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Abstract

In this thesis we are interested in dispersive systems posed on periodic graphs. For
instance, periodic graphs are used as phenomenological models for more complex physical
structures such as photonic crystals, nano-tubes or graphene. We focus on the existence
or non-existence of spatially localized and time-periodic solutions, so called breathers, of
nonlinear Klein-Gordon equations posed on necklace graphs.

This thesis is divided into three parts. In the first part we consider a discrete nonlinear
Klein-Gordon system on a discrete necklace graph with additional localized potential.
We improve existing dispersive estimates up to a temporal decay rate of (1 + t)− 3

2 w.r.t.
the `∞-norm for small symmetric initial conditions. The proof requires suitable integral
representations of the linear semigroup and van der Corput’s Lemma. Although anti-
symmetric initial conditions correspond to eigenstates we are now able to prove asymptotic
stability of the zero state for small localized initial data. The energy loss only occurs due
to a nonlinear coupling into the absolutely continuous spectrum. This leads to a weaker
temporal decay rate for small localized initial data in the nonlinear problem as compared
to the temporal decay rate in the linear problem.

In contrast to the non-existence result of spatially localized and time-periodic solutions
in the first part, we show two existence results for breather solutions in nonlinear Klein-
Gordon systems on a large class of discrete periodic graphs in the second part of this
thesis. The proofs are based on the Theorem of Crandall and Rabinowitz. In order to
prove the existence results we request a non-resonance condition and invariance conditions
depending on the nonlinearity and on the topological structure of the discrete graph.

Finally, in the last part we prove the convergence of generalized breather solutions on
discrete necklace graphs towards breather solutions on the metric necklace graph as the
discretization parameter goes to zero. This result is relevant for the numerical computa-
tion of breather solutions since discrete necklace graphs can be seen as discretizations of
the metric necklace graph. For the proof we use spatial dynamics, bifurcation theory and
a center manifold reduction.
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Zusammenfassung

In dieser Arbeit interessieren wir uns für dispersive Systeme, die auf periodischen Graphen
gestellt sind. Periodische Graphen werden beispielsweise als phänomenologische Modelle
für komplexere physikalische Strukturen wie etwa Photonische Kristalle, Nanoröhren oder
Graphen benutzt. Wir fokussieren uns auf die Existenz oder Nicht-Existenz von räumlich
lokalisierten und zeitperiodischen Lösungen, sogenannten Breathern, von nichtlinearen
Klein-Gordon Gleichungen, die auf Perlenschnur-Graphen gestellt sind.

Diese Arbeit ist in drei Teile gegliedert. Im ersten Teil betrachten wir ein diskretes
nichtlineares Klein-Gordon System auf einem diskreten Perlenschnur-Graphen mit einem
zusätzlichen lokalisierten Potential. Wir verbessern vorhandene dispersive Abschätzungen
bis zu einer zeitlichen Abfallrate von (1 + t)− 3

2 bezüglich der `∞-Norm für kleine sym-
metrische Anfangsbedingungen. Der Beweis benötigt geeignete Integraldarstellungen der
linearen Halbgruppe und van der Corput’s Lemma. Obwohl antisymmetrische Anfangsbe-
dingungen zu Eigenfunktionen gehören, sind wir nun in der Lage asymptotische Stabilität
der Nulllösung für kleine lokalisierte Anfangsdaten zu beweisen. Der Energieverlust tritt
nur aufgrund einer nichtlinearen Kopplung in das absolutstetige Spektrum auf. Dies
führt zu einer schwächeren zeitlichen Abfallrate für kleine lokalisierte Anfangsdaten des
nichtlinearen Problems im Vergleich zu der zeitlichen Abfallrate des linearen Problems.

Im Kontrast zum Nicht-Existenzresultat von räumlich lokalisierten und zeitperiodi-
schen Lösungen im ersten Teil zeigen wir im zweiten Teil dieser Arbeit zwei Existenzresul-
tate für Breather Lösungen in nichtlinearen Klein-Gordon Systemen für eine große Klasse
diskreter periodischer Graphen. Die Beweise basieren auf dem Theorem von Crandall
und Rabinowitz. Um die Existenzresultate zu beweisen, fordern wir eine Nicht-Resonanz-
bedingung und Invarianzbedingungen, die von der Nichtlinearität und der topologischen
Struktur des diskreten Graphen abhängen.

Schließlich beweisen wir im letzten Teil die Konvergenz von verallgemeinerten Breather
Lösungen auf diskreten Perlenschnur-Graphen gegen Breather Lösungen auf metrischen
Perlenschnur-Graphen, während der Diskretisierungsparameter gegen Null geht. Dieses
Resultat ist relevant für die numerische Berechnung von Breather Lösungen, da diskrete
Perlenschnur-Graphen als Diskretisierungen des metrischen Perlenschnur-Graphen gese-
hen werden können. Für den Beweis benutzen wir räumliche Dynamik, Bifurkationsthe-
orie und eine Zentrumsmannigfaltigkeitenreduktion.
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Chapter 1

Introduction

The knowledge about the existence or non-existence of spatially localized solutions in
dispersive systems in periodic media is of great importance for numerous fields in nature
and technology. Applications for dispersive systems in periodic media arise in many fields
of science, for instance as phenological models for more complex physical structures such
as photonic crystals, nano-tubes or graphene, cf. [BVFL+07]. A prototypical dispersive
system is the cubic Klein-Gordon equation

∂2
t u(t, x) = ∂2

xu(t, x)− u(t, x) + u3(t, x), t ∈ R, x ∈ R,

posed on the real axis. Periodic media is often accounted by addition of periodic potentials
to the differential equation. A different approach is to capture the properties of the
periodic media through the underlying topological structure of a discrete or metric graph.
Discrete or metric graphs are networks of edges connected by vertices. In the case of a
metric graph we identify the edges by intervals on the real axis that are joined together
on the vertices. Against this background, we consider the cubic Klein-Gordon equation

∂2
t u(t, x) = ∂2

xu(t, x)− u(t, x) + u3(t, x), t ∈ R, x ∈ Γ,

on a one-dimensional periodic metric graph such as, e.g., the periodic necklace graph Γ,
cf. Figure 1.1. We impose Kirchhoff boundary conditions at the vertex points, which
consist of continuity and conservation of the fluxes.

In this thesis we focus on the existence or non-existence of spatially localized and
time-periodic solutions, so called breathers, of nonlinear Klein-Gordon equations posed
on discrete and metric necklace graphs. In the case that these structures do not exist for
all times, we are interested in the decay rates their energy is radiated to the environment
with.

This thesis is divided into three parts. First, we show the non-persistence of small
solutions, cf. Chapter 2. Afterwards, we deal with the existence of breather solutions on
discrete periodic graphs, cf. Chapter 3. In the last part we investigate the continuum
limit of breather solutions on discrete necklace graphs, cf. Chapter 4.

We refrain from giving references to the literature in the introduction. We refer to
each respective chapter.

11



Chapter 1. Introduction

Γn,0
Γn,+

Γn,−

Figure 1.1: The periodic metric necklace graph Γ.

In Chapter 2 we consider the Klein-Gordon system

∂2
t uj(t) = f(v+

j (t)− uj(t)) + f(v−j (t)− uj(t))− h(uj(t)− wj−1(t)) + ru(uj(t)),
∂2
t v

+
j (t) = g(wj(t)− v+

j (t))− f(v+
j (t)− uj(t)) + rv(v+

j (t)),
∂2
t v
−
j (t) = g(wj(t)− v−j (t))− f(v−j (t)− uj(t)) + rv(v−j (t)),

∂2
twj(t) = h(uj+1(t)− wj(t))− g(v+

j (t)− wj(t))− g(v−j (t)− wj(t)) + rw(wj(t)),

with interaction potentials f, g, h : R → R, local potentials ru, rv, rw : R → R and
coordinates uj, v±j , wj ∈ R for all j ∈ Z which correspond to the horizontal displacement
of the mass particles of its equilibrium positions on the discrete graph Γ with periodic
junctions, cf. Figure 1.2.

v+
j

uj

v−j

wj uj+1

v+
j+1

v−j+1

wj+1

f

f

g

g

h

Figure 1.2: Discrete necklace graph Γ with nodes uj, v+
j , v−j and wj and interaction forces

f , g and h.

We show that in the presence of an additional localized potential solutions of the linear
problem to localized initial data that are symmetric w.r.t. the semicircles decay with a
rate of (1 + t)− 3

2 in the `∞-norm.
In addition to that, we prove asymptotic stability of the trivial state, i.e., the zero

solution, for localized initial data without restrictions on the symmetry w.r.t. the semi-
circles. Since anti-symmetric initial data correspond to eigenstates of the linear problem
we can not expect the same decay rate for the nonlinear problem. In particular, we show
that solutions to localized initial data decay with a rate of (1 + t)−

1
2p−2 in the `2

−σ-norm,
cf. equation (2.3), where p is the power of the nonlinear terms and σ > 7

2 .
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In contrast to the non-existence of time-periodic and spatially localized solutions in
Chapter 2 we prove two abstract existence results for breather solutions on periodic dis-
crete graphs in Chapter 3. Since we handle a much larger class of graphs in Chapter 3
it is advantageous to use a different notation in comparison to the notation in Chapter
2. We consider a nonlinear Klein-Gordon type differential equation on a discrete periodic
graph Γ. The nonlinear part of the differential equation is proportional to a polynomial
of order p.

First, we deduce appropriate non-resonance conditions and invariance conditions de-
pending on the nonlinear terms and the structure of the discrete graph. These conditions
are used to apply the Theorem of Crandall and Rabinowitz in order to show the existence
of breather solutions.

Furthermore, we illustrate a second existence result for breather solutions with weak-
ened invariance conditions if we introduce a suitable localized potential to our differential
equation.

We illustrate the use of these two existence results by providing application examples.
In Chapter 4, we present a result which is relevant for numerical computations of

breather solutions of the cubic Klein-Gordon equation

∂2
t u = ∂2

xu− αu− u3,

with α > 0, x ∈ Γ, t ∈ R, and u(x, t) ∈ R, posed on an infinite necklace graph Γ, cf.
Figure 1.1. In order to do numerical computations we need to discretize the underlying
metric necklace graph Γ. Hence, we introduce discrete necklace graphs which can be seen
as discretizations of the metric necklace graph, cf. Figure 1.3.

Figure 1.3: Two discretized versions of the metric necklace graph Γ.

On these discrete necklace graphs we consider discrete cubic Klein-Gordon systems.
With the help of spatial dynamics and center manifold reduction we show the existence
of generalized breather solutions on discrete necklace graphs. Furthermore, we prove the
convergence of the generalized breather solutions on discrete necklace graphs towards
breather solutions on the metric necklace graph as the discretization parameter goes to
zero.

13



Chapter 1. Introduction

For the reader’s convenience we keep the chapters self-contained and introduce the
setting at the beginning of each chapter.
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Chapter 2

Asymptotic stability on discrete
necklace graphs

In this chapter we consider a discrete Klein-Gordon system on a discrete necklace graph
with additional localized potential Vloc. We show that localized symmetric solutions decay
in the linear case with a rate of (1 + t)− 3

2 w.r.t. the `∞-norm. Based on this estimate,
we prove asymptotic stability of the trivial state for small non-symmetric initial data. In
particular, small localized initial data decay with the rate (1+t)−

1
2p−2 w.r.t. the `2

−σ-norm,
cf. equation (2.3), where the power p of the nonlinearity is of degree higher than four and
even and σ > 7

2 .

2.1 Introduction
The question as to whether spatially localized structures can exist for all times is funda-
mental for many fields in nature. In the case that these structures do not exist for all
times, one is interested in the decay rates their energy is radiated to the environment
with.

Soffer and Weinstein [SW99] and Prill [Pri15] showed that spatially localized and time-
periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian
perturbations via slow radiation of energy to infinity. This is referred to as meta-stability.
The dispersive decay is strongly reduced in comparison to the associated linear problem.

The same effects are expected in discrete systems. Cuccagna [CT09] derived asymp-
totic stability of the trivial state on the lattice Z. In the case of a discrete necklace graph,
cf. Figure 2.1, Maier [Mai19] showed that solutions to symmetric initial conditions show a
dispersive decay with a rate of (1+t)−1/3 in the `∞-norm. We are interested whether solu-
tions with non-symmetric initial conditions also show dispersive behavior or if such initial
conditions lead to time-periodic solutions. Note that anti-symmetric initial conditions
correspond to eigenvalues. Thus, temporal decay of anti-symmetric initial conditions can
not be expected. However, if we add a localized potential Vloc and a suitable nonlinearity
we show that the trivial state is asymptotically stable. Hence, the spatially localized

15



Chapter 2. Asymptotic stability on discrete necklace graphs

time-periodic solutions of the linear system get destroyed. For small localized initial data
we show a decay with the rate (1 + t)−

1
2p−2 w.r.t. the `2

−σ-norm where the power p of the
nonlinearity is of degree higher than four and even and σ > 7

2 .
We consider the Klein-Gordon system

∂2
t uj(t) = f(v+

j (t)− uj(t)) + f(v−j (t)− uj(t))− h(uj(t)− wj−1(t)) + ru(uj(t)),
∂2
t v

+
j (t) = g(wj(t)− v+

j (t))− f(v+
j (t)− uj(t)) + rv(v+

j (t)),
∂2
t v
−
j (t) = g(wj(t)− v−j (t))− f(v−j (t)− uj(t)) + rv(v−j (t)),

∂2
twj(t) = h(uj+1(t)− wj(t))− g(v+

j (t)− wj(t))− g(v−j (t)− wj(t)) + rw(wj(t)),

(2.1)

with interaction potentials f, g, h : R → R, local potentials ru, rv, rw : R → R and
coordinates uj, v±j , wj ∈ R for all j ∈ Z which correspond to the horizontal displacement
of the mass particles of its equilibrium positions on the subsequent discrete graph Γ with
periodic junctions, cf. Figure 2.1.

v+
j

uj

v−j

wj uj+1

v+
j+1

v−j+1

wj+1

f

f

g

g

h

Figure 2.1: Discrete necklace graph Γ with nodes uj, v+
j , v−j and wj and interaction forces

f , g and h.

We use the Taylor expansion of the forces f(x) = f1x + f2x
2 + . . . to split the right-

hand side of (2.1) into a linear part L and a nonlinear part N . Thus, by collecting all
nodes of the j-th periodicity cell in a vector (uj(t), v+

j (t), v−j (t), wj(t))ᵀ = X(t, j) ∈ R4 we
rewrite the Klein-Gordon system (2.1) as

∂2
tX(t, j) + (LX)(t, j, j + 1, j − 1) = N(X)(t, j, j + 1, j − 1).

As in [Mai19] the linear problem shows dispersive behavior for symmetric initial con-
ditions, i.e., the nodes v+

j and v−j coincide. However, the linear part L possesses anti-
symmetric eigenstates (0, vj,−vj, 0)ᵀ and any time-decay can not be expected for the
linear problem with anti-symmetric initial conditions. In the nonlinear problem (2.1)
there occurs a nonlinear interaction between the anti-symmetric discrete mode (bound
state) and the symmetric continuous modes (dispersive radiation). The dispersive de-
cay of the continuous mode is not strong enough to remove all energy from the discrete
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2.1. Introduction

mode. This mechanism is responsible for the eventual time-decay and non-persistence of
trapped states. It turns out that by adding a localized linear potential Vloc and a suitable
space-weight function γ in front of the nonlinear part N we can show that solutions to
small localized initial data show a better time-decay. The localized potential Vloc should
be symmetric w.r.t. the semicircles and only be supported in one periodicity cell. Hence,
we consider the following Cauchy problem

∂2
tX(t, j)− (HX)(t, j, j + 1, j − 1) = γ(j)N(X)(t, j, j + 1, j − 1), t ≥ 0, j ∈ Z,

X(0, j) = X0(j), j ∈ Z,
∂tX(0, j) = X1(j), j ∈ Z,

(2.2)

on the discrete graph Γ where H = −L+ Vloc. We assume N(X) = O(|X|p).

Notation. We use 〈t〉 :=
(
1 + |t|2

) 1
2 and equip the vector-valued spaces with the norm

‖X‖p`pσ :=
∑
j∈Z
|X(j)|p〈j〉pσ. (2.3)

Here,
⌈
p−3

2

⌉
denotes the smallest integer which is greater than or equal p−3

2 .

The result concerning the asymptotic stability is formulated in the following theorem.

Theorem 2.1.1. We consider the Cauchy problem (2.2). Let ω2
0 be an eigenvalue of the

linear operator −L. We make the subsequent assumptions:

(A0) Let p ∈ Neven, p ≥ 4 be the exponent of the nonlinear part N and γ(j) = 〈j〉−ζ with
ζ > 1

2 + (p+ 1)σ and σ > 7
2 .

(A1) For some ρ ∈
{

0, . . . ,
⌈
p−3

2

⌉}
the term (p− 2ρ)ω0 falls into the continuous spectrum

of the operator
√
H.

(A2) For ρ from assumption (A1) we have

Im
(
Λ−p−2ρ + Λ+

p−2ρ

)
> 0,

where Λ±p−2ρ will be defined in (2.40).

(A3) For every m ∈ N0 let m2ω2
0 /∈ ∂σc(−L).

(A4) The localized potential Vloc is symmetric w.r.t the semicircles. The eigenvalue Ω2

generated by Vloc does not possess any resonances at the thresholds of −L, i.e.,

m2Ω2 /∈ ∂σc(−L) ∪ σp(−L), for every m ∈ Z.

Then there is a δ > 0 such that for initial data X0 and X1 with ‖X0‖`2σ < δ and ‖X1‖`2σ < δ
the following holds

‖X(t, ·)‖`2−σ ≤ C〈t〉−
1

2p−2 .

17



Chapter 2. Asymptotic stability on discrete necklace graphs

Remark 2.1.2. The system (2.2) possesses localized eigenstates and its energy is con-
served over time. Theorem 2.1.1 implies that the energy of small initial conditions gets
dispersed to infinity through time despite the presence of the localized eigenstates.

Remark 2.1.3. The arguments used in the proof heavily rely on the structure of the
discrete necklace graph. Although, discrete necklace graphs with more nodes per period-
icity cell can possess more than one eigenvalue the structure remains the same. Thus, the
proof can be adapted for discrete necklace graphs with more nodes per periodicity cell if
we guarantee a certain symmetry for the semicircles, cf. Figure 2.2.

Figure 2.2: A discrete necklace graph with eight nodes per periodicity cell.

Remark 2.1.4. We do not expect that this proof can be adapted for other discrete
periodic graphs without certain assumptions concerning their structure.

Remark 2.1.5. The nonlinear interaction between the discrete mode and the continuous
modes is important and guaranteed by assumptions (A0) and (A1). Assumption (A2)
assures that energy can be transferred from the discrete mode to the continuous modes.
In principle, we have a nonlinear analogon of Fermi’s Golden rule.

Remark 2.1.6. The assumptions (A3) and (A4) ensure that we improve the linear dis-
persive estimates from [Mai19].

Although the strategy used to establish Theorem 2.1.1 is similar to the one used in
[SW99,Pri15], the following new challenges occur. First, the underlying periodic structure
of the necklace graph already possesses an eigenvalue −ω2

0. Second, we have to request an
even power for the nonlinear term since the eigenspace of the eigenvalue −ω2

0 is invariant
under odd power nonlinearities.

An extensive insight in the long-time behavior of the solutions corresponding to the
linear equation forms the basis for the subsequent investigation of the nonlinear problem.
Therefore, we establish initially a subsidiary result, cf. Lemma 2.4.1, improving the
dispersive decay rate from [Mai19] for symmetric initial conditions. We obtain a time
decay of (1 + t)− 3

2 w.r.t. to a `2
−σ-norm. Thus, the energy of the initial conditions gets

transported to infinity.
Starting with the discussion of the spectral picture of the underlying operators L and

H in Section 2.2 and Section 2.3, we introduce appropriate integral representations for
the operators −L and H = −L+ Vloc. With the help of von Neumann’s spectral theorem

18



2.1. Introduction

and the functional calculus for self-adjoint operators we write the solution of the linear
problem as

PcX(t, j) = cos(
√
Ht)PcX0(j) + sin(

√
Ht)√
H

PcX1(j),

where Pc denotes the projection onto the absolutely continuous spectral subspace of `2

w.r.t. the operator H since we can only expect decay for initial conditions from the
absolutely continuous spectral subspace of `2 w.r.t. the operator H. Thus, this identity
and the representation of cos(x) and sin(x) via the exponential function ex allow us to
deal with operators of the form

√
H
−β

e±i
√
HtPc, β ∈ {0, 1}.

Their corresponding integral representations can be derived with the help of suitable
transformations introduced in Lemma 2.3.1 respectively Lemma 2.3.4. The integral ker-
nels consist of integrands which display a stronger decay behavior. However, we have to
restrict ourselves such that the initial data have to be chosen from a space with faster
decay at infinity. This amounts to showing that∥∥∥∥√H−βe±i

√
HtPc

∥∥∥∥
`2σ→`2−σ

≤ c〈t〉−
3
2 .

For this purpose, we use the generalized eigenfunctions of H, given by

ψn(j, l) := 1
2π

{
Tn(l)Fn,+(j, l) for l ≥ 0,
Tn(−l)Fn,−(j,−l) for l < 0,

where Tn(l) is the transmission coefficient introduced in Lemma 2.3.3. This leads to
the subsequent integral representation of the operator

√
H
−βe±i

√
HtPc when it acts on a

function X ∈ `2:

e±i
√
HtPc√
H
β X(j) = 1

2π
∑
m∈Z

X(m)
3∑

n=1

∫ π

−π

e±iωn(l)t

ωβn(l)
e−4il(m−j)ψn(l) ψn(l)dl.

The decay estimate from Lemma 2.4.1 is proved if we show for the integral kernel that∣∣∣∣∣∣e
±i
√
HtPc√
H
β X(j)

∣∣∣∣∣∣ ≤ c 〈t〉−
3
2 〈j〉2 ‖X‖`12 .

In fact, we have an oscillatory integral which can be estimated using the method of
stationary phase. It demonstrates that the existence of a zero of some derivative of the
dispersion relation provides the temporal decay behavior of the integral. The generalized
eigenfunctions of the operator H possess useful properties which can be drawn from
scattering theory results from [DT79, CV11, PS08, KKK06]. The assumptions on the
localized potential Vloc ensure that the transmission coefficients Tn vanish at the border
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Chapter 2. Asymptotic stability on discrete necklace graphs

of the spectral bands. This guarantees that the energy decays sufficiently fast at the band
edges. The remaining part can be treated by repeated integration by parts and displays
an even stronger temporal decay.

In a similar way we prove dispersive estimates for operators which include singular
resolvents of the form

(√
H − λ± i0

)−1
for λ ∈ σc(

√
H) in Lemma 2.4.5.

Before we start with the decay estimate of the nonlinear problem, we derive a priori
estimates for the solution of the Cauchy problem (2.2) in Lemma 2.5.2 in Section 2.5.

Next, we outline the strategy for the decay estimate of the nonlinear problem in Section
2.6. Since the operator H possesses an eigenvalue the linear dispersive estimates only hold
for the part of the solution which gets projected onto the absolutely continuous spectral
subspace. Hence, we only can expect a much weaker decay in the nonlinear problem. Due
to the structure of the discrete necklace graph and the even exponent of the nonlinear part
N , cf. Assumption (A1) and Remark 2.6.1 and Remark 2.6.2, we can neglect without loss
of generality the presence of eigenstates to the eigenvalue Ω2 in the initial data. Hence,
starting with the ansatz

X(t, j) = a(t)Φ(j) + η(t, j),

where a(t) is the one-dimensional component of the solution corresponding to the eigen-
value ω2

0 and Φ is the corresponding eigenfunction and η(t, j) is the infinite-dimensional
component of the solution corresponding to the absolutely continuous spectral subspace,
we obtain two coupled evolutionary systems

∂2
t a(t) + ω2

0a(t) = 〈γN(a(t)Φ + η(t)),Φ〉, (1DS)
∂2
t η(t, j) +Hη(t, j) = Pcγ(j)N(a(t)Φ(j) + η(t, j)). (uDS)

We have a one-dimensional oscillator a with frequency ω0 which interacts with the con-
tinuous medium, where η corresponds to the continuous spectrum. The oscillator and
medium are in resonance since some of the harmonics (p − ρ)ω0 fall into the continuous
spectrum of the operator H, cf. assumption (A1). Thus, there takes place a significant
energy exchange between the two evolutionary systems. Due to assumption (A2), energy
is taken from the discrete mode to the continuous modes from where it is dispersed to
infinity. We reduce the one-dimensional evolutionary system to a first order differential
equation

∂tA(t) = 1
2iω0

eiω0tF (A,A, ηt) = F (a, η),

where we have a(t) = A(t)eiω0t + A(t)e−iω0t and F (a, η) is the right-hand side of (1DS).
Carefully separating the resonant terms from the non-resonant terms in F (a, η) by using
integration by parts yields

∂tA(t) =
∑

k+l=2p−1
αklA(t)kA(t)lei(k−l−1)ω0t + E,

where we collect the remaining higher order terms in E. We want to simplify this equation
further. This is achieved by a normal form transformation K where we eliminate all
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2.2. Spectrum and Floquet-Bloch transform

oscillatory terms of order O(|A|2p−1)A→0, cf. Lemma 2.6.4. The transformed equation, a
dispersive Hamiltonian normal form, then reads as

∂tÃ(t) = αpp−1

∣∣∣Ã(t)
∣∣∣2p−2

Ã(t) +O
(∣∣∣Ã∣∣∣3p−2

)
Ã→0

+ ẼK , (2.4)

where the complex coefficient αpp−1 has negative real part due to assumption (A2), cf.
Remark 2.6.5. If we disregard the error terms and terms of higher order we obtain the
equation

∂tÃ(t) = αpp−1

∣∣∣Ã∣∣∣2p−2
Ã(t), (2.5)

which leads to a time decay rate of (1 + t)−
1

2p−2 for Ã. We prove with the help of
Lemma 2.6.6 that (2.4) shows the same time decay as (2.5) if the higher order terms
Q(t) := O

(∣∣∣Ã∣∣∣3p−2
)
Ã→0

+ ẼK satisfy

|Q(t)| ≤ Q0 〈t〉−
3
2−

1
2p−2 .

The proof for this estimate is part of Lemma 2.6.7. Hence, we obtain the decay rate of
(1 + t)−

1
2p−2 for the discrete mode A(t).

The anticipated decay rate of (1 + t)−1− 1
2p−2 for the continuous mode η can be made

rigorous with the help of Duhamel’s principle. Finally, combining these decay estimates of
the solution components yields that the solution vanishes with a decay rate of (1+ t)−

1
2p−2

w.r.t. the `2
−σ-norm.

