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Abstract

Scientific models play an important role in many technical inventions to facilitate daily

human activities. We use them to assist us in simple decision making such as deciding

what type of clothing we should wear using the weather forecast model, and also in

complex problems such as assessing the environmental impact of industrial wastes.

Existing scientific models, however, are imperfect due to our limited understanding

of complex physical systems. Due to the rapid growth in computing power in recent

years, there has been an increasing interest in applying data-driven modeling to improve

upon current models and to fill in the missing scientific knowledge. Traditionally,

these data-driven models require a significant amount of observation data, which is

often challenging to obtain, especially from a natural system. To address this issue,

prior physical knowledge has been included in the model design, resulting in so-called

hybrid models. Although the idea of infusing physics with data seems sound, current

state-of-the-art models have not found the ideal combination of both aspects, and the

application to real-world data has been lacking.

To bridge this gap, three research questions are formulated:

1. How can prior physical knowledge be adopted to design a consistent and reliable

hybrid model for dynamic systems?

2. How can prior physical and numerical knowledge be adopted to design a consistent

and reliable hybrid model for dynamic and spatially distributed systems?

3. How can the hybrid model learn about its own total (predictive) uncertainty

in a computationally effective manner, so that it is appropriate for real-world

applications or could facilitate scientific hypothesis testing?

The overall goal is, with these questions answered, to contribute to more consistent

approaches for scientific inquiry through hybrid models.
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The first contribution of this thesis addresses the first research question by proposing

a modeling framework for a dynamic system, in the form of a Thermochemical Energy

Storage device. A Nonlinear Autoregressive Network with Exogeneous Input (NARX)

model is trained recurrently with multiple time lags to capture the temporal dependency

and the long-term dynamics of the system. During training, the model is penalized

when it violates established physical laws, such as mass and energy conservation. As a

result, the model produces accurate and physically plausible predictions compared to

models that are trained without physical regularization.

The second research question is addressed by the second contribution of this thesis, by

designing a hybrid model that complements the Finite Volume Method (FVM) with the

learning ability of Artificial Neural Networks (ANNs). The resulting model enables the

learning of unknown closure/constitutive relationships in various advection-diffusion

equations. This thesis shows that the proposed model outperforms state-of-the-art deep

learning models by several orders of magnitude in accuracy, and it possesses excellent

generalization ability.

Finally, the third contribution addresses the third research question, by investigating

the performance of assorted uncertainty quantification methods on the hybrid model.

As a demonstration, laboratory measurement data of a groundwater contaminant trans-

port process is employed to train the model. Since the available training data is ex-

tremely scarce and noisy, uncertainty quantification methods are essential to produce

a robust and trustworthy model. It is shown that a gradient-based Markov Chain

Monte Carlo (MCMC) algorithm, namely the Barker proposal is the most suitable to

quantify the uncertainty of the proposed model. Additionally, the hybrid model out-

performs a calibrated physical model and provides appropriate predictive uncertainty

to sufficiently explain the noisy measurement data.

With these contributions, this thesis proposes a robust hybrid modeling framework

that is suitable for filling in missing scientific knowledge and lays the groundwork for a

wider variety of complex real-world applications. Ultimately, the hope is for this work

to inspire future studies that contribute to the continuous and mutual improvements

of both scientific knowledge discovery and scientific model robustness.
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Zusammenfassung

Wissenschaftliche Modelle spielen eine wichtige Rolle in vielen technischen Erfindungen,

die den Menschen den Alltag erleichtern. Wir nutzen sie, um einfache Entscheidungen zu

treffen, zum Beispiel die Wahl der richtigen Kleidung anhand eines Wettervorhersage-

modells, aber auch bei komplexen Problemen wie der Bewertung der Umweltauswirkun-

gen von Industrieabfällen. Bestehende wissenschaftliche Modelle sind jedoch aufgrund

unseres begrenzten Verständnisses komplexer physikalischer Systeme unvollkommen.

Aufgrund der raschen Zunahme der Rechenleistung in den letzten Jahren hat das In-

teresse an datengetriebenen Modellen zugenommen, um aktuelle Modelle zu verbessern

und fehlende wissenschaftliche Erkenntnise zu ergänzen. Diese datengetriebenen Model-

le erfordern traditionell eine beträchtliche Menge an Beobachtungsdaten, die oft schwer

zu beschaffen sind, insbesondere bei natürlichen Systemen. Um dieses Problem zu lösen,

wurde physikalisches Vorwissen in den Modellentwurf einbezogen, was zu sogenannten

Hybridmodellen führte. Obwohl die Idee, die Physik mit Daten zu verbinden, vernünftig

erscheint, fällt es aktuellen Modellen schwer, die ideale Kombination beider Aspekte

zu finden. Deshalb findet hybride Modellierung noch keine breite Anwendung auf reale

Daten.

Um diese Probleme zu lösen, werden drei Forschungsfragen formuliert:

1. Wie kann physikalisches Vorwissen genutzt werden, um ein konsistentes und zu-

verlässiges Hybridmodell für dynamische Systeme zu entwerfen?

2. Wie kann physikalisches Vorwissen genutzt werden, um ein konsistentes und zu-

verlässiges hybrides Modell für dynamische und verteilte Systeme zu entwerfen?

3. Wie kann das hybride Modell seine eigene gesamte Vorhersageunsicherheit auf eine

rechnerisch effektive Weise erlernen, so dass es für reale Anwendungen geeignet

ist?
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Das Gesamtziel ist es, mit der Beantwortung dieser Fragen zu kohärenteren Ansätzen

für wissenschaftliche Untersuchungen durch hybride Modelle beizutragen.

Der erste Beitrag dieser Arbeit befasst sich mit der ersten Forschungsfrage, wobei ein

Modellierungsrahmen für ein dynamisches System in Form eines thermochemischen

Energiespeichers betrachtet wird. Ein ”Nonlinear Autoregressive Network with Exoge-

neous Input”(NARX) Model wird rekurrent mit mehreren Zeitverzögerungen trainiert,

um die zeitliche Abhängigkeit und die langfristige Dynamik des Systems zu erfassen.

Während des Trainings wird das Modell bestraft, wenn es gegen etablierte physikalische

Gesetze verstößt, wie z. B. die Erhaltung von Masse und Energie. Infolgedessen liefert

das Modell genaue und physikalisch plausible Vorhersagen im Vergleich zu Modellen,

die ohne physikalische Regularisierung trainiert werden.

Die zweite Forschungsfrage wird durch den zweiten Beitrag dieser Arbeit beantwortet, in

welchem ein hybrides Modell entwickelt wird, das die Finite-Volumen-Methode (FVM)

mit der Lernfähigkeit künstlicher neuronaler Netze (ANN) ergänzt. Das daraus resultie-

rende Modell ermöglicht das Lernen unbekannter Schließungs-/Konstitutivbeziehungen

in verschiedenen Advektions-Diffusions-Gleichungen. Das vorgeschlagene Modell übertrifft

die modernsten Deep-Learning-Modelle um mehrere Größenordnungen in der Genau-

igkeit und besitzt eine hervorragende Generalisierungsfähigkeit.

Der dritte Beitrag befasst sich schließlich mit der dritten Forschungsfrage, indem ver-

schiedene Methoden zur Quantifizierung von Unsicherheiten im Hybridmodell unter-

sucht. Zur Demonstration werden Labormessdaten über Grundwasserschadstofftrans-

port zum Trainieren des Modells verwendet. Da die verfügbaren Trainingsdaten ex-

trem knapp und verrauscht sind, sind Methoden zur Quantifizierung der Unsicher-

heit unerlässlich, um ein robustes und zuverlässiges Modell zu erstellen. Es wird ge-

zeigt, dass ein gradientenbasierter Markov-Chain-Monte-Carlo-Algorithmus (MCMC),

nämlich der Barker-Proposal, am besten geeignet ist, die Unsicherheit des vorgeschla-

genen Modells zu quantifizieren. Darüber hinaus übertrifft das Hybridmodell ein kali-

briertes physikalisches Modell und bietet eine angemessene Vorhersageunsicherheit, um

die verrauschten Messdaten ausreichend zu erklären.

Mit diesen Beiträgen schlägt diese Arbeit einen robusten hybriden Modellierungsrah-

men vor, der geeignet ist, fehlendes wissenschaftliches Wissen zu ergänzen und die

Grundlage für eine breitere Palette komplexer Anwendungen in der realen Welt zu le-

gen. Letztendlich hoffen wir, dass diese Arbeit künftige Studien anregt. Folglich wäre es
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näher, eine kontinuierliche und gegenseitige Verbesserung sowohl der wissenschaftlichen

Erkenntnisgewinnung als auch der Robustheit wissenschaftlicher Modelle zu erreichen.
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1 Introduction

1.1 Background

Scientists have been striving to develop reliable scientific models to predict the be-

havior of natural systems and ultimately aid in strategic decision-making processes for

solving various problems. Such problems include groundwater contamination, where

the modeling of contaminant diffusion processes is essential to determine whether the

groundwater is contaminated [e.g. Brown et al., 2012, Koch and Nowak, 2015, Nowak

and Guthke, 2016]; climate change, where accurate climate models are required to

quantify the potential effect of global warming and devise a robust strategy to mini-

mize the catastrophe [e.g. Marchuk, 1974, Wetherald and Manabe, 2002, IPCC, 2013];

and earthquake mitigation, where reliable models are necessary to assess potential haz-

ards, as well as to plan and design robust infrastructure [e.g. Woessner et al., 2015,

Crowley et al., 2019, Allen et al., 2020].

However, despite centuries of scientific discovery and progress, complex physical systems

are still poorly understood, especially at problem-relevant scales. At smaller scales,

such as molecular and pore scales, where the physical processes are usually better

understood, the computational cost is often prohibitive to model and simulate the

systems. Additionally, upscaling the model from small scale to problem-relevant scale

universally leads to inaccuracies due to missing or unknown governing laws across scales

and heterogeneity of the small-scale systems [e.g. Bourg and Sposito, 2010, Molins and

Knabner, 2019, Lavin et al., 2021].

Most of these problems have three common characteristics. First, they are dynamic,

which means that the systems are time-dependent, and therefore, the system states

evolve, depending on their values at an earlier point in time. Second, they are spatially

distributed, which means that there are variations between the states at one spatial
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location and the other. To be more precise, the systems mostly involve the transport of

a quantity in space through natural media. Third, they are often treated as stochastic.

The reason is that the systems are not fully understood at larger scales, thus appearing

to occur in a random manner and introducing uncertainties in the corresponding models

and predictions. The source of such uncertainties can be aleatoric, which is caused by

inherent randomness and is irreducible even with more information, or epistemic, which

is induced by scarce data and missing knowledge or understanding of the system.

The purpose of this thesis is to fill in the missing knowledge for these types of problems.

It focuses specifically on physical systems that are mathematically modeled with Par-

tial Differential Equations (PDEs) because PDEs capture both the time dependency

and spatial connectivity of a dynamic and spatially distributed system. Additionally,

this thesis also concentrates on equipping the models with uncertainty quantification

methods to enhance the robustness of the modeling process.

1.2 Learning from Data

The past decade has seen the rapid development of data-driven modeling approaches

in many aspects. This development can be attributed to the increase in computa-

tional power and availability of data [e.g. Jordan and Mitchell, 2015, Appenzeller,

2017, Aggarwal, 2018]. Additionally, the popularity of data-driven modeling is further

boosted by its powerful ability to extract information from observation data that the

physics-based model lack [e.g. Gupta and Nearing, 2014]. One prominent approach

is the Artificial Neural Network (ANN), which was already proven to be a universal

approximator [Hornik, 1991]. In other words, ANNs are capable to extract complex

relationships between variables. As a consequence, data-driven modeling in general,

and ANNs in particular, could be a useful tool for discovering new knowledge from

data, which is the focus of this thesis and could help reduce the epistemic uncertainty

that plagues the modeling of many dynamic and spatially distributed systems.

Considerable research has grown up around the development and applications of ANNs.

More complicated ANN architectures are recently proposed to tackle various types of

problems. This is exemplified in the adoption of the Nonlinear Autoregressive Network

with Exogenous Input (NARX) [Chen et al., 1990], Long Short-Term Memory (LSTM)
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[Hochreiter and Schmidhuber, 1997], Gated Recurrent Unit (GRU) [Cho et al., 2014],

Transformer [Vaswani et al., 2017], and Neural Ordinary Differential Equation (Neural

ODE) [Chen et al., 2018] to solve dynamic problems as opposed to the basic Recurrent

Neural Network (RNN). Furthermore, more complex variants of the Convolutional Neu-

ral Network (CNN) such as the Temporal Convolutional Network (TCN) [e.g. Bai et al.,

2018] and the Convolutional LSTM (ConvLSTM) [Shi et al., 2015], have been applied

to solve spatially distributed physics problems [e.g. Westermann et al., 2020, Huang

et al., 2021, Li et al., 2021a]. Besides the CNN-based models, non-convolution-based

models such as the Distributed Spatio-Temporal Artificial Neural Network Architec-

ture (DISTANA) [Karlbauer et al., 2019] and Fourier Neural Operator (FNO) [Li et al.,

2021b] have also been proposed to solve spatio-temporal problems. This rapid devel-

opment of ANN, together with the history of successful implementations on predicting

physical phenomena [e.g. Hsu et al., 1995b, Maier and Dandy, 1996, Hsu et al., 1995a,

Ashena and Thonhauser, 2015], further motivate the choice of ANN as the data-driven

modeling tool in this thesis.

The aforementioned approaches, however, have failed to address the interpretability

issue of ANNs. ANNs are inherently black box models with inadequate explanations

of what each of their elements represents [e.g. Breiman, 2001, Doshi-Velez and Kim,

2017, Miller, 2019]. Consequently, the inner workings of ANNs are not easily inter-

pretable [e.g. Petch et al., 2022]. Additionally, ANNs require a huge amount of data

to produce accurate predictions. In the physics domain, the abundance of data is not

always guaranteed, due to the cost of observation or experiment [e.g. Hoffmann et al.,

2019]. With limited availability of training data, ANNs often produce implausible re-

sults [e.g. Karpatne et al., 2017, 2022, Reichstein et al., 2019]. Moreover, the black-box

characteristic of ANNs hinders the discovery of trustworthy new hypotheses [e.g. Mur-

doch et al., 2019, Carleo et al., 2019, Dybowski, 2020, Roscher et al., 2020, Oviedo

et al., 2022, Freiesleben et al., 2022]. In short, humans use ANNs as a pragmatic tool,

without gaining an additional understanding of the modeled systems. Because of this

main drawback, this thesis focuses on administering improvements so that the ANNs

develop further as a reliable tool to aid in critical decision-making processes and in

extracting scientifically interpretable hypotheses on the functioning of dynamic and

spatially distributed systems.
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1.3 Infusing Prior Physical Knowledge

ANN and physics-based models lie on two different extremes. On one end of the

spectrum, ANNs use a high amount of data to establish relationships between variables,

namely the inputs and outputs, particularly when no physical knowledge exists about

the modeled system. On the other end, physics-based models are based on known

and proven scientific principles. A considerable amount of work recently has been

conducted on fusing data-driven and physics-based modeling to design a hybrid model

that profits from the strengths of both models [Karpatne et al., 2017, Karniadakis et al.,

2021]. In this manner, the hybrid model should possess the flexibility and ability to

learn from data, in addition to being scientifically robust and physically consistent.

More importantly, it should address the interpretability problem of ANNs. This hybrid

modeling framework has been proposed with different names, but in this thesis, it will

be referred to as Physics Informed Neural Network (PINN) interchangeably.

The most common method of infusing physical knowledge to ANNs is to add a physically-

formulated constraint into the loss function as an additional regularization term. This

physics-based regularization restricts the hypothesis space so that it reduces the possi-

bility of physically-inconsistent models being chosen as the correct model [Hastie et al.,

2009]. The degree of physical information employed in such a method varies from

partial to complete knowledge. Examples of partial physical knowledge include the

monotonicity of the water density with regards to the depth of a lake and consistency

of energy conservation over time [Jia et al., Read et al., 2019]. On the other hand, the

other method assumes complete knowledge and validity of a PDE to be capable of fully

describing the modeled system [e.g. Raissi et al., 2019, Tartakovsky et al.].

Both aforementioned types of knowledge inclusion differ not only in the degree of phys-

ical information introduced into the model but also in their advantages and purposes.

Partial physics knowledge provides more flexibility in searching through larger hypoth-

esis spaces because the constraints are not as restrictive as if using the full PDE.

However, this type of knowledge inclusion is usually only fit for solely predicting some

unknown states of the modeled system, and is not suitable for other purposes. On

the contrary, the use of complete physics knowledge is more appropriate for a wider

range of motivations, such as surrogate modeling and inverse problems [e.g. He et al.,

2020]. More concretely, the PDE parameters can also be unknown and inferred during
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the model training, because the corresponding form of the PDE is assumed to be true

and representative of the modeled system. Nevertheless, the full knowledge inclusion

restricts the model generalization ability to be fairly limited to the specific conditions

that the model is trained on. Additionally, the strict form of PDE used to define the

model also limits the expressiveness and the learning capability of the model.

Another method of infusing physical knowledge into the ANN is to design the model

architecture to adhere to known physical structures [e.g. Karniadakis et al., 2021, Lavin

et al., 2021]. This kind of approach ensures that certain physical properties are satisfied.

The effectiveness of such methods has been exemplified in embedding invariance in an

ANN to solve the Reynolds-averaged Navier–Stokes (RANS) turbulence problem [Ling

et al., 2016], designing symplectic networks to ensure the conservation of Hamiltonian

systems [Jin et al., 2020] and using convolutional structures to approximate spatial

derivatives of PDEs in combination with data-assimilation-inspired techniques [Guen

and Thome, 2020]. Such approaches, however, are mostly tailored only to a particular

problem. As a result, their applicability is also severely restricted to a specific problem

class.

Despite the high amount of promising work in the hybrid modeling field, there is still

a huge gap that needs to be addressed before a hybrid model can be reliably used to

discover new knowledge and aid in decision-making processes. More specifically, three

important issues relating to this gap are identified:

1. The existing modeling frameworks either use insufficient or excessive physical

knowledge. With the inclusion of physics-based regularization, the training of

the model develops into a multi-objective optimization problem. A sweet spot

that integrates the right amount of learning flexibility and physical restriction

still needs to be found.

2. Most, if not all, of the aforementioned approaches, still need a substantial amount

of training data to possess reasonable generalization. As mentioned previously,

their generalization is also restricted to the specific initial and boundary condi-

tions that they are trained on. This issue is crucial because discovered scientific

knowledge should be generalizable to different conditions.

3. Existing approaches are demonstrated using synthetic datasets, and their applica-

tion to real-world data, which are often noisy and sparse, is still an open question.
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Furthermore, the large size of the existing models prohibits the implementation

of uncertainty quantification methods [e.g. Abdar et al., 2021], which are critical

in handling real-world datasets.

In this thesis, the drawbacks of the existing models are addressed. This thesis attempts

to find the right combination between physics and data, and assumes a partial (soft)

prior knowledge of the PDE, to enable the model to learn and discover missing knowl-

edge from the available data. Moreover, this thesis focuses on the knowledge discovery

purpose, and not on building a faster surrogate model, unlike most of the previous

works. The model developed in this thesis also adopts a more general structure, that is

based on well-known and commonly used numerical solvers, so that the model applies

to more problems, and can generalize well to various conditions. Lastly, the purpose of

this thesis is also to develop a scalable model, to facilitate uncertainty quantification

methods to be performed.

1.4 Goal and Objectives

Having established the problem description and the potential possessed by the hybrid

modeling approach, it can be envisioned that having a knowledge-infused data-driven

model is beneficial to assist the discovery of novel scientific knowledge. This advance in

the scientific domain, in turn, improves the existing prior physical knowledge and can

be imposed on the ensuing hybrid model to further discover yet unidentified scientific

information. What follows is an open-ended optimization cycle to continuously im-

prove on the inductive bias administered in the hybrid model based on well-established

scientific principles and its own previous discovery [Bergen et al., 2019, Lavin et al.,

2021]. This framework, consequently, accelerates state-of-the-art scientific discovery

and improves the model prediction and the resulting decision-making processes.

As the first step towards reaching this ultimate vision, the goal of this thesis is to

design a hybrid modeling framework for spatio-temporal problems that can contribute

to the reliable generation of new knowledge, while being truthful about its own un-

certainty. To re-emphasize, this thesis focuses not on building a faster surrogate with

restrictive prior knowledge, but rather to build a model that allows reliable learning of

new scientific hypotheses from the available data. To achieve this goal, three specific
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research questions are pursued, along with the corresponding objectives to answer each

question:

1. How can prior physical knowledge be adopted to design a consistent

and reliable hybrid model for dynamic systems?

For this research question, a recurrent structure is chosen for the model to han-

dle temporal dependencies of the unknown states of dynamic systems. More

importantly, the recurrence should also be reflected during the training to im-

prove long-term prediction. Moreover, additional physics-based regularization

may further improve the plausibility of the model prediction. These aspects are

tested in this thesis by comparing the proposed hybrid model with a conventional

machine-learning model that does not experience recurrence and is not physically

regularized during its training.

2. How can prior physical knowledge be adopted to design a consistent

and reliable hybrid model for dynamic and spatially distributed sys-

tems?

To answer this research question, this thesis proposes a combination of the well-

established numerical structure of the Finite Volume Method (FVM) [e.g. Moukalled

et al., 2016] as the physical inductive bias to handle spatio-temporal problems with

the learning capability and flexibility of ANNs as the data-driven scheme. This

combination is intended to provide prior structural knowledge about the trans-

lation invariance of the system’s behavior and to ensure conservation properties,

and it is flexible and general enough to apply to different problems. Furthermore,

the proposed hybrid model should not only generalize well to different values and

types of numerical boundary conditions, but should also be able to learn unknown

closure/constitutive relationships from data. The designed hybrid model is then

compared with existing state-of-the-art models about their prediction accuracy

and consistency when applied to various equations. Additionally, the model is

also tested on data generated with unseen initial or boundary conditions, and the

learned closure functions are also compared to the ground truth assumed in the

data generation process.

3. How can the hybrid model learn about its total (predictive) uncertainty
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in a computationally effective manner, so that it is appropriate for real-

world applications?

To address this research question, the parameters of the hybrid model are treated

as random parameters to quantify the model’s systematic uncertainty, and noisy

real-world data are used to represent the aleatoric uncertainty. Then, various un-

certainty quantification methods are compared, such as the cheaper parameter-

ized variational inference method [Blundell et al., 2015] and more computationally

demanding Markov Chain Monte Carlo (MCMC) methods [e.g. Andrieu et al.,

2003]. Because the machine learning toolbox [Paszke et al., 2019] used in this

thesis provides gradient information of the model prediction, more complicated

gradient-based MCMC approaches are also used to obtain better convergence

of the algorithm [e.g. Sengupta et al., 2016]. The tests include comparing the

convergence of various uncertainty quantification methods to determine the most

appropriate and efficient algorithm for the proposed hybrid model, as well as a

comparison of the learned closure function and the prediction of the proposed

model with their confidence intervals, against a calibrated physical model.

1.5 Structure and Contributions

This thesis is divided into four chapters and four appendices. This first chapter lays

down the problem description and motivation of this thesis, including the formulation

of the research goal, objectives, and research questions. The second chapter provides

explanations of dynamic and spatially distributed systems and the state-of-the-art ANN

methods that are commonly used to solve them. It also summarizes uncertainty quan-

tification methods that are employed in this thesis. To clarify, this thesis does not

provide explanations on the fundamentals of ANNs. Interested readers are referred to

Goodfellow et al. [2016]. The third chapter discusses the contributions of this thesis,

including the summary of all related publications included in this thesis. Lastly, the

fourth chapter concludes the contributions and how they relate to answering the re-

search questions, as well as the remaining challenges and open questions to move closer

to the bigger vision.
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Each appendix presents a publication that supports the thesis goal. The first publica-

tion [Praditia et al., 2020] looks at improving the prediction and physical plausibility of

a dynamic system, in the form of a relatively complex Thermochemical Energy Storage

(TCES) system. The improvement is achieved by introducing recurrence in the model

training so that the long-term dynamic prediction is reasonably accurate and stable,

and by using mass and energy conservation laws to regularize the model training. This

publication addresses the first research question.

The second publication [Praditia et al., 2021] and the third publication [Karlbauer

et al., 2022] focus on fusing the FVM and Neural ODE frameworks to handle spatio-

temporal problems. In this manner, both publications contribute to building a hybrid

model that outperforms existing state-of-the-art models in terms of prediction accu-

racy and consistency, the generalization to different initial and boundary conditions of

the modeled systems, and the ability to explicitly learn unknown closure relationships

for knowledge discovery. Therefore, the second and the third publication address the

second research question.

The last publication [Praditia et al., 2022] compares different uncertainty quantification

methods to investigate the most computationally efficient algorithm for the proposed

hybrid model and to provide a more robust prediction in the face of model and mea-

surement uncertainties. Additionally, noise and the sparse real-world dataset are also

utilized as the training data, to show the fitness of the proposed model for a real-

world application and its superiority compared to a calibrated physical model that

is restricted by a rigid parameterization. This fourth publication addresses the third

research question.
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This chapter provides an overview of state-of-the-art methods that are applicable for

dynamic and spatially distributed systems as well as for uncertainty quantification.

This chapter is arranged into three sections. Section 2.1 discusses the general form

of Ordinary Differential Equations (ODEs) to define dynamic systems, and machine-

learning models that are used to process them. Section 2.2 discusses the general form

of Partial Differential Equations (PDEs) to define dynamic and spatially distributed

problems, also called spatio-temporal problems. This section also presents existing

machine-learning models that apply to solving such problems. Finally, Section 2.3 in-

troduces uncertainty quantification methods that were built upon the Bayesian frame-

work and are suitable for physics-based models, machine-learning models, and hybrid

models.

2.1 Dynamic systems

A dynamic system is defined as a system with one or more internal states that evolve

over time. The rate at which these states change characterizes the behavior of the

dynamic system. Generally, this behavior is written in the form of an ODE [e.g. Arfken

et al., 2013]:

ut+1 = ut +

∫ t+1

t

f(u, t) dt, (2.1)

where u is the variable of interest, t is the time index, and f(u, t) = du
dt

is the rate of

change, which is mathematically defined as the derivative with respect to time. Note

that, in this thesis, only first-order ODEs are considered.

In most physics applications, the initial condition of the system is known, and the

focus is therefore to solve an initial value problem [e.g. Stroud, 1974]. To calculate
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the integral in Equation 2.1, various numerical methods can be employed, starting

from the simple Euler method to the more complicated Runge-Kutta method [Butcher,

2008]. The choice of the numerical integrator depends on the desired accuracy and the

difficulty of the problem at hand.

To derive these numerical integration methods, a Taylor expansion of Equation 2.1 is

written:

ut+1 = ut + u′
t∆t+

1

2
u′′
t∆t2 +O(∆t3), (2.2)

where ∆t is the time step size, u′
t is the first derivative of u with respect to t, and u′′

t

is the second derivative of u also with respect to t. The Euler method approximates

Equation 2.1 by truncating the Taylor expansion in Equation 2.2 right after the u′
t

term. In contrast, the Runge-Kutta method calculates coefficients based on u′
t at

various points in the interval [t, t + 1] to obtain a better approximation of the Taylor

expansion with higher order. As a result, the Runge-Kutta method produces a more

accurate integration of Equation 2.1 compared to the Euler method. Furthermore, the

error of the numerical integration can be controlled using adaptive methods, where the

step size ∆t is adjusted at each evaluation step according to the truncation error.

Besides these numerical methods, ANNs also have been exploited to solve dynamic

problems. The Recurrent Neural Network (RNN) [e.g. Elman, 1990] provides the sim-

plest approach, assuming that the value of ut+1 depends only on its own value at an

earlier point in time ut and an external input ht that might contain useful additional

information. Therefore, the RNN model can be written as ut+1 = g(ut, ht). The

Nonlinear Autoregressive Network with Exogeneous Input (NARX) [Chen et al., 1990]

facilitates a more complicated approach, by providing information from multiple time

points in the past as well as an external input ht. Mathematically, the NARX model

is written as ut+1 = g(ut, ut−1, · · · , ut−du , ht), where ht is the exogenous input and du

is the maximum feedback delay of the model. More recently, the Neural Ordinary Dif-

ferential Equation (Neural ODE) [Chen et al., 2018] was proposed to learn only the

unknown time derivative f(u, t) instead of the whole right-hand side of Equation 2.1.

In the next subchapters, an overview of these ANN models is presented.
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2.1.1 Recurrent Neural Networks

RNN is a series of repeated feedforward neural networks [e.g. Bebis and Georgiopoulos,

1994] that allows the processing of sequential data, including time series. At each time

step, it receives the value of u from the previous time step, as well as an additional

input h, to perform an evaluation of the subsequent value of u. In other words, RNN

feeds back its own prediction as an input to predict the next output. Hence, it explicitly

models the dependency of output at a particular time step on its past values. This flow

of information within an RNN is better visualized by unrolling the network, as shown

in Figure 2.1.

ANN

ht

ût

Unrolled

ANN

h1

û1

ANN

h2

û2

ANN

h3

û3

· · · ANN

ht

ût

Figure 2.1: The general architecture of a Recurrent Neural Network model∗

These feedforward neural networks that build the RNNs consist of multiple hidden

layers that are connected through the learnable parameters w. Mathematically, these

connections can be written as

hl
i = a




Nw,l−1∑

j=1

wl−1
i,j hl−1

i,j


 , (2.3)

where hl
i denotes the hidden state of node i in layer l, Nw,l−1 denotes the number of

nodes in layer l− 1, wl−1
i,j denotes the ANN parameter that connects node j from layer

l − 1 to node i in layer l, and a(·) is a non-linear activation function.

Because the same feedforward network is employed in an RNN for every time step,

RNNs possess various advantages for time series modeling [e.g. Du and Swamy, 2013,

∗Redrawn from Olah [2015].
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Sharkawy, 2020]. First, the increase in sequence length scales well to the increase in

computational cost to perform forward propagation, because the model size does not

grow with increasing sequence length. Second, RNNs are able to process any sequence

with an arbitrary length that is different from the length of the training data. Third, the

time dependency of the data is captured well by the RNN structure. More importantly,

the RNN structure is physically reasonable, providing an assumption that the learned

physical relationship that governs the modeled system should remain the same at any

given time.

To train and update the parameter values of an ANN, gradient information with respect

to its parameters w is propagated backward from the output to the input [Rumelhart

et al., 1986]. The gradient is calculated based on the discrepancy between the predic-

tion û and the data u, defined in the loss function L(û, u). With RNN, the gradient

backpropagation has to be performed through the unrolled network, using the method

called Backpropagation Through Time (BPTT) [Werbos, 1990]. Mathematically, the

process of BPTT can be written as

∂L

∂w
=

∂L

∂ût

(
t∑

i=1

(
t∏

j=i+1

ûj

∂ûj−1

)
ûi

∂w

)
. (2.4)

Earlier, it was stated that one of the advantages of using RNN is that it scales well to an

increasing sequence length. Unfortunately, this statement holds true only for forward

propagation. During training, the summation and multiplication term in Equation 2.4

also grows with increasing sequence length, leading to reduced computational efficiency

in the backpropagation process. Moreover, this growing term in the gradient calculation

could also lead to either a very small value (vanishing gradient problem) or an extremely

large value (exploding gradient problem) [e.g. Hochreiter et al., 2001, Bayer et al., 2009,

Pascanu et al., 2013, Sarker, 2021]. Consequently, the vanishing gradient problem

prevents the RNN parameters to be updated, while the exploding gradient problem

imposes instability during the training. Additionally, the flow of information could also

vanish during forward propagation, causing RNN to often fail in capturing long-term

dependency. To alleviate this problem, state-of-the-art models have been proposed,

such as the Long Short-Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997]

and NARX [Chen et al., 1990].
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2.1.2 Nonlinear Autoregressive Network with Exogeneous Input

The Nonlinear Autoregressive Network with Exogeneous Input (NARX) is an alteration

of RNN that enables a feedback delay of past predictions [Chen et al., 1990]. In addition

to only using ut−1 as an input to predict ut, NARX also provides u at multiple preceding

time steps up to a certain feedback delay d as inputs to the model, that is ut−2, · · · ,
ut−d. Mathematically, the NARX model is written as

ût+1 = g (ut, ut−1, ut−2, · · · , ut−d, ht) . (2.5)

The function g (ut, ut−1, ut−2, · · · , ut−d, ht) in Equation 2.5 can also be seen as an ap-

proximation to linear multistep methods, for example, the Adams-Bashforth method

[e.g. Peinado et al., 2010, Tutueva et al., 2020], which are suitable to handle problems

with long-term dependencies. As a consequence, NARX is also more suitable to capture

long-term dynamics compared to the RNN.

NARX has two different forms, namely the Series-Parallel (SP) and Parallel (P), as

shown in Figure 2.2. The SP mode feeds the real values of u as inputs to the network,

instead of the predicted values of û. To put it differently, the SP mode has no recurrence

and the feedback loop is open. In contrast to that, the P mode closes the feedback

loop, providing the predicted values of û at the preceding time steps as the inputs to

the model, behaving more like an RNN compared to the SP mode.

In previous works, NARX was commonly trained in the SP mode to achieve faster

convergence and better stability during training. Only during testing is the feedback

loop closed, by converting the SP mode into the P mode. However, this procedure fails

to train the model well to produce accurate long-term predictions [e.g. Buitrago and

Asfour, 2017, Boussaada et al., 2018]. In this thesis, the P mode is implemented both

during training and testing, because training in P mode minimizes the effect of error

accumulation over time, in addition to learning the long-term dynamics better.

2.1.3 Neural Ordinary Differential Equations

Up until recently, various ANN models have been used to solve ODEs only in the

discrete temporal domain. The Residual Network (ResNet) [He et al., 2016] is one



16 2 Methods

ht

ut−1

ut−2

...

ut−d

...
...

· · ·

· · ·

...

· · ·

...

ût
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Figure 2.2: Two different modes of NARX: (a) Series-Parallel and (b) Parallel

example, which imitates the Euler discretization of an ODE by introducing the skip

connection in its structure [Lu et al., 2018]. It is only since the Neural Ordinary

Differential Equation (Neural ODE) method was proposed [Chen et al., 2018] that the

study of learning continuous dynamics has developed into a popular topic. The Neural

ODE learns the time derivative f(u, t) as a representation of the continuous system

dynamics, and integrates these learned dynamics using an ODE solver of choice.

Since many ODE solvers are black boxes, backpropagation often can not be performed

through the solvers. As a solution, the gradient calculation is executed using the adjoint

sensitivity method [e.g. Pontryagin et al., 1987]. For this purpose, a new adjoint state

at is introduced, which is defined as the derivative of the loss function with regards to

the unknown variable: at = ∂L/∂ut. The dynamics of the adjoint state are defined as

∂at
∂t

= −at
∂f(ut, t, w)

∂ut

, (2.6)

where f(ut, t, w) is the time derivative of the system states ∂ut/∂t, learned by an ANN

that is parameterized by w.

With the use of the adjoint state, the gradient about the model parameters can finally

be defined with
∂L

∂w
= −

∫ t0

t1

at
∂f(ut, t, w)

∂w
dt, (2.7)
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where t0 is the initial time step and t1 is the final time step. Next, both the adjoint state

and the gradient are solved backward in time from t1 to t0, by using an ODE solver to

integrate Equation 2.6 and Equation 2.7 with the initial conditions a1 = ∂L/∂u1 and

∂L/∂w = 0, respectively. For a complete derivation of the adjoint method, interested

readers are referred to Chen et al. [2018].

The Neural ODE model has considerable benefits in comparison to other ANN models

that directly learn the discrete representation f(u, t)∆t. Learning the time derivative

f(u, t) in the continuous domain allows the incorporation of data with an irregular time

step size, whereas learning f(u, t)∆t together implies that the time step size has to be

constant throughout the simulation. Accordingly, Neural ODE is more appropriate to

operate on real-world observation data, which are often measured at arbitrary inter-

vals. Furthermore, the continuous definition of the time derivative facilitates the use

of higher-order integration methods for better accuracy, computational efficiency, and

numerical stability. Because of these desirable properties, Neural ODE is employed in

this thesis.

2.2 Spatially distributed systems

In a dynamic and spatially distributed system (which is also referred to as a spatio-

temporal problem), the internal states vary not only in time but also in space. Ac-

cordingly, the spatial derivative is also necessary to define a dynamic and spatially

distributed system, in addition to the time derivative. In order to impose relationships

between derivatives with regard to multiple variables, a Partial Differential Equation

(PDE) is required [e.g. Benkirane and Touzani, 2002].

This thesis focuses on PDEs that are first order in time and second order in space,

more specifically the advection-diffusion-reaction (ADR) equations [e.g. Friedlander

et al., 2002] because they are ubiquitous and useful to describe numerous physical

phenomena. Prominent applications of the ADR equations have been shown in the

modeling of fluid dynamics [e.g. Ferziger and Peric, 2012], heat transfer [e.g. Hongren,

1994], and biological pattern formations [Turing, 1952].
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The ADR equations are generally derived from conservation laws and are mathemati-

cally written as

S
∂u

∂t
= ∇ · (D∇u)−∇ · (vu) + q, (2.8)

where u is the variable of interest, t is the time, S is the storage coefficient, D is the

diffusion coefficient (or tensor), v is the advection velocity, and q is the source/sink

term. To explain the advection-diffusion process, the right-hand side of Equation 2.8

can be broken down into different parts. The first part, ∇ · (D∇u), describes the

diffusion process, that is the movement of a substance from a region with a high value

of u to the surrounding regions with lower values of u. The second part, ∇ · (vu),
describes the advection process, that is the transport of a substance from one region

to another by a bulk motion with a certain velocity v. While the diffusion process

is defined by a second-order spatial derivative, the advection process is defined by a

first-order spatial derivative. The third part, q, describes the generation or elimination

of the substance, for example by a chemical reaction. The combination of all three

terms balances into the storage term S ∂u/∂t, which defines the change of the value

u over time. The storage coefficient S can for example be unity in bulk fluids, equal

to porosity in porous media, or describe sorption mechanisms. All coefficients S, D,

v, and q can either be constants or depend on u. Accordingly, Equation 2.8 can also

either be a linear or non-linear PDE.

The ADR equations are commonly solved with various numerical methods, namely the

Finite Difference Method (FDM) [e.g. Morton and Mayers, 1994], the Finite Volume

Method (FVM) [e.g. Moukalled et al., 2016], and the Finite Element Method (FEM)

[e.g. Logan, 1992]. These methods exploit different strategies to approximate the spatial

derivatives, such as the Taylor expansion (FDM), Gauss’ divergence theorem (FVM),

and combinations of basis functions (FEM). Among all these methods, FVM is the

method that is derived based on fluxes as physical properties, and therefore it ensures

the conservation and physical consistency of the solution. Additionally, the FVM is

relatively simple to implement compared to the FEM. Because of these characteristics,

FVM is employed in this thesis so that the integration with ANNs is more straightfor-

ward, and the resulting hybrid model is physically interpretable. A short overview of

the FVM discretization is provided in the next section.

Besides physics-based models, numerous deep-learning models have also been proposed

to solve PDEs. Many of such models use a convolutional structure to represent the
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involved spatial derivatives, such as the Temporal Convolutional Network (TCN) [Bai

et al., 2018], Convolutional LSTM (ConvLSTM) [Shi et al., 2015], and PhyDNet [Guen

and Thome, 2020]. Another model such as the Distributed Spatio-Temporal Artificial

Neural Network Architecture (DISTANA) [Karlbauer et al., 2019] employs a kernel

to quantify the movement of a substance from one place to another. Another group

of models represents the unknown variable u as an explicit function of its location in

the spatial domain. This group includes models such as the Physics-Informed Neural

Network (PINN) [Raissi et al., 2019] and the Fourier Neural Operator (FNO) [Li et al.,

2021b]. These models are implemented to benchmark the performance of the proposed

model in this thesis, and therefore, brief overviews of these models are also presented

in the upcoming sections.

2.2.1 Finite Volume Method

The Finite Volume Method solves PDEs by converting the continuous spatial domain

into discrete control volumes. In each control volume, a volume integral of the PDE is

evaluated, resulting in

∫

νi

S
∂u

∂t
dν =

∫

νi

∇ · (D∇u) dν −
∫

νi

∇ · (vu) dν +

∫

νi

q dν, (2.9)

where νi denotes the control volume with the index i. Volume integrals of the divergence

both in the diffusion and advection term are transformed into surface integrals by

employing the Gauss’ divergence theorem [e.g. Arfken et al., 2013].

The surface integral of the diffusion term is calculated over the enclosing control volume

surfaces, leading to the following equation:

∫

νi

∇ · (D∇u) dν =

∮

Γ

(D∇u) · n̂ dΓ, (2.10)

where Γ is the control volume surface and n̂ is the normal vector pointing out of Γ.

By using a central difference scheme to approximate the gradient ∇u, and assuming a

one-dimensional spatial domain for conciseness, this surface integral is discretized into

∮

Γ

(D∇u) · n̂ dΓ ≈ Ai−1Di
ui−1 − ui

∆x
− Ai+1Di

ui − ui+1

∆x
, (2.11)
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where Ai−1 and Ai+1 are the surface areas of control volume i on the left and right,

respectively, and ∆x is the length of the control volume.

A similar surface integral is applied for the advection term, leading to the following

equation: ∫

νi

∇ · (vu) dν =

∮

Γ

(vu) · n̂ dΓ. (2.12)

However, the implementation of a central difference scheme in the advection term could

lead to numerical instability issues. To alleviate this, the upwind difference scheme is

often preferred to the central difference scheme [e.g. Versteeg and Malalasekera, 1995],

resulting in the discrete equation:

∮

Γ

(vu) · n̂ dΓ ≈ Ai−1 max(vi, 0) (ui − ui−1) + Ai+1 min(vi, 0) (ui+1 − ui). (2.13)

Here, the upwind direction is determined by the direction of the velocity vi. If vi > 0,

then ui−1 is the upwind side (the flow direction is from left to right), and therefore,

ui+1 is ignored. As a result, Equation 2.13 reduces to Ai−1vi(ui − ui−1). The reverse

condition is valid for vi < 0, where ui+1 becomes the upwind side, and the equation

reduces to Ai+1vi(ui+1 − ui).

