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Abstract

The present paper is divided into two parts, each of them dedicated to a

problem for the Stark operator −∆+E ·x on some domain Ω ⊂ Rd, equipped

with either Dirichlet or Neumann boundary conditions.

In the first part we deal with spectral estimates, i.e. estimates for the

Riesz means

Trγ
(
Hi
ε0(Ω)− Λ

)
:=
∑
j∈N

(Λ− λj(Ω; ε0))
γ
+,

i ∈ {D,N} and γ ≥ 0. Here (λij(Ω; ε0))j∈N denotes the sequence of Dirichlet

or Neumann eigenvalues of Hi
ε0(Ω) = −∆ + ε0x1 on Ω ⊂ R × Rd−1 where

we have chosen the x1-axis to be the direction of the electric field. Our

starting point will be Berezin’s approach to an estimate of Trγ
(
HD

0 (Ω)− Λ
)

where HD
0 (Ω) = −∆ is the classical Dirichlet Laplacian on Ω. We generalize

Berezin’s inequality to the case ε0 > 0 and additionally improve it by

subtracting positive terms of lower order in Λ. This result can be accompanied

by corresponding Kröger-type estimates on Trγ
(
HN
ε0 (Ω)− Λ

)
from below. In

the case γ < 1, in particular γ = 0 where Trγ
(
Hi
ε0(Ω)− Λ

)
coincides with

the counting function of all eigenvalues below Λ, we present estimates which

are obtained by explicitly using the Airy functions, i.e. the fundamental

solutions of the differential equation

− d2

dx2
u(x) + xu(x) = 0.

The second part of this paper outlines steps towards a Faber-Krahn
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inequality for the Stark Laplacian. Due to the lack of symmetry of the Stark

potential ε0x1, the situation becomes less clear compared to the case of the

classical Laplacian operator. Since the eigenvalues of HD
ε0(Ω) do not only

depend on the area or the volume of Ω, but additionally on the position of Ω

along the x1-axis, minimizing the first eigenvalue λD1 (Ω; ε0) only makes sence

among Ω with fixed volume and center of mass. Yet we will show that these

assumptions do not guarantee the existence of minimizers and additional

assumptions are required. Finally we show the existence of a minimizing

domain for λD1 (Ω; ε0) in the set {Ω ⊂ Rd : Ω convex, |Ω| = V,
∫

Ω
xdx = 0}

for fixed V > 0 in d = 2 and d = 3. However our proof does not provide any

information on how these minimizers might look like. In order to get an idea

of their shapes we perform numerical shape optimizations and observe how

our candidates change in various regimes for ε0 > 0. Since our optimization

is based on a gradient descent for λD1 (Ω; ε0) we have to quantify it’s change

when perturbing the shape of Ω and therefore prove a Hadamard-type formula

for the Stark Laplacian.



Zusammenfassung

Die Vorliegende Arbeit besteht aus zwei Teilen, jedes einem Themenkreis

für den Stark-Operator −∆ + E · x auf einem Gebiet Ω ⊂ Rd, versehen mit

Dirichlet- oder Neumann-Randbedingungen, gewidmet.

Im ersten Teil behandeln wir Spektralabschätzungen, d.h. Abschätzungen

an die Riesz-Summen

Trγ
(
Hi
ε0(Ω)− Λ

)
:=
∑
j∈N

(Λ− λj(Ω; ε0))
γ
+,

i ∈ {D,N} für γ ≥ 0. Dabei bezeichnet (λij(Ω; ε0))j∈N die Folge der

Dirichlet- oder Neumann-Eigenwerte von Hi
ε0(Ω) = −∆ + ε0x1 auf Ω ⊂

R×Rd−1 wobei wir die x1-Achse als Richtung für das elektrische Feld gewählt

haben. Unser Ausgangspunkt ist Berezins Ansatz für eine Abschätzung

an Trγ
(
HD

0 (Ω)− Λ
)

für den klassischen Laplace-Operator HD
0 (Ω) = −∆

auf Ω. Wir werden die Berezin-Ungleichung auf den Fall ε0 > 0 verallge-

meinern und zusätzlich durch einen zweiten Term mit kleinerer Ordnung

in Λ verbessern. Ergänzend dazu zeigen wir untere Abschätzungen an

Trγ
(
HN
ε0 (Ω)− Λ

)
basierend auf Arbeiten von Kröger. Im Fall γ < 1, ins-

besondere γ = 0 wo Trγ
(
Hi
ε0(Ω)− Λ

)
gerade die Zählfunktion aller Eigen-

werte unterhalb von Λ ist, beweisen wir Ungleichungen durch explizites

Rechnen mit Airy-Funktionen, also den Fundamentallösungen von

− d2

dx2
u(x) + xu(x) = 0.

Der zweite Teil der Arbeit beinhaltet Überlegungen zur Faber-Krahn-

vii
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Ungleichung für den Stark-Operator. Da das elektrische Potential ε0x1 die

Symmetrie des Operators bricht, ist die Situation hier, verglichen mit der beim

klassischen Laplace-Operator, komplizierter. Eigenwerte von HD
ε0(Ω) skalieren

nicht nur von mit der Fläche oder dem Volumen von Ω sondern verschieben

sich zusätzlich mit der Lage von Ω auf der x1-Achse. Das Minimierungsprob-

lem ist daher nur unter Gebieten mit gleichem Volumen und fixiertem Schwer-

punkt wohlgestellt. Diese Bedingung ist jedoch noch nicht hinreichend für die

Existenz eines minimierenden Gebietes für λD1 (Ω; ε0) und wir zeigen dessen

Existenz innerhalb der Klasse {Ω ⊂ Rd : Ω convex, |Ω| = V,
∫

Ω
xdx = 0} mit

fest gewähltem V > 0 in d = 2 und d = 3. Unser Beweis liefert jedoch keiner-

lei Informationen über die Gestalt dieser Minimierer. Um einen Überblick zu

erhalten, führen wir eine Gebietsoptimierung durch und beobachten wie sich

die Minimierer in verschiedenen Regimen für ε0 > 0 verändern. Da unsere

Optimierung auf einem Gradientenabstieg für λD1 (Ω; ε0) beruht, müssen wir

die Änderung von λD1 (Ω; ε0) unter Störung von Ω kontrollieren und zeigen

dafür eine Hadamard-Formel für den Stark-Operator.
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Chapter 1

Introduction

In 1913 the experimental physicists J. Stark studied the influence of electric

fields on the spectral lines of hydrogen and helium atoms. He observed that

the presence of an electric field causes splitting of several spectral lines and

described his results in a series of papers beginning with [85]. Later, in 1919,

he was rewarded with the Nobel Prize in Physics. Since then the effect of

splitting and shifting of spectral lines of atoms and molecules when exposing

them to an external electric field is known as the Stark effect. The theoretical

description of this effect occurs in the context of quantum mechanics with

the help of atomic Schrödinger operators as e.g.

H = −∆ + E · x− Z

|x|
(1.1)

for the hydrogen atom. Here the linear part E · x describes the electric field.

Throughout the physics literature, e.g. [20, 61], this operator is treated as

a perturbation of the atomic Schrödinger operator without the term E · x,

however, this approach cannot be justified mathematically by any means.

Hence, in the mathematical literature it is more common to introduce

H0 = −∆ + E · x

1
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as the unperturbed operator and then add some multiplication operator V (x),

a potential in physical terminology.

From a mathematical point of view (1.1) was first studied by E. C.

Titchmarsh [87] where it is shown that the operator has no discrete eigenvalues

if |E| > 0, but the spectrum covers the whole real line ]−∞,∞[. However,

the proof uses methods that are highly tailored to the symmetry of the

hydrogen atom operator, such as adapted coordinates, and cannot be carried

over to any other cases. Nevertheless, the work motivated J.E. Avron and

I.W. Herbst to study operators of the form H0 + V in a more general setting

[10]. They mainly focus on the operator in R3 but many of their results were

later carried over to the one-dimensional case [51] or to arbitrary dimensions.

To simplify things we choose the direction of the electric field along the

x1-axis, i.e. E = ε0e1 for some coupling constant (or field strength) ε0 > 0

and decompose x ∈ Rd into x = (x1, x⊥) where x1 ∈ R and x⊥ ∈ Rd−1 if

d ≥ 2. The starting point in [10] is the introduction of an unitary mapping

on L2(R3) which transforms

H0 = −∆ + ε0x1

into the operator of multiplication by ε0x1 + |x⊥|2. This transformation will

be discussed in Section 1.4.2 in more detail. As a consequence the spectrum

of H0 is absolutely continuous with σ(H0) =]−∞,∞[. Furthermore H0 with

D(H0) = C∞0 (R3) is essentially self-adjoint. For the sake of simplicity we will

also denote its closure also by H0. Although D(H0) remains uncharacterized,

it is still possible to formulate sufficient conditions on the potential V to be

a relatively compact perturbation of H0. Therefore let

Lp0,c(R
3) := {f : ∀ε>0∃f=f1,ε+f2,ε f1,ε ∈ Lp0(R3) and ‖f2,ε‖ ≤ ε},

where Lp0(R3) is the set of all functions in Lp(R3) with compact support.

Theorem 1.0.1 ([10, Theorem 4.2]). Let G be a multiplication operator with

Ge−α|x| ∈ Lp(R3) for some α > 0 and let H0 be a self-adjoint extension of

−∆ +G on C∞0 (R3). If V is an operator of multiplication by V ∈ Lq0,c(R3)

and either
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• 1/p+ 1/q = 2/3, p, q > 2 or

• p = 2 and q > 6 or

• q = 2 and p > 6,

then V (H0 + i)−1 is compact.

Since x1e−α|x| ∈ Lp(R3) for all p ∈ N, it follows that H = H0 + V is

essentially self-adjoint with σess(H) = σess(H0) for all V ∈ Lq0,c(R3), q ∈ N,

cf. [48].

From that J.E. Avron and I.W. Herbst established the first results on

the scattering theory in the presence of an electric field. This work then was

continued by D.A.W. White in [93], K. Yajima [96,97] or more recently by

T. Adachi, K. Itakura, K. Ito and E. Skibsted [3, 46], just to mention a few

results. On the other hand there are accompanying works on trace formulas

[52] or the spectral shift function [80] by E. Korotyaev, A. Pushnitski and

V. Sloushch. The influence of an electric field in waveguides are studied by

P. Briet and M. Gharsalli in [15,16]. In the following two sections we want

to highlight two other subjects of study, namely those of resonances which

occur as limits of eigenvalues of dilated operators as a model for physical

Stark effect and the study of eigenvalue bounds for complex perturbated

Stark operators. At the end of this chapter, in 1.3 and 1.4, we proceed to

the foundations of our work on the Stark operator on bounded domains.

1.1 Analytic potentials and resonances

A type of potentials for which the analysis of the spectrum is well advanced is

the class of analytic potentials introduced in [10]. Consider a multiplication

operator V such that for almost every x⊥ the mapping z 7→ V (z, x⊥) is

analytic in a strip {z ∈ C : | Imz| < β} where β > 0 is independent of

x⊥. If Vz(H0 + i)−1 for Vz(x) = V (x+ z, x⊥) is a compact operator-valued

function, then V is called H0-translation analytic. This is for instance the

case when Vz(H0 + i)−1 is uniformly bounded on each compact subset of the

strip {z ∈ C : | Imz| < β}, see [10, Lemma 4.5].
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Theorem 1.1.1 ([10, Theorem 4.7]). 1. Let H = −∆ + ε0x1 + V for

ε0 > 0. If V is H0-translation analytic in the strip {z ∈ C : | Imz| < β},
then σp(H) does not have finite accumulation points. Furthermore

σsing(H) = ∅ and σac(H) =]−∞,∞[.

2. Consider the operators Hz = −∆ + ε0(x + z) + Vz, then these form

an analytic family of type A in the sense of Kato [48, VII, 2] with the

spectral properties

σess(Hz) = R + iε0 Imz

σdisc(Hz) ⊂ {λ ∈ C : Imλ ∈ [0, ε0 imz[}.

Thereby the singularities of λ 7→ (Hz − λ)−1 are poles with finite rank

residues, their location in {λ ∈ C : Imλ ∈ [0, ε0 imz[} is independent

of z.

The eigenvalues of Hz are called the resonances associated with the

system described by H. If resonances exist, by physical intuition, they should

converge to the eigenvalues of −∆+V as ε0 → 0. The main technical difficulty

at this point is the presence of the essential spectrum of Hz which converges

to the real line for ε0 → 0. In order to overcome these difficulties I.W. Herbst

[43] used the technique of complex scaling. We refer to [22, Chapter 8] for a

comprehensive introduction to complex scaling with various applications also

to the Stark effect. The idea is to somehow “rotate” the potential away from

the real axis. Consider the free Stark operator h(α) = −∆ + αx1 for α ∈ C
on C∞0 (Rd). Then h(α) is closeable, but in contrast to the case α > 0 the

spectrum of h(α) is empty if Imα 6= 0 [43, Theorem II.1]. Furthermore, if

Imα 6= 0, the numerical range of h(α) is given by

W (h(α)) = {z ∈ C : Rez > Reα
Imα Imz}.

This allows the introduction of an operator

H(ε0, θ) = −∆e−2θ + ε0x1eθ + V (xeθ) (1.2)

for θ which needs to be specified further. Denote by H0(ε0, θ) := e−2θh(ε0e3θ)
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the free Stark operator and define the dilation group on L2(Rd) by {U(θ) :

θ ∈ R} with

U(θ)f(x) = edθ/2f(eθx). (1.3)

Let V (θ) = U(θ)V U(−θ) for θ ∈ R and some multiplication operator V and

assume that V is self-adjoint with D(V ) ⊂ D(−∆) and V (θ) is compact

and extends to a compact analytic operator-valued function on the strip

{θ ∈ C : | Imθ| < θ0} for some θ0 ∈]0, π/3] (in this case V is called dilation-

analytic). Then the operator

V (θ)(H0(ε0, θ)− z)−1

is compact and the mapping (z, θ) 7→ V (θ)(H0(ε0, θ) − z)−1 is analytic on

{θ ∈ C : 0 < Imθ < θ0}. Moreover

V (θ)(H0(ε0, θ)− z)−1 ‖·‖−→ V (θ)(H0(0, θ)− z)−1

as ε0 → 0 uniformly for (z, θ) on each compact subset of {(z, θ) ∈ C2 :

d(z, θ) > 0, 0 < Imθ < θ0} where d(z, θ) is the distance from z to the

numerical range of H0(1, θ), see [43, Proposition III.1]. Finally it follows that

Theorem 1.1.2 ([43, Theorem III.2]). For each 0 < Imθ < θ0 for some θ0 ∈
]0, π/3] and ε0 > 0 the operator H(ε0, θ) from 1.2 is closed on D(H(ε0, θ)) =

D(H0(ε0, θ)) and the family of operators

{H(ε0, θ) : 0 < Imθ < θ0}

is an analytic family of operators of type A in the sense of Kato [48]. Moreover,

the spectrum of H(ε0, θ) consists of eigenvalues of finite multiplicities where

each of the eigenvalues multiplicity does not depend on θ.

The eigenvalues of H(ε0, θ) are interpreted as the resonances which occur

when a system, which is described by the Hamiltonian H = −∆ + V , is

exposed to an electric field with constant field strength:

Theorem 1.1.3 ([43, Theorem III.3]). Let λ be an eigenvalue of −∆+V with

multiplicity m. Then for each ε0 > 0 (small enough) there are m eigenvalues
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of H(ε0, θ), counting according to their multiplicity, that converge to λ as

ε0 → 0.

Finally the eigenvalues of H(ε0, θ) can be reconnected with the operator

H(ε0, 0) = −∆ + ε0x1 + V via dilation-analytic vectors. In this context

Dilation-analytic vectors are functions φ ∈ L2(Rd), such that there is an

analytic function φθ on {θ ∈ C : 0 < Imθ < θ0} for which φθ = U(θ)φ on

]0,∞[.

Theorem 1.1.4 ([43, Theorem III.4]). Let ε0 > 0 and V such that V (−∆ +

ε0x1 + i)−1 is compact. If Imθ > 0, all eigenvalues of H(ε0, θ) are contained

in the lower half plane {z ∈ C : Imz ≤ 0}. For a pair of dilation vectors φ, ψ

consider the mapping

{z ∈ C : Imz > 0} → C, z 7→ fφ,ψ(z) := (φ, (z −H(ε0, 0))−1ψ)

has a meromorphic continuation on C. There, the only possible poles of this

meromorphic continuation are the eigenvalues of H(ε0, θ). More precisely:

Given z ∈ C, then there are dilation-analytic vectors φ, ψ such that fφ,ψ has

a pole in z if and only if z ∈ σ(H(ε0, θ)).

Up to this point the results do not hold for the Coulomb potential Z/|x|,
the case of the hydrogen atom, since it is not translation analytic. But when

replacing the point charge Z by a Gaussian charge density, the new potential

V (x) =

∫
ρ(y)

|x− y|
dy

for ρ(y) = −Z/(2πτ2)d/2e−y
2/(2τ2), τ > 0, is again translation analytic, cf.

[10]. The following theorem shows that in this case the resonance eigenvalues

of the smoothened system converge as τ → 0:

Theorem 1.1.5 ([43, Theorem III.5]). 1. Suppose V (H0(ε, 0) + i)−1 is

compact and θ 7→ V (θ)(−∆ + 1)−1 is an analytic compact operator-

valued function on {θ ∈ C : | Imθ| < θ0} for some θ0 ∈]0, π/4]. Then

these conditions also apply to ρ ∗ V and

z 7→ (ρ ∗ V )z(H0(ε0, 0) + i)−1
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is an entire compact operator-valued function. Let a < 0 and Qa :=

{z ∈ C : Imz > ε0a}, then

σ(H0(ε0, 0) + iε0a+ (ρ ∗ V )ia) ∩Qa = σ(H0(ε0, θ) + (ρ ∗ V )(θ)) ∩Qa

for all θ ∈ R with 0 < Imθ < θ0 and the multiplicities of the eigenvalues

coincide.

2. Let λ be an eigenvalue of H(ε0, θ) with multiplicity m, then for small

enough τ and large enough −a there are exact m eigenvalues of H(ε0, 0)+

iε0a+ (ρ ∗ V )ia, counting according to their multiplicity, that converge

to λ as τ → 0.

We remark that the Stark operator with Coulomb potential in R3 was

independently treatened in [36] by S. Graffi and V. Grecchi. While their

results on the occurence and convergence of resonances coincide with [43],

their methodes are very different. As in [87] the proof in [36] is adapted to the

symmetry of the Coulomb potential and uses squared parabolic coordinates.

Using a dilation based on squared parabolic coordinates, S. Graffi and

V. Grecchi [37] proved the Stark effect as in Theorem 1.1.3 for N -body

Schrödinger operators

HN (ε0) :=

N∑
j=1

∆j +

N∑
j=1

Vj(x
(j)) +

N∑
i,j=1
i<j

Vij(x
(i) − x(j)) + ε0

N∑
j=1

x
(j)
1 .

Here x(j) = (x
(j)
1 , x

(j)
2 , x

(j)
3 ) denote the position of the j-th particle in R3

and ∆j the Laplace operator with respect to (x
(j)
1 , x

(j)
2 , x

(j)
3 ). Thereby the

particle interacts with a fixed center via the potential Vj , the potentials

Vij describe the interaction between two particles. Restrictions on Vj and

Vij are given in [37, Assumptions 3.5] and include Coulomb and Yukawa

potentials. As in Theorem 1.1.3 above, [37, Theorem 4.1] states that, for any

eigenvalue λ0 of the Schrödinger operator HN (0) without electric field, the

dilated operator HN (ε0, θ, φ) (see [37, (3.7)]) for its definition) has exactly as

many eigenvalues according to the multiplicity of λ0 which converge to λ0 as

ε0 → 0. A similar result for N -body Schrödinger operators, but within the
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framework of [43], was proven by I. W. Herbst and B. Simon in [44, Theorem

4.1].

1.2 Bounds on eigenvalues for complex poten-

tials

Since the essential spectrum of H0 = −∆ + x1 covers the complete real axis,

isolated eigenvalues of H = H0 + V can only occur when H0 is perturbated

by a complex potential with nonzero imaginary part. The resulting operator

will not be normal, in particular not self-adjoint, such that many methods

which arise from the spectral theorem are no longer applicable. Beginning

with the work of A. A. Abramov, A. Aslanyan and E. B. Davies [1], there was

growing interest in bounds of eigenvalues of Schrödinger operators −∆ + V

where V is a complex valued potential, satisfying various other conditions, see

[1,26,27,34,63] to mention only a few examples. Among many useful tools for

the calculation of eigenvalue bounds is the Birman-Schwinger principle: Given

a potential V and multiplication operators W1,W2 satisfying V = W1W2

and |W1| = |W2|, then λ is an eigenvalue of H0 + V if and only if −1 is an

eigenvalue of

Y0(λ) = W1R0(λ)W2,

where R0(λ) = (H0 − λ)−1 is the resolvent. Note that Y0(λ) is bounded,

if −1 is an eigenvalue of Y0(λ), then ‖Y0(λ)‖ ≥ 1. Thus, eigenvalues of

H0 + V only occur in regions {λ ∈ C : ‖Y0(λ)‖ ≥ 1}. In order to proof

bounds on eigenvalues or characterize regions in C where no eigenvalues are

located it remains to calculate the norm of Y0(λ). In the case when H0 is the

one-dimensional Laplace operator on L2(R) the Birman-Schwinger operator

Y0(λ) is an integral operator with kernel

sgn(V (x))|V (x)|1/2 e−
√
λ|x−y|

2
√
λ
|V (y)|1/2.

Thus
‖V ‖2L1(R)

4|λ|
≥
∫
R2

|V (x)| e−Re(
√
λ)|x−y|

4|λ| |V (y)|dxdy ≥ 1.
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Skipping some technical details around the definition of
√
λ on C \ [0,∞[ this

proves:

Theorem 1.2.1 ([1, Theorem 4]). If V ∈ L1(R)∩L2(R) then any eigenvalue

λ ∈ C \ [0,∞[ of −∆ + V on L2(R) satisfies

|λ|1/2 ≤ ‖V ‖L1(R)/2.

When H0 = −∆ +x1, this approach becomes more subtle since the kernel

of R0(λ) = (H0 − λ)−1 has a more complicated structure. So far bounds on

the eigenvalues of the complex perturbated Stark operator have only been

studied by E. Korotyaev and O. Safronov in [53]. There, V is a complex

valued function in L∞(R3) such that∫
R3

|V (x)|r dx <∞. (1.4)

for some r > 0. Using the representation of e−itH0 as the product

e−itH0 = e−it3/12 e−itx1/2 eit∆ e−itx1/2

for all t ∈ R, see [53, Proposition 3.1], one can write the resolvent R0(λ) =

(H0 − λ)−1 as an integral operator with kernel

e−3iπ/4

(4π)3/2

∫ ∞
0

ei|x−y|2/(4t) e−it3/12 eitΛ tζ−1 dt

t3/2

for all x, y ∈ R3, Reζ > 3/2 and λ ∈ C+ := {λ ∈ C : Imλ > 0}, where

Λ = λ − (x1 + y1)/2, see [53, Proposition 3.1]. That way the norm of the

Birman-Schwinger operator Y0(λ) can be estimated by

‖Y0(λ)‖ ≤ C

(1 + |λ|)1/4

(∫
R3

(1 + |x|)4|V (x)|dx+ ‖V ‖L2(R3)

)
(1.5)

for some constant C > 0 which shows

Theorem 1.2.2 ([53, Theorem 1.6]). Let V ∈ L∞(R3), then there exists a

constant C > 0 such that all eigenvalues λ ∈ C\R of the operator −∆+x1+V
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on L2(R3) satisfy

|λ| ≤ C
(∫

R3

(1 + |x|)4|V (x)|dx+ ‖V ‖L2(R3)

)4

. (1.6)

Note that by Hölder’s inequality

∫
R3

(1 + |x|)4|V (x)|dx+ ‖V ‖L2(R3) ≤ Cp
(∫

R3

(1 + |x|)p|V (x)|2 dx

)1/2

for some constant Cp, p > 11, such that the right hand side of (1.6) is actually

bounded under the assumption (1.4). Moreover, it can be shown that Y0(λ)

is in the S2r-Schatten class for r > 3/2, see [53, Theorem 6.4], i.e.

‖Y0(λ)‖2rS2r = Tr (Y0(λ)∗Y0(λ))r <∞.

Thus, the perturbation determinant

Dn(λ) = detn (I + Y0(λ))

is defined for any n ≥ 2r and λ ∈ C \ R which gives a representation of the

eigenvalues λ as zeros of an analytic function. This analytic function then

can be treated with methods from function theory. From (1.5) it follows that

D5(λ) = 1 +O(|λ|−5/4) as |λ| → ∞ in C+ := {λ ∈ C : Imλ > 0} and since

|D5(λ)| = |det5 (I +X)| ≤ e
Cp‖X‖pSp

for any X ∈ Sp, where 4 < p ≤ 5 with some constant Cp > 0, see [53,

Proposition 2.1], D5(λ+iε) is bounded by a family of functions e
Cp‖Y0(λ+iε)‖Spp .

Lemma 1.2.1 ([53, Proposition 3.11]). Let a be an analytic function on the

upper half plane C+ := {λ ∈ C : Imλ > 0} such that

a(λ) = 1 + o(|λ|−1)

as |λ| → ∞ in C+. Suppose that there is a family of functions fε ∈ L1(R),
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ε ∈]0, ε0[ for some ε0 > 0 satisfying

|a(λ+ iε)| ≤ e fε(λ)

for all λ ∈ R, then the zeros (λj) of a, appearing in this sequence according

to their multiplicity, satisfy

∑
j

| Imλj | ≤
1

2π
sup

0<ε<ε0

∫
R
fε(λ) dλ.

Choose fε(λ) = Cp‖Y0(λ+ iε)‖pSp , then by estimating the L1(R)-norm of

fε as in [53, Theorem 3.10] one obtains:

Theorem 1.2.3 ([53, Theorem 1.1]). Let V be a complex valued, bounded

function such that (1.4) holds with r = p/(p− 2) for some 4 < p ≤ 5, then

the eigenvalues (λj) of the operator −∆ + x1 + V on L2(R3) satisfy

∑
j

| Imλj | ≤ Cp

((∫
R3

|V (x)|p/2 dx

)2

+

(∫
R3

|V (x)|p/(p−2) dx

)p−2
)

for some constant Cp > 0. Thereby the eigenvalues appear in the sum as

often according to their multipicity.

