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Abstract

Molecular Dynamics (MD) simulation is one of the fundamental tools for researchers
to get insights into processes in Biology, Chemistry, Materials Science, Physics, and
many other fields at a microscopic level. Since the beginning of MD simulations, they
are one of the use cases for the largest high performance computing (HPC) systems in
the world. Despite their underlying algorithms being well-suited for parallelization,
there are many problems to overcome when running MD simulations at scale due
to the size and complexity of today’s HPC systems. These problems limit the size
and amount of detail of the simulations that researchers can perform. So there is a
constant need for improvement and adaptation of MD codes for current and future
HPC systems.

The goal of this thesis is to address several of these problems to improve the capa-
bilities of MD simulations on current and future HPC systems. Therefore, the work
discusses concepts for scalable MD simulations in the context of these problems. The
discussed concepts cover two problem areas: First, the performance and second, the
fault tolerance of MD codes that are used to run these simulations. In both areas,
state of the art approaches and solutions are evaluated and new models for a better
understanding of algorithms and respective code implementations are introduced.
Improvements over the current solutions are proposed and implemented in kernels
or real-world MD codes to prove their applicability and quantify the possible perfor-
mance increases. The following topics are discussed in detail: I/O, intra-node-level
performance, inter-node-level performance, and fault tolerance.

The aspect of application I/O and setup of simulation at scale is identified to be a
problem that MD code users struggle with due to their lack of specific HPC know-
how. Hence, a new scenario generation framework is presented. The corresponding
implementation in the ls1-MarDyn code is easy to use. Its transparent paralleliza-
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Abstract

tion is shown to scale up to thousands of processes even for complex simulation
scenarios.

With respect to intra-node-level performance several subproblems are addressed.
First, the choice of an efficient algorithm is a common issue. While the complexity
and implementation efficiency of the fundamental algorithms for MD have already
been extensively discussed in the past with respect to a large number of particles, the
increasing need for parallelism shifts the focus back to their use with fewer molecules.
To increase the understanding for the algorithms’ behaviour in the latter case, cost
models are created for the näıve, linked-cell, and neighbour-list algorithms. On their
basis, an algorithm selection diagram is derived that takes into account fundamen-
tal simulation scenario values as well as algorithm tuning parameters. Second, for
the fundamental näıve algorithm a large set of implementation possibilities is pro-
vided and compared on cache and vector based systems. The best implementations
are found to be multiple times faster than some other straight forward implemen-
tations. Based on the results, implementation advice for MD code developers is
provided. Third, the problem of extracting sufficient parallelism to distribute work
over the many compute cores of HPC systems is addressed by a look at task-based
programming models. Here, the focus is laid on the latest ideas for shared memory
implementations at the node level. A potential pitfall is identified in the context of
the currently available programming models. Solutions to resolve the related scaling
limits are proposed and a benchmark implementation demonstrates the successful
application for actual codes. Feedback is provided to task runtime developers to
improve their programming models.

With respect to inter-node-level performance, traditional distributed-memory paral-
lelization using the domain decomposition technique and message passing is studied.
The folding-based neighbour communication approach is found to work best at scale
on current HPC systems. A large problem identified here for the future is the cor-
rect placement of processes for a good hardware to application topology mapping.
Mitigation of this problem via overlapping of communication and computation is
proposed. Different communication patterns to achieve overlapping are implemented
in ls1-MarDyn and show up to 8 percent improvement for the chosen simulation
scenario.

In the context of decreasing reliability of HPC systems, fault tolerance is discussed.
Here, a concept for a new application-based fault tolerance (ABFT) approach for
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MD simulations is presented. Its applicability for a standard simulation scenario and
its performance advantage over the classical checkpoint/restart (C/R) approach is
shown.

The results of this work obtained in all these topics together, help to improve MD
codes to run larger simulations on current and future HPC systems.
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Zusammenfassung

Die Molekulardynamik (MD) Simulation stellt eine der fundamentalen Hilfsmittel
für Forscher dar, um Einblicke in Prozesse in der Biologie, Chemie, Materialwis-
senschaften, Physik und vielen anderen Feldern auf einem mikroskopischem Level
zu gewinnen. Seit dem Beginn der MD Simulationen stellen diese einen der An-
wendungsfälle für die größten Hochleistungsrechner (HPC) der Welt dar. Doch ob-
wohl deren zugrundeliegenden Algorithmen sich gut für die Parallelisierung eignen,
müssen aufgrund der Größe und Komplexität heutiger HPC Systeme eine Vielzahl
an Problemen bei der Skalierung überwunden werden. Diese Probleme limitieren die
Größe und den Detailgrad der Simulationen, die Forscher durchführen können. Daher
besteht ein stetiger Bedarf an Verbesserung und Anpassung von MD Programmen
für aktuelle und zukünftige HPC Systeme.

Das Ziel dieser Doktorarbeit ist es einige dieser Probleme zu beheben um die Fä-
higkeiten von MD Simulationen auf aktuellen und zukünftigen HPC Systemen zu
verbessern. Hierzu diskutiert die Arbeit Konzepte skalierbarer MD Simulationen im
Kontext dieser Probleme. Die diskutierten Konzepte umfassen zwei Gebiete: Erstens
die Performance und zweitens die Fehlertoleranz von MD Programmen, die für die
Simulationen eingesetzt werden. In beiden Gebieten werden Methoden und Lösun-
gen nach aktuellem Stand der Technik evaluiert und neue Modelle für ein besseres
Verständnis der Algorithmen und entsprechender Implementierungen in den Pro-
grammen eingeführt. Verbesserungen der aktuellen Lösungen werden vorgeschlagen
und als Kernel oder in echten MD-Programmen implementiert um deren Anwend-
barkeit zu zeigen und die möglichen Performance-Verbesserungen zu quantifizieren.
Die folgenden Punkte werden im Detail behandelt: I/O, intra-knoten-level Perfor-
mance, inter-knoten-level Performance und Fehlertoleranz.

Der Aspekt des I/O der Anwendung und des Aufsetzens der Simulation at Scale
stellt sich als ein Problem heraus, mit dem MD Programm Benutzer Schwierigkeiten
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Zusammenfassung

haben, da ihnen das spezifische HPC Wissen fehlt. Aus diesem Grund wird ein
neues Szenario-Generierungs-Framework vorgestellt. Die Implementierung im ls1-
MarDyn Programm ist einfach zu benutzen. Die Skalierbarkeit ihrer transparente
Parallelisierung bis hin zu tausenden von Prozessen wird demonstriert und selbst für
ein komplexes Simulations-Szenario erreicht.

Im Hinblick auf die Performance auf dem Intra-Knoten-Level werden mehrere Prob-
leme adressiert. Zuerst einmal ist die Wahl eines effizienten Algorithmus ein wichtiger
Punkt. Während die Komplexität und Effizienz von Implementierungen für die
fundamentalen Algorithmen der MD in der Vergangenheit im Hinblick auf große
Molekülzahlen bereits umfassend untersucht wurden, verschiebt der zunehmende Be-
darf an Parallelität den Fokus zurück zu deren Nutzung mit weniger Molekülen. Um
das Verständnis der Algorithmen für letzteren Fall zu verbessern, werden Kosten-
modelle für den naiven, linked-cell und Nachbarschaftslisten Algorithmus erstellt.
Auf deren Grundlage wird ein Auswahldiagramm für Algorithmen abgeleitet, das
Werte aus dem simulierten Szenario als auch Tuningparameter der Algorithmen
berücksichtigt. Anschließend werden für den naiven Algorithmus eine große Zahl
verschiedener möglicher Implementierungen aufgezeigt und auf Cache- und Vektor-
Systemen verglichen. Die besten Implementierungen erweisen sich hierbei um ein
Mehrfaches schneller als einige der anderen intuitiven Implementierungen. Basierend
auf den Ergebnissen werden Hinweise für MD Programm Entwickler gegeben. Weiter
wird das Problem des Extrahierens ausreichender Parallelität zur Verteilung der Ar-
beit über die vielen Rechenkerne eines HPC Systems adressiert, wobei ein Blick auf
die task-basierten Programmiermodelle geworfen wird. Der Fokus wird dabei auf die
neuesten Ideen zur Shared Memory Implementierung auf Knotenebene gelegt. Hier
wird eine potentielle Schwierigkeit im Kontext der aktuell verfügbaren Programier-
modelle identifiziert. Vorschläge zum Lösen der damit verbundenen Limitierung der
Skalierung werden gemacht und eine Benchmarkimplementierung demonstiert die er-
folgreiche Anwendbarkeit für echte Codes. Feedback für die Task-Laufzeit-Entwickler
wird gegeben, so dass diese ihre Programiermodelle verbessern können.

Im Hinblick auf die Performance auf dem Inter-Knoten-Level wird die traditionelle
Distributed Memory Parallelisierung auf Basis von Domain Decomposition Tech-
niken und Message Passing untersucht. Der Ansatz auf Basis der faltenden Nach-
barschaftskommunikation erweist sich hierbei als der am besten Skalierende auf
aktuellen HPC Systemen. Als ein in Zukunft größeres Problem stellt sich hier-
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bei die richtige Verteilung der Prozesse für ein gutes Hardware- zu Anwendungs-
Topologie Mapping heraus. Eine Verringerung der gefundenen negativen Effekte
mittels Überlappung von Kommunikation mit Berechnungen wird vorgeschlagen.
Verschiedene Kommunikations-Muster zur Überlappung wurden in ls1-MarDyn im-
plementiert und zeigen eine Verbesserung von bis zu 8 Prozent für das ausgewählte
Simulationsszenario.

Im Kontext sich verringernder Ausfallsicherheit von HPC Systemen wird Fehlertol-
eranz diskutiert. Hier wird eine neue Methode zur anwendungsbasierten Fehler-
toleranz bei MD Simulationen vorgestellt. Ihre Anwendbarkeit für ein gewöhn-
liches Simulations-Szenario sowie ihre Performance-Vorteile gegenüber dem klassis-
chen Checkpoint/Restart Ansatz wird gezeigt.