By substituting Equation 2.11 and Equation 2.13 into Equation 2.8, as well as inte-

grating the storage and source/sink term over the control volume, a spatially discrete

form of the advection-diffusion equation can be written as the following:

Si
∂ui

∂t
νi =Ai−1Di

ui−1 − ui

∆x
− Ai+1Di

ui − ui+1

∆x

− (Ai−1 max(vi, 0) (ui − ui−1) + Ai+1 min(vi, 0) (ui+1 − ui)) + qiνi.
(2.14)

The resulting discrete equation represents a system of coupled ODEs, defined for each

control volume i = 1, . . . , Nx, where Nx is the number of control volumes. These ODEs

are then solved with any ODE solver of choice, as discussed in Subchapter 2.1. Since

numerical integration of this ODE system is only conditionally stable [e.g. Courant

et al., 1967, Isaacson and Keller, 1994], an ODE solver with time step adaptivity is

preferable to provide better numerical stability, in addition to being computationally

more efficient.
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2.2.2 Temporal Convolutional Networks

The Temporal Convolutional Network (TCN) [Bai et al., 2018] model processes both

spatial and temporal dependency of the data by exploiting a convolutional neural net-

work structure [e.q. Lecun et al., 1998, LeCun et al., 1999]. A convolution operation in

a neural network is illustrated in Figure 2.3 on the left. In the illustration, the convo-

lution operation is performed by shifting a 3 × 3 filter from the top left to the bottom

right of a two-dimensional input. For each portion of the input (3× 3), its dot product

with the filter is calculated to produce a value of a cell in the output. By training

the model, the values in the filters are updated to produce the desirable results. In

the illustration, the input is padded with the values of zero to keep the output size

the same as the original input size. Mathematically, a two-dimensional convolution

operation can be written as

ûij =
k∑

a=1

k∑

b=1

wabh(i+a)(j+b), (2.15)

where ûij is the output at row i and column j, k is the size of the filter, wab are the

parameters of the filter, and h is the input. Furthermore, it is worth noting that a

convolutional filter can be considered as an analog to the stencil used in numerical

methods such as FVM [Rackauckas et al., 2020].

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 0 0

padded input

∗
1 0 1

0 1 0

1 0 1

3× 3 filter

=

0 2 2 3 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

2 2 1 1 0

output

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

(a)

d = 1

   

d = 2

   

d = 4

û0 û1 û2 ût−2ût−1 ût

+

(b)

Figure 2.3: Illustration of the (a) spatial† and (b) temporal convolutional operation‡

In the temporal domain, TCN accommodates additional features that characterize its

†Redrawn from Velic̆ković [2016].
‡Redrawn from Bai et al. [2018].
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convolution operation uniquely. First, TCN capitalizes on dilated convolutions, which

skip a certain amount of pixels to enlarge the temporal receptive (input) field. As

illustrated in Figure 2.3 on the right, the dilation grows exponentially with increasing

model depth. This allows the predicted ût to be directly influenced by inputs coming

from further in the past, even from the beginning of the sequence. Consequently, TCN

processes longer sequences of data more effectively. Second, to preserve the logical

ordering of temporal data, it is important that the prediction is calculated based on

only past values, and not future values. The temporal convolution in TCN is therefore

written as

ût =
k−1∑

i=0

wiht−di, (2.16)

where ût is the prediction at time step t, k is the filter size, h is the input, and d is the

dilation factor.

All in all, TCN provides a structured way of processing both spatial and temporal

correlation of the data, with the possibility of having a large receptive field to facilitate

long-term dependency more effectively. However, TCN also possesses a few drawbacks.

Because it uses a convolutional structure to process the spatial dependency with zero

or mirror padding at the margins, it is not suitable to handle more complex types

of boundary conditions such as Neumann and Cauchy, which are defined by spatial

derivatives and need specific treatment at domain boundaries. Additionally, the gen-

eralization ability of TCN also suffers when it predicts sequences of different lengths

compared to the training data [Bai et al., 2018].

2.2.3 Convolutional Long Short-Term Memory

Similar to TCN, the Convolutional Long Short-Term Memory (ConvLSTM) model [Shi

et al., 2015] exploits a convolutional neural network structure to process the spatial de-

pendency between the data points. The temporal correlation, however, is represented

using a Long Short-Term Memory (LSTM) model [Hochreiter and Schmidhuber, 1997].

Therefore, ConvLSTM differs from the original LSTM model in the sense that ConvL-

STM facilitates convolution in its internal operations.

As illustrated in Figure 2.4, ConvLSTM consists of multiple gating mechanisms. Math-
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ût

ct

Figure 2.4: Illustration of a ConvLSTM model§

ematically, the internal operations of ConvLSTM are written as the following:

ft = σ(ût−1 ∗ wuf + ht−1 ∗ whf ), (2.17)

it = σ(ût−1 ∗ wui + ht−1 ∗ whi), (2.18)

c̃t = tanh(ût−1 ∗ wuc + ht−1 ∗ whc), (2.19)

ct = ft ◦ ct−1 + it ◦ c̃t, (2.20)

ot = σ(ût−1 ∗ wuo + ht−1 ∗ who), (2.21)

ût = ot ◦ tanh(ct), (2.22)

where ft is the forget gate, it is the input gate, c̃t is the new processed information,

ct is the cell state, ot is the output gate, ht is the input, and ût is the prediction at

time t. Additionally, σ represents the sigmoid function, tanh represents the hyperbolic

tangent function, û∗w represents the convolutional operation between û and the model

parameters w, and ◦ represents the Hadamard product.

First, the prediction from the previous time steps ût−1 and the input ht−1 go through

§Redrawn from Olah [2015].
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the convolution operations in the forget gate ft (Equation 2.17). The value of ft is

constrained between 0 and 1 due to the sigmoid function. This means that, if ft = 0,

past information is completely discarded. If ft = 1, past information is completely

kept. Next, similar operations are performed in the input gate it (Equation 2.18). The

input gate is also constrained by the sigmoid function. Therefore, if it = 0, then new

information is unused, and vice versa. To update the cell state, new information c̃t is

merged with past information ct−1, weighted by each importance that is learned by the

input gate and forget gate, respectively (Equation 2.20). Lastly, the updated cell state

ct goes through the output gate ot, which determines the value for the new prediction

ût (Equation 2.21 and Equation 2.22).

The gating mechanisms in ConvLSTM facilitate better passage of information for a

longer time sequence because the cell state that represents the model’s memory ex-

periences only minimal disruptions. Nonetheless, ConvLSTM adopts a convolutional

structure to process the information exchange in the spatial domain just like TCN. For

this reason, ConvLSTM is also not suitable for handling complex boundary condition

types. Moreover, ConvLSTM is also more prone to overfitting due to its complex archi-

tecture and number of parameters, therefore impacting its generalization ability [e.g.

Chung et al., 2014].

2.2.4 PhyDNet

The PhyDNet model [Guen and Thome, 2020] was developed with the purpose of

learning both the physical representation of the modeled system, as well as the residual

unknown dynamics from observation data. This task is achieved by separating the

model into two branches: a physical cell (PhyCell), which is responsible for the physics

learning tasks, and a ConvLSTM cell, which is responsible for the residual learning

tasks.

PhyCell is designed to update a latent state ht−1 using a physical predictor, corrected

with a learned Kalman gain. This process resembles the Kalman filtering method for

data assimilation [Kalman, 1960], with the difference that the Kalman gain in PhyCell is

learned during the model training, and not calculated according to the original Kalman

filter algorithm. The flow of information within PhyCell is illustrated in Figure 2.5.
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h̃t σ
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E(ut−1) − h̃t

Kt
+

ht

ut−1

Figure 2.5: Illustration of a physical cell (PhyCell) in the PhyDNet model¶

The physical predictor part of PhyCell is a convolutional operation that represents

the spatial derivatives of a PDE, equipped with a residual block to imitate the Euler

temporal discretization method. This physical predictor takes a latent state from the

previous time step ht−1 as an input and outputs its updated state h̃t. PhyCell then

encodes the value of ut−1 into the latent space using an encoder E(ut−1). Together

with the updated latent state ĥt, the Kalman gain Kt can be learned with the following

equation:

Kt = σ(h̃t ∗ wh + E(ut) ∗ wu), (2.23)

where w is the model parameter and ∗ is a convolution operator.

The learned Kalman gain is used to assign importance for each the physical prediction

h̃t and the encoded observation E(ut). The corrected latent state can then be calculated

using the Kalman gain:

ht = h̃t +Kt ◦ (E(ut)− h̃t). (2.24)

Note that, as an implication of the sigmoid function, the values of the learned Kalman

gain are bound between 0 and 1. Accordingly, if Kt = 0, the input ut is completely

ignored. On the other hand, if Kt = 1, the updated latent state h̃t is ignored in-

stead. Finally, the new latent state ht predicted by the PhyCell is merged with the

¶Redrawn from Guen and Thome [2020].
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learned residual rt from the ConvLSTM branch. The summation of the outputs of both

branches is then decoded from the latent space back into the physical space using a

decoder D, resulting in the prediction for the next time step ût = D(ht + rt).

Overall, PhyDNet provides a very structured way of disentangling the learning of the

physical process with the learning of unknown residuals. Nevertheless, the physical

processes are learned in the latent space, and therefore, they are difficult to interpret

in the physical domain. It is also noteworthy that the size of the ConvLSTM branch is

often significantly larger compared to the PhyCell, putting more emphasis on residual

learning, as opposed to physics learning.

2.2.5 Distributed Spatio-Temporal Artificial Neural Networks

The Distributed Spatio-Temporal Artificial Neural Network (DISTANA) model [Karl-

bauer et al., 2019] introduces two unique kernels, namely the transition kernel and

the prediction kernel, to process spatial information routing and temporal dynamics,

respectively. More specifically, the transition kernels collect and process information

hpk
t−1 from neighboring cells, and then transmit the processed information htk

t−1 to their

adjacent cells. The prediction kernels then receive this processed information from

the transition kernels along with the prediction from the previous time step ût−1, and

transform them to predict the unknown variable at the subsequent time step ût. An

illustration of the DISTANA model is shown in Figure 2.6.

Both the prediction kernel and transition kernel are generally constructed with a similar

structure. This structure consists of an encoder to transform the input into latent

space, followed by an LSTM cell to facilitate recurrence and long-term memory of past

information, and finally a decoder to transform the processed information back into its

original space. The difference between the prediction and transition kernel lies in the

type of input data that they receive. Whereas transition kernels receive only lateral

information from adjacent cells, prediction kernels also receive dynamic information

from their previous prediction.

DISTANA provides an elegant approach to handle spatio-temporal correlation of data,

similar to a Message Passing Neural Network (MPNN) [Gilmer et al., 2017]. More con-

cretely, the transition kernels aggregate information from neighboring cells, analogous
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Figure 2.6: Illustration of the prediction and transition kernels of a DISTANA model‖

to the message-passing function on the graph edges in the MPNN. Furthermore, the

prediction kernels update the dynamic prediction, similar to the node update function

in the MPNN. Unfortunately, the lateral information processing performed by the tran-

sition kernels in DISTANA introduces communication latency. As a consequence, two

simulation steps are required to propagate lateral information to an adjacent cell. This

also means that the receptive field of DISTANA is smaller than in the other models.

Additionally, DISTANA has the potential to overfit when it is trained with insufficient

data, due to the lack of physical knowledge incorporated in the model.

2.2.6 Physics-Informed Neural Networks

The Physics-Informed Neural Network (PINN) [Raissi et al., 2019] is a recent major

breakthrough in the field of scientific machine learning. It introduces an exquisite

method to train the ANN to fit the PDE by capitalizing on the automatic differentiation

method. As illustrated in Figure 2.7, PINN models the unknown variable as an explicit

function of its location in space x and time t, constrained through a specific PDE form.

In vanilla ANNs, the optimization algorithm only requires gradient information with

regard to the model parameters. With PINN, the backpropagation is executed ad-

‖Redrawn from Karlbauer et al. [2019].
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Figure 2.7: Illustration of the PINN model∗∗

ditionally to calculate the derivative of the prediction with regards to the input x

and t. This derivative information is then used to calculate the physics loss function

that is defined to satisfy the governing PDE. Taking a one-dimensional, homogeneous,

advection-diffusion equation as an example, the form of the physics loss function is

written as

Lphy =
1

Nf

Nf∑

i=1

(
∂u

∂t
+ v

∂u

∂x
−D

∂2u

∂x2
− q

)2

. (2.25)

Because Equation 2.25 can be calculated without any observation data, the training

procedure of PINN is data-efficient. The observation data, however, are still useful to

enforce the data-driven feature of PINN, in addition to providing additional information

such as the initial and boundary conditions. The observation data define the data-

driven loss function as

Ldata =
1

Nd

Nd∑

i=1

(ûi − ui)
2 , (2.26)

where û and u are the prediction and the observation, respectively. The overall loss

function is then defined as the combination of both the physics and data-driven loss,

that is L = Lphy + Ldata.

∗∗Redrawn from Lavin et al. [2021].
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Despite its robust theoretical background and promising results, PINN still possesses

significant flaws. Because it models the unknown variable as an explicit function of x

and t, its validity no longer holds with different initial or boundary conditions. As a

direct consequence, a trained PINN model can not be generalized to different modeling

scenarios. Moreover, the accuracy of PINN’s prediction often deteriorates substantially

when it is trained on more complex PDEs [e.g. Markidis, 2021, Chiu et al., 2022].

2.2.7 Fourier Neural Operators

The Fourier Neural Operator (FNO) model [Li et al., 2021b] differs from the other

deep learning models in its approach to solving PDEs. Most models are trained to

approximate functions that map the input to the output in the physical space. FNO,

on the other hand, approximates these functions in the Fourier space. The idea of

FNO originates from the fact that differential equations in the physical space can be

solved using multiplications in the Fourier domain [e.g. Bracewell and Bracewell, 1986].

Consequently, FNO devises an easier learning problem.

Fourier layer

ht−1

F R F−1

1x1
Conv

+ σ

E
n
co

d
e
r

ût

Figure 2.8: Illustration of the Fourier layer in the FNO model††

As inputs, the FNO receives not only the prediction from the previous time step ût−1,

but also information on the spatial location x. These inputs are then encoded into

a latent variable ht−1. The encoder is succeeded by a Fourier layer, as illustrated in

Figure 2.8. The latent variable enters the Fourier layer, and it is first transformed into

the Fourier domain F . Then, a learnable linear transform R is directly performed on

the Fourier transform. The unique thing about this linear transform is that it also

filters out the higher frequency modes to avoid overfitting. Finally, inverse Fourier

††Redrawn from Li et al. [2021b].
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transforms F−1 are performed to convert back to the original space. The operations in

the Fourier layer are therefore written as

Kt = F−1
(
R
(
F(ht−1)

))
. (2.27)

In addition to the Fourier layer, a 1 × 1 convolutional operation, that is a convolution

layer with a filter size of 1×1, is also applied on the latent variable ht−1 to act as a bias,

as well as to improve the flow of information in a recurrent structure. After adding the

convolved feature with the output of the Fourier layer, the latent variable goes through

a non-linear activation layer, and then it is encoded back into the physical space to

predict ût. Mathematically, the whole process is written as

ût = E (σ(ht−1 ∗ w +Kt)) , (2.28)

where w is the filter parameter of the 1× 1 convolution.

Because FNO is a mesh-independent model like PINN, it can be used to interpolate

the prediction in the spatial domain, to increase the fidelity of the solution. Addition-

ally, FNO is very stable for long-term prediction, outperforming other deep learning

models. Unfortunately, FNO requires a relatively high amount of training data to

achieve reasonable accuracy. Furthermore, FNO does not generalize well to different

PDE parameter values [Li et al., 2021c].

2.3 Uncertainty Quantification

Observation data of an occurring natural phenomenon are often noisy and only available

in a limited amount. Combined with the inherent black-box characteristic of ANNs,

they could cause the model to overfit, and in turn, obstruct the model from generalizing

to unseen events. Furthermore, this also causes ANNs to be generally overconfident

about their predictions despite them being inaccurate. This is highly problematic,

especially when a model is intended to aid in a critical decision-making process [e.g.

Goan and Fookes, 2020, Jospin et al., 2022]. Consequently, it is essential to build a

model that is able to systematically provide a confidence measure of its own prediction
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or learned physical relationship, in order to inform about the uncertainties and possible

consequences that are associated with a specific action.

A robust way to build such a model has been proposed in the form of a Bayesian

Neural Network (BNN) [Mackay, 1995], which exploits the Bayesian inference method

to teach the model to learn about uncertainties from the available data. BNN treats its

parameters as random variables with learnable distributions instead of point estimates,

as illustrated in Figure 2.9. With Bayes’ theorem, a prior distribution p(w) of the

model parameters w is first defined. This prior distribution represents an initial idea of

how the model should be, and it can take many forms, such as Gaussian and Laplacian

(to enforce the sparsity of parameters). Moreover, physical knowledge of the modeled

system can also be included in the prior distribution definition, for example by defining

a physics violation error distribution that is centered around zero.

h û

Figure 2.9: Illustration of a Bayesian Neural Network model‡‡

Next, the available training data D are used to update the parameter distribution

through the likelihood p(D|w). The likelihood quantifies the probability of observing

the data given a set of model parameters. A higher value of likelihood signifies a

better fit of the model parameters. Finally, the distribution is normalized by the model

evidence p(D), which is a marginal distribution over the whole parameter space. Since

the parameter space grows exponentially with increasing dimension, the model evidence

is often intractable [e.g. Schöniger et al., 2014]. Therefore, it is often enough to define

the posterior distribution p(w|D) of the weight given the data to be only proportional

‡‡Redrawn from Riebesell [2021].
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to the prior distribution multiplied by the likelihood. Mathematically, this is written

as

p(w|D) ∝ p(D|w)p(w). (2.29)

Many algorithms have been proposed to perform Bayesian inference. In the BNN

setting, the most prominent algorithms include the variational inference using the Bayes

by Backprop method [Blundell et al., 2015], and various Markov Chain Monte Carlo

(MCMC) methods [e.g. Richey, 2010]. The Bayes by Backprop algorithm adopts a

Gaussian variational posterior to define the distribution of the model parameters, which

is learned through backpropagation. The MCMC algorithm, on the other hand, learns

the exact posterior distribution through sampling via a Markov chain. In this thesis,

three different MCMC sampling strategies are considered: Metropolis-Hastings [e.g.

Chib and Greenberg, 1995], the Metropolis-Adjusted Langevin Algorithm (MALA)

[e.g. Dwivedi et al., 2019], and the Barker proposal [Livingstone and Zanella, 2022].

Brief overviews of both the Bayes by Backprop and MCMC methods are provided in

the following sections.

2.3.1 Bayes by Backprop

Bayes by Backprop [Blundell et al., 2015] is an algorithm that facilitates variational

inference methods on BNNs. Instead of performing an exact Bayesian inference, the

variational inference method simplifies the process by approximating the posterior dis-

tribution of the model parameters w with a variational distribution q(w|θ). In the

Bayes by Backprop method, the variational distribution is chosen to be Gaussian, pa-

rameterized by a set of distributional parameters θ = (µ, ρ), where µ defines the mean

value and ρ defines the standard deviation.

The goal of the Bayes by Backprop method is to optimize µ and ρ through backprop-

agation. However, backpropagation can not be performed through a random variable.

To mitigate this issue, a local reparameterization trick [Kingma and Welling, 2014] is

employed through a deterministic transformation

w = µ+ log (1 + exp(ρ)) · ϵ, (2.30)
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where ϵ is a normal random noise with N (0, I). In this manner, ϵ is the only source

of stochasticity, enforcing differentiability through the model parameters w and their

distributional parameters µ and ρ.

To fit the variational distribution q(w|θ) to approximate the posterior distribution

p(w|D), the Kullback-Leibler (KL) divergence [e.g. Joyce, 2011] (the measure of dis-

tance between two probability distributions) should be minimized. The simplified loss

function can then be derived from this KL divergence formulation as

L = DKL[q(w|θ)||p(w)]− Eq((w|θ)[log p(D|w)]

≈
N∑

i

log q(w(i)|θ)− log p(w(i))− log p(D|w(i)),
(2.31)

where N denotes the number of parameter samples drawn from q(w|θ). The training

algorithm of Bayes by Backprop is summarized in Algorithm 1. Note that the param-

eter update step can be performed not only using the gradient descent algorithm, but

also with other stochastic optimization algorithms such as ADAM [Kingma and Ba,

2015].

Algorithm 1 Bayes by Backprop training algorithm

Set θ = θ0
for i = 1 to Niter do

Draw ϵ ∼ N (0, I)
Set the model parameters w according to Equation 2.30
Calculate the loss function L according to Equation 2.31
Backpropagate and calculate the gradient ∂L

∂θ

Update the distributional parameters θ ← θ − α∂L
∂θ

end for

By approximating the posterior distribution in this manner, Bayes by Backprop pro-

vides a relatively scalable fashion to train BNNs. It also facilitates a straightforward

implementation of commonly used stochastic optimization algorithms. However, Bayes

by Backprop also comes with a few drawbacks. The most noteworthy disadvantage is

that the variational inference method assumes a considerably simplified version of the

posterior distribution. Furthermore, it is implied in Equation 2.30, that the number

of learnable parameters grows linearly because each model parameter is defined as a

function of two distributional parameters.
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2.3.2 Markov Chain Monte Carlo

As opposed to the Bayes by Backprop method, Markov Chain Monte Carlo (MCMC)

[e.g. Richey, 2010] provides a more exact approach to perform Bayesian inference. The

main idea of the MCMC method is to construct a Markov chain, with a certain transi-

tion probability T (w(i+1)|w(i)) of drawing the next sample w(i+1), which depends only on

the previous sample w(i). Additionally, the transition also has to preserve the posterior

distribution as a stationary distribution. Finally, with a sufficient amount of samples,

the Markov chain converges to the exact posterior distribution of the model parameters

p(w|D). In general, the MCMC sampling algorithm is presented in Algorithm 2.

Algorithm 2 General MCMC algorithm

Set initial parameter values w(0)

for i = 1 to N do
Draw wt given w(i) according to the chosen proposal function
Calculate acceptance probability α(wt|w(i)) according to Equation 2.32
Draw a random number u ∼ U [0, 1]
if α(wt|w(i)) > u then

w(i+1) ← wt

else
w(i+1) ← w(i)

end if
end for

The transition probability that defines the Markov chain is a joint probability of the

proposal Q(w(i+1)|w(i)) and the acceptance probability α(w(i+1)|w(i)). The proposal

function defines the movement from one sample to the next. Therefore, it is critical

to choose a well-defined proposal function to ensure that the parameter space is well

explored by the Markov chain. Several options for the proposal functions are presented

in the following sections. Furthermore, the acceptance probability is important to

preserve the stationarity of the posterior distribution. The acceptance probability is

written mathematically as

α(w(i+1)|w(i)) = min

(
1,

p(w(i+1)|D)Q(w(i)|w(i+1))

p(w(i)|D)Q(w(i+1)|w(i))

)
. (2.32)

Due to its ability to draw samples from an exact distribution, as well as its flexibility to

choose between various proposal function definitions, MCMC is regarded as one of the
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best sampling algorithms for inferring posterior distributions [e.g. Jospin et al., 2022].

However, there are also many difficulties associated with the implementation of MCMC.

Most importantly, MCMC is a relatively expensive algorithm, since it requires an ample

amount of samples to converge to the true distribution, especially in high-dimensional

settings. Additionally, MCMC often suffers from inefficiency in the sampling process

due to high autocorrelation.

Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm [e.g. Chib and Greenberg, 1995] is one of the

most commonly implemented MCMC algorithms due to its simple proposal function,

which is defined as

w(i+1) = w(i) + τ · ϵ, (2.33)

where τ is the step size, and ϵ ∼ N (0, I). The proposal distribution, therefore, can be

defined with

Q(w(i+1)|w(i)) = exp(−||w(i+1) − w(i)||22/τ 2), (2.34)

which is symmetric. As a consequence, Q(w(i)|w(i+1)) = Q(w(i+1)|w(i)), and Equa-

tion 2.32 reduces to

α(w(i+1)|w(i)) = min

(
1,

p(w(i+1)|D)

p(w(i)|D)

)
. (2.35)

Despite its simplicity and nice properties, the efficiency of the MH algorithm is heavily

dependent on the step size τ , and it scales terribly with increasing parameter dimension.

As a solution, the adoption of gradient information has been proposed to alleviate

this problem by improving parameter space exploration. Gradient-based MCMC also

gained popularity in BNN applications because gradient information is easily accessible

in neural network models.

Metropolis-Adjusted Langevin Algorithm

The Metropolis-Adjusted Langevin Algorithm (MALA) [e.g. Dwivedi et al., 2019] is

a gradient-based MCMC algorithm that is inspired by the Langevin diffusion equa-

tion [e.g. Doob, 1942], which is used to describe a stochastic particle movement. The



36 2 Methods

proposal function takes a similar form with a stochastic gradient descent update:

w(i+1) = w(i) + τ∇p(w(i)|D) +
√
2τϵ, (2.36)

where ∇p(w(i)|D) is the gradient of the posterior distribution with respect to the model

parameters.

Because gradient information is used in the proposal function, the proposal distribution

is no longer symmetric. Therefore, the full form of Equation 2.32 has to be considered.

The proposal distribution of MALA is defined as

Q(w(i+1)|w(i)) = exp(−||w(i+1) − w(i) − τ∇p(w(i)|D)||22/4τ). (2.37)

Although the computational demand of the algorithm is higher than the MH algo-

rithm per individual step, the gradient information assists MALA so that it proposes

more sampling movement to areas with higher posterior probability. Consequently, the

convergence rate of MALA is better compared to the MH algorithm. Unfortunately,

MALA is still sensitive to high step size.

The Barker Proposal

The Barker proposal [Livingstone and Zanella, 2022] is another MCMC algorithm that

uses gradient information to influence the direction in which the sampling is performed.

Mathematically, the proposal function is written as

w(i+1) = w(i) + b · ϵ, (2.38)

where b = 1 with the probability of p = 1/(1 + exp(−ϵ∇p(w(i)|D))), and b = −1
otherwise. Here, the probability p is high if the proposed direction is in agreement

with the direction of the posterior gradient. Consequently, the algorithm pushes the

sampling direction more frequently towards regions with higher posterior probability.

The distribution of the Barker proposal is also not symmetric due to the implementation

of the gradient, and the full form of Equation 2.32 should be considered to calculate
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the acceptance probability. The Barker proposal distribution is defined as

Q(w(i+1)|w(i)) =
1

1 + exp ((w(i) − w(i+1))∇p(w(i)|D))
. (2.39)

Because the gradient information does not influence the step size in the Barker pro-

posal, it improves the robustness of tuning parameters and provides better scalability

compared to MALA.





3 Contributions

This chapter discusses and answers the research questions posed in this thesis. Each

research question is analyzed in a separate section, which summarizes published works

that contribute to answering the related research question. Section 3.1 considers the

contribution of the first publication to address the question of exploiting prior physical

knowledge for dynamic systems modeling. Section 3.2 examines the second and third

publications, focusing on increasing the complexity of the first research question, to

model spatio-temporal systems. Finally, Section 3.3 investigates the fourth publication,

concentrating on the question about uncertainty quantification in the proposed neural

network model.

3.1 Contribution 1: Improving Prediction and

Plausibility of a Dynamic Thermochemical Energy

Storage System

The first publication [Praditia et al., 2020] focuses on developing a physically consistent

and reliable hybrid model for dynamic systems. One particularly intriguing example

of such a system is a Thermochemical Energy Storage (TCES) system, more specifi-

cally the variant with calcium oxide (CaO)/calcium hydroxide (Ca(OH)2) [e.g. Schaube

et al., 2013]. TCES is a fascinating application because of its potential to develop into a

relatively cheap and efficient energy storage system. However, the physical laws govern-

ing the TCES behavior are complex and, in turn, induce difficulties in the operational

control of such a system.

To tackle this issue, a model that is suitable to treat dynamic systems is required. The

Nonlinear Autoregressive Network with Exogeneous Inputs (NARX) is one appropriate
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example because its recurrent structure allows not only learning dependency between

variables at adjacent time steps, but also over larger time lags. Additionally, NARX

takes the influence of external driving forces on the system’s internal states into account,

in the form of exogenous inputs. It is also crucial to encode the recurrence in the

training algorithm, for the model to better capture the long-term dynamics. More

importantly, rigorous regularization is employed in the proposed modeling framework.

The regularization has two distinct purposes: the L2 regularization imposes the model

to be as simple as possible, and the physics-based regularization constrains the model

to obey known physical laws.

First, the advantage of multiple feedback delays in the NARX model is tested by

comparing its prediction with a NARX with a single feedback delay, which is equivalent

to a regular Recurrent Neural Network (RNN). It is shown that using the predictions

from multiple preceding time steps as input improves the performance of the NARX

model, as opposed to using only a regular RNN. It is also important to note that

this is beneficial only up to a certain extent, after which there is no longer notable

performance improvement. Additionally, using too many feedback delays results in

increasing computational burden, especially in the backpropagation process.

Second, the enforcement of recurrence during the training process is shown to be highly

advantageous for long-term predictions. Models that are trained in a closed-loop struc-

ture, or in other words, without using teacher forcing, produce significantly more accu-

rate and numerically stable predictions. This can be attributed to the fact that, when

the models are trained in an open-loop structure, they do not learn to minimize the

error accumulation in predictions over a longer time horizon.

Third, the model that is trained with regularization terms is compared with the model

that is trained without them. Here, the physical regularization is formulated based

on conservation laws, such as mass and energy conservation, as well as the known

monotonic behavior of the predicted internal states and the strict positivity of some

predictions that are in the form of fractions. It is shown that the combination of

this physical regularization and the L2 regularization generates the best model. The

resulting model is physically consistent even in its worst predictions.
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3.2 Contribution 2: Learning Unknown Constituents of

Advection-Diffusion-Reaction Equations Using the

Finite Volume Neural Network

The second publication [Praditia et al., 2021] and the third publication [Karlbauer

et al., 2022] add a layer of complexity by including the spatial dimension into the

equation. More specifically, this contribution focuses on advection-diffusion-reaction

equations, which are Partial Differential Equations (PDEs) of the first order in time

and second order in space. Existing machine learning models that were proposed to

solve PDEs either rely too much on data, causing them to be physically inconsistent,

or too much on simplified physical equations with inappropriate assumptions. The aim

of this contribution is, therefore, to answer the second research question, which is to

develop a physically consistent and reliable hybrid model for spatio-temporal problems.

Additionally, it addresses the proper treatment of boundary conditions, which is critical

in obtaining a unique solution of PDEs, but is often improperly administered in existing

machine learning models. Furthermore, the existing models are mostly developed only

as faster surrogate models with inadequate physical interpretability. In contrast, this

contribution aims to learn unknown constitutive and closure relationships that are often

not fully understood, and improve upon the existing scientific hypothesis to accelerate

further scientific discoveries.

This thesis proposes the Finite Volume Neural Network (FINN), which adopts the Fi-

nite Volume Method (FVM) discretization structure, fused with the learning capability

of ANN. Here, the FVM structure serves as prior physical knowledge that regularizes

the model. The used knowledge states that the physical behavior is translation invari-

ant, and that fluxes and balancing are meaningful concepts. More importantly, the

FVM allows for a convenient approach to incorporating different types of boundary

conditions into the model. To enable gradient calculations on FINN, a differentiable

ODE solver in the form of the Neural ODE method is implemented. In addition to its

differentiability, the Neural ODE method provides a means to use a higher-order time

integration method for better accuracy and numerical stability. FINN is also modular,

meaning that different parts that compose FINN are responsible for learning different

parts of the modeled partial differential equations. As a consequence, specific modules

can be assigned to learn unknown closure/constitutive equations from the available
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training data, and the resulting learned relations are physically interpretable.

To show these contributions, FINN is first compared against various state-of-the-

art deep learning models, including purely data-driven models as well as physically-

motivated deep learning models. It is shown that the purely data-driven models are not

capable of learning only from scarce training data. Additionally, while most physically-

motivated models perform comparably during training, FINN notably outperforms all

other models by a few orders of magnitude when tested on data that are generated

with different boundary conditions, clearly demonstrating the advantage of properly

incorporating the boundary conditions into the model. Not only is FINN more accu-

rate, but it also produces extremely consistent predictions, as evidenced by the narrow

confidence interval of its predictions, after training with multiple random initializations.

Second, the higher-order integration method implemented in the Neural ODE frame-

work is also shown to improve numerical stability during the model training. The

training of FINN when combined with the explicit Euler method is severely unstable,

only able to reach several epochs before the error accumulates and explodes.

Third, and arguably the most important aspect, is the interpretability of FINN. By

adopting a modular structure, the different modules that construct FINN are phys-

ically interpretable. This allows not only to extract the learned parameters like the

diffusion coefficient, but also the learned functions such as the advective velocity in

Burgers’ equation, the retardation factor in the diffusion-sorption equation, and the

reaction function in the diffusion-reaction and Allen-Cahn equations. It is also demon-

strated that the learned functions approximate the ground truths that are used to

generate synthetic datasets. Furthermore, FINN can learn the unknown retardation

factor function from sparse laboratory measurement data, showing its freedom and

flexibility to learn, independent of existing parametric equations.

3.3 Contribution 3: Uncertainty Quantification on

Groundwater Contaminant Experimental Data

Observation data on natural systems are often scarce due to the complicated and ex-

pensive nature of the measurement process, both in a controlled environment such as
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a laboratory and even more in the uncontrolled settings of field sites. Additionally, the

obtained measurement data are noisy, leading to more uncertainty about the correctness

and quality of the data itself. Consequently, this leads to a questionable quality of the

model that is trained on these data. Therefore, it is of extreme importance to develop

a model that is robust to process real-world measurement data that possesses those

inherent characteristics, especially to assist decision-making processes in safety-critical

problems and to be honest about the confidence of newly-learned scientific hypotheses.

The fourth publication [Praditia et al., 2022] considers this issue by investigating the

effectiveness of various uncertainty quantification methods for FINN.

One way to perform uncertainty quantification on FINN is to reformulate it as a

Bayesian Neural Network (BNN), where its parameters are random variables instead of

deterministic. One of the most popular algorithms to train BNNs is the Bayes by Back-

prop method. The Bayes by Backprop method is a variational inference method, where

each random variable is parameterized using a mean and a standard deviation value.

These mean and standard deviation values are then adjusted to fit the model predictions

to the training data. Apart from the Bayes by Backprop method, a BNN can be trained

using sampling algorithms such as Markov Chain Monte Carlo (MCMC). In MCMC

methods, the distribution of the random variables is not parameterized but is rather

sampled from the exact posterior distribution. Moreover, MCMCs sample the random

variables by employing a transition probability, which is analogous to gradient-based

optimization algorithms used for training ANNs. Therefore, this thesis also explores

gradient-based MCMC algorithms to improve sampling convergence.

A sparse laboratory measurement dataset on a contaminant diffusion-sorption process

in clay is used to demonstrate the robustness of the uncertainty quantification methods

that are adopted in FINN. The Bayes by Backprop method fails to properly parame-

terize FINN’s random parameters. Initialization of the standard deviation parameters

with higher values results in difficulties in the training process, since high standard

deviation values lead to higher noise in the sampled parameter values. On the other

hand, initialization of the standard deviation parameters with lower values results in

the model being too deterministic, because the standard deviation values are not up-

dated properly during training. Additionally, the variational parameterization adopted

in Bayes by Backprop signifies that the resulting random parameter distributions are

assumed to be normal, even though ANN parameters are unlikely to follow a normal

distribution after a non-linear Bayesian inference.
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To mitigate this issue, this thesis applies various MCMC sampling algorithms to iden-

tify the distribution of FINN’s parameters. It is shown that gradient-based MCMC

algorithms, namely the Metropolis-Adjusted Langevin Algorithm (MALA) and the

Barker proposal, provide a better convergence rate compared to the plain random walk

Metropolis-Hastings (MH) algorithm. Furthermore, this thesis proposes to train FINN

deterministically before initiating the MCMC algorithm, to provide a better starting

point for the sampling chains. It is shown that a better starting point massively reduces

the required runtime of the sampling algorithm. Additionally, the evidence presented

in this thesis points to the Barker proposal as the most suitable MCMC method for

FINN.

Finally, the samples of FINN’s parameters obtained using the Barker MCMC algorithm

are used to provide a confidence interval of FINN’s prediction. They are compared

against the prediction obtained by a calibrated, conventional physical model. This cal-

ibrated physical model is shown to be inaccurate when tested on different soil samples.

FINN outperforms the physics-based model both during training and testing. This can

be attributed to the fact that FINN is capable of learning a shape-free retardation factor

function, whereas the physics-based model is limited to discrete choices of parametric

equations. More importantly, the confidence interval provided by FINN’s predictions

covers most of the noisy measurement data, showing that FINN sufficiently identifies

multiple hypotheses with similar likelihoods to explain the noisy data.



4 Conclusion and Outlook

The description of naturally occurring physical phenomena by existing scientific models

is still imperfect, especially at the scale that is critical for decision-making processes.

The recent growth of data-driven methods can potentially improve our understanding

of more complex physical processes. However, these methods heavily depend on the

availability and quality of observation data, which are often difficult to obtain. On

the other hand, physics-informed models follow rigid physical constraints that are too

prohibitive, hence hindering their ability to learn useful new insights. This thesis

addresses this issue, by proposing an uncertainty-aware hybrid modeling framework to

assist in scientific discovery, and ultimately to establish a continuous improvement of

scientific knowledge. This chapter summarizes the findings of this thesis to answer the

research questions and provides an outlook and presents ideas for future research.

4.1 Conclusion

To reach the goal of this thesis, three research questions had been posed. In this sec-

tion, the contributions of this thesis are compiled to answer the corresponding research

questions.

Research Question 1: How can prior physical knowledge be adopted to design a

consistent and reliable hybrid model for dynamic systems?

This thesis proposes several strategies to answer this question. First, a recurrent struc-

ture is required to model dynamic systems, to encode the temporal dependence between

the unknown states at different points in time. Correspondingly, the recurrence also

has to be enforced in the training process to teach the model to regulate the error
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accumulation over time. Second, multiple feedback delays are also beneficial to teach

the model to learn about long-term autocorrelation. Finally, a physics-based regular-

ization imposes the physical plausibility of the model prediction. The first publication

demonstrates the importance of these aspects with an application in the Thermochem-

ical Energy Storage (TCES) system. It is also important to note that, although the

framework is demonstrated in the TCES system, it is generally applicable to other

dynamic systems.

Research Question 2: How can prior physical and numerical knowledge be

adopted to design a consistent and reliable hybrid model for dynamic and

spatially distributed systems?

The second and third publications propose answers to this research question. To model

spatio-temporal problems that can be written mathematically as Partial Differential

Equations (PDEs), a well-defined spatial discretization strategy is essential. This can

be realized in the form of the Finite Volume Method (FVM), which serves as the

fundamental structure of the proposed hybrid model. The FVM structure is then com-

plemented by learnable modules that enable data-driven discovery. Additionally, the

structure allows for the proper treatment of different types of numerical boundary con-

ditions, further enhancing the physical consistency of the model. To ensure numerical

stability during training, a higher-order ODE solver that is implemented in the Neural

ODE method is employed. In the corresponding publications, numerical experiments

are conducted on various application domains such as Burgers’ equation, the diffusion-

sorption equation, the diffusion-reaction equation, and the Allen-Cahn equation. This

shows the broad sphere of application of the proposed Finite Volume Neural Network

(FINN) model.

Research Question 3: How can the hybrid model learn about its own total

(predictive) uncertainty in a computationally effective manner, so that it is

appropriate for real-world applications or could facilitate scientific hypothesis

testing?

The fourth publication proposes answers to the third research question. First, the

Markov Chain Monte Carlo (MCMC) method is preferable over the Bayes by Backprop
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method for inferring the random parameter distributions of a Bayesian Neural Network

(BNN). MCMC allows for a direct sampling from the exact posterior distribution,

whereas Bayes by Backprop limits the posterior to a Gaussian distribution. Second,

gradient-based MCMC algorithms improve the convergence rate of the sampling in

comparison to the plain random walk Metropolis-Hastings algorithm. Third, a BNN

model has to possess a relatively low number of parameters to ensure flexibility in

choosing between different Bayesian inference methods and feasibility in implementing

the chosen method while taking the available computing power into account. This

thesis shows the implementation of these aspects through a Bayesian FINN, applied to

a groundwater contaminant transport problem. When trained with sparse laboratory

measurement data, the Bayesian FINN outperforms a calibrated, conventional physical

model and captures the noisy measurement data nicely within its confidence interval.

4.2 Outlook

Although the results presented in this thesis show promising potential, there are still

open questions that need to be addressed to bridge the gap between the current state-

of-the-art and the ultimate goal. First, FINN is so far only implemented on spatial

domains with regular grid shapes and homogeneous properties. While this might be a

suitable solution/assumption for applications on a lab scale, it might not be appropriate

for applications on a larger field scale. This is especially critical for scientific discov-

ery in physical systems that are difficult to simulate in a lab-scale experiment. One

way to incorporate spatial heterogeneity and irregular grids into the hybrid model are

by employing a message-passing graph neural network structure [Gilmer et al., 2017,

Brandstetter et al., 2022]. With this structure, each node can learn its distinct pa-

rameter instead of a single homogenous parameter that is used for the whole domain.

Furthermore, geostatistical methods can also be employed as additional constraints

to regulate a physically-plausible spatial heterogeneity. A graph model structure also

allows learning of the numerical discretization stencils through its message-passing fea-

ture.

Second, the current implementation of FINN is not optimized for efficient computa-

tion. For larger-scale applications, which require FINN to process a large amount of

data, the computational time could pose a problem. To perform computations at such
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a large scale, parallel computing might be necessary, and therefore, an optimized im-

plementation of FINN is required for both CPU and GPU computations. One major

source of the bottleneck is the need to perform sequential iterations to integrate the

learned equation over the whole temporal domain. One possible solution is to partition

the temporal domain into different segments. These segments or batches can then be

computed in parallel to improve computational efficiency.

Third, it is often difficult to define a precise boundary on a field-scale observation. More

concretely, the domain of interest is often treated as a separate entity even though it

might be influenced by a connected neighboring domain. For example, the weather

in Germany is influenced by the weather in the neighboring countries. However, it is

not feasible to perform a full weather simulation on all the neighboring countries. To

eliminate the need of conducting these expensive simulations, boundary conditions are

defined to encode the influence of the weather from the neighboring countries on the

weather in Germany. Consequently, boundary condition learning becomes an important

problem. The first steps have been taken to employ FINN to perform this task [Horuz

et al., 2022], and further work on more complicated boundary condition types is still

necessary.

Fourth, performing uncertainty quantification on FINN, and ANNs in general, is no-

torious for its difficulty due to the statistical unidentifiability of ANNs [Jospin et al.,

2022]. In other words, the parameters of ANNs are non-unique, because of the weight

symmetry inside a hidden layer. This means that an exchange of two hidden nodes

inside a hidden layer, followed by the permutation of the corresponding weights con-

nected to these hidden nodes, leads to the ANN producing the same output. A possible

workaround for this issue is to define a stronger prior with a narrower distribution, to

restrict the exploration space of the sampling algorithms. Furthermore, a more rigorous

and complete uncertainty quantification analysis also needs to be performed on FINN.

