)

According to the matrix structure (see Equations (5), (9) and (10)), the SVCM, as
defined in Equation (4), was a fully populated matrix after the multiplication. Up to now
the SVCM was only discussed with regard to the observation space (λ, θ, R), but for later
purposes, a transformation into Cartesian coordinates (x, y, z) was needed. Only a few
TLS manufactures offered access to original raw observations, and for the scanner used
in these investigations, the user only had access to point clouds in Cartesian coordinates.
Nevertheless, the workflow for propagating variances on observations and obtaining the
equivalent in Cartesian coordinates is shortly described as follows:

1. The original TLS point clouds were transformed from Cartesian to polar coordinates;

2. The SVCM in observation space Σ
(λθR)
ll was computed as stated in Equation (4);

3. Finally, Σ
(λθR)
ll was transformed in Cartesian coordinates by multiplication with the

Jacobian matrix J (not given here) that contains partial derivatives of the Cartesian
coordinates with respect to the polar coordinates.

For completeness, the SVCM Σ
(xyz)
ll in Cartesian coordinates is:

Σ
(xyz)
ll = J·Σ(λθR)

ll ·JT . (11)

2.3. Example for Simulated Data

A simulated dataset was used to motivate the introduction of an SVCM in surface
estimation. As stated in Section 2.2, the SVCM set-up for the polar measurements was rig-
orously propagated on the Cartesian coordinates introduced in the surface approximation.
Starting from µ, a sampled dataset without noise, a point cloud, the points of which are
normally distributed according to a predefined VCM Σll could be obtained by means of the
Cholesky decomposition Σll = RTR, with R being an upper triangular matrix. Following
the transformation [31]

Datasim = RTκ + µ (12)

where κ is a vector consisting of white noise (in this study σxyz = 3 mm), normally
distributed correlated data can be generated. It is worth noting that modelling of the noise
in the polar observation space of the laser scanner would be more appropriate for larger
objects than defining the noise in the Cartesian space. However, the aim in this section was
to generate a suitable matrix in Cartesian space, in which the B-spline equation was also
given (see Equation (1)). Therefore, the noise was directly expressed in the observations
space of the B-spline approximation.

Since nominal coordinates of the B-spline control points PN (Equation (1)) were
available for the test specimen, their difference to the estimated control points served as
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verification of the estimation. Two sets of estimated control points were analyzed. Firstly,
the simulated dataset Datasim was approximated using the very simple stochastic model
of the identity matrix. This set of control points is denoted as P̂I . Secondly, the nominal
Σ
(xyz)
ll was used as a representative for a determined SVCM. The difference vectors between

estimated and nominal control points (PN − P̂I resp. PN − P̂SVCM) obtained in this way
were split into the three coordinate directions and are shown in Figure 1.
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coordinates PN using different stochastic models (top: identity matrix; bottom: fully populated
VCM).

The positions of the estimated control points using the nominal Σ
(xyz)
ll (representative

for SVCM approach) were closer to the nominal control points PN than the estimated
control points using the identity matrix. The comparison based on Figure 1 clearly showed
that the estimation result was improved by including an SVCM if the measurements’
stochastic was completely described by the SVCM. These findings motivated to find a
SVCM for measured datasets and improve the estimation result. This example revealed
what effect can be expected when using a correct and realistic SVCM and can be seen as
preparation for the subsequent investigations.

3. Measurements and Evaluation Concept
3.1. Experiment Set-Up

In order to demonstrate the impact of fully populated SVCMs on estimated B-spline
surfaces, measured point clouds of an exemplary B-spline test specimen were scanned. All
measurements used for evaluation were taken under laboratory conditions during three
days in June 2019. The test specimen was a 40 × 40 × 20 cm aluminum-milled block that
formed a high precisely known B-spline surface. This meant that the number of control
points and the knot vectors was known. For better understanding, the test specimen with
its 63 control points in a CAD model-related coordinate system is shown in Figure 2.

On the outer edge of the object, fixed nests permitted measurements to reference
points with different sensors (see Figure 3b), e.g., a spherical mounted reflector (SMR) in
combination with an LT. The coordinates of the test specimen’s control points as well as
of the reference points were expressed in a CAD model-related coordinate system (see
Figure 3b). By measuring the reference points with an external device, e.g., the SMR of an
LT, the coordinates of the control points of the test specimen could be transformed to an
external coordinate system. More details regarding the test specimen can be found in [22].
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Figure 3. (a) Nominal point cloud stored in CAD coordinate system (zCAD axis is orthogonal to the xCAD − yCAD plane);
(b) test specimen of known B-spline form with reference points.