2.2 Spectrum and Floquet-Bloch transform
The spectrum of the linear operator −L on the discrete necklace graph can be computed
with the help of the Floquet-Bloch transform which is given by

B(X)(k, l) = X̌(k, l) =
∑
j∈Z

Xk(j)eil·j, l ∈ [−π, π), 1 ≤ k ≤ 4,

where k denotes the k-th component of the vector Xj. The Floquet-Bloch transform turns
the linear operator −L into a family of multiplication operators M−L(l), l ∈ [−π, π). If
we fix the parameter l in M−L(l) we obtain a positive definite self-adjoint square matrix

M−L(l) =


2f1 + h1 + ru,1 −f1 −f1 −h1e−il

−f1 f1 + g1 + rv,1 0 −g1
−f1 0 f1 + g1 + rv,1 −g1
−h1eil −g1 −g1 2g1 + h1 + rw,1

 .
There exists an orthonormal basis in R4 of eigenvectors of M−L(l). We denote these
eigenvectors by φn(l) ∈ R4, n = 0, 1, 2, 3 with corresponding eigenvalues ω2

n(l). The
eigenvectors φn satisfy

〈φn1 , φn2〉L2
per

= δ(n1 − n2)
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Chapter 2. Asymptotic stability on discrete necklace graphs

for n1, n2 ∈ {0, 1, 2, 3} and

3∑
n=0

(φn(l))k
(
φn(l)

)
m

= δ(k −m)

for 1 ≤ k,m ≤ 4 where k,m denote the k-th resp. m-th entry of a vector.
The well-known Floquet-Bloch theory implies that the spectrum of −L and M−L

coincide and possesses band-gap structure

σ(−L) = σ(M−L) =
⋃

l∈[−π,π)
σ(M−L(l)).

We call
ω2
j : [−π, π)→ R, l 7→ ω2

j (l)
the j-th spectral band of −L. We distinguish between two forms of spectral bands. On
the one hand we have a flat spectral band if

inf
l∈[−π,π)

ω2
j (l) = sup

l∈[−π,π)
ω2
j (l),

and on the other hand we call a spectral band non-flat if

inf
l∈[−π,π)

ω2
j (l) < sup

l∈[−π,π)
ω2
j (l).

Flat spectral bands correspond to eigenvalues and therefore are part of the point spectrum
of −L. The remaining part of the spectrum coincides with the absolutely continuous
spectrum of −L. We denote the eigenspace of the point spectrum σp(−L) by Ep and the
eigenspace corresponding to the absolutely continuous spectrum σac(−L) by Eac.

2.3 Explicit integral representations
We deduce explicit integral representations of the operators −L and H. The explicit
integral representation of the operator H will be used in Section 2.4 to prove better
dispersive decay estimates.

2.3.1 Explicit integral representation of the operator L
We introduce the transformation F−L to calculate the integral kernel of −L through the
following lemma.

Lemma 2.3.1. We introduce the transformation

F−L :`2(Z,C4)→ L2
per([−π, π),C4),

X 7→ X̌,
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2.3. Explicit integral representations

Figure 2.3: The spectral picture of −L consists of four Floquet bands. Here, we have
chosen f1 = 1.3, g1 = 0.3, h1 = 2 and r1 = 0.5.
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by

(F−LX)k(l) := X̌k(l) :=
3∑

n=0

∑
j∈Z

Xk(j)e−il(4j+k)
(
φn(l)

)
k
,

for X ∈ `2(Z,C4) . This mapping possesses the properties

• ‖X‖2
`2 = ‖F−LX‖2

L2
per
,

• Xk(j) = 1
2π
∑3
n=0

∫ π
−π (F−LX)k (l)eil(4j+k) (φn(l))k dl,

• (F−L(−LX))k (l) = ∑3
n=0 ω

2
n(l)∑j∈ZXk(j)e−il(4j+k)

(
φn(l)

)
k
.

Proof. See [Mai19].

We are able to formulate an explicit integral representation of the linear operator

(−LX)(j) = 1
2π

∑
m∈Z

X(m)
( 3∑
n=0

∫ π

−π
ω2
n(l)e−4ilmφn(l)e4iljφn(l)dl

)
.

It is possible to insert any Borel-measurable function Gt depending on −L in this integral
representation instead of −L. For a Borel-measurable time-dependent function Gt we
obtain

(Gt(−L)X)(j) = 1
2π

∑
m∈Z

X(m)
( 3∑
n=0

∫ π

−π
Gt(ω2

n(l))e−4ilmφn(l)e4iljφn(l)dl
)
,

for X ∈ `2.
We introduce the spectral projections Pn onto the n-th spectral band of the operator

−L. The spectral theorem implies

−L =
3∑

n=0
Pn := Pc + Pp,

where Pc is the spectral projection onto the absolutely continuous part and Pp is the
projection onto the flat spectral band corresponding to the eigenvalue ω2

0(l). The integral
representation for the absolutely continuous part is

Pc(−LX)(j) = 1
2π

∑
m∈Z

X(m)
( 3∑
n=1

∫ π

−π
ω2
n(l)e−4ilmφn(l)e4iljφn(l)dl

)
.

With the help of Neumann’s spectral theorem and the functional calculus the subsequent
dispersive estimates were proven in [Mai19].

Remark 2.3.2. For symmetric initial data the solutions to the linear initial value problem
obey

‖PcX(t)‖`∞−1
. 〈t〉−

1
2
(
‖X0‖`11 + ‖X1‖`11

)
,

‖PcX(t)‖`∞ . 〈t〉−
1
3 (‖X0‖`1 + ‖X1‖`1) ,
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2.3. Explicit integral representations

for all t ≥ 0 and initial data X0 and X1. The proof uses van der Corput’s Lemma. For
the second inequality we use the fact that the spectral bands either satisfy ∂2

l ω(l) > 0 or
∂3
t ω(l) > 0. This leads to a uniform estimate. The first inequality is a pointwise estimate

due to the fact that we use the identity e±iωn(l)t = 1
±i∂lωn(l)t∂l

(
e±iωn(l)t

)
, which leads to a

factor |jm| if we use integration by parts.
These dispersive estimates are not strong enough if we want to show that the trivial

solution is asymptotically stable. Therefore, we need to improve those estimates. In order
to do this we introduce a localized potential Vloc in the next section.

2.3.2 Properties of the operator H
In this section we consider the linear initial value problem

∂2
tX(t, j) = (HX)(t, j, j + 1, j − 1), t ≥ 0, j ∈ Z,
X(0, j) = X0(j), j ∈ Z,

∂tX(0, j) = X1(j), j ∈ Z.
(2.6)

We assume that Vloc ∈ `1
1(Z,R4) is a generic localized potential, i.e., that Vloc generates at

most one eigenvalue Ω2 ∈ R. Examples for Vloc are sufficiently small positive potentials
which are syymetric with respect to the semi-circles, cf. [FK98] Accordingly to assumption
(A4) the eigenvalue Ω2 possesses no resonances at the thresholds of −L, i.e.,

m2Ω2 /∈ ∂σc(−L), for every m ∈ Z.

The new operator H is self-adjoint due to the theorem of Kato-Rellich since −L is a
self-adjoint operator and Vloc is a bounded symmetric operator. It is essential that the
absolutely continuous spectra of H and −L coincide. Since Vloc is a compact operator and
the resolvent (−L− z)−1 is bounded for z ∈ ρ(−L) the concatenation of these operators
is a compact operator. Thus, the following equality for the essential spectrum of H and
−L holds

σac(H) = σess(H) = σess(−L) = σac(−L).
Since Vloc is a localized potential there still exist eigenfunctions corresponding to the
eigenvalue ω2

0 with
Hφ0(j, l) = ω2

0φ0(j, l).
There exist generalized eigenfunctions Fn,±, n = 1, 2, 3, for the operator H with

HFn,±(j, l) = ω2
n(l)Fn,±(j, l).

It is possible to construct these functions with the help of an analogue of Volterra’s integral
equation. In our case we obtain

Fn,+(j, l) = eilφn(l)

−
∞∑
m=j

(Vloc(m) · Fn,+(m, l)) ·
eil(j−m)

(
φn(l)φn(l)

)
− e−il(j−m)

(
φn(l)φn(l)

)
[eil·φn(l), e−il·φn(l)] ,
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Chapter 2. Asymptotic stability on discrete necklace graphs

and

Fn,−(j, l) = eilφn(l)

−
m=j∑
−∞

(Vloc(m) · Fn,−(m, l)) ·
eil(j−m)

(
φn(l)φn(l)

)
− e−il(j−m)

(
φn(l)φn(l)

)
[eil·φn(l), e−il·φn(l)] .

We emphasize that the functions Fn,±(·, l) solve the eigenvalue problem for the operator
H with corresponding eigenvalues ω2

n(l), n = 1, 2, 3. Furthermore, these functions obey
the following asymptotic property

lim
j→±∞

e−iljFn,±(j, l) = φn(l).

We want to construct a suitable transformation to obtain an explicit integral representa-
tion for which we show improved dispersive estimates. A key element are the so-called
transmission coefficients Tn(l) and reflection coefficients Rn,± from scattering theory which
satisfy the equation

Fn,∓(j, l) = 1
Tn(l)Fn,±(j, l) + Rn,±(l)

Tn(l) Fn,±(j, l), (2.7)

for l /∈ {0, ±π}. We collect some properties for the transmission coefficients and reflection
coefficients in the following lemma.

Lemma 2.3.3. The transmission coefficients and reflection coefficients can be continu-
ously extended onto the interval [−π, π]. It holds

• Tn(−π) = Tn(0) = Tn(π) = 0, if Vloc is generic,

• Tn(l) = Tn(−l), Rn,±(l) = Rn,±(l),

• |Tn(l)|2 + |Rn,±(l)|2 = 1. Tn(l)Rn,±(l) +Rn,∓(l)Tn(l) = 0.

Proof. The general case on the real line was handled in [DT79] and improved for the
addition of periodic potentials in [Pri14, CV11]. A similar result for the discrete case
can be found in [KKK06, PS08]. Our problem on the discrete necklace graph can be
interpreted as a Klein-Gordon equation with additional periodic potential on Z.

We introduce the notion of the Wronskian for functions u(·), v(·) : Z→ C through

[u(j), v(j)] = 〈u(j), v(j + 1)〉 − 〈u(j + 1), v(j)〉 .

We call Fn,± Jost functions if they satisfy

[Fn,+(j, ls), Fn,−(j, ls)] 6= 0,

for ls ∈ {0,±π} and 1 ≤ n ≤ 3 and j ∈ Z. The Wronskian of u and v is constant if u and
v are solutions to the equation Hu = ω2

n(l)u. Thus, we have

[Fn,+(·, l), Fn,−(·, l)] = const. 6= 0,
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2.3. Explicit integral representations

for 1 ≤ n ≤ 3 and all l ∈ [−π, π] since Fn,+(l) and Fn,−(l) are linearly independent.
Further we obtain [

eil·φn(l), e−il·φn(l)
]

=
(
e−il − eil

) 〈
φn(l), φn(l)

〉
C4
.

These two identities are used to define the transmission coefficients

Tn(l) =

[
eil·φn(l), e−il·φn(l)

]
[Fn,+(·, l), Fn,−(·, l)] ,

such that (2.7) is satisfied and the properties from Lemma 2.3.3 are fulfilled.

2.3.3 Explicit integral representation of the operator H
In this section we compute the integral kernel for the absolutely continuous part of H =
−L+ Vloc. The time dependency in this section is neglected.

We establish new functions ψn, 1 ≤ n ≤ 3, which we call Bloch waves or generalized
eigenfunctions to the operator H. They are given by

ψn(j, l) := 1
2π

{
Tn(l)Fn,+(j, l) for l ≥ 0,
Tn(−l)Fn,−(j,−l) for l < 0.

In particular, the functions ψn solve the eigenvalue problem

Hψn(j, l) = ω2
n(l)ψn(j, l),

for 1 ≤ n ≤ 3. Let Pc be the spectral projection onto the absolutely continuous part of
H. We introduce a transformation in the following lemma.

Lemma 2.3.4. We introduce the transformation

FH :Pc`2(Z,C4)→ L2
per([−π, π),C4),

X 7→ X̌,

by

(FHX)k (l) := X̌k(l) :=
3∑

n=1

∑
j∈Z

Xk(j)e−il(4j+k)
(
ψn(j, l)

)
k
,

for X ∈ Pc`2(Z,C4). This mapping possesses the following properties

• ‖X‖2
`2 = ‖FHX‖2

L2
per
,

• Xj(k) = ∑3
n=1

∫ π
−π (FHX)k (l)eil(4j+k) (ψn(j, l))k dl,

• (FHHX)k (l) = ∑3
n=1 ω

2
n(l)∑j∈ZXk(j)e−il(4j+k)

(
ψn(j, l)

)
k
.
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Proof. We have on the one hand

‖X‖2
`2 =

∑
j∈Z

4∑
k=1
|Xk(j)|2,

and on the other hand

‖FHX‖2
L2per =

∫ π

−π
FHX(l)FHX(l)dl

=
∫ π

−π

4∑
k=1

FHX(l, k)FHX(l, k)dl

=
∫ π

−π

4∑
k=1

 3∑
n1=1

∑
j∈Z

Xk(j)e−il(4j+k)
(
ψn1(j, l)

)
k


×

 3∑
n2=1

∑
m∈Z

Xk(m)e−i(4m+k)
(
ψn2(m, l)

)
k

 dl.

The integral vanishes for all terms of the sum with j 6= m due to the factor e−il(4(m−j)+k−k).
Thus, we obtain

‖FHX‖2
L2

per
=
∫ π

−π

∑
j∈Z

4∑
k=1
|Xk(j)|2

3∑
n1,n2=1

(ψn1(j, l))k
(
ψn2(j, l)

)
k

dl

=
∑
j∈Z

4∑
k=1
|Xk(j)|2

3∑
n1,n2=1

〈ψn1(j), ψn2(j)〉L2
per

=
∑
j∈Z

4∑
k=1
|Xk(j)|2 = ‖X‖`2 .

We show that (
F−1
H X̌

)
k

(l) =
3∑

n=1

∫ π

−π
X̌k(l)eil(4j+k) (ψn(j, l))k dl

is the inverse of FH by computing
(
F−1
H X̌

)
k

(j) =
3∑

n1=1

∫ π

−π

3∑
n2=1

∑
m∈Z

Xk(m)e−il(4m+k)
(
ψn1(m, l)

)
k

eil(4j+k) (ψn2(j, l))k dl

=
∫ π

−π
Xk(j)

3∑
n1=1

3∑
n2=1

(
ψn1(j, l)

)
k

(ψn2(j, l))k dl

= Xk(j)
3∑

n1,n2=1
〈ψn1(j), ψn2(j)〉L2

per

= Xk(j),

where we have used that all addends in the integral with j 6= m vanish due to the factor
e−il(4(m−j)+k−k).
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2.4. Linear dispersive estimates

In the last step we obtain an integral representation of the action of the operator H.
In order to proof this representation we use the self-adjointness of H in

(FHHX)k (l) =
3∑

n=1

∑
j∈Z

HXk(j)e−il(4j+k)
(
ψn(j, l)

)
k

=
3∑

n=1

〈
HXk, eil(4·+k)

(
ψn(·, l)

)
k

〉
`2

=
3∑

n=1

〈
Xk, Heil(4·+k)

(
ψn(·, l)

)
k

〉
`2

=
3∑

n=1

〈
Xk, ω

2
n(l)eil(4·+k)

(
ψn(·, l)

)
k

〉
`2

=
3∑

n=1
ω2
n(l)

〈
Xk, eil(4·+k)

(
ψn(·, l)

)
k

〉
`2

=
3∑

n=1
ω2
n(l)

∑
j∈Z

Xk(j)e−il(4j+k)
(
ψn(j, l)

)
k
.

With the help of this lemma we deduce an integral representation for the operator H.
However, this is only valid for X ∈ Pc`2.

(HX)(j) = 1
2π

∑
m∈Z

X(m)
( 3∑
n=1

∫ π

−π
ω2
n(l)e−4ilmψn(l)e4iljψn(l)dl

)

= 1
2π

∑
m∈Z

X(m)
( 3∑
n=1

∫ π

−π
ω2
n(l)Ψn(l, j,m)dl

)
.

It is possible to insert any Borel-measurable function Gt depending on H in the integral
representation of the operator H which is then given by

(Gt(H)X)(j) = 1
2π

∑
m∈Z

X(m)
( 3∑
n=1

∫ π

−π
Gt(ω2

n(l))Ψn(l, j,m)dl
)
, (2.8)

for X ∈ Pc`2.

2.4 Linear dispersive estimates
In the first part of this section we improve the existing dispersive estimates from [Mai19].
Furthermore, we show singular resolvent estimates in the second part.
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2.4.1 Dispersive estimates for the operator eHt

That the absolutely continuous part of a solution to (2.2) decays with rate of (1 + t)− 3
2 ,

is part of the following lemma.

Lemma 2.4.1. Assume that the initial data X0 and X1 coincide in the upper and lower
semicircles. Then the solutions to the linear problem (2.6) obey the subsequent decay
estimate

‖PcX(t)‖`∞−2
. 〈t〉−

3
2
(
‖X0‖`12 + ‖X1‖`12

)
,

for t ≥ 0.

With the help of Neumann’s spectral theorem and the functional calculus for self-
adjoint operators we write the absolutely continuous part of the solutions of (2.6) as

PcX(t, j) = cos(
√
Ht)PcX0(j) + sin(

√
Ht)√
H

PcX1(j). (2.9)

The constituents of (2.9) can be rewritten via Euler’s formula by

Gβ
t (
√
H) :=

√
H
−β

e±i
√
HtPc, β ∈ {0, 1},

and are explicitly given(
Gβ
t (
√
H)X

)
(j) =

√
H
−β

e±i
√
HtPcX(j)

= 1
2π

∑
m∈Z

X(m)
( 3∑
n=1

∫ π

−π

e±ωn(l)t

ωn(l)β Ψn(l, j,m)dl
)

= 1
2π

∑
m∈Z

X(m)Gβ
j,m(t),

(2.10)

forX ∈ Pc`2 by the integral representation (2.8). Thus, it suffices to estimate the equation
(2.10). We emphasize that β = 1 causes no problems since ωn(l) > 0 for l ∈ [−π, π].

A natural approach to such a problem is to use van der Corput’s Lemma which is
stated in the subsequent lemma.

Lemma 2.4.2. Let ϕ(l) be a smooth function on the interval [a, b] with |∂νl ϕ(l)| ≥ cν > 0
in (a, b) for ν ∈ N≥2. Then follows for some constant Cν := 5 · 2ν−1 − 2 that∣∣∣∣∣

∫ b

a
eiϕ(l)tα(l)dl

∣∣∣∣∣ ≤ Cν(cνt)−
1
ν

(
min {|α(a)|, |α(b)|}+

∫ b

a
|∂lα(l)|dl

)
. (2.11)

Proof. For the proof we refer to [SM93].

For fixed n ∈ {1, 2, 3}, we observe that ∂lωn(l) possesses zeros at the border of the
spectrum, i.e., for l ∈ {0,±π} we have ∂lωn(l) = 0. Since ωn(l) is a smooth function
it follows, that ∂2

l ωn(l) > 0 in a small neighborhood of the zeros of ∂lωn(l). Thus, it is
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2.4. Linear dispersive estimates

−π π

1− χ(l)

χ(l)

1

l

χ(l)

Figure 2.4: The cut-off functions χ and 1− χ.

possible to choose a smooth cut-off function χ(l) such that the second derivative of ωn(l)
does not vanish in the support of χ(l), cf. Figure 2.4. As direct consequence the first
derivative of ωn(l) does not vanish in the support of 1 − χ(l). We split Gβ

j,m(t) into the
parts Aβ1 (t, j,m) and Aβ2 (t, j,m) by

Gβ
j,m(t) =

(∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β Ψn(l, j,m)dl
)

=
(∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β χ(l)Ψn(l, j,m)dl
)

+
(∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β (1− χ(l))Ψn(l, j,m)dl
)

=: Aβ1 (t, j,m) + Aβ2 (t, j,m).

First, we analyze the term including 1 − χ. Since the first derivative of ωn(l) does not
vanish in the support of 1− χ we use the identity

e±iωn(l)t = 1
±i∂lωn(l)t∂l

(
e±iωn(l)t

)
, (2.12)
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Chapter 2. Asymptotic stability on discrete necklace graphs

to estimate the term Aβ2 as follows

∣∣∣Aβ2 (t, j,m)
∣∣∣ =

∣∣∣∣∣
∫ π

−π

3∑
n=1

1
i∂lωn(l)t∂l

(
e±iωn(l)t

) 1
ωn(l)β (1− χ(l))Ψn(l, j,m)dl

∣∣∣∣∣
≤

∣∣∣∣∣∣
[ 3∑
n=1

e±iωn(l)t (1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)βt

]l=π
l=−π

−
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)βt

)
dl
∣∣∣∣∣

≤ 〈t〉−1
∣∣∣∣∣
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
dl
∣∣∣∣∣.

We integrated by parts and used the fact that the cut-off function 1−χ vanishes in a small
neighborhood of l ∈ {0,±π}. Thus, the term in square brackets vanishes and ∂lωn(l) in
the denominator causes no problems.

Next we repeat these steps to obtain

∣∣∣Aβ2 (t, j,m)
∣∣∣ ≤ 〈t〉−1

∣∣∣∣∣
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
dl
∣∣∣∣∣

= 〈t〉−1
∣∣∣∣∣
∫ π

−π

3∑
n=1

1
i∂lωn(l)t∂l

(
e±iωn(l)t

)
∂l

(
(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
dl
∣∣∣∣∣

≤ 〈t〉−2

∣∣∣∣∣∣
[ 3∑
n=1

e±iωn(l)t 1
i∂lωn(l)∂l

(
(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)]l=π
l=−π

−
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
1

i∂lωn(l)∂l
(

(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

))
dl
∣∣∣∣∣

≤ 〈t〉−2
∣∣∣∣∣
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
1

i∂lωn(l)∂l
(

(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

))
dl
∣∣∣∣∣.

The functions 1 − χ, ωn and Ψn are smooth in l and can be bounded by a constant C
which does not depend on l. The same holds for the derivatives of 1 − χ and ωn. Due
to the factor e−4il(m−j) the derivatives of Ψn contain powers of (m− j). We bound these
terms by 〈j〉2 〈m〉2. Therefore, we estimate the integral term via∣∣∣∣∣

∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
1

i∂lωn(l)∂l
(

(1− χ(l))Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

))
dl
∣∣∣∣∣ ≤ C 〈j〉2 〈m〉2 ,

from where we deduce the inequality∣∣∣Aβ2 (t, j,m)
∣∣∣ ≤ C 〈t〉−2 〈j〉2 〈m〉2 .

We write the function χ(l) = χ1(l) + χ2(l) + χ3(l) as sum of three cut-off functions
which are localized around −π, 0 and π respectively, cf. Figure 2.4. We split the term
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2.4. Linear dispersive estimates

Aβ1 (t, j,m) accordingly to the partition of χ into χ1, χ2 and χ3 into

Aβ1,µ(t, j,m) :=
∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β χµ(l)Ψn(l, j,m)dl, µ = 1, 2, 3.

We start by investigating Aβ1,2 by using the identity (2.12) and integration by parts. This
leads to

∣∣∣Aβ1,2(t, j,m)
∣∣∣ =

∣∣∣∣∣
∫ π

−π

3∑
n=1

1
i∂lωn(l)t∂l

(
e±iωn(l)t

) 1
ωn(l)βχ2(l)Ψn(l, j,m)dl

∣∣∣∣∣
≤

∣∣∣∣∣∣
[ 3∑
n=1

e±iωn(l)t χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)βt

]l=π
l=−π

−
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)βt

)
dl
∣∣∣∣∣

≤ 〈t〉−1
∣∣∣∣∣
∫ π

−π

3∑
n=1

e±iωn(l)t∂l

(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
dl
∣∣∣∣∣.

The boundary terms from the integration by parts vanish since the support of χ2 is
contained in an interval [−δ, δ] for some small δ > 0. The zero of ∂lωn(l) at l = 0 in the
denominator causes no problems since the terms

∂rl

(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
≤ C, r = 0, 1,

are bounded for small l due to the fact that Ψn(0) = 0 thanks to the transmission
coefficients Tn(l) = Tn(−l) which are zero for l = 0.

It is not possible to repeat the integration by parts. However, we use van der Corput’s
Lemma to further estimate Aβ1,2 since ∂2

l ωn(l) 6= 0 for l ∈ suppχ2. We use (2.11) with
ν = 2 and ϕ = ωn for n = 1, 2, 3 and obtain

∣∣∣Aβ1,2(t, j,m)
∣∣∣ ≤ 〈t〉−1

∣∣∣∣∣
∫ δ

−δ

3∑
n=1

e±iωn(l)t∂l

(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)
dl
∣∣∣∣∣

≤ C 〈t〉−
3
2

(∫ δ

−δ

3∑
n=1

∣∣∣∣∣∂2
l

(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)∣∣∣∣∣dl
+

3∑
n=1

min
l=±δ

{∣∣∣∣∣∂l
(
χ2(l)Ψn(l, j,m)
i (∂lωn(l))ωn(l)β

)∣∣∣∣∣
})

≤ C 〈t〉−
3
2 〈j〉2 〈m〉2 .

The cut-off functions χ1 and χ3 can be considered simultaneously. We start with a change
of coordinates

l̃ :=
{
l + π , l ≤ 0,
l − π , l > 0.
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Chapter 2. Asymptotic stability on discrete necklace graphs

We recall that the functions ωn and Ψn are 2π-periodic in l. In addition we have suppχ1 ⊂
[−π − δ,−π + δ] and suppχ3 ⊂ [π − δ, π + δ]. Thus, we compute with the coordinate
change

Aβ1,1(t, l,m) + Aβ1,3(t, j,m) =
∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β χ1(l)Ψn(l, j,m)dl

+
∫ π

−π

3∑
n=1

e±iωn(l)t

ωn(l)β χ3(l)Ψn(l, j,m)dl

=
∫ −π+δ

−π

3∑
n=1

e±iωn(l)t

ωn(l)β χ1(l)Ψn(l, j,m)dl

+
∫ π

π−δ

3∑
n=1

e±iωn(l)t

ωn(l)β χ3(l)Ψn(l, j,m)dl

=
∫ δ

0

3∑
n=1

e±iωn(l̃)t

ωn(l̃)β
χ1(l̃)e−4il̃mψn(l̃)e4il̃jψn(l̃)dl̃

+
∫ 0

−δ

3∑
n=1

e±iωn(l̃)t

ωn(l̃)β
χ3(l̃)e−4il̃mψn(l̃)e4il̃jψn(l̃)dl̃

=
∫ δ

−δ

3∑
n=1

e±iω̃n(l̃)t

ω̃n(l̃)β
χ̃(l̃)e−4il̃mψ̃n(l̃)e4il̃jψ̃n(l̃)dl̃,

where we have taken together the cut-off functions χ1 and χ3 as a new function χ̃ as
well as the amplitude functions. The last integral is of the same form as Aβ1,2 and can be
treated analogously. Therefore we obtain∣∣∣Aβ1,µ(t, j,m)

∣∣∣ ≤ C 〈t〉−
3
2 〈j〉2 〈m〉2 , µ = 1, 3.

Combining the estimates for Aβ1 and Aβ2 we get the desired result for Gβ
j,m(t) in∣∣∣Gβ

j,m(t)
∣∣∣ ≤ C 〈t〉−

3
2 〈j〉2 〈m〉2 .

As a direct consequence we obtain that∥∥∥Gβ
t (
√
H)X

∥∥∥
`∞−2

. 〈t〉−
3
2 ‖X‖`12 .