Die in dieser Arbeit gewonnenen Ergebnisse zu all diesen Punkten helfen MD Pro-
gramme zu verbessern und damit größere Simulationen auf aktuellen und zukünftigen
HPC Systemen durchzuführen.
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1 Introduction

Adler and Wainwright introduced the method of Molecular Dynamics (MD) in 1959
[7]. Since then, MD has become one of the major tools to study both thermo-
dynamic properties as well as time dependent phenomena at the nanoscopic scale.
Such simulations are used across many scientific fields to deepen the understanding
of phenomena in biology [55], physics [45], and chemistry [93] as well as for the op-
timization of materials and processes in engineering [50, 86]. They provide access to
data that would otherwise be difficult to access experimentally, such as critical point
data [96], mobilities at liquid-solid interfaces [64], crack formation processes [91],
and further help to reduce the number of experiments with toxic or explosive sub-
stances.

There is a constant necessity in the MD community to simulate large systems. Large
system simulations today include up to billions of particles and span millions of
time steps. One example is the study of time dependent fluid phenomena with
nanostructures at the atomic scale, resulting in a very large number of atoms to
be simulated for a long time. Another example is the determination of physical
properties near the critical point where the convergence rate of simulations is very
low and so extremely long runs are required to achieve a meaningful result. Thus, the
evolution of MD simulations, the development of the fastest computing systems of
their time, and the field of high performance computing (HPC) are interwoven. This
manifests visibly in the history of the Gordon Bell prize, honoring several advances
in MD simulations [14] with the last one in 2020 [53].

While MD codes like ls1-MarDyn [70], IMD [85], LAMMPS [78], and GROMACS [16]
have already shown their applicability for large computer systems running on thou-
sands of nodes, they have to face new challenges when it comes to their use on even
larger scale machines in the future. According to the TOP500 list [3,65], the top four
super computer systems in the world by 2020 provide each more than one million
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cores and include accelerator cards in addition to conventional central processing
units (CPUs). In order to use these systems to their full potential in a simulation,
it is necessary to divide the problem into sufficiently small subproblems and dis-
tribute them across the available compute resources such that there is as little need
for communication between as many compute cores as possible. Further, the small
subproblems have to be executed as efficiently as possible on the various hardware
components. This makes it important to tune the algorithms for all the problems and
their implementations for the target architecture in particular.

One problem, becoming more of an issue in the field of HPC systems, is application
input and output (I/O). Processor performance was following Moore’s law [67] for a
long time, increasing the computational speed exponentially. Storage capacity also
increased at a similar rate while following Kryder’s law [97]. However, the speed of
the I/O system did not see the same type of exponential growth, ultimately leading
to a gap that makes it difficult to read and write huge amounts of simulation data to
and from the available storage. As the I/O of HPC systems is also commonly a shared
resource between all running applications, this becomes a tremendous bottleneck and
causes frequent problems in HPC system operation.

Another challenge becoming more common with the advent of an increasingly larger
number of components in HPC systems, is reliability [24]. Hosting a larger, more
complex system requires larger efforts to protect simulations from failures that can
lead to data loss or corrupted results of computations. Hardware solutions to keep
the mean time between failure (MTBF) of the whole system at an acceptable level
require a lot of additional hardware resources and energy. Software and algorithm
based solutions beyond the classical checkpoint/restart (C/R) approach are therefore
becoming increasingly important [29].

1.1 Contribution of this work

MD code developers have to react to the challenges described above to allow their
codes to scale on future HPC systems. It is therefore necessary to re-evaluate existing
solutions and come up with new concepts for these codes. This work contributes to
these efforts by evaluating selected aspects in different areas, contriving solutions
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to improve existing codes and providing new methods in areas where no suitable
solutions exist so far.

The first aspect covered in this work is the setup of an initial simulation state during
program start. Due to the increasing size of the simulations, the tools and the I/O
system used to generate and read initial molecular configurations become a bottleneck
for large MD simulations. Therefore, in a first attempt, the existing infrastructure
is analyzed and optimized for a real MD code. From this gained experience, a new
flexible in-memory scenario-generation system is developed that offers transparent
parallelization to the user. Its improved performance and usability is shown on the
basis of an implementation in the ls1-MarDyn MD code and real world simulation
scenarios.

The second aspect to be addressed by this work is the performance of the algorithms
for force calculations in MD simulations. To distribute the computational work
across HPC systems at increasingly high scale, the simulated problems are divided
into increasingly more subproblems, which consequently become smaller and smaller.
Up to now, only asymptotic performance complexity models for an infinite number of
molecules are used to compare and select the algorithm to be used. These models also
do not cover details of the simulated scenario. Therefore, new analytical cost models
are developed in this work that describe the performance of common MD algorithms
for a small number of molecules. They take into account properties of the simulation
volume of interest as well as algorithm specific tuning parameters. The models are
tested on the basis of synthetic benchmarks and kernels. Algorithm selection criteria
are derived from the obtained results that can help MD code implementers and
users.

Another important aspect for the performance of the force calculation is the imple-
mentation of the algorithms. Here the näıve algorithm is analysed in detail in this
work, as it is the foundation of all other commonly used algorithms. The behaviour
of a large set of different implementations for it is compared using kernels in combina-
tion with different compilers across various hardware platforms. Based on the results,
guidelines for the selection of an algorithm implementation are given.

One problem coming up with the even higher core counts of HPC systems is the ex-
traction of sufficient parallelism from the application to utilize all resources. While
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hybrid approaches using the Message Passing Interface (MPI) for inter-node com-
munication and OpenMP for intra-node parallelism help reduce overheads, they still
leave this challenge to the programmer. One possible solution here is to use task-
based approaches that automatically extract parallelism from provided dependen-
cies [43, 75]. To that end, a task-based approach for intra-node-level parallelism is
studied based on the OMPSs task runtime. Some pitfalls of this model are brought
up and a solution to overcome them is presented.

As the number of nodes in HPC systems increases, the inter-node communication
is becoming more important. One aspect addressed in this work evaluates the un-
derlying neighbour communication used in domain-decomposition-based MD simu-
lations. Two communication patterns are tested with respect to their scalability.
Further, the important aspect of communication-computation overlapping is ad-
dressed by the implementation and analysis of different communication-computation
strategies in ls1-MarDyn for the widely used folding based communication pat-
tern.

The last part of this work addresses the increasingly important aspect of fault tol-
erance. A new application-based fault tolerance (ABFT) approach is introduced for
MD simulations. Its applicability is studied on the basis of a common application
scenario and its potential performance benefits over the classical C/R approach are
shown.

1.2 Outline

The work is structured into six chapters as follows: Chapter 2 introduces the gen-
eral background for this work. It includes the necessary basics and current state
of the art, which is used in the following chapters. This includes an introduc-
tion into supercomputers and their architectures, the concepts of MD simulations
and the algorithms used for simulations, as well as important aspects of fault toler-
ance.

The following four chapters include the contribution of this work related to different
fields. Chapter 3 focuses on the general problem of the initial configuration creation
at scale. Therefore, an analysis of the current practice for the ls1-MarDyn code is
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made and performance as well as usability issues are identified. From there, a gener-
alized scalable initialisation approach is designed. The approach is then implemented
in ls1-MarDyn and evaluated against the original implementation. Chapter 4 deals
with the optimization of MD codes at the node level. Here, algorithm choice and
implementation are studied in detail. Analytical performance models for common
algorithms are developed and tested with different benchmarks. This is followed by
an evaluation of different ways to implement the basic and most important force
computation kernel including a behavioural study on different hardware platforms
with different compilers. The question about efficient parallelization at the node level
is then examined in the context of a task-based parallelization approach. Chapter 5
shifts the focus towards scalability to high numbers of compute nodes and efficient
inter-node communication. The two most common communication schemes are com-
pared and their communication-computation overlapping potential is exploited for
the ls1-MarDyn code. Finally, Chapter 6 deals with the problem of fault tolerance
by presenting a new ABFT approach for simulation recovery. Its applicability is
studied on the basis of a common MD simulation scenario.

Chapter 7 concludes this work. It summarizes the results and gives some outlook on
future research directions.
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This chapter introduces the necessary background and state of the art for the fol-
lowing parts of the work. The HPC system architecture is shown and its different
components are explained as they are currently found in leading HPC systems. A
short introduction into parallel programming and the parallel programming models,
which are used in this work follows. The basics of Molecular Dynamics (MD) simula-
tions are then presented, including the most important algorithms and parallelization
strategies. Here, the MD code ls1-MarDyn is described shortly, which will be used
for many of the evaluations. At last, the area of fault tolerance is outlined, showing
the currently most important approaches as well as the existing basic theory model
to describe application overheads.

2.1 Supercomputer architecture and hardware

This section gives a short introduction into the architecture of current supercomput-
ers and the hardware components they are built of. At the end some examples for
HPC systems are provided, including systems used for performance evaluations in
this work.

2.1.1 Overall architecture

The TOP 500 list ranks supercomputers based on their performance in the LINPACK
benchmark [30]. Looking at the leading systems in the list’s latest release for 2020,
today’s supercomputer architecture is dominated by multi-node systems connected
via fast interconnects. For most systems, the nodes are of the same type—resulting
in a homogeneous system. The single nodes are in most cases diskless and the
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system’s storage is attached via network and I/O nodes to the rest of the system.
To achieve the necessary high I/O bandwidth to store the huge amount of data
from the simulations, a parallel file system is typically used on the storage system,
such as Lustre [21, 26]. Figure 2.1 depicts the architecture of such a typical system.

Network

compute nodes
I/O nodes Storage

Figure 2.1: Common architecture of an HPC system including compute nodes, I/O
nodes, and storage

Normally, users do not access the compute nodes in the system directly. Instead,
they prepare and start their computations from a login node using scripts, which
they submit to a job scheduler. This scheduler then starts the parallel application
on the compute nodes, managing all the different user requests across the available
resources.