The experimental set-up implied scanning the object with a TLS from different dis-
tances within constant environmental conditions. Comparing measured TLS point clouds
with the reference surface was only possible when both were located in the same coordinate
system. Therefore, a common network of points measured by both, TLS and LT, and with
an adequate distribution in space was used. The LT was chosen in this case due to its high
measurement accuracy. Nine points defined the reference network points as magnetic nests
for 3.5” spheres. At first, spherical mounted reflectors (SMR) were placed in the nests for
LT measurements and afterwards, special TLS contrast targets fixed on a 3.5” semi-sphere
were interchanged for the TLS scans. These were custom-made targets manufactured
by the Geodetic Institute of Hannover (GIH), Leibniz University Hannover. Moreover,
the test specimen was integrated in the same reference network by measuring the SMRs
placed at the reference points (blue circles see Figure 3b). All points were measured with
a Leica LTD800 LT and the resulting coordinates were used to transform all other TLS
measurements as well as the CAD model of the test specimen (see Figure 3a) in a common
coordinate system, further addressed as LT system. Due to the chosen measurement set-
up (independent measurements to the specimen’s reference points with an LT as well as
the establishment of evenly distributed identical points defining the connection between
LT system and scanner system), influences of the registration process were mostly kept
separated from systematic effects in the laser scanning point clouds describing the test
specimen.
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The TLS point clouds were obtained with a Leica HDS7000 panoramic scanner from
four different stations. In all cases, the scanner was placed on concrete pillars aligned on
the same axis as the pillar where the test specimen was mounted on (Figure 4). Average
distances from each TLS station pointed to the object were as follows: S1—6 m; S2—17 m;
S3—28 m; S4—44 m. For clarity reasons, the coordinate systems (Figure 4) were defined
in such a way that the x axes were along the distance measurements’ main direction, y
was orthogonal to it and resembled the influence of the horizontal angles, whilst z was
orthogonal to the xy plane, describing the zenith direction and covering the influence of
the zenith angle measurement. All SVCMs were computed into Cartesian coordinates in
the TLS coordinate system as explained in Section 2.2.
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Figure 4. Overview of experiment set-up.

On each TLS station point the on-site work flow (Figure 5) can be summarized as
follows: first, a full 360◦ scan that covers all network points (contrast targets) was per-
formed; subsequently, multiple high-resolution scans (point spacing < 3 mm on the object)
covering only the areas of interest were performed. The full 360◦ scan was used to ex-
tract the coordinates of the common network points in the local TLS coordinate system.
This was conducted with the commercial software Leica Cyclone. Transformation param-
eters between the local TLS coordinate system and the LT system were obtained with
a 6-parameter Helmert transformation. These parameters were used to transform the
clipped high-resolution object scans in the LT system, leading to point clouds in a common
reference system. The transformation’s residuals were calculated as differences between
coordinates in the target system and transformed coordinates. In each of the four TLS
station points, these residuals reached maximum absolute values in the range between
0.24 mm and 0.55 mm. This is considered a good result for the indirect georeferencing
under laboratory conditions, and it should be noted that it also describes the positioning
quality of the nominal surface. Finally, the B-spline CAD model was transformed into the
LT system using the reference points indicated in Figure 3b, also by means of a 6-parameter
Helmert transformation. These were the point clouds used for the B-spline estimation.
Each point triplet had its correspondent in the SVCM.
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To determine the quality of the transformation of the test specimen’s CAD model into
the LT system, residuals were used. They reached a maximum absolute value of 22 µm
without any systematic effects. This level of accuracy was much better than the differences
we expected to have from TLS scans.
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Briefly described, the LT coordinate system served as the superordinate coordinate
system. The physical test specimen was milled according to the CAD model. In order to
transform the nominal geometry (such as a nominal point cloud or the nominal control
points) from the CAD coordinate system into the LT system, the targets attached to the
specimen (measurable only with the SMR) were used. The TLS contrast targets were used
to transform the TLS scans of the object to the LT coordinate system. These targets were
spatially distributed in the laboratory at dedicated materialized locations. The reason why
the contrast targets could not be fixed onto the test specimen was their size. They would
partly cover the object.