Finally, it follows with (2.9) that

‖PcX(t)‖`∞−2
. 〈t〉−

3
2
(
‖X0‖`12 + ‖X1‖`12

)
, t ≥ 0,

which proves Lemma 2.4.1.
Corollary 2.4.3. For σ > 5

2 and symmetric initial data X0 and X1 the decay estimate
from Lemma 2.4.1 can be transferred into a decay estimate for `2

σ-spaces

‖PcX(t)‖`2−σ . 〈t〉−
3
2
(
‖X0‖`2σ + ‖X1‖`2σ

)
, (2.13)

for t ≥ 0.
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2.4. Linear dispersive estimates

Proof. For any σ ∈ R the norm corresponding to the space `2
σ is given by

‖X‖`2σ =
∑
j∈Z

∣∣∣〈j〉σX(j)2
∣∣∣2
 1

2

.

We compute for σ > 5
2 that

∥∥∥Gβ
t (
√
H)X

∥∥∥2

`2−σ
=
∑
j∈Z

∣∣∣∣∣∣〈j〉−σ
∑
m∈Z

X(m)Gβ
j,m(t)

∣∣∣∣∣∣
2

≤
∑
j∈Z
〈j〉−2σ

∣∣∣∣∣∣
∑
m∈Z
〈m〉σX(m) 〈m〉−σ Gβ

j,m(t)

∣∣∣∣∣∣
2

≤ c 〈t〉−3

∑
j∈Z
〈j〉−2σ+4

 ∣∣∣∣∣∣
∑
m∈Z
〈m〉σX(m) 〈m〉−σ+2

∣∣∣∣∣∣
2

≤ c 〈t〉−3

∑
j∈Z
〈j〉−2σ+4

∑
m∈Z
〈m〉2σX(m)2

∑
m∈Z
〈m〉−2σ+4


≤ c 〈t〉−3

∑
j∈Z
〈j〉−2σ+4

∑
m∈Z
〈m〉−2σ+4

 ‖X‖2
`2σ

≤ C 〈t〉−3 ‖X‖2
`2σ

By taking the root and using the identity (2.9) we get the desired estimate (2.13).

Remark 2.4.4. The decay estimate (2.13) still holds if we replace Pc by Gt(H)Pc where
Gt(H) is some time-dependent Borel-measurable function.

2.4.2 Singular resolvent estimates
In order to prove the asymptotic stability result from Theorem 2.1.1 in Section 2.6 we
need estimates of terms which include singular resolvents, i.e., operators of the form
e±it

√
H(
√
H − λ ± i0)−1Pc with λ ∈ σc(

√
H). The case λ /∈ σ(

√
H) can be handled by

(2.13) and Remark 2.4.4. We state the desired decay estimate for the singular resolvents
in

Lemma 2.4.5. All assumptions from Theorem 2.1.1 are met and let λ be an arbitrary
point inside the continuous spectrum σc(

√
H). Then we obtain the decay estimate∥∥∥〈·〉−σe±it

√
H(
√
H − λ± i0)−1Pc〈·〉−σg

∥∥∥
`2
≤ c〈t〉−

3
2‖g‖`2 , (2.14)

for t ∈ [0,∞) and for all g ∈ `2.

Remark 2.4.6. A similar resolvent estimate is proved in [Pri15] on the real line with a
periodic potential and a localized potential. We adapt this proof such that it suits the
discrete case on the periodic necklace graph.
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Chapter 2. Asymptotic stability on discrete necklace graphs

Remark 2.4.7. In order to keep the notation simple we only treat the operator with
positive sign since the case with a negative sign can be treated analogously. However, if
the operator possesses a negative sign it is necessary to approach the real axis from below.

Proof of Lemma 2.4.5. We start by introducing a smooth cut-off function χ∆ of an open
interval ∆ which contains λ and which is compactly contained in σc(

√
H). The counter

part is denoted by χc∆ := 1−χ∆. With the help of these two functions we decompose the
operator 〈·〉−σeit

√
H(
√
H − λ+ i0)−1Pc〈·〉−σ into

〈·〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ i0)−1Pc〈·〉−σ, (2.15)

and
〈·〉−σχc∆(

√
H)eit

√
H(
√
H − λ+ i0)−1Pc〈·〉−σ. (2.16)

We will estimate these two parts separately. The reason for this decomposition is that the
energy in (2.15) is localized around λ whereas the energy in (2.16) is localized away from
λ. Thus, we estimate the part in (2.16) with the help of (2.13) since the only difference
is the additional factor

χc∆(
√
H)√

H − λ+ iε
.

There arise no problems from this factor because it is smooth and possesses no singularities
in the support of the cut-off function χc∆(

√
H).

Therefore, we focus on the part (2.15). We introduce the formal identity

eit
√
H(
√
H − λ+ iε)−1 = −ieiλteεt

∫ ∞
t

ei(
√
H−λ+iε)τdτ,

which can be verified by integrating the right-hand side. We use this formal identity on
the regularization of (2.15) which is then given by

〈j〉−σχ∆(
√
H) eit

√
H(
√
H − λ+ iε)−1Pc〈j〉−σg(j)

= −ieiλteεt
∫ ∞
t
〈j〉−σχ∆(

√
H)ei(

√
H−λ+iε)τPc〈j〉−σg(j)dτ.

Next, we rewrite 〈j〉−σχ∆(
√
H)ei(

√
H−λ+iε)τPc〈j〉−σ as an integral operator with the help

of the integral representation for the operator H as in (2.8). This yields

〈j〉−σχ∆(
√
H) ei(

√
H−λ+iε)τPc〈j〉−σg(j)

=
∑
m∈Z
〈j〉−σ

(∫ π

−π
χ∆(ω(l))eiω(l)τe−iλτe−ετΨ(l, j,m)dl〈m〉−σg(m)

)
,

where λ lies in the spectral band ω(l) and Ψ(l, j,m) := 1
2πe−il(4m+k)ψ(l)keil(4j+k)ψ(l)k. The

integral representations for the remaining non-flat spectral bands do vanish since χ∆ is
compactly supported in only one spectral band.
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2.4. Linear dispersive estimates

Our goal is to bound the integral kernel of 〈j〉−σχ∆(
√
H)ei(

√
H−λ+iε)τPc〈j〉−σ by∣∣∣∣∫ π

−π
eiω(l)(1+τ)χ∆(

√
H)e−iω(l)Ψ(l, j,m)dle−iλτe−ετ

∣∣∣∣ ≤ ce−ετ (1 + τ)−r〈j〉r〈m〉r. (2.17)

The prime cause for this estimate is the fact that χ∆ concentrates the energy on an
interval ∆ ⊂⊂ σc(

√
H) around λ ∈ ∆ in exactly one spectral band. Thus, the thresholds

ls ∈ {0,±π} become irrelevant. Since those are the only points for which ∂lω(ls) = 0
holds, we only integrate over non-critical points of ω(l). The support of χ∆ can be chosen
such that it is contained in [λ − δ, λ + δ] ⊂⊂ {ω(l) : l ∈ [−π, π)}, δ > 0. The spectral
band function ω(l) is bijective, continuous in both directions and strictly monotonic on
(−π, 0) respectively (0, π). Hence, the compact interval [λ − δ, λ + δ] is mapped by ω−1

onto a compact interval K̃ := [k̃− δ̃1, k̃+ δ̃2], which is compactly contained in (−π, 0) and
(0, π), respectively. By introducing B := 1

i∂lω(l)∂l and B
† := −∂l 1

i∂lω(l) we are led to
∫
K̃

eiω(l)(1+τ)χ∆(ω(l)) e−iω(l)Ψ(l, j,m)dl

=
( 1

1 + τ

)r ∫
K̃
Br

(
eiω(l)(1+τ)

)
χ∆(ω(l))e−iω(l)Ψ(l, j,m)dl

=
( 1

1 + τ

)r ∫
K̃

eiω(l)(1+τ)(B†)r
(
χ∆(ω(l))e−iω(l)Ψ(l, j,m)

)
dl.

Accordingly, the integral kernel of (2.15) obeys the estimate∣∣∣∣∫
K̃

eiω(l)(1+τ)χ∆(ω(l))e−iω(l)Ψ(l, j,m)dle−iλτe−ετ
∣∣∣∣ ≤ (1 + τ)−re−ετ

∫
K̃

1 · C〈j〉r〈m〉rdl

≤ ce−ετ (1 + τ)−r〈j〉r〈m〉r,

provided that we prove that the r-fold application of the formal adjoint of B can be
controlled by ∣∣∣(B†)r (χ∆(ω(l))e−iω(l)Ψ(l, j,m)

)∣∣∣ ≤ C〈j〉r〈m〉r. (2.18)

In order to verify this estimate we consider the action of the operator (B†)r on a function
f(l) which is given by

(B†)r(f(l)) = (−1)r∂l
(

1
i∂lω(l)∂l

(
1

i∂lω(l) . . . ∂l
(

1
i∂lω(l)f(l)

)
. . .

))
.

This expression has the structure of a fraction with denominator (∂lω(l))2r. The numera-
tor is a sum of products which are made up of a factor ∂%f with % ∈ {1, . . . , r} and some
factors that are derivatives of ω(l) up to order r. In our case the l-dependent function f
is given by

f(l) := χ∆(ω(l))e−iω(l)Ψ(l, j,m),

which contains j andm as parameters. We only need to study the behavior of the function
f(l) and its derivatives with respect to l to complete the verification of (2.18). Due to the
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Chapter 2. Asymptotic stability on discrete necklace graphs

factor χ∆(ω(l)) the domain of integration K̃ is restricted such that ω(l) has no critical
points. Thus, we have ∂lω(l) ≥ c̃ > 0, whence

1
∂lω(l) ≤

1
c̃
for l ∈ K̃. (2.19)

Furthermore, ω(l) has continuous derivatives of order n ∈ {0, 1, 2, . . .} on K̃ which yields

|∂nl ω(l)| ≤ c for l ∈ K̃ and n ∈ {0, 1, 2, . . .}. (2.20)

We observe that the derivatives of order n of e−iω(l) and χ∆(ω(l)) are composed of sums
and products of themselves and derivatives of ω(l) up to order n. The derivative of order
n of Ψ(l, j,m) obeys the estimate

|∂nl Ψ(l, j,m)| ≤ c〈j〉n〈m〉n. (2.21)

With the help of (2.19), (2.20), (2.21) and the observations above we are able to provide
the validity of

|∂%f(l)| ≤ c〈j〉%〈m〉% ≤ c〈j〉r〈m〉r and |∂%l ω(l)| ≤ c.

As a result we obtain the desired bound for (B†)r(f(l)) as in (2.18). If we apply this
estimate to the regularized integral kernel representation of the operator (2.15) we get

〈j〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ iε)−1Pc〈j〉−σg(j)

= −ieiλteεt
∫ ∞
t
〈j〉−σχ∆(

√
H)ei(

√
H−λ+iε)τPc〈j〉−σg(j)dτ

= −ieiλteεt
∫ ∞
t

∑
m∈Z
〈j〉−σ

∫ π

−π
eiω(l)τeiω(l)χ∆(ω(l))e−iω(l)e−iλτe−ετΨ(l, j,m)dl〈m〉−σg(m)dτ

= −ieiλteεt
∑
m∈Z

∫ ∞
t
〈j〉−σ

∫ π

−π
eiω(l)(1+τ)χ∆(ω(l))e−iω(l)Ψ(l, j,m)dle−iλτe−ετ 〈m〉−σg(m)dτ,

which is absolutely convergent. With (2.17) we estimate the regularization of (2.15)
according to
∣∣∣〈j〉−σχ∆(

√
H)eit

√
H(
√
H − λ+ iε)−1Pc〈j〉−σg(j)

∣∣∣
≤ eεt

∑
m∈Z
〈j〉−σ

∫ ∞
t

∣∣∣∣∫ π

−π
eiω(l)(1+τ)χ∆(ω(l))e−iω(l)Ψ(l, j,m)dle−iλτe−ετ

∣∣∣∣〈m〉−σ|g(m)|dτ

≤ eεt
∑
m∈Z
〈j〉−σ

∫ ∞
t

ce−ετ (1 + τ)−r〈j〉r〈m〉r〈m〉−σ|g(m)|dτ

= ceεt · 〈j〉r−σ ·
∑
m∈Z
〈m〉r−σ|g(m)|

 · ∫ ∞
t

e−ετ (1 + τ)−rdτ.
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2.4. Linear dispersive estimates

We handle the integral with respect to τ by integration by parts and obtain

∫ ∞
t

e−ετ (1 + τ)−rdτ =
(

e−ετ (1 + τ)−r+1

−r + 1
∣∣∣∞
τ=t
−
∫ ∞
t
−εe−ετ (1 + τ)−r+1

−r + 1 dτ
)

= e−εt (1 + t)−r+1

−r + 1 −
∫ ∞
t

εe−ετ (1 + τ)−r+1

r − 1 dτ

≤ e−εt (1 + t)−r+1

−r + 1 ,

since for r > 1, the last integral has a positive integrand so that it can be omitted. We
continue with the original estimate

∣∣∣〈j〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ iε)−1Pc〈j〉−σg(j)

∣∣∣
≤ ceεt · 〈j〉r−σ ·

∑
m∈Z
〈m〉r−σ|g(m)|

 · e−εt (1 + t)−r+1

−r + 1

≤ cr〈t〉−r+1 · 〈j〉r−σ ·

∑
m∈Z
〈m〉r−σ|g(m)|


≤ cr〈t〉−r+1‖g‖`2〈j〉

r−σ,

where we applied the Cauchy-Schwarz inequality in the last step with σ > r + 1
2 . By

extension we arrive at∥∥∥〈·〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ iε)−1Pc〈·〉−σg

∥∥∥
`2

≤

∑
j∈Z

∣∣∣〈j〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ iε)−1Pc〈j〉−σg(j)

∣∣∣2
 1

2

≤ cr〈t〉−r+1‖g‖`2

∑
j∈Z
〈j〉2(r−σ)

 1
2

≤ cr〈t〉−r+1‖g‖`2 .

(2.22)

The sum in the last line is finite for σ > r+ 1
2 . Since we are interested in a time-decay rate

of at least 〈t〉− 3
2 we have to choose r ≥ 3. For example taking r = 3 leads to a time-decay

of 〈t〉−2. This results in the requirement σ > 3 + 1
2 = 7

2 . In order to get the estimate for
the operator (2.15) we remark that the right-hand side in (2.22) no longer depends on ε.
Thus, we take the limit ε→ 0 and obtain the desired result

∥∥∥〈·〉−σχ∆(
√
H)eit

√
H(
√
H − λ+ i0)−1Pc〈·〉−σg

∥∥∥
`2
≤ c〈t〉−2‖g‖`2 .
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Chapter 2. Asymptotic stability on discrete necklace graphs

2.5 A priori estimates
We need a priori estimates for the solution of the Cauchy problem (2.2) in order to ensure
that our solution exists for all t ≥ 0.

Remark 2.5.1. The Cauchy problem (2.2) consists of infinitely many coupled second
order ordinary differential equations. Thus, the Picard-Lindelöf theorem can be applied.
Hence, for this Cauchy problem exists a unique solution on the interval [0, T ) for some
T > 0.

We consider in `2 ⊕ `2 the following quantity

E(t) = E(X(t), ∂tX(t))

=
∑
j∈Z

1
2(∂tX(t, j))2 + 1

2
(√

HX(t, j)
)2
− 1
p+ 1γ(j)L−1

1 Np+1(X)(t, j)

= 1
2〈∂tX(t), ∂tX(t)〉`2 + 1

2〈
√
HX(t),

√
HX(t)〉`2

−
∑
j∈Z

1
p+ 1γ(j)L−1

1 Np+1(X)(t, j),

where Np+1 is the nonlinear part of (2.2) with exponent p+ 1 instead of p. The operator
L−1

1 is the inverse of the following self-adjoint and bounded operator

L1Y (j) = L1


Y1(j)
Y2(j)
Y3(j)
Y4(j)

 =


Y2(j) + Y3(j) + Y4(j − 1)− 4Y1(j)

Y4(j) + Y1(j)− 3Y2(j)
Y4(j) + Y1(j)− 3Y3(j)

Y1(j + 1) + Y2(j) + Y3(j)− 4Y4(j)

 .
In our case E(t) is a conserved quantity, i.e., d

dt
E(t) = 0. We state the a priori estimate

for solutions of the Cauchy problem (2.2) in

Lemma 2.5.2. For sufficiently small initial conditions X0, X1 with

‖X0‖`2 + ‖X1‖`2 ≤ δ,

where δ > 0 is sufficiently small, there exists a constant c̃ such that the solution X of the
Cauchy problem (2.2) on the interval [0, T ) satisfies the a priori bound

sup
t∈[0,T )

(‖X(t)‖`2 + ‖∂tX(t)‖`2) ≤ c̃ (‖X0‖`2 + ‖X1‖`2) . (2.23)

Proof. We set
G(X) = 2

p+ 1γL
−1
1 Np+1(X),

with G(0) = 0 such that G′(x) = g(X) = 2γN(X). Since E(t) is a conserved quantity we
obtain

‖(X(t), ∂tX(t))‖2
`2⊕`2 −

∑
j∈Z

G(X(t, j)) = ‖X0, X1‖2
`2⊕`2 −

∑
j∈Z

G(X0(j)). (2.24)
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2.5. A priori estimates

We start by estimating

G(X(t, j)) ≤ |G(X(t, j))| =
∣∣∣∣∣ 2
p+ 1γ(j)L−1

1 Np+1(X)(t, j)
∣∣∣∣∣ ≤ c|Np+1(X)(t, j, j + 1, j − 1)|.

By adding up over j ∈ Z we receive∑
j∈Z

G(X(t, j)) ≤ c
∑
j∈Z
|Np+1(X)(t, j)| ≤ c‖Np+1(X)(t)‖`1 .

The bound of the nonlinear term Np+1

|Np+1(X)(j)| ≤ cf,g,h|X(j)|p+1,

yields
c‖Np+1(X)(t)‖`1 ≤ c‖X(t)‖p+1

`p+1 ≤ c‖X(t)‖p+1
`2 .

The last inequality holds due to the embedding `p+1 ↪→ `2. We estimate further∑
j∈Z

G(X(t, j)) ≤ c‖X(t)‖p+1
`2 ≤ c‖(X(t), ∂tX(t))‖p+1

`2⊕`2 , (2.25)

and

−
∑
j∈Z

G(X0(j)) ≤

∣∣∣∣∣∣
∑
j∈Z

G(X0(j))

∣∣∣∣∣∣ ≤ c‖X0‖p+1
`2 ≤ c‖(X0, X1)‖p+1

`2⊕`2 . (2.26)

With the help of the inequalities (2.25) and (2.26) we rearrange (2.24) to

‖(X(t), ∂tX(t))‖2
`2⊕`2 = ‖(X0, X1)‖2

`2⊕`2 −
∑
j∈Z

G(X0(j)) +
∑
j∈Z

G(X(t, j))

≤ ‖(X0, X1)‖2
`2⊕`2 + c‖(X0, X1)‖p+1

`2⊕`2 + c‖(X(t), ∂tX(t))‖p+1
`2⊕`2 .

(2.27)

In order to bound ‖(X(t), ∂tX(t))‖`2⊕`2 independently of T for all t ∈ [0, T ) we follow the
arguments from [CH98]. We set M := M(t) := ‖(X(t), ∂tX(t))‖2

`2⊕`2 and introduce for
M ≥ 0 the function

ϑ(M) := M − cM
p+1

2 = M(1− cM
p−1

2 ),

which is motivated by the inequality (2.27). For all t ∈ [0, T ) we find

ϑ(M) ≤ ϑ0 := ‖(X0, X1)‖2
`2⊕`2 + c‖(X0, X1)‖p+1

`2⊕`2 .

Let ϑm be the unique positive maximum of the concave function ϑ with corresponding
maximizing element Mm. For every ϑ0 ∈ (0, ϑm) there exist two elements M1 and M2
with 0 < M1 < Mm < M2 such that ϑ(M1) = ϑ(M2) = ϑ0 holds. Since the exponent p is
even and p ≥ 4 we have especially p+1

2 ≥ 2. Hence, we write p+1
2 = 1 + ς for some ς > 0.
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Chapter 2. Asymptotic stability on discrete necklace graphs

Since our initial condition ϑ0 < ϑm is small we have M(t) ∈ [0,M1)∪ (M2,∞). We claim
that the following two inequalities are satisfied

ϑ0
(I)
< M1

(II)
< ϑ0

1 + ς

ς
. (2.28)

For the inequality (I) we consider ∂Mϑ(M) = 1 − (1 + ς)cM ς and ∂2
Mϑ(M) = −ς(1 +

ς)cM ς−1. The first derivative evaluated at zero has the value ∂Mϑ(0) = 1 and for positive
values of M we obtain for the second derivative ∂2

Mϑ(M) < 0. The identity map IdM :
M 7→ M as well as the map ϑ possess at M = 0 the function value zero and their
derivatives possess the function value one. Thus, the map IdM is a tangent to the function
ϑ at value zero. Since ϑ is concave the graph of IdM lies above the graph of the function
ϑ. This yields ϑ0 = ϑ(M1) < M1.

In order to show the inequality (II) we observe that the maximizing elementMm can be
computed with the help of the equation 1−(1+ς)cMα = 0. We obtainMm = (c(1+ς))− 1

ς

and the corresponding maximum ϑ(Mm) = Mm − cM1+ς
m . We compute

ϑ(Mm)
Mm

= Mm − cM1+ς
m

Mm

= 1− cM ς
m = 1− c 1

c(1 + ς) = ς

1 + ς
.

Thus, M 7→ ς
1+ςM is the secant of ϑ through the origin and the maximum of ϑ. The

graph of M 7→ ς
1+ςM lies as a consequence of the concavity of ϑ below the graph of the

function ϑ on the interval [0,Mm]. Hence, (2.28) can be shown by considering these two
functions at the value M1.

Since M = M(t) depends continuously on t and we have for sufficiently small initial
data M(0) = ‖(X0, X1)‖2

`2⊕`2 < M1 that

M(t) ≤M1 ≤
1 + ς

ς
ϑ0,

for all t ∈ [0, T ). Due to the fact that the bound 1+ς
ς
ϑ0 does not depend on T we finally

obtain
sup

t∈[0,∞)
‖(X(t), ∂tX(t))‖2

`2⊕`2 ≤ c‖(X0, X1)‖2
`2⊕`2 .

Remark 2.5.3. With the help of this a priori estimate the unique solution X(t) of the
Cauchy problem (2.2) can be extended globally in time.

2.6 Asymptotic stability
We recall the Cauchy problem (2.2)

∂2
tX(t, j)− (HX)(t, j, j + 1, j − 1) = γ(j)N(X)(t, j, j + 1j,−1), t ≥ 0, j ∈ Z,

X(0, j) = X0(j), j ∈ Z,
∂tX(0, j) = X1(j), j ∈ Z,
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2.6. Asymptotic stability

on our discrete periodic necklace graph Γ with linear part H = −L+Vloc and the function
γ(j) = 〈j〉−ζ := (1 + |j|2)− ζ2 for some ζ > 1/2 + (p+ 1)σ with σ > 5/2 and nonlinear part

N(X)j =


fp(v+

j (t)− uj(t))p + fp(v−j (t)− uj(t))p − hp(uj(t)− wj−1(t))p,
gp(wj(t)− v+

j (t))p − fp(v+
j (t)− uj(t))p,

gp(wj(t)− v−j (t))p − fp(v−j (t)− uj(t))p,
hp(uj+1(t)− wj(t))p − gp(v+

j (t)− wj(t))p − gp(v−j (t)− wj(t))p,

 .

Due to assumption (A4) the operator H possesses two eigenvalues ω2
0 and Ω2, where ω2

0 is
also an eigenvalue of the operator −L and Ω2 is generated by the localized potential Vloc.
The eigenspaces associated to these two eigenvalues consist of anti-symmetric sequences
with respect to the semicircles, i.e., the nodes v+

j and v−j possess the same value with
opposing sign. We denote with ek ∈ `2(Z,R4) the normalized eigenstate of −L which is
localized in the k-th periodicity cell

ek(k) = (0, 1√
2
,− 1√

2
, 0)ᵀ, ek(j) = (0, 0, 0, 0)ᵀ for j 6= k.

Then, Eω2
0

= span{ek}k/∈suppVloc is the eigenspace associated to the eigenvalue ω2
0. Due to

the symmetry of Vloc, we characterize the eigenspace associated to the eigenvalue Ω2 by
EΩ2 = span{ek}k∈suppVloc .

The eigenspace associated to the absolutely continuous spectrum consists of all func-
tions which are symmetric with respect to the semicircles, i.e., the values at the nodes v+

j

and v−j coincide for all j ∈ Z. We will denote this eigenspace by Eac. Thus, it is possible
to separate the sequence space into a symmetric and an anti-symmetric part

Eac ⊕ (⊕k∈Zspan{ek}) .

We obtain the following properties for the eigenspaces under the action of H

X ∈ Eω2
0
⇒ HX = ω2

0X,

X ∈ EΩ2 ⇒ HX = Ω2X,

X ∈ Eac ⇒ HX ∈ Eac.

Since the exponent p of the nonlinearity N is even we verify that

X ∈ Eω2
0
⇒ N(X) ∈ Eac,

X ∈ EΩ2 ⇒ N(X) ∈ Eac,
X ∈ Eac ⇒ N(X) ∈ Eac.

In particular, Eac is an invariant subspace under N .

Remark 2.6.1. Hence, only the eigenstates to ω2
0 and Ω2 which are present in the initial

data will be excited. Any eigenstate which is not excited in the initial data will never be
excited.
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Chapter 2. Asymptotic stability on discrete necklace graphs

Therefore, we assume without loss of generality that only one fixed

Φ ∈ span{ek}k/∈suppVloc

will be present in the initial data. We choose Φ = ek0 for a fixed k0 /∈ suppVloc.

Remark 2.6.2. The same approach is also valid if eigenstates to the eigenvalue Ω2 are ex-
cited in the initial data provided that Ω2 satisfies the same assumptions as ω2

0 in Theorem
2.1.1.