With a few modifications it is possible to prove bounds for slower decaying

potentials. If q > 1, then

∑
j

| Imλj |q ≤ Cp,q
(∫

R3

|V (x)|p/2 dx

)2q/(p−3)

(1.7)

for each p with 4 < p < q + 3, q > 1, and a constant Cp,q > 0 as long as V is

a bounded complex valued potential such that the right hand side in (1.7) is

bounded.

When restricting to potentials that are exponential decreasing in the

direction of the negative x1-axis, i.e.∫
R3

|V (x)|p/2 τ(x) dx <∞ (1.8)
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where p > 5 and τ(x) := (1+e−px1/2)(1+|x1|)2, the perturbation determinant

Dn(λ) behaves as 1 + o(|λ|−2) as |λ| → ∞ in the corner {λ ∈ C : Reλ ≤
α + ε, Imλ ≥ −ε} for α, ε > 0, see [53, Theorem 8.13]. A refined estimate

on ‖Y0(λ)‖Sp then allows to prove a bound on the number of zeros of Dn(λ)

within {λ ∈ C : Reλ ≤ α, Imλ ≥ 0} and thus gives a bound on the number

of eigenvalues of −∆ + x1 + V in that half plane.

Theorem 1.2.4 ([53, Theorem 1.4]). Let V be a complex valued, bounded

function such that (1.8) holds for a fixed p > 5 and δ > 0. For α > 0 denote

by N(α) the number of eigenvalues of −∆ + x1 + V on L2(R3) located in the

half plane {λ ∈ C : Reλ < α}. Then there is a constant Cα,p,δ > 0 such that

N(α) ≤ Cα,p,δ
(∫

R3

|V (x)|p/2 τ(x) dx

)2(1+δ)

. (1.9)

A combination of theorem 1.2.2 and theorem 1.2.4 thus yields that the

total number of eigenvalues of −∆+x1 ++V on L2(R3) is finite for potentials

satisfying both regularity conditions (1.4) and (1.8). The total count of the

eigenvalues is then bounded by (1.9) where α is equal to the expression on

the right hand side in (1.6).

1.3 Definition of the Stark Laplacian and gen-

eral spectral properties

So far the Stark-Laplacian −∆ +E · x for E, x ∈ Rd has not been studied on

some domains Ω ⊂ Rd equipped with either Dirichlet or Neumann boundary

conditions. Since the spectral properties of this operator are independet

of the direction of E, we choose E = ε0(1, 0, . . . , 0)T with some coupling

constant ε0 > 0 and consider

Hε0 = −∆ + ε0x1.
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Throughout this chapter we will use the notation x = (x1, x⊥) ∈ R× Rd−1.

We define Hε0 via its quadratic form

hε0 [u] =

∫
Ω

|∇u|2 d(x1, x⊥) + ε0

∫
Ω

x1|u|2 d(x1, x⊥)

either on d[hε0 ] = W 1
2 (Ω), where

W 1
2 (Ω) = {u ∈ L2(Ω) : ∂ju ∈ L2(Ω), j = 1, . . . , d}

for Neumann boundary conditions, or on d[hε0 ] = W̊ 1
2 (Ω), that is the closure

of C∞0 (Ω) with respect to the norm

‖u‖2W 1
2 (Ω) = ‖u‖2L2(Ω) +

d∑
j=1

‖∂ju‖2L2(Ω),

for Dirichlet boundary conditions. Both forms are densely defined and

closed. If, in addition, Ω is bounded from below along the direction of the

Stark-potential, that is

bΩ := inf
{
x1 ∈ R : ∃x⊥∈Rd−1 (x1, x⊥) ∈ Ω

}
(1.10)

is bounded from below, then

hε0 [u] ≥ ε0bΩ
∫

Ω

|u|2 d(x1, x⊥)

and hε0 is semibounded from below. In that case, both quadratic forms

give rise to the self adjoint operators HN
ε0 (Ω) and HD

ε0(Ω) where HN
ε0 (Ω)

corresponds to hε0 with d[hε0 ] = W 1
2 (Ω) and HD

ε0(Ω) corresponds to hε0 with

d[hε0 ] = W̊ 1
2 (Ω).

Since there is a compact embedding W̊ 1
2 (Ω) ↪→ L2(Ω) for any domain Ω

with finite Lebesgue measure |Ω| (cf. Rellichs Theorem), the spectrum of

HD
ε0(Ω) is purely discrete and accumulates to infinity only. More precisely, it

holds that σess(H
D
ε0(Ω)) = ∅.

In the case of Neumann boundary conditions one needs additional as-

sumptions on Ω. Let Ω ⊂ Rd be open, then Ω has the W 1
2 -extension property
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if there is a linear bounded operator E : W 1
2 (Ω) → W 1

2 (Rd) such that

(Eu)(x) = u(x) for all u ∈ W 1
2 (Ω) and almost any x ∈ Ω. This condition

corresponds to geometric conditions on the boundary ∂Ω of Ω. For instance,

it is known that all Ω with Lipschitz boundary satisfy the W 1
2 -extension prop-

erty. If Ω has the W 1
2 -extension property, then there is a compact embedding

W 1
2 (Ω) ↪→ L2(Ω) and again σess(H

N
ε0 (Ω)) = ∅.

In what follows we arrange the eigenvalues of HN
ε0 (Ω) and HD

ε0(Ω) to be

monotonic increasing and denote the increasing sequence of eigenvalues of

HN
ε0 (Ω) by (µj(Ω; ε0))j∈N, respectively by (λj(Ω; ε0))j∈N for HD

ε0(Ω). Here

any eigenvalue appears in the sequences according to its multiplicity.

If ε0 = 0, the case of the classical Laplace operator, the eigenvalues do not

depend on the position or orientation of Ω in Rd. This symmetry is broken

by the Stark potential and the eigenvalues λj(Ω, ε0) or µj(Ω, ε0) are shifted

when Ω is moved along the x1-direction.

Lemma 1.3.1. Let Ω be open such that HD
ε0(Ω), respectively HN

ε0 (Ω) has

pure discrete spectrum. For h ∈ Rd denote by Ω + h := {x+ h : x ∈ Ω} the

image of Ω under the translation by h, then

λj(Ω + h, ε0) = λj(Ω, ε0) + h1ε0,

respectively

µj(Ω + h, ε0) = µj(Ω, ε0) + h1ε0

where h1 = h · (1, 0, . . . , 0)T is the component of h along the x1-direction.

Proof. Let u ∈ W̊ 1
2 (Ω) be a solution of

(−∆ + ε0x1)u = λj(Ω, ε0)u,

then ũ(x) := u(x− h) satisfies the Dirichlet boundary condition on ∂(Ω + h)

and

(−∆ + ε0x1)ũ = (−∆ + ε0(x1 − h1))u+ h1ε0u

= (λj(Ω, ε0) + h1ε0)u

= (λj(Ω, ε0) + h1ε0)ũ.



CHAPTER 1. INTRODUCTION 15

Thus, ũ ∈ W̊ 1
2 (Ω + h) is a solution of the eigenvalue equation on Ω + h with

eigenvalue

λj(Ω + h, ε0) = λj(Ω, ε0) + h1ε0.

In the case of Neumann boundary conditions we follow the same arguments

for u ∈W 1
2 (Ω) and µj(Ω, ε0).

As in the case of the classical Laplace operator the eigenvalues scale

when scaling the domain. While doing so, we additionally have to adjust the

coupling constant by the right factor.

Lemma 1.3.2. Let Ω be open such that HD
ε0(Ω), respectively HN

ε0 (Ω) has

pure discrete spectrum. For α > 0 let αΩ := {α · x : x ∈ Ω} be the scaled

domain, then

λj(αΩ, α−3ε0) =
1

α2
λj(Ω, ε0),

respectively

µj(αΩ, α−3ε0) =
1

α2
µj(Ω, ε0).

Proof. Let u ∈ W̊ 1
2 (Ω) be a solution of

(−∆ + α−3ε0x1)u = λj(Ω, ε0)u,

then ũ(x) := u(x/α) satisfies the Dirichlet boundary condition on ∂(αΩ) and

(−∆ + α−3ε0x1)ũ =
1

α2
(−∆ + ε0x1/α)u =

1

α2
λj(Ω, ε0)u =

1

α2
λj(Ω, ε0)ũ.

Thus, ũ ∈ W̊ 1
2 (αΩ) is a solution of the eigenvalue equation on αΩ with

eigenvalue

λj(αΩ, α−3ε0) =
1

α2
λj(Ω, ε0).

In the case of Neumann boundary conditions the arguments do not change.

In the later chapters we will make use of a slightly different formulation

of these statements. A consequence of Lemma 1.3.2 is that

|Ω|2/d λj(Ω, |Ω|−3/dε0)
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does not depend on the volume |Ω| of Ω ⊂ Rd. For a translational invariant

term we introduce the x1-component of the center of mass

mx1(Ω) :=

∫
Ω

x1 dx.

From Lemma 1.3.1 we then obtain that

|Ω|2/d λj(Ω, |Ω|−3/dε0) + |Ω|−1/dε0mx1
(Ω) (1.11)

additionally does not depend on the position of Ω in Rd.

1.4 Airy functions and Airy transform

The Airy transform was first introduced by J. E. Avron and I. W. Herbst in

[10]. Using this transformation the operator −∆ + ε0x1 can be transformed

into a multiplication operator in the same sense as −∆ can be transformed

into the multiplication operator u 7→ |x|2u via the Fourier transform. Before

introducing this transformation we want to summarize some bounds on the

Airy functions which will be useful later.

1.4.1 Bounds on the Airy functions

The Airy function may be defined as the decreasing solution of

−u′′ + ε0xu = 0.

More precisely, the differential equation has two linearly independent solutions.

The solution satisfying u→ 0 as x→ +∞ and

u(0) =
1

32/3Γ(2/3)

is called Airy function of the first kind and denoted by Ai. The remaining

solution, denoted by Bi, is the Airy function of the second kind. Both of

these functions have multiple representations as series or improper integrals.

We refer to [2] for a complete survey or [83] for more details. For the sake of
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Figure 1.1: Plots of the Airy functions Ai and Bi (left figure), respectively
Ai and Ai′ with their envelopes from (1.12) and (1.13) (right figure).

completeness, we want to summarize the most important properties for our

survey: On the positive half of the real line Ai is exponentially decreasing,

on the negative half Ai remains oscillating and behaves as

Ai (−x) ∼ cos (ζ − π/4)√
π x1/4

(1.12)

for ζ = 2x3/2/3 as x→ +∞ (see [2, 10.4.60] or [83, (14.5.54)]). For Ai′ one

obtains that

Ai′ (−x) ∼ x1/4 sin (ζ − π/4)√
π

(1.13)

(see [2, 10.4.62] or [83, (14.5.55)]). These asymptotic formulas can be used to

prove (sharp) bounds on Ai or Ai′. Some of these bounds, as e.g.

|Ai (−x)| ≤ 1√
π
x−1/4 (1.14)

if x ≥ 0, can be found in [58] which might not be the first reference for (1.14),

but contents a simple proof of (1.14) using Sonin functions : If f is a solution

of some ordinary differential equation

f ′′ + a(x) f ′ + b(x) f = 0
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with positive b, then the so-called Sonin function S(x) is given by

S(x) = f2(x) +
(f ′(x))2

b(x)
.

It is easy to see that S is an envelope of f2 coinciding with it in all local

maxima. The derivative of S is given by

S′(x) = −(2a(x)b(x) + b′(x))
(f ′(x))2

b2(x)
,

thus, the sign of S′ depends only on a and b. Moreover, if S′ > 0, then

f2(x) ≤ S(x) ≤ lim
x→∞

S(x).

That way (1.14) follows from (1.12) when f(x) = x1/4 Ai (−x) such that

S(x) = f2(x) + 16x2/(16x3 + 5) is increasing. For the sake of completeness

we also want to sketch the proof of

|Ai′ (−x)| ≤ 1√
π

(1 + x2)1/8 (1.15)

which somehow is missing in the literature, at least with the explicite constant

1/
√
π. Note that the inequality |Ai′ (−x)| ≤ x1/4/

√
π is violated for x = 0

as well as in a small neighbourhood of x = 0. Consider f(x) = (1 +

x2)−1/8 Ai′ (−x) which is a solution of

f ′′ − 2 + x2

2x+ 2x3
f ′ +

x(16− 7x+ 32x2 + 16x4)

16(1 + x2)2
f = 0

where 16−7x+32x2+64x4 > 0 for x ≥ 0. The derivative of the corresponding

Sonin function then satisfies

S′(x) =
16 + 32x2 − 21x3 + 16x4

16(1 + x2)3

(f ′)2

b2

and, again, 16+32x2−21x3 +16x4 > 0 for x ≥ 0. Finally from (1.13) follows

that

f2(x) ≤ S(x) ≤ 1

π
.
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Although (1.14) and (1.15) capture the right asymptotical behaviour of Ai

and Ai′, their oscillatory nature is not depicted. Using again (1.12), one

can improve (1.14) with a more careful analysis of the Airy function and its

corresponding differential equation as done by I. Krasikov:

Lemma 1.4.1 ([58, Lemma 13]). Suppose f satisfies the differential equation

f ′′ + b2(x) f = 0

where b is twice differentiable and b > 0 on some interval I. If g(x) =

f(x)
√
b(x), then for each x ∈ R there is θx ∈ [−1, 1] such that

g(x) = c1 sin (B(x)) + c2 cos (B(x)) + θx

∫ x

a

∣∣∣∣3(b′(t))2 − 2b(t)b′′(t)

4(b(t))3
g(t)

∣∣∣∣ dt

for all a ∈ I, provided the integral exists. Here B(x) =
∫ x
a
b(t) dt is a

primitive function of b and c1, c2 ∈ R are some constants.

From that one obtains

Ai (−x) =
cos (ζ − π/4)√

πx1/4
+ θx

5

24π1/2x7/4
, ζ = 2x3/2/3, (1.16)

for all x ≥ 0 with some constant |θx| ≤ 1 which depends on x. The key

to Lemma 1.4.1 is the substitution g = f
√
b which already captures the

asymptotic of Ai in (1.14). The resulting equation for g is then solved by the

trigonometric functions sin and cos where one chooses the solution according

to (1.12). In view of (1.15), a corresponding bound for the derivative Ai′

should follow from a substitution g = f/
√
b, thus, we modify Lemma 1.4.1

as follows:

Lemma 1.4.2. Suppose f satisfies the differential equation

f ′′ − 2
b′(x)

b(x)
f ′ + b2(x) f = 0 (1.17)

where b is twice differentiable and b > 0 on some interval I. If g(x) =
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f(x)/
√
b(x), then for each x ∈ R there is θx ∈ [−1, 1] such that

g(x) = c1 sin (B(x)) + c2 cos (B(x)) + θx

∫ x

a

∣∣∣∣5(b′(t))2 − 2b(t)b′′(t)

4(b(t))3
g(t)

∣∣∣∣2 dt

for all a ∈ I, provided the integral exists. Here B(x) =
∫ x
a
b(t) dt is a

primitive function of b and c1, c2 ∈ R are some constants.

Proof. If f is a solution of (1.17), then g(x) = f(x)/
√
b(x) satisfies

g′′ − b′(x)

b(x)
g′ + b2(x) g(1− ε(x)) = 0

where

ε(x) =
5(b′(x))2 − 2b(x)b′′(x)

4b4(x)
.

The solution of the homogeneous problem g′′0 − (b′/b)g′0 + b2g0 = 0 is then

given by

g0(x) = c1 sin (B(x)) + c2 cos (B(x))

where B(x) =
∫ x
a
b(t) dt. Formally, we treat εb2g as an inhomogenity and

search for a particular solution with variation of constants which yields

g(x) = c1 sin (B(x)) + c2 cos (B(x)) +

∫ x

a

1

b(t)
sin (B(t)) ε(t)b2(t)g(t) dt

with ∫ x

a

1

b(t)
sin (B(t)) ε(t)b2(t)g(t) dt =

∫ x

a

ε(t)b(t)g(t) dt

= θx

∫ x

a

∣∣∣∣5(b′)2 − 2bb′′

4b3
g(t)

∣∣∣∣ dt.

Let f(x) = Ai′ (−x), then f satisfies (1.4.2) with b(x) =
√
x, thus

g(x) =
Ai′ (−x)

x1/4
= c1 sin (B(x)) + c2 cos (B(x)) + θx

∫ ∞
x

∣∣∣∣ 7

16t5/2
g(t)

∣∣∣∣ dt.
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From (1.15) we obtain

|g(t)| ≤ 1

t1/4
(1 + t2)1/8

√
π

≤ 1√
π

(
1

t1/4
+ 1

)
,

thus

Ai′ (−x) =
x1/4 sin (ζ − π/4)√

π
+ θx

(
7

24π1/2x5/4
+

7

28π1/2x3/2

)
(1.18)

holds for all x ≥ 0.

1.4.2 Airy transform and properties

Let S(R) be the space of all Schwartz functions on R, then we can introduce

the Airy transform

A[u](z) = ε
1/3
0

∫
R

Ai
(
ε

1/3
0 (x− z)

)
u(x) dx

for any u ∈ S(R). Since∫
R

Ai (x− z) Ai (z − x̃) dz = δ(x− x̃),

we can extend A to an unitary mapping on L2(R), see [10, Theorem 1.1].

Furthermore, integration by parts and using the differential equation for Ai

yields that

A
[
− d2

dx2
u(x) + ε0xu(x)

]
(z) = ε0zA[u](z)

for all u ∈ S(R). In that sense the one-dimensional operator can be rewritten

as

− d2

dx2
+ ε0x = A−1ε0zA.

If u ∈ S(Rd), d > 1, we apply the Airy transform along the direction of the

Stark potential. For the remaining components we use the Fourier transform
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and set

A[u](z1, z⊥)

=
ε

1/3
0

(2π)(d−1)/2

∫
R×Rd−1

e−i x⊥z⊥ Ai
(
ε

1/3
0 (x1 − z1)

)
u(x1, x⊥) d(x1, x⊥).

(1.19)

As above A can be extended to an unitary mapping on L2(Rd) where

−∆ + ε0x1 = A−1(ε0z1 + |z⊥|2)A.

1.5 Structure of this work and Main Theo-

rems

As for the classical Laplacian operator the structure of the Stark operators

spectrum on a domain with either Dirichlet or Neumann boundary conditions

is purely discrete. This gives rise to several problems related to the eigenvalue

sequences. But unlike in the case of the classical Laplacian, these problems

were not addressed so far and are studied in what follows:

The structure of this work is two-fold. In the first part we want to deal

with the so-called Riesz means

Trγ
(
Hi
ε0(Ω)− Λ

)
:=
∑
j∈N

(Λ− λj(Ω; ε0))
γ
+,

i ∈ {D,N}. Using the Airy transform from above, we follow Berezin’s

approach of decomposing the free wave to the orthonormal basis of eigenfunc-

tions in Chapter 2. This gives a bound in the case γ = 1 in terms of integrals

over the Airy function. Estimating the envelope of the Airy function from

above, our result can be compared to the Lieb-Thirring inequality obtained

by interpreting the electric field term ε0x1 as a potential (cf. Corollary 2.1.1

and Corollary 2.1.2). Additionally, our bound can be improved by subtracting

terms of lower order in Λ which is shown in Theorem 2.2.2 or Theorem 2.2.3.

In Chapter 3 we follow P. Kröger’s test function arguments, respectively
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the averaging principle from E. M. Harrell and J. Stubbe in order to prove

corresponding bounds on the Neumann eigenvalues, see Corollary 3.0.1.

Chapter 4 is dedicated to the case γ = 0 which is the counting function

of all eigenvalues below Λ. Our starting point will be an inequality which we

reproduce from A. Pushnitski and V. Sloushch in Theorem 4.1.1. From that,

we apply techniques known from the study of the classical Laplacian operator

on domains, such as decomposition on product domains (Theorem 4.2.1),

the Dirichlet-Neumann bracketing (Theorem 4.3.2) or Glazman’s Lemma in

order to prove inequalities between the Dirichlet and Neumann eigenvales

(Theorem 4.4.1).

In the second part of this work we want to approach the Faber-Krahn

inequality for the Stark Laplacian. Unlike the classical Laplacian operator, the

Stark Laplacian lacks of symmetry, thus, symmetrisation techniques can only

be applied perpendicular to the direction of the electric field. Additionally,

the spectrum depends on the position of the domain. This already restricts

the class of domains for which minimizers for the first eigenvalue exists.

However, in Theorem 5.0.1 we prove that minimizers exist among convex

domains in R2 or R3 with fixed area and center of mass. In order to gain

some idea of how this minimizing domains might look like, we close our

work with numerical experiments based on a gradient descent. The necessary

Hadamard-type formula for the change of eigenvalues is shown in Theorem

6.2.4, whereas our candidates for optimal domains are plotted in Figure 6.5.
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Part I

Spectral estimates for the

Stark Laplacian
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Chapter 2

Berezin-Li-Yau-Type

inequalities for Dirichlet

Eigenvalues

Let Ω ⊂ Rd be an open domain. We consider the monotonic sequence

(λj(Ω, ε0))j∈N of eigenvalues of the Stark Laplacian HD
ε0(Ω) = −∆ + ε0x1

with Dirichlet boundary conditions as defined in Section 1.3 and want to

study the so-called Riesz means given by

Trγ
(
HD
ε0(Ω)− Λ

)
:=
∑
j∈N

(Λ− λj(Ω; ε0))
γ
+.

Here and throughout the rest of this work, x± = (|x| ± x)/2 denotes the

positive or negative part of real numbers or functions. Even in the simplest

case ε0 = 0, where our operator coincides with the Dirichlet Laplacian, the

eigenvalues on the right hand side can only be computed explicitely for a

very special shapes of Ω such as balls, rectangles or certain triangles. For

more arbitrary shapes one focuses on estimating the Riesz means in terms of

27
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the phase space volume

1

(2π)d

∫ ∫
Ω×Rd

(|ξ|2 − Λ)γ− dξdx = Lcl
γ,d|Ω|Λγ+d/2

where

Lcl
γ,d =

Γ(γ + 1)

(4π)d/2 Γ(γ + 1 + d/2)
(2.1)

is known as the classical Lieb-Thirring constant. Indeed, the phase space

volume is the asymptotical limit as Λ approches to +∞, i.e.∑
j∈N

(Λ− λj(Ω; 0))γ+ = Lcl
γ,d|Ω|Λγ+d/2 + o(Λγ+d/2) (2.2)

as Λ → +∞. This is the well-known Weyl asymptotics and was already

shown in 1912 by H. Weyl in [92]. Strictly speaking H. Weyl proved (2.2)

in the case γ = 0 where the Riesz means are just the counting function

N0(Ω; Λ) = #{λj(Ω; 0) ≤ Λ} of all eigenvalues below Λ. From there (2.2)

follows if one notes

∑
j∈N

(Λ− λj(Ω; 0))γ+ = γ

∫ Λ

0

(Λ− t)γ−1td/2 dt,

whereas integrating the right hand side in (2.2) gives

Lcl
0,d|Ω|γ

∫ Λ

0

(Λ− t)γ−1td/2 dt = Lcl
0,d|Ω|Λγ+d/2γ

Γ(γ)Γ(d/2 + 1)

Γ(γ + d/2 + 1)
= Lcl

γ,d|Ω|.

In the literature this argument is known as the Lieb-Aizenman trick [4;

33, Section 5.1.1]. Besides the asymptotical result (2.2) one is interested in

estimates of the form∑
j∈N

(Λ− λj(Ω; 0))γ+ ≤ Lcl
γ,d|Ω|Λγ+d/2. (2.3)

This was first shown in 1972 by F. A. Berezin [11; 33, Section 3.5.1] in the

case γ ≥ 1. For γ ≥ 0 (2.3) was shown by G. Pólya in 1961 [33, Theorem 3.23;

77] if Ω is a tiling domain. This result can be extended to cylinders over tiling
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domains, see [62, Theorem 2.8], but the famous Pólya conjecture, suggesting

that (2.3) holds for any bounded set Ω ⊂ Rd and all γ ≥ 0, remains open to

this day. Using the Legendre transform in Λ in (2.3) for γ = 1, one obtains

that
N∑
j=1

λj(Ω; 0) ≥ d

d+ 2
(Lcl

0,d|Ω|)−2/dN1+2/d. (2.4)

The latter was shown by P. Li and S. T. Yau in 1983 by other means (see

[33, Section 3.5.2; 68]) and is therefore known as the Li-Yau inequality. From

there, by applying Hölders inequality

N∑
j=1

λj(Ω; 0) ≤

(
N∑
j=1

λj(Ω; 0)γ

)1/γ

·N1/γ̃

where γ−1 + γ̃−1 = 1 and passing to the limit γ →∞ respectively γ̃ → 1, it

follows that

∑
j∈N

(Λ− λj(Ω; 0))γ+ ≤
(

1 +
2

d

)d/2
Lcl
γ,d|Ω|Λγ+d/2 (2.5)

for γ = 0 and, again by the Lieb-Aizenman trick, for all γ ≥ 0 (see [90] for

details).

Bounds of the form (2.3) and (2.5) can be seen as special cases of a much

larger class of inequalities known in the literature as Lieb-Thirring inequalities :

We consider an Schrödinger-type operator of the form H(V ;α) = −∆−αV (x)

on L2(Rd for α ≥ 0 and suitable potential V . Usually such operators are

definded via their quadratic forms

h[u, u] =

∫
Rd
|∇u(x)|2 + αV (x)|u(x)|2 dx

for u ∈W 1
2 (Rd)∩L∞(Rd). If α = 0, then H(V ;α) has pure essential spectrum

σess(H(V ;α)) = [0,∞[ which is stable as α increases if V is relatively compact

in a form sense, i.e.∣∣∣∣∫
Rd
V (x) |u(x)|2 dx

∣∣∣∣ ≤ ε∫
Rd
|∇u(x)|2 dx+ C(ε) ‖u‖2
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holds true for all ε > 0 and u ∈W 1
2 (Rd) with some positive constant C(ε). If

h[u, u] < 0 for some coupling constant α > 0 and a test function u ∈W 1
2 (Rd),

the operator H(V ;α) will have negative spectrum consisting of a sequence of

eigenvalues (λj(V ;α))j∈N with zero as the only possible accumulation point.