2.1.2 Compute nodes

A compute node is the basic unit of a supercomputer. It consists out of three main
components: The central processing unit (CPU), memory, and the network interface.
Most nodes of today’s HPC systems follow a non-uniform memory access (NUMA)
node architecture and come with two CPUs as shown in Figure 2.2. Therein, each
CPU connects to memory via a memory controller, which is in most cases integrated
into the CPU. The two CPUs are connected via some interconnect to each other and
allow access to the memory that is attached to the other CPU. However, this memory
access is slower than the access to the CPU’s local memory. Each node includes one
network interface to connect the node to the other nodes in the system. This network

8



2.1 Supercomputer architecture and hardware

interface is often attached via a bus to one of the CPUs, and allows remote direct
memory access (RDMA) operation.

core core

core core

RAM

core core

core core
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ne
tw

or
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Figure 2.2: Common architecture of a compute node

2.1.3 Network

Different network technologies are found in today’s leading supercomputers. Typical
technologies are InfiniBand [3,83] and custom interconnects like, e.g., Cray’s Gemini
and Aries chips. InfiniBand based systems use in most cases a fat tree topology
[59], while the custom interconnects come with more elaborate topologies based on
3D or 4D grids, hypercubes or the dragonfly topology [56]. The networks support
message and RDMA based communications for high bandwidths and low latencies
with Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS)
parallel programming models.

2.1.4 HPC platforms used in this work

Laki/Vulcan HLRS Laki/Vulcan, is a Linux cluster based mainly on dual socket
nodes with Intel processors. It consists of roughly 600 nodes, which are connected
by a two level InfiniBand fat tree with a blocking factor of 5 : 1. The InfiniBand
network uses a variety of Mellanox cards and switches operating at DDR and FDR
speeds. The nodes of the system are heterogeneous and vary in the CPU model as
well as amount and type of memory.
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HLRS Cray XT5/XC systems Over the time of this work a variety of Cray XT
and XC systems was used: A Cray XT5m with 112 dual socket Quad Core AMD
Opteron 6276 (Interlagos) processor nodes connected via the Cray SeaStar intercon-
nect [22] and 16 GB of RAM each. Hermit, a Cray XE6, consisting out of 3552 dual
socket nodes with AMD Opeteron 6276 (Interlagos) processors and 32/64GB RAM
per node, connected via the Cray Gemini interconnect [9]. Hornet/Hazel Hen,
a Cray XC30/XC40, consisting out of 7712 dual socket Intel Xeon Haswell E5-
2680v3 nodes and 128 GB RAM per node, all connected via the Cray Aries intercon-
nect [37].

NEC SX-ACE The NEC SX-ACE is a vector processor based supercomputer ar-
chitecture [2]. The NEC SX-ACE system at HLRS consists out of 256 nodes. Each
node is equipped with one processor with 4 vector cores running at 1 GHz and 64 GB
of main memory which is assisted by 1 MB of vector cache (ADB) in each CPU core.
The special feature of this system is its very high memory bandwidth of 256 GB s−1

that can be used by a single core or shared by all four cores resulting in a very high
overall byte to flop ratio of 1 B/FLOP. The vector length is 256 elements. The nodes
are connected via the IXS interconnect.

2.2 Parallel programming and parallel programming
models

Parallelization is the concept of distributing work on several resources, where re-
sources can be manifold. With respect to the computer systems in this work, these
resources range from resources inside a single CPU core in the form of multiple in-
struction ports, over multiple CPU cores in a processor up to multiple compute nodes
in a larger computer system. For high performance computing (HPC) systems, it
can be assumed that a system consists mainly out of homogeneous resources, lo-
cated at one place and that these resources are well connected via a fast intercon-
nect.

To make use of these resources a variety of programming models came up. In general,
it can be distinguished between two programming model classes: parallel processes
with message driven communication and models that communicate over a shared

10



2.2 Parallel programming and parallel programming models

memory. The first model is mostly used to parallelize an application across a network,
the second model is commonly applied within a single node.

2.2.1 Scalability

Different metrics exist to measure the resource usage efficiency of a parallel appli-
cation. One of the most common metrics is the so-called speedup. The speedup
S(n) of a parallel program using n processing elements is defined as the fraction
between the execution time of the serial application tserial and the parallel program’s
execution time t(n). In this context often the serial execution time is assumed to be
the same as the execution time of the parallel application using only one processing
element t(1):

S(n) = tserial

t(n) ≈ t(1)
t(n) (2.1)

If a fraction f of the program can be parallelized and there are no additional overheads
due to the parallelization, the speedup can be expressed by

Smax(n) ≤ 1
(1 − f) + f

n

. (2.2)

This formula describes the performance model, which is known as Amdahl’s law
[10]. So, the ideal speedup for an application that is parallelized to 100 % is n.
However, a so called superscalar speedup may be observed with increasing n, which
can sometimes result in higher values than n.

2.2.2 Message passing

Message Passing Interface MPI is the leading standard when it comes to highly
parallel HPC applications since it was introduced in 1994 [25,41]. In the MPI world,
the MPI process is the basic operational unit. MPI processes are distinguished by
their individual rank number in a process group and can communicate with each
other using the MPI API. MPI is mostly message driven and therefore the basic API
functions are send and receive operations. But there are also optimized collective
communication patterns or a parallel I/O interface as well as support for one-sided
communication with get and put operations. Important aspects in running MPI
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applications efficiently are overlapping of communication and computation as well
as the reduction of slow network communication by optimized data distribution and
process placement based on the hardware topology. The current MPI-3.1 standard
does not provide failure handling beyond a simple fail stop model for now. An
extension for fine grained failure handling in MPI is discussed for the future in the
User Level Failure Mitigation (ULFM) proposal [4, 17].

2.2.3 Multi threading

User level threads are execution streams that have some private state. Multiple
threads can run within a single process as depicted in Figure 2.3. The threads
share and can access resources of the parent process, e.g., code, data, and open files.
They share a common memory address space, which allows them to communicate
not only via messages but also via shared data in the memory. So, communica-
tion between threads mostly requires synchronisation and no data transfer. There-
fore, thread based parallelization allows very good performance in tightly coupled
parallel computations. A common implementation are POSIX threads [5], which
often serve as a portable basis for other higher level parallel programming mod-
els.

code data files

registers

stack

registers

stack

registers
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Figure 2.3: Multi threaded process

OpenMP OpenMP is an application programming interface standard for writing
multi-threaded applications in C, C++, and Fortran, which was first introduced in
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1997 by the OpenMP Architecture Review Board [19]. At its beginning OpenMP
was mostly loop parallelization driven, however, today it includes advanced features
like tasks or nesting as well as support for accelerator offloading and optimization
hints for compilers [20].

Task dependence based parallelization models A relatively new approach for
parallelization using threads is the application of a data flow execution model with
user level software tasks. The idea here is not to parallelize an application by directly
specifying the parallelism, but by simple code annotated tasks, which are executed in
parallel by a runtime system with respect to their dependencies. A task in this model
may be a function or a code region. Several approaches to specify task dependencies
exist and were implemented for different hardware architectures: StarSs [76], OmpSs
[31], StarPU [11]. Basic support of the model for shared memory systems was also
introduced in the OpenMP standard with the 4.0 version [74]. Most of the approaches
specify dependencies by marking input and output parameters for all tasks. During
program execution, this information is used to create task dependencies, which are
then translated into a directed acyclic graph (DAG) from which the task execution
order is derived, i.e., the programming model runtime executes the tasks for which
dependencies in the DAG are fulfilled.

In case of StarSs and OmpSs, the dependencies are handled by the memory ad-
dresses of the parameters in the case of C/C++. This has some advantages and
disadvantages: On the one side using memory addresses is a very natural way which
considers automatically different variables belonging to the same memory location -
which is important especially in C/C++. On the other side using a single memory
address may not be very useful when it comes to parameters which represent mem-
ory areas, i.e., arrays or data-structures. Here different strategies to circumvent this
shortcoming can be applied. One of them is the so-called sentinel technique, which
uses a sentinel variable to represent the elements of an array or data-structure [61].
However, this has the disadvantage of additional code and increased program com-
plexity1.

To achieve an efficient parallelization with this model, two approaches can be used:
(1) starting with large tasks that take a long time to compute, and refine them until
enough parallelism in the task DAG is reached to get sufficiently good scaling [88] or

1The new OmpSs2 implementation added an array notation for dependencies.
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(2) start at the instruction level using the DAG within the compiler representation
and combine instructions until sufficiently large tasks are created, so scaling is not
limited by the overhead of the runtime system [60].

The big advantage of this model comes from the automatic extraction of parallelism
from a program, allowing also programmers with little to no knowledge of parallel
programming to parallelize their codes.

2.3 Molecular dynamics simulations

Classical MD simulations are based on classical mechanics where the movement of
atoms with mass mi and spatial position r⃗i are described by a set of coupled Newton’s
equations of motion

mi
¨⃗ri = F (r⃗i) = ∇U(r⃗) . (2.3)

Here, F (r⃗i) are the forces acting on molecule i and U(r⃗) is the interaction po-
tential between all atoms. The basic problem of MD simulations is now to solve
this coupled system of differential equations for a system of N atoms with coordi-
nates r⃗1, r⃗2, . . . , r⃗N and a given potential U(r⃗) in an efficient way. The atoms within
the simulated systems can occur either as single atoms or as molecules, which can be
used to reduce the number of equations, e.g., by introduction of positional constraints
for atoms within a molecule.