The linearized system of (2.2) can be solved by alin(t)Φ(j) with alin(t) a time dependent
function of the form

alin(t) = R sin(ω0t+ θ),

with constants R, θ ∈ R. For solving the whole system we choose the ansatz

X(t, j) = a(t)Φ(j) + η(t, j), (2.29)

where a(t) = R(t) sin(ω0t + θ(t)) is the one-dimensional component of the solution
and η(t, j) is the infinite-dimensional component of the solution. The function η =
(η1, η2, η3, η4)ᵀ satisfies

〈η(t),Φ〉`2(Z,R4) = 0, for all t ∈ [0,∞), (2.30)

and thus we have η2(t, k0) = η3(t, k0). The initial conditions for the functions a and η can
be expressed via the initial conditions X0 and X1

a(0) = 〈X0,Φ〉`2(Z,R4),

∂ta(0) = 〈X1,Φ〉`2(Z,R4),

η(0, j) = PcX0(j),
∂tη(0, j) = PcX1(j),

where Pc is the projection onto the eigenspace Eac. With the help of ansatz (2.29) we
rewrite the system (2.2) into a one-dimensional evolutionary system (1DS) and an infinite
dimensional evolutionary system (uDS) which can be treated separately

∂2
t a(t) + ω2

0a(t) = 〈γN(a(t)Φ + η(t)),Φ〉`2(Z,R4), (1DS)
∂2
t η(t, j) +Hη(t, j) = Pcγ(j)N(a(t)Φ(j) + η(t, j)). (uDS)

We start with the investigation of (1DS) and remark that the system

∂2
t a(t) + ω2

0a(t) = 〈γN(a(t)Φ + η(t)),Φ〉`2(Z,R4) =: F (a, η),
a(0) = 〈X0,Φ〉`2(Z,R4),

∂ta(0) = 〈X1,Φ〉`2(Z,R4),

(2.31)
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2.6. Asymptotic stability

is just a second order ordinary differential equation where the right-hand side F (a, η) can
be explicitly computed. Since Φ(j) = (0, 0, 0, 0)ᵀ for j 6= k0 we obtain

〈γN(a(t)Φ + η(t)),Φ〉`2(Z,R4) = 〈γ(k0)N(a(t)Φ(k0) + η(t, k0)),Φ(k0)〉R4 ,

where Φ(k0) = (0, 1√
2 ,−

1√
2 , 0)ᵀ. We start by evaluating the nonlinear term at k0

N(a(t)Φ(k0) + η(t, k0))

=



fp ·
(

1√
2a(t) + η2(t, k0)− η1(t, k0)

)p
− hp · (η4(t, k0 − 1)− η1(t, k0))p

+fp ·
(
− 1√

2a(t) + η2(t, k0)− η1(t, k0)
)p

gp ·
(
η4(t, k0)− 1√

2a(t)− η2(t, k0)
)p
− fp ·

(
η1(t, k0)− 1√

2a(t)− η2(t, k0)
)p

gp ·
(
η4(t, k0) + 1√

2a(t)− η2(t, k0)
)p
− fp ·

(
η1(t, k0) + 1√

2a(t)− η2(t, k0)
)p

hp · (η1(t, k0 + 1)− η4(t, k0))p − gp ·
(

1√
2a(t) + η2(t, k0)− η4(t, k0)

)p
−gp ·

(
− 1√

2a(t) + η2(t, k0)− η4(t, k0)
)p


,

where we have used η2(t, k0) = η3(t, k0). We obtain for F (a, η) from (2.31) that

F (a, η) = γ(k0)√
2

[
gp ·

(
η4(t, k0)− 1√

2
a(t)− η2(t, k0)

)p

−fp ·
(
η1(t, k0)− 1√

2
a(t)− η2(t, k0)

)p]

− γ(k0)√
2

[
gp ·

(
η4(t, k0) + 1√

2
a(t)− η2(t, k0)

)p

−fp ·
(
η1(t, k0) + 1√

2
a(t)− η2(t, k0)

)p]
.

We further expand F (a, η) by using the binomial identity to the power p

F (a, η) = γ(k0)√
2

gp p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η4(t, k0)p−ρ(−η2(t, k0))ρ−l

(
− 1√

2
a(t)

)l

−gp
p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η4(t, k0)p−ρ(−η2(t, k0))ρ−l

(
1√
2
a(t)

)l

−fp
p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η1(t, k0)p−ρ(−η2(t, k0))ρ−l

(
− 1√

2
a(t)

)l

+fp
p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η1(t, k0)p−ρ(−η2(t, k0))ρ−l

(
1√
2
a(t)

)l .
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Chapter 2. Asymptotic stability on discrete necklace graphs

We condense the terms with respect to the factor fp respectively gp into

F (a, η) = γ(k0)√
2

fp p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η1(t, k0)p−ρ(−η2(t, k0))ρ−l

(
a(t)√

2

)l [
(−1)l+1 + 1

]

−gp
p∑
ρ=0

ρ∑
l=0

(
p

ρ

)(
ρ

l

)
η4(t, k0)p−ρ(−η2(t, k0))ρ−l

(
a(t)√

2

)l [
(−1)l+1 + 1

] .
Our goal is to investigate the long term behavior of a(t). We expect that a(t) consists
on the one-hand side of fast oscillations which come from the eigenfrequency ω0 and the
nonlinear harmonics, and on the other-hand side the amplitude which is exposed to small
variations. We use the same approach as in [Pri15]. Thus, we start with extracting the
dominant frequencies with the help of the ansatz

a(t) = A(t)eiω0t + A(t)e−iω0t, (2.32)

which turns the second order differential equation (2.31) into a first order differential
equation

∂tA(t) = 1
2iω0

e−iω0tF (A,A, η, t),

A(0) = A0 = 1
2〈X0,Φ〉`2(Z,R4) −

i
2ω0
〈X1,Φ〉`2(Z,R4),

(2.33)

with F (A,A, η, t) = F (a, η). We want to identify the resonant and non-resonant terms of
the right-hand side of (2.33). In order to do this, it is suitable to decompose F (a, η) into
four parts

F (a, η) = F1(a) + F2(a, η) + F3(a, η) + F4(η). (2.34)

The term F1(a) contains all terms without a component of η(t, j). F2(a, η) is composed
of all terms which are linear in η. F4(η) is made up of all terms which do not contain
a(t). The remaining terms are all part of F3(a, η).

Remark 2.6.3. If the power p of the nonlinearity N is odd we get F2(a, η) = 0. Hence,
the constant αpp−1 in the dispersive Hamiltonian normal form would be zero which would
contradict assumption (A2), cf. Remark 2.6.5. Therefore we need an even power p in N .

The most crucial part in the decomposition of F (a, η) is

F2(a, η) = 2−
p
2 pa(t)p−1〈β(·), γ(·)η(t, ·)〉`2(Z,R4),

where we have β(k0) = (−2fp,−fp + gp,−fp + gp,−2gp)ᵀ and β(j) = (0, 0, 0, 0)ᵀ for
j 6= k0. The remaining terms are all contained in F3(a, η) since the structure of F (a, η)
in combination with an even power p of N yields

F1(a) = 0 and F4(η) = 0.
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The resonant contribution of η has a dominant effect on the oscillation of a(t) through
the term F2(a, η) = 2− p2 pa(t)p−1〈β(·), γ(·)η(t, ·)〉`2(Z,R4), which is linear in η. We want to
investigate the energy transfer between the two evolutionary systems (1DS) and (uDS).
It is convenient to also decompose η into three parts

η(t, j) = η1,·(t, j) + η2,·(t, j) + η3,·(t, j),

where the · in the index indicates that ηj,· is not a component of the vector η and is
instead a vector in R4. Each part of η satisfies its own differential equation. For η1,· we
obtain the linear problem

∂2
t η1,·(t, j) +Hη1,·(t, j) = 0, for t ≥ 0, j ∈ Z,

η1,·(0, j) = PcX0(j), for j ∈ Z,
∂tη1,·(0, j) = PcX1(j), for j ∈ Z.

The second part η2,· satisfies

∂2
t η2,·(t, j) +Hη2,·(t, j) = 2−p/2γ(j)a(t)pξ(j), for t ≥ 0, j ∈ Z,

η2,·(0, j) = 0, for j ∈ Z,
∂tη2,·(0, j) = 0, for j ∈ Z.

where we introduce ξ(k0) = (2fp, gp− fp, gp− fp,−2gp)ᵀ and ξ(j) = (0, 0, 0, 0)ᵀ for j 6= k0.
In η3,· we collect the remaining dynamics of η which leads to the system

∂2
t η3,·(t, j) +Hη3,·(t, j) = Pcγ(j)N(aΦ + η)(t, j)− 2−p/2γ(j)a(t)pξ(j), for t ≥ 0, j ∈ Z,

η3,·(0, j) = 0, for j ∈ Z,
∂tη3,·(0, j) = 0, for j ∈ Z.

(2.35)
We are most interested in η2,· since its contribution due to the linearity in η2,· is the biggest
for small amplitude solutions. With the help of Duhamel’s formula we write η2,· as

η2,·(t, j) =
∫ t

0

sin
(√

H(t− s)
)

√
H

a(s)p2−p/2γ(j)ξ(j)ds.

In the next step we substitute a(s)p with the help of (2.32) as

a(s)p =
p∑
ρ=0

(
p

ρ

)(
A(s)eiω0s

)p−ρ (
A(s)e−iω0s

)ρ
,

and use Euler’s formula for

sin(
√
H(t− s)) = ei

√
H(t−s) − e−i

√
H(t−s)

2i .

47



Chapter 2. Asymptotic stability on discrete necklace graphs

This leads to

η2,·(t, j) =
∫ t

0

ei
√
H(t−s) − e−i

√
H(t−s)

2i
√
H

p∑
ρ=0

(
p

ρ

)(
A(s)eiω0s

)p−ρ (
A(s)e−iω0s

)ρ
2−p/2γ(j)ξ(j)ds

= ei
√
Ht

2i
√
H

∫ t

0

p∑
ρ=0

(
p

ρ

)
e−i(

√
H−(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

− e−i
√
Ht

2i
√
H

∫ t

0

p∑
ρ=0

(
p

ρ

)
ei(
√
H+(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds.

We decompose the terms by separating the resonant terms with ±(p − 2ρ)ω0 ∈ σc(
√
H)

from the non-resonant terms with ±(p − 2ρ)ω0 /∈ σc(
√
H). This yields the following

decomposition

η2,·(t, j) = ei
√
Ht

2i
√
H

∫ t

0

∑
(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
e−i(

√
H−(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

+ ei
√
Ht

2i
√
H

∫ t

0

∑
(p−2ρ)ω0 /∈σc(

√
H)

(
p

ρ

)
e−i(

√
H−(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

− e−i
√
Ht

2i
√
H

∫ t

0

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
ei(
√
H+(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

− e−i
√
Ht

2i
√
H

∫ t

0

∑
−(p−2ρ)ω0 /∈σc(

√
H)

(
p

ρ

)
ei(
√
H+(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

=: ηr2,·(t, j) + ηnr2,·(t, j), (2.36)

where we collect the resonant terms in ηr2,·(t, j) and the non-resonant terms in ηnr2,·(t, j).
For the purpose of the investigation of ηr2,·(t, j) around the resonant points ±(p− 2ρ)ω0 ∈
σc(
√
H) we introduce its regularization ηr2ε,·(t, j). For ε > 0 let

ηr2ε,·(t, j) = ei
√
Ht

2i
√
H

∫ t

0

∑
(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
e−i(

√
H−(p−2ρ)ω0+iε)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

− e−i
√
Ht

2i
√
H

∫ t

0

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
ei(
√
H+(p−2ρ)ω0−iε)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds.

(2.37)

With the help of the spectral representation of the self-adjoint operators and Lebesgue’s
dominated convergence theorem and the unitary operator e±i(

√
H∓(p−2ρ)ω0±iε)s, which is

bounded independently of s and ε, we show that for ε → 0 the regularized term ηr2ε,·(t)
converges in `2 towards ηr2,·(t). The choice of ±iε as regularization is motivated by the
fact that the resulting operators in the limit

e±i
√
Ht
(√

H ∓ (p− 2ρ)ω0 ± i0
)−1

,
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satisfy certain time-decay estimates for t→∞ due to the singular resolvent estimates in
(2.14). We use integration by parts in (2.37) and obtain

ηr2ε,·(t, j) =
∑

(p−2ρ)ω0∈σc(
√
H)

(
p

ρ

)
ei
√
Ht

2i
√
H

 e−i(
√
H−(p−2ρ)ω0+iε)t

−i(
√
H − (p− 2ρ)ω0 + iε)

× A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)

− 1
−i(
√
H − (p− 2ρ)ω0 + iε)

Ap−ρ0 A
ρ

02−p/2γ(j)ξ(j)

−
∫ t

0

e−i(
√
H−(p−2ρ)ω0+iε)s

−i(
√
H − (p− 2ρ)ω0 + iε)

∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


−

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
e−i
√
Ht

2i
√
H

 ei(
√
H+(p−2ρ)ω0−iε)t

i(
√
H + (p− 2ρ)ω0 − iε)

×A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)

− 1
i(
√
H + (p− 2ρ)ω0 − iε)

Ap−ρ0 A
ρ
02−p/2γ(j)ξ(j)

−
∫ t

0

ei(
√
H+(p−2ρ)ω0−iε)s

i(
√
H + (p− 2ρ)ω0 − iε)

∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


=

∑
(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
1

2
√
H

(
√
H − (p− 2ρ)ω0 + iε)−1ei(p−2ρ)ω0teεt

×A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)
− ei

√
Ht(
√
H − (p− 2ρ)ω0 + iε)−1Ap−ρ0 A

ρ
02−p/2γ(j)ξ(j)

−
∫ t

0
ei
√
H(t−s)(

√
H − (p− 2ρ)ω0 + iε)−1ei(p−2ρ)ω0seεs

×∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


+

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
1

2
√
H

(
√
H + (p− 2ρ)ω0 − iε)−1ei(p−2ρ)ω0teεt

×A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)
− e−i

√
Ht(
√
H + (p− 2ρ)ω0 − iε)−1Ap−ρ0 A

ρ
02−p/2γ(j)ξ(j)

−
∫ t

0
e−i
√
H(t−s)(

√
H + (p− 2ρ)ω0 − iε)−1ei(p−2ρ)ω0seεs

×∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


=: ηr∗ε,·(t, j) + ηnr1∗ε,· (t, j) + ηnr2∗ε,· (t, j),
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where ηr∗ε,·(t, j) contains the first and fourth line, ηnr1∗ε,· (t, j) contains the second and fifth
line and ηnr2∗ε,· (t, j) contains the third and sixth line. Accordingly we split ηr2,· up and obtain

ηr2,·(t, j) = ηr∗,·(t, j) + ηnr1∗,· (t, j) + ηnr2∗,· (t, j). (2.38)

Next, we consider the term

ηnr2,·(t, j) =
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
ei
√
Ht

2i
√
H

∫ t

0
e−i(

√
H−(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds

−
∑

−(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
e−i
√
Ht

2i
√
H

∫ t

0
ei(
√
H+(p−2ρ)ω0)sA(s)p−ρA(s)ρ2−p/2γ(j)ξ(j)ds.

We decompose the term ηnr2,·(t, j) into three parts by using integration by parts

ηnr2,·(t, j) =
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
1

2
√
H

(
√
H − (p− 2ρ)ω0)−1ei(p−2ρ)ω0t

×A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)
− ei

√
Ht(
√
H − (p− 2ρ)ω0)−1Ap−ρo A

ρ

02−p/2γ(j)ξ(j)

−
∫ t

0
ei
√
H(t−s)(

√
H − (p− 2ρ)ω0)−1ei(p−2ρ)ω0s

×∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


+

∑
−(p−2ρ)ω0 /∈σc(

√
H)

(
p

ρ

)
1

2
√
H

(
√
H + (p− 2ρ)ω0)−1ei(p−2ρ)ω0t

×A(t)p−ρA(t)ρ2−p/2γ(j)ξ(j)
− e−i

√
Ht(
√
H + (p− 2ρ)ω0)−1Ap−ρ0 A

ρ

02−p/2γ(j)ξ(j)

−
∫ t

0
e−i
√
H(t−s)(

√
H + (p− 2ρ)ω0)−1ei(p−2ρ)ω0s

×∂t
(
A(s)p−ρA(s)ρ

)
2−p/2γ(j)ξ(j)ds


=: ηnr?,·(t, j) + ηnr1?,· (t, j) + ηnr2?,· (t, j),

(2.39)

where ηnr?,·(t, j) includes the first and fourth line, ηnr1?,· (t, j) includes the second and fifth
line and ηnr2?,· (t, j) includes the third and sixth line.

We now turn to the analysis of F2(a, η) which we split according to the decomposition
of η since F2(a, η) is linear in η. We obtain

F2(a, η) = F2(a, η1,· + η2,· + η3,·) = F2(a, η1,·) + F2(a, η2,·) + F2(a, η3,·).
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The term η2,· has again its own decomposition according to (2.36), (2.38) and (2.39) which
can be transferred to F2(a, η2,·). This leads to

F2(a, η2,·) = F2(a, ηr∗,·) + F2(a, ηnr?,·)+
+ F2(a, ηnr1∗,· ) + F2(a, ηnr2∗,· ) + F2(a, ηnr1?,· ) + F2(a, ηnr2?,· ).

The next step is to calculate the exact expressions for the components of F2(a, η2,·). We
will need these exact formulas to convert the amplitude equation for A(t) into a dispersive
Hamiltonian normal form. The regularized version of ηr∗,· yields

F2(a, ηr∗ε,·) = p

2p+1

(
A(t)eiω0t + A(t)e−iω0t

)p−1 ∑
(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
ei(p−2ρ)ω0teεt

×A(t)p−ρA(t)ρ
〈
γ(·)β(·),

√
H
−1

(
√
H − (p− 2ρ)ω0 + iε)−1γ(·)ξ(·)

〉
`2(Z,R4)

+ p

2p+1

(
A(t)eiω0t + A(t)e−iω0t

)p−1 ∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
ei(p−2ρ)ω0teεt

×A(t)p−ρA(t)ρ
〈
γ(·)β(·),

√
H
−1

(
√
H + (p− 2ρ)ω0 − iε)−1γ(·)ξ(·)

〉
`2(Z,R4)

.

We introduce the limit

Λ∓p−2ρ := lim
ε↓0

p

2p+1

〈
γ(·)β(·),

√
H
−1

(
√
H ∓ (p− 2ρ)ω0 ± iε)−1γ(·)ξ(·)

〉
`2(Z,R4)

, (2.40)

to obtain

F2(a, ηr∗,·) =
p−1∑
σ=0

∑
(p−2ρ)ω0∈σc(

√
H)

(
p− 1
σ

)(
p

ρ

)
Λ−p−2ρei(2p−1−2ρ−2σ)ω0tA(t)2p−1−ρ−σA(t)ρ+σ

+
p−1∑
σ=0

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p− 1
σ

)(
p

ρ

)
Λ+
p−2ρei(2p−1−2ρ−2σ)ω0tA(t)2p−1−ρ−σA(t)ρ+σ.

(2.41)

The term F2(a, ηnr?,·) can be treated similarly as F2(a, ηr∗,·). We introduce

Υ∓p−2ρ := p

2p+1

〈
γ(·)β(·),

√
H
−1

(
√
H ∓ (p− 2ρ)ω0)−1γ(·)ξ(·)

〉
`2(Z,R4)

,

to get

F2(a, ηnr?,·) =
p−1∑
σ=0

∑
(p−2ρ)ω0 /∈σc(

√
H)

(
p− 1
σ

)(
p

ρ

)
Υ−p−2ρei(2p−1−2ρ−2σ)ω0tA(t)2p−1−ρ−σA(t)ρ+σ

+
p−1∑
σ=0

∑
−(p−2ρ)ω0 /∈σc(

√
H)

(
p− 1
σ

)(
p

ρ

)
Υ+
p−2ρei(2p−1−2ρ−2σ)ω0tA(t)2p−1−ρ−σA(t)ρ+σ.

(2.42)
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The terms F2(a, ηnr1∗,· ) and F2(a, ηnr2∗,· ) can be handled similarly

F2(a, ηnr1∗,· ) = −
∑

(p−2ρ)ω0∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1Ap−ρ0 A
ρ
0

×
〈
γ(·)β(·), ei

√
Ht

√
H(
√
H − (p− 2ρ)ω0 + i0)

γ(·)ξ(·)
〉
`2(Z,R4)

−
∑

(p−2ρ)ω0∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1Ap−ρ0 A
ρ
0

×
〈
γ(·)β(·), e−i

√
Ht

√
H(
√
H + (p− 2ρ)ω0 − i0)

γ(·)ξ(·)
〉
`2(Z,R4)

,

(2.43)

and

F2(a, ηnr2∗,· ) = −
∑

(p−2ρ)ω0∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1
∫ t

0
ei(p−2ρ)ω0s∂t

(
A(s)p−ρA(s)ρ

)

×
〈
γ(·)β(·), ei

√
H(t−s)

√
H(
√
H − (p− 2ρ)ω0 + i0)

γ(·)ξ(·)
〉
`2(Z,R4)

ds

−
∑

(p−2ρ)ω0∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1
∫ t

0
ei(p−2ρ)ω0s∂t

(
A(s)p−ρA(s)ρ

)

×
〈
γ(·)β(·), e−i

√
H(t−s)

√
H(
√
H + (p− 2ρ)ω0 − i0)

γ(·)ξ(·)
〉
`2(Z,R4)

ds.

(2.44)

The last two remaining terms can also be considered in similar fashion

F2(a, ηnr1?,· ) = −
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1Ap−ρ0 A
ρ
0

×
〈
γ(·)β(·), ei

√
Ht

√
H(
√
H − (p− 2ρ)ω0)

γ(·)ξ(·)
〉
`2(Z,R4)

−
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1Ap−ρ0 A
ρ
0

×
〈
γ(·)β(·), e−i

√
Ht

√
H(
√
H + (p− 2ρ)ω0)

γ(·)ξ(·)
〉
`2(Z,R4)

,

(2.45)
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and

F2(a, ηnr2?,· ) = −
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1
∫ t

0
ei(p−2ρ)ω0s∂t

(
A(s)p−ρA(s)ρ

)

×
〈
γ(·)β(·), ei

√
H(t−s)

√
H(
√
H − (p− 2ρ)ω0)

γ(·)ξ(·)
〉
`2(Z,R4)

ds

−
∑

(p−2ρ)ω0 /∈σc(
√
H)

(
p

ρ

)
p

2p+1a(t)p−1
∫ t

0
ei(p−2ρ)ω0s∂t

(
A(s)p−ρA(s)ρ

)

×
〈
γ(·)β(·), e−i

√
H(t−s)

√
H(
√
H + (p− 2ρ)ω0)

γ(·)ξ(·)
〉
`2(Z,R4)

ds.

(2.46)

With the help of (2.34), (2.41), (2.42), (2.43), (2.44), (2.45) and (2.46) we rewrite (2.33)
as

∂tA(t) = 1
2iω0

e−iω0t
(
F2(a, ηr∗,·) + F2(a, ηnr?,·)

)
+ E

=
∑

k+l=2p−1
αklA(t)kA(t)lei(k−l−1)ω0t + E,

(2.47)

with

E := 1
2iω0

e−iω0t
(
F3(a, η) + F2(a, ηnr1∗,· + ηnr2∗,· ) + F2(a, ηnr1?,· + ηnr2?,· )

+ F2(a, η1,·) + F2(a, η3,·)
)
.

In (2.47) we have k = 2p−1−ρ−σ and l = p+σ for p−2ρ ∈ σc(
√
H) and 0 ≤ σ ≤ p−1.

2.6.1 Dispersive Hamiltonian normal form
Our aim is to transform the amplitude equation (2.47) into a dispersive Hamiltonian
normal form.
Lemma 2.6.4. If |A| is sufficiently small then there exists a smooth normal form trans-
formation K which maps A→ Ã = A− h(A, t) with h(A, t) = h(A, t+ 2π

ω0
) and h(A, t) =

O
(
|A|2p−1

)
such that

∂tA(t) =
∑

k+l=2p−1
αklA(t)kA(t)lei(k−l−1)ω0t + E,

turns into
∂tÃ(t) = αpp−1|Ã(t)|2p−2Ã(t) +O

(
|Ã|3p−2

)
Ã→0

+ ẼK . (2.48)
The coefficient αpp−1 is given by

αpp−1 = −i
∑

(p−2ρ)ω0∈σc(
√
H)

ρ+σ=p−1

(
p− 1
σ

)(
p

ρ

)
1

2ω0

(
Λ−p−2ρ + Λ+

p−2ρ

)
.
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Proof. We start by rewriting (2.47) as

∂tA(t) = αpp−1|A(t)|2p−2A(t) +
∑

k+l=2p−1
k−l 6=1

αklA(t)kA(t)lei(k−l−1)ω0t

︸ ︷︷ ︸
=:O2p−1(A)

+E. (2.49)

Hence, we want to transform the terms contained in O2p−1(A) such that they are of order
O(|A|3p−2)A→0. This can be achieved with the help of a normal form transformation. By
integrating the equation (2.49) we obtain

A(t) = A0 +
∫ t

0
αpp−1|A(s)|2p−2A(s) +O2p−1(A) + E ds.

We investigate the integral term
∫ t
0 O2p−1(A)ds by using integration by parts

∫ t

0
O2p−1(A)ds =

∑
k+l=2p−1
k−l 6=1

αkl

∫ t

0
A(s)kA(s)lei(k−l−1)ω0sds

=
∑

k+l=2p−1
k−l 6=1

αkl

[
1

i(k − l − 1)ω0
ei(k−l−1)ω0sA(s)kA(s)l

∣∣∣∣t
s=0

−
∫ t

0

ei(k−l−1)ω0s

i(k − l − 1)ω0
∂t
(
A(s)kA(s)l

)
ds
]

=
∑

k+l=2p−1
k−l 6=1

αkl
ei(k−l−1)ω0s

i(k − l − 1)ω0
A(t)kA(t)l −

∑
k+l=2p−1
k−l 6=1

αkl
Ak0A

l

0
i(k − l − 1)ω0

−
∑

k+l=2p−1
k−l 6=1

αkl

∫ t

0

ei(k−l−1)ω0s

i(k − l − 1)ω0
∂t
(
A(s)kA(s)l

)
ds

= h(A, t)− h(A0, 0)−
∑

k+l=2p−1
k−l 6=1

αkl

∫ t

0

ei(k−l−1)ω0s

i(k − l − 1)ω0

×A(s)k−1A(s)l−1
(
kA(s)∂tA(s) + lA(s)∂tA(s)

)
ds,

where we introduce the function h(A, t) to abbreviate the terms which are at most of
order O(|A|2p−1) in

h(A, t) =
∑

k+l=2p−1
k−l 6=1

αkl
ei(k−l−1)ω0s

i(k − l − 1)ω0
A(t)kA(t)l
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It is sufficient to estimate the higher order terms roughly which are not in h(A, t) by

∑
k+l=2p−1
k−l 6=1

αkl

∫ t

0

ei(k−l−1)ω0s

i(k − l − 1)ω0
A(s)k−1A(s)l−1

×
[
(kA(s)

(
αpp−1|A(s)|2p−2A(s) +O2p−1(A) + E

)
+lA(s)

(
αpp−1|A(s)|2p−2A(s) +O2p−1(A) + E

)]
ds

=
∫ t

0
O
(
|A|2p−2 (|A|p + |E|)

)
A→0

ds,

where we have used the following relations

Ak−1A
l−1
kA = O

(
|A|2p−2

)
A→0

,

Ak−1A
l−1
lA = O

(
|A|2p−2

)
A→0

,

αpp−1|A|2p−2A+O2p−1(A) = O (|A|p)A→0 ,

αpp−1|A|2p−2A+O2p−1(A) = O (|A|p)A→0 .

We obtain∫ t

0
O2p−1(A)ds = h(A, t)− h(A0, 0) +

∫ t

0
O
(
|A|2p−2(|A|p + |E|)

)
A→0

ds.

Hence, we write A(t) as

A(t)− h(A, t) = A0 +
∫ t

0
αpp−1|A(s)|2p−2A(s)ds− h(A0, 0)

+
∫ t

0
O
(
|A|2p−2(|A|p + |E|)

)
A→0

ds+
∫ t

0
Eds.

We introduce the normal form transformation K through

K : A→ Ã = A− h(A, t),

under which the amplitude equation (2.49) takes the form

Ã(t) = Ã0 +
∫ t

0
αpp−1|Ã(s)|2p−2Ã(s)ds+

∫ t

0
O
(
|Ã|3p−2

)
Ã→0

+O
(
|Ẽ|

)
Ã→0

+ Ẽds,

since h(A, t) is of order O(|A|2p−1) the remaining terms are of order O(|Ã|3p−2)Ã→0. If we
set ẼK := O

(
|Ẽ|

)
Ã→0

+ Ẽ then we obtain the dispersive Hamiltonian normal form from
(2.48)

∂tÃ(t) = αpp−1|Ã(t)|2p−2Ã(t) +O
(
|Ã|3p−2

)
Ã→0

+ ẼK .
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Remark 2.6.5. According to assumption (A2) the constant αpp−1 possesses negative real
part. This can be verified by considering the terms of the sum of 1

2iω0
e−iω0tF2(a, ηr∗,·) for

which 2p− 1− ρ− σ = p and ρ+ σ = p− 1 holds. This leads to

αpp−1 = −i
∑

(p−2ρ)ω0∈σc(
√
H)

ρ+σ=p−1

(
p− 1
σ

)(
p

ρ

)
1

2ω0

(
Λ−p−2ρ + Λ+

p−2ρ

)
.