It is worth mentioning that no calibration of the Laser Scanner took place before the
measurements. Only a control routine of the Leica HDS7000 was performed according to
the ISO 17123-9 norm [32]. This confirmed that the scanner’s measurement accuracy was
within the specified one.

Furthermore, it is noteworthy that this research focused on a better understanding of
the handling of instrumental errors for setting up realistic SVCMs. Beyond these influences,
there were several ones influencing TLS measurements. These were either negligible in
this experimental set-up (e.g., atmosphere) or not sufficiently well researched (e.g., impact
of surface properties) and, thus, will be considered in future studies.

3.2. Evaluation

The influence of the SVCM on the estimation of a B-spline surface was evaluated as
in [15] by varying the stochastic model of the adjustment:

Σ
(xyz)
ll = σ2

0 Q(xyz)
ll (13)

In Equation (13), Σ
(xyz)
ll denotes the VCM of the observations, σ2

0 the a priori variance

factor and Q(xyz)
ll the observations’ cofactor matrix. The following three stochastic models

were used for further investigations:

(a) Σll is the identity matrix I;
(b) Σll is based on the main diagonal of the SVCM;
(c) Σll is the fully populated SVCM (see Section 2.2).

The comparison between the different stochastic models served to determine the
influence of the variances and the covariances, respectively, and the associated correlations
on the estimation of the control points as well as their corresponding VCM. As mentioned
in [15], the inclusion of a fully populated SVCM in the adjustment has both a stochastic
and a functional influence on the unknown control points. The following three measures
were used for the assessment of the precision (1 and 2) as well as the correctness (3) of the
estimation results.

1. A posteriori variance factor.

The adjustment result was examined to test whether the a posteriori variance fac-
tor σ̂2

0 was statistically identical with the a priori variance factor σ2
0 specified before the

adjustment. In this paper, the a priori variance factor was set to σ2
0 = 1.

If σ̂2
0 did not approach the a priori value, Ref. [33] cites the following three causes:

• the functional model was incomplete;
• the stochastic model was chosen inappropriately;
• the observations contained gross errors.

Inconsistencies in the functional model could be excluded, as the geometric B-spline
form of the test specimen as well as its parameters were known. All point clouds of the
test specimen were cut out with a mask to ensure that all points were located on it. After
additional optical inspection, it could be assumed that only points representing the test
specimen were contained in the point clouds and no gross error was present. Thus, the
inequality of two variance factors σ̂2

0 and σ2
0 was due to the inappropriate stochastic model,
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which could be brought into agreement by changing the variances and covariances in the
SVCM. The closer the variance factor a posteriori σ̂2

0 approached one, hence, the a priori
variance factor σ2

0 , the better. If one chose the variances and covariances, respectively, too
optimistically, this led to σ̂2

0 > 1. In contrast, if the variances and covariances, respectively,
were set too pessimistically, σ̂2

0 < 1 was obtained.

2. A posteriori standard deviations of the estimated control points.

The stochastic influence on the estimated control points using different stochastic
models (a–c) was assessed via the a posteriori standard deviations of the estimated control
points’ coordinates. These were calculated as roots of the diagonal elements of VCM
the ΣP̂P̂. One speaks of good a posteriori precision measures when these are as small as
possible.

3. Differences of nominal and estimated control points

The functional influence can be quantified by the difference between the nominal
control points PN and the estimated control points P̂, the latter resulting from the use of
the different stochastic models (a–c). By means of difference formation, a coordinate-wise
comparison is possible:

∆P = PN − P̂ (14)

Using a correct functional and stochastic model, the expected value of the differences
is zero. Therefore, the goal was to keep the differences as small as possible.

4. Results and Analysis

In the current section, the influence of the different stochastic models (a–c) on the
estimation results (estimated parameters and their VCM) was assessed by means of the
measures introduced in Section 3.2.

4.1. Comparison of Different Stochastic Models

Numeric values for variances of the instrumental errors were obtained from two
sources. Firstly, the TLS manufacturer specifications gave information about the scanner’s
performance in different ways. These could be noise, repeatability, RMS or precision at
a certain range. Secondly, a calibration certificate from the manufacturer could contain
information about special CPs. However, numeric values were not available in most cases.
Therefore, the user had to determine them by means of a calibration procedure in special
calibration fields. Despite the recommendation of an in situ calibration [34], very few
measurement scenarios permit such a procedure. As mentioned in Section 3.1, the HDS
7000 was not calibrated before the measurement; therefore, the actual values of the CPs
and their variances at that time remain unknown. Nevertheless, numeric values for the
CPs as well as their variances were available from a later calibration (cf. [30]) of the same
scanner conducted in a calibration hall in Bonn. These values were used as starting values
for the CPs in the SVCM. Table 2 shows the values of the standard deviations (implicitly
the variances) used for the functional correlating errors:

Table 2. Explicit standard deviations for functional-correlating errors.