More specifically, uncertainty quantification can be performed on multiple FINN mod-

els with different concepts and structures, when the form of the governing PDE is still

uncertain.

Finally, FINN’s applicability to real-world data has only been tested on the groundwater

contaminant transport problem. More real-world applications are necessary not only to

further validate its versatility but also to contribute to discoveries in broader scientific

areas. Examples of such applications are sea surface temperature prediction, climate



4.2 Outlook 49

modeling, multi-phase fluid flow in porous media, or even a larger-scale groundwater

contamination problem.
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K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural

machine translation: Encoder-decoder approaches. In Proceedings of SSST-8, Eighth

Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 103–

111, 2014. doi: 10.3115/v1/W14-4012.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent

neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning

and Representation Learning, 2014. doi: 10.48550/arXiv.1412.3555.



54 Bibliography

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of math-

ematical physics. IBM Journal of Research and Development, 11(2):215–234, 1967.

doi: 10.1147/rd.112.0215.

H. Crowley, D. Rodrigues, V. Silva, V. Despotaki, L. Martins, X. Romão, J. Castro,

N. Pereira, A. Pomonis, A. Lemoine, A. Roullé, B. Tourliere, G. Weatherill, K. Piti-
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Abstract: Thermochemical Energy Storage (TCES), specifically the calcium oxide (CaO)/calcium
hydroxide (Ca(OH)2) system is a promising energy storage technology with relatively high energy
density and low cost. However, the existing models available to predict the system’s internal
states are computationally expensive. An accurate and real-time capable model is therefore still
required to improve its operational control. In this work, we implement a Physics-Informed Neural
Network (PINN) to predict the dynamics of the TCES internal state. Our proposed framework
addresses three physical aspects to build the PINN: (1) we choose a Nonlinear Autoregressive
Network with Exogeneous Inputs (NARX) with deeper recurrence to address the nonlinear latency;
(2) we train the network in closed-loop to capture the long-term dynamics; and (3) we incorporate
physical regularisation during its training, calculated based on discretized mole and energy balance
equations. To train the network, we perform numerical simulations on an ensemble of system
parameters to obtain synthetic data. Even though the suggested approach provides results with
the error of 3.96 × 10−4 which is in the same range as the result without physical regularisation,
it is superior compared to conventional Artificial Neural Network (ANN) strategies because it
ensures physical plausibility of the predictions, even in a highly dynamic and nonlinear problem.
Consequently, the suggested PINN can be further developed for more complicated analysis of the
TCES system.

Keywords: physics inspired neural network; physics-based regularisation; artificial neural network;
nonlinear autoregressive network with exogenous input (NARX); thermochemical energy storage

1. Introduction

1.1. Thermochemical Energy Storage

Energy storage systems have become increasingly important in the shift towards renewable energy
because of the fluctuation inherent to renewable energy generation [1,2]. Thermochemical Energy
Storage (TCES) stores and releases energy in the form of heat as chemical potential of a storage material
through a reversible endothermic/exothermic chemical reaction. TCES is favourable compared to
sensible and latent heat storage [3–5] because it features a high energy density, low heat losses and the
possibility to discharge the system at a relatively high and constant output temperature [6].

Numerous studies have been conducted on thermochemical energy storage in different
materials, including calcium oxide [3,6], manganese oxide [7,8], barium oxide [9], zinc oxide [10],
cobalt oxide/iron oxide [11], strontium bromide [12], calcium carbonate [13] and many more.
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In general, the chemical processes occurring on the storage material can be classified into: redox of
metal oxides, carbonation/decarbonation of carbonates and hydration/dehydration of hydroxides [14].
The choice of materials depends on many criteria, one of which is the application of the energy storage.
For example, in integration with Concentrated Solar Power (CSP) plants, manganese oxide is not
suitable because of its high reaction temperature [6,15]. Another important aspect to consider is the
practicability of the process; for example, in a calcium carbonate system, CO2 as the side effect of the
reaction has to be liquefied and results in a high parasitic loss [6,14]. Additionally, there are many
more criteria to consider, such as cyclability, reaction kinetics, energy density and, most importantly,
safety issues. For comprehensive reviews of varying storage materials, we refer to [14–16].

Recently, experimental investigations have been conducted specifically for the calcium oxide
(CaO)/calcium hydroxide (Ca(OH)2) system. One experiment investigated the material parameters
(such as heat capacity and density) and the reaction kinetics [17], another experiment focused
on studying the operating range, efficiency and the cycling stability of the system [18], and there
was also an experiment on the feasibility of integration with concentrated solar power plants [19].
All these experiments show that CaO/Ca(OH)2 is a very promising candidate as TCES storage
material. Furthermore, it is more attractive compared to other storage materials because it is nontoxic,
relatively cheap and widely available [20,21]. The system stores the heat (is charged) during the
dehydration of Ca(OH)2 by injecting dry air with higher temperature. Charging results in an
endothermic reaction along with the formation of H2O vapour and lower temperature at the outlet.
It releases the heat (is discharged) during the hydration of CaO. This is achieved by injecting air with
higher humidity (H2O content) and relatively lower temperature, resulting in an exothermic reaction
(see Figure 1). Note that in this case, the hydration process occurs at lower temperature relative to
the dehydration process, but both processes occur at high operating temperature [22]. The reversible
reaction is written as:

Ca(OH)2 + ∆H ⇀↽ CaO + H2O. (1)

(a)Dehydration process

(b)Hydration process

Figure 1. A simplified schematic of a Thermochemical Energy Storage (TCES) system with
CaO/Ca(OH)2 as the storage material during (a) dehydration and (b) hydration process.

A robust operational control of this system needs an accurate and real-time capable model to
predict its state of charge and health. Similar models are operationally used, namely for batteries in
mobile devices [23,24]. Accordingly, numerical TCES modelling studies were conducted to predict
the system’s behaviour [6,18,20,21,25]. However, the PDEs that describe the system are dynamic,
highly nonlinear and strongly coupled, making the numerical simulation computationally expensive.
This poses a significant hindrance on a more thorough and complex analysis of the TCES system.
Estimation of the system’s state of health, for example, requires a 2D or 3D model to study the effect of
the structural change due to agglomeration [26]. With increasing spatial dimension, the computational
time also increases strongly. Consequently, the system is not ready yet for commercial and industrial
use until a faster and accurate model is developed. In this work, we consider using Artificial Neural
Network (ANN) as a cheaper alternative to the expensive existing models.



Energies 2020, 13, 3873 3 of 26

1.2. Physics-Inspired Artificial Neural Networks

Artificial Neural Networks (ANNs) have been studied and applied intensively in the past few
decades. They have become very popular alongside linear regression and other techniques such
as Gaussian Process Regression (GPR) and Support Vector Machine (SVM) [27]. ANNs have advantages
in terms of their flexibility and better applicability to model nonlinear problems compared to linear
regression and GPR [28]. Additionally, it has better scalability to larger data compared to SVM [29].
However, a detailed performance comparison of ANN with other machine learning techniques is out
of the scope of this paper.

ANNs have a wide range of applications, such as image and pattern recognition,
language processing, regression problems and data-driven modelling [30]. In this paper, we focus
on data-driven modelling, where an ANN is trained to predict the physical behaviour of a TCES
system based on available data. ANNs have been used for data-driven modelling in different fields.
In hydrology [31], ANNs have been successfully applied, for example to predict rainfall-runoff [32,33],
groundwater levels [34] and groundwater contamination [35] . Moreover, ANNs have been used in
energy system applications [36], for example to predict the performance of [37], reliability of [38] and
design [39] renewable energy systems . All these examples show that ANNs have a potential to be a
quick decision making tool which is useful for many engineering and management purposes.

In previous applications of ANNs in data-driven modelling, the ANN was treated as a black
box [40,41] that learns only the mathematical relationship between the input and output. In such
a process, the physical relationships and scientific findings that were previously used to build
governing equations of the modelled systems are completely neglected. This issue is very troublesome
and needs to be addressed because real data are noisy with measurement errors, and fitting the
ANN to the noisy data without any physical constraint might lead to overfitting problems [30].
Additionally, in many cases, observation data is difficult and expensive to obtain, providing users with
only a limited amount of data to train the ANN. Without any physical knowledge, ANNs perform
poorly when trained with a low amount of data [42,43]. Furthermore, ANNs have a very poor
interpretability [44,45], meaning that there might be different combinations of ANN elements (width,
depth, activation functions and parameters) that fit the training data with similar likelihood, but not
all of them are physically meaningful and robust. As a result, ANN predictions might be misleading.

Implementing physical knowledge to build the ANN structure and regularisation is a potential
solution to solve this issue. By combining a black box model with a white box (fully physical) model,
we obtain a grey box model. In such an approach, physical theories are used in combination with
observed data to improve the model prediction and plausibility [46]. Moreover, the data will help to
include complex physical processes that may not be captured in currently existing white box models.
There are at least two motivations to do so: to obtain a reliable surrogate model for the physics-based
model for the sake of speed in real-time environments and to address situations where the underlying
physics of the system are incompletely understood, so that ANNs can build on, and later exceed,
the current state of physical understanding.

Several works have been conducted to develop the so-called Physics Inspired Neural Networks
(PINN). In general, PINNs can be grouped into two distinguishable motivations as mentioned above.
The first one applies ANNs to infer the parameter values in the governing Ordinary Differential
Equations (ODEs) or Partial Differential Equations (PDEs) as well as the constitutive relationships and
the differential operators [43,47], assuming that the ODEs or PDEs perfectly describe the modelled
system. The second one treats the system as a complex unit that is not sufficiently represented only
with simplified equations. It trains the ANN based on observation data while constraining the ANN
using physically-based regularisation [42,48,49]. We aim mostly at the second motivation and ask
ourselves how much of the useful knowledge contained in the PDEs can be used to inform ANNs
before proceeding to train them on observation data.

Despite the success of PINN implementations in this direction, there are still some open issues that
need to be addressed: (I) There is no well-defined alignment between the structure of the governing
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equations with the structure of the ANN. For example, most, if not all of the applications are for
dynamic systems. Nevertheless, the structures of the ANNs applied do not resemble the dynamic
behaviours of the systems and do not consider recurrency. (II) The focus in PINN development is more
on getting high accuracy with limited amount of training data rather than improving the physical
plausibility of the predictions. (III) The implementations of PINNs in previous works are mainly
for relatively simple problems, and implementation to more complex problems (featuring multiple
nonlinear coupled equations) has not been evident yet. In our current study, we address these three
open issues.

1.3. Approach and Contributions

For dynamic and complex systems with coupled nonlinear processes such as the TCES system,
we need an advanced approach to solve it using ANNs. Our approach implements physical knowledge
of the system into building the ANN such as: (I) we use a Nonlinear Autoregressive Network with
Exogeneous Inputs (NARX) structure. This is a form of Recurrent Neural Network (RNN), and we use
deeper recurrence to account for the system’s long-term time scales and nonlinear dynamics; (II) we
train the network with recurrence structure to improve the long-term predictions in the dynamic
system; and (III) we add physical regularisation terms in the objective function of training to enforce
physical plausibility of the predictions.

NARX is suitable to model time series of sequential (time-dependent) observations y(t) [50,51],
which are equispaced time series. There are several reasons why NARX is preferable to alternative
ANN structures: the included feedback loop in NARX enables it to capture long-term dependencies [34]
and the possibility to provide exogenous inputs improves the results compared to networks without
them [52]. Thinking in terms of PDEs, the exogeneous inputs resemble time-dependent boundary
conditions, and the feedback provides access to preceding time steps of the PDE solution. With deeper
recurrence, even integro-differential equations can be resembled, which is important for hysteretic
systems or for system descriptions on larger scales.

There are two different methods to train NARX, namely Series-Parallel (SP, also known as
open-loop) and Parallel (P, also known as closed-loop). In SP training, each time step in the time
series is used as an independent training example. This means the recurrency in the ANN structure is
ignored, and the preceding data values from the time series are provided as feedback inputs instead
of the predicted values. The feedback loop is closed only after completing the training to perform
multistep ahead predictions [52,53]. The independency of the training examples makes the training
much easier; however, the trained network performs much worse after closing the feedback loop [52].

Most, if not all studies conducted with NARX have used SP structure to train the network. In this
paper, we argue that P training resembles the dynamic system better. The reason is that P training
optimizes the ANN exactly for the later prediction purpose over longer time horizons: it accounts for
error propagation over time and for the time-dependency of the predictions between time steps. As a
downside, it requires more time to train the network in P mode. We are readily willing to accept this
trade-off, because once trained, the network can still calculate its outputs in high speed [54]. We also
propose to use a deeper recurrency to train the network by feeding back predictions of multiple
preceding time steps. This accounts for the nonlinearity of the system and for possible higher-order
memory effects in the system. In terms of PDE-governed systems, this corresponds to the time delay
between system excitations at one system boundary and the system’s reaction at a remote boundary.

Regularisation in training ANNs is useful to prevent overfitting. Here, as an addition to the
commonly used L2 regularisation, simple regularisation terms are added that align with the physics.
Several examples include, but are not limited to, monotonicity and non-negative values (examples
in this case are volume and mole fractions) of the internal states. This follows the works presented
in [46,55]. We suggest to use Bayesian Regularisation (BR) to optimally calculate the hyperparameters
(normalising constants) of all terms in the loss function, unlike in previous works, where the
hyperparameters were calibrated manually. Furthermore, regularisation terms with discretized balance
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equations are also used. This regularisation is a way to feed the training with fundamental human
knowledge previously used to build PDEs. It helps the network realise the extensive relationships
between inputs (previous states and boundary conditions) and outputs (future states of the system) in
complex problems and to prevent physically implausible predictions.

To test our ANN framework, a Monte Carlo ensemble of numerically simulated time series of
system states is used, which we generate from random samples of uncertain system parameters.
White noise is then added to the simulation results to emulate the actual noisy measurement data.
Then, this ensemble (both parameters and time series) is used to train the network. We use synthetic
data instead of experimental data because the former allow more exhaustive and controlled testing;
this does not imply that our main purpose is only surrogate modelling. As optimization algorithm for
training, the Levenberg–Marquardt (LM) algorithm [56–58] is implemented to obtain an optimum set
of NARX parameters (which consist of the so-called weights and biases).

This paper is organised as follows: in Section 2 we introduce the governing equations used for
numerical simulation of the TCES internal states, the alignment between the dynamic of CaO/Ca(OH)2

and the NARX structure, as well as how we implement the physical knowledge into the regularisation.
In Section 3, we discuss the results of our test, and Section 4 concludes the findings in the work.

2. Materials and Methods

2.1. Governing Equations

This study serves as an initial step towards enabling a more complex analysis of the TCES
system, focusing on predictions of the system’s dynamic internal states that change during the
endothermic/exothermic reaction process. The analysis of the system’s integration with the energy
source is out of scope of this paper.

To set up the prediction model, we consider the CaO/Ca(OH)2 TCES lab-scale reactor of
80 mm length along the flow direction as described in [20]. Assuming the system properties and
parameters to be homogeneous, the simulation was conducted in 1D. The system was modelled
as a nonisothermal single-phase multicomponent gas flow in porous media with chemical reaction
acting as the source/sink terms and can be described using mole and energy balance equations.
The inlet temperature and outlet pressure were fixed and defined with Dirichlet boundary conditions,
and Neumann conditions were used to define the gas injection rates. The solid components forming
the porous material are CaO and Ca(OH)2, and the gases are H2O and N2. The latter serves as an inert
component to regulate the amount of H2O mole fraction in the injected gas. Full explanation in detail
can be found in [20], and we offer a brief overview only in this section.

The mole balance equation was formulated for the solid component (subscript s) as:

∂ρn,sνs

∂t
= qs, (2)

where ρn denotes the molar density, ν the volume fraction, q the source/sink term, t the time and the
subscript n refers to molar properties. Note that νs is the volume fraction of each solid component
with regard to the full control volume, and therefore ∑s νs = 1− φ. In Equation (2), there is no effect
of advection or diffusion (no fluxes) because the solid is assumed to be immobile. The change of
solid component is solely caused by the chemical reaction through the reaction source/sink term qs,
assuming the solid is immobile. The change in the gas component (subscript g), however, is affected
both by advective and diffusive mass transfer and by a source/sink term for the reactive component
H2O, as is defined in the mole balance equation:

∂ρn,gxgφ

∂t
−∇.

(
ρn,gxg

K
µ
∇p + Dρn,g∇xg

)
= qg. (3)
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Here, x denotes the molar fraction, φ the porosity, K the absolute permeability of the porous
medium, µ the gas viscosity, p the pressure and D the effective diffusion coefficient.

The energy balance equation was formulated assuming local thermal equilibrium. It accounts for
internal energy change of both solid and gas phase, convective and conductive heat flux as well as
source/sink term from the reaction. It was defined as:

∂ρm,gugφ

∂t
+ ∑

s

∂(νsρm,scp,sT)
∂t

+∇.
(

ρm,ghg
K
µ
∇p
)
−∇.(λe f f∇T) = qe, (4)

where ρm is the mass density, ug is the gas specific internal energy, cp,s is the specific heat capacity of
the solid material (CaO and Ca(OH)2), T is temperature, hg is gas specific enthalpy and λe f f is the
average thermal conductivity of both solid materials and gas components.

Reaction rates must be specified to determine the source/sink term for each equation.
Based on [20,21], simple reaction kinetics were used, described as:

ρ̂m,SR =




−xH2O(ρm,Ca(OH)2

− ρm,SR)kH
R

T−Teq
Teq

, if T < Teq,

−(ρm,SR − ρm,CaO)kD
R

T−Teq
Teq

, if T > Teq,
(5)

where ρ̂m,SR is the mass reaction rate, kH
R and kD

R are hydration and dehydration reaction constant,
respectively and Teq is the equilibrium temperature. Hydration process occurs when T < Teq, which is
also called the discharge process and is the exothermic part of the reaction; and dehydration process
occurs when T > Teq, also known as charge process and the endothermic part of the reaction. At the
beginning of each reaction, the storage device is assumed to be in chemical equilibrium, corresponding
to νCa(OH)2

= 0 and νCaO = 0 for hydration and dehydration, respectively.
The relation between the reaction rate and the source/sink terms for the mole balance equations

were defined as:
qH2O = qCaO = −qCa(OH)2

=
ρ̂n,SR

1− φ
, (6)

with ρ̂n,SR the molar reaction rate (obtained from ρ̂m,SR using the molar mass of each respective
component). The energy balance source/sink term qe was calculated accounting for the reaction
enthalpy ∆H and the volume expansion work [59] according to:

qe = −ρ̂n,SR

(
∆H − φ

1− φ

p
ρn,g

)
. (7)

Note that a negative sign is necessary to calculate qe, so that its value is in proportion to
qCa(OH)2

, and in reverse to qH2O and qCaO. This negative sign can be explained by the fact that
to form Ca(OH)2 from CaO and H2O in the hydration process, energy is released into the system.
Correspondingly, a decrease in the molar amount of CaO and H2O (and an increase in the molar
amount of Ca(OH)2) results in a positive source term. The opposite holds for the dehydration process.

2.2. Input and Output Variables

The numerical model used in this work was developed using DuMux (Distributed and Unified
Numerics Environment for Multi-{Phase, Component, Scale, Physics, ...} [60]). As input to the simulator,
we need the material parameters such as CaO density (ρCaO), Ca(OH)2 density (ρCa(OH)2

), CaO specific
heat capacity (cp,CaO), Ca(OH)2 specific heat capacity (cp,Ca(OH)2

), CaO thermal conductivity (λCaO) and
Ca(OH)2 thermal conductivity (λCa(OH)2

); porous medium parameters such as absolute permeability
(K) and porosity (φ); reaction kinetics parameters such as reaction rate constant (kr) and specific
reaction enthalpy (∆H); and initial and boundary conditions such as N2 molar inflow rate (ṅN2,in),
H2O molar inflow rate (ṅH2O,in), initial pressure (pinit), outlet pressure (pout), initial temperature (Tinit),
inlet temperature (Tin) and initial H2O mole fraction (xH2O,init).
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In the TCES system application, one of the main goals is to estimate the state of charge of the device
that is implied in the CaO volume fraction νCaO. The device in fully charged condition corresponds
to νCaO = 1 and vice versa. We are also interested in the output variables p, T and xg,H2O (H2O mole
fraction). The behaviour of these variables, especially p, is very nonlinear. Therefore, it is interesting
to see the prediction of the ANN for these nonlinear variables. Additionally, these variables are also
important to assist in the system understanding. Therefore, our main output variables of interest were
defined as in the following vector y as a function of time t:

y(t) =




p(t)
T(t)

νCaO(t)
xg,H2O(t)


 . (8)

All input-output data samples are available as supplementary materials on
https://doi.org/10.18419/darus-633.

2.3. Aligning the ANN Structure with Physical Knowledge of the System

ANN representation via NARX has two different training architectures, namely Series-Parallel
(SP) and Parallel (P) structure. The network output ŷSP (t + 1) of the SP structure is a function of
the observed target values of previous time steps y (t) up to a feedback delay dy and of the so-called
exogenous inputs u:

ŷSP (t + 1) = f
(
y (t) , y(t− 1), . . . , y(t− dy), u

)
. (9)

In this work, u was assumed to be constant over time, meaning there is no disturbance signal
throughout the whole simulation period.

In P structure, the difference lies in the fed-back values. Here, the network outputs of the P
structure ŷP (t) are fed-back instead of the original given data y(t):

ŷP (t + 1) = f
(
ŷ (t) , ŷ(t− 1), . . . , ŷ(t− dy), u

)
. (10)

Note that, in terms of notation, the difference only lies in the hats above the fed-back values.
Apparently, the P-structure in NARX resembles an explicit time-discrete differential equation (ODE or
PDE) in a simplistic case, for example using the Adams–Bashforth discretization scheme [61,62] which
can be described as:

ŷ(t + 1) ≈ ŷ(t) + ∆t · g(u, ŷ(t), ŷ(t− 1), . . . , ŷ(t− dy)). (11)

where ŷ (t + 1) is an explicit function of ŷ (t) . . . ŷ
(
t− dy

)
. In Equation (10), the NARX function

f
(
ŷ (t) , ŷ(t − 1), . . . , ŷ(t − dy), u

)
can be seen as an approximation of ŷ(t) + ∆t · g(u, ŷ(t), ŷ(t −

1), . . . , ŷ(t − dy)) in Equation (11). Based on this reason, we propose to train using P-structure
for solving dynamic problems whenever possible. Additionally, training in P-structure helps the
network to learn that there is dependency between predicted values at different time steps. While both
architectures were considered for NARX training, only P architecture was used for testing, as for
longer-term forecasting, real data of previous time steps are not available [52]. For better understanding
of the difference between P and SP, Figure 2 illustrates both architectures.

Feedback delay is also an important property, because Equations (2)–(4) are not elliptic, and hence
there will be a time delay for the effect of input change to change the output. Because of this memory
effect and its nonlinearity, we propose to use a deeper recurrence in NARX to enable the network to
learn the system’s latency. In this work, feedback delay values dy ranging from 1 to 5 were tested to
get the optimum value.
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∑
i= 1

n t

∑
t= 1

( y i,t − ŷ i,t )
2 , ( 1 4)

w h e r e i = 1 . . . n i n di c at e s a s p e ci fi c s a m pl e i n t h e t r ai ni n g d at a s et a n d t = 1 . . . n t i n di c at e s a

s p e ci fi c ti m e st e p. H o w e v e r, u si n g M S E al o n e i n t h e l o s s f u n cti o n i s n ot e n o u g h m o st of t h e

ti m e. T h e o pti mi z ati o n p r o bl e m t o b e s ol v e d i n t r ai ni n g i s t y pi c all y a n ill- p o s e d p r o bl e m i n m a n y

i n st a n c e s [3 0 ]. T h u s, r e g ul a ri s ati o n i s r e q ui r e d t o p r e v e nt o v e r fitti n g.

I n t hi s w o r k, t h e L 2 r e g ul a ri s ati o n m et h o d w a s u s e d t o i n c r e a s e t h e g e n e r ali s ati o n c a p a bilit y of

t h e A N N [6 4 ]. L 2 r e g ul a ri s ati o n i s al s o k n o w n a s w ei g ht d e c a y o r ri d g e r e g r e s si o n [6 5 ]. T h e g o al of L 2

r e g ul a ri s ati o n i s t o f o r c e t h e n et w o r k t o h a v e s m all p a r a m et e r v al u e s ( c h o o si n g t h e si m pl e r n et w o r k
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over the more complex one). This effectively adds a soft constraint to the loss function to prevent the
network from blindly fitting the possible noise in training datasets:

Eθ =
1
N

N

∑
j=1

θ2
j , (15)

where N is the total number of network parameters (weights and biases), and θ ∈ RN are the
network parameters.

To improve the network prediction and the physical plausibility even more, known physical laws
were inserted as part of the network regularisation:

Ephy,k =
1

n.nt

n

∑
i=1

nt

∑
t=1

(ephy,i,t,k)
2, (16)

where the subscript k identifies a specific physical law, for example a mole balance equation, and ephy,i,t,k
is the physical error listed in Table 1. For example, the term ephy,i,t,1 corresponds to the mole balance
equation for dehydration/hydration. The mole balance equation used for this regularisation is the
H2O mole balance, because it has the most complete storage, flux and source/sink term (the solid
components are assumed to be immobile, and N2 is inert). The mole balance error can be written as:

eMB(i, t) = nH2O,out(i, t)− nH2O,in + ∆nH2O,sto(i, t)− ∆nH2O,q(i, t), (17)

where nH2O is the molar amount of H2O, the subscript out, in, sto and q denote outflow, inflow, storage
and source/sink term, respectively. The mole balance error was used as a contraint ephy,i,t,1 and is
equal to 0 if the mole balance is fulfilled. Putting this equation as a regularisation term penalises the
network if the mole balance is not satisfied. Similarly, the corresponding energy balance equation also
has to be fulfilled:

eEB(i, t) = Qout(i, t)−Qin + ∆Qsto(i, t)− ∆Qq(i, t), (18)

where Q is the energy in the system. It was used as a regularisation in ephy,i,t,2. A more detailed
derivation of the mole balance error ephy,i,t,1 and the energy balance error ephy,i,t,2 can be found in
Appendix B.

Table 1. Physical constraints in training: loss term used in Equation (16).

k
Equation: ephy,i,t,k = ...

Dehydration Hydration

1 eMB(i, t)

2 eEB(i, t)

3 ReLU(−ν̂CaO(i, t))

4 ReLU(−x̂H2O(i, t))

5 ReLU(φ + ν̂CaO(i, t)− 1)

6 ReLU( p̂(i, t− 1)− p̂(i, t)) ReLU( p̂(i, t)− p̂(i, t− 1))

7 ReLU(T̂(i, t− 1)− T̂(i, t)) ReLU(T̂(i, t)− T̂(i, t− 1))

8 ReLU(ν̂CaO(i, t− 1)− ν̂CaO(i, t)) ReLU(ν̂CaO(i, t)− ν̂CaO(i, t− 1))

9 ReLU(T̂(i, t)− Tin) ReLU(Tin − T̂(i, t))

Further relations of the formF (ŷ) ≤ 0 (monotonicity and non-negative values) were implemented
using the Rectified Linear Units (ReLU) function, so that the physical error was then calculated with
ephy,i,t,k = ReLU

(
F (ŷ)

)
[46]. The ReLU function returns 0 as output value for negative arguments
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and linearly increases for positive arguments. Hence, it punishes positive values in proportion to
their magnitudes. Examples of these ReLU constraints are ephy,i,t,3 through ephy,i,t,13. They define
non-negativity and monotonicity of the predicted target variables. For both dehydration and hydration
process, negative fractional values ν̂CaO and x̂H2O are physically and mathematically impossible.
Therefore, in ephy,i,t,3 and ephy,i,t,4, the network is punished for predicting negative values for these
targets. Additionally, for both processes, ephy,i,t,5 provides an additional constraint for ν̂CaO, to limit
the amount of CaO volume in relation with the porosity (ν̂CaO ≤ 1− φ). All these monotonicity
assumptions originated from the fact that the system’s material parameters are considered to
be constant throughout operation of the system. Therefore, the system’s behaviour should be
monotonic and bounded in the specified aspects. Specific for the dehydration process, p̂, T̂ and
ν̂CaO are expected to not decrease throughout the simulation. This results in the corresponding
monotonicity constraints ephy,i,t,6 to ephy,i,t,8. The system temperature must also be lower or equal to
the injected temperature as constrained in ephy,i,t,9, because the injected temperature is higher than
the initial temperature. Specifically for the hydration process, the monotonicity constraints ephy,i,t,6 to
ephy,i,t,9 for the dehydration process are reversed, because the hydration process is the reverse of the
dehydration process.

2.5. Obtaining Optimum Network Parameters

The complete loss function defined in Section 2.4 including MSE and all the regularisation term is
written as:

L(θ) = αEθ + βED + ∑
k

λkEphy,k. (19)

Here, α and β are normalising constants of Eθ and ED, respectively; and λk is a normalising constant
for each physical regularisation k. All error and regularisation terms, therefore, are evaluated in a
normalised metric. These normalising constants, also known as the hyperparameters, determine the
importance given to each term. For example, a high β means that it is more important for the network
to fit the training datasets than to generalise better. In many cases, the hyperparameters are determined
manually from trial-and-error. In this work, Bayesian Regularisation was adopted to calculate them
overall using a maximum likelihood approach to minimise L(θ) [66,67]. Bayesian Regularisation
reduces the subjectivity arising from manual choice of hyperparameters. First, all the hyperparameters
α, β and λk along with the network parameters θ were initialised. The hyperparameters were initialised
by setting β = 1, α = 0 [68] and also λk = 0, while the network parameters were initialised using the
Nguyen-Widrow method [69,70]. The Nguyen-Widrow method initialises the network parameters
so that each neuron contributes to a certain interval of the whole output range (added with some
random values).

The complete derivation for updating α and β can be found in [66,67]. Here, we only give the
calculation of λk. After each iteration, they are updated according to the following relation:

λk :=
N − λkTrace(H−1 JT

phy,k Jphy,k)

2Ephy,k
, (20)

where Jphy,k is the Jacobian of physical error Ephy,k with respect to the network parameters θ.
The approximate Hessian matrix H of the overall loss function L(θ) was defined as follows:

H = αI + βJT
D JD + ∑

k
λk J

T
phy,k Jphy,k, (21)

where JD is the Jacobian of the MSE (ED) with respect to the network parameters and I is the N × N
identity matrix (N is the number of network parameters θ).
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The network parameters are also updated after each iteration according to the Levenberg–
Marquardt algorithm:

θ := θ− (H + Iµ)−1(αθ+ βJDED + ∑
k

λk Jphy,kEphy,k), (22)

where µ > 0 is the algorithm’s damping parameter. Its value is increased when an iteration step is not
successful, and is decreased otherwise. The Levenberg–Marquardt algorithm was chosen because of its
faster convergence rate compared to Steepest Decent and higher stability relative to the Gauss–Newton
algorithm [58]. In absence of our physical regularisation terms and with fixed α, β, the procedure
would simplify to a plain (nonlinear) least squares training, which would be the standard approach for
training ANNs. Values of the trained network parameters and the normalising constants at the end of
the training are given as supplementary materials on https://doi.org/10.18419/darus-634.

3. Results and Discussion

Our hypothesis is that applying physical knowledge of the modelled system into the construction
of ANNs would lead to an improved physical plausibility of the prediction results. In this section,
the prediction of the TCES system using ANNs is assessed and three relevant aspects that support our
hypothesis are discussed: (I) the effect of feedback delay on the prediction result to account for the
system’s nonlinearity and long-term memory effect (Section 3.1), (II) the comparison between training
in SP and P architecture (Section 3.2) and (III) the improved physical plausibility from using physical
regularisation (Section 3.3). The results are illustrated only for the dehydration process, because the
hydration provides very similar results.

The complete workflow of the ANN application is shown in Figure 3. In general, the workflow
can be divided into: training, validation and testing of the ANN. To train the ANN, first an ensemble
of exogeneous input u was generated based on selected probability distributions. These distributions
are based on different values used in literature [6,17–21]. The complete list of exogeneous inputs
u with their corresponding distributions is listed in Appendix A. This ensemble was then plugged
into the numerical model in DuMux and was simulated until t = 5000 s to obtain an ensemble of
target data y(t). The governing equations are provided in Section 2.1. White noise was then added to
these targets by generating normally distributed random numbers with zero mean and a standard
deviation of 0.05 times the target values. Lastly, both exogenous inputs and targets were normalised
to the range [−1, 1] to help the stability of the training [71]. Then, we set up the NARX ANN as
described in Section 2. The training was then conducted using the built-in functions for NARX in the
MATLAB Neural Network Toolbox [63], in which the loss function calculation was modified based
on the equations provided in Section 2.5. It was conducted in batch mode both for dehydration and
hydration process with a total of 100 training datasets.

Without physical regularisation, we obtain the lowest MSE value when the NARX is trained
using 1000 training datasets, as shown in Figure 4. However, it is interesting to see how the
physical knowledge can further improve the performance of NARX with limited training data.
Therefore, we conducted the training in batch mode both for dehydration and hydration process
with a total of only 100 training datasets.

For conciseness, the choice of the number of hidden layers, number of nodes per hidden
layer and choice of activation function is not discussed because there is no existing uniform and
systematic method to calculate the appropriate or the best combination [72]. Based on trial and
error, we found that for this specific problem, 2 hidden layers with 15 and 8 nodes at each layer
gives reasonable results. An example of ANN prediction using this configuration is provided in
Appendix C. The stopping criteria are the dampening factor µ > 1010 (see Equation (22)) or the loss
function gradient g = ∂L(θ)

∂θ < 10−7, both of which are the default values proposed in the toolbox.
Additionally, a maximum epochs is set for the training. Since training error converges mostly before
500 epochs, this limit is sufficient.
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Figure 3. Flowchart of training, validation and test of the ANN.

Figure 4. Comparison of MSE using different number of training datasets.

Different initialization values often lead to different network response as the algorithm might
fail to always locate the global minimum [65]. Therefore, the network was retrained with 50 different
initialisations. This number was set to find a compromise between a reliable result and a reasonable
computational time. After each training, the network was validated on 20 validation datasets,
and the trained network with the lowest MSE (ED evaluated against validation data) was selected.
Finally, the network was tested with data contained neither in the training nor in the validation set on
a test set with 800 time series.

3.1. Influence of Feedback Delay

Figure 5 shows the influence of feedback delay on the MSE evaluated on both the training (dashed
lines) and test datasets (solid lines) for networks trained using P structure. As shown in Figure 5,
for dy > 1 the test MSE is lower than the training MSE. This is generally because the network was
trained using additional white noise—producing more errors in the training, while the test datasets
were smooth for reference.
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Figure 5. Feedback delay variation.

In Figure 5, while the training error seems to remain constant at dy > 2, the test error keeps
decreasing with increasing dy. This clearly illustrates that including more depth in the recurrence
improves the generalisation capability and therefore improves the ANN prediction. As the best
MSEtest was obtained with dy = 5, this value will be used from here onwards. From Figure 5 we
can also analyse that a time delay of at least 3 previous time steps is useful to train the network.
Moreover, we do not see the value of using dy > 5, as judging by the MSE trend in Figure 5, there is no
significant improvement expected.

3.2. SP Versus P Training Structure

Figure 6 compares the training time of P compared to SP structure. Moreover, plotting the gradient
and performance as function of training epochs allows us to analyse the difference between both
training characteristics. As expected and shown in Figure 6 (dashed lines), both SP and P structure
training time increases nearly linearly with the number of epochs (iterations). However, the slope is
steeper for P training which is caused by higher computational cost using Backpropagation Through
Time (BPTT).

In Recurrent ANNs, BPTT is used to calculate the derivative of the loss function instead of
the normal backpropagation method. BPTT is technically the same as the normal backpropagation
method but with the RNN unfolded through time being the main difference [30]. The gradient is then
backpropagated through this unfolded network. Unfolding the recurrent network increases its size,
and therefore the optimization problem becomes computationally more expensive and more difficult
to solve.

After every epoch in P training, the output values change, and consequently the feedback values
also change. The constantly changing feedback values cause additional changes of the gradient values
along the iteration (dotted lines in Figure 6). This makes the training a more nonlinear problem.
Correspondingly, the training performance (smaller MSE) increases much slower. In SP training,
the gradient strongly decreases during the first 20 epochs, showing that the SP training is more
computationally stable. However, the MSE (solid lines in Figure 6) was evaluated during training for
the structure the network was trained with, meaning that the training performance does not consider
the closed-loop conversion error for SP training. For that reason, the MSE values shown in Figure 6
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seem to be better for SP training. Regardless of this difference, both training procedures converge with
strictly monotonic decay of their MSE.

training epoch
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Figure 6. Training time, gradient and performance for P (Parallel) and SP (Series-Parallel) structure.

Next, the prediction performances of both training architectures are compared. In Figure 7,
the results of the SP-trained NARX (dashed lines) are shown compared to the target values obtained
from the simulation (solid lines) as reference solutions. Here, all target variables are calculated
with differing inlet temperature. After a few time steps with relatively precise forecasts, the NARX
predictions for T, p and νCaO diverge from real values and are highly fluctuating over time, which is
nonphysical. Note that, in Figure 7, the results are shown only up to time step 100 instead of 1000.
This is because the NARX prediction results after time step 100 have even higher fluctuations as the
error propagates, hence making the comparison unclear visually. The forecast for xg,H2O is reasonably
accurate for t < 100 but more erroneous for longer forecast periods. The forecast error is caused by the
closed-loop-instability, meaning the inaccuracy caused by converting the network structure from SP to
P. In other words, training using SP structure gives increasingly erroneous results with increasing time
horizon. On the contrary, training with P structure provides clearly more accurate forecasts compared
with SP, as shown in Figure 8. The NARX predictions (dotted lines) correspond really well to the
reference targets (blue solid lines) throughout the whole simulation time for 1000 time steps, with inlet
temperatures covering the whole range of its input distribution.

The comparison of P and SP structure shows that, while training in P structure seems to be
more unstable, it provides significantly better long-term predictions because it trains the network to
realise the time-dependency of output variables in a dynamic system. As shown by Equation (11),
NARX resembles an explicitly discretized ODE, which is known to be conditionally stable. In cases
where the discrete ODE is unstable, the error grows exponentially through time [73]. By training the
network using P structure, the same structure is used for both training and testing, hence minimising
the error propagation. The higher computing time needed to train in P structure (in comparison with
training in SP structure) should not be a problem because the training only needs to be conducted once.
Once the optimum network parameters are obtained, NARX can give reasonably accurate predictions
with fast computational time. In fact, almost all studies in the area of surrogate models are willing
to accept high computational costs during training (called offline costs) if the accuracy and speed for
prediction (online) are good [54,74,75].
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Figure 7. Forecasts with SP-trained NARX for various inlet temperatures.

Figure 8. Forecasts with P-trained NARX for various inlet temperatures.

3.3. Physical Regularisation Improves Plausibility

To test the benefit of physically-based regularisation, the ANN performance is compared between
training the network using:

• only MSE as the loss function (“MSE”), that is L(θ) = ED,
• MSE combined with only L2 (“MSE + L2”), that is L(θ) = αEθ + βED,
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• MSE combined with only physical regularisation (“MSE + PHY”), that is
L(θ) = βED + ∑k λkEphy,k, and

• MSE combined with both L2 and physical regularisation (“MSE + L2 + PHY”), that is
L(θ) = αEθ + βED + ∑k λkEphy,k.

To make a fair comparison, all networks were trained with the same set of initial network
parameters. In this test, we used only P training and feedback delay dy = 5, because they clearly
showed preferable performance in the previous sections. The comparison is summarised in Table 2.

Table 2. MSE for different regularisation methods

Loss Function MSEtrain MSEtest

MSE 8.45 × 10−3 2.81× 10−3

MSE + L2 9.01× 10−3 3.96× 10−4

MSE + PHY 8.68× 10−3 3.83× 10−3

MSE + L2 + PHY 8.43× 10−3 3.96× 10−4

While the MSE on training data is in a comparable range for all loss functions, differences in
MSEtest are observed. L2 regularisation helps to reduce overfitting of training data, resulting in a lower
test error in “MSE + L2” compared to “MSE”. At first glance, the additional physical regularisation
does not seem to further improve the results. MSEtest of “MSE + PHY” is slightly worse compared
to “MSE”, and MSEtest of “MSE + L2 + PHY” is in the same order with “MSE + L2” because another
constraint is added in the objective function, while the performance is measured only based on MSE.
Moreover, using only the physical (MSE + PHY) instead of only L2 regularisation (MSE + L2) leads to
a test performance decrease.

Even though the performance for both “MSE” and “MSE + L2” are better than “MSE + PHY”,
they both fail to produce physically plausible predictions in several test datasets (outliers) as shown in
Figures 9 and 10 (the label “Reference” for the blue line refers to the synthetic test data obtained from the
physical model), the clearest one being negative fraction values of CaO and H2O. One important aspect
that needs to be considered is that the ANN was trained using only 100 training datasets, compared to
almost 500 parameters that exist inside the network. This made the optimisation problem an ill-posed
one, leading to clear overfitting in the network with “MSE” and “MSE + L2”. Physical regularisation
tackles this problem even for relatively sparse training data, which is valuable once experiments are
costly, and therefore, not much data are often available to train the network.

Even though it produces the worst overall test performance, physical regularisation alone
(MSE + PHY) is able to produce physically plausible results despite no application of L2 regularisation,
see Figure 11. The figure illustrates the worst prediction result of all test sets obtained using
“MSE + PHY”. Even in its worst prediction with high error, the network is much more stable. With the
addition of L2 regularisation in the “MSE + L2 + PHY” scheme, the prediction error (MSE) is further
reduced so that it lies within the same range as “MSE + L2”. The major difference here is illustrated in
Figure 12, where the worst prediction result produced by “MSE + L2 + PHY” is far more physically
plausible, shown by the absence of unstable fluctuations as well as the relatively higher accuracy.

We trained the ANN using numerical simulation results which indirectly imbues the physics
from the formulated governing equations into the ANN. When the ANN was not trained using
numerical simulation results but with real observation data (which could follow more complex,
scientifically unexplored equations), physical regularisation helps to constrain the ANN training at
least to fundamental, confirmed laws and prevent unnecessary overfitting to the irregular and noisy
observation data. As such, implementation of the method we present will be even more beneficial for
applications with real observation data.
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Figure 9. Worst prediction sample (red) obtained with “Mean Squared Error—MSE” regularisation
method and reference solution obtained from the physical model (blue).

Figure 10. Worst prediction sample (red) obtained with “MSE + L2” regularisation method and
reference solution obtained from the physical model (blue).