The real part of the coefficient αpp−1 is determined through

Reαpp−1 = −Im
∑

(p−2ρ)ω0∈σc(
√
H)

ρ+σ=p−1

(
p− 1
σ

)(
p

ρ

)
1

2ω0

(
Λ−p−2ρ + Λ+

p−2ρ

)
.

Thus, the fact that αpp−1 has a negative real part is equivalent to

Im
(
Λ−p−2ρ + Λ+

p−2ρ

)
> 0

for at least one ρ with (p− 2ρ)ω0 ∈ σc(
√
H).

2.6.2 Asymptotics of the one-dimensional solution component
We cite Proposition 4.12 from [Pri15] which estimates the asymptotic behavior of the
solution from (2.48) for t → ∞ if the higher-order terms Q(t) = O(|Ã|3p−2) + ẼK in
(2.48) satisfy certain decay estimates. These estimates will be proved in Lemma 2.6.7. In
particular, the higher-order terms do not affect the long time behavior of the solution of
(2.48).

Lemma 2.6.6. Consider the ordinary differential equation

∂tÃ(t) = αpp−1|Ã(t)|2p−2Ã(t) +Q(t),

to the initial datum Ã(0) = Ã0. Suppose that m̃∗ := max{1, 2(p− 1)cΓÃ
2p−2
0 } and

|Q(t)| ≤ Q0〈t〉−
3
2−

1
2p−2 . (2.50)

Then its solution satisfies the estimate

|Ã(t)| ≤ (1 + 2(p− 1)cΓ|Ã0|2p−2 · t)−
1

2p−2 ·

2
2
p−1 |Ã0|4 + C

Q
2p+2
2p−1
0 m̃P+1

∗

c
3

2p−1
Γ 〈t〉

p+1
2p−1


1
4

, (2.51)

where P := ( 1
2p−2 + 3

2p+2)2p+2
2p−1 . In particular, the solution displays the same large-time

behavior as in the case Q(t) ≡ 0.
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In order to apply Lemma 2.6.6 we need to show that the inequality (2.50) holds, which
is in our case equivalent to the inequality

|Q(t)| :=
∣∣∣O(|Ã3p−2|)Ã→0 + ẼK

∣∣∣ ≤ Q0〈t〉−
3
2−

1
2p−2 . (2.52)

We know that h(A, t) = O(|A|2p−1), and thus Ã = A(t) + O(|A|2p−1). The normal form
transformation K is invertible in a sufficiently small neighborhood of the origin. It follows
that A(t) = Ã(t) +O(|Ã|2p−1) and there exists a constant cA > 0 such that

1
cA
|Ã(t)| ≤ |A(t)| ≤ cA|Ã(t)|.

Since the error term E depends on A(t) we obtain for small A(t) respectively small Ã(t)
that

Ẽ(Ã) = E((Id + h)(Ã)) = E(Ã+O(|Ã|2p−1))
= E(Ã) +O(|Ã|2p−1) = E(A) +O(|A|2p−1).

Consequently we have E(A) = Ẽ(Ã)+O(|Ã|2p−1) and there exists a constant cE > 0 such
that

1
cE
|Ẽ(Ã)| ≤ |E(A)| ≤ cE|Ẽ(Ã)|.

Since ẼK = Ẽ + O(|Ẽ|) we can also verify the inequality (2.52) with E instead of ẼK .
Furthermore, the estimate (2.51) then turns into

|A(t)| ≤ c〈t〉−
1

2p−2

(
|A0|4 +Q

2p+2
2p−1
0

) 1
4
.

Before we start estimating the term E we introduce the subsequent notation

[A](T ) := sup
0≤t≤T

(
〈t〉

1
2p−2 |A(t)|

)
and [η](T ) := sup

0≤t≤T

(
〈t〉1+ 1

2p−2‖η(t)‖`2−σ
)
. (2.53)

This new notation serves to identify the anticipated decay rates of the solution components
a(t) and η(t, ·) as the actual ones. In particular, we obtain

|a(t)| ≤ 2|A(t)| ≤ 2[A](T )〈t〉−
1

2p−2 and ‖η(t)‖`2−σ ≤ 〈t〉
−1− 1

2p−2 [η](T ).

We need to estimate the term 2iω0eiω0tE which can be decomposed into

2iω0eiω0tE =
(
F3(a, η) + F2(a, ηnr1∗,· ) + F2(a, ηnr2∗,· ) + F2(a, ηnr1?,· ) + F2(a, ηnr2?,· )

+ F2(a, η1,·) + F2(a, η3,·)
)
.

The estimates for the constituents of E are collected in the subsequent lemma.
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Lemma 2.6.7. The constituents of 2iω0eiω0tE fulfill the estimates

• |F3(a, η)| ≤ c〈t〉−2− 3
2p−2 [A](T )[η](T )2

 p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

(c2(p−ρ)−2
α + c2(ρ−l)−2

α )[A](T )ρ−1

,

• |F2(a, η1,·)| ≤ c〈t〉−2[A](T )p−1
(
‖X0‖`2σ + ‖X1‖`2σ

)
,

• |F2(a, η3,·)| ≤ c〈t〉−
3
2−

1
2p−2 [A](T )p−1

(
p∑
ρ=1

[η](T )ρ[A](T )p−ρ
)
,

•
∣∣∣F2(a, ηnr1∗,· )

∣∣∣ ≤ c〈t〉−
5
2−

1
2p−2 [A](T )2p−1,

•
∣∣∣F2(a, ηnr2∗,· )

∣∣∣ ≤ c〈t〉−2− 1
2p−2 [A](T )3p−2,

•
∣∣∣F2(a, ηnr1?,· )

∣∣∣ ≤ c〈t〉−
5
2−

1
2p−2 [A](T )2p−1,

•
∣∣∣F2(a, ηnr2?,· )

∣∣∣ ≤ c〈t〉−2− 1
2p−2 [A](T )3p−2.

We need to prove the subsequent auxiliary result before we prove Lemma 2.6.7.

Lemma 2.6.8. Let δ > 0. For sufficiently small initial data X0, X1 ∈ `2
σ with

‖X0‖`2σ + ‖X1‖`2σ ≤ δ,

there exists a constant cα ≥ δ > 0 such that

sup
t∈[0,∞)

|a(t)| ≤ cα, sup
t∈[0,∞)

‖η(t)‖`2 ≤ cα, (2.54)

holds.

Proof. We have

‖X(t)‖2
`2 = 〈X(t), X(t)〉`2 = 〈a(t)Φ + η(t), a(t)Φ + η(t)〉`2

= 〈a(t)Φ, a(t)Φ〉`2 + 〈a(t)Φ, η(t)〉`2 + 〈η(t), a(t)Φ〉`2 + 〈η(t), η(t)〉`2
= a(t)2〈Φ,Φ〉`2 + a(t)〈Φ, η(t)〉`2 + a(t)〈η(t),Φ〉`2 + 〈η(t), η(t)〉`2
= a(t)2‖Φ‖2

`2 + ‖η(t)‖2
`2 ≥ ‖η(t)‖2

`2 ,

where we used that 〈Φ, η(t)〉`2 = 0 due to (2.30). Thus, it follows from (2.23) that

sup
t∈[0,∞)

‖η(t)‖`2 ≤ sup
t∈[0,∞)

‖X(t)‖`2 ≤ c̃α (‖X0‖`2 + ‖X1‖`2) .

It also holds
|a(t)|2 = 1

‖Φ‖2
`2

(
‖X(t)‖2

`2 − ‖η(t)‖2
`2

)
≤ c‖X(t)‖2

`2 ,
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whereas it follows

sup
t∈[0,∞)

|a(t)| ≤ c sup
t∈[0,∞)

‖X(t)‖`2 ≤ cc̃α (‖X0‖`2 + ‖X1‖`2) .

We obtain the desired estimates from (2.54) if we choose

cα := δ (1 + c̃α + cc̃α) . (2.55)

Proof of Lemma 2.6.7. We start by estimating

|F3(a, η)| = 2γ(k0)√
2

∣∣∣∣∣∣gp
p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

(
p

ρ

)(
ρ

l

)
η4(t, k0)p−ρ(−η2(t, k0))ρ−l

(
a(t)√

2

)l

− fp
p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

(
p

ρ

)(
ρ

l

)
η1(t, k0)p−ρ(−η2(t, k0))ρ−l

(
a(t)√

2

)l ∣∣∣∣∣∣
≤ c

 p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

γ(k0)|η4(t, k0)|p−ρ|η2(t, k0)|ρ−l|a(t)|l

+
p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

γ(k0)|η1(t, k0)|p−ρ|η2(t, k0)|ρ−l|a(t)|l


≤ c

 p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

γ(k0)|a(t)|l
(
|η4(t, k0)|2(p−ρ) + |η2(t, k0)|2(ρ−l)

)

+
p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

γ(k0)|a(t)|l
(
|η1(t, k0)|2(p−ρ) + |η2(t, k0)|2(ρ−l)

)

≤ c〈t〉−
1

2p−2 [A](T )‖η(t)‖2
`2−σ

×

 p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

(c2(p−ρ)−2
α + c2(ρ−l)−2

α )[A](T )l−1



≤ c〈t〉−2− 3
2p−2 [A](T )[η](T )2

 p∑
ρ=0

ρ∑
l=1
l odd
l<p−1

(c2(p−ρ)−2
α + c2(ρ−l)−2

α )[A](T )ρ−1

.
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With the help of (2.54) and the embedding `2 ⊂ `∞ we estimate

γ(k0)|η1(t, k0)|2(p−ρ) = γ(k0)(1 + k2
0)σ|η1(t, k0)|2(p−ρ)−2(1 + k2

0)−σ|η1(t, k0)|2

≤ γ(k0)(1 + k2
0)σ|η1(t, k0)|2(p−ρ)−2‖η(t)‖2

`2−σ

≤ c‖η(t)‖2(p−ρ)−2
`∞ ‖η(t)‖2

`2−σ

≤ cc2(p−ρ)−2
α ‖η(t)‖2

`2−σ

≤ cc2(p−ρ)−2
α 〈t〉−2− 2

2p−2 [η](T )2.

Furthermore, we have

|a(t)|l ≤ 2l〈t〉−
l

2p−2 [A](T )l ≤ c〈t〉−
1

2p−2 [A](T )l

for 1 ≤ l ≤ p− 2.
Since Pcη1,· = η1,·, we use the improved decay estimate (2.13) for the estimate of

F2(a, η1,·) and obtain

|F2(a, η1,·)| ≤ c|a(t)|p−1‖β‖`2
∥∥∥γ(·)〈·〉ση1,·(t, ·)〈·〉−σ

∥∥∥
`2

≤ c〈t〉−
1
2 [A](T )p−1‖γ(·)〈·〉σ‖`∞

∥∥∥η1,·(t, ·)〈·〉−σ
∥∥∥
`2

≤ c〈t〉−2[A](T )p−1
(
‖X0‖`2σ + ‖X1‖`2σ

)
.

The third term F2(a, η3,·) can be estimated by

|F2(a, η3,·)| ≤
∣∣∣2− p2 pa(t)p−1〈β(·), γ(·)η3,·(t, ·)〉`2

∣∣∣
≤ c|a(t)|p−1‖β‖`2‖γ(·)η3,·(t, ·)‖`2
≤ c〈t〉−

1
2 [A](T )p−1‖γ(·)〈·〉σ‖`2

∥∥∥〈·〉−ση3,·(t, ·)
∥∥∥
`2

≤ c〈t〉−
1
2 [A](T )p−1

∥∥∥〈·〉−ση3,·(t, ·)
∥∥∥
`2
.

Since η3,· solves the differential equation (2.35) we express η3,· with the help of Duhamel’s
formula

η3,·(t, j) =
∫ t

0

sin(
√
H(t− s)√
H

[
Pcγ(j)N(aΦ + η)(s, j)− 2−

p
2γ(j)a(s)pξ(j)

]
ds.

We use the improved decay estimate (2.13) to get

∥∥∥〈·〉−ση3,·(t, ·)
∥∥∥
`2
≤ c

∫ t

0
〈t− s〉−

3
2
∥∥∥Pcγ(·)N(aΦ + η)(s, ·)− 2−

p
2γ(·)a(s)pξ(·)

∥∥∥
`2σ

ds.
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We estimate the norm in the integral further via∣∣∣∣∣∣∣∣Pcγ(·)N(aΦ + η)(s, ·)− 2−
p
2γ(·)a(s)pξ(·)

∣∣∣∣∣∣∣∣
`2σ

≤ c

∥∥∥∥∥∥γ(·)〈·〉σ
p∑
ρ=1

(
p

ρ

)(
1√
2
a(s)

)p−ρ
〈·〉σp〈·〉−σpη(s, ·)ρ

∥∥∥∥∥∥
`2

≤ c
p∑
ρ=1

∥∥∥〈·〉σ(p+1)γ(·)
∥∥∥
`∞

∥∥∥〈·〉−σpη(s, ·)ρ
∥∥∥
`2
|a(s)|p−ρ

≤ c
p∑
ρ=1
‖η(s)‖ρ`2−σ |a(s)|p−ρ

≤ c
p∑
ρ=1
〈s〉ρ(−1− 1

2p−2 )[η](T )ρ[A](T )p−ρ〈s〉−
p−ρ
2p−2

≤ c
p∑
ρ=1

[η](T )ρ[A](T )p−ρ〈s〉−1− p
2p−2 .

By integrating this estimate we obtain

|F2(a, η3,·)| ≤ c〈t〉−
3
2−

1
2p−2 [A](T )p−1

p∑
ρ=1

[η](T )ρ[A](T )p−ρ.

Using the singular resolvent estimate (2.14) we estimate the term F2(a, ηnr1∗,· ) through
∣∣∣F2(a, ηnr1∗,· )

∣∣∣ ≤ ∑
(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
p

2p+1

∣∣∣a(t)p−1Ap−ρ0 A
ρ

0

∣∣∣
×

∣∣∣∣∣∣
〈
γ(·)β(·), ei

√
Ht

√
H(
√
H − (p− 2ρ)ω0 + i0)

γ(·)ξ(·)
〉
`2

∣∣∣∣∣∣
+

∑
−(p−2ρ)ω0∈σc(

√
H)

(
p

ρ

)
p

2p+1

∣∣∣a(t)p−1Ap−ρ0 A
ρ
0

∣∣∣
×

∣∣∣∣∣∣
〈
γ(·)β(·), e−i

√
Ht

√
H(
√
H + (p− 2ρ)ω0 − i0)

γ(·)ξ(·)
〉
`2

∣∣∣∣∣∣
≤ c

∑
(p−2ρ)ω0∈σc(

√
H)

〈t〉−1− 1
2p−2 [A](T )2p−1‖γ(·)〈·〉σ‖`∞‖β‖`2

×
∥∥∥∥〈·〉−σei

√
Ht
√
H
−1

(
√
H − (p− 2ρ)ω0 + i0)−1γ(·)ξ(·)

∥∥∥∥
`2

+ c
∑

−(p−2ρ)ω0∈σc(
√
H)

〈t〉−1− 1
2p−2 [A](T )2p−1‖γ(·)〈·〉σ‖`∞‖β‖`2

×
∥∥∥∥〈·〉−σe−i

√
Ht
√
H
−1

(
√
H + (p− 2ρ)ω0 − i0)−1γ(·)ξ(·)

∥∥∥∥
`2

≤ c〈t〉−1− 1
2p−2 [A](T )2p−1cσ〈t〉−

3
2‖γ(·)ξ(·)‖`2 ≤ c〈t〉−

5
2−

1
2p−2 [A](T )2p−1.
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The remaining three terms F2(a, ηnr2∗,· ), F2(a, ηnr1?,· ) and F2(a, ηnr2?,· ) possess a similar struc-
ture and can be treated analogously.

By combining all these estimates we obtain the desired estimate

|E| ≤ c〈t〉−
3
2−

1
2p−2 |E0|.

If we set Q(t) as in (2.52) with Q0 := c([A](T )3p−2 +E0) the inequality (2.50) is satisfied.
Hence, we obtain the decay rate of t−

1
2p−2 for the one-dimensional component of the

solution as in (2.51) which immediately implies

|a(t)| ≤ c〈t〉−
1

2p−2

(
|A0|4 +Q

2p+2
2p−1
0

) 1
4
. (2.56)

2.6.3 Asymptotics of the infinite-dimensional solution compo-
nent

In this section we prove the decay estimate for the infinite-dimensional solution compo-
nent. We anticipate a decay rate of t−1− 1

2p−2 . In order to establish this decay rate we
estimate η as follows

‖η(t)‖`2−σ ≤ ‖η1,·(t)‖`2−σ + ‖η2,·(t)‖`2−σ + ‖η3,·(t)‖`2−σ
≤
∥∥∥∥cos(

√
Ht)PcX0 +

√
H
−1

sin(
√
Ht)PcX1

∥∥∥∥
`2−σ

+
∥∥∥∥∫ t

0

√
H
−1

sin(
√
H(t− s))2−

p
2γ(·)a(s)pξ(·)ds

∥∥∥∥
`2−σ

+
∥∥∥∥∥
∫ t

0

sin(
√
H(t− s))√
H

[
Pcγ(·)N(aΦ + η)(s, ·)− 2−

p
2γ(·)a(s)pξ(·)

]
ds
∥∥∥∥∥
`2−σ

≤ c〈t〉−
3
2
(
‖X0‖`2σ + ‖X1‖`2σ

)
+ c

∫ t

0

∥∥∥∥√H−1
sin(
√
H(t− s))γ(·)ξ(·)

∥∥∥∥
`2−σ

|a(s)|pds

+ c
∫ t

0

∥∥∥∥∥sin(
√
H(t− s))√
H

[
Pcγ(·)N(aΦ + η)(s, ·)− 2−

p
2γ(·)a(s)pξ(·)

]∥∥∥∥∥
`2−σ

ds

≤ c〈t〉−
3
2
(
‖X0‖`2σ + ‖X1‖`2σ

)
+ c

∫ t

0
〈t− s〉−

3
2 〈s〉−

1
2−

1
2p−2 [A](T )pds

+ c
∫ t

0
〈t− s〉−

3
2
∥∥∥Pcγ(·)N(aΦ + η)(s, ·)− 2−

p
2γ(·)a(s)pξ(·)

∥∥∥
`2σ

ds.
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The integrals on the right-hand side of the inequality exist. Thus, we obtain with the
help of (2.53) that

‖η(t)‖`2−σ ≤ c〈t〉−
3
2
(
‖X0‖`2σ + ‖X1‖`2σ

)
+ c〈t〉−1− 1

2p−2 [A](T )p

+ c
p∑
ρ=1

∫ t

0
〈t− s〉−

3
2 [η](T )ρ[A](T )p−ρ〈s〉−

3
2−

1
2p−2 ds

≤ c〈t〉−
3
2
(
‖X0‖`2σ + ‖X1‖`2σ

)
+ c〈t〉−1− 1

2p−2 [A](T )p

+ c〈t〉−1− 1
2p−2

 p∑
ρ=1

[η](T )ρ[A](T )p−ρ
 .

This yields

‖η(t)‖`2−σ ≤ c〈t〉−1− 1
2p−2

‖X0‖`2σ + ‖X1‖`2σ + [A](T )p +
p∑
ρ=1

[η](T )ρ[A](T )p−ρ
 . (2.57)

2.6.4 Asymptotic stability of the solution with respect to the
`2
σ-norm

To conclude the proof of Theorem 2.1.1 we have to combine the decay estimates for the
one-dimensional solution component (2.56) and the infinite-dimensional solution compo-
nent (2.57). The first step is to find a constant C∗ such that

|a(t)| ≤ C∗〈t〉−
1

2p−2 , ‖η(t, ·)‖`2−σ ≤ C∗〈t〉−1− 1
2p−2

holds. We set C(T ) := [η](T ) + [A](T ) + cα. Our aim is to show that there exists a
constant C∗ independent of T > 0 such that

C(T ) ≤ C∗ (2.58)

is satisfied. At first, we estimate

Q0 ≤ c[A](T )3p−2 + c|E0|
≤ c

(
C(T )3p−2 + C(T )2p−1 + C(T )p−1

(
‖X0‖`2σ + ‖X1‖`2σ

)
+ C(T )3C(T )p−3

)
≤ c

(
C(T )3p−2 + C(T )2p−1 + C(T )2p−2 +

(
‖X0‖`2σ + ‖X1‖`2σ

)2
+ C(T )3C(T )p−3

)
.

However, the constant Q0 possesses the exponent 2p+2
2p−1

1
4 in the inequality (2.56). Hence,

we compute

Q
2p+2
2p−1

1
4

0 ≤ c
(
C(T )

2p+2
2p−1

3p−2
4 + C(T )

2p+2
2p−1

2p−1
4 + C(T )

2p+2
2p−1

2p−2
4

+
(
‖X0‖`2σ + ‖X1‖`2σ

) 2p+2
2p−1

2
4 + C(T )

2p+2
2p−1

p
4

)
.
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This leads to an analogous estimate as in [SW99] for the one-dimensional solution com-
ponent

|a(t)| ≤ c〈t〉−
1

2p−2

(
|A0|4 +Q

2p+2
2p−1
0

) 1
4

≤ c〈t〉−
1

2p−2

(
|A0|+Q

2p+2
2p−1

1
4

0

)

≤ c〈t〉−
1

2p−2

((
‖X0‖`2σ + ‖X1‖`2σ

)
+
(
‖X0‖`2σ + ‖X1‖`2σ

)b0 +
K∑
k=1

C(T )bk
)
,

(2.59)

with b0 >
1
2 and bk > 1 since we assumed p ≥ 4. We use |A0| ≤

(
‖X0‖`2σ + ‖X1‖`2σ

)
.

Eventually, we obtain from (2.55), (2.57) and (2.59) that

[η](T ) ≤ c
(
‖X0‖`2σ + ‖X1‖`2σ

)
+ cC(T )p,

[A](T ) ≤ c
((
‖X0‖`2σ + ‖X1‖`2σ

)
+
(
‖X0‖`2σ + ‖X1‖`2σ

)b)
+ c

K∑
k=1

C(T )bk ,

cα ≤ c
(
‖X0‖`2σ + ‖X1‖`2σ

)
.

If we add up these three inequalities this yields

C(T ) ≤ c
((
‖X0‖`2σ + ‖X1‖`2σ

)
+
(
‖X0‖`2σ + ‖X1‖`2σ

)b)
+ cC(T )

K∑
k=1

C(T )ck ,

for certain ck > 0. We rearrange the terms to

C(T )
(

1− c
K∑
k=1

C(T )ck
)
≤ c

((
‖X0‖`2σ + ‖X1‖`2σ

)
+
(
‖X0‖`2σ + ‖X1‖`2σ

)b)
.

We can repeat the arguments from the proof for the a priori bounds in Lemma 2.5.2 to
conclude that there exists a constant C∗ which is independent of T > 0 which satisfies
the inequality (2.58). Finally, this implies

|a(t)| ≤ C∗〈t〉−
1

2p−2 , ‖η(t, ·)‖`2−σ ≤ C∗〈t〉−1− 1
2p−2 .

The claim from Theorem 2.1.1 follows from these two inequalities and the representation
of the solution X(t, j) = a(t)Φ(j) + η(t, j).
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Chapter 3

Existence of breather solutions on
discrete periodic graphs

We show two abstract existence results of breather solutions in nonlinear Klein-Gordon
systems on discrete periodic graphs. The proofs are based on the Theorem of Crandall-
Rabinowitz. We give examples of non-trivial periodic discrete graphs for which these
results are applicable.

3.1 Introduction
Starting with [AKNS73] the existence of localized time-periodic solutions of finite energy,
so called breathers, for dispersive systems has received a lot of attention in the past
five decades. Breathers are a very rare phenomenon in nonlinear PDEs. For instance
Denzler [Den93] and Birnir, McKean and Weinstein [BMW94] showed that the breather
solutions of the Sine-Gordon equation

∂2
t u(x, t)− ∂2

xu(x, t) + sin(u(x, t)) = 0, x, t ∈ R,

do not persist if the nonlinearity gets perturbed. However, this changes if we consider
lattices and discrete graphs. MacKay and Aubry [MA94] constructed breathers in Hamil-
tonian lattices with anharmonic on-site potentials and weak coupling

∂2
t xn + V ′(xn) = α(xn+1 − 2xn + xn+1), n ∈ Z, t ∈ R,

with V ′(0) = 0, V ′′(0) = ω2
0 > 0. In their proof breathers are obtained by the anti-

continuum limit, i.e., by continuation from the uncoupled case in which trivial breathers
exist. This means that only one oscillator is excited and the others are at rest. With
the same ideas the existence of breathers was established for diatomic Fermi-Pasta-Ulam
(FPU) chains, cf. [LSM97]. Aubry et al. [AK01] showed the existence of breathers in FPU
lattices with frequencies above the phonon spectrum if the potential is a strictly convex
polynomial of degree 4.
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Chapter 3. Existence of breather solutions on discrete periodic graphs

In the special case of the discrete necklace graph, cf. Figure 3.1, it was proved in
[Mai20a] that breathers exist under certain non-resonance conditions. Maier considered
a Klein-Gordon system

∂2
t uk(t) = f(v+

k (t)− uk(t)) + f(v−k (t)− uk(t))− h(uk(t)− wk(t)) + r(uk(t)),
∂2
t v

+
k (t) = g(xk(t)− v+

k (t))− f(v+
k (t)− uk(t)) + r(v+

k (t)),
∂2
t v
−
k (t) = g(xk(t)− v−k (t))− f(v−k (t)− uk(t)) + r(v−k (t)),

∂2
twk(t) = h(uk+1(t)− wk(t))− g(wk(t)− v+

k (t))− g(wk(t)− v−k (t)) + r(wk(t)),

on the discrete necklace graph, cf. Figure 3.1, with interaction potentials f, g, h, r which
possess Taylor expansions of the form f(x) = f1x + . . . + fpx

p. The proof relies on the
use of the theorem of Crandall-Rabinowitz.

uk−1

v+
k−1

v−k−1

wk−1

uk

v+
k

v+
k

wk

f

f

g

g

uk+1

v+
k+1

v−k+1

wk+1
h

Figure 3.1: The discrete necklace graph from [Mai20a].

Our goal is to show that breathers also exist on more complex discrete graphs than
the aforementioned necklace graph or diatomic FPU chains. We prove with the help of
the theorem of Crandall-Rabinowitz that under certain non-resonance conditions strongly
localized breathers exist on periodic discrete graphs. We will formulate the theorems and
proofs in an abstract way in order to underline the great range of discrete graphs for
which these statements hold. The abstract setup will be displayed in Section 3.2. Due to
the abstractness we will use notation that differs from the notation in Chapter 2.