2.3.1 Molecular interactions

The interatomic potential function U(r⃗) describes the potential energy of an atom
at position r⃗ within the interaction field caused by all atoms in the system. It can
be represented by a series expansion in the following form:

U(r) =
∑

i

u1(ri) +
∑
i,j>i

u2(ri, rj) +
∑

i,j>i,k>j

u3(ri, rj, rk) + . . . . (2.4)

The first three addends therein correspond to the contributing parts single atom
potential, pair interaction potential, and three body interaction potential. The in-
teraction potentials between molecules are the key component of MD simulations.
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Classical MD simulations of fluids take into account the pair interaction and neglect
the three body interactions in most cases. This is possible as bonds are here not as
important as for the simulation of solids or large bio molecules.

A wide variety of pair-interaction potentials exists. Well known are the simple
Coulomb potential and the more sophisticated Buckingham or Morse potentials. Be-
side this, Neural network based interaction models are now introduced [103]. How-
ever, one of the most important pair interaction potentials is still the simple Lennard-
Jones (LJ) potential. It is briefly described in the following and will be used within
the simulations performed in this work.

LJ potential To approximate Van-der-Waals interactions between non-bonded neu-
tral atoms, the LJ potential is often used. [8] It is derived from the exact attractive
London formula for dipole-dipole interactions and an approximate dispersive force,
which is often modelled as a power law resulting in the form

ΦLJ,n(r) = 4ϵ

[(
σn

r

)n

−
(

σ

r

)6
]

. (2.5)

Here ϵ describes the potential depth and σ the interaction range. Due to efficient
computation often the LJ-(12-6) potential is used:

ΦLJ(r) = 4ϵ

[(
σ

r

)12
−

(
σ

r

)6
]

. (2.6)

Within this work LJ will be used as a synonym for the LJ-(12-6) potential.

Short range potentials

Often short-range potentials are used in MD simulations. They are characterized, by
the property, that the main contribution of the potential energy of a given particle
arises from its neighbours that are closer than a given cutoff distance rc [42]. This
allows the introduction of a cut-off radius for the potential within which the function
is evaluated for interactions. For the contributions of interactions with distances
larger than the cut-off, a correction function can be computed. This is not exact,
but will give in most cases a sufficiently good approximation [84]. The LJ potential
falls into the class of short-range potentials.
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When the LJ potential is used with a cut-off radius, effects of the discontinuity at
r = rc can cause problems in the physical behaviour. These problems can be elimi-
nated by an additional offset for most cases. Fixing the discontinuity in the potential
results in the Lennard-Jones Truncated Shifted (LJTS) potential [92]

ΦLJTS(r) =

ΦLJ(r) − ΦLJ(rc) r < rc

0 r ≥ rc

. (2.7)

2.3.2 Boundary conditions

Simulations performed on a computer are limited to a finite data set that fits into
memory and can be computed in a decent runtime. This fact restricts the number
of atoms and molecules, which can be simulated, and makes it necessary to specify
boundary conditions. There are different types of boundary conditions. The most
common once are:

• reflecting boundary: Particles are reflected at the simulation volume bound-
aries. The reflection mechanics can be implemented in different ways, e.g., using
velocity flipping or mirror particles [8].

• inflow and outflow: Here particles are inserted at specific points of the sim-
ulation volume while particles crossing simulation volume boundaries are re-
moved from it.

• periodic boundary: This is a variant of the inflow and outflow condition,
where particles leaving on one side are inserted at the other again.

In the case of periodic boundary conditions, the so called minimum image convention
is commonly applied, which takes into account only the nearest copy of an atom for
interactions [8]. This condition becomes important for small systems, when the
interaction range is larger than half the system diameter. The minimum distance
between two atoms i and j is then given by:

rij = |r⃗ij| = min
n

|r⃗i − r⃗j + Ln⃗| , (2.8)

where n⃗ ∈ N 3 and L is a matrix with the dimensions of the simulation volume as
diagonal entries.
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2.3.3 Algorithms in molecular dynamics

MD simulations solve Newton’s equation of motion for many particles by numerical
calculations on computer systems. The main task solving this system of coupled dif-
ferential equations is the computation of distances and forces between the molecules
or atoms based on the interaction potentials introduced in Section 2.3.1.

Since the beginning of MD simulations in 1961 many different algorithms have been
developed for this purpose, each of them targeting the efficient handling of a specific
problem. Most of these algorithms are designed for two body interactions and short
range potentials for which they reduce the computational costs effectively [45]. The
most common of these algorithms that are used in this work are presented in the
following sections.

For all algorithms the computational costs may be halved by the help of Newton’s
“actio est reactio” principle [28]. This allows to compute forces only once for a pair
of particles and updating both at the same time. However, this results in write after
write conflicts during parallelization. Commonly used techniques to handle those
conflicts are synchronization or colouring schemes [36]. The following presentation
of the basic algorithms omits the use of “actio est reactio“. If “actio est reactio“ is
used in a later part of this work it will be stated explicitly.

Näıve algorithm

The näıve algorithm just computes all molecule pair distances and interaction forces
[42]. While this algorithm is very simple to understand and can be executed efficiently
on most hardware (see Section 4.2), the computational complexity of this algorithm
is O(N2) for a system with N molecules. Not scaling linearly with the system size
makes it inappropriate for higher numbers of molecules.

for molecule1 ∈ molecules do
for molecule2 ∈ molecules with molecule2 ̸= molecule1 do

compute(molecule1, molecule2)
end

end
Algorithm 1: Näıve algorithm
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Näıve algorithm with cut-off

The näıve algorithm can be sped up for short range potentials by skipping the force
calculation for molecule pairs that are further apart than a specified cut-off distance.
However, the computational costs for the distance calculations still remain at a com-
plexity of O(N2).

for molecule1 ∈ molecules do
for molecule2 ∈ molecules with molecule2 ̸= molecule1 do

dr = distance(molecule1, molecule2)
if dr ≤ rc then

compute(molecule1, molecule2)
end

end
end

Algorithm 2: Näıve algorithm only computing short range potential parts.

Verlet lists

One of the oldest methods to speed up the calculation of multi-particle interac-
tions for short range potentials is the Verlet neighbour list [94]. The idea of Verlet
lists is a slowly changing environment implying that neighbour relationships be-
tween molecules do not change rapidly. This is especially the case for solid state
problems, where atoms or molecules in a crystal do not travel large distances, but
rather stay localized, or biomolecules, where bonds establish a stable molecular back-
bone.

The algorithm stores for each molecule a list of its neighbours, which is assumed
to be valid for n time steps. The neighbours in the lists are selected to be within
a certain distance rc + rs to the corresponding molecule, where rs is referred to as
skin. This reduces the number of molecules to be checked for interactions in the n

time steps from all molecules to molecules in the neighbour lists of each molecule.
The neighbour lists have to be re-created after n time steps. Figure 2.4 shows the
application of the Verlet list in 2D.

Taking the maximal relative velocity vmax between any two particles and the cut-off
radius rc of the interaction potential, the neighbour list has to be updated after a
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time of t = rs/vmax to guarantee that all neighbours are considered. Therefore, when
simulating a system with root-mean-square molecule velocity v̄, time step length h,
and n time steps between list updates, the skin radius should hold the condition
[94]

rs ≳ nv̄h . (2.9)

A typical set of parameters for LJ-fluid simulations are rs = 0.3, n = 10, and h =
0.005 where all values are in reduced LJ-units [81].

A drawback of the Verlet list algorithm is its memory consumption, which scales as
the number of molecules times the average number of interaction partners. This can
become a problem for large simulations. The time consuming list creation itself can be
sped up using the linked-cell algorithm presented in the following.

rc

rs

Figure 2.4: Verlet list algorithm in 2D: For each molecule, molecules within a dis-
tance rs to it (yellow and orange area) are stored in a list. Neighbouring
molecules within rc can then be found in this list. The list has to be
updated as soon as molecules from outside pass the skin (yellow area)
and enter the inner area (orange).

The linked-cell algorithm

The standard algorithm used to reduce the number of pair interactions for short range
potentials within a spatial volume is the linked-cell algorithm [78]. It decreases the
numerical complexity of the distance calculation from O(N2) to O(N).
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The idea behind the linked-cell algorithm is to divide the volume into smaller subvol-
umes — referred to as cells — for faster access to spatial neighbours. In the original
algorithm the cell dimension is chosen to be at least the cut-off radius of the inter-
action potential. This guarantees that interaction partners of molecules in one cell
can be found in the directly neighbouring cells. Figure 2.5 shows the application of
the linked-cell algorithm in 2D, where neighbours are found in the surrounding eight
cells. In the 3D case, 26 neighbouring cells have to be checked.

rc

Lc

Figure 2.5: Linked-Cell algorithm in 2D: Molecules (red dots) are sorted into cells
with a width Lc ≥ rc. The interaction neighbours of a molecule within rc
(orange circle) can then be found within the cell containing the molecule
itself and its 8 neighbouring cells (yellow shaded area).

The algorithm can be extended to allow arbitrary dimensions for the cells, which can
reduce the computational overhead for some applications [63]. Beside this, several
other improvements exist for the algorithm [100]. For example, by sorting particles
onto grid points [62] or by an approach sorting molecules inside cells along the pro-
jection of the cell-connecting vectors [44]. In this work the original algorithm will
be studied as all results can be applied to the different variations and also most MD
codes make use of it—including ls1-MarDyn (see Section 2.4).

2.3.4 Parallelization approaches

Running MD simulations on modern supercomputers requires work distribution across
many processing units, as HPC systems provide nowadays up to several million
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CPU cores [3]. Different work sharing concepts for MD simulations were devel-
oped over time. In the following, the standard approaches atom decomposition,
force decomposition, and domain decomposition described by Plimpton [78] are out-
lined.

Atom decomposition

The simplest approach to parallelize MD simulations is the data parallelism based
atom decomposition. The atoms are distributed across the available compute re-
sources. Each compute resource computes only the corresponding forces acting on
the atoms it owns. However, the computation requires to know the location of almost
all molecules by each compute resource. This requires a global state update after
each time step turning the approach impracticable for larger number of molecules to
scale on modern HPC systems.