CP Tilts/Angular Errors (mgon) CP Offsets/Metric Errors (mm)

σx4 0.45 σx1n 0.14
σx5n 1.79 σx1z 0.22
σx5z 1.60 σx2 0.02
σx6 0.27 σx3 0.13
σx7 1.93 σx10 0.06

In order to obtain appropriate values for the non-correlating errors, σλ, σθ and the
range noise σR were varied for all of the four TLS station points, starting from the TLS
manufacturer’s specifications [35] as initial parameters. These specifications assumed
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σλ = σθ = 7.96 mgon as well as σR between 0.4 and 3.8 mm for 37% reflectance (gray)
and values depending on range. In contrast to how range noise was defined by the
manufacturers, the value of σR as a non-correlating elementary error was adopted as a
constant value depicting the internal noise of the range measurement unit and, therefore,
was constant for all ranges. These assumptions were too pessimistic for all four TLS station
points in terms of the evaluation criterion 1. Thus, the adaption of the aforementioned
parameters was needed and was conducted as seen in Table 3 with lower values for the
angles and a value at the lower boundary for the distance. The values given in Table 2
remained unchanged for the newly defined six SVCMs. In each version, only the non-
correlating errors were modified; therefore, only the main diagonal of the SVCM changed.

Table 3. Explicit standard deviations for non-correlating errors.

CP SVCM_1 SVCM_2 SVCM_3 SVCM_4 SVCM_5 SVCM_6

σλ (mgon) 4.2 0.7 1.4 0.8 1.0 3.1
σθ (mgon) 4.2 0.7 1.4 0.8 1.0 3.1
σR (mm) 0.5 0.6 0.5 0.5 0.5 0.5

It should be noted that these six SVCMs represent a selection and were justified
below. The standard deviations of the non-correlating errors were gradually adjusted
so that the first evaluation criterion could be accepted. Figure 6 shows that for each of
the four TLS station points (S1-S4) it was necessary to modify the standard deviations of
the non-correlating errors in order to prevent rejecting the null hypothesis of the global
adjustment test. The first four SVCMs were chosen so that they led to an exact match of the
two variance factors at one TLS station point. The values of σ̂2

0 for S1 at SVCM_2-5 were
strikingly high and could be explained by the increasing influence of the variances and
covariances in the SVCM at shorter distances. According to Equations (9) and (10), some
variances of functional-correlating errors had the squared distance as the denominator.
Thus, adopting the constant variances of the elementary errors, the values in the SVCM
were larger at short distances compared with longer ones. Hence, for TLS station point S1,
the relative contribution of functional correlating errors and non-correlating errors had
to be adapted so that the evaluation criterion one was fulfilled. The standard deviations
of the non-correlating errors were set in SVCM_5 so that σ̂2

0 approached one as close as
possible simultaneously for the three TLS station points S2–S4. This joint consideration of
σ̂2

0 was extended to all four stations when fixing SVCM_6 and was the attempt to specify a
consensus dataset which gave an acceptable result for all four TLS station points in terms
of the evaluation criterion 1. Finally, it must be mentioned that different constellations
of the non-correlating errors were possible and similar results as shown in Figure 6 were
obtained. Since the parameters always had to be adjusted step by step, this required a lot
of computing effort and time. Therefore, this work was limited to the six SVCMs specified.
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Table 4 serves to compare the three different stochastic models (I, D, SVCM) on
the basis of the comparison criterion 1. Obviously, the identity matrix used as cofactor
matrix was a too pessimistic assumption for the stochastic model. In general, it could be
seen that the a posteriori variance factors σ̂2

0 obtained for the identity matrix as well as
for the diagonal matrix were always smaller than the a posteriori variance factor of the
corresponding SVCM. Since only the main diagonal was populated in the stochastic models
of the identity matrix and the diagonal matrix, it could be assumed that the increase in σ̂2

0
was due to the covariances.

Table 4. Comparison of σ̂2
0 of different stochastic models (a–c) for the four TLS station points.