A more detailed introduction of this subject can be found in [13, Chapter 9

and Chapter 10] or [81, Chapter XIII]. As above, one is interested in bounds

on the moments of these eigenvalues

Trγ
(
Hγ
−(V ;α)

)
:=
∑
j∈N

(−λj(V ;α))
γ

in terms of the phase-space average

1

(2π)d

∫
Rd

∫
Rd

(|ξ|2 − αV (x))γ− dx dξ = Lcl
γ,d α

γ+d/2

∫
Rd

(V (x))
γ+d/2
+ dx

where Lcl
γ,d is the classical constant from (2.1). The Weyl asymptotic for this

class of operators reads as

∑
j∈N

(−λj(V ;α))γ = Lcl
γ,d α

γ+d/2

∫
Rd

(V (x))
γ+d/2
+ dx (1 + o(1)), α→∞,

(2.6)

which can be shown for V ∈ C∞c (Rd) and extended other to classes of

potentials by approximation arguments [70]. Thus, one is interested in

proving bounds of the form

∑
j∈N

(−λj(V ;α))γ ≤ R(γ, d)Lcl
γ,d α

γ+d/2

∫
Rd

(V (x))
γ+d/2
+ dx (2.7)

with some positive constants R(γ, d) which we will comment below in more

detail. These inequalities have awoken the interest of many authors. An

almost complete survey over this topic can be found in [33] or [64] such that

we only focus on a brief summary. In 1976 E. H. Lieb and W. Thirring

established not only the type of notion, but also showed (2.7) for γ > 1/2 if

d = 1 and γ > 0 if d ≥ 2. On the other hand, results from M. S. Birman [12]

and B. Simon [84] disproved the validity of (2.7) in the cases 0 ≤ γ < 1/2,

if d = 1, and γ = 0, if d = 2. The remaining case in dimension d = 1 is



CHAPTER 2. BEREZIN-LI-YAU-TYPE INEQUALITIES 31

due to T. Weidl, in [91] it is shown that (2.7) holds for d = 1 and γ = 1/2.

The case γ = 0 for d ≥ 3 was independently proven by M. Cwikel [21],

E. H. Lieb [69] and G. V. Rozenblum [82] and therefore is also known as

Cwickel-Lieb-Rozenblum-bound.

Besides the validity of (2.7) one is interested in the sharp value of R(γ, d),

i.e. the smallest possible value if R(γ, d) such that (2.7) still holds. Due

to a result of M. Aizenman and E. H. Lieb [4] the sharp value of R(γ, d) is

monotonic decreasing in γ. More precisely, if (2.7) holds for a pair (γ, d),

then (2.7) also holds for any other pair (γ̃, d) if γ̃ ≥ γ and

R(γ̃, d) ≤ R(γ, d).

Apart from that, the problem appears to be challenging and many of the

sharp values of R(γ, d) remain still open. In the interest of simplification

we denote the sharp value of R(γ, d) also by R(γ, d) and summarize some of

the known facts: In d = 1 then R(1/2, 1) = 2 [45] and R(3/2, 1) = 1 [70],

respectively R(γ, 1) for γ ≥ 3/2 or

1 ≤ R(γ, 1) ≤ 2 (2.8)

for 1/2γ < 3/2. Besides (2.8) nothing is known about R(γ, 1) in that case.

For arbitrary dimension d ∈ N A. Laptev and T. Weidl [65] proved R(γ, 1) = 1

if γ ≥ 3/2. Alongside we know R(1, d) ≤ π/
√

3 (see [29] for the case d = 1

and [28] if d ≥ 1).

2.1 Approach to the leading order and com-

parison with Lieb-Thirring inequalities

As a first step we want to follow the proof of Berezin’s inequality for the

eigenvalues of the classical Laplacian operator. In this proof, the general idea

is to decompose the free wave solution e−ixz to the orthonormal basis (φj)j∈N

consisting of eigenfunctions φj of the Laplacian operator. Thereby, the coeffi-

cients 〈e−iz•, φj〉L2(Ω) coincide with the Fourier transforms of the φj . For the

Stark operator the free wave is given by the Airy functions Ai
(
ε

1/3
0 (x1 − z1)

)
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in the direction of the electric field and by e−ix⊥z⊥ in the perpendicular

directions. The projection of this solutions onto an eigenfunction φj gives

the Airy transform of φj . Thus, by replacing the Fourier transform with

the Airy transform introduced in Section 1.4.2, we obtain a bound for the

eigenvalues of Hε0 = −∆ + ε0x1 on L2(Ω), Ω ∈ Rd with dirichlet boundary

conditions on ∂Ω. In the final part of this section we want to compare our

result with the Lieb-Thirring inequality. Throughout this chapter we use

our usual decomposition x = (x1, x⊥) ∈ R× R⊥ in a component parallel to

the direction of the Stark potential, i.e. the x1-direction and the remaining

perpendicular components x⊥.

Let (φj)j=1,...,k be a sequence of orthonormal functions in L2(Ω), then

by Parseval’s inequality

k∑
j=1

|A[φj ](z)|2 =
ε

2/3
0

(2π)d−1

k∑
j=1

∣∣∣∣∫
Ω

e−ix⊥z⊥ Ai
(
ε

1/3
0 (x1 − z1)

)
φj(x) dx

∣∣∣∣2

=
ε

2/3
0

(2π)d−1

k∑
j=1

∣∣∣〈e−ix⊥z⊥ Ai
(
ε

1/3
0 (•1 − z1)

)
, φj
〉
L2(Ω)

∣∣∣2
≤ ε

2/3
0

(2π)d−1

∥∥e−i•⊥z⊥ Ai
(
ε0(•1 − z1)

)∥∥2

L2(Ω)

=
ε

2/3
0

(2π)d−1

∫
Ω

∣∣∣Ai
(
ε

1/3
0 (x1 − z1)

)∣∣∣2 dx. (2.9)

If λj = λj(Ω; ε0) is an eigenvalue of Hε0 with corresponding eigenfunction

φj , it follows that

λj = λj ‖φj‖2 = 〈Hε0φj , φj〉

= 〈A[Hε0φj ],A[φj ]〉 = 〈(ε0z1 + |z⊥|2)A[φj ],A[φj ]〉,

respectively using (2.9)∑
j∈N

(Λ− λj)+ =
∑
j∈N

(
Λ ‖A[φj ]‖2 − 〈(ε0z1 + |z⊥|2)A[φj ],A[φj ]〉

)
+
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=
∑
j∈N

(∫
Rd

(Λ− ε0z1 − |z⊥|2) |A[φj ](z)|2 dz

)
+

(2.10)

≤
∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∑
j∈N
|A[φj ](z)|2 dz

≤ ε
2/3
0

(2π)d−1

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∫
Ω

|Ai
(
ε

1/3
0 (x1 − z1)

)
|2 dxdz.

(2.11)

The expression on the right hand side can be simplified by computing the

integral over the d− 1 components of z⊥ which yields∫
Rd−1

(Λ− ε0z1 − |z⊥|2)+ dz⊥ = (Λ− ε0z1)
1+(d−1)/2
+

∫
Rd−1

(1− |z⊥|2)+ dz⊥

= (Λ− ε0z1)
(d+1)/2
+

π(d−1)/2

Γ((d+ 3)/2)
.

In summary we have shown

Theorem 2.1.1. Denote by (λj(Ω; ε0))j∈N the sequence of eigenvalues of

Hε0 = −∆ + ε0x1 on L2(Ω) for Ω ⊂ Rd with Dirichlet boundary conditions

on ∂Ω, then∑
j∈N

(Λ− λj(Ω; ε0))+

≤ L(d, ε0)

∫
R

(Λ− ε0z1)
(d+1)/2
+

∫
Ω

∣∣Ai
(
ε

1/3
0 (x1 − z1)

)∣∣2 d(x1, x⊥) dz1

(2.12)

with L(d, ε0) = ε
2/3
0 /((4π)(d−1)/2 Γ((d+ 3)/2)) holds for all Λ ∈ R.

Remark 2.1.1. If the domain Ω is shifted along the x1-direction, i.e. Ω is

replaced by Ω + he1, according to Lemma 1.3.1 the eigenvalues change by

ε0h and the left hand side of (2.12) behaves as∑
j∈N

(Λ− λj(Ω + h; ε))+ =
∑
j∈N

((Λ− ε0h)− λj(Ω; ε))+.

That way a shift of the domain corresponds to a shift of the bound Λ in
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(2.12). At the same time the right hand side of (2.12) behaves as∫
R

(Λ− ε0z1)
(d+1)/2
+

∫
Ω+h

∣∣Ai
(
ε

1/3
0 (x1 − z1

)∣∣2 dxdz1

=

∫
R

(Λ− ε0z1)
(d+1)/2
+

∫
Ω

∣∣Ai
(
ε

1/3
0 (x1 − (z1 − h)

)∣∣2 dxdz1

=

∫
R

(Λ− ε0(z1 + h))
(d+1)/2
+

∫
Ω

∣∣Ai
(
ε

1/3
0 (x1 − z1

)∣∣2 dxdz1

=

∫
R

((Λ− ε0h)− ε0z1)
(d+1)/2
+

∫
Ω

∣∣Ai
(
ε

1/3
0 (x1 − z1

)∣∣2 dxdz1.

Thus, (2.12) is translational invariant in the sense that neither the validity

nor the strength of (2.12) depends on the location of Ω.

An alternative approach to estimate
∑
j∈N (Λ− λj(Ω; ε0))+ is to simply

use the Lieb-Thirring inequality (2.7) for γ = 1 and

VΩ(x) =

Λ− ε0x1 if (x1, x⊥) ∈ Ω,

−∞ else.

Inserting this potential then yields

∑
j∈N

(Λ− λj(Ω; ε0))+ ≤ R(1, d)Lcl
1,d

∫
Ω

(Λ− ε0x1)
1+d/2
+ dx (2.13)

with some constant 1 ≤ R(1, d) ≤ 2 whose optimal value is still unknown.

Note that introducing new Dirichlet boundary conditions on ∂Ω increases

individual eigenvalues and thus lowers the sum on the right hand side in

(2.13). That way (2.13) holds for our Stark Laplacian HD
ε0(Ω).

For the rest of this section we aim at a comparison between (2.13) and

(2.12), thus, we have to make the order of Λ − ε0x1 in the integral on the
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right hand side of (2.12) more visible. Note that∫
R

(Λ− ε0z1)
(d+1)/2
+

∫
Ω

∣∣Ai
(
ε0(x1 − z1)

)∣∣2 dxdz1

=ε
−1/3
0

∫
Ω

dx (Λ− ε0x1)
(d+1)/2
+ �

�
∫ ∞
−ε−2/3

0 (Λ−ε0x1)+

(
1 +

ε
2/3
0

Λ− ε0x1
z1

)(d+1)/2

Ai2 (z1) dz1.

In this context capturing the order of Λ− ε0x1 in (2.12) requires an analysis

of

hd(a) = a(d+1)/2

∫ ∞
−a

(
1 +

z

a

)(d+1)/2

Ai2 (z) dz.

Lemma 2.1.1. For all a > 0 and d ∈ N is h′d(a) = d+1
2 hd−2(a).

Proof. The statement is a simple consequence from Leibnitz’ rule. Direct

computation yields

h′d(a) =
d+ 1

2
a(d−1)/2

∫ ∞
−a

(
1 +

z

a

)(d+1)/2

Ai2 (z) dz

− d+ 1

2
a(d−1)/2

∫ ∞
−a

z

a

(
1 +

z

a

)(d−1)/2

=
d+ 1

2
a(d−1)/2

∫ ∞
−a

(
1 +

z

a

)(d−1)/2

Ai2 (z) dz.

That way, bounds on hd(a) follow inductively by integrating the previous

bound. Starting with d = 1 we obtain

h′1(a) = h−1(a) =

∫ ∞
−a

Ai2(z) dz = aAi2(−a) + Ai′2 (−a),

and proceeding with (1.14) and (1.15), respectively (1.16) and (1.18), yields

h′1(a) ≤
√
a/π + r(a) where

r(a) =
1

π
·min

{
(1 + a2)1/2,

1

a
+

π1/2

2a1/2
+

37

288a5/2
+

1

16a3
+

7

48a11/4

}
.
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Thus, h′1 is of order a1/2, whereas the remainder is of class O(1), if a→ 0,

and o(a1/2), if a→∞. Integrating this bound and collecting all the constants

from (2.12) results in

Corollary 2.1.1. If d = 1, then

∑
j∈N

(Λ− λj(Ω; ε0))+ ≤
2

3π

∫
Ω

(Λ− ε0x1)
3/2
+ +R(Λ− ε0x1) dx (2.14)

where R is a positive function satisfying R ∈ O(1) as Λ − ε0x1 → 0 and

R ∈ o((Λ− ε0x1)3/2) as Λ− ε0x1 →∞.

Compared with (2.13) the bound (2.14) captures the right order in Λ,

but with the sharp constant of Lcl
1,1 = 2/(3π). Taking this approach one step

furher gives a bound in d = 3 with the correct asymptotics and again the

sharp constant of Lcl
1,2 = 1/(15π2):

Corollary 2.1.2. If d = 3, then

∑
j∈N

(Λ− λj(Ω; ε0))+ ≤
1

15π2

∫
Ω

(Λ− ε0x1)
5/2
+ +R(Λ− ε0x1) dx

where R is a positive function satisfying R ∈ O(1) as Λ − ε0x1 → 0 and

R ∈ o((Λ− ε0x1)5/2) as Λ− ε0x1 →∞.

Remark 2.1.2. Since

hd(0) =

∫ ∞
0

z(d+1)/2 Ai2 (z) dz > 0,

the bound hd(a) ≤ a(d+1)/2 cannot be true and will be violated at least in

a small neighbourhood of a = 0. Thus, any uniform bound we derive from

(2.12) will always contain lower order terms. Nevertheless, (2.12) is valuable

in dimension d = 1 since the sharp value of R(1, 1) in (2.13) is unknown.

2.2 Improvement of Berezin type inequalities

Despite the fact that the validity of (2.3) for 0 ≤ γ < 1 and arbitrary

domains remains open, many works focus on improving the inequality for
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γ ≥ 1. Due to the Weyl law (2.2), the right hand side in (2.3) cannot be

improved in terms of an uniform constant in the leading order without further

assumptions on the geometry of Ω or restricting the range of Λ. But (2.3)

may be improved by subtracting positive terms of lower order in Λ on the

right hand side. A first step in this direction was done by A. D. Melas [71],

improving (2.4) by

N∑
j=1

λj(Ω; 0) ≥ d

d+ 2
(Lcl

0,d|Ω|)−2/dN1+2/d +Md
|Ω|
I(Ω)

N (2.15)

where Md is some constant that only depends on the dimension d and

I(Ω) = min
y∈R

∫
Ω

|x− y|2 dx.

One objection of this result might be that the second term does not capture

the right order in N . In view of the second term of the Weyl asymptotics,∑
j∈N

(Λ− λj(Ω; 0))γ+

= Lcl
γ,d|Ω|Λγ+d/2 − 1

4
Lcl
γ,d−1|∂Ω|Λγ+(d−1)/2 + o(Λγ+(d−1)/2), (2.16)

the correct order, when formulated in the Li-Yau type way, should be N1+1/d.

This two term asymptotic formula was shown 1980 independently by V. Ja.

Ivrĭı [47] and R. B. Melrose [72] under additional geometric constraints of

Ω and its boundary. Note that some restrictions on ∂Ω are necessary since

otherwise the right hand side of (2.16) might be negative for fixed Λ > 0 and

domains with bounded area |Ω| but unbounded surface boundary measure

|∂Ω| as for instance the Koch snowflake in d = 2. Also, the quotient |Ω|/I(Ω)

in (2.15) does not make this circumstances clearly visible. The first result

capturing the correct order of Λγ+(d−1)/2 was shown by T. Weidl

Theorem 2.2.1 ([90, Theorem 2.1]). For each d ≥ 2 and γ ≥ 3/2 exists a
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constant ν(γ, d) such that

∑
j∈N

(Λ− λj(Ω; 0))γ+ ≤ Lcl
γ,d|ΩΛ|Λγ+d/2 − ν(γ, d)

4
Lcl
γ,d−1dΛ(Ω)Λγ+(d−1)/2

holds for any Ω ⊂ Rd and Λ > 0.

Here ΩΛ ⊂ Ω denotes the subset containing only intervalls (along some

fixed axis) of length less or equal than πΛ−1/2. I.e. for the x1-direction that

is

ΩΛ :=
⋃

x′∈Rd−1

ΩΛ(x′)× {x′}

if

ΩΛ(x′) :=
⋃

k∈κ(x′,Λ)

Jk(x′)

where Jk(x′) are the connected components, respectively intervals, of

Ω(x′) := {x1 ∈ R : (x1, x
′) ∈ Ω}

and κ(x′,Λ) is the set of indices for which the length of Jk(x′) is bounded

from above by πΛ−1/2. Note that κ(x′,Λ) is finite for almost every x′ ∈ Rd−1

as long as |ΩΛ| is finite and therefore

dΛ(Ω) :=

∫
Rd−1

#κ(x′,Λ) dx′

exists. In order to prove Theorem 2.2.1 one can make use of an estimate

for the eigenvalues of the one-dimensional Laplacian on the intervals Jk(x′)

and therefore reduce the problem to a spectral estimate for a Schrödinger

type operator with operator valued potential. This remaining part of the

problem can be treated with the help of Lieb-Thirring bounds as in Theorem

3.1 in [65], which restricts the result to the case γ ≥ 3/2. When searching

for inequalities for γ < 3/2, in particular γ = 1, the situation becomes even

less straightforward. In dimension two H. Kovař́ık, S. Vugalter and T. Weidl
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[54] proposed

N∑
j=1

λj(Ω; 0) ≥ 2π

|Ω|
N2 + αCΩ|Ω|−3/2N3/2−ε(N) + (1− α)

|Ω|
32I

N

for any α ∈]0, 1[ where CΩ is a constant that reflects some of the geometry

of the boundary ∂Ω and

ε(N) =
2√

log2 (2πN/c)
, c =

√
3π

14
10−11

reaching the order of the second term arbitrary close as N →∞. Their proof

is based on the proof of (2.4) by P. Li and S. T. Yau and uses a more careful

application of the bath tube principle. An alternative idea is to start with

the Berezin type variant (2.3) and to give more attention to the remainders

when applying Parseval’s inequality. This was carried out by H. Kovař́ık and

T. Weidl in [55]. The result is∑
j∈N

(Λ− λj(Ω; 0))+

≤ Lcl
1,d|Ω|Λ1+d/2 − Lcl

1,dK(Ω)σ(Ω)

(
σ(Ω)

|Ω|

)µ/(µ+2)

Λd/2+1/(µ+2)

where

K(Ω) =
2 + µ

µ
(4 + 4µ)−(2+2µ)/(2+µ)

for µ = µ(Ω) =
√
ch(Ω) and ch(Ω) is the constant in the Hardy inequality

commented below in more detail. Thereby the quantity

σ(Ω) = inf
0<β<Ri (Ω)

|Ωβ |
β

,

with Ri (Ω) for the inner radius of Ω, is related to the geometry of Ω.

For the rest of this section we follow their approach from [55] in order to

improve our bound (2.12). Beforehand, we also have to introduce additional

parameters related to the domain which somehow reflect the curvature of the

boundary and make further assumptions on Ω. As before we make use of the
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notation x = (x1, x⊥) ∈ R× Rd−1 for x ∈ Rd, d > 1. Along the x1-direction

consider the slices

Ω(x1) := {y ∈ Rd−1 : (x1, y) ∈ Ω}

for any x1 ∈ R. Note that by this definition Ω(x1) might be empty. On

every slice let Ωβ(x1) be the set of all points which are close to the boundary

∂Ω(x1). More precisely

Ωβ(x1) := {y ∈ Ω(x1) : δ⊥(y) < β},

where δ⊥(y) = dist (y, ∂Ω(x1)) is the euclidean distance of any y ∈ Ω(x1) to

the boundary ∂Ω(x1), measured in the d− 1-dimensional submanifold Ω(x1).

Finally let

Ωβ :=
⋃
x1∈R

Ωβ(x1).

In our proof we shall make use of

σ(Ω, z1) := inf
β>0

1

β

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx, (2.17)

as an additional restriction on Ω we will assume that

σ(Ω, z1) > 0

holds pointwise for any z1 ∈ R. Since∫
Ωβ+h

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx =

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − (z1 − h))

)
dx

for any β > 0, it follows that

σ(Ω + h, z1) = σ(Ω, z1 − h), (2.18)

which will be important for the fact that our inequality reflects the behaviour

of the eigenvalues while shifting the domain. If the slices Ω(x1) are convex,
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(2.17) can be expressed in terms of the inner radii

Ri (Ω(x1)) := sup
y∈Ω(x1)

dist(y, ∂Ω(x1))

since by [55, Lemma 4.2] infβ>0 |Ωβ(x1)|/β = |Ω(x1)|/Ri (Ω(x1)) holds for

convex domains and, thus,

σ(Ω, z1) =

∫
R

|Ω(x1)|
Ri (Ω(x1))

Ai2
(
ε

1/3
0 (x1 − (z1 − h))

)
dx1.

Another ingredient of our proof will be the Hardy inequality. Let Ω ⊂ Rd

be open and u ∈ W̊ 1
2 (Ω), then∫

Ω(x1)

|u(x1, x⊥)|2

δ2
⊥(x⊥)

dx⊥ ≤ ch(Ω(x1))

∫
Ω(x1)

|∇x⊥u(x1, x⊥)|2 dx⊥ (2.19)

holds for all x1 ∈ R. We will assume that the optimal constants ch(Ω(x1)) are

uniformly bounded, i.e. ch(Ω(x1)) ≤ ch(Ω) <∞ for all x1 ∈ R, respectively

inf
u∈W̊ 1

2 (Ω), u 6=0

∫
R
∫

Ω(x1)
|∇x⊥u|2 dx⊥dx1∫

R
∫

Ω(x1)
|u|2/δ2

⊥ dx⊥dx1
≥ 1

ch(Ω)
> 0. (2.20)

This holds true for instance if any slice Ω(x1) is convex (then ch(Ω) = 4) or

simply connected (then ch(Ω) ≤ 16), see [24] for a complete survey.

Theorem 2.2.2. Let Ω ⊂ Rd be an open bounded domain such that

σ(Ω, z1) := inf
β>0

1

β

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx > 0
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for all z1 ∈ R and (2.20) holds true, then∑
j∈N

(Λ− λj(Ω; ε0))+

≤ ε
2/3
0

(2π)d−1

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dxdz (2.21)

− ε
2/3
0

(2π)d−1

1

16 ch(Ω)
�

�
∫
Rd
σ2(Ω, z1)

(Λ− ε0z1 − |z⊥|2)+

(Λ− ε0bΩ)+

[∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)]−1

dz

for all Λ > ε0bΩ where

bΩ = inf {x1 ∈ R : Ω(x1) 6= ∅}

is the left border of Ω as defined in (1.10).

Note that with (2.18) in mind, one can easily see that (2.21) reflects the

behaviour of the eigenvalues when shifting the domain along the direction of

the Stark potential.

Proof. Fix Λ > 0 and let

n(Λ) := #{λj(Ω; ε0) : λj(Ω; ε0) < Λ}

be the counting function of all eigenvalues below Λ. For λj = λj(Ω; ε0) we



CHAPTER 2. BEREZIN-LI-YAU-TYPE INEQUALITIES 43

choose a sequence of orthonormal eigenfunctions φj . Then

∑
j≤n(Λ)

(Λ− λj) =
∑

j≤n(Λ)

∫
Rd

(Λ− ε0z1 − |z⊥|2) |A[φj ](z)|2 dz

=

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∑
j≤n(Λ)

|A[φj ](z)|2 dz

−
∫
Rd

(Λ− ε0z1 − |z⊥|2)−
∑

j≤n(Λ)

|A[φj ](z)|2 dz

=

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∑
j∈N
|A[φj ](z)|2 dz

−
∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∑
j>n(Λ)

|A[φj ](z)|2 dz

−
∫
Rd

(Λ− ε0z1 − |z⊥|2)−
∑

j≤n(Λ)

|A[φj ](z)|2 dz

(2.22)

where we have already seen that∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∑
j∈N
|A[φj ](z)|2 dz

≤ ε
2/3
0

(2π)d−1

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∫
Ω

|Ai
(
ε

1/3
0 (x1 − z1)

)
|2 dxdz,

cf. (2.11). For the lower order terms we want to estimate

R(Λ, z) =
∑

j>n(Λ)

|A[φj ](z)|2

from below. The last term on the right hand side will be omitted. Since
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(φj)j∈N is an orthonormal basis of L2(Ω), it follows that∑
j>n(Λ)

|A[φj ](z)|2 +
∑

j≤n(Λ)

|A[φj ](z)|2

=

∫
Ω

∣∣∣∣∣ ε
1/3
0

(2π)(d−1)/2
e−ix⊥z⊥ Ai

(
ε

1/3
0 (x1 − z1)

)∣∣∣∣∣
2

dx,

and from that by the Pythagorean theorem

R(Λ, z)

=

∫
Ω

∣∣∣∣∣ ε
1/3
0

(2π)(d−1)/2
e−ix⊥z⊥ Ai

(
ε

1/3
0 (x1 − z1)

)
−

∑
j≤n(Λ)

A[φj ](z)φj(x)

∣∣∣∣∣
2

dx

≥ 1

2

ε
2/3
0

(2π)d−1

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − z1

)
dx−

∫
Ωβ

∣∣∣∣∣ ∑
j≤n(Λ)

A[φj ](z)φj(x)

∣∣∣∣∣
2

dx

(2.23)

where in the last step we have used that Ωβ ⊂ Ω and |a− b|2 ≥ |a|2/2− |b|2

for each a, b ∈ C. We introduce the abbreviation

FΛ(z, x) =
∑

j≤n(Λ)

A[φj ](z)φj(x)

and note that FΛ(z, (x1, ·)) ∈ W̊ 1
2 (Ω(x1)) for each Λ > 0, z ∈ Rd and x1 ∈ R.