Force Decomposition

Looking at the näıve implementation for the computation of interaction forces in
Algorithm 2, the force computations can be seen as a 2D matrix holding all the
individual force contributions from all the interaction pairs. Each element Fij in
this table corresponds to the force between two molecules i and j. This table can
be split up into blocks. The computation of these blocks is then distributed across
the compute resources. As soon as each block is computed, a reduction over all
blocks is performed to get the final forces on the molecules. The blocking allows
for a reduction of the molecule position data needed by each process, improving the
scalability of the algorithm in comparison to the atom decomposition. However, still
expensive data exchange and reduction operations are required, turning it inefficient
on modern HPC systems.

(Standard) Domain Decomposition

The most common approach to parallelize computations in many fields is the domain
decomposition. Here the underlying simulation domain is divided into subdomains
to build junks of work, which are then distributed across the compute resources.
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The simplest approach for domain decomposition is to divide the simulation domain
into cubic boxes. This approach is especially successful when computations require
only local and not global data. For MD simulations, the domain decomposition can
be seen as a dynamic atom decomposition where atoms are distributed based on
their time dependent spatial distribution and the amount of molecule positions to be
exchanged is reduced to a minimal amount.

2.4 The ls1-MarDyn Molecular Dynamics code

The ls1-MarDyn code is an MD code targeting large scale systems with millions of
molecules that run for long time scales [33]. Typical scenarios computed with ls1-
MarDyn are nano fluid simulations. These include for example condensation and
evaporation processes to determine the corresponding condensation and evaporation
rates [51] or flow simulations of a fluid alongside solid interfaces to study the viscous
behaviour in given geometries [49].

These scenarios are demanding challenges for MD simulations and the ls1-MarDyn
code: The simulation code must be very efficient in terms of computation to handle
the large number of interactions and the long time scales. Further, the code has to
handle the large number of molecules and must therefore also be efficient in terms of
memory usage. To handle these challenges, ls1-MarDyn was already designed with
a very efficient computational kernel and a scalable parallelization for large HPC
systems in mind [70].

Around the computational kernel, ls1-MarDyn provides a flexible infrastructure to
extend it with new functionalities. ls1-MarDyn uses here object-oriented program-
ming techniques that simply the addition of, e.g., new communication patterns for
particle exchange, or implement different particle types. In addition, it provides a
flexible I/O plugin infrastructure that allows users to implement, e.g., new evaluation
methods for their scientific research or additional output for subsequent data analysis
or visualisation.
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2.5 Fault tolerance

Fault tolerance describes the property of a system, which allows it to continue oper-
ation after a failure event in one of its components. For computer simulations, this
means that an application can survive a hardware failure and continue the computa-
tion leading to the correct result at the end. Failures in HPC systems are most likely
to show up as the loss of a node during runtime of a parallel computation. With the
increasing number of components, this is becoming more of an issue and statistically
one node in an HPC system may be affected once per hour by an error according to
predictions [29,48].

2.5.1 Software fault tolerance strategies

To achieve fault tolerance, different approaches can be taken either in hardware
or in software and at different hardware or software levels [29]. As this work fo-
cuses on the application level, only the most common software based fault tolerance
techniques shall be outlined here: Checkpoint/Restart, communication replay, and
replication.

Replication Replication performs all operations multiple times using multiple in-
stances of a code running on different hardware resources, e.g., nodes [38]. The state
of the replicated instances is synchronized to keep them the same during normal
operation and to detect failures. This approach is very expensive because of the
need for at least twice the amount of hardware resources for the computations as
well as the additional overhead in contiguous synchronisation between the different
instances.

Checkpoint/Restart C/R is the most widely used fault tolerance approach in HPC
applications today. It is based on the rollback recovery technique [35]. The state of
a simulation is stored on a persistent storage system in a specified interval. When
the system is subject to a failure, the simulation is restarted from the last suc-
cessful checkpoint. The state of all resources is reset to the saved state and the
simulation is continued from this point on. This requires the re-computation of all
the simulation steps since the failure event. To overcome bandwidth limitations of
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normally slow persistent storage, it can be combined with a diskless checkpointing
approach. Here checkpoint data are distributed over the memory of the entire appli-
cation [77].

The checkpoint can be obtained at several levels. In most cases application level
checkpointing results in the smallest amount of checkpoint data and is therefore
preferred [12]. However, this approach requires additional effort by the users to
implement checkpoint/restart capabilities into their program compared to a trans-
parent operating system level approach. Alternatively, operating system (OS) level
checkpointing may be used [46].

Log-based recovery Log-based recovery tries to overcome the problem of large
checkpoints and restoration of the full simulation state by keeping a log of all mes-
sages sent over the network since a checkpoint [87]. This allows to continue the
simulation only by restoring the failed process from the checkpoint and then replay-
ing the communication for the failed resource until it reaches the same state as the
still alive resources. While only the restoration of affected processes is necessary in
this approach, the restoration time is likely to be the same as for checkpoint/restart
(C/R) because the process restoration is not sped up itself.

2.5.2 Application-based fault tolerance

A relatively new approach for fault tolerance is the application-based fault tolerance
(ABFT)2 technique [95]. The idea behind this approach is to leverage the knowledge
of the application itself to recover from a failure. This helps to reduce the amount of
restoration relevant data and also the overhead in the recovery process. The classical
C/R approach will recover the exact state of the application prior to failure. In
contrast, the ABFT approach leaves the application the freedom to continue with a
non-exact state and correct it at any point, so that it will achieve the desired correct
result at the end, but with less overhead due to the failure handling. A special
variant of this is the algorithm based fault tolerance method. Here, the failure can
be corrected in an algorithmically exact way. For example, in some linear algebra
calculations, it is possible to use a hot replacement technique: Here, data lost due to

2The abbreviation ABFT is also used for algorithm based fault tolerance, however, in this work
ABFT is used as abbreviation for application based fault tolerance.
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a failed process are replaced by checksum data and the result is corrected at the end
based on the knowledge of the transformation between original data and checksum
data [98].

2.5.3 Execution time of fault tolerant applications

The addition of fault tolerance features introduces overheads increasing program
execution time. The total execution time ttot of a program capable to recover after
a failure using C/R was first studied systematically by Young [102]. This study
was extended by Daly in [27] to a more detailed failure model and the following
formula

ttot = tS + tD + tR + tL . (2.10)

Here, tS is the time required to obtain the solution in a failure free environment,
tD is the dump time needed to write checkpoint data, tR is the restore time to
set up computation after a failure from the checkpoints, and tL is the rework time
necessary to recalculate lost intermediate results since the last checkpoint. Based on
this model, an optimal checkpoint interval τopt can be derived. According to [27], a
good first order approximation for larger mean time between failure (MTBF) values
is

τopt =
√

2δ(M + R) for τ + δ ≪ M , (2.11)

with the MTBF M , restart time R necessary to set up computation from a single
checkpoint, the single checkpoint dump time δ and the calculation segment length τ

between checkpoints.

Taking failures during the recovery process into account and applying a more precise
second order approximation, Daly derived the following formula for MTBF close to
the checkpoint dump time

τopt =


√

2δM − δ for δ < 1
2M

M for δ ≥ 1
2M .

(2.12)

So, the optimal checkpoint interval is mainly influenced by the checkpoint writing
time and MTBF.
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3 I/O optimization and initial
configuration preparation

At the beginning of each Molecular Dynamics (MD) simulation an initial phase space
configuration has to be created. A point in the phase space is defined by the exact
position, orientation, velocity and angular momentum of each molecule. This initial
configuration comes with several requirements or constrains from the scenario that
the user wants to simulate. For example, the density of molecules and the tempera-
ture of the system to be simulated may be given, or the molecular distribution shall
exhibit a certain spatial distribution, e.g., in a standard vapor-liquid equilibrium
(VLE) simulation.

Before an MD simulation can be used to collect data, it has to undergo an equili-
bration phase in which the effects of the initially constructed non-physical state are
reduced. This is done by simulating the system for some time letting it evolve. Cri-
teria, which can help to decide when a sufficiently good equilibration is achieved are,
e.g., the velocity distribution of the molecules or the internal energy and pressure
of the system. In order to keep the cost of the equilibration as low as possible, the
initial configuration shall be close to a physical state. Therefore, molecules must not
be too close to each other and molecule velocities should reflect the desired temper-
ature.

A trivial approach to assign molecules to an initial configuration would be to place
them randomly into the simulation volume and add them only to the initial configu-
ration in case that they are not too close to the molecules added to the configuration
so far. But this approach is neither efficient nor effective because it relies too much
on the creation of random positions, which may not fulfil the placement require-
ments. So, the probability to pick an appropriate random position decreases with
the number of inserted molecules ending—worst case—in an infinite process. This
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is especially an issue for the creation of molecule configurations with high molecule
density as needed for a liquid state simulation. Therefore, the common way to have
appropriate molecular distances is to place them on a lattice, which guarantees a
minimal distance between molecules [45].

The assignment of velocities is the second task in the setup of the initial configuration.
In this case, the constraint from the user comes from the desired temperature. The
relation between temperature and the thermal velocity of a set of rigid molecules is
given by the formula

⟨Ekin⟩ = 1
2m⟨v2⟩ + 1

2L⟨ω2⟩ = f

2 kBT , (3.1)

with f being the number of degrees of freedom of the molecule [28]. A noble gas
atom has three translational degrees of freedom and hence f = 3. For a molecule, the
number of degrees of freedom has to be incremented from this value by one for each
non-vanishing principal moment of the molecule’s inertia component. For example,
it is f = 5 for a linear molecule like nitrogen (N2) and f = 6 for a bent molecule like
water (H2O). At high temperatures, internal degrees of freedom will start playing a
role thus further increasing the number of degrees. However, in this work only rigid
molecular models are used as it is implemented in ls1-MarDyn.