^
σ

2

0
SVCM_1 SVCM_2 SVCM_3 SVCM_4 SVCM_5 SVCM_6

S1
Σll = I 0.21
Σll = D 0.88 1.94 1.75 2.05 1.92 1.10
Σll = SVCM 1.00 18.92 5.27 15.12 10.39 1.46

S2
Σll = I 0.09
Σll = D 0.26 0.41 0.36 0.46 0.40 0.27
Σll = SVCM 0.27 1.00 0.46 0.89 0.66 0.38

S3
Σll = I 0.30
Σll = D 0.59 0.96 0.82 1.07 0.91 0.63
Σll = SVCM 0.61 2.08 1.00 1.89 1.40 0.65

S4
Σll = I 0.27
Σll = D 0.68 0.64 0.74 0.82 0.72 0.69
Σll = SVCM 0.70 0.87 0.79 1.00 0.82 0.71

In three out of four cases, where the ideal SVCM was found for each station point, the
difference between a fully populated matrix and a diagonal matrix was small (less than
0.2), which showed that the diagonal matrix could be accepted as a pessimistic assumption
for the stochastic model. However, the most dominant difference occurred at SVCM_2 for
S2 where it can be concluded that considering the covariances significantly improved the
stochastic model.

For approach (a) the standard deviations of the three coordinates of a control point
were identical, which was due to the used functional model (refer to Section 2.1). Beyond
investigating the impact of the three types of stochastic models, the influence on the
estimated parameter’s precision due to a station-wise adapted stochastic model (SVCM_1
to SVCM_4, respectively) and an overarching adapted stochastic model (SVCM_6) was
analyzed.

The stochastic influence of SVCM_3 and SVCM_6 for S3 are shown representatively
for all TLS station points based on the a posteriori standard deviations (see Section 3.2)
in Figure 7a,b. For all TLS station points, the behavior of the a posteriori precision was
similar.

The comparison of the precision measures obtained for the station-wise adapted and
overarching-wise adapted stochastic models showed that for each station the precision of
the estimated parameters decayed for the latter one. This effect occurred independently
from σ̂2

0 lying over or below one and emphasized the added value of applying a compre-
hensive stochastic model. This conclusion complied with the conclusions drawn from the
simulation study in Section 2.3.

Noticeable in Figure 7 are the peaks that occurred, which are also seen in the following
Figures with regard to precision measures. The main reason for their occurrence was the
control points’ geometric configuration. The peaks correspond to control points being
located at the surface’s corners. Thus, their appearance was a configuration issue, reflecting
that parameter estimation results at the borders were less precise than the ones in the
middle.



Remote Sens. 2021, 13, 3124 13 of 22

Remote Sens. 2021, 13, 3124 13 of 23 
 

 

The stochastic influence of SVCM_3 and SVCM_6 for S3 are shown representatively 
for all TLS station points based on the a posteriori standard deviations (see Section 3.2) in 
Figure 7a,b. For all TLS station points, the behavior of the a posteriori precision was sim-
ilar. 

  
(a) (b) 

Figure 7. (a) A posteriori standard deviations of estimated control points (S3 and SVCM_3); (b) a posteriori standard 
deviations of estimated control points (S3 and SVCM_6). 

The comparison of the precision measures obtained for the station-wise adapted and 
overarching-wise adapted stochastic models showed that for each station the precision of 
the estimated parameters decayed for the latter one. This effect occurred independently 
from  lying over or below one and emphasized the added value of applying a compre-
hensive stochastic model. This conclusion complied with the conclusions drawn from the 
simulation study in Section 2.3. 

Noticeable in Figure 7 are the peaks that occurred, which are also seen in the follow-
ing Figures with regard to precision measures. The main reason for their occurrence was 
the control points’ geometric configuration. The peaks correspond to control points being 
located at the surface’s corners. Thus, their appearance was a configuration issue, reflect-
ing that parameter estimation results at the borders were less precise than the ones in the 
middle. 

The evaluation according to the third evaluation criterion implied analyzing the dif-
ferences of the nominal control points and estimated ones. Figure 8 shows an example of 
differences between the nominal and estimated control points obtained for the three sto-
chastic models (I, D, SVCM) in case of S1 and using SVCM_1. For all three coordinate 
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Figure 7. (a) A posteriori standard deviations of estimated control points (S3 and SVCM_3); (b) a
posteriori standard deviations of estimated control points (S3 and SVCM_6).