Hence we can make use of the Hardy inequality (2.19) in combination with

(2.20) and obtain∫
Ωβ

|FΛ(z, x)|2 dx =

∫
R

∫
Ωβ(x1)

|FΛ(z, x)|2dx⊥dx1

≤ β2

∫
R

∫
Ω(x1)

|FΛ(z, x)|2

δ2
⊥(x⊥)

dx⊥dx1 (2.24)

≤ β2 ch(Ω)

∫
R

∫
Ω(x1)

|∇x⊥FΛ(z, x)|2 dx⊥dx1
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where ch(Ω) = supx1∈R ch(Ω(x1)) (if Ω(x1) = ∅ we formally set ch(Ω(x1)) =

0). Recall that FΛ(z, x) is a linear combination of eigenfunctions, therefore∫
Ω

|∇x⊥FΛ(z, x)|2 dx =

∫
Ω

|∇xFΛ(z, x)|2 + ε0x1|FΛ(z, x)|2 dx

−
∫

Ω

∣∣∣∣ ∂∂x1
FΛ(z, x)

∣∣∣∣2 dx−
∫

Ω

ε0x1|FΛ(z, x)|2 dx

≤
∑

j≤n(Λ)

|A[φj ](z)|2 λj − ε0bΩ
∫

Ω

|FΛ(z, x)|2 dx.

With ∫
Ω

|FΛ(z, x)|2 dx =
∑

j≤n(Λ)

|A[φj ](z)|2

it follows that∫
Ωβ

|FΛ(z, x)|2 dx ≤ β2 ch(Ω)
∑

j≤n(Λ)

(λj − ε0bΩ) |A[φj ](z)|2.

Since λj < Λ for j ≤ n(Λ) and there are no eigenvalues below ε0bΩ, we

conclude from that∫
Ωβ

|FΛ(z, x)|2 dx ≤ β2 ch(Ω) (Λ− ε0bΩ)+

∑
j≤n(Λ)

|A[φj ](z)|2

= β2 ch(Ω) (Λ− ε0bΩ)+
ε

2/3
0

(2π)d−1

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx.
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Inserting this into (2.23) gives

R(Λ, z)

≥ ε
2/3
0 β

(2π)d−1
�

�

[
1

2β

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − z1

)
dx

−β ch(Ω) (Λ− ε0bΩ)+

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx

]

≥ ε
2/3
0 β

(2π)d−1

[
1

2
σ(Ω, z1)− β ch(Ω) (Λ− ε0bΩ)+

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1

)
dx

]
where in the last step we have used that

σ(Ω, z1) ≤ 1

β

∫
Ωβ

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx

for each β > 0 and z1 ∈ R. So far we have not made any assumptions on

β > 0. If we choose

β = β(z1) =
σ(Ω, z1)

4 ch(Ω)
(Λ− ε0bΩ)−1

+

[∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx

]−1

, (2.25)

which will be commented below, this yields

R(Λ, z) ≥ ε
2/3
0

(2π)d−1

σ2(Ω, z1)

16 ch(Ω)
(Λ− ε0bΩ)−1

+

[∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx

]−1

.

By inserting this into (2.22) we finally obtain our result.

Remark 2.2.1. Let

Ri (Ω(x1)) := sup
y∈Ω(x1)

dist(y, ∂Ω(x1))
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be the inner radius of each slice Ω(x1) and

Ri⊥(Ω) := sup
x1∈R

Ri (Ω(x1))

where we set Ri (Ω(x1)) = 0 if Ω(x1) is empty. We want to show that our

choice of β(z1) in (2.25) satisfies

β(z1) ≤ Ri⊥(Ω)

4
(2.26)

which means that Ωβ indeed consists of points close to the boundary of Ω.

Since β = Ri⊥(Ω) is also a valid choice in the definition of Ωβ or σ(Ω, z),

it follows that

1

Ri⊥(Ω)

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx ≥ σ(Ω, z1),

thus, our choice of β(z1) in (2.25) satisfies

β(z1) ≤ 1

4 ch(Ω)
(λ1 − ε0bΩ)−1

+

1

Ri⊥(Ω)
. (2.27)

From our Hardy inequality in (2.20) we obtain

1

Ri2⊥

∫
Ω

|u(x)|2 dx ≤ ch(Ω)

∫
Ω

(
|∇u(x)|2 + (ε0x1 − ε0bΩ)+|u(x)|2

)
dx

for each u ∈ W̊ 1
2 (Ω) and choosing u to be the eigenfunction for λ1(Ω; ε0)

leads to

1 ≤ Ri2⊥(Ω) ch(Ω) (λ1 − ε0bΩ)+

which, together with (2.27), finishes the proof of (2.26). Note that from the

last inequality it also follows that

λ1 ≥ ε0bΩ + (Ri2⊥(Ω) ch(Ω))−1.

Although the order of Λ in the second term on the right hand side in

(2.21) is not that clearly visible, we assume that it is far from being optimal.

Indeed, replacing the Hardy inequality in the step (2.24) by the improved
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bound ∫
{x∈Ω : δ(x)<β}

|u(x)|2 dx ≤ (µβ)2+2/µ ‖Hu‖2 · ‖H1/µu‖2, (2.28)

which was shown by E. B. Davies in [25, Theorem 4], reduces the order of Λ.

Here u ∈ domH where H = −∆ + V is a non-negative operator on a domain

Ω ⊂ Rd with Dirichlet boundary conditions such that the Hardy inequality∫
Ω

|u(x)|2

δ2(x)
dx ≤ µ2h[u],

h being the quadratic form of H, holds for any u ∈ C∞0 (Ω). Actually (2.28) is

proven in [25] under much milder assumptions on H and can also be extended

to magnetic operators, see [55, Proposition 5.1]. Also δ does not need to be

a proper distance function, it is sufficient that δ is a continous function on

Ω satisfying |δ(x) − δ(y)| ≤ |x − y| for all x, y ∈ Ω. Applying (2.28) with

H = −∆ + ε0(x1 − bΩ) and δ being the euclidean distance of any x ∈ Ω to

the domains boundary, we obtain:

Theorem 2.2.3. Let Ω ⊂ Rd be an open bounded domain such that

σ(Ω) := inf
β>0

1

β

∫
{x∈Ω : dist(∂Ω,x)<β}

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx > 0,

then∑
j∈N

(Λ− λj(Ω; ε0))+

≤ ε
2/3
0

(2π)d−1

∫
Rd

(Λ− ε0z1 − |z⊥|2)+

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dxdz (2.29)

− C(Ω)

∫
Rd

dz (Λ− ε0z1 − |z⊥|2)+(Λ− ε0bΩ)
− 1+c

2+c

+ �

�
[∫

Ω

Ai2
(
ε

1/3
0 (x1 − z1)

)
dx

]− c
2+c
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for all Λ > ε0bΩ where

C(Ω) :=
ε

2/3
0

(2π)d−1

1

c
(4 + 4c)−

2+2c
2+c σ(Ω)

2+2c
2+c

and c2 = ch(Ω) is the constant in the classical Hardy inequality of −∆ on Ω.

Proof. Denote by dist(∂Ω, x) the euclidean distance of any x ∈ Ω to the

boundary ∂Ω. From the classical Hardy inequality it follows that∫
Ω

|u(x)|2

(dist(∂Ω, x))2
dx ≤ c2

[∫
Ω

|∇u(x)|2 dx+ ε0

∫
Ω

(x1 − bΩ) |u(x)|2 dx

]
if u ∈ W̊ 1

2 (Ω) where c2 = ch(Ω). On the right hand side we have used the

quadratic form of −∆ + ε0(x1 − bΩ). Since x1 ≥ bΩ for each (x1, x⊥) ∈ Ω,

this operator is non-negative and its eigenvalues are given by λj(Ω; ε0)−ε0bΩ
where λj(Ω; ε0) are the eigenvalues of −∆+ε0x1 on Ω with Dirichlet boundary

conditions. Thus, the assumptions of [25, Theorem 4] are satisfied and

applying (2.28) to FΛ(z, ·) ∈ W̊ 1
2 (Ω) from the proof of Theorem 2.2.2 yields∫

{x∈Ω : dist(∂Ω,x)<β}
|FΛ(z, x)|2 dx

≤ (cβ)2+2/c(Λ− ε0bΩ)
1+1/c
+

ε
2/3
0

(2π)d−1

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1

)
dx.

Proceeding as in the proof of Theorem 2.2.2, let

R(Λ, z) =
∑

j>n(Λ)

|A[φj ](z)|2

then

R(Λ, z)

≥ ε
2/3
0 β

(2π)d−1

[
σ(Ω)

2
− β1+2/cc2+2/c(Λ− ε0bΩ)

1+1/c
+

∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1

)
dx

]
.

(2.30)
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Minimizing the right hand side for β yields

β =
1

c
(4 + 4c)−

c
2+cσ(Ω)

c
2+c (Λ− ε0bΩ)

− 1+c
2+c

+

(∫
Ω

Ai2
(
ε

1/3
0 (x1 − z1

)
dx

)− c
2+c

Since c ≥ 2, this choice of β again satisfies the condition

β ≤
(

c

4 + c

) c
2+c

Ri (Ω) ≤ Ri (Ω)

where Ri (Ω) := supy∈Ω dist(∂Ω, y). Inserting (2.30) into (2.22) finishes the

proof of (2.29).



Chapter 3

Kröger type estimates

This chapter aimes at a series of inequalities for the sums of eigenvalues. For

a moment, denote

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ . . .

the sequence of eigenvalues of the classical Laplacian on Ω ⊂ Rd equipped

with Dirichlet boundary conditions and

0 = µ1 < µ2 ≤ µ ≤ · · · ≤ µk ≤ . . .

the eigenvales of −∆ on Ω with Neumann boundary conditions where the

necessary restrictions on Ω apply in this case. As usual, the eigenvalues

appear according to their multiplicity. For the Dirichlet Laplacian the sum

of eigenvalues can be estimated from below by

k∑
j=1

λj ≥
d

d+ 2
(2π)2|Bd|−2/d|Ω|−2/dk1+2/d

where |Bd| = πd/2/Γ(d/2 + 1) is the volume of the unit ball in Rd. The latter

is known as Li-Yau inequality, cf. [68]. In fact it is a consequence from (2.3)

if γ = 1, and can be proved by applying the Legendre transformation on

both sides of (2.3).

51
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In 1992 P. Kröger introduced a test function argument proving

k∑
j=1

µj ≤
d

d+ 2
(2π)2|Bd|−2/d|Ω|−2/dk1+2/d (3.1)

for any Ω ⊂ Rd with piece-wise smooth boundary, see [59, Corollary 1]. Most

interesting about this result is that the right hand side matches the right

hand side of the Li-Yau inequality. The proof of (3.1) is based on the estimate

Theorem 3.0.1 ([59, Theorem 1]). Let Ω ⊂ Rd with piece-wise smooth

boundary, then

µk+1 ≤ inf
r>2π(k/|Ω|)1/d

(d/(d+ 2))rd+2|Bd| |Ω| − (2π)d
∑k
j=1 µj

rd |Bd| |Ω| − (2π)dk
.

The proof of this theorem relies on the Rayleigh-Ritz formula

µk = min
φ∈W 1

2 (Ω)
φ⊥φ1,...,φk−1

∫
Ω
|∇φ(y)|2 dy∫

Ω
|φ(y)|2 dy

≤
∫

Ω
|∇φ(y)|2 dy∫

Ω
|φ(y)|2 dy

(3.2)

where we choose φ(y) to be

Hz(y) = hz(y)− (2π)d/2 Fx[Φk](z, y) ∈W 1
2 (Ω)

for hz(y) = eizy. Here Fx[Φk] is the Fourier transform of

Φk(x, y) =

k∑
j=1

φj(x)φi(y)

with respect to the x variable, and (φj)j=1,...,k denotes the corresponding

sequence of eigenfunctions of the eigenvalues (µj)j=1,...,k. Thus, Fx[Φk] is

the projection of hz onto the subspace which is spanned by (φj)j=1,...,k, a

fact which is heavily used during the calculations. For any details we refer

to [59]. Using this approach with a truncated variant of hz(y) satisfying

hz(y) = 0 for y ∈ ∂Ω as a test function in the variational quotient for the

Dirichlet eigenvalues leads to
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Theorem 3.0.2 ([60, Theorem 1]). For Ω ⊂ Rd let Ωr := {x ∈ Ω :

dist (x, ∂Ω) < 1/r} and suppose that

|Ωr| ≤
C0(Ω)

r
|Ω|1−1/d

holds for some constant C0(Ω) and any r > |Ω|−1/d, then there is a constant

cd > 0 such that

k∑
j=1

λj ≤
d

d+ 2
(2π)2|Bd|−2/d|Ω|−2/d(k1+2/d + cd C0(Ω)k1+1/d).

In [39] E. M. Harrell and J. Stubbe observed that the essence of Kröger’s

test function arguments is an averaging of different parts of a variational

estimate simplifying some of the coefficients and formulated a generalized

version. This generalized version can be used to prove inequalities for the

sums of eigenvalues of the Stark Laplacian which is why we want to present

it in more detail. Let HV = −∆ + V be a self adjoint operator on Ω ⊂
Rd and hV its corresponding quadratic form. Suppose HV has discrete

spectrum −∞ < µ1 ≤ µ2 ≤ . . . with a corresponding sequence (φj)j=1,2,...

of orthonormal eigenfunctions. For any f ∈ d[hV ] denote by

Pkf :=

k∑
j=1

〈φj , f〉φj

the projection of f onto the subspace spanned by (φj)j=1,...,k.

Lemma 3.0.1 ([39]). If either

• HV is equipped with Neumann boundary conditions on Ω or

• HV is equipped with Dirichlet boundary conditions and f ≡ 0 on ∂Ω,

then

hV [f − Pkf, f − Pkf ] = hV [f, f ]− hV [Pkf, Pkf ].
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Proof. Observe that

hV [f − Pkf, f − Pkf ] = hV [f, f ]− 2 RehV [f, Pkf ] + hV [Pkf, Pkf ]

= hV [f, f ]− 2 RehV [f − Pkf, Pkf ]− hV [Pkf, Pkf ].

From that the statement follows as long as hV [f − Pkf, Pkf ] = 0. Thus, we

proceed with

h[f − Pkf, φj ]

=

∫
Ω

∇(f − Pkf)∇φj dx+ 〈f − Pkf, V φj〉L2(Ω)

=

∫
∂Ω

(f − Pkf)
∂

∂n
φj dσ −

∫
Ω

(f − Pkf) ∆φj dx+ 〈f − Pkf, V φj〉L2(Ω).

If ∂
∂nφj = 0 or f ≡ 0 on ∂Ω, the integral over ∂Ω on the right hand side

vanishes and it follows that

hV [f − Pkf, φj ] = 〈f − Pkf, (−∆ + V )φj〉L2(Ω) = λj〈f − Pkf, φj〉L2(Ω) = 0

for each j = 1, . . . , k and k ∈ N.

This intermediate result can now be used in various test function argu-

ments.

Theorem 3.0.3 ([30, Theorem 2.1]). Consider HV = −∆ +V on a bounded

domain Ω ⊂ Rd with Neumann boundary conditions on ∂Ω such that the

spectrum of HV (or at least its lower part) is discrete. Let (φj)j=1,2,... be a

orthonormal sequence of eigenfunctions for the eigenvalues (µj)j=1,2,... and

for z ∈ Rd be fz a family of functions in the form domain d[hV ], then

∑
j∈N

(Λ− µj)+

∫
Rd
|〈fz, φj〉L2(Ω)|2 dz ≥

∫
M0

(
Λ ‖fz‖2L2(Ω) − hV [fz, fz]

)
dz

(3.3)

holds for all M0 ⊂ Rd and Λ ∈ R.

Proof. If Λ ≤ µ1, the left hand side in (3.3) vanishes, whereas the right hand

side is negative and the result becomes trivial. For Λ > µ1 let k be the smallest
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integer such that Λ ≤ µk or Λ ∈ ]µk−1, µk]. Since 〈fz − Pk−1fz, φj〉L2(Ω) = 0

for all j = 1, . . . , k − 1, the function fz − Pk−1fz is a valid test function for

µk in (3.2), and together with Lemma 3.0.1 it follows that

Λ 〈fz − Pk−1fz, fz − Pk−1fz〉 ≤ µk 〈fz − Pk−1fz, fz − Pk−1fz〉

≤ hV [fz − Pk−1fz, fz − Pk−1fz] (3.4)

= hV [fz, fz]− hV [Pk−1fz, Pk−1fz].

We have chosen (φj)j=1,2,... to be orthonormal such that 〈Pk−1fz, Pk−1fz〉 =∑k−1
j=1 |〈fz, φj〉|2 and

hV [Pk−1fz, Pk−1fz] =

k−1∑
j=1

µj |〈fz, φj〉|2.

If we note 〈fz −Pk−1fz, fz −Pk−1fz〉 = ‖fz‖2−〈Pk−1fz, Pk−1fz〉, we obtain

Λ ‖fz‖2 − hV [fz, fz] ≤
k−1∑
j=1

(Λ− µj) |〈fz, φj〉|2

from (3.4), and integration over M0 yields

∫
M0

(
Λ ‖fz‖2 − hV [fz, fz]

)
dz ≤

k−1∑
j=1

(Λ− µj)
∫
M0

|〈fz, φj〉|2 dz

≤
k−1∑
j=1

(Λ− µj)
∫
Rd
|〈fz, φj〉|2 dz.

A remarkable consequence of Theorem 3.0.3 is

µk ≤

∫
M0

hV [fz, fz] dz −
k−1∑
j=1

µj

∫
Rd
|〈fz, φj〉L2(Ω)|2 dz

∫
M0

‖fz‖2L2(Ω) dz −
k−1∑
j=1

∫
Rd
|〈fz, φj〉L2(Ω)|2 dz

(3.5)
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which was already proved in [39] but can also be obtained by setting Λ = µk

in (3.3). Following Krögers induction argument in the proof of Theorem 1 in

[59] from (3.5) on we show:

Theorem 3.0.4. Let (µj)j=1,2,... be the sequence of eigenvalues of HV =

−∆ + V on Ω ⊂ Rd with Neumann boundary conditions where the same

restrictions as in Theorem 3.0.3 apply. If fz is in the form domain d[hV ],

then

µk ≤

∫
M0

hV [fz, fz] dz −
k−1∑
j=1

µj∫
M0

‖fz‖2L2(Ω) dz − (k − 1)

. (3.6)

Proof. If k = 1, then (3.6) follows from the variational principle (3.2) since

fz ∈ d[hV ] is a valid test function. Assume (3.6) holds for some k ∈ N, then

equivalently

µk ≤
∫
M0

hV [fz, fz] dz −
∑k
j=1 µj∫

M0
‖fz‖2 dz − k

.

From the monotonicity of the eigenvalue sequence we then obtain

∑k
j=1 µj

(
1−

∫
M0
|〈fz, φj〉|2 dz

)
∑k
j=1

(
1−

∫
M0
|〈fz, φj〉|2 dz

) ≤ µk ≤
∫
M0

hV [fz, fz] dz −
∑k
j=1 µj∫

M0
‖fz‖2 dz − k

,

and

µk+1 ≤
∫
M0

hV [fz, fz] dz −
∑k
j=1 µj

∫
M0
|〈fz, φj〉|2 dz∫

M0
‖fz‖2 dz −

∑k
j=1

∫
M0
|〈fz, φj〉|2 dz

=

∫
M0

hV [fz, fz] dz −
∑k
j=1 µj +

∑k
j=1 µj

(
1−

∫
M0
|〈fz, φj〉|2 dz

)
∫
M0
‖fz‖2 dz − k +

∑k
j=1

(
1−

∫
M0
|〈fz, φj〉|2 dz

)
≤
∫
M0

hV [fz, fz] dz −
∑k
j=1 µj∫

M0
‖fz‖2 dz − k

follows from (3) and the basic statement c/d ≤ a/b ⇒ (a + c)/(b + d) if

b, d > 0.
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Our initial goal was to provide estimates for the Stark Laplacian which

falls into the class of operators in Theorem 3.0.3 and it remains to choose

an appropriate expression for fz. In the case of the classical Laplacian,

Krögers result (3.0.1) follows from (3.6) if fz(x) = (2π)−d/2 eixz. In that

case 〈fz, φj〉L2(Ω) is the Fourier transform of φj . Since the corresponding

transform for Stark Laplacian is the Airy transform introduced in Section

1.4.2, we choose fz to be the integral kernel of A , that is

fz(x) =
ε

1/3
0

(2π)(d−1)/2
e−ix⊥z⊥ Ai

(
ε

1/3
0 (x1 − z1)

)
in our usual notation x = (x1, x⊥) ∈ R× Rd−1. Hence

〈fz, φj〉L2(Ω) =
ε

2/3
0

(2π)d−1

∫
Ω

e−ix⊥z⊥ Ai
(
ε

1/3
0 (x1 − z1)

)
φj(x) dx = A[φj ](z)

(cf. (1.19)), respectively∫
Rd
|〈fz, φj〉L2(Ω)|2 dz = ‖A[φj ]‖2L2(Rd) = ‖φj‖2L2(Ω) = 1

if the corresponding sequence of eigenfunctions (φj)j=1,2,... is orthonormal.

Since (
− ∂

∂x1
+ ε0x1

)
Ai
(
ε

1/3
0 (x1 − z1)

)
= ε0z1 Ai

(
ε

1/3
0 (x1 − z1)

)
,

it follows that

h[fz, fz] = 〈Hfz, fz〉L2(Ω)

= (|z⊥|2 + ε0z1) ‖fz‖2L2(Ω)

= (|z⊥|2 + ε0z1)

∫
Ω

ε
2/3
0

(2π)d−1

∣∣∣Ai
(
ε

1/3
0 (x1 − z1)

)∣∣∣2 dx,

and (3.3) reads as follows:

Corollary 3.0.1. Let Ω ⊂ Rd be a bounded domain such that the spectrum

of −∆ + ε0x1 on Ω with Neumann boundary conditions is a discrete sequence
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of eigenvalues (µj(Ω; ε0))j=1,2,..., then∑
j∈N

(Λ− µj(Ω; ε0))+

≥ ε
2/3
0

(2π)d−1

∫
M0

(Λ− |z⊥|2 − ε0z1)

∫
Ω

∣∣∣Ai
(
ε

1/3
0 (x1 − z1)

)∣∣∣2 dx dz

holds for all M0 ⊂ Rd and Λ ∈ R.

As in the case of the classical Laplacian, the constants on the right hand

side of this inequality match their counterparts on the right hand side of the

Berezin type inequality for the Dirichlet eigenvalues, cf. (2.12). But unlike

(2.12) the right hand side is not translational invariant and can be maximized

in respect to M0.



Chapter 4

Estimates on the Counting

Function

Let A be a self-adjoint operator on some separable Hilbertspace H and EA

the spectral measure on H associated to A via the spectral theorem, see

[13, Chapter 6, Theorem 1]. The dimension of EA(]−∞,Λ[)H corresponds

to the number of eigenvalues below a bound Λ ∈ R and thus gives rise to the

counting function

N(A,Λ) := dimEA(]−∞,Λ[)H = #{λ(A) ≤ Λ}.

Note that this function counts the eigenvalues according to their multiplicities.

In the case of the classical Dirichlet (or Neumann) Laplacian on a domain

Ω ⊂ Rd this function was studied for a long period. As mentioned before,

calculating its asymptotic was the starting point for the whole field of spectral

estimates addressing inequalities which compare various Riesz means to their

corresponding phase space volume. Thereby Weyl’s asymptotical result [92]

from 1912 shows that the phase space volume is also the limit of the counting

function ND
0 (Ω; Λ) as Λ→∞, more precisely

ND
0 (Ω; Λ) = Lcl

0,d |Ω|Λd/2 +O(Λ(d−1)/2), Λ→∞.

59
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Here we used our shorthand notation

N i
ε0(Ω; Λ) := N(Hi

ε0(Ω),Λ) (4.1)

for the counting function of all eigenvalues of Hi
ε0(Ω) as introduced in Section

1.3, on Ω ⊂ Rd, equipped with Dirichlet boundary conditions (i = D)

or Neumann boundary conditions (i = N). Regarding sharp bounds on

N i
0(Ω; Λ), there is not much known. In 1961 G. Pólya proved that the leading

order term in (4.1) is an upper bound on ND
0 (Ω; Λ), i.e.

ND
0 (Ω; Λ) ≤ Lcl

0,d |Ω|Λd/2 (4.2)

for all Λ ≥ 0, but under the additional assumption that Ω is a tiling domain.

Tiling domains are those sets Ω ⊂ Rd whose inifinite copies completely fill

the whole Rd up to a set of Lebesgue measure zero, only by translating

and rotating the set. Since balls do not have this property, (4.2) for balls

remained open for a long period, despite the fact that the eigenvalues can

be explicitly computed via the zeros of the Bessel function. Progress has

only been made recently by M. Levitin, I. Polterovich and D. A. Sher in [67]

by a computer-assisted proof. In the general case the problem remains still

open and it is not known if (4.2) holds for surprisingly simple domains as

for example certain polygons. So far the only attempt in proving (4.2) for

any non-tiling domains has been published by A. Laptev [62, Theorem 2.8]

where it has been shown that if (4.2) holds on any domain Ω1 ⊂ Rd1 , then

(4.2) also holds on any cylindrical domain Ω = Ω1 × Ω2 ⊂ Rd, d = d1 + d2.

Here Ω2 ⊂ Rd2 is assumed to have finite d2-Lebesque measure. For arbitrary

open bounded sets holds

ND
0 (Ω; Λ) ≤ Lcl

0,d

(
1 +

2

d

)d/2
|Ω|Λd/2

which is obtained from (2.5) and captures the currently best constants for a

bound without any additionally assumptions on the shape of Ω.

One purpose of this chapter is to give an estimate on the counting

functions N i
ε0(Ω; Λ) of Hi

ε0(Ω) for ε > 0. As a first step we want to count
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the eigenvalues of the one dimensional operator on some bounded interval

[a, b]. In the case ε0 = 0 this can be done easily since the eigenfunctions of

Hi
0([a, b]) are known to be

ϕk(x) =

sin
(
kπ
b−a (x− a)

)
if i = D,

cos
(

(k−1)π
b−a (x− a)

)
if i = N,

k ∈ N. That way the eigenvalues of HD
0 ([a, b]) can be computed explicitely.

By separation of variables one can also compute the eigenvalues on cubes

[a, b]d ⊂ Rd which then are given by

λik([a, b]d, 0) =
π2

(b− a)2

d∑
j=1

n2
j

for nj ∈ N if i = D, respectively nj ∈ N0 if i = N . Thus, N i
0([a, b]d, ; Λ) is

related to the number of grid points within a d-dimensional sphere of radius

Λ1/2(b− a)/π and can be estimated by the volume of the sphere.