Energies 2020, 13, 3873 18 of 26

Figure 11. Worst prediction sample (red) obtained with “MSE + PHY” regularisation method and
reference solution obtained from the physical model (blue).

Figure 12. Worst prediction sample (red) obtained with “MSE + L2 + PHY” regularisation method and
reference solution obtained from the physical model (blue).

4. Conclusions

We adopted a PINN framework as an example of grey-box modelling to predict the dynamic
internal states of the TCES system. Our approach aligns with the motivation of PINN that sees
the modelled system as a complex unit that is underrepresented by the governing equations used
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in the physical model. We do not construct the ANN only as a surrogate model for the expensive
numerical model, unlike in other PINN approaches that use ANN to infer the governing equations
of the modelled system or the parameter values, assuming that the physical model describes the
system perfectly. Our method was designed for application with real observation data that imply more
complex processes than the simplified physical model. In this paper, however, we used synthetic data
to train the ANN as a proof of concept.

As a key contribution, we propose to implement physical knowledge about a system into building
the structure, choosing the training mode and designing the regularisation of ANNs to assure the
physical plausibility and to increase the performance of the TCES dynamic internal state predictions.
The alignment between the system’s behaviour (dynamic and nonlinear) and the ANN structure is
described. The ANN predictions using different regularisation strategies are also compared to show
the improvement provided by our method.

We show that, while training in P structure is computationally more expensive and unstable,
the result is superior to training using SP structure, because P training resembles the dynamic of
the governing differential equations better. Additionally, we found that, due to the nonlinearity and
long-term memory effects implied by the system equations, deeper recurrency is necessary. A moderate
depth of feedback delay produces better prediction performance, resulting from the network ability to
capture the latency of the system. However, using too much feedback delay is also counter-productive,
as it does not give significant improvement anymore, only increasing computational cost.

We also show that including physical regularisation to train the network improves the physical
plausibility of the network predictions, even for worst-case scenarios. Physical regularisation helps
the network to learn about relationships between different input and target variables, as well as the
time-dependency between them. This includes mole and energy balance equations that serve as
the building blocks of the system’s behaviour, along with simple monotonicity and non-negative
constraints. However, physical regularisation alone is not enough to improve the generalisation
capability of the network, and therefore, L2 regularisation is also necessary.

A very common issue with using ANNs in data-driven modelling is that obtaining experimental
or operational data can be very costly, and therefore, there is often no sufficient data available to
train the ANN. Our work shows that even with only a relatively small amount of training data
(compared to the number of network parameters), using P training with a moderate amount of
feedback delay dy, combined with physical regularisation helps to prevent overfitting in optimising
ill-posed problems and it produces relatively accurate and physically plausible predictions of the
CaO/Ca(OH)2 TCES system internal states. Further work is required for more sophisticated analysis
of the system, for example with spatial distribution of the internal system, dynamic exogeneous input
and uncertainty quantification of the predictions.

Availability of Data and Materials: Input-output data pairs used to train, validate, and test the ANN are available
as supplementary materials on https://doi.org/10.18419/darus-633, while the trained network parameters
(weight and bias values) for different regularisation methods explained in Section 3.3 are also available on
https://doi.org/10.18419/darus-634. Each dataset is accompanied with a ’README’ file that explains the
data format.
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Abbreviations

The following abbreviations are used in this manuscript:

Abbreviations:
ANN Artificial Neural Network
BR Bayesian Regularisation
LM Levenberg Marquardt
MSE Mean Squared Error
NARX Nonlinear Autoregressive Network with Exogeneous Inputs
ODE Ordinary Differential Equation
P Parallel (network structure)
PDE Partial Differential Equation
PINN Physics Inspired Neural Network
RNN Recurrent Neural Network
SP Series Parallel (network structure)
TCES Thermochemical Energy Storage
TCES-related parameters:
∆H Reaction enthalpy
λe f f Average thermal conductivity
µ Viscosity
νs Solid volume fraction
φ Porosity
ρm Mass density
ρn Molar density
t Time
cp Specific heat capacity
D Effective diffusion coefficient
h Specific enthalpy
K Permeability
kR Reaction constant
p Pressure
q Source/sink term
T Temperature
u Specific internal energy
xg Gas molar fraction
ANN-related parameters:
α Normalising constant of L2 regularisation term
β Normalising constant of data-related error
H Hessian matrix
I Identity matrix
J Jacobian matrix
ŷ(t) Predicted value at time t
λ Normalising constant of physical error
µ Damping parameter for LM algorithm
θ Network parameter
b Network bias
dy Feedback delay
ED Data-related error
Eθ Mean squared value of network parameters
Ephy Physical error
Lθ Loss function
N Number of network parameters
n Number of training samples
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nt Number of time steps
u Exogeneous input
w Network weight
y(t) Observed value at time t

Appendix A. List of Exogeneous Input and Its Distribution

Table A1 lists all of the exogeneous input with their corresponding distributions. The exogeneous input
distributions are centred around the values taken from [20].

Table A1. Input distributions for exogenous inputs, with µ and σ being the mean and standard
deviation used to generate the data, respectively; while the superscript D and H refer to the dehydration
and hydration process, respectively.

Exogenous inputs with normal distribution

u Unit µD σD µH σH

ρCaO kg/m3 1656 25 1656 25
ρCa(OH)2

kg/m3 2200 25 2200 25
pinit,pout Pa 1 × 101 2.3× 103 2× 105 2.3× 103

Tinit K 573.15 20 773.15 20
Tin K 773.15 20 573.15 20

ṅN2,in mol/s.m 4.632 0.25 2.04 0.15
ṅH2O,in mol/s.m 0.072 0.01 1.782 0.15

Exogenous inputs with lognormal distribution

u Unit µD σD µH σH

K mD log(5×103) 0.525 log(5× 103) 0.525
kR - log(0.05) 0.5 log(0.2) 0.5

Exogenous inputs with shifted and scaled beta distribution

u Unit a b scale shift

cp,CaO J/kg.K 7.1 2.9 300 700
cp,Ca(OH)2

J/kg.K 7.6 2.4 350 1250
λCaO W/m.K 6.5 3.5 0.6 -

λCa(OH)2
W/m.K 6.5 3.5 0.6 -

φ - 8.5 1.5 0.825 -
∆H J/mol 4.8 5.2 3×104 9× 104

xH2O,init - 76 85 - -

Appendix B. Mole and Energy Balance Error

Physical constraints in ephy,i,t,1 and ephy,i,t,2 use mole and energy balance equation, respectively. Both balances
are calculated in a simplified way discretized for time steps of 5 s with spatially averaged values and a local
thermal equilibrium of the gas and the solid. For clarity, all the specific sample indicators in the training dataset i
are omitted in this section.

The mole balance is formulated for H2O (assuming that the density can be calculated with ideal gas
law) with the in- and outflowing moles nH20,in and nH20,out, the storage term in the gaseous phase ∆nH20,sto
and the source/sink term ∆nH20,q. The in- and outflowing moles of H2O both are known values from the
simulation or input data. The storage term ∆nH20,sto can be calculated from the change in H2O molar fraction,
x̂g,H2O(t)− x̂g,H2O(t− 1) multiplied with the H2O molar density and the pore volume. The complete definition is
written as:

∆nH2O,sto(t) = φV(x̂g,H2O(t)− x̂g,H2O(t− 1))ρn,H2O(t). (A1)

The source/sink term ∆nH20,q is calculated with the molar amount of CaO formed. Based on the
stoichiometry ratio, with every 1 mole of CaO forme, 1 mole of H2O is also formed. The molar amount of
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CaO is determined by the change in CaO volume fraction, ν̂CaO(t) − ν̂CaO(t − 1), multiplied with the molar
density and the volume. The calculation for ∆nH20,q is written as:

∆nH2O,q(t) = V(ν̂CaO(t)− ν̂CaO(t− 1))ρn,CaO. (A2)

Finally, Equations (A1) and (A2) are substituted into Equation (17).
For the energy balance formulation, the energy of the inflowing and outflowing gas Qin and Qout are also

known from simulation or from input data. The energy storage in the gaseous phase is neglected as its contribution
is negligible. Only the solid contribution is used in the calculation of ∆Qsto. The solid energy change is calculated
as the change in both CaO and Ca(OH)2 mass multiplied by the temperature and specific heat capacity. The
definition is written as:

∆Qsto(t) = Qsto(t)−Qsto(t− 1), (A3)

where Qsto(t) is defined as:

Qsto(t) = V[ν̂CaO(t)cp,CaO.ρm,CaO+

(1− φ− ν̂CaO(t))cp,Ca(OH)2
.ρm,Ca(OH)2

]T̂(t).
(A4)

The source/sink term for the energy balance equation, ∆Qq, is calculated based on the change in molar
amount of CaO multiplied by the specific reaction enthalpy and subtracted with the volume expansion work. The
negative sign corresponds to the definition in Equation (7). The calculation is written as:

∆Qq(t) = −V
(

ν̂CaO(t)− ν̂CaO(t− 1)
)

ρn,CaO

(
∆H − φ

1− φ
T̂(t)R

)
. (A5)

Equations (A3) and (A5) are then substituted into Equation (18).

Appendix C. Example of the Ann Prediction

Figure A1 shows the best prediction of the ANN using 2 hidden layers with 15 and 8 nodes at each layer
using only MSE and L2 regularisation to define the loss function.

Figure A1. An example of the best prediction sample (red) obtained using 2 hidden layers with 15 and
8 nodes at each layer and reference solution obtained from the physical model (blue).
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ABSTRACT

Data-driven modeling of spatiotemporal physical processes with general deep
learning methods is a highly challenging task. It is further exacerbated by the lim-
ited availability of data, leading to poor generalizations in standard neural network
models. To tackle this issue, we introduce a new approach called the Finite Vol-
ume Neural Network (FINN). The FINN method adopts the numerical structure of
the well-known Finite Volume Method for handling partial differential equations,
so that each quantity of interest follows its own adaptable conservation law, while
it concurrently accommodates learnable parameters. As a result, FINN enables
better handling of fluxes between control volumes and therefore proper treatment
of different types of numerical boundary conditions. We demonstrate the effec-
tiveness of our approach with a subsurface contaminant transport problem, which
is governed by a non-linear diffusion-sorption process. FINN does not only gener-
alize better to differing boundary conditions compared to other methods, it is also
capable to explicitly extract and learn the constitutive relationships (expressed by
the retardation factor). More importantly, FINN shows excellent generalization
ability when applied to both synthetic datasets and real, sparse experimental data,
thus underlining its relevance as a data-driven modeling tool.

1 INTRODUCTION

Training neural networks augmented with additional physical information has been shown to im-
prove their generalization capabilities, particularly when predicting physical processes. In the
Physics Informed Neural Network (PINN) framework (Karpatne et al., 2017; 2018; Tartakovsky
et al., 2018; Raissi et al., 2019; Wang et al., 2020), the neural network prediction u(x, t) is defined
to be an explicit function of space x and time t. Furthermore, calculations of respective derivatives,
such as ∂u

∂x and ∂u
∂t , are required for formulating the loss function. However, when the available

training data is concentrated on a single location x or time t, the approximation of the derivatives
∂u
∂x and ∂u

∂t in current techniques deteriorates due to (a) insufficient information provided by the data
and (b) the lack of structural explainability of the framework itself. To address these issues from a
structural point of view, several works have been conducted in the literature recently. One architec-
ture, namely the Distributed Spatiotemporal Artificial Neural Network (DISTANA, Karlbauer et al.,
2019), uses translational invariant Prediction Kernels (PKs) and Transition Kernels (TKs) to process
the temporal and spatial correlation of the data, respectively. Another method, called the Univer-
sal Differential Equation method (UDE, Rackauckas et al., 2020), combines Convolutional Neural
Networks (CNNs, LeCun et al., 1999) with Neural Ordinary Differential Equations (NODEs, Chen
et al., 2018), for learning spatiotemporal data. Despite promising results shown by these methods,
they still suffer from unreliable flux handling (i.e. the physical fluxes are not guaranteed to be con-
servative). Consequently, the methods mentioned above lack means to properly treat different types
of boundary conditions.

To handle fluxes more robustly and improve generalization within a physical domain, we propose
a Finite Volume Neural Network (FINN). The FINN method is a hybrid model, which capitalizes

∗Corresponding author: timothy.praditia@iws.uni-stuttgart.de
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on the structural knowledge of the well-known Finite Volume Method (FVM, Moukalled et al.,
2016), and the flexibility as well as the learning abilities of Artificial Neural Networks (ANNs),
more specifically NODEs. As a consequence, the FINN structure can properly treat different types
of boundary conditions and ensures conservation of the quantities of interest. Moreover, we show
that FINN is able to reconstruct the full field solution (for all x and t) even when trained with only
partial information (e.g. at a single point x or t). Additionally, the structure of FINN facilitates
learning and extracting constitutive relationships and/or reaction terms, and, consequently, shows
exceptional generalization capabilities and develops explainable knowledge structures.

2 METHODS

In this work, we focus on modeling spatiotemporal physical processes, namely processes that scien-
tists try to model with Partial Differential Equations (PDEs), such as diffusion-type problems. They
can be generally written mathematically as follows:

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
+ q(u), (1)

where u is the quantity of interest, t is time, D is the diffusion coefficient and q is the source/sink
term. Usually, the FVM discretizes Equation 1 implicitly in space and explicitly in time, leading to
a simplified definition:

∂u
(t+1)
i

∂t
= f

(
u
(t)
i−1, u

(t)
i , u

(t)
i+1, t

)
, (2)

where u(t)i denotes u at control volume i and time step t. In other words, the time derivative of u
depends on the current value of u, the values of u at the neighboring control volumes, and time. For
brevity, we drop the time index in later definitions.

In FINN, we introduce Flux Kernels F , which take the input of ui−1, ui, and ui+1 to approximate
the divergence part (first term on the right hand side) in Equation 1 for each control volume i:

Fi = Φθ(ui−1, ui, ui+1) =
∑

s

fks ≈
∮

S

(
D(u)

∂u

∂x
· n̂
)
ds. (3)

The Flux Kernels Fi consist of subkernels fks that calculate fluxes at the boundary surfaces s
between control volume i and its neighboring control volumes (see Figure 1), being learned by N
and D, which are subcomponents of the function Φ with parameters θ. The function N in each fks
is equivalent to a linear layer that takes ui and one of its neighbors (i.e. ui−1 or ui+1) as inputs and
learns the numerical FVM stencil with its weights that should amount to [−1, 1], which corresponds
to [ui, ui−1] and [ui, ui+1] (i.e. simple difference between neighboring control volumes) in ideal
one-dimensional diffusion problems. If the diffusion coefficient D depends on u according to a

Si

Fi
fks−

fks+

u
(t)
i

u
(t)
i−1

u
(t)
i+1

N

D

×

N

D

×

+

Φψ

+ ∂u
(t+1)
i
∂t

ODE solver u
(t+1)
i

Figure 1: Illustration of the Flux and State Kernels in the FINN.
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hidden constitutive relationship, the function D in each fks learns and approximates this function
D(u) ≈ D(u). Otherwise, D will be only a scalar value D ≡ D, which can also be set as a
learnable parameter. Next, the output of N is multiplied with the output of D to obtain the flux
approximation at each boundary. When the fluxes at all boundary surfaces s are integrated in each
control volume i, the summation of the numerical stencil will lead to the classical one-dimensional
numerical Laplacian with [1,−2, 1] corresponding to [ui−1, ui, ui+1] if Equation 1 is true.

This structure of the Flux Kernel enables straightforward handling of different types of boundary
conditions. With a Dirichlet boundary condition u = ub, we can set either ui−1 = ub or ui+1 = ub
at the corresponding domain boundary. With a Neumann boundary condition ν, we can easily set
the output of fks at the corresponding domain boundary s to be equal to ν. With a Cauchy boundary
condition, we can calculate the derivative approximation at the corresponding domain boundary and
set it as either ui−1 or ui+1.

The State Kernels S then take the output of the Flux Kernels and approximate ∂u
∂t while also learning

the source/sink term q ≈ Φψ(u) as a function of u (whenever necessary), which is also learnable
by the State Kernels. Formally, each State Kernel can be written as an approximation of the time
derivative in Equation 1 for each control volume i:

Si = Fi + Φψ(u) ≈ ∂ui
∂t

, (4)

where Φ is parameterized by ψ. The outputs of State Kernels are then integrated by an ODE solver
to solve for u(t+1), which will be used recursively for calculation of the subsequent time steps. The
benefits of using an ODE solver are twofold: (a) it allows for adaptive time stepping, which in turn
leads to better numerical stability in explicit schemes, and (b) it enables handling of unevenly spaced
time series, which is very common in real observation data.

One of the benefits of State Kernels is to enable separate calculations for different quantities of
interest, while the divergence (flux) can be calculated based on the same variable. This ensures that
each quantity of interest follows its own conservation law. In short, FINN consists of Flux Kernels
that handle the spatial correlation, and State Kernels that handle the temporal correlation of the data.

3 EXPERIMENT

For demonstration purposes, we choose an application with a subsurface contaminant transport prob-
lem. We assess the performance of FINN not only using synthetic simulation data, but also real
experimental data. The contaminant transport is characterized by the non-linear diffusion-sorption
equation in a fluid-filled homogeneous porous medium:

R
∂c

∂t
= De

∂2c

∂x2
, (5)

where c denotes the concentration of trichloroethylene (TCE) dissolved in the fluid, De denotes
the effective TCE diffusion coefficient, and R denotes the retardation factor (representing sorption),
which is a function of c. Equation 5 is subject to a Dirichlet boundary condition at x = 0 and
a Cauchy boundary condition at x = L (i.e. the top and bottom ends of the field) and an initial
condition c(t = 0) = 0. Using the definition of retardation factors, we can also calculate the total
TCE concentration ct (both in the fluid and adsorbed in the solid)

∂ct
∂t

= Deφ
∂2c

∂x2
, (6)

where φ is the porosity of the medium (i.e. the core samples). More detailed information on the
experiment and its numerical simulation can be found elsewhere (Nowak & Guthke, 2016).

4 RESULTS AND DISCUSSION

As the first step, we train and test FINN using numerically generated synthetic datasets. Both train
and test datasets are discretized into 26 control volumes and 2 000 time steps. We train FINN using
the whole spatial domain, with time steps 0−500 (i.e. t = 0−2 500 days) of the train dataset. Here,
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Table 1: Comparison of MSE values between different deep learning architectures.

Method Training Extrapolated training Test unseen Parameters

TCN (7.9± 5.4)× 10−6 (5.9± 4.1)× 10−3 (3.0± 1.2)× 10−2 1 386
ConvLSTM (5.5± 1.6)× 10−6 (4.9± 5.7)× 10−2 (6.6± 7.9)× 10−2 1 496
DISTANA (1.9± 1.1)× 10−6 (1.0± 2.9)× 10−2 (1.6± 4.0)× 10−2 1 350
FINN (4.7± 4.9)× 10−5 (1.1± 1.2)× 10−4 (4.1± 4.0)× 10−5 528

FINN receives only the initial condition, i.e. initial values of c(0) and c(0)t , along with the Dirichlet
boundary condition value at the top boundary. The bottom boundary is subject to a Cauchy boundary
condition, and therefore is solution dependent. FINN is then trained in a closed loop system, using
predicted values of c and ct at time step t as input for the calculation at time step t+ 1.

For this synthetic data application, we setN and D to be learnable. Additionally, for the calculation
of c, we set D to be a feedforward neural network that approximates De/R in Equation 5, allow-
ing us to extract information about the learned retardation factor as a function of the contaminant
concentration R(c). This neural network is constructed with 3 hidden layers, each containing 15
hidden nodes. Each hidden layer uses hyperbolic tangent as the activation function, and the output
layer uses the sigmoid activation function, multiplied with a learnable scaling factor to ensure that
the approximation of De/R is strictly positive.

To test the generalization capability, we use the trained network to extrapolate until time step 2 000
(t = 10 000 days). Additionally, we test the trained FINN prediction against a completely unseen
test dataset obtained at different boundary conditions. The Dirichlet boundary condition values at
the top boundary cs are 1.0 kg/m3 and 0.7 kg/m3 for the train and test dataset, respectively. We also
compare the train and test Mean Squared Error (MSE) value with other known methods, such as
TCN (Kalchbrenner et al., 2016), ConvLSTM (Shi et al., 2015), and DISTANA (Karlbauer et al.,
2019).

The comparison in Table 1 shows that FINN appropriately generalizes when tested against a different
boundary condition. Even though all methods have comparable performance during training, the

Figure 2: Breakthrough curve prediction of the FINN method (blue line) during training using data
from core sample #2 (top left), during testing using data from core sample #1 (top right) and total
concentration profile prediction using data from core sample #2B (bottom left). The predictions are
compared with the experimental data (red circles) and the results obtained using the physical model
(orange dashed line). The extracted retardation factor as a function of c is shown on the bottom right
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predictions of TCN, ConvLSTM, and DISTANA deteriorate when the knowledge gained from the
training data needs to be extrapolated and to predict unseen test data. This appears to be caused by
the fact that they lack proper boundary condition handling. More detailed information can be found
in the appendices regarding the benchmark test dataset (Appendix A), the training and test results
(Appendix B), as well as the model setup (Appendix C).

As the second step, we apply FINN to real experimental data. The experimental data were collected
from three different core samples, namely core samples #1, #2, and #2B (see Appendix D). In this
setup, we train FINN using data that originate exclusively from core sample #2. For this experi-
mental data application, FINN is set up the same way as the synthetic data setup. For the dissolved
concentration calculation, we also set D to be a feedforward neural network that takes c as the input
to learn the retardation factor function. However, we assume that we know the diffusion coefficient
values for all core samples. The main setup difference lies in the available data used to train FINN.
More specifically, we only use the breakthrough curve data of c in the tailwater. This means that the
data provides partial information and constrains the FINN prediction only at x = L|0≤t≤tend

.

The results show that the trained FINN has higher accuracy with MSE = 4.84× 10−4 compared to
the calibrated (least squares) numerical PDE model with MSE = 1.06× 10−3. Further, we test and
validate the trained model using different core samples (i.e. #1 and #2B), which originate from the
same geographical area and therefore can be assumed to have similar soil parameters. In Figure 2, we
show that the predictions match the experimental data with reasonable accuracy. We also compare
the predictions with the output of the numerical model, with the retardation factor also calibrated
using the data from the same core sample #2. The plots show that FINN’s prediction accuracy is
comparable to the numerical model, even beating it in some instances. For core sample #1, the MSE
of FINN prediction is 1.37× 10−3, while the numerical model underestimates the breakthrough
curve with MSE = 2.50× 10−3.

Specifically for core sample #2B, which is significantly longer than the other samples, to model the
diffusion-sorption process, we can assume a zero-flux Neumann boundary condition at the bottom
of the core. As a consequence, there are no breakthrough curve data available anymore. Instead,
we compare the prediction against the total concentration profile data obtained from a destructive
sampling (i.e. core slicing) at the end of the experiment. Here, FINN produces predictions with
MSE = 1.16× 10−3, while the numerical model overestimates the total concentration profile with
MSE = 2.73× 10−3. The results show that, even when applied to a different type of boundary
condition, FINN’s predictions remain accurate. Moreover, we can extract the retardation factor as a
function of c using FINN, which is plotted in Figure 2, thus explaining a soil property.

5 CONCLUSION AND FUTURE WORK

We have shown that including physical knowledge in the form of the Finite Volume structure pro-
duces excellent generalization capabilities and improves the explainability of the applied neural
network structure. Our novel Finite Volume Neural Network (FINN) permits proper calculations for
conservative fluxes and for different types of boundary condition. FINN outperforms other neural
network methods for spatiotemporal modeling such as Temporal Convolutional Network, Convolu-
tional LSTM, and DISTANA, especially when tested with different boundary conditions. Moreover,
we show that FINN is suitable for experimental data processing, rendering it relevant as a data-driven
modeling tool.

In this work, we assumed spatial homogeneity for the soil in the simulation domain due to the small
size of the actual experimental domain. For real field applications, where the scale is significantly
larger, the homogeneity assumption might not hold. We are interested in enhancing FINN to handle
spatially heterogeneous parameters. One way to achieve this is by defining a spatially correlated
parameter to model a learnable diffusion coefficient in a spatially heterogeneous system akin to
Karlbauer et al. (2020). Additionally, we are also interested in quantifying uncertainties of our model
by implementing a Bayesian Neural Network. A concrete application example in the contaminant
transport modeling domain is to produce confidence intervals for both the concentration function and
the learned retardation factor function. Overall, recent development in fusing numerical methods
with deep learning to aid physical processes simulation shows promising results to keep continuing
the trend in this direction. It is very exciting to see how far we can push the boundaries between
numerical methods and deep learning and to see the benefit when combining both approaches.
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A SOIL PARAMETERS AND SIMULATION DOMAINS FOR THE BENCHMARK
TEST

In this appendix, we present the soil parameters and the simulation domains used to generate the
numerical benchmark dataset. Table 2 summarizes the parameters used to generate the training
and test dataset. The retardation factor function is generated with the Freundlich sorption isotherm,
written mathematically as

R = 1 +
1− φ
φ

ρsKfnfc
nf−1. (7)

Table 2: Soil parameters and simulation domains for training and testing dataset generation.

Soil parameters Simulation domain

Parameter Unit Value Parameter Unit Value

De m2/day 5× 10−4 L m 1.0
φ - 0.29 ∆x m 0.04
ρs kg/m3 2880 tend days 104

Kf (m3/kg)nf 3.53× 10−4 ∆t days 5
nf - 0.874

Here, De is the effective diffusion coefficient, φ is the porosity, ρs is the bulk density, Kf is the
Freundlich K coefficient, nf is the Freundlich exponent, L is the length of the sample, ∆x is the
discrete control volume size, tend is the simulation time, and ∆t is the numerical time step.

For the training dataset, the upper boundary condition (x = 0) is set to be a Dirichlet boundary
condition, with the maximum solubility of TCE cs = 1.0 kg/m3. The testing dataset is generated
with the same soil parameters and simulation domain, but with upper boundary condition cs = 0.7
kg/m3. The lower boundary condition (x = L) is set to be a Cauchy boundary condition according
to De

Q
∂c
∂x |x=L, whereQ is the flow rate in the bottom reservoir. In the benchmark dataset, we assume

that Q = 1.0. Details on geometries, boundary conditions, and simulation can be found in (Nowak
& Guthke, 2016).

B BENCHMARK TEST RESULTS

In this appendix, we present the results and compare different methods for the benchmark test results.
For each method, we train 10 models with different initialization. The MSE values of the predictions
are then calculated compared with the training dataset at time steps 0−500 (i.e. t = 0−2 500 days),
the extrapolated training dataset at time steps 500 − 2 000 (i.e. t = 2 500 − 10 000 days), and the
whole unseen test dataset (at all time steps 0 − 2 000). We train the models with noisy data. The
noise is normally distributed with standard deviation σ = 1 × 10−5, i.e. N ∼ (0.0, 1 × 10−5).
Detailed information of the test MSE for every individual model is shown in Table 3 for seen data
and in Table 4 for unseed data.

The prediction mean and confidence interval are plotted in Figure 3, Figure 4, Figure 5, and Figure 6.
Confidence intervals are obtained from repeated (ten times) training with random initialization. Even
though the prediction mean of each method is not far from the synthetic data, clear instabilities and
inconsistencies can be seen from the wide range of confidence intervals in the TCN, ConvLSTM,
and DISTANA predictions. This instability is mainly caused by the improper handling of boundary
conditions by these methods. FINN, on the other hand, produces very precise prediction along with
high accuracy.

C MODEL DETAILS OF TCN, CONVLSTM AND DISTANA

In this appendix, we provide additional information about the TCN, ConvLSTM and DISTANA
models: bias neurons were used in all layers of all architectures and ADAM was used for optimiza-
tion with a learning rate of η = 1× 10−3. As fair comparison, FINN results for the benchmark test
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Table 3: Test MSE on seen data (extrapolated training) from ten different training runs for each
model

Run TCN ConvLSTM DISTANA FINN

1 5.2× 10−3 2.1× 10−3 6.3× 10−5 2.7× 10−4

2 4.9× 10−3 3.4× 10−3 3.6× 10−4 3.0× 10−5

3 4.1× 10−3 8.3× 10−2 9.7× 10−2 2.7× 10−4

4 4.1× 10−3 1.5× 10−1 4.0× 10−4 9.0× 10−5

5 8.1× 10−4 4.4× 10−3 4.2× 10−5 8.6× 10−6

6 1.2× 10−2 8.3× 10−3 4.5× 10−4 4.1× 10−5

7 1.5× 10−2 2.4× 10−3 8.2× 10−5 3.2× 10−5

8 4.5× 10−3 5.0× 10−3 9.5× 10−4 2.8× 10−4

9 2.6× 10−3 1.0× 10−1 5.2× 10−5 2.4× 10−5

10 5.6× 10−3 1.3× 10−1 1.8× 10−4 3.5× 10−5

Table 4: Test MSE on unseen data coming from ten different training runs for each model

Run TCN ConvLSTM DISTANA FINN

1 3.8× 10−2 1.1× 10−2 1.5× 10−3 9.7× 10−5

2 3.3× 10−2 1.1× 10−3 8.9× 10−4 1.5× 10−5

3 3.0× 10−2 1.0× 10−1 1.4× 10−1 9.5× 10−5

4 2.7× 10−2 1.2× 10−1 8.6× 10−3 3.4× 10−5

5 2.5× 10−2 7.0× 10−3 7.0× 10−5 4.9× 10−6

6 5.1× 10−2 5.6× 10−4 3.6× 10−3 1.9× 10−5

7 2.9× 10−2 2.6× 10−2 3.0× 10−4 1.5× 10−5

8 3.9× 10−3 3.1× 10−4 8.6× 10−3 1.0× 10−4

9 2.3× 10−2 1.9× 10−1 3.4× 10−3 1.2× 10−5

10 4.3× 10−2 2.2× 10−1 3.7× 10−4 1.6× 10−5

Figure 3: Dissolved concentration profile prediction mean (with confidence interval) at t = 5 000
days compared with the extrapolated training dataset obtained using TCN (top left), ConvLSTM
(top right), DISTANA (bottom left), and FINN (bottom right).
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Figure 4: Total concentration profile prediction mean (with confidence interval) at t = 5 000 days
compared with the extrapolated training dataset obtained using TCN (top left), ConvLSTM (top
right), DISTANA (bottom left), and FINN (bottom right).

Figure 5: Dissolved concentration profile prediction mean (with confidence interval) at t = 5 000
days compared with the test dataset obtained using TCN (top left), ConvLSTM (top right), DIS-
TANA (bottom left), and FINN (bottom right).

case are obtained also using the ADAM optimizer with the same learning rate. While TCN, Con-
vLSTM and DISTANA are always provided with the real data in the first ten timesteps (i.e. teacher
forcing), FINN only receives an initial condition in the first timestep along with the information
about the boundary in all timesteps. For better comparison, we also provide boundary condition
information for TCN, ConvLSTM, and DISTANA. Note that in this experiment, TCN, ConvLSTM
and DISTANA are provided with more information than FINN, which nevertheless outperforms the
other models.
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Figure 6: Total concentration profile prediction mean (with confidence interval) at t = 5 000 days
compared with the test dataset obtained using TCN (top left), ConvLSTM (top right), DISTANA
(bottom left), and FINN (bottom right).

TCN Two input channels are followed by two hidden layers with four and eight channels, respec-
tively, which are processed by two output channels. A convolution kernel size of k = 3 was chosen
and the standard dilation rate of TCN was applied (d = l2, where l is the index of the layer), leading
to a time horizon of 28 time steps. Code was taken and modified from 1.

ConvLSTM Two input feature maps, followed by ten channels in one hidden layer and two output
channels, were used. The convolution kernel size was set to k = 3 and zero-padding was applied to
preserve data dimensions. PyTorch code was taken from 2 and adapted to be applicable to spatially
one-dimensional data.

DISTANA Two input channels map to four preprocessing convolution channels, which feed for-
ward into a ConvLSTM layer with eight channels which are processed by two postprocessing con-
volution channels. The lateral information processing convolution layer was set to two channels.

D SOIL PARAMETERS AND SIMULATION DOMAINS FOR THE EXPERIMENT

In this appendix, we present the soil parameters and the simulation domains of the core samples
used in the experiment. Table 5 summarizes the parameters of core sample #1, #2, and #2B.

For all experiments, the core samples are subjected to a constant TCE concentration at the top cs,
which amounts to a Dirichlet boundary condition. Notice that, for core sample #2, we set cs to be
slightly higher to compensate for the fact that there might be fractures at the top of core sample #2,
so that the TCE can break through the core sample faster.

For core samples #1 and #2, Q is the flow rate of clean water at the bottom reservoir that determines
the Cauchy boundary condition at the bottom of the core samples. For core sample #2B, note that the
sample length is significantly longer than the other samples. Therefore, for this particular sample,
given tend to be approximately in the same order with the other samples, we assume the bottom
boundary condition to be a no-flow Neumann boundary condition.

1https://github.com/locuslab/TCN
2https://github.com/ndrplz/ConvLSTM_pytorch
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Table 5: Soil and experimental parameters of core samples #1, #2, and #2B.

Soil parameters

Parameter Unit Core #1 Core #2 Core #2B

De m2/day 2.00× 10−5 2.00× 10−5 2.78× 10−5

φ - 0.288 0.288 0.288
ρs kg/m3 1957 1957 1957

Simulation domain

Parameter Unit Core #1 Core #2 Core #2B

L m 0.0254 0.02604 0.105
r m 0.02375 0.02375 N/A

tend days 38.81 39.82 48.88
Q m3/day 1.01× 10−4 1.04× 10−4 N/A
cs kg/m3 1.4 1.6 1.4
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Abstract
We introduce a compositional physics-aware
neural network (FINN) for learning spatiotem-
poral advection-diffusion processes. FINN im-
plements a new way of combining the learn-
ing abilities of artificial neural networks with
physical and structural knowledge from numer-
ical simulation by modeling the constituents
of partial differential equations (PDEs) in
a compositional manner. Results on both
one- and two-dimensional PDEs (Burgers’,
diffusion-sorption, diffusion-reaction, Allen-
Cahn) demonstrate FINN’s superior modeling
accuracy and excellent out-of-distribution gen-
eralization ability beyond initial and boundary
conditions. With only one tenth of the num-
ber of parameters on average, FINN outperforms
pure machine learning and other state-of-the-art
physics-aware models in all cases—often even
by multiple orders of magnitude. Moreover,
FINN outperforms a calibrated physical model
when approximating sparse real-world data in a
diffusion-sorption scenario, confirming its gen-
eralization abilities and showing explanatory po-
tential by revealing the unknown retardation fac-
tor of the observed process.

1. Introduction
Artificial neural networks (ANNs) are considered univer-
sal function approximators (Cybenko, 1989). Their effec-
tive learning ability, however, greatly depends on domain
and task-specific prestructuring and methodological mod-
ifications referred to as inductive biases (Battaglia et al.,
2018). Typically, inductive biases limit the space of possi-
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Tübingen, Tübingen, Germany 2Department of Stochastic Sim-
ulation and Safety Research for Hydrosystems, University of
Stuttgart, Stuttgart, Germany. Correspondence to: Matthias Karl-
bauer <matthias.karlbauer@uni-tuebingen.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

ble models by reducing the opportunities for computational
shortcuts, which can lead to erroneous implications derived
from a potentially limited dataset (overfitting). The re-
cently evolving field of physics-informed machine learning
employs physical knowledge as inductive bias providing
vast generalization advantages in contrast to pure machine
learning (ML) in physical domains (Raissi et al., 2019).
While numerous approaches have been introduced to aug-
ment ANNs with physical knowledge, these methods either
do not allow the incorporation of explicitly defined physi-
cal equations (Long et al., 2018; Seo et al., 2019; Guen &
Thome, 2020; Li et al., 2020a; Sitzmann et al., 2020) or
cannot generalize to other initial and boundary conditions
than those encountered during training (Raissi et al., 2019).

In this work, we present the finite volume neural network
(FINN) model—a physics-aware neural network structure
adhering to the idea of spatial and temporal discretization
in numerical simulation. FINN consists of multiple neu-
ral network modules that interact in a distributed, compo-
sitional manner (Battaglia et al., 2018; Lake et al., 2017;
Lake, 2019). The modules are designed to account for
specific parts of advection-diffusion equations, a class of
partial differential equations (PDEs). This modularization
allows to combine two advantages that are not yet met
by state-of-the-art models: the explicit incorporation of
physical knowledge and the generalization over initial and
boundary conditions. To the best of our knowledge, FINN’s
ability to adjust to different initial and boundary conditions
and to explicitly learn constitutive relationships and reac-
tion terms is unique, yielding excellent out-of-distribution
generalization. The core contributions of this work are:

• Introduction of FINN, a physics-aware neural net-
work model, explicitly designed to generalize over ini-
tial and boundary conditions, demonstrating excellent
generalization ability.

• Evaluation of state-of-the-art pure ML and physics-
aware models, contrasted to FINN on one- and two-
dimensional benchmarks, demonstrating benefits of
explicit model design.

• Application of FINN to a real-world contamination-
diffusion problem, verifying its applicability to real,
spatially and temporally constrained training data.
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2. Related Work
Non-Physics-Aware ANN Architectures Pure ML mod-
els that are designed for spatiotemporal data processing can
be separated into temporal convolution (TCN, Kalchbren-
ner et al., 2016) and recurrent neural networks. While the
former perform convolutions over space and time, repre-
sentatives of the latter, e.g., convolutional LSTM (Con-
vLSTM, Shi et al., 2015) or DISTANA (Karlbauer et al.,
2019), aggregate spatial neighbor information to further
process the temporal component with recurrent units. Since
pure ML models do not adhere to physical principles, they
require large amounts of training data and parameters in or-
der to approximate a desired physical process; but still are
not guaranteed to behave consistently outside the regime of
the training data.

Physics-Aware ANN Architectures When designed to
satisfy physical equations, ANNs are reported to have
greater robustness in terms of physical plausibility. For ex-
ample, the physics-informed neural network (PINN, Raissi
et al., 2019) consists of an MLP that satisfies an explicitly
defined PDE with specific initial and boundary conditions,
using automatic differentiation. However, the remarkable
results beyond the time steps encountered during training
are limited to the very particular PDE and its conditions. A
trained PINN cannot be applied to different initial condi-
tions, which limits its applicability in real-world scenarios.

Other methods by Long et al. (PDENet, 2018), Guen &
Thome (PhyDNet, 2020), or Sitzmann et al. (SIREN, 2020)
learn the first n derivatives to achieve a physically plausible
behavior, but lack the option to include physical equations.
The same limitation holds when operators are learned to
approximate PDEs (Li et al., 2020a;b), or when physics-
aware graph neural networks are applied (Seo et al., 2019).
Yin et al. (APHYNITY, 2020) suggest to approximate
equations with an appropriate physical model and to aug-
ment the result by an ANN, preventing the ANN to approx-
imate a distinct part within the physical model. For more
comparison to related work, please refer to subsection B.1.

In summary, none of the above methods can explicitly learn
particular constitutive relationships or reaction terms while
simultaneously generalizing beyond different initial and
boundary conditions.

3. Finite Volume Neural Network (FINN)
Problem Formulation Here, we focus on modeling spa-
tiotemporal physical processes. Specifically, we consider
systems governed by advection-diffusion type equations
(Smolarkiewicz, 1983):

∂u

∂t
= D(u)

∂2u

∂x2
− v(u)

∂u

∂x
+ q(u), (1)

where u is the quantity of interest, t is time, x is the spatial
coordinate,D is the diffusion coefficient, v is the advection
velocity, and q is the source/sink term. Eq. 1 can be parti-
tioned into three parts: the storage term, the flux terms,
and the source/sink term. The storage term ∂u

∂t describes
the change of the quantity u over time. The flux terms are
the advective flux v(u)∂u∂x and the diffusive flux D(u)∂

2u
∂x2 .

Both calculate the amount of u exchanged between neigh-
boring volumes. The source/sink term q(u) describes the
generation or elimination of the quantity u. Eq. 1 is a gen-
eral form of PDEs with up to second order spatial deriva-
tives, but it has a wide range of applicability due to the flex-
ibility of defining D(u), v(u), and q(u) as different func-
tions of u, as is shown by the numerical experiments in this
work.

The finite volume method (FVM, Moukalled et al., 2016)
discretizes a simulation domain into control volumes
(i = 1, . . . , Nx), where exchange fluxes are calculated us-
ing a surface integral (Riley et al., 2009). In order to match
this structure in FINN, we introduce two different kernels,
which are (spatially) casted across the discretized control
volumes: the flux kernel, modeling the flux terms (i.e. lat-
eral quantity exchange), and the state kernel, modeling the
source/sink term as well as the storage term. The overall
FINN architecture is shown in Figure 1.

Flux Kernel The flux kernel F approximates the surface
integral for each control volume i with boundary Ω by a
composition of multiple subkernels fj , each representing
the flux through a discretized surface element j:

Fi =

Nsi∑

j=1

fj ≈
∮

ω⊆Ω

(
D(u)

∂2u

∂x2
− v(u)

∂u

∂x

)
·n̂ dΓ, (2)

where Nsi is the number of discrete surface elements of
control volume i, ω is a continuous surface element (a sub-
set of Ω), fj are subkernels (consisting of feedforward net-
work modules), and n̂ is the unit normal vector pointing
outwards of ω.

In our exemplary one-dimensional arrangement, two sub-
kernels fi− and fi+ (see Figure 1) contain the modules ϕD,
ϕA, and ϕN . Module ϕN is a linear layer with the purpose
to approximate the first spatial derivative ∂u

∂x , i.e.

∂ui
∂x
≈
{
ϕN (ui, ui−1) on fi−
ϕN (ui, ui+1) on fi+

. (3)

Technically, ϕN is supposed to learn the numerical FVM
stencil, being nothing else but the difference between its
inputs, i.e. the quantity at two neighboring control volumes
in ideal one-dimensional problems. This signifies that the
weights of ϕN should amount to [−1, 1] with respect to
[ui, ui−1] and [ui, ui+1] in order to output their difference.
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Figure 1: Flux and state kernels in FINN for the one-dimensional case (left); red lines indicate gradient flow. And detailed
assignment of the individual modules with their contribution to Eq. 1 (right).

Module ϕD, receiving ui as input, is responsible for dif-
fusive flux (the process of quantity homogenization from
areas of high to low concentration). In case the diffusion
coefficientD depends on u, the module is designed as feed-
forward network, such thatϕD(u) ≈ D(u). Otherwise, ϕD
is set as scalar value, which can be set trainable if the value
of D is unknown.