The evaluation according to the third evaluation criterion implied analyzing the
differences of the nominal control points and estimated ones. Figure 8 shows an example
of differences between the nominal and estimated control points obtained for the three
stochastic models (I, D, SVCM) in case of S1 and using SVCM_1. For all three coordinate
directions, the differences between estimated control points of the three stochastic models
(I, D, SVCM) (see Figure 8) behaved approximately the same and lied in the range of a few
tenths of millimeters. With regard to the nominal control points, differences were in the
range of a few millimeters. This behavior could also be shown for all other TLS station
points and was not presented further in this paper. It could be concluded from Figure 8
that the choice of a particular stochastic model among the three ones had no significant
functional influence on the estimated control points.
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In this section, the investigation was on the influence of the variance of the non-
correlating elementary errors on the functional as well as on the stochastic components
of the B-spline approximation results (influence of the first summands in Equation (4)).
It turned out that in the varied range, these variances had practically no impact on the
estimated control points. On the other hand, their estimated precision was certainly
influenced by the chosen variance level of the non-correlating errors. Selecting an adequate
variance level for these errors was mandatory to increase the estimation precision. This
followed from the comparison of results obtained with station-wise and overarching-wise
adapted stochastic models.
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4.2. Investigation of Individual Errors and Their Impact

Changing the variance level of an elementary error led to different values of the points’
errors of position and as well as to different values of the covariances. The aim of this
section was to investigate how the values chosen for each individual parameter influenced
the SVCM and, finally, the estimation results. Additionally, a better understanding of the
TLS model presented in Section 2.2 and its influences was pursued.

In the upcoming section, the individual impact of several errors’ variances on the
estimated surface were analyze. Three functional correlating errors were selected based on
their influence on the SVCM. Each one led to different effects on the estimated surface along
the three coordinate axes defined as explained in Section 3.1. An increase in the variance of
the chosen CPs led to a decrease in the surface quality only in the specific direction. To be
more specific, the precision of estimated control points would be lower in some directions
if some of these errors dominated. Not only did these errors have an impact on the main
diagonal of the SVCM, but also on the covariances. This was why they were interesting
in contrast to non-correlating errors that only filled up the main diagonal. Results were
evaluated using the same three criteria from Section 3.2. Additionally, spatial correlations
were extracted out of the SVCM and analyzed for each of the functional correlating errors.

The chosen CPs were the zero point error x10 and its influence along the x-direction,
the vertical index error x4 along the z-direction and horizontal beam offset x1n mainly along
the y-direction. At a closer look at Equations (6)–(8), it was seen that after linearization,
the influencing coefficients that filled the F matrix (see Equation (10)) were one for the
corresponding quantities in the case of x10 (on distances) and x4 (on vertical angles).
Regarding x1n, the influencing coefficients were more complex and had an impact on the
horizontal and vertical angles as well as on their covariances. For a relevant inspection,
only the selected parameters of the functional correlating group were assigned a value,
while all other errors of the same group were set to zero. It was, however, impossible
to study the functional correlating errors isolated from the non-correlating errors. This
was due to the matrix’ nature, which became singular when solely considering functional
correlating errors and did not have an inverse. Therefore, the optimal set of non-correlating
errors (SVCM_6 see Table 3) obtained from Section 4.1 were kept constant for all calculated
SVCMs, and only the variances of the aforementioned three functional correlating errors
were varied.

4.2.1. Zero Point Error x10

The zero point error x10 only affected the distances. This became clear by looking at
the SVCM in observation space where the range noise σ2

R was simply added to σ2
x10. Apart

from the main diagonal, the resulting covariances after matrix multiplication were given
by σ2

x10.
The variance of x10 was changed from realistic values in the range of tens of µm up to

tens of millimeters. The chosen values were based on the starting value of 0.06 mm and
then multiplied with a factor (see Table 5).

Table 5. Versions of SVCM with different standard deviations for zero point error x10.

SVCM_7 SVCM_8 SVCM_9 SVCM_10

σx10 (mm) 0.06 0.24 0.48 0.72

According to the first evaluation criterion, σ̂2
0 of the fully populated matrix was

analyzed after the surface was estimated with each of the SVCMs from Table 5. Within
this variance level, σ̂2

0 did not change significantly, but remained as presented in Table 4 at
SVCM_6 for all station points. Differences were only noticeable after six digits.