If ε0 > 0, any solution of

−ϕ′′(x) + ε0 xϕ(x) = ν ϕ(x)

is given by

ϕ(x) = c1 Ai
(
ε
−2/3
0 (ε0x− ν)

)
+ c2 Bi

(
ε
−2/3
0 (ε0x− ν)

)
with constants c1, c2 ∈ R. Inserting the Dirichlet conditions in a and b then

yields

c1 Ai
(
ε
−2/3
0 (ε0a− ν)

)
+ c2 Bi

(
ε
−2/3
0 (ε0a− ν)

)
= 0

c1 Ai
(
ε
−2/3
0 (ε0b− ν)

)
+ c2 Bi

(
ε
−2/3
0 (ε0b− ν)

)
= 0

which, unfortunately, cannot be reduced any further, even in the simplest

cases. Therefore other methods are needed.

In the next section we will follow the ideas of A. Pushnitski and V. Sloushch

from [80] and reproduce an inequality from their proof of [80, Proposition 7.2].
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The remaining parts are dedicated to an extension of the result to higher

dimensions and to explore various other techniques which are associated to

the counting function ND
0 (Ω; Λ).

4.1 The one dimensional case

Consider the operator −d2/dx2 + ε0x on [γ,∞), γ ∈ R, with a Dirichlet

condition in x = γ. If ν is an eigenvalue of this operator, the corresponding

eigenfunction is given by

ϕ(x) = Ai
(
ε
−2/3
0 (ε0x− ν)

)
.

Thus, the eigenvalues of our operator can be computed by solving ϕ(γ) = 0,

respectively if ε
−2/3
0 (ε0γ − ν) is a zero of the Airy function. Let (an)n∈N be

the monotonic decreasing sequence of zeros of Ai, then an = −f(vn) where

vn = 3π(4n− 1)/8 and

f(z) = z2/3 +O(z−4/3)

as z →∞ (see [2, 10.4.94, 10.4.105]). From that we obtain

νn = ε0γ − ε2/3
0 an = ε0γ + ε

2/3
0 v2/3

n +O(n−4/3)

for the corresponding sequence of eigenvalues (νn)n∈N, respectively

|νn − ε0γ − ε2/3
0 v2/3

n | ≤ C

for some constant C > 0. Our next goal is to estimate the counting function

nγ(0) for the eigenvalues νn below zero, i.e.

nγ(0) := #{νn ≤ 0}.
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If we replace νn by ε0γ+ε
2/3
0 v

2/3
n , the corresponding counting function differs

only by a constant. With

ε0γ + ε
2/3
0 v2/3

n ≤ 0 ⇔ n ≤ 2

3π
ε

1/2
0 γ

3/2
− +

1

4

in mind, we obtain that ∣∣∣∣nγ(0)− 2

3π
ε

1/2
0 γ

3/2
−

∣∣∣∣ ≤ C (4.3)

for γ ∈ R and some constant C > 0.

Theorem 4.1.1. Let N i(Λ, [a, b]) for i = D be the counting function of all

eigenvalues λn of HD
ε0([a, b]) below Λ ∈ R, respectively the counting function

for the eigenvalues µn of HN
ε0 ([a, b]) below Λ if i = N , then∣∣∣∣N i(Λ, [a, b])− 2

3π

1

ε0

[
(Λ− aε0)

3/2
+ − (Λ− bε0)

3/2
+

]∣∣∣∣ ≤ C (4.4)

for some constant C > 0.

Proof. If our interval is shifted by Λ/ε0, the eigenvalues of HD
ε0([a, b]) or

HN
ε0 ([a, b]) are shifted by Λ. That way our problem of counting the eigenvalues

below Λ is equivalent to counting the eigenvalues below zero of the shifted

operator Hi
ε0([a− Λ/ε0, b− Λ/ε0]), i = D,N , more precisely it holds that

N i(Λ, [a, b]) = N i(0, [ã, b̃]) (4.5)

with ã = a− Λε0 and b̃ = b− Λ/ε0.

For γ = ã, b̃ we denote by H(γ) the operator −d2/dx2+ε0x on [γ,∞) with

a Dirichlet boundary condition in γ from above and by nγ(0) its corresponding

counting function of all eigenvalues below zero. Just the same let H̃(ã) be

the operator on [ã,∞[ with Dirichlet conditions in both points ã < b̃ and

ñã(0) is corresponding counting function. Any eigenfunction of HD
ε0([ã, b̃])

can be extended by zero onto [ã,∞[ which yields an eigenfunction of H̃(ã).

Conversely the restriction of any eigenfunction ϕ of H̃(ã) onto [ã, b̃] is an

eigenfunction of HD
ε0([ã, b̃]) as long as ϕ 6≡ 0 on [ã, b̃]. In addition, the
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extension of any eigenfunction of H(b̃) onto [ã, b̃] by zero also yields an

eigenfunction of H̃(ã) but not of HD
ε0([ã, b̃]). In summary it follows that

ND(0, [ã, b̃]) = ñã(0)− nb̃(0).

If we compare the operators H̃(ã) and H(ã), they differ by an additional

Dirichlet condition in b̃. Since applying new conditions for one dimensional

Schrödinger operators is a perturbation of finite rank, their corresponding

counting functions differ only by a constant. Therefore, it follows that∣∣∣ND(0, [ã, b̃])− (nã(0)− nb̃(0))
∣∣∣ ≤ C

for some constant C > 0. Since changing of boundary conditions for one

dimensional Schrödinger operators is also a finite rank perturbation, we can

replace ND(0, [ã, b̃]) by NN (0, [ã, b̃]) in the last inequality, and our result

follows after inserting (4.3) and (4.5).

Remark 4.1.1. Consider

2

3π
lim
ε0→0

1

ε0

[
(Λ− aε0)

3/2
+ − (Λ− bε0)

3/2
+

]
=

1

π
Λ1/2(b− a)

which matches the counting function for the Laplace operator on [a, b] with

Dirichlet or Neumann boundary conditions. Furthermore, from (4.4) follows

that

lim
Λ→∞

Λ−1/2N(Λ, [a, b]) =
b− a
π

which corresponds to the one dimensional Weyl asymptotics.

4.2 Product domains

So far, the only non tiling domains for which (4.2) is known are products

Ω = Ω1 × Ω2 ⊂ Rd1+d2 where Ω1 ⊂ Rd1 is a tiling domain and d1 ≥ 2. This

result is due to A. Laptev [62, Theorem 2.8]. The argument is based on

separation of variables; due to the product structure of Ω the eigenvalues λ

of HD
0 (Ω) can be written as λ = λ1 +λ2 where λ1 is an eigenvalue of HD

0 (Ω1)
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and λ2 is an eigenvalue of HD
0 (Ω2). Applying (4.2) for Ω1, that way obtains

ND
0 (Ω; Λ) =

∑
λ2

ND
0 (Ω1,Λ− λ2) ≤ Lcl

0,d1 |Ω1|
∑
λ2

(Λ− λ2)
d1/2
+ .

Since d1/2 > 1, the Riesz means
∑
λ2

(Λ− λ2)
d1/2
+ on the right hand side are

bounded by Lcl
d1/2,d2

|Ω2|Λ(d1+d2)/2. Simplifying the constants yields (4.2) for

Ω = Ω1 × Ω2.

In what follows we will use this idea in order to extend our result from

Theorem 4.1.1 onto domains of the form Ω = [a, b]× ω with ω ⊂ Rd−1.

Theorem 4.2.1. Let Ω = [a, b]× ω where ω is a bounded domain in Rd−1

and N(HD
ε0(Ω),Λ) be the counting function for the eigenvalues of HD

ε0(Ω)

below Λ ∈ R, then

N(HD
ε0(Ω),Λ) ≤ Lcl

0,d

(
1 +

2

d− 1

)(d−1)/2

|Ω| (Λ− bε0)
d/2
+ +R(Λ,Ω) (4.6)

where

R(Λ,Ω) = 1 + Lcl
0,d−1

(
1 +

2

d− 1

)(d−1)/2

|ω| �

�
[
(C + ε

3/2
0 (b− a)3/2)(Λ− aε0)

(d−1)/2
+ +

1

2
(Λ− bε0)

(d−1)/2
+

]
and C > 0 is the constant from (4.4).

Proof. If Ω = [a, b]× ω, then, by separation of variables, any eigenvalue λ of

HD
ε0(Ω) can be written as the sum λ = νj + λ̃k. Thereby νj is an eigenvalue

of the one dimensional Stark Laplacian HD
ε0([a, b]) and λ̃k is an eigenvalue

of the classical Laplacian operator with Dirichlet boundary conditions an ω.
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Thus, by Theorem 4.1.1 we obtain

N(HD
ε0(Ω),Λ) = #{(j, k) ∈ N2 : νj + λ̃k ≤ Λ}

=
∑
k∈N

N(HD
ε0([a, b]),Λ− λ̃k)

=
2

3π

1

ε0

∑
k∈N

(
(Λ− aε0 − λ̃k)

3/2
+ − (Λ− bε0 − λ̃k)

3/2
+

)
+D

(4.7)

where

|D| ≤ C ·#{k ∈ N : λ̃k ≤ Λ− aε0}

≤ 1 + C Lcl
0,d−1

(
1 +

2

d− 1

)(d−1)/2

|ω| (Λ− aε0)
(d−1)/2
+

and C > 0 is the constant from (4.4). We split the sum in (4.7) into∑
k∈N

(
(Λ− aε0 − λ̃k)

3/2
+ − (Λ− bε0 − λ̃k)

3/2
+

)
=

∑
λ̃k<Λ−bε0

(
(Λ− aε0 − λ̃k)3/2 − (Λ− bε0 − λ̃k)3/2

)
+

∑
Λ−bε0<λ̃k<Λ−aε0

(Λ− aε0 − λ̃k)3/2.

While the first sum on the right hand side will provide the leading order

term, the second sum is of order O((Λ− aε0)(d−1)/2) as Λ→∞. The latter

can be seen from∑
Λ−bε0<λ̃k<Λ−aε0

(Λ− aε0 − λ̃k)3/2

≤ ε3/2
0 (b− a)3/2

(
#{λ̃k ≤ Λ− aε0} −#{λ̃k ≤ Λ− bε0}

)
≤ ε3/2

0 (b− a)3/2Lcl
0,d−1

(
1 +

2

d− 1

)(d−1)/2

|ω| (Λ− aε0)
(d−1)/2
+ ,
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whereas for the leading order we note that

(Λ− aε0 − λ̃k)3/2 − (Λ− bε0 − λ̃k)3/2

= (Λ− bε0 − λ̃k + (b− a)ε0)3/2 − (Λ− bε0 − λ̃k)3/2

≤ 3

2
ε0(b− a) (Λ− bε0 − λ̃k)1/2 +

3

2
ε

3/2
0 (b− a)3/2

if Λ− bε0 − λ̃k ≥ 0 and therefore∑
Λ−bε0<λ̃k<Λ−aε0

(
(Λ− aε0 − λ̃k)3/2 − (Λ− bε0 − λ̃k)3/2

)
≤ 3

2
(b− a)ε0

∑
k∈N

(Λ− bε0 − λ̃k)
1/2
+ +O((Λ− bε0)(d−2)/2) (4.8)

+
3

2
ε

3/2
0 (b− a)3/2 · #{λ̃k ≤ Λ− bε0}.

Collecting all of the lower order terms gives

R(Λ,Ω) = 1 + (C + ε
3/2
0 (b− a)3/2) · #{λ̃k ≤ Λ− aε0}

+
1

2
ε

3/2
0 (b− a)3/2 · #{λ̃k ≤ Λ− bε0}.

Thus, inserting (2.5) with γ = 0 for the counting functions in R(Λ,Ω) and

with γ = 1/2 for the sum in (4.8) finally yields the desired result

N(HD
ε0(Ω),Λ) =

1

π
Lcl

1/2,d−1

(
1 +

2

d− 1

)(d−1)/2

|Ω| (Λ− bε0)
d/2
+ +R(Λ,Ω)

where

1

π
Lcl

1/2,d−1 =
1

π

Γ(3/2)

(4π)(d−1)/2Γ(3/2 + (d− 1)/2)

=
1

2
√
π

Γ(1)

(4π)(d−1)/2Γ(1 + d/2)

= Lcl
0,d.
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The limit of the right hand side in (4.6) as ε0 → 0 coincides, up to terms

of lower order, with (2.5). Thus, the order of Λ − bε0 is the expected one

from the asymptotics of the counting function for the classical Dirichlet

Laplacian. In terms of a sharp constant, (4.6) contains the same additional

factor (1 + 2(d− 1))(d−1)/2 as in (2.5). This is due to the usage of (2.5) in

(4.8). If we additionally suppose that∑
k∈N

(Λ− λk(ω; 0))
1/2
+ ≤ Lcl

1/2,d−1|ω|Λ
d/2

holds for ω ⊂ Rd−1 from the decomposition Ω = [a, b] × ω, which is for

instance the case if ω is a tiling domain, then

N(HD
ε0(Ω),Λ) ≤ Lcl

0,d|Ω| (Λ− bε0)
d/2
+ +O((Λ− bε0)(d−1)/2).

In particular this is the case for any box [a1, b1]× [a2, b2]×· · ·× [ad, bd] ⊂ Rd.
Instead of inserting a bound for the Riesz means

∑
k∈N (Λ− λ(Ω; 0))

1/2
+ in

(4.8), one can directly take the limit as Λ→∞ and use the Weyl asymptotics

(2.2) for the eigenvalues of the classical Laplacian operator. Since both

asymptotic formulas for the Stark Laplacian and for the classical Laplacian

coincide in the case of Dirichlet and Neumann boundary conditions, one

obtains

Corollary 4.2.1. If Ω = [a, b]× ω for some domain ω ∈ Rd−1, then

lim
Λ→∞

Λ−d/2N(Hi
ε0(Ω),Λ) = Lcl

0,d |Ω| (4.9)

in both cases, i = D and i = N .

In the following section we will extend this result to general Ω ∈ Rd using

the Dirichlet Neumann bracketing technique based on (4.9) for boxes in Rd.

4.3 Applications of the variational principle

In this section we want to discuss several consequences and techniques linked

with variational principles such as Glazman’s lemma:
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Theorem 4.3.1 ([13, 10.2, Theorem 3]). Let A be a selfadjoint operator

which is bounded from below and

N(A,Λ) := #{λn(A) ≤ Λ}

be the counting function of the eigenvalues of A below Λ. Then

N(A,Λ) = sup
F

dimF ,

where F ⊂ d[a] is a linear set that is contained in the domain of the corre-

sponding quadratic form a of A such that

a[φ, φ] < Λ ‖φ‖2

holds for all φ ∈ F \ {0}.

Recall that the classical Lapalcian operator on a bounded domain Ω ⊂ Rd

is defined via the quadratic form

h0[φ] =

∫
Ω

|∇φ|2 dx (4.10)

with d[h0] = W̊ 1
2 (Ω) in the dirichlet case and with d[h0] = W 1

2 (Ω) in the case

of Neumann boundary conditions. This gives rise to the operators HD
0 (Ω)

and HN
0 (Ω). Since W̊ 1

2 (Ω) ⊂W 1
2 (Ω) the corresponding operators satisfy

HD
0 (Ω) � HN

0 (Ω)

in the form sense, and by Glazman’s lemma it follows that

N(HD
0 (Ω),Λ) ≤ N(HN

0 (Ω), λ)

for all Λ ∈ R. Roughly speaking, changing Dirichlet to Neumann boundary

conditions will increase the counting function or equivalently reduce individual

eigenvalues. The same holds if one introduces new Neumann boundary

conditions in the inner part of a domain. Note that this reasoning is only

based upon the inclusion of the form domains d[hD0 ] ⊂ d[hN0 ] and not on the
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algebraic expression in (4.10). When replacing h0 by

hε0 [φ] =

∫
Ω

|∇φ|2 dx+ ε0

∫
Ω

x1|φ|2 dx, (4.11)

the reasoning can be repeated word by word and then yields

N(HD
ε0(Ω),Λ) ≤ N(HN

ε0 (Ω),Λ) (4.12)

for each ε0 ≥ 0 and Λ ∈ R. In the same way the principles for introduction

of new Diriclet boundary conditions or enlarging a domain with Dirichlet

boundary conditions can be extended from the case ε0 = 0 to ε0 ≥ 0:

Let Ω ⊂ Rd be open and Γ ⊂ Ω of Lebesgue measure zero such that

Ω̃ = Ω \Γ is open. Denote by HD
ε0(Ω) or HD

ε0(Ω̃) the corresponding operators

to the form (4.11) on d[hDε0(Ω)] = W̊ 1
2 (Ω) and d[hDε0(Ω̃)] = W̊ 1

2 (Ω̃) then

d[hDε0(Ω)] ⊂ d[hDε0(Ω̃)] and therefore

N(HD
ε0(Ω̃),Λ) ≤ N(HD

ε0(Ω),Λ) (4.13)

for each ε0 ≥ 0 and Λ ∈ R if Ω̃ = Ω \ Γ.

If Ω, Ω̂ ⊂ Rd are open, Ω ⊂ Ω̂ and HD
ε0(Ω), HD

ε0(Ω̂) are the operators

defined via the quadratic form (4.11) on d[hDε0(Ω)] = W̊ 1
2 (Ω) and d[hDε0(Ω̂)] =

W̊ 1
2 (Ω̂), any test function from d[hDε0(Ω)] is, by extension with zero, also

contained in d[hDε0(Ω̂)]. Again by Glazman’s lemma, it follows that

N(HD
ε0(Ω),Λ) ≤ N(HD

ε0(Ω̂),Λ) (4.14)

for all ε0 and Λ ∈ R if Ω ⊂ Ω̂.

In the case of the classical Laplacian these three principles, (4.12), (4.13)

and (4.14), give rise to the Weyl asymptotics (4.1) and are used in Pólya’s

proof of (4.2) for tiling domains. For the rest of this section we will take a

closer look at these applications and extend the results to the case ε0 ≥ 0.

Theorem 4.3.2. Let Ω ⊂ Rd be an open Jordan measurable set, then for
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Ω
Ω̂L

L

Ω

Ω̌L

L

Figure 4.1: Covering and partial filling of Ω by Ω̂L and Ω̌L.

each ε0 ≥ 0 holds

lim
Λ→∞

Λ−d/2ND
ε0(Ω; Λ) = Lcl

0,d |Ω|. (4.15)

Proof. We have already seen in Corollary 4.2.1 that (4.15) holds for any box

B = [a1, b1]× [a2, b2]× · · · × [ad, bd] ⊂ Rd.

Thus, it remains to extend (4.15) to arbitrary bounded domains Ω ⊂ Rd.
This is done by a Dirichlet Neumann bracketing technique using the principles

(4.12), (4.13), (4.14). We fix L > 0. With each vector α = (α1, . . . , αd) ∈ Zd

we associate the box

Bα(L) := {x ∈ Rd : Lαj < xj < L(αj + 1), j = 1, . . . , d}.

Let A = {α ∈ Zd : Bα(L)∩Ω 6= ∅}, thus, A is the set of vectors whose boxes

cover Ω, and

Ω̂L := int

(⋃
α∈A

Bα(L)

)

is a superset of Ω (cf. Figure 4.1). Conversely, let B = {α ∈ Zd : Bα(L) ⊂
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Ω}, then

Ω̌L := int

( ⋃
α∈B

Bα(L)

)

is contained in Ω. By extending Ω to Ω̂L with Dirichlet boundary conditions,

changing at ∂Ω̂L Dirichlet to Neumann boundary conditions and introducing

new Neumann boundary conditions at all ∂Bα(L), α ∈ A, we obtain

N(HD
ε0(Ω),Λ)

(4.14)

≤ N(HD
ε0(Ω̂L),Λ)

(4.12)

≤ N(HN
ε0 (Ω̂L),Λ)

(4.12)

≤ N(
⊕

α∈AH
N
ε0 (Bα(L)),Λ) =

∑
α∈AN(HN

ε0 (Bα(L)),Λ).

Although N(HN
ε0 (Bα(L)),Λ) depends on the location of Bα(L) along the

x1-axis, according to Corollary 4.2.1 the limit of Λ−d/2N(HN
ε0 (Bα(L)),Λ) as

Λ→∞ is for all boxes Bα(L) the same. Thus

lim sup
Λ→∞

Λ−d/2N(HD
ε0(Ω),Λ) ≤ Lcl

0,d

∑
α∈A
|Bα(L)| = Lcl

0,d |Ω̂L|.

Conversely, restricting Ω to Ω̌L and introducing new Dirichlet boundary

conditions on ∂Bα(L) for α ∈ B yields

N(HD
ε0(Ω),Λ)

(4.14)

≥ N(HD
ε0(Ω̌L),Λ)

(4.13)

≥ N(
⊕

α∈B H
D
ε0(Bα(L)),Λ) =

∑
α∈B N(HD

ε0(Bα(L)),Λ).

As above, we proceed to the limit as Λ→∞ and obtain from Corollary 4.2.1

that

lim inf
Λ→∞

Λ−d/2N(HD
ε0(Ω),Λ) ≥ Lcl

0,d−1

∑
α∈B
|Bα(L)| = Lcl

0,d |Ω̌L|.

Since Ω is Jordan measurable, |Ω̂L| and |Ω̌L| converge to |Ω| as L→ 0 which

closes the proof.
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4.4 An inequality between individual eigenval-

ues

Let (λj(Ω; ε0))j∈N be the increasing sequence of Dirichlet eigenvalues of

the Stark Laplacian HD
ε0(Ω) and (µj(Ω; ε0))j∈N the increasing sequence of

the Neumann eigenvalues of HN
ε0 (Ω) with their multiplicities taken into

account. By N(HD
ε0(Ω),Λ), respectively N(HN

ε0 (Ω),Λ), we denote their

counting functions of all eigenvalues which do not exceed a bound Λ ∈ R. In

the previous section we have seen that N(HD
ε0(Ω),Λ) is bounded from above

by N(HN
ε0 (Ω),Λ) for each Λ, see (4.12). For the individual eigenvalues this

means

µj(Ω; ε0) ≤ λj(Ω; ε0).

For the classical Laplacian operator for ε0 = 0 this inequality was improved in

various ways. Note that µ1(Ω; 0) = 0 and λ1(Ω; 0) > 0 hold for each Ω ⊂ Rd,
thus, the question arises whether the first non trivial Neumann eigenvalue is

still below λ1(Ω; 0). The minimal value of λ1(Ω; 0) is attained if Ω is a disk,

respectively

Λ1(Ω; 0) ≥ λ1(Br; 0) =
1

R2
j2
d/2−1,1

where BR = {x ∈ Rd : |x| < 1} such that |Ω| = |BR| and jn,k denotes the

k-th zero of the Bessel function Jn. This is known as the Rayleigh-Faber-

Krahn inequality and will be treated in the second part of this work in more

detail. In [50] E. T. Kornhauser and I. Stakgold conjectured that µ2(Ω; 0) is

maximized by the disk if d = 2 and

µ2(Ω; 0) ≤ 1

R2
j′

2
0,1

where j′n,k denotes the k-th zero of the derivative J ′n of the Bessel function.

From these bounds it follows that

µ2(Ω; 0) ≤
(
j′0,1
j0,1

)2

λ1(Ω; 0). (4.16)
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Remarking on [50], G. Pólya showed this assertion with a slightly weaker

constant in [78]. The first rigorous proof of (4.16) was presented by G. Szegö

in [86] under the assumption that Ω ⊂ R2 is bounded by an analytic curve.

Involving higher eigenvalues L. E. Payne, [75], proved that

µj+2(Ω; 0) ≤ µj(Ω; 0) (4.17)

for d = 2 if Ω ⊂ R2 is convex and its boundary is twice continously differen-

tiable. For such domains the curvature of the boundary is non-negative. In

order to generalize these results to higher dimensions d > 2, one has to deal

with d− 1 principal curvatures at each point of ∂Ω. In [66] H. A. Levine and

H. F. Weinberger present multiple extensions of (4.17), the most important

being

µj+d(Ω; 0) ≤ λj(Ω; 0)

which holds for bounded convex domains Ω ⊂ Rd or

µj+1(Ω; 0) ≤ λj(Ω; 0)

if ∂Ω is of class C2,α for some α ∈]0, 1[ and has non-negative mean curvature.

The latter was already contained in [9]. For a more general class of domains,

the first result is due to L. Friedlander; in [35] it is shown that

µj+1(Ω; 0) ≤ λj(Ω; 0) (4.18)

holds for all bounded domains Ω ⊂ Rd with C1-boundary. Much later

(4.18) was shown by N. Filonov in [32] without any assumptions on the

smoothness of the domains boundary except of the compactness of the

embedding W 1
2 (Ω) ⊂ L2(Ω) which ensures that the spectra of HD

ε0(Ω) and

HD
ε0(Ω) are purely discrete. Filonov’s proof is fairly simple and relies only

on Glazman’s lemma and upon the fact that φ(x) = eiκx solves −∆φ = κ2φ

on L2(Rd). For the remaining part of this section we want to extend the

result of [32] to the case ε > 0. Beforehand, we need to proof a technical

lemma showing that no eigenfunction can satisfy the Neumann and Dirichlet

boundary conditions simultaneously:
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Lemma 4.4.1. For each λ ∈ R holds

W̊ 1
2 (Ω) ∩ ker (HN

ε0 (Ω)− Λ) = {0}.

Proof. Let u ∈ W̊ 1
2 (Ω) ∩ ker (HN

ε0 (Ω)− Λ) and v ∈W 1
2 (Rd) be the continua-

tion of u by zero onto Rd, i.e.

v(x) :=

u(x) if x ∈ Ω,

0 if x 6∈ Ω.

Since ∫
Rd

(∇v · ∇φ+ ε0x1 vφ) dx =

∫
Ω

(∇u · ∇φ+ ε0x1uφ) dx

=

∫
Ω

((−∆u)φ+ ε0x1 uφ) dx

= Λ

∫
Ω

uφ dx = Λ

∫
Rd
vφdx

for all φ ∈ C∞0 (Rd), it follows that (−∆ + ε0x1)v = Λv on Rd. Thus,

v(x) = c ·Ai (ε
−2/3
0 (ε0x1 + ω1)) eiω⊥x⊥

for some constant c ∈ R and ω = (ω1, ω⊥) such that ω1 + |ω⊥|2 = Λ,

respectively, v(x) = 0, since this is the only solution in L2(Rd).