For very large simulations, the initial setup itself can require a large amount of com-
putational effort. Naturally, the generation of a molecular configuration is done at the
beginning of a simulation. But generation of initial configurations is also required for
some regeneration strategies used by the application-based fault tolerance (ABFT)
techniques described in Chapter 6. Here molecule configuration generation becomes
a more frequent task, also necessary during later steps of the simulation. There-
fore, the performance of configuration generation becomes an increasingly important
issue.

The ls1-MarDyn MD code targets extremely large simulations and therefore has to
face the problem of scenario generation at current and future HPC system scales.
The focus of this section is to improve ls1-MarDyn’s initialisation step. Therefore,
a new user-friendly and scalable initialisation concept shall be developed. Starting
with an analysis of the current initialisation infrastructure of ls1-MarDyn, the bottle-
necks in the implementation and general scenario generation approach are identified.
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(a) Vapour-liquid interface. (b) Droplet in vapour environment

Figure 3.1: Scenarios used during the ls1-MarDyn I/O system analysis

Where possible, the implementation is then improved gradually. Based on the find-
ings from the improvements and knowhow gained from the existing infrastructure,
requirements for a new, scalable scenario setup infrastructure are then defined. From
those requirements, a new, generalized concept for initialisation of MD simulations
at scale is developed. The concept is then implemented in ls1-MarDyn and evaluated
with a real world example.

3.1 I/O implementation and improvement of
ls1-MarDyn

3.1.1 Common simulation scenarios with ls1-MarDyn

Common scenarios simulated with ls1-MarDyn are: condensation processes, flow pro-
cesses at the nanoscopic scale, and liquid vapour phase boundaries in large systems.
Figure 3.1 shows two representative system configurations, which are used for the fol-
lowing studies of the I/O part: A vapour-liquid interface and a droplet in a vapour
environment. These systems typically consist of many millions of molecules and have
to be simulated for several hundred thousand time steps.
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3.1.2 Analysis and problems of the original I/O system

The technique used to initialize ls1-MarDyn is implemented around ASCII-based
configuration files containing the phase space data including molecular positions and
velocities1. The generation of these input files is performed by external tools that
are developed by the users. The input files generated with these tools are then
read independently by all MPI processes of ls1-MarDyn at the start of the simula-
tion.

This I/O system of ls1-MarDyn has several problems when it comes to the simulation
of very large systems [69]:

1. The generators written by the users are serial programs. Figure 3.2 shows
the input file generation time and write speed for scenarios of different sizes
with the animake (homogeneous fluid), mkesfera (droplet), and mkTcTS (VLE)
generator. As can be seen, the creation time of the input files increases linearly
with the system size. The achieved write speed of around 20 MB/s is slow
compared to the theoretical system peak of 6 GB/s [1]. Evidently, the user
provided serial generators are not designed to make use of MPI or parallel I/O,
which is necessary to achieve good I/O performance. It also has to be noted
that these generators often run into problems associated with a limited amount
of memory as they build the entire configuration in memory before writing it
out to the input file.

2. The used input file format is inefficient and unsuited. The ASCII based input
requires parsing and conversion to the CPU’s number representation. This
requires a fair amount of CPU time compared to binary data. Further, it
leads to issues with precision due to the intermediate conversion to base 10
numbers, if generators write out floating point numbers with default precision
representation. For example, the default decimal format used in C++ output
with std::cout from the GCC C++ library has 6 significant digits in scientific
notation. With this format, floating point numbers cannot be stored precisely
in most cases. For the full representation of a single precision IEEE 754 with a
23 bit mantissa and 8 bit exponent, the scientific notation representation (sign
+ digits including comma + E + sign + digits) will need in the worst case 14

1The same data format is also used to write checkpointing data.
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characters and for a double precision IEEE 754 floating point number with a
52 bit mantissa and 11 bit exponent the representation will need in the worst
case 24 characters.

3. The I/O system of ls1-MarDyn does not scale in the original version. Figure 3.3
shows the I/O statistics obtained for one process in a 4096 PE run on HLRS
Hermit where ls1-MarDyn was started with a small input file containing only
40 000 molecules and a total size of 2.5 MB. While this process performed
only one open and one read operation on the input file, the wait and read
times are extremely large, resulting in an effective I/O rate of below 1 MB s−1.
Comparing this to the peak I/O bandwidth of 150 GB s−1 of the used lustre file
system on Hermit, ls1-MarDyn is far away from utilizing it in an efficient way.
The problem here is the parallel access of all MPI processes to the input file
via C++ streams, which stresses the system’s I/O infrastructure.

In the following sections solutions are developed, which overcome these issues.
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Figure 3.2: Input file generation times with the user provided external animake,
mkesfera, and mkTcTS scenario generators for different scenario sizes
on HLRS laki/vulcan /lustre/ws2 using gcc 7.3.0
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PE 1086: File "lj40000_t300.inp"
Calls Seconds MB/sec

Read 1 2.185619 0.003748
Open 1 0.278424
Close 1 0.731858
Buffer Read 2 3.685361 0.569049
I/O Wait 2 2.184243 0.960128
Buffers used 2 (2 MB)
Prefetches 1

Figure 3.3: Performance data reported by the Cray iobuf tool for the access to a
40 000 molecule input file by process 1086 during a 4096 PE run on HLRS
Hermit

3.1.3 Improvement of ls1-MarDyn’s original input file I/O

The first of the identified I/O problems of ls1-MarDyn to be addressed is the individ-
ual I/O performed by all MPI processes. As described above, the initial configuration
is read by all processes individually, which stresses the I/O system due to the concur-
rent file access. A solution for this problem that does not break compatibility with
the existing I/O system and the users’ input file creation tools is a master read only
approach: Here, only one process reads the input file and broadcasts the data via the
fast communication network to all other processes. This approach was implemented
in ls1-MarDyn. It has to be noted that the collective MPI parallel I/O is not used
here because of the unstructured ASCII file format.

As the input files can become very large, the entire input data cannot be held in
memory. Hence, a buffering approach is used at this point. Therefore, the phase
space data are split into smaller junks, which are broadcasted. This approach also
overlaps the reading of molecules by the master process with the MPI communication
and insertion of particles in the remaining processes.

Figure 3.4 shows the scalability of the improved implementation for a variety of
phase space configuration sizes on the HLRS Hermit system. With this implemen-
tation, the I/O time is close to constant and independent of the number of used
processes. It is limited by the capability of a single process to read and parse the
ASCII input data. The communication overhead is negligible. The achieved I/O
bandwidth is around 268 000 molecules per second. This is one order of magnitude
faster than the original version, that achieved 20 000 molecules per second as shown
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above. However, while this implementation enabled the usage of existing input data
at scale, it is still far from optimal due to the limited speed of the required ASCII
data parsing.
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3.1.4 Conversion to internal scenario generation

The second problem found in the original I/O system is the ASCII based input file
format. From Figure 3.4 it can be seen that even the improved I/O takes consid-
erable time with larger scenarios. A faster solution compared to reading the initial
configuration from a file is to generate the phase space data directly in the simula-
tion. At the same time, this solves all problems caused by the ASCII based number
representation format.

To demonstrate the benefits of this in-memory generation, the two external tools
for the generation of a two layer system (mkTcTS) and a droplet (mkesfera) were
adapted to ls1-MarDyn’s internal InputBase interface. Instead of writing the phase
space data to a phase space configuration file that is read in later by ls1-MarDyn,
here the molecules are directly inserted into ls1-MarDyn’s in-memory data structure.
To steer the generation process, the original command line parameters of the tools
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were replaced by corresponding parameters in the ls1-MarDyn input file so that all
features of the original user tool were preserved.

Figure 3.5 shows the obtained results. The internal generation is around one order
of magnitude faster than the improved file based I/O, independently of the number
of processes. The slight variations in the speedup are mostly the result from the
fluctuations in the times for the ASCII I/O. The figure includes additional data for
a corresponding scenario that is set up using the new flexible in-memory scenario
generator, which is introduced and described in detail in the following section. This
can outperform both of these approaches for higher numbers of processes as it is fully
parallelised.
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Figure 3.5: Phase space initialisation times using the improved ASCII reader (blue),
internal generator version (orange) of it, and the flexible in-memory gen-
erator (green). The data lines show the achieved speedup in comparison
to the improved ASCII reader (black: internal generator, green: flexible
in-memory generator).

3.2 Flexible in-memory scenario generation

The study of surface and flow phenomena at the nanoscopic scale is one of the main
target-fields of ls1-MarDyn. This often requires the creation of initial states with
arbitrary geometries that are filled with varying molecule densities. Examples are
the study of wetting effects simulated from an droplet generated on a structured
surface or the investigation of liquid flow in a nano-nozzle simulated from a liquid in
a solid channel [13].
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While the inclusion of the initial configuration generators directly into ls1-MarDyn
is the way to overcome time and memory limits of external tools, it is not flexible
with respect to fast prototyping. Also the task of parallelization of the generator is
left to the developer of the generator—which most of the users are not capable of as
we have seen from the original toolset. Therefore, it is desirable to provide a flexible
generator, which is configurable via the input file.

The requirements for this generator are: (1) the possibility to define arbitrary 3D
objects, (2) to allow the filling of objects in different ways with molecules (gas, liquid,
solid), (3) the assignment of individual temperatures for different objects, and (4) a
transparent parallelization of the scenario generation process.

3.2.1 Implementation overview

The concept of the flexible in-memory scenario generator, which was developed within
this work, is to create the desired 3D geometry and populate it with molecules. The
molecules are assigned with velocities according to a given temperature and velocity
distribution. The entire generation process is parallelized using the knowledge of the
process local subdomains.

To allow the description of arbitrary objects, the generator includes a constructive
solid geometry layer. Once an object is defined, molecules can be placed inside using
a so-called filler. A filler for arbitrary Bravais lattices is included and used as the basis
for other fillers. To set the temperature of an object, the velocity of the molecules can
be modified using velocity assigners. An assigner for an initial Maxwell Boltzmann
velocity distribution as well as an assigner for equal valued velocities with random
orientation are provided. The molecules are created one by one to reduce the memory
requirements to a minimum.