Things are more complicated for advective flux, represent-
ing bulk motion and thus quantity that enters volume i ei-
ther from left or right; module R decides on this based on
the output of ϕA (which itself is a feedforward network,
similarly to ϕD). Technically, module R applies an up-
wind differencing scheme to prevent numerical instability
in the first order spatial derivative calculation (Versteeg &
Malalasekera, 1995) and is computed as

R (ϕA (ui)) =

{
ReLU (ϕA (ui)) on fi−
−ReLU (−ϕA (ui)) on fi+

. (4)

It ensures that further processing of the advective flux from
ϕA(ui) is performed only on one control volume surface
(either left or right), by switching on only the left surface
element when ϕA > 0 or only the right surface element
when ϕA < 0.

Finally, considering Eq. 4, the flux calculations turn into

fi− = ϕN (ui, ui−1) ·
(
ϕD(ui) +R

(
ϕA(ui)

))
(5)

fi+ = ϕN (ui, ui+1) ·
(
ϕD(ui) +R

(
ϕA(ui)

))
(6)

Fi = fi− + fi+. (7)

Since the advective flux is only considered on one side of
volume i (due to module R), the summation of the numer-
ical stencil from both fi− and fi+ in Eq. 7 leads to [−1, 1],
being applied to [ui, ui−1] when ϕA > 0, or [ui, ui+1]
when ϕA < 0 (i.e. only first order spatial derivative).
For the diffusive flux calculation, on the other hand, the
summation of the numerical stencil leads to the classical

one-dimensional numerical Laplacian with [1,−2, 1] ap-
plied to [ui−1, ui, ui+1], representing the second order spa-
tial derivative, since the calculation of ϕD is performed on
both surfaces (see subsection B.3 for a derivation). Alto-
gether, module R generates the inductive bias to make ϕA
only approximate the advective, and ϕD the diffusive flux.

Boundary Conditions A means of applying boundary
conditions in a model is essential when solving PDEs. Cur-
rently available models mostly adopt convolution opera-
tions to model spatiotemporal processes. However, a con-
volution only allows a constant value to be padded at the
domain boundaries (e.g. zero-padding or mirror-padding),
which is only appropriate for the implementation of Dirich-
let or periodic boundary condition types. Other types
of frequently used boundary conditions are Neumann and
Cauchy. These are defined as a derivative of the quantity of
interest, and hence cannot be easily implemented in convo-
lutional models. However, with certain pre-defined bound-
ary condition types in FINN, the flux kernels at the bound-
aries are adjusted accordingly to allow for straightforward
boundary condition consideration. For Dirichlet boundary
condition, a constant value u = ub is set as the input ui−1

(for the flux kernel fi−) or ui+1 (for fi+) at the correspond-
ing boundary. For Neumann boundary condition ν, the
output of the flux kernel fi− or fi+ at the corresponding
boundary is set to be equal to ν. With Cauchy boundary
condition, the solution-dependent derivative is calculated
and set as ui−1 or ui+1 at the corresponding boundary.

State Kernel The state kernel S calculates the
source/sink and storage terms of Eq. 1. The source/sink (if
required) is learned using the module Φψ(u) ≈ q(u). The
storage, ∂u∂t , is then calculated using the output of the flux
kernel and module Φψ of the state kernel:

Si = Fi(ui−1, ui, ui+1) + Φψ(ui) ≈
∂ui
∂t

. (8)
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By doing so, the PDE in Eq. 1 is now reduced to a system
of coupled ordinary differential equations (ODEs), which
are functions of ui−1, ui, ui+1, and t. Thus, the solutions
of the coupled ODE system can be computed via numerical
integration over time. Since first order explicit approaches,
such as the Euler method (Butcher, 2008), suffer from nu-
merical instability (Courant et al., 1967; Isaacson & Keller,
1994), we employ the neural ordinary differential equation
method (Neural ODE, Chen et al., 2018) to reduce numer-
ical instability via the Runge-Kutta adaptive time-stepping
strategy. The Neural ODE evaluates ∂ui

∂t in form of FINN
at an arbitrarily fine ∆t and integrates FINN’s output over
time from t to t + 1; the resulting u(t+1)

i is fed back into
the network as input in the next time step, until t = τ (i.e.
the last time step) is reached. Therefore, the entire train-
ing is performed in closed-loop, improving stability and
accuracy of the prediction compared to networks trained
with teacher forcing, i.e. one-step-ahead prediction (Pradi-
tia et al., 2020). The weight update is realized by applying
backpropagation through time (indicated by red arrows in
Figure 1). In short, FINN takes only the initial condition u
at time t = 0 and propagates the dynamics forward inter-
actively with Neural ODE.

4. Experiments, Results, and Discussion
4.1. Synthetic Dataset

To demonstrate FINN’s performance in comparison to
other models, four different equations are considered as
applications. First, Burgers’ equation (Basdevant et al.,
1986) is chosen as a challenging function, as it is a non-
linear PDE with v(u) = u that could lead to a shock in
the solution u(x, t). Second, the diffusion-sorption equa-
tion (Nowak & Guthke, 2016) is selected with the non-
linear retardation factor R(u) as coefficient for the storage
term, which contains a singularity R(u) → ∞ for u → 0
due to the parameter choice. Third, the two-dimensional
Fitzhugh-Nagumo equation (Klaasen & Troy, 1984) as can-
didate for a diffusion-reaction equation (Turing, 1952) is
selected, which is challenging because it consists of two
non-linearly coupled PDEs to solve two main unknowns:
the activator u1 and the inhibitor u2. Fourth, the Allen-
Cahn equation with a cubic reaction term is chosen, leading
to multiple jumps in the solution u(x, t). Details on all four
equations, data generation and architecture designs can be
found in subsection C.1, subsection C.2, subsection C.3,
subsection C.4 of the appendix, respectively.

For each problem, three different datasets are generated (by
conventional numerical simulation): train, used to train the
models, in-distribution test (in-dis-test), being the train data
simulated with a longer time span to test the models’ gener-
alization ability (extrapolation), and out-of-distribution test
(out-dis-test). Out-dis-test data are used to test a trained

ML model under conditions that are far away from training
conditions, not only in terms of querying outputs for un-
seen inputs. Instead, out-dis-test data query outputs with
regards to changes not captured by the inputs. These are
changes that the ML tool per definition cannot be made
aware of during training. In this work, they are represented
by data generated with different initial or boundary con-
dition, to test the generalization ability of the models out-
side the training distributions. FINN is trained and com-
pared with both spatiotemporal deep learning models such
as TCN, ConvLSTM, DISTANA and physics-aware neural
network models such as PINN and PhyDNet. All models
are trained with ten different random seeds using PyTorch’s
default weight initialization, and mean and standard devi-
ation of the prediction errors are summarized in Table 1
for train, in-dis-test and out-dis-test. Details of each run
are reported in the appendix. It is noteworthy that PINN
cannot be tested on the out-dis-test dataset, since PINN as-
sumes that the unknown variable u is an explicit function
of x and t, and hence, when the initial or boundary condi-
tion is changed, the function will also be different and no
longer valid.

4.1.1. RESULTS

Burgers’ The predictions of the best trained model of
each method for the in-dis-test and the out-dis-test data are
shown in Figure 2 and Figure 3, respectively. Both TCN
and ConvLSTM fail to produce reasonable predictions, but
qualitatively the other models manage to capture the shape
of the data sufficiently, even towards the end of the in-dis-
test period, where closed loop prediction has been applied
for 380 time steps (after 20 steps of teacher forcing, see
subsection C.1 for details). DISTANA, PINN, and FINN
stand out in particular, but FINN produces more consis-
tent and accurate predictions, evidenced by the mean value
of the prediction errors. When tested against data gen-
erated with a different initial condition (out-dis-test), all
models except for TCN and PhyDNet perform well. How-
ever, FINN still outperforms the other models with a sig-
nificantly lower prediction error. The advective velocity
learned by FINN’s module ϕA is shown in Figure 5 (top
left) and verifies that it successfully learned the advective
velocity to be described by an identity function.

Diffusion-Sorption The predictions of the best trained
model of each method for the concentration u from the
diffusion-sorption equation are shown in Figure 11 of the
appendix. TCN and ConvLSTM are shown to perform
poorly even on the train data, evidenced by the high mean
value of the prediction errors. On in-dis-test data, all mod-
els successfully produce relatively accurate predictions.
However, when tested against different boundary condi-
tions (out-dis-test), only FINN is able to capture the modi-
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Table 1: Comparison of MSE and standard deviation scores across ten repetitions between different deep learning (above
dashed line) and physics-aware neural networks (below dashed line) on different equations. Best results reported in bold.

Dataset

Equation Model Params Train In-dis-test Out-dis-test

B
ur

ge
rs

’
1D

TCN 38 500 (1.6± 3.4)× 10−1 (1.8± 3.1)× 10−1 (1.6± 3.3)× 10−1

ConvLSTM 13 200 (6.8± 9.9)× 10−2 (1.2± 1.1)× 10−1 (7.3± 9.5)× 10−2

DISTANA 25 126 (1.8± 1.0)× 10−4 (4.0± 3.1)× 10−3 (1.5± 1.6)× 10−3

PINN 3 021 (5.1± 0.5)× 10−4 (5.0± 8.4)× 10−3 —
PhyDNet 37 718 (7.2± 2.2)× 10−5 (1.8± 1.6)× 10−1 (4.5± 2.5)× 10−2

FINN 421 (2.8± 2.9)× 10−6 (2.5± 3.1)× 10−6 (2.8± 2.9)× 10−6

D
iff

us
io

n-
so

rp
tio

n
1D

TCN 3 834 (9.7± 13.5)× 10−2 (1.2± 1.7)× 10−1 (1.1± 1.4)× 10−1

ConvLSTM 3 960 (3.2± 2.9)× 10−2 (3.0± 2.3)× 10−2 (5.8± 4.0)× 10−2

DISTANA 3 739 (4.6± 2.5)× 10−5 (2.4± 2.5)× 10−3 (4.6± 4.6)× 10−3

PINN 3 042 (4.7± 8.4)× 10−5 (4.1± 8.7)× 10−3 —
PhyDNet 37 815 (3.5± 1.7)× 10−5 (9.1± 15.4)× 10−3 (1.7± 0.9)× 10−2

FINN 528 (4.7± 4.9)× 10−5 (1.3± 1.3)× 10−4 (4.1± 4.0)× 10−5

D
iff

us
io

n-
re

ac
tio

n
2D

TCN 31 734 (1.4± 0.9)× 10−2 (4.7± 2.1)× 10−1 (1.5± 0.8)× 10−1

ConvLSTM 24 440 (8.7± 21.3)× 10−3 (9.3± 4.9)× 10−2 (1.5± 1.3)× 10−2

DISTANA 75 629 (4.0± 3.4)× 10−3 (1.8± 0.6)× 10−1 (1.3± 0.9)× 10−2

PINN 3 062 (2.7± 1.8)× 10−4 (7.0± 6.3)× 10−2 —
PhyDNet 185 589 (7.5± 0.9)× 10−5 (7.8± 1.8)× 10−2 (3.5± 1.3)× 10−2

FINN 882 (1.3± 0.3)× 10−4 (2.1± 0.5)× 10−3 (6.1± 0.3)× 10−3

A
lle

n-
C

ah
n

1D

TCN 10 052 (9.6± 20.0)× 10−2 (2.2± 2.8)× 10−1 (2.4± 3.3)× 10−1

ConvLSTM 7 600 (6.1± 12.6)× 10−2 (3.3± 2.3)× 10−1 (3.4± 3.8)× 10−1

DISTANA 6 422 (5.1± 2.3)× 10−4 (4.5± 1.7)× 10−2 (4.6± 3.0)× 10−2

PINN 3 021 (2.2± 1.4)× 10−5 (4.0± 6.5)× 10−2 —
PhyDNet 37 718 (1.0± 0.6)× 10−4 (5.8± 2.0)× 10−2 (6.4± 1.8)× 10−1

FINN 422 (6.9± 7.7)× 10−6 (1.5± 1.8)× 10−5 (3.1± 3.8)× 10−6

Figure 2: Plots of Burgers’ data (red) and in-dis-test (blue) prediction using different models. The plots in the first row
show the solution over x and t (the red lines mark the transition from train to in-dis-test), the second row visualizes the
best model’s solution distributed in x at t = 2.
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Figure 3: Plots of Burgers’ data (red) and prediction (blue) of out-dis-test data using different models. The plots in the first
row show the solution over x and t, the second row visualizes the best model’s solution over x at t = 1.

fications and generalize well. The other models are shown
to still overfit to the different boundary condition used in
the train data (as detailed in subsection C.2). The retarda-
tion factor R(u) learned by FINN’s ϕD module is shown
in Figure 5 (top center). The plot shows that the module
learned the Freundlich retardation factor with reasonable
accuracy.

Diffusion-Reaction The predictions of the best trained
model of each method for activator u1 in the diffusion-
reaction equation are shown in Figure 14 (appendix) and
Figure 4. TCN is again shown to fail to learn sufficiently
from the train data. On in-dis-test data, DISTANA and the
physics-aware models all predict with reasonable accuracy.
When tested against data with different initial condition
(out-dis-test), however, DISTANA and PhyDNet produce
predictions with lower accuracy, and we find that FINN
is the only model producing relatively low prediction er-
rors. The reaction functions learned by FINN’s Φψ mod-
ule are shown in Figure 5 (bottom). The plots show that
the module successfully learned the Fitzhugh-Nagumo re-
action function, both for the activator and inhibitor.

Allen-Cahn Results on the Allen-Cahn equation mostly
align with those on Burgers’ equation, confirming prior
findings. However, it is worth noting that, again, only
FINN is able to clearly represent the multiple nonlineari-
ties caused by the exponent of third order in the reaction
term, as visualized in Figure 15 and Figure 16 of the ap-
pendix. Again, Figure 5 (top right) shows that FINN accu-
rately learned the dataset’s reaction function.

4.1.2. DISCUSSION

Overall, even with a high number of parameters, the
prediction errors obtained using the pure ML methods
(TCN, ConvLSTM, DISTANA) are worse compared to the

physics-aware models, as shown in Table 1. As a physics-
aware model, PhyDNet also possesses a high number of
parameters. However, most of the parameters are allocated
to the data-driven part (i.e. ConvLSTM branch), compared
to the physics-aware part (i.e. PhyCell branch). In contrast
to the other pure ML methods, DISTANA predicts with
higher accuracy. This could act as an evidence that appro-
priate structural design of a neural network is as essential
as physical knowledge to regularize the model training.

Among the physics-aware models, PINN and PhyDNet lie
on different extremes. On one side, PINN requires com-
plete knowledge of the modelled system in form of the
equation. This means that all the functions, such as the ad-
vective velocity in Burgers’ equation, the retardation factor
in the diffusion-sorption equation, and the reaction func-
tions in the diffusion-reaction and Allen-Cahn equations
have to be pre-defined in order to train the model. This
leaves less room for learning from data and could be error-
prone if the designer’s assumption is incorrect. On the
other side, PhyDNet relies more heavily on the data-driven
part and, therefore, could overfit the train data. This can be
shown by the fact that PhyDNet reaches the lowest train-
ing errors for the diffusion-sorption and diffusion-reaction
equation predictions compared to the other models, but
its performance significantly deteriorates when applied to
in- and out-dis-test data. Our proposed model, FINN, lies
somewhere in these two extremes, compromising between
putting sufficient physical knowledge into the model and
leaving room for learning from data. As a consequence, we
observe FINN showing excellent generalization ability. It
significantly outperforms the other models up to multiple
orders of magnitude, especially on out-dis-test data, when
tested with different initial and boundary conditions; which
is considered a particularly challenging task for ML mod-
els. Furthermore, the structure of FINN allows the extrac-
tions of learned functions such as the advective velocity,
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Figure 4: Plots of diffusion-reaction’s activator data (red) and prediction (blue) of unseen dataset using different models.
The plots in the first row show the solution distributed over x and y at t = 10, and the plots in the second row show the
solution distributed in x at y = 0 and t = 10.

retardation factor, and reaction functions, showing good in-
terpretability of the model.

We also show that FINN properly handles the provided nu-
merical boundary condition, as evidenced when applied to
the test data that is generated with a different left boundary
condition value, visualized in Figure 11 (appendix). Here,
the test data is generated with a Dirichlet boundary condi-
tion u(0, t) = 0.7, which is lower than the value used in the
train data, u(0, t) = 1.0. However, FINN is the only model
that appropriately processes this different boundary condi-
tion value so that the prediction fits the test data nicely. The
other models overestimate their prediction by consistently
showing a tendency to still fit the prediction to the higher
boundary condition value encountered during training.

Even though the spatial resolution used for the synthetic
data generation is relatively coarse, leading to sparse data

Figure 5: Plots of the learned functions (blue) as a func-
tion of u compared to the data (red) for Burgers’ (top left),
diffusion-sorption (top center), and Allen-Cahn (top right).
The learned activator u1 and inhibitor u2 reaction functions
in the diffusion-reaction equation are contrasted to the cor-
responding ground truth (‘Prediction’ and ‘Data’ plots in
the second row).

availability, FINN generalizes well. PINN, on the other
hand, slightly suffers from the low resolution of the train
data, although it still shows reasonable performance for the
three test cases. Nevertheless, we conducted an experiment
showing that PINN performs slightly better and more con-
sistently when trained on higher resolution data (see ap-
pendix, subsection D.4), albeit still worse than FINN on
coarse data. Therefore, we conclude that FINN is also ap-
plicable to real observation data that are often available
only in low resolution, and/or in limited quantity. We
demonstrate this further in subsection 4.2, when we ap-
ply FINN to real experimental data. FINN’s generalization
ability is superior to PINN, due to the fact that it is not pos-
sible to apply a trained PINN model to predict data with
different initial or boundary condition.

In terms of interpretability, FINN allows the extraction of
functions learned by its dedicated modules. These learned
functions can be compared with the real functions that gen-
erated the data (at least in the synthetic data case); exam-
ples are shown in Figure 5. The learned functions are the
main data-driven discovery part of FINN and can also be
used as a physical plausibility check. PhyDNet also com-
prises of a physics-aware and a data-driven part. However,
it is difficult, if not impossible, to infer the learned equa-
tion from the model. Furthermore, the data-driven part of
PhyDNet does not possess comparable interpretability, and
could lead to overfitting as discussed earlier.

4.1.3. ABLATIONS

In a number of ablation studies, we shed light on the rele-
vance of particular choices in FINN. As such, we substan-
tiate the choice of feedforward modules over polynomial
regression in subsection D.1, proof FINN’s ability to ade-
quately learn unknown constituents to be robust to noise in
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Figure 6: Breakthrough curve prediction of FINN (blue line) during training using data from core sample #2 (left), during
testing using data from core sample #1 (second from left) and total concentration profile prediction using data from core
sample #2B (second from right). The predictions are compared with the experimental data (red circles) and the results
obtained using the physical model (orange dashed line). The right-most plot shows the learned retardation factor R(u).

subsection D.2, and consolidate the advantages of applying
Neural ODE compared to traditional closed-loop applica-
tion and Euler integration in subsection D.3.

4.2. Experimental Dataset

Real observation data are often available in limited amount,
and they only provide partial information about the sys-
tem of interest. To demonstrate how FINN can cope with
real observation data, we use experimental data for the
diffusion-sorption problem. The experimental data are col-
lected from three different core samples that are taken from
the same geographical area: #1,#2, and #2B (see subsec-
tion C.5 in the appendix for details). The objective of this
experiment is to learn the retardation factor function from
one of the core samples that concurrently applies to all the
other samples. For this particular purpose, we only im-
plement FINN since the other models have no means of
learning the retardation factor explicitly. Here, we use the
module ϕD to learn the retardation factor function, and we
assume that the diffusion coefficient values of all the core
samples are known. FINN is trained with the breakthrough
curve of u, which is the dissolved concentration only at
x = L|0≤t≤tend (i.e. only 55 data points).

Results and Discussion FINN reaches a higher ac-
curacy for the training with core sample #2, with
MSE = 4.84× 10−4 compared to a calibrated phys-
ical model from Nowak & Guthke (2016) with
MSE = 1.06× 10−3, because the latter has to as-
sume a specific function R(u) with a few parameters for
calibration. Our learned retardation factor is then applied
and tested to core samples #1 and #2B. Figure 6 shows
that FINN’s prediction accuracy is competitive com-
pared to the calibrated physical model. For core sample
#1, FINN’s prediction has an accuracy of 1.37× 10−3

compared to the physical model that underestimates
the breakthough curve (i.e. concentration profile) with
MSE = 2.50× 10−3. Core sample #2B has significantly
longer length than the other samples, and therefore a

no-flow Neumann boundary condition was assumed at the
bottom of the core. Because there is no breakthrough curve
data available for this specific sample, we compare the
prediction against the so-called total concentration profile
u(x, tend) at the end of the experiment. FINN produced
a prediction with an accuracy of 1.16× 10−3, whereas
the physical model overestimates the concentration with
MSE = 2.73× 10−3. To briefly summarize, FINN is able
to learn the retardation factor from a sparse experimental
dataset and apply it to other core samples with similar soil
properties with reasonable accuracy, even when a different
boundary condition type is applied.

5. Conclusion
Spatiotemporal dynamics often can be described by means
of advection-diffusion type equations, such as Burgers’,
diffusion-sorption, or diffusion-reaction equations. When
modeling those dynamics with ANNs, large efforts must
be taken to prevent the models from overfitting (given the
model is able to learn the problem at all). The incorpora-
tion of physical knowledge as regularization yields robust
predictions beyond training data distributions.

With FINN, we have introduced a modular, physics-aware
neural network with excellent generalization abilities be-
yond different initial and boundary conditions, when con-
trasted to pure ML models and other physics-aware models.
FINN is able to model and extract unknown constituents
of differential equations, allowing high interpretability and
an assessment of the plausibility of the model’s out-of-
distribution predictions. As next steps we seek to apply
FINN beyond second order spatial derivatives, improve its
scalability to large datasets, and make it applicable to het-
erogeneously distributed data (i.e. represented as graphs)
by modifying the module ϕN to approximate variable and
location-specific stencils (for more details on limitations of
FINN, the reader is referred to subsection B.2). Another
promising future direction is the application of FINN to
real-world weather data.
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Software and Data
Code and data that are used for this paper can be found
in the repository ***** [hidden for anonymization rea-
sons. Instead, the supplementary material of this submis-
sion contains an anonymous version of the repository’s
README.md file along with the according data and model
scripts.]
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A. Appendix
This appendix is structured as follows: Additional detailed
differences between FINN and the benchmark models used
in this work are presented in subsection B.1. Then, lim-
itations of FINN are discussed briefly in subsection B.2.
Detailed numerical derivation of the first and second or-
der spatial derivative is shown in subsection B.3. Ad-
ditional details on the equations used as well as model
specifications and in-depth results are presented in sub-
section C.1 (Burgers’), subsection C.2 (diffusion-sorption),
subsection C.3 (diffusion-reaction), and subsection C.4
(Allen-Cahn). Moreover, the soil parameters and simula-
tion domain used in the diffusion-sorption laboratory ex-
periment are presented in subsection C.5. The results of
our ablation studies are reported in Appendix D. Addi-
tional polynomial-fitting baselines to account for the equa-
tions are outlined in subsection D.1, including an ablation
where we replace the neural network modules of FINN by
polynomials. A robustness analysis of FINN can be found
in subsection D.2, where our method is evaluated on noisy
data from all equations. The role of the Neural ODE mod-
ule is evaluated in subsection D.3, accompanied with a run-
time analysis. Finally, results of training PINN with high-
resolution data and training PhyDNet with the original ar-
chitecture (more parameters) are reported in subsection D.4
and subsection D.5, respectively.

B. Methodological Supplements
B.1. Distinction to Related Work

Pure ML models Originally, FINN was inspired by DIS-
TANA, a pure ML model proposed by Karlbauer et al.
(2019). While DISTANA has large similarities to Shi
et al. (2015)’s ConvLSTM, it propagates lateral informa-
tion through an additional latent map—instead of reading
lateral information from the input map directly, as done
in ConvLSTM—and transforms that lateral information by
means of a user-defined combination of arbitrary layers.
Accordingly, the processing of the two-point flux approxi-
mation in FINN using the lateral information, is more akin
to DISTANA, albeit motivated and augmented by physical
knowledge.

As a result, the lateral information flow is guaranteed to
behave in a physically plausible manner. That is, quan-
tity can either be locally generated by a source (increased),
locally absorbed by a sink (decreased), or spatially dis-
tributed (move to neighboring cells). Terminology sepa-
rates the spatially distribution of quantity into diffusion and
advection. Diffusion describes the equalization of quantity
from high to low concentration levels, whereas advection
is defined as the bulk motion of a large group of parti-
cles/atoms caused by external forces. FINN ensures the
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conservation of laterally propagating quantity, i.e. what
flows from left to right will effectively cause a decrease left
and an increase right. Pure ML models (without physical
constraints) cannot be guaranteed to adhere to these funda-
mental rules.

PINN Since ML models guided by physical knowledge
not only behave empirically plausible but also require
fewer parameters and generalize to much broader extent,
numerous approaches have been proposed recently to com-
bine artificial neural networks with physical knowledge.
Raissi et al. (2019) introduced the physics-informed neu-
ral network (PINN), a concrete and outstanding model that
explicitly learns a provided PDE. As a result, PINN mim-
ics e.g. Burgers’ equation (see equation 15) by learning the
quantity function u(x, t) for defined initial and boundary
conditions with a feedforward network. The partial deriva-
tives are implicitly realized by automatic differentiation of
the feedforward network (representing u) with respect to
the input variable x or t. The learned neural network thus
satisfies the constraints defined by the partial derivatives.

This method has the advantage that it explicitly provides
a solution of the desired function u(x, t) and, correspond-
ingly, predictions can be generated for an arbitrary combi-
nation of input values, circumventing the need for simulat-
ing the entire domain with e.g. a carefully chosen simula-
tion step size. In contrast, FINN does not learn the explicit
function u(x, t) defined for particular initial and boundary
conditions, but approximates the distinct components of the
function. These components are combined as suggested by
the physical equation to result in a compositional model
that is more universally applicable. That is, in stark con-
trast to PINN, the compositional function learned by FINN
can be applied to varying initial and boundary conditions,
since the learned individual components provide the same
functionality as the corresponding components of the PDE
when processed by a numerical solver. Applying the nu-
merical solver, i.e. the finite volume method (FVM), how-
ever, requires either complete knowledge of the equation or
careful calibration of the unknowns by choosing equations
from a library of possible solutions and tuning the param-
eters. FINN’s data driven component can reveal unknown
relations, such as the retardation factor of a function, with-
out the need for subjective prior assumptions.

Learning Derivatives via Convolution An alternative
and much addressed approach of implanting physical plau-
sibilty into artificial neural networks is to implicitly learn
the first n derivatives using appropriately designed convo-
lution kernels (Long et al., 2018; Li et al., 2020a;b; Guen
& Thome, 2020; Yin et al., 2020; Sitzmann et al., 2020).
These methods exploit the link that most PDEs, such as

u(t, x, y, . . . ), can be reformulated as

∂u

∂t
= F

(
t, x, y, . . . , u,

∂u

∂x
,
∂u

y
,
∂u

∂x∂y
,
∂2u

∂x2
, . . .

)
.

(9)
When learning partial derivatives up to order n and setting
irrelevant features to zero, these methods have, in principle,
the capacity to represent most PDEs. However, the degrees
of freedom in these methods are still very high and can fail
to safely guide the ML algorithm. FINN accounts for the
first and second derivative by learning an according stencil
in the module ϕN and combining this stencil with the case-
sensitive ReLU module R, which allows a precise control
of the information flow resulting from the first and second
derivative. More importantly, convolutional structure only
allows implementation of Dirichlet and periodic boundary
condition (by means of zero- or mirror-padding), and is not
appropriate for implementation of other boundary condi-
tion types.

Learning ODE Coefficients The group around Brenner
and Hoyer (Bar-Sinai et al., 2019; Kochkov et al., 2021;
Zhuang et al., 2021) follow another line of research about
learning the coefficients of ordinary differential equations
(ODEs); note that PDEs can be transformed into a set of
coupled ODEs by means of polynomial expansion or spec-
tral differentiation as shown in Bar-Sinai et al. (2019). The
physical constraint in these works is mostly realized by sat-
isfying the temporal derivative as loss.

While this approach shares similarities with our method by
incorporating physically motivated inductive bias into the
model, it uses this bias mainly to improve interpolation
from coarse to finer grid resolutions and thus to acceler-
ate simulation. Our work focuses on discovering unknown
relationships/laws (or re-discovering laws in the case of
the synthetic examples), such as the advective velocity in
the Burgers’ example, the retardation factor function in
the diffusion-sorption example, and the reaction function
in the diffusion-reaction example. Additionally, the works
by Brenner and Hoyer employ a convolutional structure,
which is only applicable to Dirichlet or periodic boundary
conditions, and it suffers from a slight instability during
training when the training data trajectory is unrolled for a
longer period. In contrast, FINN employs the flux kernel,
calculated at all control volume surfaces, which enables the
implementation and discovery of various boundary condi-
tions. Furthermore and in contrast to Brenner and Hoyer,
FINN employs the Neural ODE method as the time inte-
grator to reduce numerical instability during training with
long time series. However and in accord with this line of
research, FINN is also able to generalize well when trained
with a relatively sparse dataset (coarse resolution), reduc-
ing the computational burden.
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Numerical ODE Solvers Traditional numerical solvers
for ordinary differential equations (ODEs) can be seen as
the pure-physics contrast to FINN. However, these do not
have a learning capacity to reveal unknown dependencies
or functions from data. Also, as shown in (Yin et al., 2020),
a pure Neural ODE without physical inductive bias does
not reach the same level of accuracy as physics-aware neu-
ral network models. This is underlined by our field exper-
iment where FINN reached lower errors on a real-world
dataset compared to a conventional FVM model.

B.2. Limitations of FINN

While the largest limitation of our current method can be
seen in the capacity to only represent first and second or-
der spatial derivatives, this is an issue that we will address
in follow up work. Still, FINN can already be applied to
a very wide range of problems as most equations in fact
only depend on up to the second spatial derivative. So far,
FINN is only applicable to spatially homogeneously dis-
tributed data—we intend to extend it to heterogeneous data
from graphs. Although we have successfully applied FINN
to 2D diffusion reaction data, the training time is consider-
able. While, according to our observations, this appears to
be a common issue for physics-aware neural networks, the
implementation of custom-convolution layers could widen
this bottleneck with today’s hardware-accelerated compu-
tation of convolution operations.

B.3. Learning the Numerical Stencil

Semantically, the ϕN module learns the numerical stencil,
that is the geometrical arrangement of a group of neigh-
boring cells to approximate the derivative numerically, ef-
fectively learning the first spatial derivative ∂u

∂x from both
[ui−1, ui] and [ui, ui+1], which are the inputs to the ϕNi−
and ϕNi+

module, respectively.

The lateral information flowing from ui−1 and ui+1 toward
ui is controlled by the ϕA (advective flux, i.e. bulk mo-
tion of many particles/atoms that can either move to the
left or to the right) and the ϕD (diffusive flux, i.e. drive of
particles/atoms to equilibrium from regions of high to low
concentration) modules. Since the advective flux can only
move either to the left or to the right, it will be considered
only in the left flux kernel (fi−) or in the right flux kernel
(fi+), and not both at the same time. The case-sensitive
ReLU module R (Eq. 4) decides on this, by setting the ad-
vective flux in the irrelevant flux kernel to zero (effectively
depending on the sign of the output of ϕA). Thus, the ad-
vective flux is only considered from either ui−1 or ui+1 to
ui, which amounts to the first order spatial derivative.

The diffusive flux, on the other hand, can propagate
from both sides towards the control volume of interest
ui and, hence, the second order spatial derivative, ac-

counting for the difference between ui−1 and ui+1, has
to be applied. In our method, this is realized through
the combination of the ϕN and ϕD modules, calculat-
ing the diffusive fluxes δ− = ϕN (ui−1, ui)ϕD(ui) and
δ+ = ϕN (ui, ui+1)ϕD(ui) inside of the respective left and
right flux kernel. The combination of these two deltas in the
state kernel ensures the consideration of the diffusive fluxes
from left (including ui−1) and from right (including ui+1),
resulting in the ability to account for the second order spa-
tial derivative.

Technically, the first, i.e. [−1, 1], and second, i.e.
[1,−2, 1], order spatial differentiation schemes are com-
mon definitions and a derivation can be found, for exam-
ple, in Fornberg (1988). However, a quick derivation of
the Laplace scheme [1,−2, 1] can be formulated as follows.
Define the second order spatial derivative as the difference
between two first order spatial derivatives, i.e.

∂2u

∂x2
≈ (∂u/∂x)|i− − (∂u/∂x)|i+

∆x
(10)

with the two first order spatial derivatives—representing
the differences between ui−1, ui (left, i.e. ‘minus’) and
ui, ui+1 (right, i.e. ‘plus’)—defined as

(∂u/∂x)|i− ≈ (ui−1 − ui)/∆x (11)
(∂u/∂x)|i+ ≈ (ui − ui+1)/∆x. (12)

Then, substituting Eq. 11 and Eq. 12 into Eq. 10, we get

∂2u

∂x2
≈ (ui−1 − ui)− (ui − ui+1)

∆x2
(13)

≈ ui−1 − 2ui + ui+1

∆x2
, (14)

hence the [+1,−2,+1] as coefficients in the second order
spatial derivative.

C. Data and Model Details
C.1. Burgers’

The Burgers’ equation is commonly employed in various
research areas, including fluid mechanics.

Data The 1D generalized Burgers’ equation is written as

∂u

∂t
= −v(u)

∂u

∂x
+D

∂2u

∂x2
, (15)

where the main unknown is u, the advective velocity is de-
noted as v(u) which is a function of u and the diffusion
coefficient is D = 0.01/π. In the current work, the advec-
tive velocity function is chosen to be an identity function
v(u) = u to reproduce the experiment conducted in the
PINN paper (Raissi et al., 2019).
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Table 2: Closed loop MSE on the train data from ten different training runs for each model for the Burgers’ equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 4.1× 10−2 7.9× 10−2 1.2× 10−4 6.1× 10−4 8.0× 10−5 1.9× 10−6

2 5.1× 10−2 1.7× 10−1 1.8× 10−4 4.1× 10−4 4.7× 10−5 1.5× 10−6

3 3.6× 10−2 1.3× 10−2 6.4× 10−5 4.9× 10−4 6.8× 10−5 2.2× 10−6

4 4.3× 10−2 2.7× 10−4 2.9× 10−4 5.6× 10−4 1.2× 10−4 2.5× 10−6

5 5.4× 10−2 2.1× 10−4 2.2× 10−4 5.1× 10−4 6.7× 10−5 1.6× 10−6

6 3.9× 10−2 1.5× 10−3 1.3× 10−4 5.2× 10−4 5.5× 10−5 9.9× 10−7

7 6.6× 10−2 4.1× 10−4 5.4× 10−5 5.2× 10−4 5.1× 10−5 2.2× 10−6

8 1.2× 100 3.6× 10−2 2.7× 10−4 4.8× 10−4 5.6× 10−5 3.0× 10−6

9 3.4× 10−2 5.5× 10−2 3.9× 10−4 5.5× 10−4 9.9× 10−5 1.1× 10−5

10 6.8× 10−2 3.2× 10−1 1.1× 10−4 5.0× 10−4 8.1× 10−5 4.5× 10−7

Table 3: Closed loop MSE on in-dis-test data from ten different training runs for each model for the Burgers’ equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 3.0× 10−2 1.2× 10−1 2.6× 10−3 4.1× 10−3 1.1× 10−1 1.6× 10−6

2 7.0× 10−2 3.7× 10−1 1.1× 10−3 1.3× 10−3 2.5× 10−1 1.3× 10−6

3 2.4× 10−2 2.0× 10−1 8.9× 10−4 2.9× 10−3 3.4× 10−2 1.9× 10−6

4 5.1× 10−2 5.6× 10−3 6.2× 10−3 3.7× 10−3 4.7× 10−1 2.1× 10−6

5 5.4× 10−2 2.6× 10−3 2.6× 10−3 2.4× 10−3 1.1× 10−2 1.3× 10−6

6 3.2× 10−2 1.0× 10−2 1.2× 10−2 1.9× 10−3 3.2× 10−1 6.8× 10−7

7 8.8× 10−2 5.5× 10−3 1.1× 10−3 2.1× 10−3 3.3× 10−1 1.8× 10−6

8 1.1× 100 1.6× 10−1 4.0× 10−3 4.0× 10−4 2.7× 10−1 2.4× 10−6

9 3.3× 10−2 1.9× 10−1 4.0× 10−3 3.0× 10−2 2.6× 10−2 1.2× 10−5

10 3.6× 10−1 9.8× 10−2 6.0× 10−3 1.5× 10−3 8.0× 10−3 2.8× 10−7

Table 4: Closed loop MSE on out-dis-test data from ten different training runs for each model for the Burgers’ equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 3.6× 10−2 7.2× 10−2 5.9× 10−3 - 5.3× 10−2 1.9× 10−6

2 3.4× 10−2 1.9× 10−1 4.4× 10−4 - 2.1× 10−2 1.5× 10−6

3 3.3× 10−2 2.9× 10−3 2.9× 10−3 - 4.5× 10−2 2.2× 10−6

4 3.7× 10−2 8.9× 10−4 1.4× 10−3 - 2.0× 10−2 2.5× 10−6

5 4.2× 10−2 1.2× 10−3 1.0× 10−3 - 3.1× 10−2 1.6× 10−6

6 2.7× 10−2 1.4× 10−3 3.0× 10−4 - 1.1× 10−1 9.9× 10−7

7 6.7× 10−2 3.3× 10−2 6.2× 10−4 - 2.8× 10−2 2.2× 10−6

8 1.1× 100 4.0× 10−2 7.0× 10−4 - 4.7× 10−2 3.0× 10−6

9 3.0× 10−2 8.5× 10−2 7.4× 10−4 - 4.5× 10−2 1.1× 10−5

10 1.2× 10−1 3.1× 10−1 7.0× 10−4 - 4.5× 10−2 4.5× 10−7
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Figure 7: Prediction mean over ten different trained models (with 95% confidence interval) of the Burgers’ equation at
t = 2 for the in-dis-test dataset.

Figure 8: Prediction mean over ten different trained models (with 95% confidence interval) of the Burgers’ equation at
t = 1 for the out-dis-test data.

The simulation domain for the train data is defined with
x = [−1, 1], t = [0, 1] and is discretized with Nx = 49
spatial locations, and Nt = 201 simulation steps. The ini-
tial condition is defined as u(x, 0) = − sin(πx), and the
boundary condition is defined as u(−1, t) = u(1, t) = 0.

In-dis-test data is simulated with x = [−1, 1] and a time
span of t = [1, 2] and Nt = 401. Initial condition is taken
from the train data at t = 1 and boundary conditions are
also similar to the train data.

The simulation domain for the out-dis-test data is identical
with the train data, except for the initial condition that is
defined as u(x, 0) = sin(πx).

Model Architectures Both TCN and ConvLSTM are
designed to have one input neuron, one hidden layer of size
32, and one output neuron. The lateral and dynamic input-
and output sizes of the DISTANA model are set to one and
a hidden layer of size 32 is used. The pure ML models were
trained on the first 150 time steps and validated on the re-
maining 50 time steps of the train data (applying early stop-
ping). Also, to prevent the pure ML models from diverging
too much in closed loop, the boundary data are fed into the
models as done during teacher forcing. PINN was defined
as a feedforward network with the size of [2, 20, 20, 20, 20,
20, 20, 20, 20, 1] (8 hidden layers, each contains 20 hidden
neurons), as reported in the original work by Raissi et al.
(2019). PhyDNet was defined with the PhyCell contain-

ing 32 input dimensions, 7 hidden dimensions, 1 hidden
layer, and the ConvLSTM containing 32 input dimensions,
32 hidden dimensions, 1 hidden layer. For FINN, the mod-
ules ϕN , ϕD, R and ϕA were used, with ϕA defined as a
feedforward network with the size of [1, 10, 20, 10, 1] that
takes u as an input and outputs the advective velocity v(u),
and ϕD as a learnable scalar that learns the diffusion coeffi-
cientD. All models are trained until convergence using the
L-BFGS optimizer, except for PhyDNet, which is trained
with the Adam optimizer and a learning rate of 1 × 10−3

due to stability issues when training with the L-BFGS op-
timizer.

Additional Results Individual errors are reported for the
ten different training runs and visualizations are generated
for the train (Table 2), in-dis-test (Table 3 and Figure 7),
and out-dis-test (Table 4 and Figure 8) datasets.

C.2. Diffusion-Sorption

The diffusion-sorption equation is another widely applied
equation in fluid mechanics. A practical example of the
equation is to model contaminant transport in groundwa-
ter. Its retardation factor R can be modelled using different
closed parametric relations known as sorption isotherms
that should be calibrated to observation data.
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Table 5: Closed loop MSE on the train data from ten different training runs for each model for the diffusion-sorption
equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 3.6× 10−2 4.8× 10−5 2.1× 10−5 2.2× 10−4 3.1× 10−5 1.1× 10−4

2 2.0× 10−1 2.3× 10−2 1.6× 10−5 2.3× 10−6 2.5× 10−5 1.4× 10−5

3 8.1× 10−2 4.4× 10−2 2.7× 10−5 1.2× 10−6 3.2× 10−5 1.1× 10−4

4 2.0× 10−1 1.0× 10−2 9.3× 10−5 2.1× 10−4 2.9× 10−5 4.1× 10−5

5 1.8× 10−3 8.7× 10−2 6.2× 10−5 2.5× 10−6 7.7× 10−5 5.3× 10−6

6 2.7× 10−4 5.9× 10−2 4.0× 10−5 1.7× 10−6 4.4× 10−5 1.9× 10−5

7 3.2× 10−4 6.4× 10−2 7.7× 10−5 8.6× 10−6 1.8× 10−5 1.5× 10−5

8 1.7× 10−2 1.4× 10−4 2.5× 10−5 2.0× 10−6 2.4× 10−5 1.2× 10−4

9 4.3× 10−1 2.2× 10−3 5.9× 10−5 9.0× 10−6 2.1× 10−5 1.2× 10−5

10 6.6× 10−4 2.7× 10−2 3.9× 10−5 1.1× 10−5 5.2× 10−5 1.7× 10−5

Table 6: Closed loop MSE on in-dis-test data from ten different training runs for each model for the diffusion-sorption
equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 1.9× 10−2 7.7× 10−3 6.9× 10−4 3.0× 10−2 3.8× 10−3 3.2× 10−4

2 2.4× 10−1 1.0× 10−2 8.5× 10−5 8.6× 10−4 8.4× 10−3 3.5× 10−5

3 4.7× 10−2 2.1× 10−2 1.7× 10−3 9.3× 10−5 2.9× 10−4 3.2× 10−4

4 2.4× 10−1 2.8× 10−2 3.5× 10−3 5.2× 10−3 3.6× 10−4 1.1× 10−4

5 3.5× 10−2 7.9× 10−2 7.3× 10−3 7.9× 10−6 2.8× 10−2 9.8× 10−6

6 2.4× 10−2 5.4× 10−2 3.1× 10−4 1.4× 10−5 4.8× 10−2 4.9× 10−5

7 1.4× 10−3 4.2× 10−2 6.5× 10−3 1.8× 10−4 1.0× 10−3 3.7× 10−5

8 3.9× 10−2 2.2× 10−4 9.4× 10−4 6.9× 10−4 2.5× 10−4 3.4× 10−4

9 5.6× 10−1 1.4× 10−2 1.8× 10−3 4.5× 10−3 2.4× 10−4 2.8× 10−5

10 3.4× 10−2 4.2× 10−2 9.9× 10−4 3.5× 10−4 2.8× 10−4 4.1× 10−5

Table 7: Closed loop MSE on out-dis-test data from ten different training runs for each model for the diffusion-sorption
equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 4.7× 10−2 2.3× 10−2 2.9× 10−3 - 1.3× 10−2 9.7× 10−5

2 2.1× 10−1 4.3× 10−2 1.6× 10−3 - 1.1× 10−2 1.5× 10−5

3 9.2× 10−2 5.5× 10−2 3.4× 10−3 - 1.4× 10−2 9.5× 10−5

4 2.0× 10−1 1.9× 10−2 2.0× 10−3 - 1.1× 10−2 3.4× 10−5

5 4.4× 10−2 1.3× 10−1 4.6× 10−4 - 2.1× 10−2 4.9× 10−6

6 3.9× 10−4 1.0× 10−1 8.7× 10−3 - 4.4× 10−2 1.9× 10−5

7 9.3× 10−4 9.1× 10−2 1.6× 10−2 - 1.5× 10−2 1.5× 10−5

8 5.0× 10−3 2.6× 10−3 9.5× 10−4 - 1.2× 10−2 1.0× 10−4

9 4.6× 10−1 3.4× 10−2 7.1× 10−3 - 1.3× 10−2 1.2× 10−5

10 4.1× 10−2 8.0× 10−2 2.6× 10−3 - 1.3× 10−2 1.6× 10−5
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Figure 9: Prediction mean over ten different trained models (with 95% confidence interval) of the dissolved concentration
in the diffusion-sorption equation at t = 10 000 for the in-dis-test dataset.