The main result, cf. Theorem 3.4.1, can be stated as follows: Let −ω2
0 be an eigenvalue

of the linear part for which the non-resonance condition −m2ω2
0 /∈ σac(L), m ∈ Z holds.

Suppose that the corresponding eigenspace E−ω2
0
and the absolutely continuous eigenspace

Eac satisfy some invariance conditions. Then there exists a one-parameter family of real-
valued solutions that are periodic in time and spatially localized. These breather solutions
are strongly localized since they bifurcate from eigenstates that are localized in a single
periodicity cell of the periodic graph, cf. Figure 3.2.

It is possible to weaken the invariance conditions in Theorem 3.4.1 by introducing a lo-
calized potential Vloc in the Klein-Gordon system. The corresponding result is formulated
in Theorem 3.6.1.

This chapter is organized as follows. We start by introducing the notation for discrete
periodic graphs and the corresponding differential equations. The spectral situation of
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uk−1

v+
k−1

v−k−1

w+
k−1

w−k−1

xk−1

uk
xk

uk+1

v+
k+1

v−k+1

w+
k+1

w−k+1

xk+1

v+
k

v−k

w+
k

w−k

Figure 3.2: An anti-symmetric eigenstate in a discrete necklace graph with six nodes
per periodicity cell. Only the masses v±k and w±k are displaced from their equilibrium
positions.

the linearized system is discussed in Section 3.3. In Section 3.4 we formulate and prove
the main result, cf. Theorem 3.4.1. In order to emphasize the convenience of our result we
give an example of a periodic discrete graph for which breathers exist in Section 3.5. In
Section 3.6 we formulate and prove a similar result with an additional localized potential,
cf. Theorem 3.6.1. In the last part we illustrate the use of this theorem by giving an
example of a periodic discrete graph for which this result is applicable.

3.2 Abstract setup
This section lays the foundation for the theorems and proofs by introducing an abstract
notion of discrete periodic graphs and their associated Klein-Gordon systems. A weighted
discrete graph Γ = (V,E, α) is a triple consisting of a set of nodes V and a set of edges
E ⊆ {(u, v) ∈ V 2 and u 6= v} and a weight function α : E → R. For u, v ∈ V we write
u ∼ v if (u, v) ∈ E.

We introduce the notion of a discrete Zn-periodic graph Γ = (V,E, α) and its associ-
ated translation over the periodicity cells T .

Definition 3.2.1. A discrete graph Γ = (V,E, α) is periodic or Zn-periodic if and only
if the set of nodes V can be equipped with the action of a free abelian group G = Zn. To
be precise, there exists a map

T : (G, V )→ V,

(g, v) 7→ Tgv,

with the following properties:

(G1) Group action. For every g ∈ G the map v 7→ Tgv is a bijection from V onto itself.
It holds T0v = v for every v ∈ V if 0 ∈ G is the neutral element. Furthermore, we
have Tg1g2v = Tg1(Tg2v) for every g1, g2 ∈ G and v ∈ V .

(G2) Free action. If Tgv = v for some v ∈ V then g is the neutral element, i.e., g = 0.

67



Chapter 3. Existence of breather solutions on discrete periodic graphs

(G3) Discreteness. For every v ∈ V there exists a neighborhood U of v such that
Tgv /∈ U for g 6= 0.

(G4) Co-compactness. The set of orbits V/G is finite. The whole set of nodes V can
be obtained by G-shifts of a finite subset of V .

(G5) Structure preserving. We have Tgu ∼ Tgv, i.e., (Tgu, Tgv) ∈ E, if and only if
(u, v) ∈ E. The weight function α is preserved under the action of G, i.e.,

α(u, v) = α(Tgu, Tgv),

for any u, v ∈ V and g ∈ G.

We call the finite set W ( V a periodicity cell if the union of all G-shifts of W covers
the whole set of nodes V and if there is no subset X ( W for which the union of all
G-shifts of X covers the whole set of nodes V .

Remark 3.2.2. The map Tg is a translation over the periodicity cells of Γ.

Remark 3.2.3. There exist infinitely many distinct periodicity cells. However, all peri-
odicity cells contain the same number of nodes.

Remark 3.2.4. We illustrate the action of T using the example of the Z-periodic necklace
graph Γ = (V,E, α) with six nodes per periodicity cell, cf. Figure 3.3. The set of nodes
V is given by

V =
⋃
j∈Z

{
uj, v

+
j , v

−
j , w

+
j , w

−
j , xj

}
.

The action of T for some g ∈ G = Z is given by Tgzj = zj+g for z ∈ {u, v+, v−, w+, w−, x}.
A possible choice for a periodicity cell is W = {u0, v

+
0 , v

−
0 , w

+
0 , w

−
0 , x0}. However, this

choice is not unique since for example the set W̃ = {w+
0 , w

−
0 , x0, u1, v

+
1 , v

−
1 } is also a

periodicity cell of the graph Γ.

uk−1

v+
k−1

v−k−1

w+
k−1

w−k−1

xk−1

uk

v+
k

v+
k

v+
k

v+
k

xk

uk+1

v+
k+1

v−k+1

w+
k+1

w−k+1

xk+1

Figure 3.3: Three periodicity cells of the discrete necklace graph Γ with six nodes per
periodicity cell.
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We consider a nonlinear Klein-Gordon type differential equation

∂2
t f(t, v) = Lf(t, v) +N(f(t, v)), v ∈ V, t ≥ 0, (3.1)

on a discrete periodic graph Γ = (V,E, α). We use the symbol L = ∆α − r for the
linear part, where r ∈ R and ∆α denotes the weighted discrete Laplacian. The weighted
discrete Laplacian consists of linear nearest-neighbor interactions between the nodes of
the discrete graph. Hence, ∆α is given by

∆αf(v) =
∑
v∼w

α(v, w)(f(w)− f(v)),

for some function f : V → R, where the value f(v) corresponds to the horizontal dis-
placement of the mass particles v ∈ V from its equilibrium positions. The nonlinear part
N of (3.1) is of power type structure with power p ∈ N as in

N(f(v)) =
∑
v∼w

α(v, w)(f(w)− f(v))p, (3.2)

or as in
N(f(v)) = rp(v)f(v)p, (3.3)

where rp : V → R is some periodic weight function on the nodes of the discrete graph Γ.

3.3 Spectral situation
In order to gain a better understanding for the non-resonance conditions we collect in-
formation about the spectral situation of the linear problem. We consider the associated
linearized problem of (3.1) on the discrete Zn-periodic graph Γ = (V,E, α) where we
collect the nodes of the g-th periodicity cell in the vector TgW = Wg, g ∈ Zn, which is
given by

∂2
tWg(t) = LWg(t), g ∈ Zn, t ≥ 0, (3.4)

with L = ∆α − r. The system (3.4) is solved by so-called Bloch waves

Wg(t) = ei(l·g−ωt)W̌ (l), l ∈ Rn, ω ∈ R,

where W̌ (l), l and ω solve the eigenvalue problem

ML(l)W̌ (l) = −ω2W̌ (l).

For fixed l the operator ML(l) is a self-adjoint matrix. Its size is determined by the size
of the periodicity cell. The coefficients of ML(l) can be computed explicitly by

(ML(l)) (j, j) = −
 ∑

(wj ,v)∈E
α(wj, v)

 ,

(ML(l)) (j, k) =

 ∑
g∈Zn

(wj ,Tgwk)∈E

α(wj, Tgwk)e−il·g

 ,
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Chapter 3. Existence of breather solutions on discrete periodic graphs

where wj and wk are the j-th respectively k-th node of the periodicity cell Wg. In partic-
ular, the matrix ML(l) is periodic for l ∈ [−π, π)n.

The Floquet-Bloch theory, cf. [Eas75,RS79], implies that the spectrum of L has band
gap structure and coincides with the spectrum of ML

σ(L) = σ(ML) =
⋃

l∈[−π,π)n
σ(ML(l)).

Furthermore, we have σ(L) ⊂ R since ML(l) is self-adjoint for every l ∈ [−π, π)n. We
denote the spectral bands by ωj(l), for 1 ≤ j ≤ dim(W ). We distinguish between two
types of spectral bands. We call a spectral band flat if

inf
l∈[−π,π)n

ωj(l) = sup
l∈[−π,π)n

ωj(l),

and non-flat if
inf

l∈[−π,π)n
ωj(l) < sup

l∈[−π,π)n
ωj(l).

The flat spectral bands correspond to the eigenvalues of L whereas the non-flat spectral
bands represent the absolutely continuous spectrum σac(L). We denote the associated
eigenspaces by Ep for the point spectrum respectively Eac for the absolutely continuous
spectrum. For the existence of breathers we need at least one flat spectral band, i.e., the
point spectrum σp(L) 6= ∅.

3.4 Existence of breather solutions on discrete peri-
odic graphs

In this section we will prove the existence of non-trivial discrete breathers on discrete
periodic graphs by means of bifurcation theory. Breathers in discrete settings arise from
the combined effects of the nonlinearity and the discreteness. Under a number of non-
resonance conditions there exists a one-parameter family of breather solutions mainly
supported in one periodicity cell of the discrete graph. The existence result is captured
in the subsequent theorem.

Theorem 3.4.1. We consider the following assumptions:

(B1) The operator L possesses at least one flat spectral band corresponding to the eigen-
value −ω2

0.

(B2) For any element Z of the eigenspace E−ω2
0
it holds

N(Z) ∈ Eac ⊕ span{Z}.

(B3) The absolutely continuous eigenspace Eac is invariant under the nonlinear part N .
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3.4. Existence of breather solutions on discrete periodic graphs

(B4) The non-resonance condition

−m2ω2
0 /∈ σac(L), for all m ∈ N0,

is fulfilled.

If the assumptions are met, there exists a one-parameter family of real-valued solutions of
(3.1) which are periodic in time and spatially localized.

Remark 3.4.2. If the exponent p of the nonlinear part is even then the assumption (B4)
contains the condition 0 /∈ σac(L) due to m = 0 ∈ N0. Thus, the factor r in (3.1) must be
non-zero. But if the exponent p is odd the theorem still holds if 0 ∈ σac(L), respectively
r = 0.

Remark 3.4.3. The assumptions (B1) and (B4) guarantee that there exists an eigenvalue
to which we can construct a breather. The non-resonance condition ensures that there is
no energy loss through a coupling into the absolutely continuous spectrum.

Remark 3.4.4. The assumptions (B2) and (B3) guarantee that only the originally excited
eigenstate resonates. If (B2) is not met it can lead to the excitation of other eigenstates
in the same periodicity cell. Disregarding (B3) can lead to the excitation of eigenstates
in other periodicity cells which would result in spatially non-localized solutions.

Remark 3.4.5. The existence result of breathers in [Mai20a] on the discrete necklace
graph with four nodes per periodicity cell, cf. Figure 3.1, is a special case of Theorem
3.4.1. Due to the structure of the discrete necklace graph with four nodes per periodicity
cell and a symmetry assumption on the interaction potentials, i.e., in our case the weight
function α, there exists exactly one flat spectral band of the operator L. In particular,
Theorem 3.4.1 is also applicable if there exist multiple flat spectral bands, i.e., the linear
part possesses multiple eigenvalues.

The idea of the proof is the application of the Theorem of Crandall-Rabinowitz
within an appropriately chosen invariant subspace of solutions. We recall the theorem
of Crandall-Rabinowitz from [Kie11] which is stated as follows.

Theorem 3.4.6. We consider a map F : U × V → Y . Let U × V ⊂ X × R be an open
subset around (0, 0) and X, Y be Banach spaces. We assume that

(H1) F (0, µ) = 0 for all µ ∈ R,

(H2) F ∈ C2(U × V ;Y ),

(H3) F (·, 0) is a Fredholm operator with index 0 with

dim(Ker(DZF (0, 0))) = codim(Ran(DZF (0, 0))) = 1,

(H4) Let E ∈ X with ‖E‖X = 1 such that span{E} = Ker(DZF (0, 0)). Then it holds[
D2
µZF (0, 0)

]
(E) /∈ Ran(DZF (0, 0)).
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Chapter 3. Existence of breather solutions on discrete periodic graphs

Then there exists a non-trivial branch of solutions described by a C1-curve

{(Zs, µs) : s ∈ (−s0, s0), (Z0, µ0) = (0, 0)},

which satisfies F (Zs, µs) = 0 locally. All solutions in a neighborhood of (0, 0) are either
trivial solutions or lie on the non-trivial curve.

Proof of Theorem 3.4.1. Let I =
[
− π
ω0
, π
ω0

]
be an interval with −ω2

0 the eigenvalue of L.
We fix k0 ∈ Zn and denote by W ⊂ V a periodicity cell of our graph Γ and identify
the k0-th periodicity cell by Wk0 := Tk0W . We know there exists exactly one normalized
eigenfunction fk0 to the eigenvalue −ω2

0 which satisfies (B2). In the next step we introduce
the time dependent spaces

X(k0) := C2
per(I, Eac ⊕ span{fk0}),

with associated norm

‖Z‖X(k0) := max
t∈I
‖Z(t)‖`2 + max

t∈I

∥∥∥Ż(t)
∥∥∥
`2

+ max
t∈I

∥∥∥Z̈(t)
∥∥∥
`2
,

and
Y (k0) := C0

per(I, Eac ⊕ span{fk0}),

with associated norm
‖Z‖Y (k0) := max

t∈I
‖Z(t)‖`2 ,

of periodically extendable functions with values in S(k0) := Eac ⊕ span{fk0}. If the
exponent p of the nonlinear term N is even we denote the space of even functions in time
by

Xeven(k0) := C2
per,even(I, S(k0)),

and respectively for odd exponents we denote the space of odd functions in time by

Xodd(k0) := C2
per,odd(I, S(k0)).

Then the map F from the theorem of Crandall and Rabinowitz is given by

F :X(k0)× R→ Y (k0),
F (Z, µ)(t) = (1 + µ)Z̈(t)− LZ(t)−N(Z)(t).

The map F is well-defined since we have the estimate

‖N(Z)(t)‖2
`2 ≤ C(α)‖Z(t)‖2p

`2p ≤ C(α)‖Z(t)‖2p
`2 ,

which is valid since the embedding `2 ⊂ `2p and the assumption (B3) hold. To finish the
proof we have to verify the assumptions (H1) - (H4) on our map F from the theorem of
Crandall and Rabinowitz.
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3.4. Existence of breather solutions on discrete periodic graphs

It is obvious that F (0, µ) = 0 for all µ ∈ R. Thus, a trivial solution branch exists.
The assumption (H2) is satisfied due to the polynomial structure of F , respectively N .
In the next step we compute the Fréchet derivatives which are necessary for checking the
remaining assumptions

[DZF (0, µ)] (H) = (1 + µ)∂2
tH(t)− LH(t),[

D2
µZF (0, µ)

]
(H) = ∂2

tH(t).

We introduce the spaces

Xac := C2
per(I, Eac), Xac,even := C2

per,even(I, Eac), Xac,odd := C2
per,odd(I, Eac),

and

Yac := C0
per(I, Eac), Yac,even := C0

per,even(I, Eac), Yac,odd := C0
per,odd(I, Eac).

It follows directly that
DZF (0, 0)Xac ⊂ Yac. (3.5)

The time dependent function

fk0(t) = fk0 sin(ω0t) ∈ X(k0)

solves the linear problem
∂2
t fk0 = Lfk0 .

As a direct consequence from (B2) we obtain

Ker(DZF (0, 0)) = span{fk0(t)}. (3.6)

Next, we check the assumption (H4) which can be stated with the help of (3.6) as

D2
µZF (0, 0)fk0(t) = ∂2

t fk0(t) /∈ Ran(DzF (0, 0)).

Hence, the assumption (H4) is satisfied if the equation

−ω2
0fk0(t) = ∂2

tH(t)− LH(t),

for H ∈ X(k0) does not possess a solution. Thanks to the observation (3.5) the function
H must be of the form

H(t) = κfk0(t),

for some κ ∈ R. The resulting equation

−ω2
0fk0(t) = κ

(
∂2
t fk0(t)− Lfk0(t)

)
= κ · 0

does not possess a solution for any κ ∈ R. Thus, assumption (H4) is satisfied.
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Chapter 3. Existence of breather solutions on discrete periodic graphs

The last remaining point is to check if

codim(Ran(DZF (0, 0))) = 1

holds. From (3.5) we conclude that

span{fk0(t)} * [DZF (0, 0)]Xac.

Thus, the following equivalence is valid

codim(Ran(DZF (0, 0))) = 1
⇔ DZF (0, 0) is invertible on Xac → Yac.

(3.7)

The right-hand side of (3.7) is satisfied if the equation

ξ = [DZF (0, 0)] η =
(
∂2
t − L

)
η (3.8)

is solvable on the subspace Xac. At this point it is important to distinguish between even
and odd functions in time since we can represent the 2π/ω0 periodic and even functions
through

ξ(t) =
∑
m∈N0

ξm cos(mω0t), η(t) =
∑
m∈N0

ηm cos(mω0t),

with ξm, ηm ∈ Eac for m ∈ N0, and respectively the 2π/ω0 periodic and odd functions
through

ξ(t) =
∑
m∈N

ξm sin(mω0t), η(t) =
∑
m∈N

ηm sin(jω0t),

with ξm, ηm ∈ Eac for m ∈ N.
By inserting these representations in (3.8) we obtain the time independent equations

in the even case
ξm =

(
−m2ω2

0 − L
)
ηm, m ∈ N0,

or respectively in the odd case

ξm =
(
−m2ω2

0 − L
)
ηm, m ∈ N.

These equations are solvable if and only if the non-resonance condition from (B4) is
satisfied. Thus, there exists a non-trivial branch of solutions to the equation

(1 + µ2)Z̈s(t)− LZs(t)−N(Zs)(t) = 0,

with Zs ∈ X(k0) for s ∈ (−s0, s0) for sufficiently small s0 > 0. With the help of a suitable
rescaling in time the proof of this theorem is done.
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3.5. Breathers for discrete necklace graphs

3.5 Breathers for discrete necklace graphs
We want to emphasize the use of this theorem by giving an application example and
checking the assumptions.

We apply Theorem 3.4.1 to discrete periodic necklace graphs with more than four
nodes per periodicity cell. The case with four nodes was handled in [Mai20a]. We consider
discrete periodic necklace graph as in Figure 3.4 with 2 + 2n + m nodes for n ≥ 1 and
m ≥ 0 and its associated Klein-Gordon system

∂2
t f(t, v) = ∆αf(t, v) + r · f(t, v)︸ ︷︷ ︸

=:Lf(t,v)

+N(f(t, v)), v ∈ V, t ≥ 0.

We compute the spectrum via the multiplication operatorML which is obtained by using

v+
1

u

v−1

w x1 x2 xm

v+
2

v−2

v+
n

v−n

Figure 3.4: A periodicity of a necklace graph with 2 + 2n+m nodes

the Floquet-Bloch transform. In the case with 2+2n+m nodes the spectrum of L consists
of 2 + 2n+m spectral bands. Due to the structure of the necklace graph we characterize
the absolutely continuous eigenspace Eac by

Eac :=
{
f : f(v+

j ) = f(v−j ), 1 ≤ j ≤ n
}
.

Thus, Eac is symmetric with respect to the semicircles. In contrast to that the eigenspaces
corresponding to the eigenvalues are anti-symmetric with respect to the semicircles. If
there is more than one flat spectral band, i.e., more than one eigenvalue, then the functions
from two distinct eigenspaces are orthogonal to each other.

In order to apply Theorem 3.4.1 we need to check the assumptions. The first assump-
tion (B1) and the last assumption (B4) can be checked by studying the spectral picture
of L. The two remaining conditions rely heavily on the nonlinear term N . We distinguish
between two types for N . On the one hand we have

N(f(v)) =
∑
w∼v

αp(v, w)(f(w)− f(v))p,

where αp : E → R+ is a periodic weight function on the edges of the graph Γ as in (3.2).
On the other hand the nonlinearity is given by

N(f(v)) = rp(v)f(v)p,
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Chapter 3. Existence of breather solutions on discrete periodic graphs

where rp : V → R+ is a periodic weight function on the nodes of the graph Γ as in (3.3).
For both types of nonlinearity we need to assume that αp respectively rp are symmetric
with respect to the semicircles.

We start by verifying (B3) for (3.2). We choose an arbitrary Z ∈ Eac and show that
N(Z) ∈ Eac. The absolutely continuous eigenspace is characterized through the fact that
the nodes opposite each other v+

j and v−j , for 1 ≤ j ≤ n possess the same value. Thus, it
is sufficient to compute the nonlinearity N at the nodes v±j for some 1 ≤ j ≤ n. At the
nodes v±1 and v±n we obtain

N(v+
1 ) = αp(v+

1 , u) · (u− v+
1 )p + αp(v+

1 , v
+
2 ) · (v+

2 − v+
1 )p

= αp(v−1 , u) · (u− v−1 )p + αp(v−1 , v−2 ) · (v−2 − v−1 )p = N(v−1 ),

respectively

N(v+
n ) = αp(v+

n , w) · (w − v+
n )p + αp(v+

n , v
+
n−1) · (v+

n−1 − v+
n )p

= αp(v−n , w) · (w − v−n )p + αp(v−n , v−n−1) · (v−n−1 − v−n )p = N(v−n ).

The computation at v±j for 1 < j < n reads as

N(v+
j ) = αp(v+

j , v
+
j−1) · (v+

j−1 − v+
j )p + αp(v+

j , v
+
j+1) · (v+

j+1 − v+
j )p

= αp(v−j , v−j−1) · (v−j−1 − v−j )p + αp(v−j , v−j+1) · (v−j+1 − v−j )p = N(v−j ).

Thus, we have N(Z) ∈ Eac for every Z ∈ Eac, and the absolutely continuous eigenspace
is invariant under the nonlinearity N which concludes the check for (B3). The last as-
sumption (B2) can be checked in a similar way. We recall that for an arbitrary Z ∈ E−ω2

0
we must show that

N(Z) ∈ Eac ⊕ span{Z}.
An element of the space E−ω2

0
can be characterized by the fact that it has value zero

outside the semicircles and is anti-symmetric with respect to the semicircles. Therefore
it is again sufficient to compute the values of N at the nodes v±j for some 1 ≤ j ≤ n. We
start with the nodes v±1 and v±n and recall that v+

j = −v−j for all 1 ≤ j ≤ n. It follows

N(v−1 ) = αp(v−1 , u) · (0− v−1 )p + αp(v−1 , v−2 ) · (v−2 − v−1 )p

= (−1)p · αp(v+
1 , u) · (v+

1 )p + αp(v+
1 , v

+
2 ) · (−1)p · (v+

2 − v+
1 )p = (−1)pN(v+

1 ),

respectively

N(v−n ) = αp(v−n , w) · (0− v−n )p + αp(v−n , v−n−1) · (v−n−1 − v−n )p

= (−1)p · αp(v+
n , w) · (v+

n )p + αp(v+
n , v

+
n−1) · (−1)p · (v+

n−1 − v+
n )p = (−1)pN(v+

n ).

For the nodes v±j with 1 < j < n we obtain

N(v−j ) = αp(v−j , v−j−1) · (v−j−1 − v−j )p + αp(v−j , v−j+1) · (v−j+1 − v−j )p

= αp(v+
j , v

+
j−1) · (−1)p · (v+

j−1 − v+
j )p + αp(v+

j , v
+
j+1) · (−1)p · (v+

j+1 − v+
j )p

= (−1)pN(v+
j ).
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3.6. Existence of breather solutions on discrete periodic graphs with a localized potential

Thus, if the exponent p is even we have for Z ∈ E−ω2
0
that N(Z) ∈ Eac. If the exponent

p is odd we obtain for Z ∈ E−ω2
0
that N(Z) ∈ span{Z}. Hence, the assumption (B2)

holds and the Theorem 3.4.1 can be applied. Therefore, breather solutions exist on such
discrete periodic necklace graphs with nonlinearity N of type (3.2).

We also want to check the assumptions for nonlinear terms N of type (3.3). In this
case it suffices to compute the nonlinearity N at v±j for some 1 ≤ j ≤ n since there is
no nearest neighbor interaction in the nonlinear terms. Hence, if we choose an arbitrary
Z ∈ Eac we obtain

N(v+
j ) = rp(v+

j ) · (v+
j )p = rp(v−j ) · (v−j )p = N(v−j ).

This verifies assumption (B3). In order to check assumption (B2) we compute for an
arbitrary Z ∈ E−ω2

0
that

N(v+
j ) = rp(v+

j ) · (v+
j )p = rp(v−j ) · (−v−j )p = (−1)pN(v−j ).

Hence, we have again that

Z ∈ E−ω2
0
⇒
{

N(Z) ∈ Eac, p even,
N(Z) ∈ E−ω2

0
, p odd.

We conclude that assumption (B2) is also satisfied. Thus, we apply Theorem 3.4.1 to show
the existence of breather solutions on such discrete necklace graphs with nonlinearity of
type (3.3).

3.6 Existence of breather solutions on discrete peri-
odic graphs with a localized potential

We consider the following Klein-Gordon system with additional localized potential Vloc

∂2
t f(t, v) = ∆αf(t, v)− r · f(t, v) + Vlocf(t, v) +N(f(t, v)), v ∈ V, t ≥ 0, (3.9)

on the Zn-periodic discrete graph Γ = (V,E, α). The associated linearized problem of
(3.9) is given by

∂2
tWg(t) = LWg(t) + VlocWg(t), g ∈ Zn, t ≥ 0,

with L = ∆α − r and TgW = Wg a periodicity cell of Γ. The spectrum of the operator
L can be computed as in Section 3.3. The operator L + Vloc is self-adjoint due to the
theorem of Kato-Rellich since L is a self-adjoint operator and Vloc is a bounded symmetric
operator. It is essential that the absolutely continuous spectra of L+Vloc and L coincide.
Since Vloc is a compact operator and the resolvent (L− z)−1 is bounded for z ∈ ρ(L) the
concatenation of these operators is a compact operator. Thus, the following equality for
the essential spectrum of L+ Vloc and L holds

σac(L+ Vloc) = σess(L+ Vloc) = σess(L) = σac(L).
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Chapter 3. Existence of breather solutions on discrete periodic graphs

Theorem 3.6.1. We consider the following assumptions:

(C1) The operator L possesses one flat spectral band corresponding to the eigenvalue −ω2
0.

(C2) The localized potential has support in exactly one periodicity cell, i.e., for one k0 ∈
Zn we have

suppVloc ⊆ Wk0 .

(C3) The localized potential Vloc generates the eigenvalue −ω2
1 = −ω2

0 + δ, for some δ 6=
mω2

0, m ∈ Z. The spectrum of L+ Vloc is given by

σ(L+ Vloc) = σ(L) ∪ {−ω2
1}.

(C4) The non-resonance condition

−m2ω2
1 /∈ σ(L), for all m ∈ N0,

is fulfilled.

If the assumptions are met, there exists a one-parameter family of real-valued solutions of
(3.9) which are periodic in time and spatially localized.

Remark 3.6.2. If the exponent p of the nonlinear part is even then the assumption (C4)
contains the condition 0 /∈ σac(L) due to m = 0 ∈ N0. Thus, the factor r in (3.9) must be
non-zero. But if the exponent p is odd the theorem still holds if 0 ∈ σac(L), respectively
r = 0.