Theorem 4.4.1. Let d ≥ 2 and Ω ⊂ Rd, such that the spectra of HD
ε0(Ω) and

HN
ε0 (Ω) are dicrete. Denote by (λj(Ω; ε0))j∈N, respectively by (µj(Ω; ε0))j∈N

their increasing sequences of eigenvalues, then

µj+1(Ω; ε0) ≤ λj(Ω; ε0) (4.19)

for all j ∈ N where λj(Ω; ε0) are the Dirichlet eigenvalues and µj(Ω; ε0) are

the Neumann eigenvalues.
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Proof. By Glazman’s lemma (Theorem 4.3.1) it holds that

N(HD
ε0(Ω),Λ) = sup

F
dimF

where the supremum is taken over all F ⊂ W̊ 1
2 (Ω) such that∫

Ω

(|∇φ|2 + ε0x1 |φ|2) dx ≤ Λ

∫
Ω

|φ|2 dx

holds for all φ ∈ F . Fix Λ ∈ R and choose F such that N(HD
ε0(Ω),Λ) = dimF .

According to lemma 4.4.1 above, F +̇ ker (HN
ε0 (Ω)− Λ) is a direct sum. For

each ω = (ω1, ω⊥) ∈ R×Rd−1 such that ω1 +|ω⊥|2 = Λ, consider the function

ϕω(x) := Ai (ε
−2/3
0 (ε0x1 + ω1)) eiω⊥x⊥ .

From the orthogonality of Ai and the exponential function it follows that the

family of all ϕω, where ω1 + |ω⊥|2 = Λ, is linearly independet. Thus, there

exists some ω such that ϕω is not contained in F +̇ ker (HN
ε0 (Ω)− Λ) (note

that F +̇ ker (HN
ε0 (Ω)− Λ) has finite dimension). Let

G := F +̇ ker (HN
ε0 (Ω)− Λ)+̇{c · ϕω : c ∈ R}.

If u+ v + c · ϕω ∈ F +̇ ker (HN
ε0 (Ω)− Λ)+̇{c · ϕω : c ∈ R}, then∫

Ω

(|∇(u+ v + c · ϕω)|2 + ε0x1 |u+ v + c · ϕω|2) dx

=

∫
Ω

(|∇u|2 + |∇v|2 + |∇(c · ϕω)|2 + ε0x1 |u|2 + ε0x1 |v|2 + ε0x1 |c · ϕω|2) dx

+ 2 Re

∫
Ω

(∇v · ∇(u+ c · ϕω) +∇(c · ϕω) · ∇udx

+ 2 Re

∫
Ω

+ε0x1 v (u+ c · ϕω) + ε0x1 c · ϕωu) dx
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≤Λ

∫
Ω

(|u|2 + |v|2 + |c · ϕω|2) dx

+ 2 Re

∫
Ω

((−∆v)(u+ c · ϕω)−∆(c · ϕω)u+ ε0x1 v (u+ c · ϕω) + ε0x1 c · ϕωu) dx

=Λ

∫
Ω

(|u|2 + |v|2 + |c · ϕω|2) dx+ 2Λ Re

∫
Ω

(v (u+ c · ϕω) + c · ϕω u) dx

=Λ

∫
Ω

|u+ v + c · ϕω|2 dx.

Again by using Glazman’s lemma, we obtain

N(HN
ε0 (Ω),Λ) ≥ dimG = N(HD

ε0(Ω),Λ) + dim ker (HN
ε0 (Ω)− Λ) + 1,

and choosing Λ = λj(Ω; ε0) yields

N(HN
ε0 (Ω), λj(Ω; ε0))− dim ker (HN

ε0 (Ω)− λj(Ω; ε0))

≥ N(HD
ε0(Ω), λj(Ω; ε0)) + 1 = j + 1.

From that follows the assertion (4.19).
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Part II

Steps towards the

Faber-Krahn-Inequality

79





Chapter 5

On the existence of a

minimizing Domain

We consider the operator

HD
ε0(Ω) = −∆ + ε0x1, (5.1)

ε0 ≥ 0 on L2(Ω) for a bounded domain Ω ⊂ Rd with Dirichlet boundary

conditions as defined in Section 1.3. It is well known that the lowest eigenvalue

λ1(Ω; ε0) of this operator is simple and the corresponding eigenfunction has

constant sign on Ω, such that it can be choosen to be positive. A popular

question is the problem of finding the domain Ω which minimalizes the

lowest eigenvalue. In the case ε0 = 0 Lord Rayleigh conjectured that the

minimalizing domain in d = 2 should be the disc B2 = {x ∈ Rd : |x| ≤ 1},
i.e.

λ1(B2; 0) = min {λ1(Ω; 0) : Ω ⊂ R2 open, |Ω| = ω2}

where ω2 = π2 is the volume of B2, due to some explicite calculations close

to the boundary of Ω and physical evidence. The physical or rather musical

interpretation of this would be that among all drums with the same volume

the circular drum has the lowest voice. Almost 30 years later Rayleigh’s

conjecture was independetly proven by G. Faber [31] and E. Krahn [56]. The

81
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corresponding result for d ≥ 2 was proven by E. Krahn in [57]. Both results

are often written in the form of an inequality

λ1(Ω; ε0) ≥ C2/d
d jd/2−1,1|Ω|−2/d,

where Cd = πd/2/Γ(d/2 + 1) and jk,1 is the first zero of the Bessel function

Jk. In the literature this inequality is known as the Rayleigh-Faber-Krahn

inequality. Its proof is based upon a variational characterization of the first

eigenvalue, namely

λ1(Ω; 0) = inf
u∈W̊ 1

2 (Ω),u6≡0

∫
Ω
|∇u|2 dx∫

Ω
|u|2 dx

,

and the fact that the symmetrical decreasing rearrangement of a function

decreases the quotient on the right hand side. Let Ω∗ be the Schwarz

symmetrization of Ω and u∗ the corresponding rearrangement of u ∈ W̊ 1
2 (Ω),

see [49, (2.6); 49, (2.1)], then∫
Ω∗
|u∗|2 dx =

∫
Ω

|u|2 dx

and ∫
Ω∗
|∇u∗|2 dx ≤

∫
Ω

|∇u|2 dx,

see [49, (C)]. The latter is due to G. Pólya and G. Szegő and was first proven

in [79].

In the case for ε0 > 0 we cannot rely on Schwarz symmetrization since we

cannot expect the minimizing domain to be symmetrical along the direction

of the Stark potential, in our case the x1-direction. Nevertheless to make

use of some rearrangement techniques we introduce Steiner symmetrization:

Consider the decomposition Rd = Rd−1×R with respect to the last component.

For a bounded domain Ω ⊂ Rd and (x, y) ∈ Rd−1 × R we introduce

D(x) = {y ∈ R : (x, y) ∈ Ω}.

Note that D(x) might be empty if the line (x, y) for y ∈ R and fixed x ∈ Rd−1
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does not intersect Ω at all. The length of the part of the line which lies inside

of Ω can be computed by

l(D(x)) =

∫
R
χD(x)(x) dx

where χD(x) is the characteristic function of D(x). Let

D′(x) :=

{(x, y) : 0 ≤ |y| ≤ l(D(x))/2} if D(x) 6= ∅

∅ if D(x) = ∅

and

Ω′ :=
⋃

D′(x) 6=∅

D′(x),

then Ω′ is clearly symmetric along the y-direction. For a Lipschitz continuous

function u : Rd → R+
0 with compact support suppu ⊂ Ω we define the

corresponding rearrangement by

u′(x) := sup {c ∈ R : x ∈ Ω′c} (5.2)

where Ω′c are the symmetrizations of the level sets

Ωc := {x ∈ Ω : u(x) ≥ c}.

This process can be repeated to any other component of Rd. Let Ω∗ ⊂
R×Rd−1 be the symmetrized domain with respect to any component perpen-

dicular to the Stark field, respectively the x1-direction and u∗ the correspond-

ing rearrangement of a compactly supported Lipschitz function u : Ω→ R+
0 .

As in the case of Schwarz symmetrization it holds that∫
Ω∗
F (u∗) dx =

∫
Ω

F (u) dx

for any continous function F : R+
0 → R and∫

Ω∗
|∇u∗|2 dx ≤

∫
Ω

|∇u|2 dx
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since both relations hold in any step of the symmetrization process, see

[49, (C)]. Taking into account that

λ1(Ω, ε0) = inf
u∈W̊ 1

2 (Ω),u6≡0

∫
Ω
|∇u|2 dx+ ε0

∫
Ω
x1|u|2 dx∫

Ω
|u|2 dx

we have shown that

Lemma 5.0.1. If there exists a minimizing domain Ω for the first Dirichlet

eigenvalue λ1(Ω; ε0) of the Stark Laplacian (5.1) it is symmetric along any

direction perpendicular to the x1-axis.

As in the case of the classical Dirichlet Laplacian, the problem of minimiz-

ing the domain for the lowest eigenvalue makes only sense in the class of all

domains with the same volume. Since the spectrum of the Stark Laplacian

depends upon the position of the domain along the direction of the Stark

potential, respectively λ1(Ω + h; ε0)→ −∞ as h→ −∞ where

Ω + h = {(x+ h, y) ∈ R× Rd−1 : (x, y) ∈ Ω}

(cf. Lemma 1.3.1), we additionally have to fix the center of mass for example

in the origin such that ∫
Ω

x1 dx = 0.

Example 5.0.1. Let Br(a) ⊂ Rd be the ball with radius r > 0 and center

in (a, 0, . . . , 0) ∈ Rd. Consider Ωa := Br(−a) ∪Br(a) whose center of mass

is fixed in the origin for any a ∈ R. If u is an eigenfunction for the lowest

eigenvalue λ1(Br(0); ε0) of the Stark Laplacian on Br(0), then u(·+aε0) is an

eigenfunction for the lowest eigenvalue λ1(Br(−a); ε0) = λ1(Br(0); ε0)−aε0 of

the operator on Br(−a). By continuation with zero we obtain an eigenfunction

of the Stark operator on Ωa and it follows that

λ1(Ωa; ε0) ≤ λ1(Br(0); ε0)− aε0 → −∞

as a→∞.

One may argue that the domain from Example 5.0.1 is not connected.
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But, as shown in the following example, considering connected domains does

not change the situation substantially.

Example 5.0.2. We connect both components of Ωa from Example 5.0.1 by a

thin tube [−a, a]× [−δ, δ]d−1 and consider

Ωa,δ := Ωa ∪ [−a, a]× [−δ, δ]d−1.

Since Ωa,δ → Ωa as δ → 0 in respect to the Hausdorff-distance, it follows

that

λ1(Ωa,δ; ε0)→ λ1(Ωa; ε0)

as δ → 0 (see details below in Section 5.1). As λ1(Ωa; ε0) for a → −∞ is

not bounded from below, the same holds for λ1(Ωa,δ; ε0) if δ > 0 is chosen

sufficiently small.

If we additionally assume our domain Ω ⊂ Rd to be convex, we might

prove the existence of a minimizing domain. Therefore we first restrict

ourselves to boxes in Rd. Since

λ1([−a, a]; ε0) ≤ −aε0 + ε
2/3
0 ζ +

C

a

for some constant C > 0, see Lemma 5.2.1, there exists a box in d = 2

with optimal aspect ratio which minimizes the first eigenvalue, see Lemma

5.2.2. In d = 3 an optimal box exists only for small ε0 > 0. If ε0 exceeds a

certain bound, we will disprove the existence of an optimal box in Lemma

5.2.2. Finally the existence of a box with optimal aspect ratio for the first

eigenvalue of the Stark Laplacian leads to an optimal domain among the

class of convex sets with fixed volume and center of mass.

Theorem 5.0.1. Let V > 0 and CV := {Ω ⊂ Rd : Ω convex, |Ω| =

V,
∫

Ω
xdx = 0}. If either

• d = 2 or

• d = 3 and 0 < ε0 < π2/2,
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then there exists some domain Ω∗ε0 ∈ CV such that

λ1(Ω∗ε0 ; ε0) = inf
Ω∈CV

λ1(Ω; ε0).

5.1 Hausdorff convergence and Mosco conver-

gence for the Stark Laplacian

Before proceeding with our proof of Theorem 5.0.1 we want to summarize

the results which allow us to obtain convergence for the sequence of the first

eigenvalues for varying domains which converge in respect to the Hausdorff

distance.

Let (Ωn)n∈N ⊂ Rd be a sequence of convex sets that are contained in

a ball Br of radius r > 0. Denote by λn = λ1(Ωn; ε0) the first Dirichlet

eigenvalue of HD
ε0(Ω) on L2(Ωn). In order to prove convergence of (λn)n∈N to

λ1(Ω; ε0) as Ωn → Ω in some sense, it is sufficient to prove strong convergence

of the sequence of resolvent operators

Rn = iΩn(λI +HD
ε0(Ω))−1rΩn

to R(λ) = iΩ(λI +HD
ε0(Ω))−1rΩ for some λ ∈ C, see [23, Theorem 4.3.1 and

Corrolar 4.3.2], where iΩ : W̊ 1
2 (Ω)→ W 1

2 (Rd) denotes the trivial extension

and rΩ : L2(Rd)→ L2(Ω) the restriction operator. The latter is less depen-

dent on the operator than on the sequence (Ωn)n∈N and can be connected to

geometric properties of the domains for a wide range of operators, see [23,41]

for a detailed survey.

If we restrict ourselves to convex sets in Rd the natural topology on those

sets is induced by the Hausdorff metric

Definition 5.1.1. • Let K1,K2 ⊂ Rd be compact sets, then

dH(K1,K2) := max

{
sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)

}
,

where

d(x,K) := inf
y∈K
|x− y|.
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• Let (Kn)n∈N be a sequence of compact sets that are contained in a

bounded domain B. We say that (Kn)n∈N converges in the sense of

Hausdorff to K if

lim
n→∞

dH(Kn,K) = 0.

• Let Ω1,Ω2 ⊂ Rd be open sets that are contained in some compact

domain B, then

dH(Ω1,Ω2) := dH(B \ Ω1, B \ Ω2),

respectively a sequence (Ωn)n∈N of open sets that is uniformly bounded

by a compact domain B, i.e. Ωn ⊂ B holds for each n ∈ N, converges

to Ω in the sense of Hausdorff if,

lim
n→∞

dH(Ωn,Ω) = 0.

An almost complete survey of this notion of Hausdorff convergence can

be found in [41]. For our purposes it is sufficient that Hausdorff convergence

preserves convexity. If (Ωn)n∈N is a sequence of open sets, uniformly bounded

by a compact set B ⊂ Rd and converging to Ω in the sense of Hausdorff, then

Ω is also convex, see [41, (2.19)].

A common phenomenon when dealing with Hausdorff convergent se-

quences of open sets is collapsing at the limit, which is to say, that Hausdorff

convergence does not preserve the volume. For arbitrary sequences of open

sets the volume is only a lower semicontinous function, see [41, Proposition

2.2.23]. Preservation of the volume is related to L1-convergence of the char-

acteristic functions χΩn → χΩ which requires assumptions on the boundaries

of Ωn. Therefore we want to introduce the ε-cone property.

Definition 5.1.2. For an open set Ω ⊂ Rd and ε > 0 we consider the cones

C(y, ξ, ε) := {z ∈ Rd : 〈z − y, ξ〉 ≥ |z − y| cos (ε) ∧ 0 < |z − y| ≤ ε}

with vertex y ∈ Rd along the direction ξ ∈ Rd, |ξ| = 1. An open set has

the ε-cone property if for all x ∈ ∂Ω there is ξx ∈ Rd, |ξx| = 1 such that

C(y, ξx, ε) ⊂ Ω̄ ∩Bε(x).
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The ε-cone property is also related to Lipschitz-continuity of the boundary,

see [41, Theorem 2.4.7]. If Ω is convex, then Ω has the ε-cone property for

any

ε ≤ min

{
Ri (Ω)

2
, arcsin

(
Ri (Ω)

2 supx∈∂Ω |x0 − x|

)}
(5.3)

where Ri (Ω) is the inner radius of Ω, i.e. the radius of the largest open ball

which is fully contained in Ω, and x0 ∈ Ω its center, see [41, Proposition

2.4.4]. When considering Hausdorff convergent sequences (Ωn)n∈N of open,

convex sets we need an uniform bound of ε > 0 such that any Ωn shares

the ε-cone property uniform for any n ∈ N. Since convex domains may have

arbitrary sharp corners, we have to take into account that in our case all

Ωn are contained in a compact domain B and have fixed volume |Ωn| = V .

In that case the inner radii of the Ωn are bounded from below and the Ωn

satify the ε-cone property simultanously for any ε below some bound. In

view of Theorem 5.0.1 and Lemma 5.2.2 we will give a proof only in the case

of symmetric domains in dimension d ∈ {2, 3}.

Lemma 5.1.1. Let (Ωn)n∈N be a sequence of open convex sets in Rd that

are contained in some compact domain B ⊂ Rd, d ∈ {2, 3} and that are

symmetric along any direction perpendicular to the x1-axis. Suppose that

|Ωn| = V for each n ∈ N. Then the inner radii of the Ωn are uniformly

bounded from below and therefore have the ε-cone property for any ε below

some bound independent of n ∈ N.

Proof. In view of (5.3), it suffices to show that Ri (Ωn) is uniformly bounded

from below. We begin our proof in the case d = 2. Fix some domain Ω ⊂ R2

and let RΩ ⊂ R2 be the minimal bounding box, touching Ω in at least four

points on the boundary of Ω (cf. Figure 5.1a). Since Ω is symmetric along

the x2-axis, these touching points are also aligned symmetrically and, by

connecting them, we arrive at a kite whose inner radius does not exceed the

inner radius of Ω. Since |Ωn| = V for all n ∈ N, the smallest possible inner

radius of the kite is attained when the kite degenerates to a triangle whose

base and vertex lies on the boundary of B (cf. Figure 5.1b).

In the case d = 3 the domains Ω ⊂ R3 are rotational symmetric with

respect to the x1-axis, and we can cut Ω along the x1-x2-plane. Let RΩ be
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RΩ

Ω

(a) The inner radius of Ω ⊂ R2 can
be estimated from below by the inner
radius of the blue kite, respectively,
the inner radius of the red triangle.

B

(b) The thinnest possible kite, that
fits into B ⊂ R2 with volume of V/2
touches B at the boundary.

Figure 5.1: Visualization of the construction in the proof of Lemma 5.1.1.
For a domain Ω ⊂ R2 we consider the minimal bounding box RΩ touching Ω
in at least four points. Connecting these points leads to the blue kite. The
kite with minimal inner radius is the degenerated one, respectively, the red
triangle.

the minimal bounding box of the cut as in the case d = 2. The inner radius

of the cut is bounded from below by the inner radius of the corresponding

kite, respectively the degenerated kite. Rotating around the x1-axis does not

change the inner radii at all such that the inner radius of the cone is a lower

bound for the inner radius of Ω.

Consider a bounded sequence (Ωn)n∈N of domains. In our proof of

Theorem 5.0.1 we will rely on the existence of a Hausdorf-convergent sub-

sequence of (Ωn)n∈N. This is guaranteed by the Blaschke selection theorem,

see [38, Theorem 6.3] for instance. The following variant additionally ensures

the preservation of volume when proceeding to the limit:

Theorem 5.1.1 ([41, Theorem 2.4.10]). Let (Ωn)n∈N be a sequence of open

domains in Rd which are uniformly bounded by some compact set B ⊂ Rd and

uniformly satisfy the ε-cone condition. Then there is an open set Ω ⊂ B which

satisfies the ε-cone condition and a subsequence (Ωnk)k∈N which converges to

Ω in the sense of Hausdorff. Furthermore the closures (Ω̄nk)k∈N converge to

Ω̄ in the sense of Hausdorff and χΩnk
→ χΩ in Lp(B) for each p <∞.
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Remark 5.1.1. Convergence of χΩn → χΩ in L2(B) also ensures that the

center of masses of the Ωn converge to the center of mass of Ω since∣∣∣∣∫
Ωn

xdx−
∫

Ω

xdx

∣∣∣∣ =

∣∣∣∣∫
B

x · [χΩn(x)− χΩ(x)]

∣∣∣∣
≤ ‖χΩn − χΩ‖L2(B) ·

[∫
B

x2 dx

]1/2

.

The Hausdorff-topology again can be related to various other notions of

convergence between open sets. In fact, the relation between the Hausdorff

topology on convex sets and convergence of solutions to variational equations

on those sets was studied by U. Mosco in [73] in a much more general setting.

Thereby two conditions appear naturally which are today known under the

term Mosco convergence:

Definition 5.1.3. The sequence of spaces W̊ 1
2 (Ωn) converges to W̊ 1

2 (Ω) as

n→∞ in the sense of Mosco if the following two properties hold:

• For all u ∈ W̊ 1
2 (Ω) exists a sequence (un)n∈N satisfying un ∈ W̊ 1

2 (Ωn)

for each n ∈ N such that un → u in W 1
2 (Rd).

• If (un)n∈N is a sequence of functions satisfying un ∈ W̊ 1
2 (Ωn) for

each n ∈ N that converges weakly to a function u ∈ W 1
2 (Rd), then

u ∈ W̊ 1
2 (Ω).

An equivalent statement can be formulated in terms of the unique solutions

u = ufΩ of the Dirichlet problem −∆u = f on some open set Ω for given

f ∈ (W̊ 1
2 (Ω))′:

Lemma 5.1.2 ([41, Proposition 3.5.5]). Let (Ωn)n∈N be a sequence of open

sets in Rd that are contained in some bounded domain B ⊂ Rd and Ω ⊂ B.

The sequence of spaces W̊ 1
2 (Ωn) converges to W̊ 1

2 (Ω) as n→∞ in the sense

of Mosco if and only if ufΩn → ufΩ in W̊ 1
2 (B) for all f ∈ (W̊ 1

2 (B))′.

In the literature convergence of ufΩn → ufΩ is usually reffered to as γ-

convergence. Under the constraints of Theorem 5.1.1 it can be related to

Hausdorff-convergence:
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Lemma 5.1.3 ([41, Theorem 3.4.12]). Let (Ωn)n∈N be a sequence of open

domains in Rd that are uniformly bounded by some compact set B ⊂ Rd and

uniformly satisfy the ε-cone condition. If Ωn → Ω in the sense of Hausdorff,

then ufΩn → ufΩ in W̊ 1
2 (B) for all f ∈ (W̊ 1

2 (B))′.

Convergence of the spaces W̊ 1
2 (Ωn) in the sense of Mosco is again an

equivalent condition to strong convergence of the corresponding resolvent

operators as long as the sequence (Ωn)n∈N is uniformly bounded by some

open bounded set Br ⊂ Rd. If (Ωn)n∈N is unbounded, Mosco convergence of

W̊ 1
2 (Ωn) still ensures convergence of the operators Rn(λ) in a weaker sense,

see [23, Theorem 5.2.4].

Lemma 5.1.4 ([23]). Let (Ωn)n∈N be a sequence of open sets in Rd that are

contained in some bounded domain Br and λ in the resolvent set of (5.1) on

L2(Ω). If W̊ 1
2 (Ωn) converges to W̊ 1

2 (Ω) as n → ∞ in the sense of Mosco,

then λ is contained in the resolvent set of (5.1) on L2(Ωn) for large enough

n and Rn(λ)→ R(λ) in L(H−1(Br), L
2(Br)).

Remark 5.1.2. The Lemma is a slight modification of [23, Corollary 5.2.5]

where it is shown that Rn(λ) → R(λ) in L(H−1(Br), L
q(Br)) for all q ∈

[1, 2d/(d− 2)) if W̊ 1
2 (Br) converges to W̊ 1

2 (Br) in the sense of Mosco. The

proof there relies on the compactness of the embedding W̊ 1
2 (Br) ↪→ Lq(Br)

for all q ∈ [1, 2d/(d− 2)) (Rellich-Kondrachov theorem). If we make use of

the compactness of the embedding W̊ 1
2 (Br) ↪→ L2(Br) (Rellich’s theorem)

the claim follows as statet in Lemma 5.1.4 above.

Although strong convergence of the resolvent operators does not ensure

convergence of the complete spectrum of the corresponding operators, conver-

gence holds for any compact part of the spectrum which can be separated by

a simple, rectifiable curve from the remaining parts of the spectra. The basic

framework for this idea is already set up in [48] and statet more explicitly in

[23].

Lemma 5.1.5 ([23, Corollary 4.3.2]). Suppose that Rn(λ)→ R(λ) for some

λ ∈ C and Σ is a compact subset of the spectrum of (5.1) on L2(Ω) which

could be enclosed by a simple, rectifiable curve Γ seperating it from the



92 5.2. PROOF OF THEOREM 5.0.1

remaining spectrum. Then for large enough n this curve Γ is seperating a

subset Σn of the spectrum of (5.1) on L2(Ωn). Let

Pn = − 1

2πi

∫
Γ

Rn(λ) dλ, P = − 1

2πi

∫
Γ

R(λ) dλ

be the corresponding spectral projections, then for large enough n their images

coincide and Pn → P .

5.2 Proof of Theorem 5.0.1

As a first step we want to observe if there is a box [−a, a] × [−a1, a1] ×
· · · × [−ad−1, ad−1] ⊂ Rd with optimal aspect ratio which minimizes the first

Dirichlet eigenvalue of the Stark operator when the volumes of the boxes are

fixed. Therefore we need an estimate on the first eigenvalue on an interval

[−a, a]. Since the Stark potential ε0x is bounded on [−a, a] a bound on

λ1([−a, a]; ε0) is given in terms of the lowest eigenvalue for the Dirichlet

Laplacian, i.e.

−ε0a+
π2

4a2
≤ λ1([−a, a]; ε0) ≤ ε0a+

π2

4a2

holds for each a > 0 and ε0 ≥ 0. While this inequality reflects the behaviour

of λ1([−a, a]; ε0) on small intervals it fails to give the correct asymptotics as

a→∞.

Lemma 5.2.1. Let −ζ be the first zero of the Airy function, then

λ1([−a, a]; ε0) ≤ −aε0 + ε
2/3
0 ζ +

C

a

holds for some constant C > 0 as long as −aε0 + ε
2/3
0 ζ is negative, in

particular if a > ε
−1/3
0 ζ for fixed ε0 > 0.