Figure 3.6 shows the general design of the flexible in-memory scenario generator,
which was implemented as an I/O plugin in ls1-MarDyn named ObjectGenerator.
The ObjectGenerator itself is a composition of the object to be filled, the filler used to
assign positions, and the velocity assigner. All components are again implemented as
plugins to allow for maximal flexibility and easy extendability.
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ObjectGenerator Plugin

ObjectGenerator

filler : ObjectFillerBase
object : Object
velocityAssigner : VelocityAssignerBase
...

setFiller(filler : ObjectFillerBase)
setObject(obj : Object)
setVelocityAssigner(assign : VelocityAssignerBase)
readPhaseSpace(...) : long

≪interface≫
ObjectFillerBase

setObject(obj : Object)
getMolecule(molecule : Molecule*)

≪interface≫
Object

isInside(r : double[3])
isInsideNoBorder(r : double[3])
getBboxMin(r : double[3])
getBboxMax(r : double[3])

≪interface≫
VelocityAssignerBase

setTemperature(T : double)
assignVelocity(molecule : Molecule*)

Figure 3.6: Design of the flexible scenario generator in ls1-MarDyn implemented as
ObjectGenerator plugin

3.2.2 Arbitrary volume objects

To build arbitrary volume objects constructive solid geometry is used [40]. Here,
arbitrary volumes are described by a set of primitive 3D objects which are combined
by boolean operations into a object tree. For the functionality of the generator,
each object has to implement the methods isInside(), isInsideNoBorder() and
getBoundingBoxMin/Max() returning the coordinates of a cuboidal bounding box
around the object. The decision if a point is inside a volume object is necessary for
the molecule insertion. The bounding box becomes important for the efficient filling
of the objects later on.

Within this work, cuboids, spheres and cylinders were implemented as primitive
object types. More primitives can be added easily at any time following the pro-
vided interface. Abstract objects implementing boolean operations for subtraction,
intersections and union are provided and can be used to create more complex vol-
umes.

Volume union The union is implemented to return for the bounding box the min-
imum point created by the two bounding box minima and for isInside(), if the
specified point lies at least within one of the two objects.
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Figure 3.7: Intersection (red) of two objects (blue) in 2D. The bounding box of the
new object (shaded) is created as intersection of the original bounding
boxes (dashed lines) and may not be the minimal bounding box.

Volume subtraction The subtraction is implemented to return for the bounding
box the bounding box of the original object and for isInside(), if the specified point
lies in the original object but not in the subtracted one.

Volume intersection The intersection of two objects determines if a point lies
within both objects. A bounding box of the object created by the intersection is
determined by using the bounding boxes of the two original bounding boxes and
intersecting those. It has to be noted here, that this approach to obtain a bounding
box may not provide the minimal bounding box of the new object in all cases as
demonstrated in Figure 3.7. More sophisticated approaches as, e.g., iterative bound-
ing box refinement [66], may be used here. However, as a non-optimal bounding
box is not necessary for the general functionality of the generator, such sophisticated
improvements are left for the future at this point.

3.2.3 Placing molecules into objects

The second functionality that is required, is the insertion of molecules into the defined
volume objects. Therefore, so called fillers were implemented, which are applied
to the objects. As already mentioned the common technique to create an initial
configuration for MD simulations is placement of molecules on a lattice. Beside the
generation of solids, this helps also creating configurations for liquids by ensuring a
minimal distance between insertion points.
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Lattice description In solid state physics, the structure of a crystal is described
by a Bravais lattice [57] at whose lattice sites a basis, consisting out of one or multiple
atoms or molecules, is positioned. The construction is shown in Figure 3.8.

The Bravais lattice is defined as an infinite group of lattice points r⃗′ in space, which
can be described by the combination of a lattice system

r⃗′ = r⃗ + n1a⃗1 + n2a⃗2 + n3a⃗3 with n1, n2, n3 ∈ Z , (3.2)

where a⃗1, a⃗2, a⃗3 are the lattice vectors and r⃗ is an arbitrary base point of the lattice
and a lattice centering: primitive (P), body (I), face (F) and base (A, B or C). In
three dimensions, 14 distinct Bravais lattice types exist.

At each point of the lattice, a basis consisting of one or more atoms or molecules is
positioned. The position of the atoms or molecules in the basis can be described by
their relative positions r⃗j to a lattice point

r⃗j = xj,1a⃗1 + xj,2a⃗2 + xj,3a⃗3 with 0 ≤ xj,1, xj,2, xj,3 < 1 . (3.3)

(a) Lattice (b) Two atomic basis (c) Crystal structure

Figure 3.8: Crystal structure description: Attaching to each point of the lattice in
(a) the basis from (b) creates the crystal structure shown in (c).

While this describes an infinite lattice, a real solid will have a finite extent.

Grid Filler

A filler plugin was implemented for the placement of molecules on a lattice inside
an object. The design of this grid filler follows the physical description and requires
a Bravais lattice and a basis as input. Additionally, a base point for the lattice
and a spatial extent have to be provided in addition to the object to be filled with
molecules.
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The lattice is created by specifying the lattice system, lattice centering and three
lattice vectors or alternatively the desired density. As there are restrictions for the
possible lattices, the plugin allows to check, if the provided input parameters repre-
sent a valid lattice description, e.g., if the chosen lattice centering is allowed for the
selected lattice system. In this case, a cubic lattice is assumed and the lattice vectors
are adapted appropriately.

The basis is defined by relative coordinates and type identifiers. The position of each
atom or molecule in the basis is described using the relative coordinates in Equa-
tion (3.3). The atom or molecule type is specified by a component id.

The object to be filled is provided to the grid filler as well as a base point G⃗ where
the previously defined lattice shall be attached in space. From these data, the grid
filler computes the necessary extent for the lattice to overlap the entire object. The
extent is defined internally as multiples of the lattice vectors with the base point G⃗ as
coordinate system origin. Because the lattice vectors can have arbitrary orientation
and length, the filling of the volume with the lattice is a non trivial task: To fill
the volume with lattice points in an efficient manner, the minimal lattice coordinate
range required to overlap the entire object with a finite lattice has to be determined
as shown in Figure 3.9.

This is achieved by a coordinate transformation of the coordinates of the object’s
bounding box corners r⃗i into the coordinates c⃗i in the system defined by the lattice
vectors a⃗1, a⃗2, and a⃗3 according to

(
a⃗1 a⃗2 a⃗3

)
c⃗i = r⃗i . (3.4)

The minimum ceiling and maximum floor values from the components of the coordi-
nate vectors c⃗i are selected and the lattice points in this range are checked, omitting
all points outside the specified volume.

Stochastic molecule positioning

While the insertion of molecules using a Bravais lattice is helpful to keep minimal dis-
tances between inserted molecules, it does not represent a fluid or gas state very well.
To get a starting point closer to those states, molecule positions have to be distributed
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Figure 3.9: Lattice generation within a rectangular area in 2D: The lattice is defined
by the vectors a⃗1, a⃗2 and the base point G⃗. To find all points (black dots)
that are in the shaded area, the lattice points within the area marked by
the solid black line are checked.

more randomly in space. Therefore, two different strategies were implemented: Ran-
dom shifting of positions and incomplete lattice filling.

Random shifting of positions for fluids The lattice structure is far away from the
unordered structure of the liquid state. To generate a more fluid-like state, random
shifting of the lattice positions can be used [82]. Here each molecule i is moved by a
different random shift ∆r⃗i from its lattice position. The random shift ∆r⃗i for each
molecule is determined using the three lattice vectors, where each vector is multiplied
with a uniformly distributed random variable pi,j in the range [0, 1] and a given global
maximal displacement factor k ∈ [0, 1]:

∆r⃗i = k
∑

j∈{1,2,3}
pi,j a⃗j (3.5)

Incomplete filling of a lattice for gas states Sometimes random shifting of posi-
tions is not sufficient. To introduce more randomness in the placement of molecules,
e.g., for gas phases, incomplete filling of a fine grained lattice is used. Here, molecules
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are only assigned to a part of the lattice points and the others are left empty. The
parameter to control the randomness of positions in this approach is the occupancy
η = used lattice positions

total lattice positions . Thereby the size of the lattice vectors for the fine grid hast to
be at least as small as

l = 3

√
n

ηρ
, (3.6)

with n being the number of sites in the lattice’s unit cell. The lattice sites are then
populated with the probability η. Therefore, a random number is used for each
position to decide wether a molecule should be placed or not.

While this approach is very efficient, it can end up with a deviation of the density from
the target value for small number of molecules, depending on the random numbers.
Since this may become an issue for a simulation, Robert Floyd’s algorithm can be
used to address this shortcoming [15]. This is a time and memory efficient algorithm
to select m distinct values from a set of n values with the complexity O(m log(m)).
However, the observable deviation in density becomes smaller for larger number of
molecules and is not relevant for the tests and use cases in this work. Therefore, the
implementation of this additional correction is left out for now.

Replica Filler

A second common approach to set up MD simulations is the reuse of already equi-
librated configurations. Therefore, the Replica Filler was created, which allows to
read an existing configuration and repeat it in all dimensions to fill out the entire
object. The implementation is based on the previously described Grid Filler with
a primitive cubic lattice. The lattice vectors are chosen to be the extents of the
equilibrated configuration and the configuration itself is used as the basis of the
lattice.

3.2.4 Initial molecule velocities

The velocity of each molecule has to be set for the initial configuration. The average
velocity of molecules is correlated to the desired system temperature according to
Equation (3.1). In most cases, the velocities of the molecules follow the Maxwell
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Boltzmann distribution, while in special scenarios this may be different. Two ap-
proaches were implemented as velocity assigner plugins:

• EqualVelocityAssigner: Assignment of velocities with equal absolute value
but with random orientation. Here one can select between randomly chosen ve-
locity orientations along the grid coordinates and uniformly distributed velocity
orientations on the sphere based on [99].