Remark 3.6.3. The assumptions guarantee that there exists an eigenvalue to which we
can construct a breather. The non-resonance condition (C4) ensures that there is no
energy loss through a coupling into the absolutely continuous spectrum.

Remark 3.6.4. The assumptions (C2) and (C3) replace the invariance assumptions (B2)
and (B3) from Theorem 3.4.1. The invariance assumptions are no longer needed since the
eigenvalue −ω2

1 only possesses one eigenstate in one periodicity cell. Furthermore, other
eigenvalues do not generate solutions of the linear problem with frequency 2π

ω1
.

The idea of the proof is the application of the Theorem of Crandall-Rabinowitz within
an appropriately chosen space of solutions. We recall the theorem of Crandall-Rabinowitz
from [Kie11] which is stated in Theorem 3.4.6.

Proof of Theorem 3.6.1. Let I =
[
− π
ω1
, π
ω1

]
be an interval with −ω2

1 the eigenvalue gener-
ated by the localized potential Vloc. Let d = |W | be the size of the periodicity cell W . We
fix k0 ∈ Zn accordingly to assumption (C2). Thus, there exists exactly one normalized
eigenfunction fk0 to the eigenvalue −ω2

1. We introduce the time dependent spaces

X(k0) := C2
per(I,Υ⊕ span{fk0}),
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with associated norm

‖Z‖X(k0) := max
t∈I
‖Z(t)‖`2 + max

t∈I

∥∥∥Ż(t)
∥∥∥
`2

+ max
t∈I

∥∥∥Z̈(t)
∥∥∥
`2
,

and
Y (k0) := C0

per(I,Υ⊕ span{fk0}),
with associated norm

‖Z‖Y (k0) := max
t∈I
‖Z(t)‖`2 ,

of periodically extendable functions with values in S(k0) := Υ⊕ span{fk0}. The space Υ
is given by

Υ = `2(Zn,Rd) \ span{fk0}.

If the power p of the nonlinear term N is even we denote the space of even functions in
time by

Xeven(k0) := C2
per,even(I, S(k0)),

and respectively for odd powers p we denote the space of odd functions in time by

Xodd(k0) := C2
per,odd(I, S(k0)).

Then the map F from the theorem of Crandall and Rabinowitz is given by

F :X(k0)× R→ Y (k0),
F (Z, µ)(t) = (1 + µ)Z̈(t)− LZ(t)− VlocZ(t)−N(Z)(t).

The map F is well-defined since we have the estimate

‖N(Z)(t)‖2
`2 ≤ C(α)‖Z(t)‖2p

`2p ≤ C(α)‖Z(t)‖2p
`2 ,

which is valid since the embedding `2 ⊂ `2p holds. To finish the proof we have to verify
the assumptions (H1) - (H4) on our map F from the theorem of Crandall and Rabinowitz.

It is obvious that F (0, µ) = 0 for all µ ∈ R. Thus, a trivial solution branch exists.
The assumption (H2) is satisfied due to the polynomial structure of F , respectively N .
In the next step we compute the Fréchet derivatives which are necessary for checking the
remaining assumptions

[DZF (0, µ)] (H) = (1 + µ)∂2
tH(t)− LH(t)− VlocH(t),[

D2
µZF (0, µ)

]
(H) = ∂2

tH(t).

We introduce the spaces

XΥ := C2
per(I,Υ), XΥ,even := C2

per,even(I,Υ), XΥ,odd := C2
per,odd(I,Υ),

and
YΥ := C0

per(I,Υ), YΥ,even := C0
per,even(I,Υ), YΥ,odd := C0

per,odd(I,Υ).
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It follows directly that
DZF (0, 0)XΥ ⊂ YΥ. (3.10)

The time dependent function

fk0(t) = fk0 sin(ω1t) ∈ X(k0)

solves the linear problem
∂2
t fk0 = (L+ Vloc)fk0 .

As a direct consequence from (C2) we obtain

Ker(DZF (0, 0)) = span{fk0(t)}. (3.11)

Next, we check the assumption (H4) which can be stated with the help of (3.11) as

D2
µZF (0, 0)fk0(t) = ∂2

t fk0(t) /∈ Ran(DZF (0, 0)).

Hence, the assumption (H4) is satisfied if the equation

−ω2
1fk0(t) = ∂2

tH(t)− (L+ Vloc)H(t),

for H ∈ X(k0) does not possess a solution. Due to the observation (3.10) the function H
must be of the form

H(t) = κfk0(t),

for some κ ∈ R. The resulting equation

−ω2
1fk0(t) = κ

(
∂2
t fk0(t)− (L+ Vloc)fk0(t)

)
= κ · 0

does not possess a solution for any κ ∈ R. Thus, assumption (H4) is satisfied.
The last remaining point is to check if

codim(Ran(DZF (0, 0))) = 1

holds. From (3.10) we conclude that

span{fk0(t)} * [DZF (0, 0)]XΥ.

Hence, the following equivalence is valid

codim(Ran(DZF (0, 0))) = 1
⇔ DZF (0, 0) is invertible on XΥ → YΥ.

(3.12)

The right-hand side of (3.12) is satisfied if the equation

ξ = [DZF (0, 0)] η =
(
∂2
t − L

)
η (3.13)
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3.7. Breathers for a discrete Z2-periodic graph

is solvable on the subspace XΥ. At this point it is important to distinguish between even
and odd functions in time since we can represent the 2π/ω1 periodic and even function
through

ξ(t) =
∑
m∈N0

ξm cos(mω1t), η(t) =
∑
m∈N0

ηm cos(mω1t),

with ξm, ηm ∈ Υ for m ∈ N0, and respectively the 2π/ω1 periodic and odd functions
through

ξ(t) =
∑
m∈N

ξm cos(mω1t), η(t) =
∑
m∈N

ηm cos(mω1t),

with ξm, ηm ∈ Υ for m ∈ N.
By inserting these representations in (3.13) we obtain the time independent equations

in the even case
ξm =

(
−m2ω2

1 − (L+ Vloc)
)
ηm, m ∈ N0,

or respectively in the odd case

ξm =
(
−m2ω2

1 − (L+ Vloc)
)
ηm, m ∈ N.

These equations are solvable if and only if the non-resonance conditions from (C3) and
(C4) are satisfied. Thus, there exists a non-trivial branch of solutions to the equation

(1 + µ2)Z̈s(t)− (L+ Vloc)Zs(t)−N(Zs)(t) = 0,

with Zs ∈ X(k0) for s ∈ (−s0, s0) for sufficiently small s0. With the help of a suitable
rescaling in time the proof of this theorem is done.

3.7 Breathers for a discrete Z2-periodic graph
We give an application example for Theorem 3.6.1. We consider the discrete Z2-periodic
graph in Figure 3.5 and its associated Klein-Gordon system with additional localized
potential Vloc

∂2
t u(t, v) = ∆αu(t, v) + r · u(t, v)︸ ︷︷ ︸

=:Lu(t,v)

+Vlocu(t, v) +N(u(t, v)), v ∈ V, t ≥ 0.

Our goal is to verify the assumptions (C1)-(C4) from Theorem 3.6.1 for this discrete
periodic graph. In order to check the assumption (C1) we compute the spectrum of L
via the multiplication operator ML and the Floquet-Bloch transform. The spectrum of L
consists of eight spectral bands. There exists exactly one flat spectral band if the following
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Figure 3.5: A discrete Z2-periodic graph.
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relations for the weight function α : E → R are satisfied:

α(aj,k, bj,k) = α(gj,k, fj,k), (3.14)
α(bj,k, cj,k) = α(fj,k, ej,k), (3.15)
α(aj,k, hj,k) = α(cj,k, dj,k), (3.16)
α(hj,k, gj,k) = α(dj,k, ej,k), (3.17)

α(aj,k, bj,k) + α(bj,k, cj,k) = α(aj,k, hj,k) + α(hj,k, gj,k), (3.18)
α(aj,k, cj,k−1) = α(gj,k, ej,k−1) = α(aj,k, gj−1,k) = α(cj,k, ej−1,k), (3.19)

α(aj,k, bj,k) + α(bj,k, cj,k) < 2α(aj,k, cj,k−1), (3.20)

for all j, k ∈ Z. Then, the operator L possesses an eigenvalue with value −ω2
0 =

−α(aj,k, bj,k) − α(bj,k, cj,k) − r and thus, the first assumption is satisfied. The associ-
ated eigenstates uj,k to the eigenvalue −ω2

0 affect only the nodes bj,k, dj,k, fj,k and hj,k in
one periodicity cell of the graph.

Remark 3.7.1. The relations (3.14), (3.15), (3.16) and (3.17) mean that opposing edges
in a periodicity cell possess the same weight. Furthermore, the sum of the weights of the
two horizontal links must coincide with the sum of the two vertical links, cf. (3.18). The
edges between periodicity cells all possess the same value due to (3.19). The last relation
(3.20) ensures that we have an isolated flat spectral band.

We choose Vloc in a way such that for fixed k0 ∈ Z2 we have

Vlocf(v) =
{
−δ, v ∈ {bk0 , dk0 , fk0 , hk0},

0, else,

for some δ > 0 with δ 6= mω2
0, m ∈ N. In this case the localized potential Vloc generates

the eigenvalue −ω2
1 = −ω2

0 − δ with associated eigenstate uk0 . Hence, the assumptions
(C2) and (C3) are satisfied.

Since the spectrum of L only consists of finitely many spectral bands the last remaining
assumption (C4) can be achieved through an appropriate choice of δ and a careful study
of the spectral pictures of L respectively L+ Vloc.

Thus, we apply Theorem 3.6.1 to show the existence of breather solutions on this
discrete necklace graph with an additional localized potential.
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Chapter 4

Breather solutions on discrete
necklace graphs - The continuum
limit

We are interested in spatially localized time-periodic solutions of the cubic Klein-Gordon
equation posed on an infinite necklace graph. In [Mai20b] such solutions have been con-
structed via bifurcation theory, spatial dynamics and center manifold reduction. We
consider the discretized version of this problem and prove the existence of generalized
breather solutions on discrete necklace graphs and the convergence of generalized breather
solutions towards the breather solution of the continuum problem in the continuum limit.
The results are relevant for numerical computations of breather solutions.

4.1 Introduction
Breathers are spatially localized time-periodic solutions of finite energy. We are interested
in the existence of such solutions for the cubic Klein-Gordon equation

∂2
t u = ∂2

xu− αu− u3, (4.1)
with α > 0, x ∈ Γ, t ∈ R, and u(x, t) ∈ R, posed on an infinite necklace graph Γ and their
connection to the (generalized) breather solutions for the discretized cubic Klein-Gordon
equation posed on an infinite discrete necklace graph. The infinite necklace graph Γ, see
Figure 4.1, consists of bonds (or edges) connected at the vertices. At the vertices the
solutions have to satisfy so called Kirchhoff boundary conditions. The breather solutions
which we are interested in are the same in the upper and lower circles shown in Figure
4.1 and so an equivalent formulation for such solutions is to solve (4.1) on the real line
with the continuity and jump conditions

u(nπ−, t) = u(nπ+, t), n ∈ Z, (4.2)
∂xu(nπ−, t) = 2∂xu(nπ+, t), n ∈ Zodd, (4.3)

2∂xu(nπ−, t) = ∂xu(nπ+, t), n ∈ Zeven, (4.4)
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Γn,0
Γn,+

Γn,−

Figure 4.1: The periodic metric necklace graph Γ.

for t ∈ R, where

u(x−) = lim
h→0,h>0

u(x− h), u(x+) = lim
h→0,h>0

u(x+ h).

Such solutions have been constructed by bifurcation theory, spatial dynamics and
invariant manifold theory in [Mai20b]. Using Fourier series the time-periodic solutions
can be written as

u(x, t) =
∑

m∈Zodd
um(x)eimΩt,

where the continuous um satisfy

−m2Ω2um = u′′m − um − 〈u3, eimΩt〉, m ∈ Zodd, (4.5)

with the jump conditions

u′m(nπ−) = 2u′m(nπ+) for n ∈ Zodd,
2u′m(nπ−) = u′m(nπ+) for n ∈ Zeven,

(4.6)

where 〈u, v〉 = Ω
2π
∫ 2π/Ω
0 u(t)v(t)dt. Writing the infinitely many ODEs for the um as evolu-

tionary system w.r.t. x is called the spatial dynamics formulation. The breather solutions
correspond to bifurcating non-trivial homoclinic solutions of the spatial dynamics formu-
lation. Due to the jump-conditions the spatial dynamics formulation is periodic w.r.t the
evolutionary variable x.

The linearization of this formulation around the trivial solution possesses two central
Floquet exponents, whereas all other Floquet exponents are bounded away from the imag-
inary axis. It turns out that a reduction to a two-dimensional center manifold is possible.
On this two-dimensional center manifold non-trivial bifurcating homoclinic solutions can
be found.

Remark 4.1.1. There is a one-to-one correspondence between the spectrum of the spatial
dynamics formulation (4.5) and the spectrum of the time-evolutionary problem (4.1). On
the one hand, the linearized cubic Klein-Gordon equation

∂2
t u = ∂2

xu− u, (4.7)

with the continuity and jump conditions (4.2) is solved by

u(x, t) = eiωtei`xfn(`, x),
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with ω = ωn(`) plotted in Figure 4.2. The Bloch functions satisfy

− ω2fn = (∂x + i`)2fn − fn, fn(`, x) = fn(`, x+ 2π), (4.8)

and the counterparts to the continuity and jump conditions (4.2). On the other hand,
the linearized spatial dynamics formulation

−m2Ω2um = u′′m − um

with the jump conditions (4.6) is solved by um(x) = eµxBm(x) where the Bm satisfy

−m2Ω2Bm = (∂x + µ)2Bm −Bm, Bm(x) = Bm(x+ 2π). (4.9)

Therefore, comparing (4.8) and (4.9) central eigenvalues µ = i` of the spatial dynamics
formulation 4.5 can be obtained if

ωn(`)2 = m2Ω2.

Remark 4.1.2. In lowest order the breather solutions can be approximated through the
associated NLS approximation

u(x, t) = εA(ε(x− ct), ε2t)ei`0x−iωn0 (`0)tfn0(`0, x) + c.c.+O(ε2),

with c = ω′n0(`0) the group velocity and where in lowest order A = A(X,T ) satisfies an
NLS equation

∂TA = iν1∂
2
XA+ iν2A|A|2,

with coefficients

ν1 = ω′′n0(`0)/2 and ν2 = −〈fn0(`0, x), fn0(`0, x)3〉.

Hence, for obtaining standing time periodic solutions of small amplitude we have to
choose `0 such that ω′n0(`0) = 0 which implies `0 ∈ {0, 1/2} and yields Ω = ωn0(`0) at the
bifurcation point.

It was observed in [Mai20b], following [BCBLS11], that for the necklace graph it is
possible to choose α in such a way that for n0 = 1 and `0 = 1/2 we have

m2Ω2 6= ωn(`)2

for all |m| ≥ 2, all n,m ∈ Zodd, and all ` ∈ [−1/2, 1/2). Therefore, all odd integer
multiples of Ω fall in spectral gaps and so we only have four central Floquet exponents
which can be reduced further to two by using the reflection symmetry of the problem.
As a consequence the complete problem can be reduced to a two-dimensional center
manifold where bifurcating homoclinic solutions can be found. The result of [Mai20b] can
be summarized as follows.
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Theorem 4.1.3. For n0 = 1 and `0 = 1/2 and α = 1/4 + ε2 and Ω = ωn0(l0) + O(ε2)
system (4.1) possesses time periodic solutions u(x, t) = uper(x, t) of order O(ε), with
uper(x, t) = uper(x, t+ 2π/Ω) and lim|x|→∞ uper(x, t) = 0.

In this paper we consider uniform discretizations of the above spatial dynamics for-
mulation and we are interested in the existence of breather solutions for the discretized
version and the convergence of these (generalized) ’discrete’ breathers towards the ’contin-
uous’ breather solutions from Theorem 4.1.3 if the discretization parameter gets smaller
and smaller. The solutions of the discretized system are denoted with uh and are eval-
uated at xh = jh where h = 2π/N with j ∈ Z and N ∈ N. With the help of these
considerations we obtain the discrete Klein-Gordon systems

∂2
t uh(xh, t) = ∆huh(xh, t)− αuh(xh, t)− u3

h(xh, t), (4.10)

where we denote the discrete Laplacian ∆h by

∆hu(v) :=
∑
v∼w

h2(u(w)− u(v)).

Remark 4.1.4. Again there is a one-to-one correspondence between the spectrum of the
discretized time-evolutionary system and the spectrum of the discretized spatial dynamics
formulation. The linearized discretized cubic Klein-Gordon equation is solved by

uh(xh, t) = eiωhtei`xhfh,n(`, xh),

with ω = ωh,n(`) plotted subsequently in Figure 4.6 and where the Bloch functions satisfy

− ω2fh,n = (∂h,x + i`)2fh,n − αfh,n, fh,n(`, xh) = fh,n(`, xh + 2π) (4.11)

and the counterparts to the continuity and jump conditions (4.2). On the other hand,
the discretized linearized spatial dynamics formulation

−m2Ω2uh,m = ∂2
h,xuh,m − αuh,m

with the jump conditions (4.6) is solved by uh,m(xh) = eµxhBh,m(xh) where the Bh,m

satisfy

−m2Ω2Bh,m = (∂h,x + µ)2Bh,m − αBh,m, Bh,m(x) = Bh,m(x+ 2π). (4.12)

Therefore, comparing again (4.11) and (4.12) central eigenvalues µ = i` of the discretized
spatial dynamics formulation can be obtained if

ωh,n(`)2 = m2Ω2.

Plotting the curves of eigenvalues, cf. Figure 4.2, shows that not all odd integer mul-
tiples of Ω fall in spectral gaps. However, for small m this remains true, i.e., there exists
an N0 = N0(N) such that mΩ falls in spectral gaps for 3 ≤ m ≤ N0(N). Hence, ignoring
terms of order εN0(N)+1 and higher still gives a two-dimensional center manifold. Due to
the convolution structure the ignored higher order central modes lead at most to some
growth proportional to εN0(N)+1|x| in the discretized spatial dynamics formulation. Hence,
the solutions possess for large |xh| tails of order O(ε2/N0(N)). Thus, for the discretized
systems we can prove the existence of generalized breather solutions.
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Theorem 4.1.5. For n0 = 1 and `0 = 1/2 and α = 1/4 + ε2 the discretized systems
(4.10) possesses time-periodic solutions uh(xh, t) = uper,h(xh, t) of order O(ε) for |xh| ≤
ε−N0(N)/2, with uper,h(xh, t) = uper,h(xh, t+ 2π/Ω) and tails of order O(εN0(N)/2) for large
|xh|. In lowest order the solutions are given by the associated NLS approximation of the
discretized systems (4.10).

Since the spectrum and the eigenfunctions of the discretized problem converge in some
weak sense against the spectrum of the continuous problem, since the NLS approximation
of the discretized System (4.10) converges towards the NLS approximation of continuous
system (4.1) finally we have

Theorem 4.1.6. For N → ∞, respectively h → 0, the breather solutions uper,h(xh, t) of
the discretized systems (4.10) converge towards the breather solutions uper,h(xh, t) of the
continuous system (4.1).

Precise formulations of Theorem 4.1.3 to Theorem 4.1.6 will be given in subsequent
sections.

4.2 Breathers on the continuous necklace graph
We recall existing results about the validity of the NLS approximation for a periodic metric
necklace graph, cf. [Gil17], as well as the existence result of small-amplitude breathers for
a Klein-Gordon system posed on a periodic metric necklace graph, cf. [Mai20b].

i) The periodic metric necklace graph Γ can be split into Γ = ⊕n∈ZΓn with Γn =
Γ0
n⊕Γ+

n⊕Γ−n where Γ0
n is the horizontal link whereas Γ±n are the upper and lower semicircles,

cf. Figure 4.1. We identify the horizontal links Γ0
n isometrically with the interval I0

n =
[2nπ, 2nπ + π] and the semicircles with the interval I±n = [2nπ + π, 2(n + 1)π]. The
periodicity of the necklace graph is 2π, since the length of a horizontal link is π and the
semicircles have length π. We denote the part of a function U : Γ→ C on the interval I0

n

with u0
n and on the intervals I±n with u±n .

We pose the following cubic Klein-Gordon equation on the necklace graph

∂2
tU(x, t) = ∂2

xU(x, t)− (α + ε2)U(x, t) + U(x, t)3, t ≥ 0, x ∈ int Γ, (4.13)

with some real-valued constant α and small enough ε > 0. We need to impose Kirchhoff
boundary conditions at the vertex points {2nπ}n∈Z and {2nπ + π}n∈Z which consist of
the continuity condition at the vertex points

u0
n(2nπ + π, t) = u±n (2nπ + π, t), n ∈ Z,

u0
n+1(2(n+ 1)π, t) = u±n (2(n+ 1)π, t), n ∈ Z,

and of the conservation of the fluxes at the vertex points

∂xu
0
n(2nπ + π, t) = ∂xu

+
n (2nπ + π, t) + ∂xu

−
n (2nπ + π, t), n ∈ Z,

∂xu
0
n+1(2(n+ 1)π, t) = ∂xu

+
n (2(n+ 1)π, t) + ∂xu

−
n (2(n+ 1)π, t), n ∈ Z.

89



Chapter 4. Breather solutions on discrete necklace graphs - The continuum limit

It is possible to restrict this problem to the case where functions coincide on the upper and
lower semicircles of the necklace graph. Thus, conservation conditions of the Kirchhoff
boundary conditions turn into

∂xu
0
n(2nπ + π, t) = 2∂xu±n (2nπ + π, t), n ∈ Z,

∂xu
0
n+1(2(n+ 1)π, t) = 2∂xu±n (2(n+ 1)π, t), n ∈ Z.

ii) Next we summarize shortly the spectral properties of the linearized problem

∂2
tU(x, t) = ∂2

xU(x, t)− (α + ε2)U(x, t).

This equation can be solved by so called Bloch modes

U(x, t) = eiωteilxf(l, x), l, x ∈ R,

where f(l, ·) = (f 0, f+, f−) (l, ·) is a 2π-periodic function for every l ∈ R. The Bloch
functions f solve the eigenvalue problem

− (∂x + il)2f(l, x) + (α + ε2)f(l, x) = ω2(l)f(l, x), (4.14)

with corresponding boundary conditions

f 0(l, 2nπ + π) = f±(l, 2nπ + π), n ∈ Z,
f 0(l, 2(n+ 1)π) = f±(l, 2(n+ 1)π), n ∈ Z,

(4.15)

and

∂xf
0(l, 2nπ + π) = 2∂xf±(l, 2nπ + π), n ∈ Z,

∂xf
0(l, 2(n+ 1)π) = 2∂xf±(l, 2(n+ 1)π), n ∈ Z.

(4.16)

Thus, the spectrum of the linear problem is given by the spectral bands ω(l) which is
illustrated in Figure 4.2. These spectral bands ωm(l) can be explicitly computed and are
here given by

ωm(l) = ±
√( 1

2π arccos
(8

9 cos(2πl) + 1
9

)
+m

)2
+ (α + ε2),

for every m ∈ Z. If we do not restrict ourselves to the case where the functions coincide
in the semicircles then we additionally obtain flat spectral bands given by

ωm(l) = ±
√
m2 + (α + ε2), for every m ∈ Z.

We introduce L2-based spaces for the periodic eigenvalue problem (4.14) by

L2
Γ :=

{
Ũ = (ũ0, ũ+, ũ−) ∈L2([0, π])⊕ L2([π, 2π])⊕ L2([π, 2π]),

supp ũj = Ij0 , j ∈ {0,+,−}
}
,
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Figure 4.2: The spectral curves ωm(l) for the symmetric linear problem on the necklace
graph Γ with α + ε2 = 1.

Figure 4.3: The spectral curves ωm(l) for the non-symmetric linear problem on the neck-
lace graph Γ with α + ε2 = 1/4.
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Figure 4.4: The spectral curves ωm(l) for the symmetric linear problem in blue. The odd
multiples of the frequency ω in red.
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and

H2
Γ :=

{
Ũ ∈ L2

Γ, ũ
j ∈ H2(Ij0), j ∈ {0,+,−}, (4.15) and (4.16) are satisfed

}
.

iii) In [Gil17] it was shown that in lowest order the cubic Klein-Gordon equation (4.13)
on the periodic necklace graph Γ possesses a NLS approximation of the form

U(x, t) = εA(ε(x− ct), ε2t)fm0(l0, x)eil0xeiωm0 (l0)t + c.c.+O(ε2),

with c = ω′m0(l0) the group velocity and where A = A(T,X) satisfies an NLS equation

i∂TA = ν1∂
2
XA+ ν2|A|2A, (4.17)

with coefficients

ν1 = −1
2∂

2
l ωm0(l0), ν2 =

3 〈fm0(l0, x), fm0(l0, x)3〉L2
Γ

2ωm0(l0) . (4.18)

Hence, for obtaining standing time periodic solutions of small amplitude we have to
choose l0 such that ω′m0(l0) = 0 which implies l0 ∈ {0,±1/2} and yields Ω = ωm0(l0) at
the bifurcation point.

Remark 4.2.1. To prove the validity of the NLS approximation we consider the problem
(4.13) in Bloch space

∂2
t Ũ(l, x, t) = L̃(l)Ũ(l, x, t) +

(
Ũ ∗ Ũ ∗ Ũ

)
(l, x, t),

with L̃(l) = −(∂x + il)2 − α. We decompose the solution of this equation into two parts

Ũ(l, x, t) = Ṽ (l, t)fm0(l, x) + Ũ⊥(l, x, t),

where the second part satisfies the orthogonality condition〈
Ũ⊥(l, ·, t), fm0(l, ·)

〉
L2

Γ
= 0,

to ensure the uniqueness of the decomposition. This ansatz leads to

∂2
t Ṽ (l, t) = − (ωm0(l))2 Ṽ (l, t)−

〈(
Ũ ∗ Ũ ∗ Ũ

)
(l, ·, t), fm0(l, ·)

〉
L2

Γ
,

∂2
t Ũ
⊥(l, x, t) = −L̃(l)(l, x, t)−

(
Ũ ∗ Ũ ∗ Ũ

)
(l, x, t)

+
〈(
Ũ ∗ Ũ ∗ Ũ

)
(l, ·, t), fm0(l, ·)

〉
L2

Γ
.

It is sufficient to evaluate this equation at Ũ⊥ = 0 since there are no quadratic terms in
the original system (4.13). If we insert the ansatz

Ṽ (l, t) = Ã1

(
l − l0
ε

, ε2t

)
eiωm0 (l0)tei∂lωm0 (l0)(l−l0)t + c.c.,
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we obtain in leading order ε2eiωm0 (l0)tei∂lωm0 (l0)(l−l0)t the equation

i∂T Ã1(ξ, T ) = −1
2∂

2
l ωm0(l0)ξ2Ã1(ξ, T )

− ν2

∫ 1
2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Ã1(ξ1, T )Ã1(ξ2, T )Ã−1(ξ − ξ1 − ξ2, T )dξ1dξ2,

where l = l0 + εξ, T = ε2t and ν1, ν2 according to (4.18). By taking the limit ε→ 0 this
yields the equation

i∂T Â1(ξ, T ) = −ν1ξ
2Â1(ξ, T )− ν2

(
Â1 ∗ Â1 ∗ Â−1

)
(ξ, T )

in Fourier space which corresponds to the amplitude equation (4.17) in physical space.