Figure 10: Prediction mean over ten different trained models (with 95% confidence interval) of the dissolved concentration
in the diffusion-sorption equation at t = 10 000 for the out-dis-test dataset.

Data The 1D diffusion-sorption equation is written as the
following coupled system of equations:

∂u

∂t
=

D

R(u)

∂2u

∂x2
, (16) ∂ut

∂t
= Dφ

∂2u

∂x2
, (17)

where the dissolved concentration u and total concentration
ut are the main unknowns. The effective diffusion coeffi-
cient is denoted by D = 5 × 10−4, the retardation factor
is R(u), a function of u, and the porosity is denoted by
φ = 0.29.

In this work, the Freundlich sorption isotherm, see details
in (Nowak & Guthke, 2016), was chosen to define the re-
tardation factor:

R(u) = 1 +
1− φ
φ

ρsknfu
nf−1, (18)

where ρs = 2 880 is the bulk density, k = 3.5×10−4 is the
Freundlich’s parameter, and nf = 0.874 is the Freundlich’s
exponent.

The simulation domain for the train data is defined with
x = [0, 1], t = [0, 2 500] and is discretized with Nx =
26 spatial locations, and Nt = 501 simulation steps. The
initial condition is defined as u(x, 0) = 0, and the boundary
condition is defined as u(0, t) = 1.0 and u(1, t) = D ∂u

∂x .

The in-dis-test data was simulated with x = [0, 1] and with
the time span of t = [2 500, 10 000] and Nt = 2 001. Ini-
tial condition is taken from the train data at t = 2 500 and
boundary conditions are also identical to the train data.

The simulation domain for the out-dis-test data was iden-
tical with the in-dis-test data, except for the boundary con-
dition that was defined as u(0, t) = 0.7.

Model Architectures TCN is designed to have two input
neurons, four hidden layers of size [4, 8, 8, 8], and two out-
put neurons. ConvLSTM has two input- and output neu-
rons and one hidden layer with 16 neurons. The lateral and
dynamic input- and output sizes of the DISTANA model
are set to one and two, respectively, while a hidden layer
of size 12 is used. The pure ML models were trained on
the first 400 time steps and validated on the remaining 100
time steps of the train data (applying early stopping). Also,
to prevent the pure ML models from diverging too much in
closed loop, the boundary data are fed into the models as
done during teacher forcing. PINN was defined as a feed-
forward network with the size of [2, 20, 20, 20, 20, 20, 20,
20, 20, 2]. PhyDNet was defined with the PhyCell con-
taining 32 input dimensions, 7 hidden dimensions, 1 hid-
den layer, and the ConvLSTM containing 32 input dimen-
sions, 32 hidden dimensions, 1 hidden layer. For FINN,
the modules ϕN and ϕD were used, with ϕD defined as
a feedforward network with the size of [1, 10, 20, 10, 1]
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Figure 11: Plots of diffusion-sorption’s dissolved concentration (red) and prediction (blue) using different models. The
first and third rows show the solution over x and t (vertical red lines mark the transition from train to in-dis-test). Second
(in-dis-test) and fourth (out-dis-test) rows visualize the solution distributed in x at t = 10 000.

that takes u as an input and outputs the retardation factor
R(u). All models are trained until convergence using the
L-BFGS optimizer, except for PhyDNet, which is trained
with the Adam optimizer and a learning rate of 1 × 10−3

due to stability issues when training with the L-BFGS op-
timizer.

Additional Results Individual errors are reported for the
ten different training runs and visualizations are generated
for the train (Table 5), in-dis-test (Table 6 and Figure 9),
and out-dis-test (Table 7 and Figure 10) datasets. Results
for the total concentration ut were omitted due to high sim-
ilarity to the concentration of the reported contamination
solution u.

C.3. Diffusion-Reaction

The diffusion-reaction equation is applicable in physical
and biological systems, for example in pattern formation
(Turing, 1952).

Data In the current paper, we consider the 2D diffusion-
reaction for that class of problems:

∂u1

∂t
= R1(u1, u2) +D1

(
∂2u1

∂x2
+
∂2u1

∂y2

)
, (19)

∂u2

∂t
= R2(u1, u2) +D2

(
∂2u2

∂x2
+
∂2u2

∂y2

)
. (20)

Here, D1 = 10−3 and D2 = 5 × 10−3 are the diffusion
coefficient for the activator and inhibitor, respectively. The
system of equations is coupled through the reaction terms
R1(u1, u2) and R2(u1, u2) which are both dependent on
u1 and u2. In this work, the Fitzhugh-Nagumo (Klaasen &
Troy, 1984) system was considered to define the reaction
function:

R1(u1, u2) = u1 − u3
1 − k − u2, (21)

R2(u1, u2) = u1 − u2, (22)

with k = 5× 10−3.

The simulation domain for the train data is defined with
x = [−1, 1], y = [−1, 1], t = [0, 10] and is discretized with
Nx = 49 and Ny = 49 spatial locations, and Nt = 101
simulation steps. The initial condition was defined as
u1(x, 0) = u2(x, 0) = sin(π(x + 1)/2) sin(π(y + 1)/2),
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Table 8: Closed loop MSE on train data from ten different training runs for each model for the diffusion-reaction equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 8.7× 10−3 1.7× 10−3 1.7× 10−3 2.7× 10−4 8.5× 10−5 1.0× 10−4

2 4.4× 10−3 1.6× 10−3 4.2× 10−3 5.6× 10−4 7.1× 10−5 1.6× 10−4

3 3.2× 10−2 1.4× 10−3 9.1× 10−3 2.1× 10−4 5.8× 10−5 1.4× 10−4

4 8.7× 10−3 7.8× 10−4 6.5× 10−4 2.8× 10−4 6.8× 10−5 1.2× 10−4

5 2.5× 10−2 1.5× 10−3 4.7× 10−4 2.8× 10−4 7.6× 10−5 1.0× 10−4

6 8.0× 10−3 4.8× 10−4 2.1× 10−4 2.5× 10−4 6.5× 10−5 1.7× 10−4

7 2.4× 10−2 3.7× 10−3 8.6× 10−3 6.1× 10−5 8.2× 10−5 1.6× 10−4

8 1.1× 10−2 1.0× 10−3 2.4× 10−3 1.0× 10−4 7.8× 10−5 1.0× 10−4

9 1.3× 10−2 2.2× 10−3 3.8× 10−3 3.2× 10−5 8.8× 10−5 1.5× 10−4

10 5.6× 10−3 7.3× 10−2 8.6× 10−3 6.2× 10−4 7.4× 10−5 1.1× 10−4

Table 9: Closed loop MSE on in-dis-test data from ten different training runs for each model for the diffusion-reaction
equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 1.8× 10−1 8.0× 10−2 1.6× 10−1 7.7× 10−2 6.2× 10−2 2.9× 10−3

2 5.9× 10−1 5.7× 10−2 1.9× 10−1 2.3× 10−1 8.8× 10−2 1.6× 10−3

3 6.5× 10−1 9.2× 10−2 3.0× 10−1 3.5× 10−2 7.8× 10−2 1.7× 10−3

4 3.1× 10−1 6.7× 10−2 2.0× 10−1 2.6× 10−2 6.8× 10−2 2.9× 10−3

5 7.3× 10−1 4.9× 10−2 1.9× 10−1 1.3× 10−1 5.3× 10−2 1.7× 10−3

6 1.9× 10−1 5.4× 10−2 2.8× 10−2 8.9× 10−2 9.9× 10−2 2.0× 10−3

7 6.0× 10−1 1.0× 10−1 2.2× 10−1 5.4× 10−2 6.7× 10−2 1.5× 10−3

8 7.1× 10−1 8.6× 10−2 1.9× 10−1 1.3× 10−2 9.1× 10−2 2.3× 10−3

9 5.5× 10−1 2.3× 10−1 1.6× 10−1 2.3× 10−2 6.7× 10−2 1.8× 10−3

10 2.2× 10−1 1.2× 10−1 1.7× 10−1 2.6× 10−2 1.1× 10−1 2.1× 10−3

Table 10: Closed loop MSE on out-dis-test data from ten different training runs for each model for the diffusion-reaction
equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 2.3× 10−2 3.2× 10−3 9.4× 10−3 - 3.9× 10−2 6.5× 10−3

2 1.7× 10−1 1.3× 10−2 1.3× 10−2 - 5.4× 10−2 5.5× 10−3

3 2.5× 10−1 1.3× 10−2 2.1× 10−2 - 2.5× 10−2 5.9× 10−3

4 7.3× 10−2 7.2× 10−3 7.9× 10−3 - 4.2× 10−2 6.5× 10−3

5 2.6× 10−1 5.9× 10−3 2.6× 10−3 - 2.8× 10−2 6.1× 10−3

6 6.4× 10−2 1.5× 10−2 2.1× 10−3 - 2.9× 10−2 6.0× 10−3

7 2.2× 10−1 1.0× 10−2 1.9× 10−2 - 2.8× 10−2 5.7× 10−3

8 2.0× 10−1 3.9× 10−3 1.2× 10−2 - 2.1× 10−2 6.1× 10−3

9 2.3× 10−1 4.3× 10−2 1.3× 10−2 - 2.1× 10−2 6.0× 10−3

10 3.6× 10−2 3.7× 10−2 3.3× 10−2 - 5.9× 10−2 6.2× 10−3
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Figure 12: Prediction mean over ten different trained models (with 95% confidence interval) of the activator in the
diffusion-reaction equation at t = 50 for the in-dis-test dataset.

Figure 13: Prediction mean over ten different trained models (with 95% confidence interval) of the activator in the
diffusion-reaction equation at t = 10 for the out-dis-test dataset.

and the corresponding boundary condition was defined as
∂u1

∂x (−1, t) = 0, ∂u1

∂x (1, t) = 0, ∂u2

∂x (−1, t) = 0, and
∂u2

∂x (1, t) = 0.

The in-dis-test data is simulated with with x = [−1, 1],
y = [−1, 1] and with the time span of t = [10, 50] and
Nt = 501. Initial condition is taken from the train data at
t = 10 and boundary conditions are also identical to the
train data.

The simulation domain for the out-dis-test data was iden-
tical with the train data, except for the initial condition
that was defined as u1(x, 0) = u2(x, 0) = sin(π(x +
1)/2) sin(π(y + 1)/2) − 0.5, i.e. subtracting 0.5 from the
original initial condition.

Model Architectures TCN is designed to have two
input- and output neurons, and one hidden layer of size 32.
ConvLSTM has two input- and output neurons and one
hidden layer of size 24. The lateral and dynamic input-
and output sizes of the DISTANA model are set to one
and two, respectively, while a hidden layer of size 32 is
used. The pure ML models were trained on the first 70
time steps and validated on the remaining 30 time steps of
the train data (applying early stopping). Also, to prevent
the pure ML models from diverging too much in closed
loop, the boundary data are fed into the models as done
during teacher forcing. PINN is defined as a feedforward
network with the size of [3, 20, 20, 20, 20, 20, 20, 20, 20,

2]. PhyDNet is defined with the PhyCell containing 32 in-
put dimensions, 49 hidden dimensions, 1 hidden layer, and
the ConvLSTM containing 32 input dimensions, 32 hidden
dimensions, 1 hidden layer. For FINN, the modules ϕN ,
ϕD and Φψ are used, with ϕD set as two learnable scalars
that learn the diffusion coefficients D1 and D2, and Φψ de-
fined as a feedforward network with the size of [2, 20, 20,
20, 2] that takes u1 and u2 as inputs and outputs the re-
action functions R1(u1, u2) and R2(u1, u2). All models
are trained until convergence using the L-BFGS optimizer,
except for PhyDNet, which is trained with the Adam opti-
mizer and a learning rate of 1×10−3 due to stability issues
when training with the L-BFGS optimizer.

Additional Results Individual errors are reported for the
ten different training runs and visualizations are generated
for the train (Table 8), in-dis-test (Table 9 and Figure 12),
and out-dis-test (Table 10 and Figure 13) datasets. Results
for the total inhibitor u2 were omitted due to high similarity
to the reported activator u1.

C.4. Allen-Cahn

The Allen-Cahn equation is commonly employed in
reaction-diffusion systems, in particular to model phase
separation in multi-component alloy systems (Raissi et al.,
2019).
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Figure 14: Plots of diffusion-reaction’s activator data u1 (red) and extrapolated prediction (blue) using different models.
The plots in the first row show the solution distributed over x and y at t = 50, and the plots in the second row show the
solution distributed in x at y = 0 and t = 50.

Figure 15: Plots of Allen-Cahn’s data and prediction of in-dis-test data using different models. The plots in the first row
show the solution over x and t (the red lines mark the transition from train to in-dis-test), the second row visualizes the
best model’s solution distributed in x at t = 1.

Figure 16: Plots of Allen-Cahn’s data and prediction of out-dis-test data using different models. The plots in the first row
show the solution over x and t, the second row visualizes the solution distributed in x at t = 1.
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Table 11: Closed loop MSE on the train data from ten different training runs for each model for the Allen-Cahn equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 1.1× 10−2 7.1× 10−2 2.9× 10−4 1.6× 10−5 1.5× 10−4 1.8× 10−5

2 4.5× 10−2 3.0× 10−2 4.7× 10−4 4.2× 10−5 6.4× 10−5 8.2× 10−6

3 2.9× 10−2 1.2× 10−2 8.0× 10−4 4.2× 10−5 2.5× 10−4 5.4× 10−6

4 8.9× 10−2 6.5× 10−3 4.9× 10−4 1.6× 10−6 4.8× 10−5 4.7× 10−7

5 1.4× 10−2 8.0× 10−2 2.6× 10−4 1.3× 10−5 5.1× 10−5 2.3× 10−5

6 1.1× 10−2 4.6× 10−3 5.7× 10−4 6.4× 10−6 4.7× 10−5 2.5× 10−6

7 9.6× 10−3 7.1× 10−3 4.2× 10−4 1.4× 10−5 1.7× 10−4 1.1× 10−5

8 3.6× 10−2 5.3× 10−4 8.5× 10−4 2.1× 10−5 3.7× 10−5 2.9× 10−7

9 6.9× 10−1 4.0× 10−1 7.6× 10−4 2.0× 10−5 9.8× 10−5 3.0× 10−7

10 2.8× 10−2 1.8× 10−4 1.5× 10−4 3.8× 10−5 9.8× 10−5 2.9× 10−7

Table 12: Closed loop MSE on in-dis-test data from ten different training runs for each model for the Allen-Cahn equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 9.9× 10−2 1.2× 100 4.8× 10−2 7.0× 10−3 1.4× 10−1 5.6× 10−5

2 2.9× 10−1 8.6× 10−1 9.1× 10−2 1.8× 10−1 8.2× 10−2 2.4× 10−5

3 2.3× 10−1 3.6× 10−1 7.9× 10−2 4.3× 10−1 1.0× 10−1 1.6× 10−5

4 4.7× 10−1 3.4× 10−1 7.4× 10−2 4.6× 10−3 9.9× 10−2 2.1× 10−6

5 1.9× 10−1 5.5× 10−1 7.3× 10−2 2.2× 10−3 8.5× 10−2 9.3× 10−5

6 1.2× 10−1 3.2× 10−1 1.0× 10−1 2.0× 10−3 1.2× 10−1 1.1× 10−5

7 1.2× 10−1 5.4× 10−1 1.3× 10−1 5.0× 10−4 2.3× 10−1 3.4× 10−5

8 3.0× 10−1 5.6× 10−1 9.5× 10−2 1.3× 10−1 1.0× 10−1 1.3× 10−6

9 1.4× 100 1.3× 100 1.6× 10−1 1.2× 10−2 1.0× 10−1 1.3× 10−6

10 2.3× 10−1 5.5× 10−2 4.6× 10−2 3.3× 10−2 9.4× 10−2 1.3× 10−6

Table 13: Closed loop MSE on out-dis-test data from ten different training runs for each model for the Allen-Cahn equation.

Run TCN ConvLSTM DISTANA PINN PhyDNet FINN

1 4.1× 10−2 5.3× 10−2 1.4× 10−2 - 6.2× 10−1 7.4× 10−5

2 2.0× 10−1 3.8× 10−1 3.7× 10−2 - 2.4× 10−1 2.9× 10−5

3 1.3× 10−1 1.5× 10−1 6.2× 10−2 - 6.2× 10−1 1.8× 10−5

4 2.0× 10−1 2.9× 10−1 1.1× 10−2 - 7.3× 10−1 3.0× 10−6

5 1.7× 10−1 8.3× 10−2 4.0× 10−2 - 6.8× 10−1 1.2× 10−4

6 8.7× 10−2 2.9× 10−1 3.1× 10−2 - 7.8× 10−1 1.5× 10−5

7 1.0× 10−1 1.5× 10−1 5.9× 10−2 - 1.0× 100 4.3× 10−5

8 1.5× 10−1 5.3× 10−1 9.1× 10−2 - 5.4× 10−1 1.9× 10−6

9 1.2× 100 1.4× 100 1.0× 10−1 - 6.2× 10−1 1.8× 10−6

10 9.6× 10−2 7.5× 10−2 1.5× 10−2 - 5.9× 10−1 1.9× 10−6
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Figure 17: Prediction mean over ten different trained models (with 95% confidence interval) of the Allen-Cahn equation at
t = 1 for the in-dis-test dataset.

Figure 18: Prediction mean over ten different trained models (with 95% confidence interval) of the Allen-Cahn equation at
t = 1 for the out-dis-test data.

Data The 1D Allen-Cahn equation is written as

∂u

∂t
= D

∂2u

∂x2
+R(u), (23)

where the main unknown is u, the reaction term is denoted
as R(u) which is a function of u and the diffusion coeffi-
cient is D = 10−4. In the current work, the reaction term
is defined as:

R(u) = 5u− 5u3, (24)

to reproduce the experiment conducted in the PINN paper
(Raissi et al., 2019).

The simulation domain for the train data is defined with
x = [−1, 1], t = [0, 0.5] and is discretized with Nx = 49
spatial locations, and Nt = 201 simulation steps. The ini-
tial condition is defined as u(x, 0) = x2 cos(πx), and peri-
odic boundary condition is used, i.e. u(−1, t) = u(1, t).

In-dis-test data is simulated with x = [−1, 1] and a time
span of t = [0.5, 1] andNt = 401. Initial condition is taken
from the train data at t = 0.5 and boundary conditions are
also similar to the train data.

The simulation domain for the out-dis-test data is identical
with the train data, except for the initial condition that is
defined as u(x, 0) = sin(πx/2).

Model Architectures Both TCN and ConvLSTM are
designed to have one input neuron, one hidden layer of size

32, and one output neuron. The lateral and dynamic input-
and output sizes of the DISTANA model are set to one and
a hidden layer of size 32 is used. The pure ML models were
trained on the first 150 time steps and validated on the re-
maining 50 time steps of the train data (applying early stop-
ping). Also, to prevent the pure ML models from diverging
too much in closed loop, the boundary data are fed into the
models as done during teacher forcing. PINN was defined
as a feedforward network with the size of [2, 20, 20, 20, 20,
20, 20, 20, 20, 1] (8 hidden layers, each contains 20 hidden
neurons). PhyDNet was defined with the PhyCell contain-
ing 32 input dimensions, 7 hidden dimensions, 1 hidden
layer, and the ConvLSTM containing 32 input dimensions,
32 hidden dimensions, 1 hidden layer.

For FINN, the modules ϕN , ϕD, and Φψ were used, with
ϕD defined as a learnable scalar that learns the diffusion
coefficient D, and Φψ defined as a feedforward network
with the size of [1, 10, 20, 10, 1] that takes u as an input and
outputs the reaction function R(u). All models are trained
until convergence using the L-BFGS optimizer, except for
PhyDNet, which is trained with the Adam optimizer and
a learning rate of 1 × 10−3 due to stability issues when
training with the L-BFGS optimizer.

Additional Results Individual errors are reported for the
ten different training runs and visualizations are generated
for the train (Table 11), in-dis-test (Table 12, Figure 15
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and Figure 17), and out-dis-test (Table 13, Figure 16 and
Figure 18) datasets.

C.5. Soil Parameters and Simulation Domains for the
Experimental Dataset

Identical to Praditia et al. (2021), the soil parameters and
simulation (and experimental) domain used in the real-
world diffusion-sorption experiment are summarized in Ta-
ble 14 for core samples #1, #2, and #2B.

For all experiments, the core samples are subjected to a
constant contaminant concentration at the top us, which
can be treated as a Dirichlet boundary condition numer-
ically. Notice that, for core sample #2, we set us to be
slightly higher to compensate for the fact that there might
be fractures at the top of core sample #2, so that the con-
taminant can break through the core sample faster.

For core samples #1 and #2, Q is the flow rate of clean
water at the bottom reservoir that determines the Cauchy
boundary condition at the bottom of the core samples. For
core sample #2B, note that the sample length is signifi-
cantly longer than the other samples, and by the end of the
experiment, no contaminant has broken through the core
sample. Therefore, we assume the bottom boundary con-
dition to be a no-flow Neumann boundary condition; see
(Praditia et al., 2021) for details.

Table 14: Soil and experimental parameters of core sam-
ples #1, #2, and #2B. D is the diffusion coefficient, φ is
the porosity, ρs is the bulk density, L and r are the length
and radius of the sample, tend is the simulation time, Q
is the flow rate in the bottom reservoir and us is the total
concentration of trichloroethylene in the sample.

Soil parameters

Parameter Unit Core #1 Core #2 Core #2B

D m2/day 2.00×
10−5

2.00×
10−5

2.78×
10−5

φ - 0.288 0.288 0.288
ρs kg/m3 1957 1957 1957

Simulation domain

Parameter Unit Core #1 Core #2 Core #2B

L m 0.0254 0.02604 0.105
r m 0.02375 0.02375 N/A
tend days 38.81 39.82 48.88
Q m3/day 1.01×

10−4
1.04×
10−4

N/A

us kg/m3 1.4 1.6 1.4

D. Ablations
D.1. Baseline Assessment with Polynomial Regression

In this section, we apply polynomial regression to show that
the example problems chosen in this work (i.e. Burgers’,
diffusion-sorption, diffusion-reaction, and Allen-Cahn) are
not easy to solve. First, we use polynomial regression to
fit the unknown variable u = f(x, t), similar to PINN. Fig-
ure 20 shows the prediction of u for each example, obtained
using the fitted polynomial coefficients. For the Burgers’
equation, the train and in-dis-test predictions have MSE
values of 5.0× 10−2 and 4.1× 10−2, respectively. For the
diffusion-sorption equation, the train and in-dis-test pre-
dictions have MSE values of 3.0 × 10−3 and 4.1 × 101,
respectively. For the diffusion-reaction equation, the train
and in-dis-test predictions have MSE values of 1.7× 10−2

and 3.9 × 104, respectively. For the Allen-Cahn equation,
the train and in-dis-test predictions have MSE values of
8.8×10−3 and 2.2×103, respectively. The simple polyno-
mial fitting fails to obtain accurate predictions of the so-
lution for all example problems. The results also show
that the polynomials overfit the data, evidenced by the sig-
nificant deterioration of performance during extrapolation
(prediction of in-dis-test data). The diffusion-reaction and
the Allen-Cahn equations are particularly the most difficult
to fit, because they require higher order polynomials to ob-
tain reasonable accuracy. With the high order, they still fail
to even fit the train data well.

Next, we also consider using polynomial fitting in lieu of
ANNs (namely the modules ϕA, ϕD, and Φψ) in FINN.
Indeed, with this method, the model successfully predicts
Burgers’ equation (Figure 19a). The MSE values are 1.9×
10−4, 1.0×10−3, and 1.3×10−4 for train, in-dis-test, and
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Figure 19: Plots of the train prediction in the Burgers’
(left), diffusion-reaction (center), and Allen-Cahn equa-
tions (right) using FINN with polynomial fitting. Due to
instability issues, the diffusion-sorption equation could not
be solved with the polynomial FINN. The plots in the first
row show the solution over x and t, and the plots in the
second row show the solution distributed in x.
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Figure 20: Prediction pairs for train and in-dis-test (left and right columns of the pairs) of the Burgers’ (left, polynomial
order 5), diffusion-sorption (second left, polynomial order 3), diffusion-reaction (second right, polynomial order 5 since
higher orders did not converge), and Allen-Cahn (right, polynomial order 10) equations using polynomial regression.

(a) Burgers’ (b) Diffusion-sorption (c) Diffusion-reaction (d) Allen-Cahn

Figure 21: Paired plots of the in-dis-test and out-dis-test prediction (left and right of the pairs, respectively) after training
FINN with noisy data. The plots in the first row of the pairs show the solution over x and t (red line marks the transition
from train to in-dis-test), and the plots in the second row of the pairs show the best model’s solution distributed in x.

out-dis-test data, respectively. However, the model fails
to complete the training for the diffusion-sorption equa-
tion due to major instabilities (the polynomials can pro-
duce negative output and therefore, negative diffusion co-
efficient, leading to numerical instability). Moreover, the
model also fails to sufficiently learn the diffusion-reaction
(Figure 19b) and the Allen-Cahn (Figure 19c) equations.
For the diffusion-reaction equation, the MSE values are
2.5 × 10−2, 1.7 × 10−1, and 4.8 × 10−2 for train, in-
dis-test, and out-dis-test data, respectively. For the Allen-
Cahn equation, the MSE values are 5.6×10−2, 2.5×10−1,
and 4.3 × 10−1 for train, in-dis-test, and out-dis-test data,
respectively. Even though the unknown equations do not
seem too complicated, they are still difficult to solve to-
gether with the PDE as a whole. The results show that for
these particular problems, ANNs serve better because they
allow better control during training in form of constraints,
and they produce more regularized outputs than high order
polynomials. However, while ANNs are not unique in their
selection, they are most convenient for our implementation.

D.2. Noise Robustness Test of FINN

In this section, we test the robustness of FINN when trained
using noisy data. All the synthetic data is generated with
the same parameters, only added with noise with the dis-

tribution N (0.0, 0.05). For the Burgers’ equation (Fig-
ure 21a and Figure 22a), the average MSE values are
2.5×10−3±4.1×10−6, 2.4×10−3±6.6×10−6, and 2.5×
10−3±4.0×10−6 for the train, in-dis-test, and out-dis-test
prediction, respectively. For the diffusion-sorption equa-
tion (Figure 21b and Figure 22b), the average MSE values
are 2.5×10−3±4.5×10−6, 2.5×10−3±3.7×10−6, and
2.5× 10−3 ± 3.7× 10−6 for the train, in-dis-test, and out-
dis-test prediction, respectively. For the diffusion-reaction
equation (Figure 21c and Figure 22c), the average MSE
values are 3.2×10−3±5.3×10−4, 1.6×10−2±8.8×10−3,
and 8.3× 10−3 ± 4.9× 10−4 for the train, in-dis-test, and
out-dis-test prediction, respectively. For the Allen-Cahn
equation (Figure 21d and Figure 22d), the average MSE
values are 2.5×10−3±1.1×10−6, 2.5×10−3±9.1×10−6,
and 2.5× 10−3 ± 6.3× 10−6 for the train, in-dis-test, and
out-dis-test prediction, respectively. These results show
that even though FINN is trained with noisy data, it is still
able to capture the essence of the equation and generalize
well to different initial and boundary conditions. Addition-
ally, the prediction is consistent, shown by the low values
of the MSE standard deviation, as well as the very narrow
confidence interval in the plots.
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(a) Burgers’ (b) Diffusion-sorption

(c) Diffusion-reaction (d) Allen-Cahn

Figure 22: Prediction mean over ten different trained FINN (with 95% confidence interval) of the Burgers’ (top left),
diffusion-sorption (top right), diffusion-reaction (bottom left), and Allen-Cahn (bottom right) equations obtained by train-
ing FINN with noisy data for the in-dis-test and out-dis-test (top and bottom, accordingly) prediction.
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D.3. Neural ODE Ablation and Runtime Analysis

In order to stress the role of Neural ODE in FINN, we con-
duct an ablation by removing the Neural ODE part and di-
rectly feeding the output of FINN as input in the next time.
This amounts to traditional closed loop training or an Euler
ODE integration scheme, where the model directly predicts
and outputs the delta from u(t) to u(t+1) (also referred to as
residual training). Results are summarized in Table 15 and
unveil two major effects of Neural ODE.

First, it helps stabilizing the training reasonably: We ob-
serve FINN having immense difficulties without Neural
ODE at learning the diffusion-sorption equation (not even
completing a single epoch without producing NaN val-
ues). Similar but less dramatic failures were observed
on the Burgers’, diffusion-reaction, and Allen-Cahn equa-
tions, where FINN without Neural ODE on average only
managed 50, 72, and 85 epochs, respectively, without pro-
ducing NaN values. This consolidates the supportive aspect
of the Neural ODE component, which we explain is due to
its adaptive time-stepping feature. More importantly, the
adaptive time-stepping of Neural ODE makes it possible to
apply FINN to experimental data in the first place, where
the time deltas between successive measurements are not
constant.

Second and as to be expected, the runtime when adding
Neural ODE in the computations increases significantly.
We compare the runtime for each model, run on a CPU
with i9-9900K core, a clock speed of 3.60 GHz, and 32 GB
RAM. Additionally, we also perform the comparison of
GPU runtime on a GTX 1060 (i.e. with 6 GB VRAM). The
results are summarized in Table 16. Note that the purpose
of this comparison is not an optimized benchmark, but only
to show that the runtime of FINN is comparable with the
other models, especially when run in CPU. When run on
GPU, however, FINN runs slightly slower. This is caused
by the fact that FINN’s implementation is not yet optimized
for GPU. More importantly, the Neural ODE package we
use benefits only from a larger batch size. As shown in
Figure 23, GPU is faster for batch size larger than 20 000,
whereas the maximum size that we use in the example is
2 401. With smaller batch size, CPU usage is faster.

In general, only the PINN model has a benefit when com-
puted on the GPU, since the function is only called once
on all batches. This is different for all other models that
have to unroll a prediction of the sequence into the fu-
ture recurrently (except for TCN which is a convolution
approach that is faster on GPU). Accordingly, The over-
head of copying the tensors to GPU outweighs the GPU’s
parallelism benefit, compared to directly processing the se-
quence on the CPU iteratively. On the two-dimensional
diffusion-reaction benchmark, the GPU’s speed-up comes
into play, since in here, the simulation domain is discretized
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Figure 23: Runtime comparison of Neural ODE with a sin-
gle hidden layer consisting of 50 hidden nodes run on CPU
and GPU for 1 000 time steps. The benefit of using GPU
starts to be seen when larger batch sizes (> 20 000) are
used.

into 49 × 49 = 2401 volumes (compared to 49 for the
Burgers’ and Allen-Cahn, and 26 for the diffusion-sorption
equations). Note that we have observed significantly vary-
ing runtimes on different GPUs (i.e. up to three seconds
for FINN on Burgers’ on an RTX 3090), which might be
caused by lack of support of certain packages for a partic-
ular hardware, but further investigation is required.

Additionally, we want to emphasize that the higher runtime
of FINN on GPU is not caused by the time step adaptivity.
In fact, employing the adaptive time stepping strategy is
cheaper than choosing all time steps to be small enough (to
guarantee numerical stability). As we learn a PDE, we have
no exact knowledge to derive a dedicated time integration
scheme, but the adaptive Runge-Kutta method is one of the
best generic choices. As our PDE and its characteristics
change during training, time step adaptivity is a real asset,
because for example the Courant–Friedrichs–Lewy (CFL)
condition (Courant et al., 1967) would consistently change
throughout the training. Therefore, the time step adaptivity
is not a bottleneck, but rather a solution for a more efficient
computation.

Furthermore, in relation to FINN’s limitation (see subsec-
tion B.2) topics like numerical stabilization schemes for
larger time steps, adaptive spatial grid, optimized imple-
mentation in an High Performance Computing (HPC) set-
ting, parallelization, etc. are still very interesting for future
works.
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Table 15: Comparison of MSE on the Train data for individual runs with and without Neural ODE (NODE) on the different
equations. Average of models without (w/o) NODE is calculated over all individual runs. Average scores of models with
(w/) NODE are taken from Table 1. Left and right columns for the different equations show the MSE and epoch from
which on NaN values occured, respectively. FINN was trained for 100 epochs, overall, i.e. 100 in the second columns
corresponds to a training without any NaN values encountered.

Run Burgers’ Diffusion-sorption Diffusion-reaction Allen-Cahn

1 6.0× 10−6 100 - 0 2.5× 10−2 2 6.6× 10−6 100
2 7.9× 10−6 100 - 0 1.3× 10−3 14 6.1× 10−5 13
3 9.9× 10−4 100 - 0 6.3× 10−4 27 1.1× 10−5 100
4 1.4× 10−5 100 - 0 3.9× 10−3 78 4.7× 10−7 100
5 1.3× 10−3 2 - 0 4.3× 10−3 100 8.4× 10−5 100
6 5.9× 10−6 100 - 0 1.8× 10−2 83 2.6× 10−7 100
7 4.6× 10−6 100 - 0 8.2× 10−4 31 1.6× 10−7 100
8 1.2× 10−3 3 - 0 1.0× 10−3 15 5.5× 10−7 100
9 1.4× 10−5 13 - 0 2.3× 10−4 100 5.5× 10−7 100
10 5.1× 10−6 100 - 0 1.8× 10−4 45 7.3× 10−6 39

Avg w/o NODE (3.5± 5.2)× 10−4 72 - 0 (5.5± 8.3)× 10−3 50 (1.1± 1.8)× 10−5 85
Avg w/ NODE (2.8± 2.9)× 10−6 100 (omitted) 100 (1.3± 0.3)× 10−4 100 (6.9± 7.7)× 10−6 100

Table 16: Comparison of runtime (in seconds) of single forward passes between different deep learning (above dashed
line) and physics-aware neural network (below dashed line) methods on the different equations.

Eqn. Model CPU (i9-9900K, 3.60 GHz) GPU (GTX 1060)

Burger (1D)

TCN 0.423 0.130
ConvLSTM 0.052 0.079
DISTANA 0.059 0.098
PINN 0.036 0.007
PhyDNet 0.107 0.192
FINN 0.066 0.161

Diffusion-sorption (1D)

TCN 1.228 0.393
ConvLSTM 0.119 0.194
DISTANA 0.145 0.223
PINN 0.073 0.010
PhyDNet 0.263 0.475
FINN 0.676 1.638

Diffusion-reaction (2D)

TCN 14.15 0.800
ConvLSTM 0.230 0.052
DISTANA 0.190 0.051
PINN 1.647 0.787
PhyDNet 0.159 0.113
FINN 0.342 0.330

Allen-Cahn (1D)

TCN 0.442 0.128
ConvLSTM 0.050 0.082
DISTANA 0.060 0.097
PINN 0.035 0.007
PhyDNet 0.108 0.191
FINN 0.028 0.071
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Table 17: MSE of PINN trained using data with finer res-
olution from ten different training runs for the diffusion-
reaction equation.

Run Train In-dis-test Out-dis-test

1 1.4× 10−4 7.8× 10−2 -
2 1.8× 10−4 5.6× 10−2 -
3 8.6× 10−5 1.5× 10−2 -
4 1.0× 10−3 1.5× 10−1 -
5 5.2× 10−5 2.7× 10−2 -
6 2.9× 10−4 8.1× 10−1 -
7 1.3× 10−4 3.4× 10−2 -
8 8.9× 10−5 2.9× 10−2 -
9 3.9× 10−5 1.3× 10−2 -
10 3.3× 10−5 1.7× 10−2 -

Figure 24: Plots of the diffusion-reaction equation’s acti-
vator u using PINN trained with finer resolution dataset.
In-dis-test prediction (left) and out-dis-test (right)

D.4. Training PINN With Finer Spatial Resolution

In order to determine whether the reduced accuracy of
PINN in our experiments was caused by a coarse spatial
resolution (we only used 49, 26 and 49 × 49 spatial posi-
tions at Burger, diffusion-sorption, and diffusion-reaction,
respectively), another experiment was conducted per tar-
get equation where the spatial resolution was increased to
Nx = 999, Nx = 251, and Nx = 99, Ny = 99, respec-
tively. As reported in Table 17, Figure 24, and Figure 25,
the performance increased slightly but by far did not reach
FINN’s accuracy. Identical results were achieved in the
Burgers’ and diffusion-sorption equations but are omitted
due to high conceptual similarity.

Figure 25: PINN fine resolution. Prediction mean (with
95% confidence interval) of the activator (left) and inhibitor
(right) in the diffusion-reaction equation at t = 50 com-
pared with the in-dis-test data.

Table 18: MSE of PhyDNet using the original network size
from ten different training runs for the diffusion-reaction
equation.

Run Train In-dis-test Out-dis-test

1 9.3× 10−5 1.8× 10−1 7.6× 10−2

2 2.9× 10−5 6.5× 10−2 3.5× 10−2

3 2.2× 10−5 6.7× 10−2 4.0× 10−2

4 4.6× 10−5 7.2× 10−2 3.9× 10−2

5 3.5× 10−5 6.5× 10−2 8.8× 10−2

6 5.7× 10−5 1.2× 10−1 1.0× 10−1

7 3.5× 10−5 5.7× 10−2 9.0× 10−2

8 3.5× 10−5 5.9× 10−2 2.6× 10−2

9 2.3× 10−5 6.3× 10−2 4.1× 10−2

10 3.5× 10−5 6.1× 10−2 8.1× 10−2

D.5. PhyDNet With Original Amount of Parameters

To verify whether our reduction of parameters and the re-
moval of the encoder and decoder layers caused PhyDNet
to perform worse, we repeated the experiments for the three
equations of interest using the original PhyDNet architec-
ture as proposed in (Guen & Thome, 2020). However, our
results indicate no significant changes in performance, as
reported in Table 18, Figure 26, and Figure 27. Again, re-
sults for the inhibitor u2 as well as for the Burgers’ and
diffusion-reaction equations were omitted due to high con-
ceptual similarity.
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Figure 26: Plots of the diffusion-reaction equation’s activa-
tor u using PhyDNet with the original network size. In-dis-
test prediction (left) and out-dis-test (right).

Figure 27: PhyDNet original architecture. Prediction mean
(with 95% confidence interval) of the activator (left) and
inhibitor (right) in the diffusion-reaction equation at t = 50
compared with the in-dis-test data.
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1.  Introduction
Scientists and engineers have been trying to model physical phenomena occurring in nature for centuries, one of 
which is the transport of a quantity in space and time through natural media. A few examples include: subsur-
face fluid flow modeling (e.g., Ghosh et al., 2020; T. Koch et al., 2021), climate modeling (e.g., IPCC, 2013; 
Marchuk, 1974), and diffusion-reaction modeling (e.g., Turing, 1952; Wei & Winter, 2017). Of course, contami-
nant transport and attenuation in water resources research also falls into this problem class. Problems of this type 
are usually described mathematically using partial differential equations (PDEs) because of their space and time 
dependencies.

However, despite promising development in computing power and availability of data, the behavior of several 
of these physical systems is still poorly understood (Winsberg,  2003). As such, simplifying assumptions are 
required to model parts of the processes that are either still unknown, too complicated, or act on scales much 
smaller  than those of interest. A concrete example is the simplification of diffusion-sorption problems to be 
modeled with sorption isotherms (Al-Ghouti & Da'ana, 2020; Limousin et  al.,  2007). The available sorption 
isotherms are valid only under certain geochemical conditions. In particular, they are not applicable to more 
complicated diffusion-sorption problems that may, for example, involve reactive transport. Other examples 
include the choice of relative permeability and saturation relationships in multiphase flow in porous media (K. 
Li & Horne, 2006; Moghadasi et al., 2015), and the reaction formulations in diffusion-reaction systems (Allen & 
Cahn, 1979; Klaasen & Troy, 1984).