Proof. Consider the test function

φ(x) = Ai
(
ε

1/3
0 (x+ a)− ζ

)
χ(x/a)
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where χ is a smooth, monotonic decreasing, cutt-off function satisfying

χ(x) = 1 for x ≤ 0 and χ(x) = 0 for x ≥ 1. Then φ ∈ W̊ 1
2 ([−a, a]) is

non-negative, satisfies the Dirichlet boundary conditions in ±a and

〈
(−d2/dx2 + ε0x)φ(x), φ(x)

〉
≤
〈

(−d2/dx2 + ε0x) Ai
(
ε

1/3
0 (x+ a)− ζ

)
,Ai

(
ε

1/3
0 (x+ a)− ζ

)〉
+

1

a
max
x∈[0,1]

χ′(x)

∫ ∞
0

Ai2 (x) dx

=
(
−aε0 + ε

2/3
0 ζ

) ∥∥∥Ai
(
ε

1/3
0 (x+ a)− ζ

)∥∥∥2

+
1

a
max
x∈[0,1]

χ′(x)

∫ ∞
0

Ai2 (x) dx

≤
(
−ε0a+ ε

2/3
0 ζ

)
‖φ‖2 +

C

a
.

The estimate now follows from the variational principle and the fact

‖φ‖2 ≥
∫ 0

−ζ
Ai2 (x) dx.

By separation of variables the lowest eigenvalue λ1(Rd; ε0) of −∆ + ε0x1

on a box Rd = [−a, a]× [−a1, a1]× · · · × [−ad−1, ad−1] is given by

λ1(Rd; ε0) = λ1([−a, a]; ε0) +

d−1∑
j=1

π2

4a2
j

.

The sum on the right hand side becomes minimal if a1 = · · · = ad−1 such

that we can restrict ourselves without loss of generality to the case Rd =

[−a, a]× [−b, b]d−1 where V = 2dabd−1 is fixed.

Lemma 5.2.2. Let V > 0 be fixed and RV,d be the set of all boxes Rd =

[−a, a]× [−b, b]d−1 satisfying V = 2dabd−1. If either

• d = 2 with ε0 > 0 or

• d = 3 with 0 < ε0 < π2/2
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there exists some R∗ ∈ RV,d such that

λ1(R∗; ε0) = inf
R∈RV,d

λ1(R; ε0).

If either

• d = 3 with ε0 > π2/2 or

• d > 3 with ε0 > 0

then λ1(R; ε0) is not bounded from below for R ∈ RV,d.

Proof. Let Ra = [−a, a] × [−a1/(1−d), a1/(1−d)], then the mapping a 7→
λ1(Ra; ε0) is continuous. Since

λ1(Ra; ε0) = λ1([−a, a]; ε0) +
π2(d− 1)

4
a2/(d−1)

≥ −ε0a+
π2

4a2
+
π2(d− 1)

4
a2/(d−1)

for each ε0 > 0 and a > 0, it follows that λ1(Ra; ε0)→ +∞ as a→ 0 for all

d ≥ 1. If a→ 0, then λ1(Ra; ε0)→ +∞ if d = 2 or d = 3 and ε0 < π2/2. In

this case a 7→ λ1(Ra; ε0) attains its minimum for some a ∈ (0,∞).

Let d > 3 or d = 3 and ε0 > π2/2, then a 7→ λ1(R; ε0) cannot be bounded

from below since Lemma 5.2.1 states that

λ1(Ra; ε0) ≤ −ε0a+ ε
2/3
0 ζ +

C

a
+
π2(d− 1)

4
a2/(d−1)

for some uniform constant C > 0 and −ζ being the first zero of the Airy

function.

Remark 5.2.1. Lemma 5.2.2 also suggests that the minimalizing domain for

the first Dirichlet eigenvalue of the Stark Laplacian cannot be to thin. For a

domain Ω ⊂ Rd consider the one-parametric sequence of domains

TaΩ := {(a1−dx1, ax2, . . . , axd) : (x1, . . . , xd) ∈ Ω},

where all TaΩ, a > 0 share the same volume and center of mass. If R

is a minimizing bounding box of Ω, that is the smallest axis-parallel box



CHAPTER 5. ON THE EXISTENCE OF A MINIMIZING DOMAIN 95

containing Ω, each TaR is the minimal bounding box of TaΩ, and since

TaΩ ⊂ TaR for each a > 0, it follows that

λ1(TαΩ; ε0) ≥ λ1(TαR; ε0)

where λ1(TαR; ε0) → ∞ as α → 0 or α → ∞ if d = 2 or d = 3 and

0 < ε0 < π2/2. In that sense a domain which is to thin might be replaced by

a thicker domain with smaller first eigenvalue.

Proof of Theorem 5.0.1. In order to apply Theorem 5.1.1, we first want to

show that there is an uniform bound on λ1(Ω; ε0) for Ω ∈ CV . Let therefore

RΩ ⊂ Rd be a minimal bounding box for Ω ∈ CV touching Ω in at least 2d

points of the boundary of RΩ. Since Ω can be considered to be symmetrical

along any component perpendicular to the x1-direction, these touching points

are also arranged in a symmetric way such that their convex hull consists

of two hyperpyramides, each of volume |RΩ|/(2 d!). The convex hull of the

touching points is again a subset of Ω, thus

|RΩ| ≤ d! · |Ω| = d! · V

and it follows that λ1(Ω; ε0) ≥ λ1(RΩ; ε0) for the first Dirichlet eigenvalues of

our operator on Ω, respectively RΩ. If we replace RΩ by a box R∗Ω with the

same volume as RΩ but optimal aspect ratio (see Lemma 5.2.2), we obtain

λ1(Ω; ε0) ≥ λ1(R∗Ω; ε0). These various boxes for Ω ∈ CV might be shifted to

each other but are otherwise independent of Ω. By shifting them to the left

such that their right border is alining with the origin, we obtain an uniform

bound on λ1(Ω; ε0), i.e.

λ1(Ω; ε0) ≥ λ1(R∗; ε0),

where R∗ is a box of the type [a1, 0]× [a2, b2]× . . . [ad, bd] with |R∗| = d! · V
and optimal aspect ratio.

Denote by Ur the set of all convex domains that contain a ball of radius

r > 0 and let (Ωr
j)j∈N be a minimizing sequence for infΩ∈CV ∩Ur λ1(Ω; ε0).

Since supΩ∈Ur diam Ω <∞, all Ωrj ∈ CV ∩ Ur are contained in some bounded
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region. From Theorem 5.1.1 it follows that there is a subsequence of (Ωrj)j∈N

converging to a convex set Ω∗r ∈ CV with respect to the Hausdorff distance.

Thus, from the results in Section 5.1 we obtain

λ1(Ω∗r ; ε0) = inf
Ω∈CV ∩Ur

λ1(Ω; ε0).

If r1 ≤ r2, then Ur1 ⊂ Ur2 and λ1(Ω∗r1 ; ε0) ≥ λ1(Ω∗r2 ; ε0) and λ1(Ω∗r ; ε0)

is decreasing in r. According to Remark 5.2.1, the minimizing domain of

λ1(Ω∗r ; ε0) cannot be too thin such that λ1(Ω∗r ; ε0) becomes constant for

sufficiently small r > 0, i.e. there is a Ω∗ ∈ CV satisfying

λ1(Ω∗; ε0) = inf
r>0

λ1(Ω∗r ; ε0) = inf
Ω∈CV

λ1(Ω; ε0).



Chapter 6

Numerical experiments

As discussed in the previous chapter, the problem of finding the domain

Ω ⊂ R2 with given area |Ω| > 0 which minimizes the lowest eigenvalue λ1(Ω)

of the classical Laplacian operator with Dirichlet boundary conditions is

solved by the circle [31,56]. The solution to the same question concerning the

second eigenvalue λ2(Ω) was attributed to P. Szegö in [76] but appeared in a

more or less explicite form in Krahn’s paper [57], see [40] for more references.

Here the solution is the union of two disjoint discs in R2 with identical radii

since the restriction of any eigenfunction φ for λ2(Ω) to its nodal domains Ω+,

Ω−, i.e. the domains where the sign of φ does not change, is an eigenfunction

to λ1(Ω+) and λ1(Ω−). The latter is minimized if Ω+, Ω− are discs, see

[40, 4.1.1] for a more detailed presentation of the proof. Thus, the minimzing

domain of λ2(Ω) is not connected. Moreover, a consequence of this fact is

that the problem of finding

inf {λ2(Ω) : Ω ⊂ R2 open and connected with |Ω| = c}

for given c > 0 has no solution. Indeed, connecting two identical disjoint

discs B1, B2 by a thin tube of width ε > 0 as in example 5.0.2 above yields

a sequence of domains Ωε for which |Ωε|λ2(Ωε)→ |B1 ∪B2|λ2(B1 ∪B2) as

ε → 0. Thus, the Ωε form a minimizing sequence with a limitting domain

that violates the connectivity condition. Nevertheless, under the additional

97
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assumption of convexity a solution to the problem of finding

inf {λ2(Ω) : Ω ⊂ R2 open and convex with |Ω| = c} (6.1)

does exist [40, Theorem 2.4.1], but the challenge remains to find it. A natural

conjecture would be that its solution Ω̌ is the convex hull of two disjoint

discs, usually referred to as a stadium. This conjecture was stated by B.

A. Troesch in 1973 who supported it with numerical experiments, see [88].

It remained for quiet some time until it was disproved by A. Henrot and

E. Oudet in [42] showing that the boundary of the minimizer Ω̌ of λ2(Ω)

cannot contain arcs of a circle. Regarding of the geometry of Ω̌, they give

the following properties:

Theorem 6.0.1 ([42, Theorem 2]). The solution Ω̌ to the problem of finding

(6.1) for a given c > 0 is

• at least of class C1 and at most of class C2

• the boundary ∂Ω̌ contains exactly two straight lines if Ω̌ is of class C1,1.

Appart from that, nothing is known about Ω̌ and numerical methods and

shape optimization algorithms come in handy in order to gain some principal

ideas of how Ω̌ might look like. In the example of minimizing λ2(Ω) numerical

experiments in [74] revealed that Ω̌ still looks very much like a stadium with

two axes of symmetry. But the question if Ω̌ is actually symmetric remains

open.

Other examples where numerical experiments lead to new conjectures on the

solutions of related shape optimization problems are given in [7], where the

problem of minimizing the first Dirichlet eigenvalue λ1(Ω) among all polygons

in R2 is treatened, or in [6], concerning the gap conjecture, i.e. bounding

the difference λ1(Ω)− λ2(Ω) (spectral gap) from below in terms of various

quantities related to the domain as for instance the perimeter.

Besides minimizing λ2(Ω) one is interested in finding the optimal domains

for λj(Ω) if j ≥ 3. Here, the existence of a minimizer Ω̌j is guaranteed by the

Buttazzo-Dal Maso-Theorem among the quasi open sets that are contained

in some open region D ⊂ Rd, see [19], which also includes the definition of
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a quasi open set. We note that the restriction Ω ⊂ D can be dropped as

shown by D. Bucur in [17, Theorem 3]. Just like in the case of λ2(Ω), there

are numerical studys investigating possible candidates for the minimizing

domains, beginning with E. Oudet in [74] to the works of P. Autunes and P.

Freitas [8] who confirmed most of Oudet’s candidates but also improved a

few of them.

Many of the optimizations we mentioned above are based on gradient descent

methods which try to find local minima of the desired functions usually

referred as cost functions. Let Ω 7→ J(Ω) be this cost function for Ω ⊂ Rd.
In order to minimize J , we disturb Ω by a vector field V on Rd and consider

Ωt := {x+ t · V : x ∈ Ω}.

The derivative of J in Ω along the direction V is then given by

DV J(Ω) = lim
t→0

J(Ωt)− J(Ω)

t

If Ω̌ ⊂ Rd is a minimizer of J , then DV J(Ω̌) = 0 for all vector fields V . In

case of J(Ω) = |Ω| or J(Ω) = λj(Ω) there are more useful representations

for this derivative, the latter known as Hadamard’s formula, see Theorem

6.2.2. The various approaches mostly differ in the methods used to evaluate

J or the representation of Ω and the corresponding vector field. Whereas

in [74] the eigenvalue function λ2(Ω) is evaluated with the help of a finite

element algorithm, C. Alves and P. Autunes presented in [5] a more efficient

method for the evaluation of Dirichlet Laplacian eigenvalues based on a

formulation as a boundary value problem. Therefore Ω ⊂ Rd is considered as

a domain enclosed by a simple boundary curve ∂Ω which is represented by

truncated Fourier series. Unfortunately, this method is not available for the

Stark Laplacian. Thus, in what follows we will approximate Ω by polygons

with large counts of vertices and stick to the finite element approach which

will be described in the following section. In Section 6.2 we will derive a

Hadamard-type formula for the Stark Laplacian and use it in the remaining

part of this chapter in order to find candidates for the minimizing domains

of λ1(Ω; ε0) for various regimes of the coupling strength ε0 > 0.
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6.1 Evaluation of eigenvalues

Throughout our experiments we will use the finite element method (FEM)

to approximate the eigenvalues and eigenfunctions of our operator on certain

domains Ω ⊂ R2. A standard finite element approximation is obtained by

formulating the eigenvalue problem

(−∆ + ε0x1)u = λ(Ω, ε0)u, u ∈ W̊ 1
2 (Ω)

in a variational way. Therefore let

aε0 : W̊ 1
2 (Ω)× W̊ 1

2 (Ω)→ C,

(u, v) 7→ aε0 [u, v] =

∫
Ω

∇u(x) · ∇v(x) + ε0x1 u(x)v(x) dx

be the corresponding sesquilinear form. If u ∈ W̊ 1
2 (Ω) is an eigenfunction

with eigenvalue λ it follows that

aε0 [u, v] = λ (u, v)L2(Ω)

for all v ∈ W̊ 1
2 (Ω). Instead of searching for u and λ we want to find

approximate solutions by solving an appropriate finite dimensional problem:

By choosing a finite dimensional subspace Vh ⊂ W̊ 1
2 (Ω) we search for uh, λh

such that

aε0 [uh, vh] = λh (uh, vh)L2(Ω) (6.2)

for all vh ∈ Vh, where uh ∈ Vh is the finite element approximation of the

eigenfunction u. A more detailed introduction into the subject and results

concerning the convergence λh → λ can be found in [14]. Since dim (Vh) = N

is finite, the latter can be expressed as a problem from linear algebra. To

emphasize this, let (φj)j=1,...,N a basis of Vh and

uh =

N∑
i=1

αiφi.
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From (6.2) we then obtain that

N∑
i=1

αj aε0 [φi, φj ] = λ

N∑
i=1

αj (φi, φj)L2(Ω)

for all φj , respectively in a vectorized form

Aα = λMα (6.3)

if α = (αi)i=1,...,N , A = (aε0 [φi, φj ])i,j=1,...,N andM = ((φi, φj)L2(Ω))i,j=1,...,N .

For the remaining problem a wide range of methods in various software pack-

ages is available. Apart from solving this equation, the assembling of the

matrizes A and M is the most expensive part of the calculation. In the later

sections we will use methods in which the eigenvalues have to be evaluated

multiple times on slightly changing domains. So, choice of a good FEM ap-

proximation space is crucial where we have to compromise between achieving

descent accuracy while letting computation times not to grow to large. On

the one hand the basis (φi) of Vh has to be simple enough to allow assembling

of A and M in a small time, on the other hand the FEM space needs to

exhaust the space W̊ 1
2 (Ω) best possible for increasing dimension of Vh to gain

accurency.

Many choices of Vh depend on a meshing of Ω, that is a decomposition of

Ω in a union of non overlapping triangular cells. The space Vh can then be

choosen as the space of continuous functions that vanish on the boundary

∂Ω and are of degree one in each triangle cell. That way any element of Vh

is uniquely described by the set of values at inner nodes (the vertices of the

triangle cells). Therefore dim (Vh) is equal to the number of inner nodes and

a basis of Vh is given by the hat functions that are 1 on a single node and

0 in any other nodes, respectively vanish on any triangle which shares no

vertex with that node. When assembling A and M one has only take into

account adjacent or equal hat functions, any other entries of the matrizes will

be zero which makes A and M sparse matrizes and simplifies the problem of

solving (6.3).

Knowing the structure of Vh, also makes it possible to precompute the
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integrals for the entries of A and M and thus further reduce the computation

times. Let 4(p0, p1, p2) be one of the triangle cells of the mesh. Then

4(p0, p1, p2) can be transformed to the unit triangle4(O, e1, e2) with vertices

O = (0, 0)T , e1 = (1, 0)T and e2 = (0, 1)T by the transform

Ψ : R2 → R2, x 7→ D−1(x− p0)

where the matrix D consists of the column vectors p1− p0 and p2− p0. That

way∫
4(p0,p1,p2)

φi(x)φj(x) dx = det (D)
−1
∫
4(O,e1,e2)

φi(Ψ(x))φj(Ψ(x)) dx

The integral on the right hand side now depends only upon the question if

φi and φj coincide or not. Hence, we obtain that

∫
4(p0,p1,p2)

φi(x)φj(x) dx =
1

24

2 det (D)
−1

φi ≡ φj ,

det (D)
−1

φi 6≡ φj .

For the Laplacian part it follows that∫
4(p0,p1,p2)

∇φi(x) · ∇φj(x) dx

= det (D)
−1
∫
4(O,e1,e2)

(∇φi)(Ψ(x)) · (∇φj)(Ψ(x)) dx

= det (D)
−1
∫
4(O,e1,e2)

(
D−1∇(φi(Ψ(x)))

)
·
(
D−1∇(φi(Ψ(x)))

)
dx.

The gradients in the integral on the right hand side are all gradients of

hat functions on 4(O, e1, e2). Depending on the node there are only three

possible values for these gradients. Let

βi, βj ∈

{(
−1

−1

)
,

(
1

0

)
,

(
0

1

)}
,



CHAPTER 6. NUMERICAL EXPERIMENTS 103

then ∫
4(p0,p1,p2)

∇φi(x) · ∇φj(x) dx =
1

2
det (D)

−1
(D−1βi) · (D−1βj).

Unfortunately, the integral for the part of the Stark potential cannot be

written in a compact form. After transformation to the unit triangle∫
4(p0,p1,p2)

x1 φi(x)φj(x) dx

= det (D)
−1
∫
4(O,e1,e2)

(Ψ(x))1 φi(Ψ(x))φj(Ψ(x)) dx

the integral takes the form

det (D)
−1
∫
4(O,e1,e2)

(αx1 + βx2 + γ)φi(Ψ(x))φj(Ψ(x)) dx

and can also be easily precomputed using one of the integrals∫
4
x3

1 dx =

∫
4
x3

2 dx =
1

20
,∫

4
x2

1x2 dx =

∫
4
x1x

2
2 dx =

1

60
,∫

4
x1x2(1− x1 − x2) dx =

1

120
,∫

4
x1(1− x1 − x2)2 dx =

∫
4
x2(1− x1 − x2)2 dx =

1

60
,∫

4
x2

1(1− x1 − x2) dx =

∫
4
x2

2(1− x1 − x2) dx =
1

60
.

We do not want to go into any further detail and refer to questions concerning

efficient mesh generation and convergence to the literature, e.g. [14] and

references therein.

For our numerical experiments below we will use Mathematica’s functions

NDEigenvalues and NDEigensystem, see [94,95]. To gain an orientation on

their numerical accuracy we first want to compare their outputs to the exact

eigenvalues which are known for a particular family of rectangles in R2. Let
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(an)n∈N be the monotonic decreasing sequence of the Airy functions’ zeros,

then

ϕ1(x1) = Ai
(
ε
−2/3
0 (ε0x1 − ν)

)
is an eigenfunction of the one-dimensional operator −d2/dx2

1 + ε0x1 for

the eigenvalue ν satisfying the Dirichlet condition on the interval I1 =

[ε
−1/3
0 an+1 + ν/ε, ε

−1/3
0 an + ν/ε0]. Since ϕ1 has no zeros in the inner part of

this interval, ν is the lowest eigenvalue λ1(I1, ε0). By seperation of variables

ϕ(x1, x2) = ϕ1(x1) ·ϕ2(x2) where ϕ2(x2) = cos (µx2), µ = π(an+1−an)ε−1/3

is the Dirichlet eigenfunction for −∆ + ε0x1 on

Rε0,n := [ε
−1/3
0 an+1 + ν/ε, ε

−1/3
0 an + ν/ε0]× [−π/(2µ), π/(2µ)]

for the eigenvalue

λ1(Rε0,n, ε0) = ν + π2(an+1 − an)2ε
−2/3
0 .

Denote by λ≈1 (Rε0,n, ε0) Mathematica’s approximative value of λ1(Rε0,n, ε0),

then their difference

Err (ν, ε0, n) := λ≈1 (Rε0,n, ε0)− λ1(Rε0,n, ε0)

does not change with the position of Rν,ε0 along the x1 direction, i.e. the

value of ν. Regarding the influence of n and ε0, Figure 6.1 shows plots

of Err (0, ε0, n) over a wide range of ε0 and various values of n. As one

would expect from the min-max principle, λ≈1 (Rε0,n, ε0) is an upper bound

on λ1(Rε0,n, ε0), since the FEM approximation of ϕ(x1, x2) on Rε0,n could

be seen as a test function. If Rε0,n has extreme aspect ratios, Err (0, ε0, n)

is larger than for rectangles which do look more like a square. Accordingly,

Err (0, ε0, n) seems to grow with larger values of ε0, but in which follows

below we do not want to deal with the strong coupling limit such that the

numerical errors of Mathematica are reasonable small for our purposes.

As a first application we want to search for minimizing domains for the

lowest eigenvalue of the Dirichlet Stark Laplacian among triangles, rectangles
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Figure 6.1: The difference between Mathematica’s approximate value for
the lowest eigenvalue λ1(Rε0,n, ε0) using NDEigenvalues and λ1(Rε0,n, ε0)
on various rectangles characterized by the n-th zero of the Airy function.
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Figure 6.2: Minimizing Λε0(r) = Λε0(Ωr) where Ωr belongs to one of the
families from (6.4).

and ellipses. Introducing the families of domains

Er := {(x1, x2) ∈ R2 : (π2/r2)x2
1 + (r2/π2)x2

2 ≤ 1}

Rr := poly {(r, 1), (0, 1), (0,−1), (r,−1)} (6.4)

Tr := poly {(r, 0), (0, 1), (0,−1)}

for r > 0, these one dimensional problems can be solved by a simple golden

section search. Since we are rather interested in the shape or aspect ratios of

the minimizers, we would have to normalize the areas and center of masses

of the domains Er, Rr or Tr. As an alternative we use the invariant form

Λε0(r) = Λε0(Ωr) = |Ωr| · λ1(Ωr, |Ωr|−3/2ε0) + |Ωr|−1/2 ε0mx1
(Ωr),

Ωr ∈ {Er, Rr, Tr} from (1.11) which does not change when scalling or shifting

a domain. Figure 6.2a shows the minimal values of Λε0(r) we found among

the three families using the golden section search with an accuracy smaller

than 10−5. The minimizing domain for ε0 = 0 is known to be the circle. With

this in mind, it is not suprising that the lowest eigenvalues are found among

ellipses when ε0 > 0 is small. For stronger coupling of the Stark potential

optimal triangles have lower first eigenvalues than optimal ellipses. Figure
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6.2b is a plot of the corresponding values of r for the minimizing domains

for various values of ε0. Again, as one would expect from the case ε0 = 0,

the minimizers are close to the circle Eπ, the equilateral triangle T√3 and

the square R2. For larger values of ε0 the minimizers are stretched along the

direction of the Stark potential and the optimal values of r grow.

6.2 Change of eigenvalues with respect to the

domain

When searching for minimizing domains, one needs to know how eigenvalues

behave under certain changes of the domains boundary. A helpful tool at

this point is Hadamard’s Formula which was already used by P. Autunes

and P. Freitas when exploring the optimal domains for minimizing various

means of Dirichlet- and Neumann eigenvalues of the classical Laplacian [8].

In this section we want to give a version of Hadamard’s Formula for our

operator and apply it in a gradient descent step in order to find minimizing

domains for the first eigenvalue in various regimes of the coupling strength

of the Stark potential.

Let W 1,∞(Rd,Rd) be the space of bounded Lipschitz maps from Rd into

Rd equipped with the norm

‖θ‖W 1,∞ := ‖θ‖∞ + sup
x,y∈Rd,x 6=y

|θ(x)− θ(y)|
|x− y|

.

Functions from this space are differentiable a.e., but W 1,∞(Rd,Rd) can also

be replaced by C1,∞(Rd,Rd) := C1(Rd,Rd) ∩W 1,∞(Rd,Rd) if one likes to

work with stronger assumptions on the differentiability. For t ∈ [0, T [ we

consider the family of functions Φ(t) : Rd → Rd where Φ(0) = I is the identity

on Rd and t 7→ Φ(t)− I ∈W 1,∞(Rd,Rd) is differentiable at t = 0 satisfying

Φ′(0) =
d

dt
Φ(t)

∣∣∣∣
t=0

= V

for some vector field V on Rd. A common choice might be Φ(t) = I + tθ for

some θ ∈W 1,∞(Rd,Rd) or even Φ(t) = I + t · V . By applying Φ(t) on sets
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Ω ⊂ Rd, we generate new sets

Ωt := Φ(t)(Ω) = {Φ(t)(x) : x ∈ Ω}.

Note that, depending on V , Ωt does not have to be convex even if Ω is a

convex set. Nevertheless, this approach allows us to quantify the change of

volume of Ω in terms of V :

Theorem 6.2.1 ([40, Theorem 2.5.3]). Let Ω ⊂ Rd be a bounded open set

with Lipschitz boundary, then t 7→ |Ωt| is differentiable at t = 0 and

d

dt
|Ωt|

∣∣∣∣
t=0

=

∫
∂Ω

V · ndσ

where n is the outward pointing unit normal at each point on the boundary

curve ∂Ω.

Hadamard’s Formula gives a characterization of the change for the k-

th eigenvalue of the Dirichlet (or Neumann) Laplacian on Ωt. Let k be

fixed and ut be the solution of −∆ut = λk(Ωt)ut in W̊ 1
2 (Ωt) with the usual

normalization ∫
Ωt

u2
t dx = 1,

then it follows that

Theorem 6.2.2 ([40, Theorem 2.5.1; 41, Theorem 5.7.1]). Let Ω ⊂ Rd be

a bounded open set that is convex or has C2-boundary and ut ∈ W̊ 1
2 (Ωt)

a normalized solution of −∆ut = λk(t)ut for each fixed t ∈ [0, T [. Then

t 7→ λk(Ωt) is differentiable at t = 0 and

d

dt
λk(Ωt)

∣∣∣∣
t=0

= −
∫
∂Ω

(
∂u0

∂n

)2

V · ndσ (6.5)

as long as λk(t) is a simple eigenvalue.