Judging by the second criterion, the accuracy of the estimated control points changed
for each station point and for each SVCM. As in the previous case, precisions were lower at
close range. This was especially noticeable at S1 and S2 (see Figure 9). In the case of S2, the
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precisions were slightly lower than at S1; a fact that could be explained with the slightly
better transformation of S2 in the LT coordinate system (0.2 mm average residuals for S2,
0.4 mm average residuals for S1). For the other station points (S3 and S4), the graphics
follow a similar profile at closer inspection.
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Striking in Figure 9 are the increased values of the peaks from S1 to S4. This was
mainly due to the configuration of the measurements, leading to corresponding entries
in the design matrix A. At the edges of the test specimen, the observations were sparser
and, thus, control points in that area were estimated with a lower precision for the different
station points. A reference based on network measurements can be found in [33]. Related
to the B-spline estimation, a similar behavior of the precision measures was provided
in [15,21].

Finally, the third criterion implied analyzing the differences of the nominal control
points and estimated ones. Because this error only affected the x coordinates, only this
dimension was presented for the comparison. For each station point, all versions of SVCMs
were used for the estimation. Results are presented in Figure 10.

As can be seen, there were no noticeable differences in the x-direction for the matrices
SVCM_7 to SVCM_10.

Another aspect that was studied was the average spatial correlation coefficient be-
tween the points in the point cloud. A correlation matrix was computed based on different
versions of the SVCM and afterwards, coefficients were extracted for all elements along
one axis (here x). Figure 11 shows how the spatial correlation coefficient increased in all
four versions of the SVCM and for all station points with an increasing variance of x10.
If this was analyzed together with the numerical value for the range noise variance σ2

R,
then the correlation coefficient ρx was exactly 0.5 when σ2

R = σ2
x10. When this threshold was

exceeded, σ2
x10 started to dominate the variances.
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Comparable results were found for the vertical index error x4. The corresponding
results and figures can be found in Appendix A.

4.2.2. Horizontal Beam Offset x1n

In contrast to other functional correlating errors, x1n differently influenced horizontal
and vertical angles, as well as the covariances between these. In all cases, the influence
on the SVCMs was proportional with the scanning distance. As seen in Equation (10), the
influencing factors were the range R as the denominator, meaning that at close ranges the
same variance had a higher impact than at longer ranges.

Further on, the standard deviation of the horizontal beam offset x1n was scaled starting
from realistic values of 0.14 mm up to 1.12 mm (Table 6).

Table 6. Versions of SVCM with different standard deviations for horizontal beam error x1n.

SVCM_15 SVCM_16 SVCM_17 SVCM_18

σx1n (mm) 0.14 0.28 0.56 1.12
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As in the previous cases, the global quality indicator σ̂2
0 did not change.

Considering the second criterion, accuracies of the estimated control points were
better at close range for reduced variance levels. This was especially noticeable at the first
two station points (see Figure 12). The small differences that occurred between S1 and
S2 were explainable by the better transformation residuals of S2 in the LT system. The
estimation with the best precisions was obtained with SVCM_15 in this case where the
variance level was the one determined by the TLS calibration. When compared with the
precisions of the estimated control points for the other two individual errors, it was seen
that at a close range (S1), the precisions remained approximately constant at the same level.
All other station points showed a similar spike profile (saw profile), indicating that the
position of control points played an important role especially at longer ranges.
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The differences of the nominal control points and the estimated ones in y-direction
were the same in three out of four cases for all versions of the SVCM (Figure 13). Only in
the case of S1, differences in a few tenths of mm occurred and this fact was directly related
with the above-mentioned denominator. Just to give an example, the same value of σ2

x1n
was denominated at S1 with 62 m whilst at S4 with 442 m; therefore, having a considerable
effect at close ranges.

When inspecting the spatial correlations, it was obvious that these were different for
all versions of the SVCM as well as for each station point (Figure 14). Firstly, this showed
the more complex impact of the horizontal beam offset on the SVCM and pointed out that
the scanning configuration (distance from scanner to object) together with the variance
level was decisive for the spatial correlations. The reason for this was, as explained before,
a normalization by R2 of the covariances that affected the y-direction.
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5. Conclusions

Within this contribution, a systematic approach of establishing SVCMs for modelling
point clouds by B-spline free-form elements was presented. Motivated by simulated
results, a stochastic model was defined using the elementary error theory and applied
for TLS high-end panoramic scanners. Striving for similar results for real measurements,
laboratory measurement on a small-scale B-spline reference object were conducted. Point
clouds originating from four TLS station points were used to estimate B-spline surfaces
and, furthermore, to evaluate the impact of the used SVCM on the surface’s parameters as
well as their precision. Three criteria were used to evaluate this impact.