To address this issue, we propose the finite volume neural network (FINN) as a novel physics-aware machine 
learning (ML) modeling framework. FINN combines the well-established numerical discretization strategy of the 
finite volume method (FVM) and the flexibility and learning ability of artificial neural networks (ANNs). Most 
importantly, this combination allows to explicitly and accurately learn parts of the unknown or poorly understood 

Abstract  Improved understanding of complex hydrosystem processes is key to advance water resources 
research. Nevertheless, the conventional way of modeling these processes suffers from a high conceptual 
uncertainty, due to almost ubiquitous simplifying assumptions used in model parameterizations/closures. 
Machine learning (ML) models are considered as a potential alternative, but their generalization abilities remain 
limited. For example, they normally fail to predict accurately across different boundary conditions. Moreover, 
as a black box, they do not add to our process understanding or to discover improved parameterizations/
closures. To tackle this issue, we propose the hybrid modeling framework FINN (finite volume neural network). 
It merges existing numerical methods for partial differential equations (PDEs) with the learning abilities of 
artificial neural networks (ANNs). FINN is applied on discrete control volumes and learns components of the 
investigated system equations, such as numerical stencils, model parameters, and arbitrary closure/constitutive 
relations. Consequently, FINN yields highly interpretable results. We demonstrate FINN's potential on a 
diffusion-sorption problem in clay. Results on numerically generated data show that FINN outperforms other 
ML models when tested under modified boundary conditions, and that it can successfully differentiate between 
the usual, known sorption isotherms. Moreover, we also equip FINN with uncertainty quantification methods 
to lay open the total uncertainty of scientific learning, and then apply it to a laboratory experiment. The results 
show that FINN performs better than calibrated PDE-based models as it is able to flexibly learn and model 
sorption isotherms without being restricted to choose among available parametric models.
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processes mentioned above, while maintaining numerical stability, producing highly accurate predictions, and 
providing scientifically interpretable functions of interest. For the sake of demonstration, we focus here on diffu-
sion and sorption of groundwater contaminant in fully saturated clay. This process is relevant, for example, in 
clay liners of landfills (Hendry et al., 2003; Timms et al., 2018) or in long-term tailing of groundwater pollution 
(Huang & Goltz, 2015; Johnson et al., 2003).

One particularly harmful contaminant is trichloroethylene (TCE), which is categorized as a carcinogen (National 
Toxicology Program, US Department of Health and Human Services, 2021); yet it is still commonly used in 
industry (World Health Organization, Regional Office for World Health Organization Regional Office for 
Europe, 2000). TCE is a dense non-aqueous phase liquid (Pankow & Cherry, 1996), meaning that it is denser 
than water and has a very low solubility in water. As a consequence, when TCE infiltrates into the subsurface, it 
migrates downwards until it reaches an impermeable barrier, where it forms a pool, resulting in difficult remedi-
ation (e.g., G. H. Brown et al., 2012; J. Koch & Nowak, 2015). One of the most common impermeable barriers 
in the subsurface is a layer of clay. However, even though a layer of clay is impermeable, TCE can still diffuse 
into it and over time can contaminate the groundwater in the vicinity (e.g., Nowak & Guthke, 2016; Pankow & 
Cherry, 1996). It is accordingly necessary to build a model of such processes in order to predict the longevity of 
contamination, select remediation strategies, and assess environmental and health risks.

The process of TCE adsorption on clay surfaces is influenced by a complex mechanism (Allen-King et al., 1996; 
Pankow & Cherry, 1996). Consequently, simplifying assumptions have to be made that introduce conceptual 
uncertainties in the modeling process, such as the choice of particular isotherms (Limousin et al., 2007), the 
unknown parameters of those sorption isotherms (e.g., Nowak & Guthke, 2016), uncertain clay/soil parameters, 
effective diffusion coefficients of dissolved chemicals in water (Hayduk & Laudie, 1974; Wilke & Chang, 1955), 
as well as uncertain initial and boundary conditions that the model requires to be satisfied. As a consequence 
of these uncertainties, we are faced with a model choice problem (Höge et al., 2019). Furthermore, all available 
models are inherently generated with simplifying assumptions to different extents, enhancing the model choice 
problem even more. Thus, a more flexible way of modeling is needed, such that the unknown true process is 
covered by the chosen modelling strategy. Accordingly, we propose a data-driven modeling approach, which 
induces physics-aware inductive biases to effectively learn the unknown actual process properties.

In order to approach the question of conceptual model learning, it is worth looking at the rapidly evolving 
field of ML, which has revolutionized various domains, including image and language processing (Krizhevsky 
et al., 2012; T. B. Brown et al., 2020). Recently, ML is also being applied to approximate physical processes, 
such as rigid body interactions, liquid propagation, or weather and sea-surface temperature prediction (Battaglia 
et  al.,  2016; De Bézenac et  al.,  2019; Espeholt et  al.,  2021; Lienen & Günnemann, 2022; Rasp et  al.,  2020; 
Sanchez-Gonzalez et al., 2020). The benefit and charm of applying ML models lies in their ability to learn an 
input-to-output mapping function without any knowledge of the underlying process that describes the data (i.e., 
the “true model”). Furthermore, ML models also have the potential to learn complicated functional relationships 
that are not addressed in the physical models due to limited computational power or lack of understanding of the 
modeled systems. In the following, we summarize the related works, separating them in non-physics-motivated 
(pure ML), physics-motivated, and physics-aware ML models.

An exemplary pure ML method for processing spatiotemporal data is the temporal convolution network (TCN) 
proposed by Lea et al. (2016), which performs convolution operations along space and time dimensions. TCNs 
have been proven successful in various classification tasks (Bai et al., 2018; Kalchbrenner et al., 2016). On the 
other hand, their applicability as autoregressive models in generative forecasting tasks is limited (Almqvist, 2019; 
Karlbauer et al., 2020). In contrast, ConvLSTM (Shi et al., 2015) is a spatiotemporal recurrent neural network 
that processes temporal data points sequentially. It is therefore slower than TCN's parallel convolution opera-
tions. It can, however, aggregate and conserve any past information in a latent state, implementing a flexible, 
latent memory structure. In contrast, the temporal horizon of TCNs is limited to the receptive field, that is, the 
number of time steps fed into the TCN filters. Moreover, because ConvLSTMs are by training optimized towards 
maintaining stable predictions within a recurrent loop, they typically exhibit superior performance on related, for 
example, autoregressive tasks (Almqvist, 2019; Karlbauer et al., 2020). However, the freedom of pure ML models 
has several limitations when learning an unconstrained function that should reflect a physical process. First, they 
typically depend on large amounts of data in order to learn a useful mapping. Second, they can be expected to 
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behave adequately only within the range of the data they have been trained on. And third, they can produce phys-
ically implausible predictions.

These limitations can be addressed by incorporating structural physical knowledge to formulate physics-motivated 
ML models, using the form of (relational) inductive biases (Battaglia et  al.,  2018). DISTANA (Karlbauer 
et  al.,  2019), for example, shares similarities with ConvLSTM, albeit with advanced and physically moti-
vated lateral information flow between neighboring control volumes. An alternative approach is to learn (Z. 
Li et al., 2020a, 2020b) operators using neural networks, both in the input and output space (DeepONet, L. Lu 
et al., 2021), as well as in the frequency domain (Fourier neural operator model, FNO, Z. Li et al., 2020a). By 
design, these methods are implemented to specifically learn PDEs from data, but are not guided or constrained by 
physical principles that would be already known.

Recently, much effort was directed to finding reasonable ways of connecting the learning abilities of ANNs 
not only with structural, but also with functional knowledge, resulting in physics-aware ML methods. The 
physics-informed neural network (PINN), for example, explicitly learns to solve a given equation, such as Burg-
ers' or Navier-Stokes, in order to accelerate simulation (Jin et al., 2021; Raissi et al., 2019). PINN has also been 
applied to solve subsurface fluid flow problems (Tartakovsky et al., 2020) and to perform data assimilation for 
parameter estimation, accounting for multiple physical processes (Q. He et  al.,  2020). The physics-informed 
prior from PINN has also recently been embedded in FNO models, resulting in a Physics-Informed Neural 
Operator (PINO) model (Z. Li et al., 2021). Other methods do not depend on receiving the underlying equa-
tion, but approximate it implicitly through data. These weaker physics constraints are either implemented by 
means of convolution-like operators representing derivatives up to a particular degree, for example, PDE-Net 
(Long et al., 2018), PhyDNet (consisting of a data-driven ConvLSTM and a physics-constrained path) proposed 
by Guen and Thome (2020), or SIREN (Sitzmann et al., 2020); or by directly learning the transition function 

𝐴𝐴 𝐴𝐴 ∶ ℝ
𝑑𝑑
↦ℝ

𝑑𝑑 (e.g., in form of a vector field) that maps the d-dimensional observation in frame t to the succeeding 
frame t + 1 (De Bézenac et al., 2019; Tran & Ward, 2017). More recently, graph-based approaches are formulated 
by Seo et al. (2019) and Salehi and Giannacopoulos (2021) to explicitly consider differences between neighbor-
ing control volumes on spatially irregularly distributed data.

Nevertheless, a common downside of all these approaches is the missing facility to include explicit physical 
knowledge—such as the structure of a particular PDE—into the learning process. In contrast, and similar to 
our work, Bar-Sinai et al.  (2019); Kochkov et al.  (2021); and Zhuang et al.  (2021) propose learning selected 
parts of ordinary differential equations (ODEs), but focus more on accelerating supersampling procedures and 
less on predictive, explorative, and explainability tasks. APHYNITY (Yin et al., 2020) represents an alternative 
approach, where traditional physical models are augmented by ML methods, effectively learning to minimize 
the residual between an explicitly stated physical model and the observation. A survey of methods that combine 
physics with ML has been proposed by Karniadakis et al. (2021) and an extensive collection is maintained by 
Thuerey et al. (2021).

Despite these exciting developments in the areas of physics-motivated and physics-aware ML modeling, impor-
tant issues remain to be addressed. That is, building PINN models requires the complete knowledge of the 
modeled systems, including the aforementioned closure/constitutive relationships, which are usually the main 
source of uncertainty in the modeling process. As a consequence, PINN can be trained on incorrect equations, if 
spurious assumptions are chosen. Additionally, most, if not all, of the spatiotemporal ML models adopt convolu-
tional operations to process the spatial correlation between data points. Convolutional operations, however, can 
only pad constant values on the domain boundaries. Therefore, such ML models have no means to implement 
sufficient, non-constant boundary conditions. For example, they are not able to properly incorporate boundary 
conditions that depend on derivatives such as the Neumann or Cauchy boundary conditions. Furthermore, the 
existing ML models struggle when confronted with different initial or boundary conditions. In such a case, typi-
cally retraining is necessary, which requires large amounts of observation data that is often expensive and difficult 
to obtain. In short, the existing physics-motivated and physics-aware ML models are either too restricted by the 
physical knowledge or too lenient so that they learn relationships that do not exist (i.e., they overfit).

Another crucial drawback of most ML models is the lack of practical uncertainty quantification (UQ) applica-
tions, despite the availability of numerous theoretical foundations (Jospin et al., 2022). This is mainly caused 
by computational challenges of existing UQ algorithms for large ML models. When dealing with real-world 
applications, however, UQ is critical. For example, when performing a risk assessment about a poorly understood 
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system based on uncertain models trained on uncertain (noisy) and sparse data (Nowak & Guthke, 2016; Wöhling 
et al., 2015; Xu et al., 2020). Moreover, fundamental scientific work depends on hypothesis-testable models, 
which is strongly supported by models with quantifiable uncertainty. Consequently, it is important to design a 
model with few parameters and an interpretable structure to enable feasible implementations of available UQ 
algorithms.

The goal of this work, therefore, is to provide a framework that merges physics-aware ML models with 
well-selected structures known from numerical solutions. This can facilitate scientists to produce better models 
that balance well between the flexibility of learning data-driven models and the existing scientific knowledge. 
We emphasize that this work is not intended to develop a faster and more efficient surrogate model in place of 
any existing physical model, but to learn unknown constituents of the PDE used to model the (not yet fully under-
stood) physical processes. The named TCE problem is a representative problem from a broader class where the 
model structure is only partially known.

In a wider sense, we are interested in environmental problems where fundamental parts of the governing equa-
tions (or principles used in their derivation) are accepted as “known truth,” but where other parts are uncertain or 
even unknown, and often treated with assumptions, closures, or other approximations. In our TCE example, it is a 
sorption isotherm that is most uncertain. Other instances of the same problem class are (a) water retention curves 
in the Richards equation; (b) capillary pressure and saturation relations, relative permeability and saturation 
relations, or expressions for hysteresis and dynamic effects in multiphase flow in porous media; or (c) turbulence 
closures in rivers, pipe flow, or atmospheric flow. When these uncertain or unknown relationships are success-
fully learned from data, exceptional generalization ability and highly accurate predictions can be expected.

The proposed FINN framework is capable to jointly learn unknown constitutive/closure relationships, PDE terms, 
and parameters from data. The benefits of our hybrid model are an excellent generalization ability beyond sparse 
training data, a proper treatment of different boundary conditions other than a constant Dirichlet condition, and an 
explainable model. Furthermore, with the adoption of the FVM structure and physical constraints, FINN utilizes 
as much existing modeling knowledge as possible. Additionally, we enable FINN to provide an uncertainty esti-
mate over its learned constituents when predicting a real-world soil contamination problem, and affirm FINN's 
advantages over a calibrated, conventional PDE-based model.

2.  Methodological Background
In this section, we derive the methodological framework of this paper on the basis of an experimental reference 
setup and the involved equation form which will be learned by FINN. Then, we provide some background on the 
FVM discretization method to solve PDEs and on neural ODE (NODE) as a differentiable numerical integrator 
as it serves the conceptual basis for FINN. Finally, we summarize a selection of UQ methods that can be imple-
mented in FINN.

2.1.  Experimental Setup and Governing Equations

The diffusion process in general is governed by a PDE of second-order in space and first-order in time:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇ ⋅ (𝐷𝐷(𝑐𝑐)∇𝑐𝑐) + 𝑞𝑞(𝑐𝑐),� (1)

where c is the variable of interest, namely, the contaminant concentration in this study, t is time, D is a diffusion 
coefficient that can be a dependent variable on c, and q is the source/sink term, for example, if there is a reaction 
or there is an addition/extraction of the contaminant to/from the domain of interest. The diffusion through clay, 
however, might be hampered by the presence of organic matter inside the clay that sorbs the TCE, therefore slow-
ing down the diffusion process (Parker et al., 2004). Therefore, the sorption process has to be taken into account 
in the governing PDE as well, by including an additional variable in form of the retardation factor. The retardation 
factor is a variable that is possibly dependent on the contaminant concentration (among other features such as 
pH, ionic strength, water chemistry), and it defines the degree to which the diffusion process is hindered by the 
sorption process. The resulting diffusion-sorption equation can be solved with various numerical discretization 
methods, one of the most popular being FVM due to its conservation property (Moukalled et al., 2016).
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This diffusion-sorption process of TCE as contaminant in water-saturated clay was studied in a laboratory exper-
iment (Nowak & Guthke, 2016), and its setup is adopted in the numerical experiments performed in this work. 
A clay sample with a radius of 2.54 cm (1 inch) is placed inside a stainless steel tube of length L. On the upper 
end of the sample, pure-phase TCE is injected through an inlet valve. There, it forms a pool, from which it can 
migrate into the clay and thus installs a constant concentration condition at the upper end of the clay cylinder. 
The bottom end of the sample is flushed with clean water below the clay cylinder at a constant flow rate, in order 
to enable measurement of the dissolved TCE concentration (as it diffused downward through the clay) at various 
time intervals. At the end of the experiment, the clay sample is cut into horizontal slices to allow measurement 
of the total TCE concentration (i.e., TCE dissolved in the water and sorbed in the clay) within the cylinder. In 
short, there are two main variables of interest in the experiment, namely the dissolved concentration and the total 
concentration of the contaminant. More details of the experiment can be found in Parker et al. (2004) and Nowak 
and Guthke (2016).

Assuming that the clay sample is homogeneous, the governing diffusion-sorption equation can be simplified 
into a one-dimensional system. Mathematically, the governing PDE used to calculate the dissolved concentration 
could be written as (Nowak & Guthke, 2016)

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
,� (2)

where c is the dissolved TCE concentration, t is time, x is distance along the axis of the cylinder, D is the effective 
diffusion coefficient, and R is the retardation factor, which is a function of c. As a consequence, the diffusivity 
(i.e., D/R) is also dependent on c.

Because the upper end of the sample is in equilibrium with the TCE in pure-phase, a Dirichlet boundary condition 
is applied:

𝑐𝑐|𝑥𝑥=0 = 𝑐𝑐sol ∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (3)

where csol is the solubility limit of the TCE in water, and T is the experiment time. On the bottom end of the sample, 
the TCE concentration is not constant, and therefore, a Cauchy condition is required to model the flow-dependent 
boundary condition as a result of the flushing with water:

𝑐𝑐|𝑥𝑥=𝐿𝐿 =
𝐷𝐷

𝑄𝑄

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (4)

where Q is the water flow rate at the bottom of the clay sample. The clay sample is initially clean of any contam-
ination, resulting in an initial condition of:

𝑐𝑐|𝑡𝑡=0 = 0 ∀𝑥𝑥 ∶ 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿𝐿� (5)

To derive a possible equation for the total concentration, the general definition of retardation factor R is required. 
The retardation factor R is defined as the ratio of sorbed to non-sorbed material as following (e.g., Fetter, 1999; 
Nowak & Guthke, 2016):

𝑅𝑅 =
1

𝜙𝜙

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
,� (6)

where ϕ is the porosity of the porous medium and ct is the total contaminant concentration, that is, the contam-
inant concentration dissolved in the fluid and sorbed in the solid phase. By substituting Equation 6 into Equa-
tion 2, the equation to calculate the total contaminant concentration ct can be written as:

𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝐷𝐷

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
.� (7)

Many sorption processes are well-understood. However, when it involves an interaction between the solvent 
and sediments, the complexity of the process is enhanced. As a result, parametric models such as the sorption 
isotherms are commonly assumed for simplification. Three of the most commonly used isotherms are linear, 
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Freundlich, and Langmuir, which are all derived empirically. These isotherms define the retardation factor 
differently:

𝑅𝑅𝑙𝑙 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠𝐾𝐾𝑑𝑑,� (8)

𝑅𝑅𝐹𝐹 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠𝐾𝐾𝑓𝑓𝑛𝑛𝑓𝑓 𝑐𝑐

𝑛𝑛𝑓𝑓−1,� (9)

𝑅𝑅𝐿𝐿 = 1 +
1 − 𝜙𝜙

𝜙𝜙
𝜌𝜌𝑠𝑠

𝑠𝑠max𝐾𝐾

(𝑐𝑐 +𝐾𝐾)
2
,� (10)

where Equations 8–10 describe the retardation factor formulation based on the linear, Freundlich, and Langmuir 
isotherm, respectively. Here, ρs is the bulk density of the porous medium, Kd is the linear isotherm parameter, 
Kf is the Freundlich isotherm parameter, nf is the Freundlich exponent, smax is the maximum sorption capacity of 
the solid phase, and K is the half-saturation value. Note that, if the Freundlich exponent nf = 1, the Freundlich 
isotherm becomes identical to the linear isotherm, and therefore, it is impossible to distinguish between them.

Traditionally, the retardation factors reported in Equations 8–10 would lead to three different discrete models, one 
for each sorption isotherm. However, FINN allows us to define the retardation factor as a flexible function that 
is learned from data to best support the approximation of the overall process without constraining the model too 
much by a possibly inaccurate assumption (more details on the physical constraint will be discussed in the loss 
function definition in Section 3). This particular aspect of FINN is demonstrated with the application on labora-
tory measurement data, which will be discussed in Section 4.2.

2.2.  Numerical Solution

Obtaining an analytical solution is impossible for many PDEs. Consequently, it is common to resort to numerical 
methods to solve it. The most popular numerical methods are the finite difference method (FDM), which approx-
imates the derivatives based on Taylor's expansion (Morton & Mayers, 1994); the finite element method (FEM), 
which reformulates the PDE in a weak form and interpolates the solution through a function with limited element 
support (Logan, 1992); and FVM, which approximates the solution using a volume integral combined with the 
Gauss' divergence theorem (Moukalled et al., 2016).

The FVM derivation of the PDE is based on conservation laws and is the closest to physics compared to the 
other discretization methods. To be more specific, the applied divergence theorem leads to the right-hand side of 
Equation 13, which now represents the flux exchanges between any control volume and its neighboring volumes. 
This ensures that conservation is not violated, meaning that the flux entering a control volume should be exactly 
the same as the flux leaving the control volume, given that the variable of interest (i.e., the concentration or 
quantity c) does not change over time. On the other hand, FEM does not guarantee this conservation property. 
Moreover, FVM allows straightforward implementation of the boundary conditions without approximation. Due 
to these reasons, we choose to specifically adopt FVM in this work. Note that, when the domain is discretized 
using a regular Cartesian grid, then the FVM, FEM, and FDM discretizations are identical, with differences in 
the boundary condition treatment.

Following the FVM concept, the spatial domain is discretized into a number of N control volumes (cells). For 
each control volume, a volume integral is applied to Equation 2, resulting in

∫
𝑣𝑣𝑖𝑖

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 =

∫
𝑣𝑣𝑖𝑖

𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
𝑑𝑑𝑑𝑑𝑑� (11)

where vi is the volume, and the subscript i = 1, …, N denotes a specific control volume i. Since the right-hand 
side has a divergence term, the Gauss' divergence theorem needs to be applied (Arfken et al., 2013), leading to a 
surface integral over the enclosing control volume surfaces/boundaries, and resulting in the equation

∫
𝑣𝑣𝑖𝑖

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 =

∮
𝜔𝜔𝜔Ω

(
𝐷𝐷

𝑅𝑅(𝑐𝑐)

𝜕𝜕2𝑢𝑢

𝜕𝜕𝜕𝜕2

)

⋅ 𝑛̂𝑛 𝑛𝑛Γ,� (12)
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where ω is a continuous surface element and 𝐴𝐴 𝐴𝐴𝐴 is the unit normal vector pointing outwards of ω. Furthermore, 
ω is a subset of all surfaces Ω enclosing the control volume i and Γ is a continuous variable along ω. Applying 
the surface integral in Equation 12 allows flux evaluation at each enclosing control volume surface. As a result, 
a spatially discrete formulation of the PDE for control volume i using a Cartesian grid leads to the following:

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅 (𝑐𝑐𝑖𝑖)

𝑐𝑐𝑖𝑖−1 − 𝑐𝑐𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅 (𝑐𝑐𝑖𝑖)

𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖+1

Δ𝑥𝑥
,� (13)

where Ai − 1 and Ai + 1 are the left and right cross-sectional surface areas of control volume i, respectively. The 
equation is spatially discrete, and thus uses Δx instead, which is the length of the control volume.

For each i = 1, …, N, Equation 13 form a coupled set of ODEs. The ODEs in the system of Equation 13 are 
coupled through their connections with their respective neighbors (i − 1 and i + 1). To derive Equation 13 into 
a spatially and temporally discrete equation, a temporal discretization is required. The simplest temporal discre-
tization scheme is the Euler method (e.g., Butcher, 2008), which is a first-order time integration method. The 
Euler method itself is categorized into explicit and implicit schemes. In the explicit scheme, the time derivative 
function dc/dt is defined with the variable c at the current time step t, whereas in the implicit scheme, it is defined 
with the variable c at the subsequent time step t + 1. Applying the explicit Euler method to Equation 13 leads to

𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑡𝑡
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡
𝑖𝑖

)
𝑐𝑐𝑡𝑡
𝑖𝑖−𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡
𝑖𝑖

)
𝑐𝑐𝑡𝑡
𝑖𝑖
− 𝑐𝑐𝑡𝑡

𝑖𝑖+1

Δ𝑥𝑥
,� (14)

and applying the implicit Euler method yields

𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡
𝑖𝑖

Δ𝑡𝑡
𝑣𝑣𝑖𝑖 = 𝐴𝐴𝑖𝑖−1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡+1
𝑖𝑖

)
𝑐𝑐𝑡𝑡+1
𝑖𝑖−𝑖𝑖

− 𝑐𝑐𝑡𝑡+1
𝑖𝑖

Δ𝑥𝑥
− 𝐴𝐴𝑖𝑖+1

𝐷𝐷𝑖𝑖

𝑅𝑅
(
𝑐𝑐𝑡𝑡+1
𝑖𝑖

)
𝑐𝑐𝑡𝑡+1
𝑖𝑖

− 𝑐𝑐𝑡𝑡+1
𝑖𝑖+1

Δ𝑥𝑥
,� (15)

where the superscript t denotes the time discretization and Δt is the corresponding time step. The same discre-
tization strategy also applies to Equation 7. As can be inferred from both equations, the implementation of the 
explicit method is simpler than the implicit method, because the value of 𝐴𝐴 𝐴𝐴𝑡𝑡+1

𝑖𝑖
 is still unknown in time step t. 

Furthermore, because we intend to combine numerical methods with ANNs—which fundamentally belong to 
the class of explicit methods—from here on we will use the explicit scheme and, when possible, drop the super-
script t for clarity. More comprehensive explanations on links between ANNs and differential equations can be 
found in (K. He et al., 2016; Y. Lu et al., 2018), where the authors discuss the analogy between the skip connec-
tions in Residual Networks (ResNet) and a numerical discretization method, as well as neural operator learning 
(Kovachki et al., 2021).

Even though the explicit method is more convenient to implement, it suffers from numerical instability. To be 
more specific, the size of the time step Δt has to be chosen carefully such that it does not surpass the time at which 
the quantity c is moving from one control volume to the other. This requirement can be controlled, for example, 
by using the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967; Isaacson & Keller, 1994). Accord-
ing to CFL, a finer spatial discretization (i.e., smaller Δx) requires a smaller temporal discretization Δt. In some 
cases, this condition becomes very limiting when the required Δt becomes too small, leading to substantially inef-
ficient computation. As an alternative, a higher order integration method can be used to alleviate this limitation, 
which will be discussed in the following section.

2.3.  Neural ODE

Implementing the explicit integration method from Section 2.2 with an unregularized ANN will likely lead to 
numerical instability, as the ANN might easily enter unstable regimes. To mitigate this problem, a higher-order 
ODE integration method, such as Runge-Kutta method (Kutta, 1901; Runge, 1895), can be used, in combination 
with an adaptive time stepping capability, to maintain both the numerical stability and the accuracy of the inte-
gration. Such ODE solvers, however, must be differentiable in order to be able to propagate an error signal for 
adapting the parameters of an ANN, which will be used to represent the ODE. For a comprehensive introduction 
to ANNs, we refer the readers to Goodfellow et al. (2016).
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Such a fully differentiable and ANN-based ODE solver, called NODE, has recently been proposed by Chen 
et al. (2018). In short, NODE assumes an ANN fθ with parameters θ to compute the change of a state vector c t 
over time. NODE parameterizes the change of c over time by treating fθ as a time-continuous function, such that

𝜕𝜕𝐜𝐜(𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝑓𝑓𝜃𝜃(𝐜𝐜(𝑡𝑡), 𝑡𝑡).� (16)

Accordingly, f(⋅) is an ANN that learns and represents the system dynamics, that is, the derivative of the variable 
of interest with respect to time, which directly corresponds to the form of Equation 13. Then, the quantity of c in 
the next time step could, in principle, be computed using an explicit Euler discretization:

𝐜𝐜
𝑡𝑡+1 = 𝐜𝐜

𝑡𝑡 + 𝑓𝑓𝜃𝜃

(
𝐜𝐜
𝑡𝑡
)
.� (17)

Formulating a dynamic system with Equation 17 has been proposed in the Deep Residual Learning (ResNet) 
architecture (K. He et al., 2016). This approach has been shown to improve model training because it can learn 
particular functions, such as the identity function, better and because it minimizes the vanishing gradient problem 
(Hochreiter et al., 2001). In the NODE framework, however, the temporal discretization of Equation 16 occurs 
after the forward propagation of the ANN and with a higher-order scheme, rather than learning the discretization 
form as in Equation 17.

In NODE, to integrate from c t to c t + 1, fθ is optimized end-to-end in the overall training process. This leads to 
better accuracy and efficiency, as well as to allow adaptive time stepping strategy for better numerical stability 
(Chen et al., 2018). Note that this approach differs from the Elman network, that is, the traditional recurrent 
neural network (Elman, 1990). The Elman network uses the ANN as a function to predict c t + 1 directly from c t, 
that is, without the appearance of c t in Equation 17. NODE plays a fundamental role in our model, as detailed in 
Section 3.

2.4.  Uncertainty Quantification Methods

In this work, we perform UQ over the model parameters and all learned constituents, such as the retardation 
factor function R(c). One of the most straightforward UQ methods on ANNs is the Bayes-by-backprop method 
(Blundell et al., 2015), which parameterizes the variational posterior using the mean μ and standard deviation σ 
of the model parameters θ (i.e., weights and biases). In short, for each training iteration, the model parameters 
are sampled based on

𝜃𝜃 = 𝜇𝜇 + log(1 + exp(𝜎𝜎)) ⋅ 𝜖𝜖𝜖� (18)

where 𝐴𝐴 𝐴𝐴 ∼  (0, 𝐼𝐼) . The goal of the training is then to find the values of μ and σ that minimize the Kullback-Leibler 
divergence (Joyce, 2011) between the variational posterior q(θ) and the (unknown) true posterior π(θ), reformu-
lated as

 = 𝐾𝐾𝐾𝐾[𝑞𝑞(𝜃𝜃)‖𝑝𝑝(𝜃𝜃)] − 𝔼𝔼𝑞𝑞(𝜃𝜃)[log 𝑝𝑝(𝐷𝐷|𝜃𝜃)],� (19)

where p(θ) is the prior knowledge on the model parameters, and p(D|θ) is the probability of observing the data D 
given the model parameters θ.

The Bayes-by-backprop approach, however, assumes independent Gaussian distributions to define the model 
parameters, which is an oversimplification of the actual joint posterior distribution (Blei et al., 2017). In contrast, 
Markov chain Monte Carlo (MCMC; Bardenet et al., 2017) provides a sampling of model parameters from the 
exact posterior distribution (Jospin et al., 2022). The general MCMC algorithm is summarized in Algorithm 1.

The proposal of drawing θt and the transition/proposal distribution Q are defined respectively for the random 
walk Metropolis-Hastings (MH; Chib & Greenberg, 1995), Metropolis-adjusted Langevin algorithm (MALA; 
Dwivedi et al., 2019), and Barker proposal (Barker, Livingstone & Zanella, 2019), as:

𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + ℎ ⋅ 𝜖𝜖𝜖 𝜖𝜖
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= exp

(
−‖𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖)‖2

2
∕ℎ2

)
,� (20)

𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + ℎ∇𝜋𝜋
(
𝜃𝜃(𝑖𝑖)

)
+

√
2ℎ𝜖𝜖𝜖 𝜖𝜖

(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= exp

(
−‖𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖) − ℎ∇𝜋𝜋

(
𝜃𝜃(𝑖𝑖)

)
‖2
2
∕4ℎ

)
,� (21)
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𝜃𝜃𝑡𝑡 = 𝜃𝜃(𝑖𝑖) + 𝑏𝑏 ⋅ 𝜖𝜖𝜖 𝜖𝜖
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
=

1

1 + exp

(
−(𝜃𝜃𝑡𝑡 − 𝜃𝜃(𝑖𝑖))

𝑇𝑇
∇log𝜋𝜋 (𝜃𝜃(𝑖𝑖))

) .� (22)

Here, θt is the proposed sample, θ (i) is the sample from iteration i, h is the step size, π is the posterior of the model 
parameters, and 𝐴𝐴 𝐴𝐴 ∼  (0, 𝐼𝐼) . For Barker specifically, b = 1 with the probability p = 1/(1 + exp(−ϵ∇π(θ (i)))), 
and b = −1 otherwise. It is also important to note that both MALA and Barker utilize the gradient information 
provided by the automatic differentiation tools available in various ML libraries, including PyTorch (Paszke 
et al., 2019), which is used in this work.

3.  Finite Volume Neural Network
In this section, we introduce the FINN framework by providing derivations and explanations on how FINN 
relates to the concepts from the previous section. FINN is designed to explicitly learn the individual components 
of the PDE using dedicated modules—defined as nonlinear ANN layers—in a compositional manner (Battaglia 
et al., 2018; Karlbauer et al., 2022; Lake, 2019; Lake et al., 2017). These modules are connected to effectively 
represent the PDE of interest (see Figure 1). Although the model has a general form, it can be set up and inter-
connected individually to form a specific architecture that is explicitly motivated and inspired by the physical 

Algorithm 1.  General Markov Chain Monte Carlo Algorithm

Require: Initial parameter values θ (0)

  Set i = 0
  while i < N do
      Draw θt given θ 

(i)

      Calculate acceptance probability 𝐴𝐴 𝐴𝐴
(
𝜃𝜃𝑡𝑡|𝜃𝜃

(𝑖𝑖)
)
= min

(

1,
𝜋𝜋(𝜃𝜃𝑡𝑡)𝑄𝑄(𝜃𝜃(𝑖𝑖)|𝜃𝜃𝑡𝑡)
𝜋𝜋(𝜃𝜃(𝑖𝑖))𝑄𝑄(𝜃𝜃𝑡𝑡|𝜃𝜃(𝑖𝑖))

)

      Draw a random number 𝐴𝐴 𝐴𝐴 ∼  [0, 1]

      if α(θt|θ 
(i)) > u then

          θ (i + 1) ← θt
      else
          θ (i + 1) ← θ (i)

      end if
      i ← i + 1
  end while

Figure 1.  Schematic illustration of a flux kernel for one finite volume in finite volume neural network (left) and alignment of network modules with their 
corresponding parts in a partial differential equation of interest (right). Black lines indicate forward information flow whereas red lines indicate gradient flow during 
backpropagation through time. Dashed lines indicate closed-loop feedback between subsequent time steps.
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equation that would typically be assumed to govern the modeled system at hand, that is, the diffusion-sorption 
Equation  2 in this work. More specifically, FINN combines the knowledge-based structure of the PDE core 
elements with the FVM discretization as described in Section 2.2 to obtain a set of ODEs. Then, it adopts the 
NODE method as described in Section 2.3 for the time integration and learning of the PDE constituents (i.e., not 
only the PDE parameters, but also unknown functions such as the retardation factor and the reaction function, as 
well as the discretization of the PDE).

As outlined in Section 2.2, a PDE describes the change of a quantity at a local position under influence of its 
direct neighbors. Accordingly, we propose to model the adjacent flux exchange—see Equation 13—by so called 
flux kernels 𝐴𝐴 𝑖𝑖 . They learn to represent the quantity entering and leaving control volume i from left and right 
(in the one-dimensional case). These flux kernels approximate the surface integral for each control volume i as 
written in Equation 12, and therefore are mathematically written as

𝑖𝑖 =

𝑀𝑀𝑖𝑖∑

𝑗𝑗=1

𝑓𝑓𝑗𝑗 ≈
∮
𝜔𝜔𝜔Ω

(

𝐷𝐷(𝑐𝑐)
𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2

)

⋅ 𝑛̂𝑛 𝑛𝑛𝑛𝑛𝑛� (23)

where Mi is the number of discrete surface elements of control volume i and fj is the subkernel calculated at each 
surface element. For one-dimensional cases, Mi = 2 and therefore, each flux kernel is supported by 2 subker-
nels 𝐴𝐴 𝑖𝑖 = {𝑓𝑓𝑖𝑖−, 𝑓𝑓𝑖𝑖+} .

The flux kernels 𝐴𝐴 𝑖𝑖 are provided with ci and ci−1 or ci+1 as the inputs for fi− or fi+, respectively. Each subkernel 
consists of two modules that are formulated as neural network layers. On the one hand, 𝐴𝐴 𝐴𝐴 is a linear layer to 
approximate the FVM stencil to represent the contribution of each neighboring control volume and the direction 
of the flux exchange. Hence, the output of 𝐴𝐴 𝐴𝐴 is conceptually supposed to become ∂ 2c/∂x 2, that is

𝜑𝜑𝑖𝑖−
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖−1) + 𝜑𝜑𝑖𝑖+

(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1) ≈
𝜕𝜕2𝑐𝑐𝑖𝑖

𝜕𝜕𝜕𝜕2
.� (24)

Note that 𝐴𝐴 𝐴𝐴𝑖𝑖−
 and 𝐴𝐴 𝐴𝐴𝑖𝑖+

 share weights and thus are represented by one and the same network. Ideally, in a system 
with Fickian diffusion and mass conservation fulfilled, the parameters of 𝐴𝐴 𝐴𝐴 should be [ −1, 1] with respect to 
[ci, ci − 1] and [ci, ci + 1]. When fi− and fi+ are combined, that is, in Equation 24, the coefficients become [1, −2, 
1] with respect to [ci−1, ci, ci + 1]. This follows from the central discretization scheme (Fornberg, 1988) of the 
second-order spatial derivative as

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
≈

(𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)|𝑖𝑖− − (𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕)|𝑖𝑖+

Δ𝑥𝑥
,� (25)

with (∂c/∂x)|i− ≈ (ci−1 − ci)/Δx and (∂c/∂x)|i+ ≈ (ci − ci+1)/Δx. As a result,

𝜕𝜕2𝑐𝑐

𝜕𝜕𝜕𝜕2
≈

(𝑐𝑐𝑖𝑖−1 − 𝑐𝑐𝑖𝑖) − (𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖+1)

Δ𝑥𝑥2
=

𝑐𝑐𝑖𝑖−1 − 2𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖+1

Δ𝑥𝑥2
.� (26)

The module 𝐴𝐴 𝐴𝐴 , on the other hand, is responsible to account for the (variable-dependent, possibly nonlinear) 
diffusion coefficient, thus

𝜑𝜑 (𝑐𝑐𝑖𝑖) ≈ 𝐷𝐷 (𝑐𝑐𝑖𝑖) ,� (27)

if the diffusion coefficient D depends on c. Otherwise, 𝐴𝐴 𝐴𝐴 is a scalar value 𝐴𝐴 𝐴𝐴 ≡ 𝐷𝐷 , which can also be set as a 
learnable parameter. For our exemplary diffusion-sorption case, 𝐴𝐴 𝐴𝐴 ≈ 𝐷𝐷∕𝑅𝑅(𝑐𝑐) for the dissolved concentration, 
that is, Equation 2, and 𝐴𝐴 𝐴𝐴 ≈ 𝐷𝐷 for the total concentration, that is, Equation 7. Because the diffusion coefficient 
D can be learned from the total concentration, the retardation factor R(c) can also be extracted from the learned 
module 𝐴𝐴 𝐴𝐴 in the dissolved concentration calculation.

Finally, subkernels fi− and fi+ are calculated as a combination of both modules 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 :

𝑓𝑓𝑖𝑖− = 𝜑𝜑 (𝑐𝑐𝑖𝑖) ⋅ 𝜑𝜑𝑖𝑖−
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖−1) ,� (28)

𝑓𝑓𝑖𝑖+ = 𝜑𝜑 (𝑐𝑐𝑖𝑖) ⋅ 𝜑𝜑𝑖𝑖+
(𝑐𝑐𝑖𝑖, 𝑐𝑐𝑖𝑖+1) .� (29)
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Performing calculations of flux kernels at the surface element additionally provides advantages for boundary 
condition treatment. In addition to Dirichlet, boundary condition types that are flux dependent, such as Neumann 
or Cauchy conditions (Cheng & Cheng,  2005), can easily be adopted. For Dirichlet boundary conditions, a 
constant value c = cb is set as the input ci−1 (for the flux kernel fi−) or ci + 1 (for fi+) at the corresponding bounda-
ries. For a Neumann boundary condition ν, the output of the flux kernel fi− or fi+ at the corresponding boundaries 
can be set to be equal to ν. For Cauchy boundary conditions, the solution-dependent derivative is calculated and 
set as ci − 1 or ci + 1 at the corresponding boundary.

Furthermore, we also introduce the state kernel 𝐴𝐴 𝑖𝑖 to model ∂c/∂t. The state kernel 𝐴𝐴 𝑖𝑖 receives ci of the associated 
control volume i, along with the output of fi− and fi+ (the fluxes to/from each neighboring cell) as inputs:

𝑖𝑖 (𝑐𝑐𝑖𝑖, 𝑓𝑓𝑖𝑖−, 𝑓𝑓𝑖𝑖+) = (Φ (𝑐𝑐𝑖𝑖) + 𝑓𝑓𝑖𝑖− + 𝑓𝑓𝑖𝑖+) ≈
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕
.� (30)

Optionally, the state kernel includes a neural network module Φ(⋅), a function that is trained to model reaction 
terms related to the quantity ci in control volume i. In the processes considered in this work, however, the only 
source of change comes from neighboring volumes. Particularly, there are no external effects that locally modify 
the quantity of interest (such as e.g., sun radiation would increase temperature locally without sensible or latent 
heat entering from adjacent volumes). Therefore, in this work, Φ(⋅) is the identity function and, hence, 𝐴𝐴 𝑖𝑖 is only 
responsible for integrating information coming from neighboring cells.

Taking the bigger picture into account, all control volumes share the same kernels, and thus FINN is parsimo-
nious, exploiting translation equivariance of physical laws. Flux kernels specifically are designed similarly to 
message passing neural networks (Brandstetter et al., 2022; Gilmer et al., 2017) to exploit PDE-type structural 
knowledge upon discretization. The main difference lies in the fact that all flux kernels are uniquely labeled with 
a physical meaning through derivation from FVM and NODE. Additionally, boundary conditions can be switched 
explicitly.

During training, FINN only receives the initial condition c(x, t = 0) as input. This input is processed first by the 
flux kernels to calculate the flux exchanges between neighboring control volumes, and then by the state kernels 
to be integrated through all surface elements. The output of the state kernels are then fed into a differentiable 
ODE solver (within a NODE framework) to be integrated in time to obtain the solution c at the subsequent 
time step. This solution is fed back into FINN, and the same operations are recurrently applied until the final 
simulation time t = T is reached. This way, FINN uses a closed-loop setting to propagate the dynamics forward, 
leading to a more stable prediction during testing (Praditia et al., 2020). This workflow is visualized in Figure 1, 
where  the black arrows depict the direction of the input processing, and the red arrows depict the direction of the 
error backpropagation during training. The dashed arrows depict the closed-loop feedback between subsequent 
time steps, as well as coupling between neighboring control volumes.

The prior physical information in FINN is embedded in the form of the additional physical regularization and 
the structure itself, not in the training algorithm. For this particular case, FINN is trained by minimizing the loss 
function, defined by combining the data driven error and physical constraint:

 =
1

𝑁𝑁𝑒𝑒

𝑁𝑁𝑒𝑒∑

𝑖𝑖

(𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑖𝑖)
2

+
1

𝑁𝑁𝑝𝑝

𝑁𝑁𝑝𝑝∑

𝑗𝑗

𝐸𝐸𝑝𝑝𝑝𝑝𝑝 ,� (31)

where c is the available training data (either generated from simulation or measured from experiment), 𝐴𝐴 𝐴𝐴𝐴 is 
FINN's prediction, Ne is the number of data points of c(x, t), Ep is an additional physical constraint, and Np is the 
number of data points used to calculate the physical constraint. The physical constraint Ep in our current example 
enforces that the retardation factor is a monotonically decreasing function of c, that is, R(ci) ≥ R(cj) for all ci < cj 
and positiveness of the diffusion coefficient, that is, D > 0. To enforce these conditions, the ReLU operator is 
used. Other  thinkable constraints could ab initio dictate mass conservation, energy balances or thermodynamic 
principles. Likewise, soft information (like staying close to an often-successful but not fully accurate law) could 
also be added. This loss function is also used as the negative log posterior  −π(θ) in the UQ, which will be 
discussed later.