A detailed proof of this theorem can be found in [41]. It makes use of the

variational characterization of the eigenvalue equation on Ωθ = (I + θ)(Ω)
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for some θ ∈W 1,∞(Rd,Rd), i.e.∫
Ωθ

∇uθ · ∇ϕθ dx = λk(Ωθ)

∫
Ωθ

uθϕθ dx

for all ϕθ ∈ W̊ 1
2 (Ωθ). This variational problem is then transformed onto Ω

which gives the equivalent formulation

−div (A(θ)∇νθ) = λk(Ωθ)νθJθ

where A(θ) = Jθ(I + Dθ)−1(I + (Dθ)T )−1 and νθ = uθ ◦ (I + θ) ∈ W̊ 1
2 (Ω)

with the normalization ∫
Ω

ν2
θ Jθdy = 1.

Again, we refer to [41] for any details and notation. The operator F :

W 1,∞(Rd,Rd)× W̊ 1
2 (Ω)× R→ (W̊ 1

2 (Ω))′ × R defined by

F(θ, ν, λ) =

(
−div (A(θ)∇ν)− λνJθ,

∫
Ω

ν2 Jθdy − 1

)
is of class C∞, moreover,

Dν,λF(0, u0, λk(Ω))(ν̂, λ̂) =

(
−∆ν̂ − λ̂u0 − λk(Ω)ν̂, 2

∫
Ω

u0ν̂ dy

)
is an isomorphism from W̊ 1

2 (Ω)× R onto (W̊ 1
2 (Ω))′ × R and it follows from

the inverse function theorem that

W 1,∞(Rd,Rd)→ W̊ 1
2 (Ω)× R, θ 7→ (νθ, λk(Ωθ))

is differentiable in a neighbourhood of 0 ∈ W 1,∞(Rd,Rd). By choosing

θ = Φ(t)− I this gives the differentiability of t 7→ λk(Ωt) and t 7→ ut. The

representation (6.5) for the derivative then follows from differentiating either

the eigenvalue equation or the integral representation

λk(Ωt) =

∫
Ωt

|∇ut|2 dx.
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In what follows we want to adapt this procedure in order to prove the

corresponding result for the Dirichlet eigenvalues of the Stark Laplacian.

Theorem 6.2.3. Let Ω ⊂ Rd be a bounded open set and λk(Ω, ε0) be a

simple eigenvalue of the Stark Laplacian with Dirichlet boundary conditions

and u its corresponding eigenfunction. For θ ∈ W 1,∞(Rd,Rd) let uθ be a

Dirichlet eigenfunction of the Stark Laplacian on Ωθ = (I + θ)(Ω) for the

k-th eigenvalue λk(Ωθ, ε0), then the mappings θ 7→ λk(Ωθ, ε0) and θ 7→ uθ

are differentiable in a small neighbourhood of 0 ∈W 1,∞(Rd,Rd).

Proof. Our proof follows the ideas from the proof of [41, Theorem 5.7.1]

which we will present in a more elaborated way. Recall that Ωθ = (I + θ)(Ω)

and uθ ∈ W̊ 1
2 (Ωθ), satisfying ‖uθ‖L2(Ωθ) = 1, is a solution of∫
Ωθ

[
|∇uθ|2 + ε0x1|uθ|2

]
dx = λk(Ωθ, ε0)

∫
Ωθ

|uθ|2 dx. (6.6)

Thereby we may choose the sign of uθ such that

W 1,∞(Rd,Rd)→ W̊ 1
2 (Ωθ)× R, θ 7→ (uθ, λk(Ωθ, ε0))

is continuous, cf. [41, Chapter 4]. Problem (6.6) can be written in a variational

formulation as∫
Ωθ

[
∇uθ · ∇ϕθ + ε0x1uθϕθ

]
dx = λk(Ωθ, ε0)

∫
Ωθ

uθϕθ dx

for all ϕθ ∈ W̊ 1
2 (Ωθ). The basic idea is to substitute y = (I + θ)−1x and

thus transfer this problem onto Ω. That way we set ϕθ = ϕ ◦ (I + θ)−1 with

ϕ ∈ W̊ 1
2 (Ω) where

∇ϕθ = [(I + (Dθ)T )−1 · ∇ϕ] ◦ (I + θ)−1

and Dθ is the derivative of θ. Similary, we obtain for νθ = uθ ◦ (I + θ) that

∇uθ = [(I + (Dθ)T )−1 · ∇uθ] ◦ (I + θ)−1
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and thus∫
Ωθ

∇uθ · ∇ϕθ dx =

∫
Ω

[(I + (Dθ)T )−1∇νθ] · [(I + (Dθ)T )−1∇ϕ]Jθdy

with the Jacobian Jθ = det (I +Dθ). The same way follows that∫
Ωθ

x1uθϕθ dx =

∫
Ω

[(I + θ)y]1νθϕJθdy.

In summary we have shown that νθ ∈ W̊ 1
2 (Ω) is a solution of

−div (A(θ)∇νθ) + ε0[(I + θ)y]1Jθνθ = Jθνθλk(Ωθ, ε0)

satisfying the normalization condition
∫

Ω
ν2
θJθdy = 1. In this shorthand

notation we used the abbrevation A(θ) = Jθ(I +Dθ)−1(I + (Dθ)T )−1. Let

F(θ, ν, λ) :=

(
−div (A(θ)∇ν) + ε0[(I + θ)y]1Jθν − λJθν,

∫
Ω

ν2Jθdy

)
which is indeed a mapping from W 1,∞(Rd,Rd)×W̊ 1

2 (Ω)×R to (W̊ 1
2 (Ω))′×R

(see below). Moreover, this mapping is of class C1 and even C∞ as a

composition of differentiable mappings.

Note that if θ = 0 and λ = λk(Ω, ε0) then F (θ, νθ, λ) = 0. Our next

goal is to apply the inverse function theorem in a neighbourhood of θ = 0

and λ = λk(Ω, ε0) which yields a differential mapping θ 7→ (ν(θ), λ(θ))

that necessarily coincides with the continuous function θ 7→ (νθ, λk(Ωθ, ε0)).

Therefore we have to show that

Dν,λF(0, u, λk(Ω, ε0)) : W̊ 1
2 (Ω)× R→ (W̊ 1

2 (Ω))′ × R

(ν̂, λ̂) 7→
(
−∆ν̂ + ε0y1ν̂ − λ̂u− λk(Ω, ε0)ν̂, 2

∫
Ω

uν̂ dy

)
is an isomorphism. Since Dν,λF(0, u, λk(Ω, ε0)) is continouos, it remains to

show that it is one-to-one. In order to do so we will construct a unique
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solution (ν̂, λ̂) ∈ W̊ 1
2 (Ω)× R to the system

−∆ν̂ + ε0y1ν̂ − λ̂u− λk(Ω, ε0)ν̂ = Z

2

∫
Ω

uν̂ dy = Λ

for any (Z,Λ) ∈ (W̊ 1
2 (Ω))′ × R: Recall that

‖(−∆ + ε0y1)u‖(W̊ 1
2 (Ω))′ = sup

v∈W̊ 1
2 (Ω),‖v‖=1

|(v, (−∆ + ε0y1)u)|

= sup
v∈W̊ 1

2 (Ω),‖v‖=1

∣∣∣∣∫
Ω

∇v · ∇udy + ε0

∫
Ω

y1vudy

∣∣∣∣
≤ sup
v∈W̊ 1

2 (Ω),‖v‖=1

‖u‖W̊ 1
2 (Ω) ‖v‖W̊ 1

2 (Ω)

+ ε0Ωc · ‖u‖W̊ 1
2 (Ω) ‖v‖W̊ 1

2 (Ω)

= (1 + ε0Ωc) · ‖u‖W̊ 1
2 (Ω)

where Ωc := sup {x1 ∈ R : ∃x⊥∈Rd−1(x1, x⊥) ∈ Ω} denotes the right bound

of Ω along the x1-direction. Thus (−∆ + ε0y1) mapps W̊ 1
2 (Ω) indeed onto

(W̊ 1
2 (Ω))′.

From now on we assume that the spectrum of −∆ + ε0y1 is positive, more

precisely, we demand

λk(Ω, ε0) ≥ λ1(Ω, ε0) ≥ λ1(Ω, 0)− εΩc > 0.

This can be achieved by shifting the domain which does not affect the

differentiability of the eigenvalue function θ 7→ λk(Ωθ, ε0) or the mapping to
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the corresponding eigenfunction. In this case we deduce

‖(−∆ + ε0y1)u‖(W̊ 1
2 (Ω))′ = sup

v∈W̊ 1
2 (Ω),v 6=0

|(v, (−∆ + ε0y1)u)|
‖v‖W̊ 1

2 (Ω)

≥ 1

‖u‖

∣∣∣∣∫
Ω

|∇u|2 dy + ε0

∫
Ω

y1|u|2 dy

∣∣∣∣
≥ 1

‖u‖

∫
Ω

|∇u|2 dy − ε0
‖u‖

∫
Ω

y1|u|2 dy

≥ (λ1(Ω, 0)− ε0Ωc)‖u‖W̊ 1
2 (Ω),

thus (−∆ + ε0y1)−1 : (W̊ 1
2 (Ω))′ → W̊ 1

2 (Ω) ⊂ (W̊ 1
2 (Ω))′ is well defined and by

Rellichs embedding theorem compact and we can apply the Fredholm alterna-

tive to the operator (−∆+ε0y1−λk(Ω, ε0)). By assumption the kernel of this

operator is one-dimensional such that ϕ ∈ (W̊ 1
2 (Ω))′ belongs to its range if and

only if (ϕ, u) = 0. In particular ϕ = Z + λ̂u ∈ ran (−∆ + ε0y1 − λk(Ω, ε0)),

thus,

0 = (Z + λ̂u, u) = (Z, u) + λ̂

which defines λ̂ in a unique way. Let

ν0 = (−∆ + ε0y1 − λk(Ω, ε0))−1(Z + λ̂u),

then any other element of the preimage of Z + λ̂u by (−∆ + ε0y1−λk(Ω, ε0))

is given by ν̂ = ν0 + s · u, s ∈ R. But since the relation

Λ = 2

∫
Ω

u(ν0 + s · u) dy = 2

∫
Ω

uν0 dy + 2s

defines s in a unique way, ν̂ is unique.

When searching for optimal domains that minimize the eigenvalues of

the Dirichlet Laplacian, one is more interested in the domains shape rather

than the areas, respectively, the minimization problems as (6.1) are only

well-posed in the class of domains with fixed area. In order to control the

influence of rescaling during the optimization procedure, the cost function is

usually chosen to be t 7→ |Ωt|2/dλk(Ωt). In the case of the Stark Laplacian
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one has additionally to take into account that eigenvalues depend on the

position of the domains along the x1-direction and the value of the coupling

constant ε0 > 0. With (1.11) in mind our cost function for d = 2 will be

Λ(t) = |Ωt| · λ1(Ωt, |Ωt|−3/2ε0) + |Ωt|−1/2ε0mx1
(Ωt). (6.7)

Thus, instead of differentiating the Stark eigenvalues λk(Ωt, ε0), we rather

want to give the derivation of t 7→ λk(Ωt, |Ωt|−3/2ε0). As above let ut be a

normalized solution of −∆ut + |Ωt|−3/2ε0x1ut = λ(t)ut in W̊ 1
2 (Ωt), then

Theorem 6.2.4. Let Ω ⊂ R2 be a bounded open set that is convex or has C2-

boundary and ut ∈ W̊ 1
2 (Ωt) a normalized solution of −∆ut + |Ωt|−3/2ε0ut =

λk(t)ut for each fixed t ∈ [0, T [. Then t 7→ λk(t) is differentiable at t = 0 and

d

dt
λk(t)

∣∣∣∣
t=0

= −
∫
∂Ω

[(
∂u0

∂n

)2

+
3

2

ε0

|Ω|5/2

∫
Ω

x1 u
2
0 dx

]
V · n dσ

as long as λk(t) is simple.

Proof. Since ut ≡ 0 on ∂Ωt, it follows that

u′t = −∂ut
∂n

V · n.

From the normalizing condition
∫

Ωt
u2
t dx we obtain that∫

Ωt

utu
′
t dx = 0.

Differentiating both sides of the eigenvalue equation leads to

−∆u′t −
3

2

ε0

|Ωt|5/2
|Ωt|′x1ut +

ε0

|Ωt|3/2
x1u
′
t = λ′kut + λku

′
t.

From there we multiply both sides by ut and integrate over Ωt, hence

λ′k(t) = −
∫

Ωt

ut ∆u′t dx− 3

2

ε0

|Ωt|5/2
|Ωt|′

∫
Ωt

x1 u
2
t dx+

ε0

|Ωt|3/2

∫
Ωt

x1 u
′
tut dx.
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The first term on the right hand side can be replaced by Green’s identity∫
Ωt

u′t ∆ut dx−
∫

Ωt

ut ∆u′t dx =

∫
∂Ωt

u′t

(
∂ut
∂n

)
dσ −

∫
∂Ωt

ut

(
∂u′t
∂n

)
dσ

=

∫
∂Ωt

u′t

(
∂ut
∂n

)
dσ

where one of the integrals vanishes due to the Dirichlet condition. Since

−
∫

Ωt

u′t ∆ut dx+
ε0

|Ω|3/2

∫
Ωt

x1 u
′
tut dx = λk

∫
Ωt

u′tut = 0,

it follows that

λ′k(t) = −
∫
∂Ωt

(
∂u0

∂n

)2

V · n dσ − 3

2

ε0

|Ω|5/2

∫
Ω

x1u
2
0 dx |Ωt|′

and inserting the formula from Theorem 6.2.1 finishes the proof.

In order to find a formula for the derivation of Λ(t) in (6.7), it remains

to differentiate the integral

mx1
(Ωt) =

∫
Ωt

x1 dx

for the center of mass of Ωt. This can be done the same way as in Theorem

6.2.1 and it follows that

d

dt
mx1

(Ωt)

∣∣∣∣
t=0

=

∫
∂Ω

x1 V · ndσ.

In summary we obtain

d

dt
Λ(t)

∣∣∣∣
t=0

=

∫
∂Ω

[
λ1 − |Ω|

(
∂u

∂n

)2

+
ε0

|Ω|1/2
x1

]
V · n dσ

−
∫
∂Ω

[
1

2

ε0

|Ω|3/2
mx1

(Ω) +
3

2

ε0

|Ω|3/2

∫
Ω

x1 u
2 dx

]
V · n dσ

(6.8)
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where u ∈ W̊ 1
2 (Ω) satisfies (−∆ + |Ω|−3/2ε0 x1)u = λu.

6.3 Gradient descent method

Since our algorithm for evaluating the eigenvalues is based on meshing our

domain, we do not restrict ourselves too much when searching for minimizing

domains among polygons with large numbers of vertices (in our case 120 up

to 200). Let

Ω = Ω((x1, y1), (x2, y2), . . . , (xN , yN ))

be the polygon with vertices (xj , yj) ∈ R2, j = 1, . . . , N . With each polygon

we associate the vector of vertices x = (x1, y1, x2, y2, . . . , xN , yN ). To make

the dependency of Ω from x more explicite, we use the notation Ω(x).

Consider the mapping

Λ : R2N → R,

x 7→ Λ(x) := |Ω(x)|λ1(Ω(x), |Ω(x)|−3/2ε0) + |Ω(x)|−1/2ε0mx1
(Ω(x)).

Our goal is to optimize Λ in a gradient descent procedure by replacing Ω(x)

by the polygon

Ωβ = Ω(x + β · ∇Λ)

where β is chosen such that Λ(Ωβ) is minimized. This one-dimensional

optimization problem for β is solved by a simple golden section search in

each step.

Evaluation of the directional derivatives is done by choosing the appropiate

vector fields for V in (6.8). If P0 = (x0, y0) is one of the vertices of Ω(x),

then let PL = (xL, yL) and PR = (xR, yR) be its neighbours as shown in

Figure 6.3. If P0 is moved along the direction (1, 0)T or (0, 1)T , the triangles

4(PR, O, P0) and 4(O,PL, P0) change while the rest of the polygon remains

untouched. Here O = (0, 0) is the origin of our coordinate system and without

loss of generality we can shift our domain Ω(x) such that O is contained in

Ω(x). In order to obtain a sufficiently smooth transition we shift any other

point in 4(PR, O, P0) or 4(O,PL, P0) proportional to its distance from the



CHAPTER 6. NUMERICAL EXPERIMENTS 117

P0 = (x0, y0)

PR = (xR, yR)
PL = (xL, yL)

O = (0, 0)

Figure 6.3: Relative position of the vertices P0, PL, PR of Ω(x).

edge [PR, O] or [O,PL]. Thus, we choose V to be

V (x, y) =

∣∣∣∣ xRy − xyRxRy0 − x0yR

∣∣∣∣
(

1

0

)
resp. V (x, y) =

∣∣∣∣ xRy − xyRxRy0 − x0yR

∣∣∣∣
(

0

1

)

on 4(PR, O, P0),

V (x, y) =

∣∣∣∣ xLy − xyLxLy0 − x0yL

∣∣∣∣
(

1

0

)
resp. V (x, y) =

∣∣∣∣ xLy − xyLxLy0 − x0yL

∣∣∣∣
(

0

1

)

on 4(O,PL, P0) and V (x, y) = 0 in any other point of Ω(x). This way∫
∂Ω

V · n dσ

=

∫
[PR,P0]

V · ndσ +

∫
[P0,PL]

V · n dσ

=

∫ 1

0

t

(
1

0

)
·

(
y0 − yR
−x0 + xR

)
dt+

∫ 1

0

(1− t)

(
1

0

)
·

(
yL − y0

−xL + x0

)
dt

=
1

2
(yL − yR)

when P0 is moved along (1, 0)T , respectively∫
∂Ω

V · ndσ =
1

2
(xR − xL)



118 6.4. RESULTS

when P0 is shifted along (0, 1)T . The remaining integrals in (6.8) can be

computed in a similar manner.

6.4 Results

In what follows we want to summarize our results when searching for candi-

dates for optimal domains which minimize the lowest eigenvalue of −∆+ε0x1

among the set of all convex domains in R2 with fixed area and center of mass.

Instead of minimizing λ1(Ω, ε0) directly, we consider the invariant form

Λ(Ω) = |Ω| · λ1(Ω, |Ω|−3/2ε0) + |Ω|−1/2ε0mx1(Ω)

which does not change when scaling or shifting the domain. However, any

domains shown below are scaled to share |Ω| = 1 and shifted such that

mx1(Ω) = 0 and Λ coincides with the first Stark eigenvalue λ1(Ω, ε0). As

mentioned previously we want to use a gradient descent procedure while

representing Ω as polygons with high counts of vertices that approximate a

convex shape. Let

x = (x1, y1, x2, y2, . . . , xN , yN )

be the vector of vertices (xj , yj) ∈ R2, j = 1, . . . , N of Ω = Ω(x) and ∇Λ the

gradient of Λ(x) = Λ(Ω(x)) as given in (6.8) with vector field from Section

6.3, then Ω is replaced by the new polygon

Ω′ = min
β>0

Λ(x + β∇Λ)

in each step. In doing so the corresponding one dimensional optimization is

done with the help of a simple golden section search.

To begin with we run a quick test for our algorithm in the case of triangular

domains, where we have evaluated the optimal aspect ratios above. Table

6.1 shows the drop of the value for Λ after performing one single gradient

descent step for a starting triangle with vertices (0,±1), (1, 0). The posterior

values of Λ are fitting the optimal values quiet close and the corresponding
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ε0 start domain after one gradient step optimal triangle

0 23.2056 22.7935 22.7935

10 23.4208 22.6003 22.6003

20 23.4976 21.8804 21.8803

30 23.4451 20.2488 20.2485

40 23.2722 17.0550 17.0549

50 22.9878 11.7334 11.7314

Table 6.1: Values of Λ before and after a single gradient step performed
with starting triangle with vertices (0,±1), (1, 0) compared to those
of the optimal triangles with area 1 for various values of ε0.

triangles cannot be distinguished by eye from their optimal counterparts.

When performing a gradient descent step it might occur that we fall into

domains lying at the boundary of the convex shapes in the sense that any

distortion of the domain leads to a non convex shape. An example of such a

domain is shown in Figure 6.4a. In fact, this domain occured when searching

for an optimal domain if ε0 = 20 while starting with random convex domains,

performing a genetic optimization algorithm first (as suggested in [7]) and

then proceeding with the gradient descent algorithm. The prior value of Λ is

approximately 18.2435, after the gradient step it will fall to 18.0045 which

is close to the optimal value of 17.65816 we found for ε0 = 20. However, a

plot of the new domain in Figure 6.4b shows that it is clearly not convex

and shows the first signs that continuing this procedure will turn the domain

in a handle bar like shape similar to the one we used above to disprove the

existence of a minimizing domain among the non convex shapes. To avoid

this effect we will replace the new domains by their convex hull and filling

large line segments of the boundary with interpolation points to keep up the

vertex count during our procedure.

In order to find candidates for the optimal domains we experimented

with various random generated (convex) starting domains (the proof of

[89, Theorem 1] gives a neat algorithm to create them), but the best results

were found when starting with the ellipses or triangles with optimal aspect

ratios in the appropriate regimes for ε0. Figure 6.5 shows the fittest domains
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−0.5 0 0.5 1

−0.5

0

0.5

(a) Start domain sketched in blue.
The orange arrows indicate the com-
ponents of the normalized Gradient
∇Λ attached to the corresponding ver-
tices.

−0.5 0 0.5 1

−0.5

0

0.5

(b) Prior (blue) and posterior domain
(orange) of the gradient step. Both do-
mains are scaled to the same area and
aligned to share the center of mass.

Figure 6.4: Result of a gradient step if ε0 = 20 when starting with
the domain sketched in blue (Λ = 18.2435). The orange domain in
the right picture is the result for β = 6.6 with Λ = 18.0145.

we found for ε0 ∈ {20, 30, 35, 40, 45, 50}. Since the minimizing domain for

ε0 = 0 is the circle, we expect the fittest domain for small ε0 also to look

circular or at least elliptical. In fact up to ε0 = 20, the domains we found do

exactly look like an ellipse and can only be distinguished when comparing

the stretched absolute values of the boundary points. Therefore, let

∂Ěε0 := {(x, y) ∈ R2 : (π3/r2
ε0)x2 + (r2

ε0/π)y2 = 1}

be the boundary of the optimal ellipses Ěε0 with aspect ratios rε0 we found

in Section 6.1 and (x, y) ∈ ∂Ω̌ε0 a boundary point of the fittest domain Ω̌ε0

we found for some ε0. Figure 6.6b then shows a plot of

absrε0 (x, y) :=
π3

r2
ε0

x2 +
r2
ε0

π
y2

versus the polar angle ϕ = arg (x, y) when (x, y) is represented in polar form.

It can be seen that Ω̌20 with Λ(Ω̌20) = 17.65816 clearly differs from Ě20 with

Λ(Ě20) = 17.65820, but the difference |Λ(Ě20)− Λ(Ω̌20)| < 10−4 is expected

to lie in the range of the discretisation error that occurs from the polygonal
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0 10 20 30 40 50

10

15

20

(a) Comparison of the lowest possible eigenvalues among right facing triangles
(blue), ellipses (orange) and various other domains marked with a red star which
are shown below.
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(b) Ω̌20 with Λ(Ω̌20) = 17.65816
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(c) Ω̌30 with Λ(Ω̌30) = 16.9602
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(d) Ω̌35 with Λ(Ω̌35) = 16.2184
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Figure 6.5: Plots of the fittest domains Ω̌ε0 for various values of ε0 and
Λ(Ω̌ε0) in comparison with Λ(Ěε0) and Λ(Ťε0).



122 6.4. RESULTS

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a) The plot does exactly look like the
plot of the ellipse with optimal aspect
ratio.

0 0.5π π 1.5π 2π

0.998

0.999

1

1.001

1.002

1.003

(b) Plot of absrε0 (x, y) versus the
polar angle ϕ = arg (x, y). ˙

Figure 6.6: Fittest domain Ω̌20 for ε0 = 20 with |Ω̌20| = 1 and
mx1

(Ω̌20) = 0 (blue). The domain differs only slightly from the
ellipse with optimal aspect ratio.

approximations of the domains. Proceeding in the same way for ε0 = 30

reveals that Ω̌30 differs even more from the optimal ellipse Ě30 and is rather

egg-shaped.

It is noteworthy that any egg-shapped domain in Figure 6.5 arises from an

elliptical start domain and slices of a pie appear when starting with optimal

triangles Ťε0 . In order to inspect this circumstances closer we compare the

values of Λ for our limiting domains from our gradient descent when starting

with optimal triangles, respectively optimal ellipses. Figure 6.8 shows that

up to ε0 = 31.4 egg-shaped domains have a lower value for Λ than slices of a

pie. If ε0 > 31.5 slices of a pie result in lower values for Λ than egg-shaped

domains. The transition between both domains is located somewhere in

]31.4, 31.5[. However, egg-shaped domains resulting from the gradient descent

when starting with optimal ellipses still occur as local minima up to some

point ε0 ∈]33.70, 33.75[ where the value of Λ drops significantly and coincides

to those of the limiting domains when starting the gradient descent with

optimal triangles, cf. Figure 6.9. In fact, examining the domains in the

gradient descent for ε0 = 35 and Ě35 as starting domain after each step

reveales egg-shaped domains as intermediate stages which then transform

into a slice of a pie as the evaluation continues, see Figure 6.10.
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Figure 6.7: Fittest domain Ω̌30 for ε0 = 30 with |Ω̌30| = 1 and
mx1

(Ω̌30) = 0 (blue). The domain clearly differs from the ellipse Ě30

with optimal ratio (orange).
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Figure 6.8: Minimal values for Λ achieved in the gradient descent
when starting with the optimal triangle (red stars) or with the optimal
ellipse (green stars).
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Figure 6.9: Minimal values for Λ achieved in the gradient descent when
starting with the optimal triangle (red dots) or with the optimal ellipse
(green stars). Between ε0 = 33.7 and ε0 = 33.75 the limiting values when
starting with the optimal ellipse drop significantly and coincide with those
when starting with the optimal triangle if ε0 ≥ 33.75.
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Figure 6.10: Various intermediate domains (blue) when performing the
gradient descent for ε0 = 35 with Ě35 as starting domain. During the first
few steps we arrive at egg-shaped domains which then turn into a slice of a
pie. The limiting domain coincides with Ω̌35 (orange), shown in each step
for comparison. All domains Ω are scaled such that |Ω| = 1 and shifted to
match mx1

(Ω) = 0.
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