Firstly, the a posteriori variance factor, a global measure of precision, aided to establish
appropriate variances for the non-correlating errors corresponding to the noise of the three
polar observations. Neglecting the correlations, by using the identity or the diagonal matrix
as a stochastic model led to an overoptimistic estimation of the precision (see Table 4). A
station-wise adaption of the stochastic model could dramatically decrease the precision of
the estimations from stations with different measurement conditions (see Table 4).

Secondly, the a posteriori precision of the estimated control points was assessed by
using the identity matrix, a diagonal matrix and a fully populated SVCM. A stochastic
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model adapted as well as possible to the measurement situation led to results with a
smallest distortion and of the highest precision. This was shown based on a simulation
(see Figure 1) as well as through a dedicated station-wise adaption of the variances of
the non-correlating elementary errors (see Figure 7). Using fully populated SVCMs led
to negligible differences of the estimated precision compared to the other two structures
of stochastic models. However, noticeable differences between the precisions occurred
when using the station-wise and overarching-wise adapted SVCMs. These emphasized the
importance of setting proper variance levels for the non-correlating errors when aiming
the highest precision in parameter estimation.

Thirdly, reference values of the known control points were used to examine coordinate-
wise differences between nominal and estimated control points. This evaluated the cor-
rectness of the functional part of the estimation results. No significant difference between
the estimation’s biases could be observed when an approximation with an identity matrix,
diagonal matrix or a fully populated SVCM (see Figure 8) was performed.

Additionally, individual functional correlating elementary errors (zero point error,
vertical index error and horizontal beam offset) were analyzed. It turned out that their
increasing variances led to a lower precision of the estimated control points. Furthermore,
the differences between the precision resulting from different SVCMs decreased with
an increased distance to the measuring object (see Figures 9, 12 and A1). Moreover, no
significant bias could be found in the differences of the estimated control points with the
nominal control points. In addition, the differences between the biases obtained with the
estimated control points using different SVCMs were not significant (see Figures 10 and 13).
The higher the variance of the functional correlating elementary errors, the higher the
average correlation between the measurements. The increase was more pronounced for
station points closer to the measuring object (see Figures 11, 14 and A2).

As regards future research, the same workflow will be applied for objects of a tenth
of an m level and outdoor scans in order to identify contributions of further elementary
errors to the uncertainty budget. It is also planned to include the stochastic correlating
errors such as environment influences and surface properties.
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Appendix A. Vertical Index Error x4

The variance of the vertical index error x4 was chosen due to its influence on the
variances and covariances of vertical angles and implicitly the z coordinate. Within the
SVCM, it had the exact effect on vertical angles as x10 has on the distances. In the obser-
vation space, the vertical angle noise σ2

θ was simply added to σ2
x4. Apart from the main

diagonal, the resulting covariances after matrix multiplication were given by σ2
x4. Values of

the variance were changed starting from realistic values under 1 mgon up to a few mgon.
The chosen values were based on the starting value of 0.45 mgon and then multiplied with
a factor (see Table A1).

Table A1. Versions of SVCM with different standard deviations for vertical index error x4.

SVCM_11 SVCM_12 SVCM_13 SVCM_14

σx4 (mgon) 0.45 0.90 1.79 3.58

Within this variance level, σ̂2
0 did not change, but remained as presented in Table 4 at

SVCM_6 for all station points. This was also reflected by means of the differences between
the nominal control points and estimated ones. Only the differences along z were inspected
for each station point and all versions of the SVCM. Here, the differences between the
estimated control points in z-direction while using the SVCM_11 to SVCM_14 were not
distinguishable.

Looking at the second criterion, the behavior was comparable to the zero point error.
The precision of the estimated control points was low at a close range and only small
differences were noticeable for an increasing variance level (see Figure A1). With an
increasing distance, precisions decreased and followed the same pattern.
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Similar to the spatial correlation analysis determined before, coefficients were ex-
tracted for all elements along the z-axis. In Figure A2, the spatial correlation coefficient
increased in all four versions of the SVCM and for all station points with an increasing
variance of x4. The trend was the same as in the zero point error, but the equivalent
non-correlating error in this case was σθ the vertical angle noise.
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