 19447973, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033149, W

iley O
nline Library on [30/11/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

PRADITIA ET AL.

10.1029/2022WR033149

12 of 28

4.  Learning Experiments
To demonstrate FINN's capability, both synthetic and real-world data sets of 
the TCE diffusion-sorption process are used. Recall that the hypothesized 
advantages of FINN, by construction and due to the physics constraints, are 
little data requirements, robust generalization beyond the training data distri-
bution (i.e., applicability to different boundary conditions), and high inter-
pretability, allowing it to learn when known models fail.

First, we generate synthetic data based on the setup described in Section 2.1 
in order to perform an elaborated analysis in a controlled setting. By doing 
so, we will also assess the performance of FINN against already existing 
pure deep learning models such as TCN and ConvLSTM, physics-motivated 
deep learning models, such as DISTANA and FNO, as well as physics-aware 
architectures, that is, PINN and PhyDNet. Second, we also show that FINN 
is not only suitable for synthetic data, but also for real-world application by 
modeling real laboratory experimental data.

4.1.  Synthetic Data Set

We simulate the experimental setup described in Section 2.1 numerically and 
generate synthetic data sets solving the related (assumed-to-be-true for now) 

PDE. The numerical simulator is a simple finite difference code with explicit Euler, made available along with 
our code (Praditia et al., 2022). Three different sorption isotherms, namely the linear, Freundlich, and Langmuir 
isotherm are used to generate three distinct synthetic data sets, which are then used for a comparison study. The 
parameters for each isotherm are set so that they yield similar concentration distribution, thus we can show that 
our proposed method is able to distinguish various isotherms even with similar looking data (only by approxi-
mating the function using an ANN, and not explicitly choosing between the available equations). The parameter 
values are given in Table 1.

To compare the generalization ability of FINN to that of the aforementioned existing methods, for each data gener-
ated with different sorption isotherms, we define three different types of synthetic data sets: train, in-distribution 
test (in-dis-test), and out-of-distribution test (out-dis-test). The differences between these data sets lie in the time 
domain and boundary condition used. The train data is generated with x = [0, 1] m, t = [0, 2,500] days, and 
csol = 1.0 kg/m 3. The in-dis-test data is generated with x = [0, 1] m, t = [2,500, 10,000] days, and csol = 1.0 kg/m 3. 
The out-dis-test data is generated with x = [0, 1] m, t = [0, 10,000] days, and a modified upper boundary value 
of csol  =  0.7  kg/m 3. The simulation domain for all three types of data is discretized with Δx  =  0.04  m and 
Δt = 5 days. The train data, as its name suggests, is used to train the models. Both in-dis-test and out-dis-test are 
used to test the models. The difference is that in-dis-test data is generated with the same parameter as the train 
data, but extrapolated for a longer time span, whereas out-dis-test data is generated with a different boundary 
condition value, to test the models' generalization under a different situation than during training. A different type 
of boundary condition will be tested in Section 4.2.

4.1.1.  State-of-the-Art Benchmark Models

In this work, we compare FINN's performance against other models that are capable of processing spatiotemporal 
data. These models are either pure ML models or models that possess a form of physical inductive bias.

Pure ML models. For the pure ML models, we choose TCN and ConvLSTM. TCN performs convolution oper-
ations over both the spatial and temporal domain (Lea et al., 2016), and it exploits the benefits of features such 
as dilated convolution to process a larger receptive field. In other words, the TCN structure allows for processing 
information contained in more distant preceding time steps. For TCN, the chosen structure has 2 input channels, 
a hidden layer with 32 channels, and 2 output channels.

ConvLSTM takes a more classical approach, which is to capitalize on the recurrent structure of the long short-term 
memory (LSTM) model to handle the temporal correlation of the data, and replaces the internal operations with 

Parameter Symbol Unit Value

Common parameters

  Effective diffusion coefficient D m 2/day 5.00 × 10 −4

  Porosity ϕ – 0.29

  Density ρs kg/m 3 2,880

Linear isotherm

  Partitioning coefficient Kd m 3/kg 4.30 × 10 −4

Freundlich isotherm

  Freundlich's K Kf𝐴𝐴 (m
3
∕kg)

n
f  3.50 × 10 −4

  Freundlich exponent nf – 0.87

Langmuir isotherm

  Half-concentration K kg/m 3 1.00

  Sorption capacity smax m 3/kg 5.90 × 10 −4

Table 1 
Parameter Values for Synthetic Data Generation
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convolutional operations to handle the spatial correlation of the data (Shi et al., 2015). For ConvLSTM, the 
chosen structure is 2 input and output channels, with a hidden layer containing 24 channels.

Physics-motivated ML models. The physics-motivated methods chosen as benchmark models in this work are 
namely DISTANA, FNO, and CNN-NODE. While DISTANA is similar to ConvLSTM, the main difference 
is that DISTANA propagates information laterally via additional latent feature maps (and not only by applying 
convolutions on the input). This can also be seen as an analog to a flux exchange between neighboring control 
volumes—even though in DISTANA, the lateral latent information does not have any physical meaning. The 
lateral and dynamic input and output sizes of the DISTANA model are set to 1 and 2, respectively, while a hidden 
layer of size 16 is used.

CNN-NODE is a combination of a conventional convolutional network stem that is augmented by NODE and 
thus formulates an ablation of FINN to determine the relevance of FINN's modular network architecture. We use 
a three-layered, batch-normalized and tanh-activated convolution stem.

Due to a point-wise formulation (similarly to PINN), FNO approximates PDEs by learning a continuous mapping 
from space-time inputs to the desired outputs, that is, 𝐴𝐴 ℝ

𝑥𝑥×𝑡𝑡
↦ℝ

𝑑𝑑 , where x and t are space and time coordinates and 
d is the dimensionality of the target. However, FNO differs from PINN in two fundamental aspects: First, FNO 
learns the according mapping in frequency instead of in time domain by applying fast (inverse) Fourier transfor-
mations. Second, FNO learns purely from data and does not depend on explicit physical process knowledge. In 
our experiments, we apply the identical model architecture as suggested by Z. Li et al. (2020a).

Physics-aware ML models. In the class of physics-aware ML models, we chose PINN and PhyDNet as bench-
mark candidates. PINN is one of the pioneering physics-motivated ML models. It makes use of the capability of 
ANN to calculate analytical derivatives through backpropagation to approximate derivatives in the PDE (Raissi 
et al., 2019). For this problem, PINN is defined as a feedforward network with the size of [2, 20, 20, 20, 20, 20, 
20, 20, 20, 2] (i.e., 2 input and output neurons, with 8 hidden layers, each containing 20 neurons).

PhyDNet consists of two main branches: one for calculating the physical component and the other for calculat-
ing the residual component of the data, assuming that the PDE does not fully describe the modeled system. The 
physical branch is inspired by the Kalman Filter, which is a data assimilation technique to recurrently update the 
model parameters based on observation (i.e., training) data. The residual branch adopts the ConvLSTM struc-
ture. With a specific condition of the PhyDNet structure, it reduces to a PDE-Net model (Guen & Thome, 2020). 
PhyDNet is defined with the PhyCell containing 32 input dimensions, 7 hidden dimensions, 1 hidden layer, and 
the ConvLSTM containing 32 input dimensions, 32 hidden dimensions, 1 hidden layer.

In the last class of physics-aware ML models, FINN is implemented with the use of the modules 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 . 
Here, the module 𝐴𝐴 𝐴𝐴 is defined as a linear layer that takes 2 inputs, namely the dissolved concentration c of 
two neighboring control volumes. For the dissolved concentration c, the module 𝐴𝐴 𝐴𝐴 is defined as a feedforward 
network with the size of [1, 10, 20, 10, 1] that takes c as an input and outputs the retardation factor R(c). For the 
total concentration ct, 𝐴𝐴 𝐴𝐴 is defined as a scalar parameter to learn the unknown diffusion coefficient D.

4.1.2.  Benchmark Performance of ML Models

All models are trained with the objective to minimize the deviation between the model predictions of c and ct 
with the training data. They are trained until convergence using the L-BFGS optimizer (Malouf, 2002), except 
for PhyDNet and FNO, which are trained with the Adam optimizer (Kingma & Ba, 2015) and a learning rate 
of 1 × 10 −3 due to stability issues when training with the L-BFGS optimizer. The L-BFGS optimizer is chosen 
because it is a quasi-Newton optimization algorithm, which means it uses an approximation of the second-order 
derivative (Hessian matrix). Second-order optimization algorithms are shown to be more effective in reaching 
the (local) optima (Kochenderfer & Wheeler, 2019). The pure ML models are trained on the first 400 time steps 
(t = 0 to 2,000) and validated on the remaining 100 time steps (t = 2,000–2,500) of the train data, applying early 
stopping (Goodfellow et al., 2016). Additionally, all models are trained with 10 different random initializations to 
learn about their consistency and to show better representation of each model's performance.

Table 2 shows the summary of all the trained models' performance. For each data set and each model, the mean 
and standard deviation values of the prediction mean squared error (MSE) across the 10 different initializations 
are presented. A more detailed presentation of the MSE values for each random training initialization can be 
found in Supporting Information S1. Note that PINN is not implemented for out-dis-test data. The reason behind 
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this is that PINN learns the explicit relationship of the prediction as a function of x and t based on a specific initial 
and boundary condition implemented in the train data. When the boundary condition is changed to generate 
the out-dis-test data, this functional relationship no longer holds, and as such, PINN is no longer applicable. As 
a further comparison, we present the number of learnable parameters used by the different models in Table 3. 
FINN's parameters consist of two parameters of the 𝐴𝐴 𝐴𝐴 module as a linear layer, and the weights and biases of 
the 𝐴𝐴 𝐴𝐴 module as a feedforward ANN. With a well-defined structure, FINN manages to use a relatively small 
number of parameters to achieve better results in comparison to the other models. To clarify, the benchmark does 
not include computational time, since the main purpose of our work is not to build a fast surrogate model, but 

Data set

Iso. Model Train In-dis-test Out-dis-test

Linear Pure ML TCN (2.4 ± 3.1) × 10 −1 (3.5 ± 4.4) × 10 −1 (2.9 ± 3.1) × 10 −1

ConvLSTM (3.7 ± 3.9) × 10 −2 (4.0 ± 3.9) × 10 −2 (5.3 ± 4.9) × 10 −2

Physics motiv. DISTANA (2.8 ± 6.5) × 10 −4 (1.9 ± 2.6) × 10 −3 (3.9 ± 2.3) × 10 −3

CNN-NODE (2.1 ± 3.2) × 10 −3 (1.6 ± 1.9) × 10 −1 (1.5 ± 1.8) × 10 −1

FNO (7.6 ± 3.3) × 10 −5 (1.0 ± 0.3) × 10 −3 (1.9 ± 0.4) × 10 −2

Physics aware PINN (6.3 ± 11) × 10 −5 (3.9 ± 7.8) × 10 −3 –

PhyDNet (3.3 ± 1.5) × 10 −5 (6.1 ± 17) × 10 −3 (1.6 ± 1.0) × 10 −2

FINN (2.1 ± 1.5) ×10 −7 (2.7 ± 1.9) ×10 −7 (1.8 ± 1.3) ×10 −7

Freundlich Pure ML TCN (1.1 ± 3.5) × 10 −1 (1.6 ± 1.5) × 10 −1 (1.3 ± 1.3) × 10 −1

ConvLSTM (1.9 ± 2.8) × 10 −2 (2.4 ± 1.9) × 10 −2 (4.3 ± 3.8) × 10 −2

Physics motiv. DISTANA (8.1 ± 7.0) × 10 −6 (1.8 ± 1.6) × 10 −4 (1.5 ± 1.4) × 10 −3

CNN-NODE (4.3 ± 8.9) × 10 −3 (2.6 ± 5.2) × 10 −1 (2.2 ± 4.3) × 10 −1

FNO (6.7 ± 17.6) × 10 −4 (1.4 ± 2.7) × 10 −3 (1.4 ± 0.5) × 10 −2

Physics aware PINN (4.3 ± 2.4) ×10 −6 (9.7 ± 16) × 10 −4 –

PhyDNet (7.1 ± 20) × 10 −4 (2.2 ± 3.7) × 10 −3 (1.2 ± 0.1) × 10 −2

FINN (2.9 ± 0.4) × 10 −5 (2.7 ± 0.4) ×10 −5 (2.3 ± 0.3) ×10 −5

Langmuir Pure ML TCN (1.3 ± 0.6) × 10 −1 (1.2 ± 0.7) × 10 −1 (1.5 ± 0.5) × 10 −1

ConvLSTM (3.9 ± 3.4) × 10 −2 (3.1 ± 2.3) × 10 −2 (6.2 ± 4.4) × 10 −2

Physics motiv. DISTANA (2.3 ± 2.6) × 10 −5 (9.8 ± 14) × 10 −4 (3.3 ± 3.5) × 10 −3

CNN-NODE (1.8 ± 3.1) × 10 −4 (1.2 ± 1.2) × 10 −1 (9.7 ± 10.7) × 10 −2

FNO (3.5 ± 7.2) × 10 −4 (1.1 ± 1.4) × 10 −3 (1.7 ± 0.7) × 10 −2

Physics aware PINN (3.3 ± 8.9) ×10 −5 (6.4 ± 17) × 10 −3 –

PhyDNet (4.6 ± 4.2) × 10 −5 (1.3 ± 1.4) × 10 −3 (1.3 ± 0.2) × 10 −2

FINN (7.3 ± 7.2) × 10 −5 (7.9 ± 7.8) ×10 −5 (6.1 ± 6.1) ×10 −5

Note. Best results are reported in bold.

Table 2 
Comparison of Mean Squared Error and According Standard Deviation Scores Across 10 Repetitions Between Different 
Deep Learning (TCN and ConvLSTM), Physics-Motivated (DISTANA, CNN-NODE, and FNO), and Physics-Aware Neural 
Networks (PINN, PhyDNet, and FINN) Methods on the Different Isotherms

TCN ConvLSTM DISTANA CNN-NODE FNO PINN PhyDNet FINN

10,782 8,216 6,519 1,026 5,878 3,042 37,815 464

Note. Each model uses the same number of parameters for the linear, Freundlich, and Langmuir cases. FINN uses the least 
number of parameters (printed in bold).

Table 3 
Comparison of the Number of Learnable Parameters Used by the Different Models

 19447973, 2022, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
033149, W

iley O
nline Library on [30/11/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Water Resources Research

PRADITIA ET AL.

10.1029/2022WR033149

15 of 28

rather to learn unknown functions in an interpretable fashion from the data and to generalize well to unseen data 
with different initial and boundary conditions.

As shown in Table 2, the pure ML models perform very poorly even during training, failing to capture/approxi-
mate the system's behavior. This result is expected because we only use a relatively small amount of training data, 
whereas pure ML models thrive on learning from large amount of data. However, measurement data on physical 
systems are often not abundantly available. Therefore, it is important to emphasize the capability of the models 
to learn from limited data. The physics-motivated and physics-aware models, on the other hand, perform compa-
rably during training, showing adequate learning (except for CNN-NODE). Also, note that the pure ML models 
in general require more parameters compared to the physics-motivated and physics-aware models, as shown in 
Table 3. Even then, their performance is still not comparable. However, PhyDNet is an exception, because most 
of its parameters originate from the ConvLSTM branch, which is the data-driven part and not the physics-aware 
part of PhyDNet. During training, FINN achieves the lowest prediction error for the data generated with the linear 
sorption isotherm, while PINN achieves the lowest prediction error for the data generated with the other sorption 
isotherms, namely Freundlich and Langmuir. This relatively higher training error of FINN on the Freundlich 
and Langmuir isotherm data can be attributed to the error of the diffusion coefficient prediction, which will 
be discussed further in the following section. We also note that the training times of the physics-motivated and 
physics-aware models are comparable to the pure ML models, without providing a rigorous computational time 
comparison.

It is more interesting to see how the models perform when confronted with unseen data, both extrapolation 
(in-dis-test) and different boundary condition (out-dis-test). For both test cases, all models perform significantly 
worse compared to the training phase. Nevertheless, FINN produces the best predictions with the lowest MSE, 
surpassing the other models by several orders of magnitude. More importantly, FINN is the only model with a 
consistently low prediction error with the same order of magnitude for all train, in-dis-test, and out-dis-test data. 
This model performance comparison is also visualized in Figure 4 for better clarity.

We also plot the predictions of the considered models for better visualization and understanding. For concise-
ness, we only show the plots for the dissolved concentration data generated with the Langmuir sorption isotherm 
due to similarities of the other plots. Figures 2 and 3 show the best prediction of each model, that produces the 
lowest MSE among the 10 randomly initialized trainings, when predicting the in-dis-test and the out-dis-test data, 
respectively. Figure 2 shows that most models, except for TCN and CNN-NODE, have at least one trained version 
that produces acceptable results even after extrapolation to a significantly longer time span (T = 10,000 days) 
compared to the one covered during training (T = 2,500 days). More interestingly and importantly, Figure 3 
shows that when the boundary condition is changed to csol = 0.7, all models still tend to overfit to the boundary 
condition value used during training, that is, csol = 1.0, demonstrating the tendency of all models to overestimate 
the dissolved concentration close to x = 0. One distinguishing feature of FINN is its ability to properly treat 
different values of numerical boundary conditions, and thus, FINN is the only model that does not suffer from 
this overfitting issue, as also shown in Figure 2. Plots for data generated with other sorption isotherms and for the 
total concentration are presented in Supporting Information S1.

To assess the robustness of the considered ML models, Figures 5 and 6 show the prediction averaged over the 10 
different training initializations for the in-dis-test and out-dis-test data, respectively. Moreover, Figures 5 and 6 
are also equipped with 95% confidence intervals, to show the consistency of each model. These intervals are 
approximated with the t-distribution (Oliphant, 2006). Figure 5 shows that, even though each model has at least 
one good result, the other training result can still produce incorrect predictions. To be more specific, the average 
predictions by TCN, ConvLSTM, and CNN-NODE do not fit the data. Additionally, we observe that most of the 
models produce highly inconsistent predictions with wide confidence intervals. Figure 6 (for out-dis-test) shows 
worse consistency of all models, evidenced by the wider confidence intervals. Additionally, all existing ML 
models still overfit to the boundary condition value used in the train data, as discussed earlier. FINN, in contrast, 
produces very consistent predictions, making the confidence interval hardly visible in Figure 5. Furthermore, 
FINN shows excellent consistency and adjustment to the new boundary condition value in Figure 6. The perfor-
mance comparison between FINN and CNN-NODE emphasizes the relevance of FINN's modularized structure. 
Apparently, NODE alone does not guarantee accurate function approximations, which is reflected in the larger 
training errors of CNN-NODE compared to FINN, as well as in the test errors—consistently over all experiments. 
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Figure 2.  Plots of the dissolved concentration data generated with the Langmuir isotherm (red) and in-dis-test prediction 
(blue) using different models. The left column shows the solution over x and t (red lines mark the transition from train to 
in-dis-test), the right column visualizes the best solution of each model distributed in x at t = 10,000.
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Figure 3.  Plots of the dissolved concentration data generated with the Langmuir isotherm (red) (as well as a different boundary condition) and out-dis-test prediction 
(blue) using different models. The left column shows the solution over x and t, the right column visualizes the best solution of each model distributed in x at t = 10,000.
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We show with the example that a structurized method to design the model using the FVM discretization as a basis 
is extremely beneficial.

Focusing on the physics-aware ML modeling concepts, we could state that PINN and PhyDNet lie on different 
extremes. Even though PINN has a data-driven feature, it is more dominated by the physics-informed feature. It 
also can be formulated as an inverse problem, for example, to estimate unknown parameters such as the diffusion 
coefficient, but it still requires the modeler to know the complete form of the PDE to be solved. As a consequence, 
the retardation factor function also have to be known in advance to train the model. In contrast to PINN, PhyDNet 
puts more emphasis on the data-driven part, shown by the high number of parameters in the ConvLSTM branch 
compared to the physics-aware branch. Therefore, PhyDNet has more freedom in learning, but can suffer from 
overfitting issues. This is shown by the fact that PhyDNet achieves a very low prediction error during training, but 
its result significantly deteriorates when predicting in-dis-test and out-dis-test data. The introduced FINN concept 
lies somewhere in the middle of these extremes, compromising between the freedom of learning and the rigidity 
of (assumed) physical knowledge. As a result, FINN outperforms the other models, especially on the out-dis-test 
data, which is considered a particularly challenging task for ML models. Finally, while FNO can—in contrast 
to PINN—still be applied to different initial and boundary conditions, it suffers from a noticeable performance 
drop when applied to the new boundary condition. This is not surprising, as the explicit function learned during 
training (mapping continuous space-time coordinates to c) does not hold in the out-dis-test scenario anymore. 
This drawback of FNO could potentially be alleviated by embedding a more robust physics-informed prior in 
FNO, which results in the PINO model (Z. Li et al., 2021).

4.1.3.  Learning the PDE Constituents With FINN

The most important feature of FINN is its ability to interpretably learn the building blocks of the sought PDE. 
In our example, the numerical stencil, the diffusion coefficient and the retardation factor function are learned 
during the training process. The learned numerical stencils and the learned diffusion coefficient D for the linear, 

Figure 4.  Average mean squared error (MSE) comparison of different Machine learning models with the error bars denoting 
the MSE standard deviation. The MSEs are calculated on the train (blue), in-dis-test (yellow), and out-dis-test (red) data set 
generated using the Langmuir isotherm.

Figure 5.  Prediction mean over 10 different trained models (with 95% confidence interval) of the dissolved concentration 
generated using the Langmuir isotherm at t = 10,000 for the in-dis-test data set.
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Freundlich, and Langmuir sorption isotherm data are shown in the second and third column of Table 4. All 
the learned numerical stencils are symmetrical, meaning that the prediction is mass-conservative and clearly 
diffusive.

Assuming that the ideal numerical stencils should be −1 and 1, we normalize the learned diffusion coefficient 
(by multiplying it with the learned numerical stencils) and compare it to the real diffusion coefficient value 
(D = 5.0 × 10 −4 m 2/day) to evaluate the prediction error. The normalized diffusion coefficient for the linear, 
Freundlich, and Langmuir data are shown in the last column of Table 4. In terms of relative error to the real D 
value, these amount to 2.6%, 4.4%, and 10.8% error for the linear, Freundlich, and Langmuir isotherm, respec-
tively. The prediction of the diffusion coefficient values has the highest error and variance for the Langmuir data, 
and the lowest error and variance for the linear data. As a consequence, FINN predicted the linear data with the 
highest accuracy, and Langmuir data with the lowest accuracy (see Table 2). Nevertheless, FINN's prediction 
is still highly consistent, as shown by the low MSE in Table 2 and the almost invisible confidence interval in 
Figures 5 and 6.

Furthermore, a very strong advantage of FINN is its ability to successfully learn closure/constitutional relation-
ships, which are often unknown when modeling a system. In our diffusion-sorption example, the major source of 
uncertainty is the retardation factor R(c), which can be defined with various empirical functions. Figure 7 shows 
the retardation factor learned by FINN, when trained on data generated with the three aforementioned sorption 
isotherms. FINN is able to learn the retardation factor through its module 𝐴𝐴 𝐴𝐴 . The learned retardation factor also 
captures the linearity of the linear sorption isotherm, shown by the straight red line on the left plot in Figure 7. 
The retardation factors from the Freundlich and Langmuir isotherms are also captured well, even with less accu-
racy compared to the linear isotherm. This also contributes to the slightly higher prediction error for the Freun-
dlich and Langmuir data compared to the linear data. Nevertheless, FINN is still able to distinguish between these 
different isotherms very well. Higher accuracy would need more informative data, especially at larger values of c.

4.2.  Learning Using an Experimental Data Set

Synthetic data sets provide good insights into FINN's performance in a controlled experiment, where the data 
set is clean and abundant. However, real-world data is often only sparsely available due to costs or restrictions 

Figure 6.  Prediction mean over 10 different trained models (with 95% confidence interval) of the dissolved concentration 
generated using the Langmuir isotherm at t = 10,000 for the out-dis-test data set. Note that physics-informed neural network 
(PINN) is not valid for predictions on a different boundary condition.

Sorption isotherm Numerical stencil D (m 2/day) Normalized D (m 2/day)

Linear −1.06 ± 0.02 and 1.06 ± 0.02 4.59 ± 0.19 × 10 −4 4.87 ± 0.19 × 10 −4

Freundlich −0.99 ± 0.04 and 0.99 ± 0.04 4.83 ± 0.19 × 10 −4 4.78 ± 0.34 × 10 −4

Langmuir −1.08 ± 0.06 and 1.08 ± 0.06 4.13 ± 0.19 × 10 −4 4.46 ± 0.74 × 10 −4

Table 4 
Learned Partial Differential Equation Constituents by Using Finite Volume Neural Network
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of equipments, the amount of time required to obtain useful data, or the difficulty in direct measurement of the 
system's internal states.

In the experimental setup described in Section 2.1, the dissolved TCE concentration distribution inside the clay 
sample is unobservable throughout the experiment. The only means of measuring the dissolved TCE concen-
tration is through the water flushing below the lower end of the clay cylinder, as of now called a breakthrough 
curve. Furthermore, the total TCE concentration can only be measured at the end of the experiment, by cutting the 
clay specimen into slices to enable direct (but destructive) measurement of the total TCE concentration. Hence, 
the dissolved concentration data is available as a breakthrough curve, which has only a single data point at each 
time step; and the spatial distribution of the total concentration data is available only at the final time step, and at 
coarse spatial resolution. Additionally, the observation data obtained from the experiment is very sparse and also 
noisy. All these challenges associated with the use of real-world data prompt the implementation of UQ meth-
ods on FINN to provide honest and reliable predictions that would be useful for aiding critical decision making 
processes or hypothesis testing.

For this real-world application, three core samples are retrieved from the same geographical area, namely core 
samples #1, #2, and #2B (Nowak & Guthke, 2016). Consequently, similar soil parameters can be assumed for all 
three samples, which are summarized in Table 5. The breakthrough curve of core sample #2 is the least noisy, 
and hence is chosen as the training data; whereas the breakthrough curve of core #1 is chosen to test the trained 
model. Additional test is also performed with the data from core sample #2B. However, core #2B is significantly 
longer than the other samples and the bottom of the setup is closed (no flushing). By the end of the experiment, 
no measurable TCE has yet arrived at the bottom end of the sample. Numerically, the experiment is modeled with 
the setup as described in Section 2.1, with the initial condition written in Equation 5 and the boundary conditions 
written in Equations 3 and 4 for both core samples #1 and #2. For core sample #2B, because it is closed on the 
bottom, a no-flow Neumann boundary condition is used instead:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

|
|
|
|𝑥𝑥=𝐿𝐿

= 0 ∀𝑡𝑡 ∶ 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 𝑇� (32)

The breakthrough curve of core #2 used as training data only serve for model 
training using the Cauchy boundary condition described in Equation 4. As 
a consequence, no other benchmark models can be used, since all of them, 
except for PINN, have no means of properly implementing numerical bound-
ary conditions other than Dirichlet or periodic. PINN also cannot be applied 
in this example, because the test data set from core sample #1 and #2B have 
different boundary conditions, and therefore the PINN model trained on 
core sample #2 no longer holds for the other samples. Moreover, one of the 
most interesting goals of this experiment is to learn the retardation factor, 
whereas all the considered ML models have no capability to do so explicitly. 
Therefore, we assess the performance of FINN using a comparison to the 
PDE-based physical model—the same as used to generate synthetic data in 
Section 4.1—calibrated to the experimental data as a benchmark. The best fit 
of the physical model is found with the retardation factor modeled using the 
Freundlich sorption isotherm, with Kf = 5.20 × 10 −4 𝐴𝐴 (m

3
∕kg)

n
f and nf = 0.35. 

Note that this Freundlich exponent is considered low, and can be attributed 

Figure 7.  Learned retardation factor of finite volume neural network (FINN) for the linear (left), Freundlich (middle), and 
Langmuir (right) sorption isotherm, compared with the retardation factor generated with the three isotherms.

Parameter Unit Core #1 Core #2 Core #2B

Soil parameters

  D m 2/day 2.00 × 10 −5 2.00 × 10 −5 2.78 × 10 −5

  ϕ – 0.288 0.288 0.288

  ρs kg/m 3 1,957 1,957 1,957

Simulation domain

  L m 0.0254 0.02604 0.105

  r m 0.02375 0.02375 N/A

  T days 38.81 39.82 48.88

  Q m 3/day 1.01 × 10 −4 1.04 × 10 −4 N/A

  csol kg/m 3 1.4 1.6 1.4

Table 5 
Parameter Values of Various Clay Core Samples for the Laboratory 
Experiment
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to the scarcity of the training data. This also shows that even fitting a well-defined physical model to limited data 
could lead to inaccuracies.

For this application, FINN is implemented with the use of the module 𝐴𝐴 𝐴𝐴 . Here, the module 𝐴𝐴 𝐴𝐴 is defined as a 
feedforward network with the size of [1, 10, 20, 10, 1] that takes c as an input and outputs the retardation factor 
R(c). The diffusion coefficient is assumed to be known and measurable for all the core samples (Nowak & 
Guthke, 2016), and therefore is not learned by FINN. As in the synthetic case, FINN is trained with the objective 
to minimize the deviation between the model predictions of c as a breakthrough curve and the total concentration 
ct at the end of the experiment. Also, in contrast to the synthetic data scenario, FINN is now trained using the 
Bayes-by-backprop method as outlined in Section 2.4 using Equation 19 as the loss function formulation. Even 
though the Bayes-by-backprop method manages to provide reasonable UQ of FINN's prediction, it fails to learn 
the standard deviation parameter σ sufficiently (i.e., the learned σ values do not differ much from the initial 
values).

Due to the limitations of the Bayes-by-backprop method, we alternatively use three different MCMC meth-
ods, namely the random walk MH, MALA, and Barker. Starting with random initial values of FINN's parame-
ters, samplings are performed with these three methods for 102,000 iterations, with the 2,000 initial iterations 
discarded as the burn-in period, resulting in 100,000 effective iterations. This number is chosen as the upper limit, 
to investigate which MCMC method provides decent convergence and offers the most efficient sampling under 
acceptable computational time.

Out of the 100,000 iterations, we thin out the samples by saving only every tenth iteration, resulting in a total of 
10,000 samples. The step size h is chosen so that the acceptance rate amounts to approximately 23% (Reuschen 
et al., 2021). This corresponds to h = 10 −2 for MH, h = 7 × 10 −6 for MALA, and h = 4 × 10 −3 for Barker. As 
shown by the trace plot (the left plot in Figure 8), all methods improve the log posterior substantially after only a 
few iterations. However, looking at the zoomed-in plot (the right plot in Figure 8), none of the used MCMC meth-
ods converge well to an equilibrium distribution, as evidenced by the downward trend of the log posterior even 
until the last iteration. Even though MALA has better convergence compared to the other methods, the acceptance 
rate quickly deteriorates. This can be attributed to the fact that MALA is less robust to high step size (Livingstone 
and Zanella (2019), although the step size used for MALA is already very low in this case).

To improve the performance of the MCMC chains, we start the sampling with optimized parameter values of 
FINN. To obtain this, FINN is first trained deterministically as in the synthetic data scenario, and the param-
eter values of the trained FINN model are used as the starting point of the MCMC chain. Samplings are then 
performed for 100,000 iterations, without the burn-in period (since we start with optimized values), again thin-
ning by a factor of 10, resulting in a total of 10,000 samples. The corresponding step sizes are h = 10 −2 for MH, 
h = 3 × 10 −5 for MALA, and h = 5 × 10 −3 for Barker.

As shown by the log posterior trace plot (the left plot in Figure 9), there is a downward trend in the log posterior 
of the samples. This is fundamentally caused by using an excellent starting point with minimized error (statisti-
cally too good to be a representative sample), resulting in less good (but as of then statistically valid) subsequent 

Figure 8.  Trace plot of the log posterior starting with random initial values (left) and the zoomed-in plot after 5,000 
iterations (right) for the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, orange), and 
Barker (green) MCMC methods.
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samples. When zooming in after 5,000 iterations, we observe that the performance of both the gradient-based 
MCMC methods, namely MALA and Barker, is better than that of MH. It is also worth to note that the step size 
tuning for both MALA and Barker method is not straightforward due to the influence from the loss gradient on 
the jump distribution, and therefore, could potentially lead to a heavier computational burden.

Among these two gradient-based MCMC methods, Barker shows the best behavior with the highest and most 
stable log posterior values, indicating proper sampling from the desired posterior. On the other hand, the log 
posterior value of the samples obtained using MALA is still slightly decreasing. This result shows that Barker 
scales well for higher dimensionality, especially when the chain is properly initialized. All in all, only the opti-
mized Barker MCMC finishes its burn-in properly and reaches an equilibrium distribution, that is the desired 
posterior, within the 100,000 iterations window.

Another way to quantify the predictive performance/sharpness of the MCMC methods is to plot the reliability 
curve as defined in Jospin et al. (2022), which is calculated using the cumulative distribution function across all 
samples, compared to its observed probability (i.e., ordered against the actual data). The reliability plot enables 
evaluation of the model's predictive performance. The model is described as underconfident if the reliability 
curve lies above the baseline, and overconfident otherwise. As shown in Figure 10, all the methods with random 
initialization (left plot) lie further from the ideal condition compared to the methods with optimized starting 
point (right plot). Among all the methods, Barker MCMC with optimized initialization lies the closest to the 
ideal condition, confirming further that the samples generated by the optimized Barker MCMC provides the best 
predictive performance. It is also interesting to note that the models are overconfident for lower extremes and 
underconfident for higher extremes. One possible explanation is that the data error is not Gaussian.

Figure 9.  Trace plot of the log posterior starting with optimized initial values (left) and the zoomed-in plot after 5,000 
iterations (right) for the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, orange), and 
Barker (green) Markov chain Monte Carlo methods.

Figure 10.  Reliability curves of the Metropolis Hastings (MH, blue), Metropolis-adjusted Langevin algorithm (MALA, 
orange), and Barker (green) Markov chain Monte Carlo methods initialized randomly (left) and with optimized values (right). 
The baseline for the ideal condition is shown by the black dashed line.
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The predictions obtained using the optimized Barker MCMC are shown in Figure  11. The MCMC method 
augment FINN's prediction with a confidence interval, which captures most of the noisy observation data 
inside, showing sufficient UQ. Quantitatively, FINN achieves lower training error on core sample #2 data with 
MSE = 5.43 × 10 −4, compared to the physical model with MSE = 1.06 × 10 −3. During testing with data from core 
sample #1, FINN also outperforms the physical model with MSE = 1.41 × 10 −3 compared to MSE = 2.50 × 10 −3, 
because the calibrated physical model underestimates the TCE breakthrough curve. When tested against data 
from core sample #2B, which has a different type of numerical boundary condition implemented, FINN again 
achieves lower prediction error with MSE = 1.16 × 10 −3 compared to the calibrated physical model that overes-
timates the TCE concentration with MSE = 2.73 × 10 −3. Because there is no breakthrough curve data available 
for this specific sample, we compare the prediction against the total concentration profile c(x, t = T) at the end 
of the experiment. The differences between FINN and the physical model prediction are not very clear in the 
breakthrough curve plots because both predictions have only small variance at the end of the sample. However, 
the error of the physical model prediction becomes more apparent in the total concentration profile (Figure 11, 
bottom left).

Moreover, we also plot FINN's learned retardation factor in comparison to the calibrated Freundlich retardation 
factor, which shows that the best-fitting available sorption isotherm model fails to capture the retardation factor 
shape as learned by FINN, possibly leading to the higher prediction error of the calibrated physical model in both 
cases of training and testing. Overall, FINN outperforms the calibrated physical model by learning the retardation 
factor better than the parametric sorption isotherm model using only the breakthrough curve of core sample #2 
(i.e., only 55 data points) and successfully applies it to the other samples with relatively high accuracy.

As a side note, this real-world application example adopted in this work was performed in a small-scale laboratory 
experiment. With the corresponding scale, homogeneity could be assumed for the modeled soil parameters. For 
a larger-scale application (i.e., field-scale), the assumption might no longer hold, and thus heterogeneity would 
have to be taken into account. To account for heterogeneity, FINN has to either adopt a geostatistical approach to 
model the heterogeneous distribution of the parameter (e.g., the diffusion coefficient), or a graph representation.

Figure 11.  Breakthrough curve average prediction of finite volume neural network (FINN, blue line) and its 95% confidence 
interval (blue shade) during training on core sample #2 (top left), during testing on core sample #1 (top right) and total 
concentration profile of core sample #2B (bottom left). The predictions are compared with the experimental data (red circles) 
and the results obtained using the physical model (orange dashed line). The learned retardation factor R(c) is shown in the 
bottom right plot.
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Finally, even though we only showed the application of FINN to a subsurface contaminant transport problem, it 
is also applicable to a range of other problems or equations, such as the 2D Burgers' the diffusion-reaction equa-
tion, and the Allen-Cahn equation. For further details, we refer the interested readers to our ML-focused paper 
(Karlbauer et al., 2022). FINN lays the groundwork for further development of hybrid modeling frameworks in 
this area, and hopefully can be used for an even wider range of problems in the future, such as weather and climate 
simulation or investigation of improved constitutive relations in multiphase flow.

5.  Summary and Conclusion
In this work, we applied FINN, a hybrid modeling framework that induces physical inductive biases into an 
ANN learning paradigm. FINN is based on the numerical structure of the FVM for solving PDEs, as well as on 
conditions such as monotonicity and non-negativity of functions or parameters to constrain the model training. 
FINN learns numerical stencils, unknown constitutional/closure relationships, and/or parameters to predict vari-
ables of interest in spatiotemporal physical systems. Using a well-controlled subsurface contaminant transport 
benchmark, we showed that FINN is beneficial in comparison to pure ML models as well as physics-motivated 
and physics-aware ML models for several reasons.

First, FINN demonstrates superior generalization when tested against extrapolated data and data generated with 
different boundary condition. The other ML models participating in our comparison have the tendency to overfit, 
while PINN is not even applicable to the same system with a different boundary condition.

Second, FINN allows proper treatment of different boundary condition types, whereas other models are only 
applicable to boundary condition types with constant values such as Dirichlet or periodic ones, because of the 
convolutional structure adopted in most of the other models. As a result, only FINN can be trained on data under 
a Cauchy boundary condition in the form of a diffusive breakthrough curve in the real-world experimental data 
example.

Third, FINN can be trained with a sparse data set without compromising its learning ability and its prediction 
accuracy. It was shown in the real-world data example that FINN was trained with only 55 data points, yet it 
generalized well to other unseen samples, even one with a different boundary condition type. This also implies 
that FINN is applicable to real-world data that is noisy and sparse. Hence, FINN offers a data-driven modeling 
approach that goes beyond a surrogate modeling tool.

Fourth, FINN provides flexibility in choosing between different UQ methods, especially due to its compara-
tively low number of parameters. FINN can be paired not only with the variational inference type of UQ (i.e., 
Bayes-by-backprop), but also with MCMC methods. Additionally, the widely available automatic differentiation 
tools in various ML libraries enable the use of gradient information in both MALA and Barker MCMC, leading 
to better performance compared to a random walk MH. Furthermore, these automatic differentiation tools also 
promote finding an optimal starting point for the MCMC chain, by first training FINN deterministically.

Fifth, and probably most importantly, FINN's structure provides a high degree of model explainability. Through 
its structure, FINN can explicitly learn unknown constitutive/closure relationships or parameters, which are 
usually the main source of uncertainty in physical systems modeling. The particular example shown in this work 
is the unknown retardation factor as a function of concentration. Because the available sorption isotherm models 
describe the retardation factor function using few parameters, they are not flexible enough to be calibrated to 
learn the “true” shape of the function. FINN, on the other hand, has the full flexibility to learn it.

To re-emphasize, in this work we did not intend to develop FINN as a faster and more efficient surrogate model 
in place of known equations and their numerical solvers. The only comparison between FINN and a traditional 
numerical simulation model was presented on the real-world problem example. The purpose of this comparison 
was to show that, when calibrating the physical model, we are faced with discrete choices of models that lead to 
difficulties in capturing the “true” functional relationship. FINN, on the other hand, alleviates this problem by 
providing a flexible way of learning the unknown relationship, as shown in Section 4.2.

Despite the promising benefits of FINN, we realized that there is still a lot of room for improvement. For instance, 
the computation time of FINN is still not optimized, because the implementation is highly dependent on the 
available NODE package. It will not be as fast as PINN, because PINN models the system as an explicit function 
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of x and t, allowing to parallelize the computation. The recurrent structure in FINN and other models, such as 
ConvLSTM, DISTANA, and PhyDNet, on the other hand, prohibit full parallelization.

Additionally, FINN offers room for possible extension of the underlying physical theory behind the framework. 
For example, it could be enabled to account for non-Fickian diffusion or dispersion, where the diffusion coeffi-
cient can be a highly complex function of many variables, or for other neglected processes that may contribute 
significantly to the modeled system, such as chemical transformation, evaporation, or advection. In these cases, 
FINN's structure would need to be modified to allow for a more complicated representation of the unknown 
functional relationships. This could be achieved, for example, not only by including more independent variables 
as input to the different neural network modules, but also spatio-temporal dynamics of more dependent variables 
to be approximated by FINN (e.g., including more non-linearly coupled PDEs).

To upscale FINN to a field size domain, spatial heterogeneity also has to be taken into account, due to the high 
possibility of higher variations of the geophysical properties across a larger area. It is possible to model a heter-
ogeneous system either by modeling the diffusion coefficient as a function of space, complemented by geostatis-
tical methods, or by modifying FINN's neural network modules to be connected via a graph-like structure. This 
will allow for more freedom in the modeled interactions and the message passing between neighboring spatial 
control volumes as well as in implementations on unstructured grids.

UQ of ML models is still a broad and open research area, due to the complicated nature of ML models, and ANNs 
in particular. More rigorous analysis of UQ on FINN can further improve the predictive performance and foster 
the interpretability of the model itself. Furthermore, it would also be beneficial to reach a fully accurate total 
UQ over inferred scientific hypotheses. This could include not only the uncertainty from parameters, closures, 
and stencils covered in this work, but also over entirely different conceptualizations of a system. The latter could 
result in different structural set-ups of FINN. Additional research is necessary to pursue these challenges.

Data Availability Statement
All codes used for generating the train, in-dis-test, and out-dis-test data and reproduce all the results in this paper 
are preserved at https://doi.org/10.5281/zenodo.7260671, available via the MIT license and developed openly at 
https://github.com/CognitiveModeling/finn (Praditia et al., 2022).
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