With the help of the NLS approximation it is possible to construct breather solutions to
the frequency ω =

√
α which correspond to the minimum of the smallest positive spectral

band. This result from [Mai20b] is captured in the subsequent theorem.

Theorem 4.2.2. Let L = π be the length of the horizontal links. For an odd integer k
and a sufficiently small ε > 0 the nonlinear, cubic Klein-Gordon equation

∂2
t u(t, x) = ∂2

xu(t, x)−
(
k2

4 + ε2
)
u(t, x) + u(t, x)3, t ≥ 0, x ∈ intΓ,

with Kirchhoff boundary conditions at the vertices possesses breather solutions of ampli-
tude O(ε) and frequency ω = k/2. These solutions are coincide in the upper and lower
semicircles. Precisely, there exist functions u : R× R→ R satisfying

• u(x, t) = u(x, t+ 2π
ω

) for all t ≥ 0, x ∈ R.

• lim|x|→∞ u(x, t)eβ|x| = 0 for all t ≥ 0 and a constant β > 0.

Remark 4.2.3. We give a short summary of the proof. The key idea is to perform a
center manifold reduction in order to reduce (4.5) to a finite dimensional system. The
construction on the center manifold heavily relies on the spectral properties of the linear
system, which allows us to choose a frequency in the spectrum, whose harmonics fall into
spectral gaps, cf. Figure 4.4. However, because of the Kirchhoff boundary conditions, the
system is non-autonomous and the first derivatives of the solutions have jumps and the
flow on the center manifold is no longer continuous.

4.3 The discrete necklace graph
We introduce a discretization scheme for the periodic metric necklace graph from Figure
4.1 by discretizing the intervals I0

n, I±n with discretization parameter h. Thus, the periodic
metric necklace graph Γ will be converted into discrete periodic necklace graphs Γh. The
first two steps are illustrated in Figure 4.5.
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Figure 4.5: Three discretized versions of the metric necklace graph Γ.

We observe that the discrete graphs possess nodes at each vertex point of the quantum
graph and every interval is replaced by a number of additional nodes which coincides with
the number of steps. Thus, for each discretization step we obtain three additional nodes
which results in 2 + 3N nodes in the N -th step. We denote a whole periodicity cell of
the discrete graph as a vector Uh(n) ∈ R2+3N for h = π/(N + 1). A single node from the
periodicity cell Uh(j) will be called uh(j, k) with 1 ≤ k ≤ 2 + 3N .

The discretized version of (4.13) is given by

∂2
t uh(j, t, k) = ∆huh(j, t, k)− (α + ε2)uh(j, t, k) + uh(j, t, k)3, t ≥ 0, j ∈ Z, (4.19)

with ∆h the discrete Laplacian defined via

∆hf(v) :=
∑
w∼v

h2(f(w)− f(v)),

and the constants α, ε from Theorem 4.2.2. The system (4.19) in terms of Uh, for the
k-th component of the vector Uh with 1 ≤ k ≤ 2 + 3N , reads as

∂2
t (Uh(j, t))k = ∆h (Uh(j, t))k − (α + ε2) (Uh(j, t))k + (Uh(j, t))3

k , (4.20)

for t ≥ 0, j ∈ Z.
We want to establish a relation between functions on the quantum graph and functions

on the discrete graphs. In order to do this we introduce two projections Ph and ph. Ph
maps a function f ∈ L2(Γ,C) onto a function fh : Γh → C by

Phf(xh) = 1
h

∫ xh+h

xh

f(x)dx,
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with xh = nh ∈ Γh. The linear interpolation operator ph which maps a function f : Γh →
C onto a function on the metric graph is defined by

(phf)(x) := f(xh) + f(xh + h)− f(xh)
h

(x− xh), for all x ∈ xh + h, (4.21)

where xh = jh ∈ Γh accordingly to the notation in (4.10).

4.4 The spectral situation and its continuum limit
We investigate the spectral situation of the discrete necklace graph and its continuum
limit for a fixed discretization parameter h and consider the associated linear problem

∂2
tUh(j, t) = ∆hUh(j, t)− (α + ε2)Uh(j, t), t ≥ 0, j ∈ Z,

which is solved by Bloch waves of the form

Uh(j, t) = e−iωteijlf(l), l, ω ∈ R.

The function f solves the associated eigenvalue problem

Mh(l)Ǔ(l) = −ω2(l)f(l),

where Mh(l) is a self adjoint matrix of size 2 + 3N . Thus, for fixed l we obtain 2 + 3N
eigenvalues. The well-known Floquet-Bloch theory then implies that the spectrum of the
linear problem possesses band gap structure

σ(∆h − (α + ε2)) =
⋃

l∈[−1/2,1/2)
σ(Mh(l)).

We observe that for h → 0 the number of spectral bands increases 2 + 3N → ∞. Fur-
thermore, the spectral bands converge against the corresponding spectral bands of the
quantum graph, cf. Figure 4.3, 4.6, 4.7 and 4.8 and [NT21].

Remark 4.4.1. We are interested in breathers with frequency Ω = k/2. In the continuous
case we know that all odd integer multiplesmΩ fall into spectral gaps, cf. Remark 4.2.3. In
the discrete case we can not expect that all odd integer multiples of the frequency Ω = k/2
will fall into spectral gaps. However, there exists N0(h) such that for 3 ≤ m ≤ N0(h)
the multiples mΩ fall into spectral gaps. This is possible since the spectral gaps in the
continuous case open linearly and the spectral gaps of the discrete steps converge against
the continuous case.
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Figure 4.6: The spectral curves ω(l) of the discrete necklace graph Γh with h = π/2.

Figure 4.7: The spectral curves ω(l) of the discrete necklace graph Γh with h = π/11.
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Figure 4.8: The spectral curves ω(l) of the discrete necklace graph Γh with h = π/101.

Figure 4.9: The spectral curves ω(l) of the discrete necklace graph Γh with h = π/101 in
blue and the odd multiples of the frequency Ω in red.
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4.5 Derivation of the NLS equation and its contin-
uum limit

The validity of the NLS approximation for the discrete system (4.19) can be justified in a
similar manner as the validity of the NLS approximation of the continuous system (4.1).
Without loss of generality we only consider the case with five nodes per periodicity cell.
We start by looking for solutions of the linear problem

∂2
tUh(j, t) = ∆hUh(j, t)− (α + ε2)Uh(j, t), t ≥ 0, j ∈ Z,

which are so-called Bloch waves

Uh(j, t) = e−iωteiljf(l), with f(l) ∈ C5,

for all l ∈ R. We choose f , ω and l such that the dispersion relation is satisfied. In this
case it is the eigenvalue problem

ML(l)f(l) = M∆h−(α+ε2)(l)f(l) = λf(l), (4.22)

with λ = −ω2 and ML(l) is the operator corresponding to the Bloch transform of the
linear operator L := ∆h − (α + ε2). For fixed l the operator ML(l) is in the case of five
nodes per periodicity cell just a self-adjoint matrix in C5×5. Thus, we find five eigenvalue
curves l 7→ λk(l), 1 ≤ k ≤ 5 with corresponding eigenfunctions fk(l).

Next we introduce the concept of the discrete Fourier transform F on the discrete
necklace graph

F(U)(l) = Ǔ(l) =
∑
j∈Z

U(j)e2πilj,

and its inverse
F(Ǔ)(j) = U(j) =

∫ 1
2

− 1
2

Ǔ(l)e−2πiljdl.

The Fourier transform connects the two spaces

`2(Z,R5) =

U : Z→ R5 : ‖U(·)‖2
`2 :=

∑
n∈Z
|U(n)|2 <∞


and

L2([−1
2 ,

1
2),C5) =

{
Ǔ : [−1

2 ,
1
2)→ C5 :

∥∥∥Ǔ∥∥∥2

L2
:=
∫ 1

2

− 1
2

|U(l)|2dl <∞
}

isometrically. We apply the discrete Fourier transform to our discrete Klein-Gordon sys-
tem (4.20) and obtain

∂2
t

(
Ǔh(l, t)

)
k

= ML(l)
(
Ǔh(l, t)

)
k

+ F
(
(Uh(·, t)3

)
k

(l), (4.23)
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whereas the nonlinear part is given by

F
(
(Uh(·, t)3

)
k

(l) =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(
Ǔh(l − l1 − l2, t)

)
k

×
(
Ǔh(l1, t)

)
k

(
Ǔh(l2, t)

)
k

dl1dl2.

In order to proceed the matrix ML(l) needs to be diagonalized. Since ML(l) is self-
adjoint and negative semi-definite there exists a unitary matrix S(l) ∈ C5×5 such that the
transformed matrix Λ2(l) is diagonalized

Λ2(l) :=


−ω2

1(l) 0 0 0 0
0 −ω2

2(l) 0 0 0
0 0 −ω2

3(l) 0 0
0 0 0 −ω2

4(l) 0
0 0 0 0 −ω2

5(l)

 = S−1(l)ML(l)S(l).

The columns of the matrix S(l) are exactly the eigenfunctions fk(l) which solve the
eigenvalue problem (4.22). Since S−1(l) = Sᵀ(l) the rows of S−1(l) also coincide with
these eigenfunctions.

We insert the ansatz Ǔh(l, t) = S(l)V̌ (l, t) into (4.23) and apply S−1(l) from the left
side in order to obtain

∂2
t

(
V̌ (l, t)

)
k

=
(
Λ2(l)V̌ (l, t)

)
k

+
S−1(l)

∫ 1
2

− 1
2

∫ 1
2

− 1
2

Ǔh(l − l1 − l2, t)Ǔh(l1, t)Ǔh(l2, t)dl1dl2


k

.
(4.24)

The system (4.24) consists of five coupled scalar ordinary differential equations of second
order. We rephrase this system with respect to the components v̌k(t, l) of V̌ (t, l) for
1 ≤ k ≤ 5. This leads to

∂2
t v̌k(l, t) = −ω2

k(l)v̌k(l, t) +
∫ 1

2

− 1
2

∫ 1
2

− 1
2

〈
fk(l), Ǔh(l − l1 − l2, t)Ǔh(l1, t)Ǔh(l2, t)

〉
dl1dl2.

If we take a closer look at the nonlinear terms we observe that we can rewrite this differ-
ential equation as

∂2
t v̌k(l, t) = −ω2

k(l)v̌k(l, t) +
∫ 1

2

− 1
2

∫ 1
2

− 1
2

5∑
k1=1

5∑
k2=1

5∑
k3=1

v̌k1(l − l1 − l2, t)

×v̌k2(l1, t)v̌k3(l2, t)β(l, l − l1 − l2, l1, l2)dl1dl2,
(4.25)

with β given by

β(l, l − l1 − l2, l1, l2) = 〈fk(l), fk1(l − l1 − l2)fk2(l1)fk3(l2)〉 .

100



4.5. Derivation of the NLS equation and its continuum limit

Now fix k0 ∈ {1, 2, 3, 4, 5}. We want to insert the ansatz

v̂k0(l, t) = Â1( l − l0
ε

, ε2t)eiωk0 (l0)teiω′k0
(l0)(l−l0)t + c.c.+O(ε2), (4.26)

v̂k(l, t) = O(ε2), k 6= k0, (4.27)

into (4.25) to deduce a NLS equation in lowest ε order. We introduce new coordinates
T = ε2t and ξ = l−l0

ε
. The left-hand side of (4.25) turns under (4.26) into

∂2
t v̂k0(l, t) = −

(
ωk0(l0) + ω′k0(l − l0)

)2
Â1(ξ, T ) · E1(t, l)

+ 2iε2 (ωk0(l0) + ωk0(l0)(l − l0)) ∂T Â1(ξ, T ) · E1(l, t)
+ ε4∂2

T Â1(ξ, T ) · E1(l, t)
= − (ωk0(l0))2 Â1(ξ, T ) · E1(l, t)
− 2εωk0(l0)ω′k0(l0)ξÂ1(ξ, T ) · E1(l, t)
+ 2iε2ωk0(l0)∂T Â1(ξ, T ) · E1(l, t)

− ε2
(
ω′k0(l0)

)2
ξ2Â1(ξ, T ) · E1(l, t)

+ 2iε3ω′k0(l0)ξ∂T Â1(ξ, T ) · E1(l, t)
+ ε4∂2

T Â1(ξ, T ) · E1(l, t),

with
E±1(l, t) = e±iωk0 (l0)te±iω′k0

(l0)(l−l0)t
.

We expand ωk0(l) around l0

ωk0(l) = ωk0(l0) + ω′k0(l0)(l − l0) + 1
2ω
′′
k0(l0)(l − l0)2

= ωk0(l0) + εω′k0(l0)ξ + 1
2ε

2ω′′k0(l0)ξ2.
(4.28)

With the help of ansatz (4.26) and (4.28) we rewrite the term ω2
k0(l)v̂k0(l, t) as

ω2
k0(l)v̂k0(l, t) = −

[
(ωk0(l0))2 + 2εωk0(l0)ω′k0(l0)ξ

+ε2
(
ωk0(l0)ω′′k0(l0) +

(
ω′k0(l0)

)2
)
ξ2

+ε3
(
ω′k0(l0)ω′′k0(l0)

)
ξ3

+1
4ε

4
(
ω′′k0(l0)

)2
ξ4
]
Â1(ξ, T ) · E1(l, t).
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If we use the ansatz (4.27) in the nonlinear terms we observe that

∫ 1
2

− 1
2

∫ 1
2

− 1
2

5∑
k1=1

5∑
k2=1

5∑
k3=1

v̌k1(l − l1 − l2, t)v̌k2(l1, t)v̌k3(l2, t)

× β(l, l − l1 − l2, l1, l2)dl1dl2

=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

v̌k0(l − l1 − l2, t)v̌k0(l1, t)v̌k0(l2, t)

× β(l, l − l1 − l2, l1, l2)dl1dl2 +O(ε2).
(4.29)

By inserting (4.26) into the first addend of (4.29) we obtain

∫ 1
2

− 1
2

∫ 1
2

− 1
2

v̌k0(l − l1 − l2, t)v̌k0(l1, t)v̌k0(l2, t)β(l, l − l1 − l2, l1, l2)dl1dl2

= 3
∫ 1

2

− 1
2

∫ 1
2

− 1
2

β(l, l − l1 − l2, l1, l2)Â1

(
l − l1 − l2 − l0

ε
, T

)

× Â1

(
l1 − l0
ε

, T

)
Â−1

(
l2 + l0
ε

, T

)
dl1dl2 · E1(l, t)

+ 3
∫ 1

2

− 1
2

∫ 1
2

− 1
2

β(l, l − l1 − l2, l1, l2)Â1

(
l − l1 − l2 − l0

ε
, T

)

× Â−1

(
l1 + l0
ε

, T

)
Â−1

(
l2 + l0
ε

, T

)
dl1dl2 · E−1(l, t)

+
∫ 1

2

− 1
2

∫ 1
2

− 1
2

β(l, l − l1 − l2, l1, l2)Â1

(
l − l1 − l2 − l0

ε
, T

)

× Â1

(
l1 − l0
ε

, T

)
Â1

(
l2 − l0
ε

, T

)
dl1dl2 · E3(l, t)

+
∫ 1

2

− 1
2

∫ 1
2

− 1
2

β(l, l − l1 − l2, l1, l2)Â−1

(
l − l1 − l2 + l0

ε
, T

)

× Â−1

(
l1 + l0
ε

, T

)
Â−1

(
l2 + l0
ε

, T

)
dl1dl2 · E−3(l, t).

(4.30)

The next step is to substitute ξ = l−l0
ε
, ξ1 = l1−l0

ε
and ξ2 = l2+l0

ε
. The first addend of

(4.30) is then given by

3
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

β(l0 + εξ, l0 + ε(ξ − ξ1 − ξ2), l0 + εξ1,−l0 + εξ2)

× Â1(ξ − ξ1 − ξ2, T )Â1(ξ1, T )Â−1(ξ2, T )dξ1dξ2 · ε2E1(l, t).

If we expand the term β(l0 + εξ, l0 + ε(ξ− ξ1− ξ2), l0 + εξ1,−l0 + εξ2) in every component
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around l0 respectively −l0 we obtain in the lowest ε order

3β(l0, l0, l0,−l0)
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â1(ξ − ξ1 − ξ2, T )

× Â1(ξ1, T )Â−1(ξ2, T )dξ1dξ2 · ε2E1(l, t) +O(ε3).

We repeat these computations for the other summands of (4.30) and obtain the expression
for the nonlinear terms∫ 1

2

− 1
2

∫ 1
2

− 1
2

v̌k0(l − l1 − l2, t)v̌k0(l1, t)v̌k0(l2, t)β(l, l − l1 − l2, l1, l2)dl1dl2

= 3ε2β(l0, l0, l0,−l0)
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â1(ξ − ξ1 − ξ2, T )

×Â1(ξ1, T )Â−1(ξ2, T )dξ1dξ2 · E1(l, t)

+ 3ε2β(−l0,−l0,−l0, l0)
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â−1(ξ − ξ1 − ξ2, T )

×Â−1(ξ1, T )Â1(ξ2, T )dξ1dξ2 · E−1(l, t)

+ ε2β(3l0, l0, l0, l0)
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â1(ξ − ξ1 − ξ2, T )

×Â1(ξ1, T )Â1(ξ2, T )dξ1dξ2 · E3(l, t)

+ ε2β(−3l0,−l0,−l0,−l0)
∫ 1

2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â−1(ξ − ξ1 − ξ2, T )

×Â−1(ξ1, T )Â−1(ξ2, T )dξ1dξ2 · E−3(l, t).

Since we are interested in standing solutions we choose l0 such that ω′k0(l0) = 0. Therefore
the k0-th spectral band has to possess an extremum at l0. For the discrete necklace graph
this is satisfied for l0 ∈ {0,±1

2}. With this consideration in mind we get at ε2E1(t, l) the
NLS equation

i∂T Â1(ξ, T ) = −1
2ω
′′
k0(l0)ξ2Â1(ξ, T )

+ ν

2ωk0(l0)

∫ 1
2ε

− 1
2ε

∫ 1
2ε

− 1
2ε

Â1(ξ − ξ1 − ξ2, T )Â1(ξ1, T )Â−1(ξ2, T )dξ1dξ2,
(4.31)

with ν = 3β(l0, l0, l0,−l0). The terms of order ε2E−1(l, t) satisfy the complex conjugate
NLS equation.

If we consider the sequence of NLS equations for every step in the discretization scheme
for the quantum necklace graph, then the coefficients of (4.31) will converge against the
coefficients of the NLS approximation for the quantum graph. For the linear coefficient
−1

2ω
′′
k0(l0) it is obvious due to the observations made at the end of Section 4.4. In order

to reach the same conclusion for the nonlinear coefficient ν/(2ωk0(l0)) we take a closer
look at the structure of β. It turns out that β converges against the inner product in the
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space L2
Γ. Thus, it seems natural that it is possible that solutions for the system on the

quantum graph can be represented as the limit of solutions of the discrete systems. An
analogous result was shown for NLS equations on the real line in [HY19].

4.6 Breathers on discrete necklace graphs
For the construction of the generalized breather for the discrete necklace graph we again
use a spatial dynamics formulation. We look for time-periodic solutions in (4.10) which
is a system of the form

∂2
tUn = κn,+Un+1 + f(n, Un) + κn,−Un−1,

with f(n, Un) = f(n + N,Un) and κn,± = κn+N,±. We search for 2π/ω-time periodic
solutions of this system and so we make the Fourier ansatz

Un(t) =
∑

m∈Zodd
Un,me

imωt.

We find
−m2ω2Un,m = κn,+Un+1,m + fm(n, Un) + κn,−Un−1,m, (4.32)

for all m ∈ Zodd which is an infinite-dimensional discrete dynamical system with discrete
time n ∈ Z. With Vn,m = Un−1,m we write (4.32) as a first order system, namely as

Vn+1,m = Un,m,

Un+1,m = κ−1
n,+(m2ω2Un,m − fm(n, Un)− κn,−Vn,m),

which we abbreviate with Wn,m = (Un,m, Vn,m) and Wn = (Wn,m)m∈Zodd in the following
as

Wn+1,m = Fm(n,Wn) = An,mWn,m +Gm(n,Wn),

where the linear operator An,m satisfies An,m = An+N,m and the nonlinear function
Gm(n,Wn) = O(‖Wn‖2) satisfies Gm(n,Wn) = Gm(n + N,Wn). By Floquet’s theorem
the linear system

Wn+1,m = An,mWn,m

is solved by
Wn,m = Pn,mMmW0,m,

with Pn,m = Pn+N,m and constant coefficients monodromy matrix Mm. We make the
linear part autonomous by introducing Zn,m by

Wn,m = Pn,mZn,m.

We find
Zn+1,m = MmZn,m + P−1

n,mGm(n, PnZn).
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4.6. Breathers on discrete necklace graphs

By constructionM1 andM−1 have two Floquet multipliers zero. In the following this part
is denoted with Zn,c,≤. By the analysis of the previous sections there is a N∗ ≤ N where
for all m ∈ Zodd with |m| ≤ N∗ the numbers mω fall into spectral gaps, i.e., the associated
Floquet exponents are off the imaginary axis. They are denoted with Zn,u,≤and Zn,s,≤
for the unstable and stable part. The modes with |m| > N∗ are denoted with Zn,u,> and
Zn,s,> for the unstable and stable part and with Zn,c,> for the central part. The associated
projections are denoted with Pc,≤, Pu,≤, Ps,≤, Pu,>, Ps,>, and Pc,>. Then we obtain

Zn+1,c,≤ = Mc,≤Zn,c,≤ + Pc,≤P
−1
n G(n, PnZn),

Zn+1,u,≤ = Mu,≤Zn,u,≤ + Pu,≤P
−1
n G(n, PnZn),

Zn+1,s,≤ = Ms,≤Zn,s,≤ + Ps,≤P
−1
n G(n, PnZn),

Zn+1,u,> = Mu,>Zn,u,> + Pu,>P
−1
n G(n, PnZn),

Zn+1,s,> = Ms,>Zn,s,> + Ps,>P
−1
n G(n, PnZn),

Zn+1,c,> = Mc,>Zn,c,> + Pc,>P
−1
n G(n, PnZn).

We use the reversibility of the original equations as shown in [Mai20b] and write the
equations for the stable part as

Zn−1,s,≤ = Ms,≤Zn,s,≤ + Ps,≤P
−1
n G(n, PnZn),

Zn−1,s,> = Ms,>Zn,s,> + Ps,>P
−1
n G(n, PnZn).

The time-periodic solutions, we are interested in, are a part of the center manifold and
so we use the contraction mapping for the construction of the center manifold, namely

Zn,c,≤ = Mn
c,≤Z0,c,≤ +

n∑
k=0

Mn−k
c,≤ Pc,≤P

−1
k G(k, PkZk),

Zn,u,≤ = −
∞∑
k=0

M−k
u,≤Pu,≤P

−1
k G(k, PkZk),

Zn,s,≤ =
∞∑
k=0

Mk
s,≤Ps,≤P

−1
k G(k, PkZk),

Zn,c,> = Mn
c,>Z0,c,> +

n∑
k=0

Mn−k
c,> Pc,>P

−1
k G(k, PkZk),

Zn,u,> = −
∞∑
k=0

M−k
u,>Pu,>P

−1
k G(k, PkZk),

Zn,s,> =
∞∑
k=0

Mk
s,>Ps,>P

−1
k G(k, PkZk).

(4.33)

Lemma 4.6.1. The truncated system (4.33) with Zn,c,> = 0, Zn,u,> = 0, and Zn,s,> =
0 possesses an exact homoclinic solution to the origin of order O(ε). This solution
corresponds to a time-periodic solutions uh(xh, t) = uapprox,h(hh, t) of order O(ε) with
uapprox,h(xh, t) = uapprox,h(xh, t+ 2π/Ω) in the discretized systems (4.10). This solution is
an approximate breather for the discrete systems.
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If we set Zn,c,> = 0, Zn,u,> = 0, and Zn,s,> = 0 and ignore the last three equations
we have a finite-dimensional dynamical system with a four-dimensional center manifold.
On this four-dimensional center manifold the vector-field is given in lowest order by the
stationary NLS equation. Thus, we find an exact homoclinic solution to the origin of order
O(ε) which corresponds to a time-periodic solution in the discretized systems (4.10).

Remark 4.6.2. The truncated system with Zn,c,> = 0, Zn,u,> = 0, and Zn,s,> = 0
coincides with the full system (4.33) if for all m ∈ Zodd the numbers mω fall into spectral
gaps. This condition is satisfied for the system (4.1).

Lemma 4.6.3. For N big enough there exists N∗ = N∗(N) such that mΩ falls into spectral
gaps for 3 ≤ m ≤ N∗ such that for n0 = 1 and l0 = 1/2 and α = 1/4 + ε2 the discretized
systems (4.10) possess time-periodic solutions uh(xh, t) = uper,h(hh, t) of order O(ε) for
|xh| ≤ ε−N∗/2, with uper,h(xh, t) = uper,h(xh, t+ 2π/Ω) and tails of order O(εN∗/2) for large
|xh|. In lowest order the solutions are given by the associated NLS approximation of the
discretized systems. These solutions are called generalized breather solutions.

Exactly with the same arguments as in [GS01,GS05,GS08] in the full system we can
achieve a transversal intersection of the center-stable manifold with the fixed space of
reversibility. However due to the fact that we have the additional central modes Zn,c,>
we have a possible growth for |n| → ∞. Since the bifurcating homoclinic solutions are of
order O(ε) and the lowest harmonic which may fall into the spectrum is N∗Ω and since
we have a convolution structure the term Pc,>P

−1
k G(k, PkZk) is at most of order O(εN∗).

Hence, the term ∑n
k=0M

n−k
c,> Pc,>P

−1
k G(k, PkZk) is at most of order O(εN∗n). Hence the

tails are less than O(εN∗/2) for |n| ≤ O(ε−N∗/2).

4.7 Convergence result
We formulate the convergence of the generalized discrete breathers against the breather
solution on the continuous necklace graph in the following theorem.

Theorem 4.7.1. For ε > 0 small enough we have on every compact interval K that for
h → 0 respectively N → ∞ the generalized discrete breather solutions uper,h(xh, t) of the
discretized system (4.10) converge against the breather solutions uper(xh, t) of the system
(4.1).

Proof. Since the flow on the center manifold in the first step is described by the stationary
NLS equation and since the coefficients of the stationary NLS equations in the discrete case
converge towards the coefficients of the stationary NLS equation in the continuous case for
h→ 0 the approximate breather of the discrete system converges towards the breather of
the continuous system. Moreover, since the generalized breathers of the discrete systems
are O(εN∗/2) close to the approximate breather of the discrete system for |n| ≤ O(ε−N∗/2)
and since N∗ →∞ for h→ 0 we have the convergence of the generalized discrete breather
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towards the breather of the continuous system through

|uper(xh, t)− uper,h(xh, t)| ≤ |uper(xh, t)− uapprox,h(xh, t)|
+ |uapprox,h(xh, t)− uper,h(xh, t)| → 0,

at the vertex points xh inside some compact interval K. The equation above still holds
true for any x ∈ K if we use the linear interpolation ph defined in (4.21). We obtain

|uper(x, t)− (phuper,h)(x, t)| ≤ |uper(xh, t)− (phuapprox,h)(x, t)|
+ |(phuapprox,h)(x, t)− (phuper,h)(x, t)| → 0,

for any x ∈ K for h→ 0.
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