• MaxwellVelocityAssigner: Assignment based on the Maxwell Boltzmann
distribution with uniformly distributed velocity orientations on the sphere.

At the end of the velocity assignment to all molecules, the global momentum of the
system is computed. This momentum is then corrected to prevent an unwanted drift
of the system.

3.2.5 Parallel particle insertion

The master broadcast optimization presented in Section 3.1.3 and the porting of the
external generators to internal ones in Section 3.1.4 improved the I/O, but both mod-
ifications kept the input time constant as they did not make use of parallelism for the
generation step itself. The new flexible in-memory scenario generator addresses this
problem: The initial configuration creation itself is parallelized using the provided
domain decomposition.

Each process generates molecules based on the specified generation methods and
object definitions only in its local subvolume. To determine the region to be filled
by a process, the ObjectGenerator takes the object to be filled with molecules and
intersects it with an object representing the process’s associated subvolume. The
resulting object is then passed to the filler and velocity assigner. The implementation
in ls1-MarDyn is straight forward and makes use of the already existing constructive
solid geometry functionality from Section 3.2.2.

Solving the problem of unique molecule identifiers

In ls1-MarDyn each molecule is assigned a unique identifier (ID) to allow tracking
of trajectories or for self-correlation computations. However, now that all processes
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generate the initial molecule configuration in parallel, a new challenge arises: The
original code assigns unique identifiers using a simple global counter, which gets
incremented with every globally added molecule. For the parallel creation, such a
global counter becomes a bottleneck. Therefore, an ID pool was introduced, which
guarantees that no ID is assigned twice. Different ways to implement such an ID
pool exist. In this case, the simple approach of ID space subdivision was used: The
maximal number of IDs, which can be represented by the ID type ( unsigned long ),
is divided in as many equal sized blocks as there are processes. Each process then
gets one of those blocks and assigns IDs only from his block starting with his block’s
lowest ID. This approach does not require any synchronisation between the pro-
cesses and exhibits perfect scalability as the number of processes as well as the
maximal ID range are known to every process and does not require any communica-
tion.

3.2.6 Application example

In the following, a geometry to simulate a micro nozzle is used as an example to
demonstrate the flexibility and performance of the new in-memory generator. The
model configuration of the nozzle consists out of two layers of a solid, where one has
an indentation and the facing side an elevation. In the gap between the solid layers
is a gas. The geometry is constructed using the primitive objects in combination
with unification and subtraction methods. For the generation of the solid parts, the
GridFiller is used with a face centered cubic (fcc) lattice, 100% fill and no random
shifting. The gas is created using the GridFiller with the method of partial lattice
filling (fcc lattice) with an occupancy of 30 %. Molecule velocities are assigned to the
different parts according to the given temperatures. For the solid, molecule velocities
are assigned according to the specified temperature as equal velocities with random
orientation and for the gas using the Maxwell distribution. Figure 3.10 shows the
entire scenario.

Results of a strong scaling experiment on Hazel Hen with this scenario are shown
in Figure 3.11. The scenario was run for 100 time steps with the standard do-
main decomposition. As can be seen, the phase space creation time is reduced
with more processes reaching a speed-up of 30 for 120 and 80 for 1200 processes.
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Figure 3.10: Nozzle configuration created with the arbitrary object creation function-
ality. Blue: fluid, red: solid, total number of molecules: 67 541

This can be considered good, as it is on par with the scalability of the computa-
tion.
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Figure 3.11: Scenario generation times and speedup for the nozzle configuration sce-
nario with the flexible in-memory scenario generator on Hazel Hen. Run-
time spent for phase space generation with the in-memory generator and
computation follows the coloured solid lines, speed-up follows the dashed
back lines.
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3.3 Chapter summary

In this chapter, the I/O system of ls1-MarDyn was analysed. Several issues with the
original implementation were identified including the serial nature of the external
generators, the overheads of the ASCII based file format and non-existing scalability
of the file I/O.

First, a broadcast based solution to improve the scalability of the original I/O plugin
was presented. The implementation of it eliminated contention issues caused by
the concurrent I/O of all processes to the same file found in the original code. It
was shown that with this modification ls1-MarDyn could now be used on more than
100 000 MPI processes.

Second, the problem of the ASCII file format and its slow parsing speed was addressed
by moving the external generators into the ls1-MarDyn code to create the scenarios
in-memory. The superiority of the internal in-memory over the external generation
was demonstrated by showing that scenario generation speed was improved by an
order of magnitude. Both improvements together enabled runs at full system scale
of Hazel Hen, which were not possible before.

The third problem addressed in this chapter was the need for a scalable but sim-
ple generator for complex scenarios, which can be used by users without knowledge
of parallelization techniques to set up arbitrary large scenarios. Therefore, a new
flexible in-memory generator was developed and implemented in ls1-MarDyn. The
implementation includes a constructive solid geometry layer to create arbitrary ge-
ometries, two different grid based particle placement methods as well as two tem-
perature assignment functionalities based on constant but random oriented or Boltz-
mann distributed velocities. Scalability of the scenario generation is achieved by
the use of a domain decomposition approach. The capabilities of this new flexible
in-memory generator were demonstrated with the original user scenarios as well as a
complex nozzle geometry scenario. For the latter, the new generator showcased not
only its flexibility and user-friendliness, but also an excellent scalability of the user-
transparent parallelization—and so provides a replacement for all existing external
generator solutions in ls1-MarDyn.
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analysis/engineering

There are different aspects, which have to be considered with respect to node-level
performance: The choice of the algorithms, the tuning of these algorithms for the
target hardware, and an efficient parallelization for multi-core systems. In the follow-
ing, all three aspects are addressed for Molecular Dynamics (MD) simulation codes.
Therefore, the first section of this chapter will address the development of a per-
formance model for the important algorithms in the field, which can help to choose
the appropriate algorithm for a simulation scenario. The second section will evaluate
different implementations of the most important algorithms on different hardware ar-
chitectures. And the last section will study the parallelization of the commonly used
linked-cell algorithm with a task-based parallelization approach.

4.1 Performance modelling of basic MD algorithms

The usage of an efficient algorithm to solve a problem can reduce the time to solution
drastically. Therefore, a good understanding of the available algorithms is crucial.
The well established algorithms used in MD simulations were already presented in
Section 2.3.3. The asymptotic time complexity of these algorithms is well-known but
gives only information about their behaviour for an infinite number of molecules.
However, in the case of highly parallel MD codes, a domain decomposition is used
and the large problem is divided into many smaller sub-problems. Therefore, the
behaviour of the algorithms for a smaller, limited amount of molecules is of inter-
est and the knowledge of the algorithm’s asymptotic complexity turns out to be
less important. Moreover, some algorithms have identical complexity but differ in
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their efficiency with regard to particle densities, or when they are faced with dy-
namic, fast changing system configurations. So, a large number of comparisons of
implementations for specific scenarios can be found in the literature [8, 62, 94, 101].
However, this does not help much for a deeper understanding of the best algorithm
choice.

In order to improve the understanding of the algorithms, theoretical cost models are
developed in this section of the work. The models target specifically the description of
the algorithms’ behaviour for small molecule counts. The models are then evaluated
for a set of critical parameters and compared to experimental results from a set of
sample implementations of the algorithms. The obtained cost models will help later
in the decision finding process, which algorithm is used best for a specific scenario—
either by the user or automatically by the program.

4.1.1 Description of the studied system

The following study is limited to short range interaction potentials. Further, a system
with a homogeneous particle distribution inside a cubic box with periodic boundary
conditions is assumed. The system shall consist of N particles with an average
particle density ρ. Choosing a homogeneous particle distribution does not limit the
applicability of the later results to homogeneous systems as an inhomogeneous system
can be decomposed in most cases into smaller, almost homogeneous sub-systems, to
which the results can then be applied.

4.1.2 Computational cost models

The cost models for the algorithms shall describe their efficiency for a molecular
system consisting of N molecules with homogeneous density ρ, where the molecule-
molecule interaction range is limited by the cut-off radius rc. Recapping from Sec-
tion 2.3.3, the most common algorithms used for the force calculation of short-ranged
interaction potentials in MD simulations are the näıve algorithm with a cut-off, the
Verlet neighbour list algorithm, and the linked-cell algorithm. All three have com-
mon algorithmic sub parts: 1) distance calculation, 2) particle sorting into bins, and
3) potential calculation.
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Each of the three algorithmic subparts is assigned with a computational cost parame-
ter, which reflects the computational costs for a single molecule-molecule interaction.
The parameters are denoted cdist, cbin, and cpot, respectively.

Potential calculation

The computational cost for the potential calculation of all chosen algorithms using
short-range potentials in combination with a cut-off can be modelled in the same
way. This is obvious, as all algorithms have to handle the same number of molecular
interactions. With the cut-off radius rc, the potential calculation cost Cpot for a
system with N molecules is approximated by

Cpot = cpotN
(4

3πr3
cρ − 1

)
, (4.1)

where the factor cpot describes the costs for the potential calculation of a single
pair interaction and the factor in brackets is an approximation for the number of
molecules that a single molecule interacts with inside a sphere of radius rc around
it.

Näıve algorithm with cut-off

In the näıve algorithm, the distance between all atoms is computed and only for
those within a specified cut-off radius, the pair interaction potential and forces are
computed. So the computational costs consist of the distance calculations and the
potential evaluation:

C(NA) = C
(NA)
dist + Cpot , (4.2)

where the distance calculation costs are

C
(NA)
dist = cdistN(N − 1) , (4.3)

with cdist specifying the costs for a single distance calculation.

Often periodic boundary conditions are used to simulate bulk systems. Those can be
implemented in two ways: By direct implementation in the distance calculation or by
the introduction of modified copies of molecules at the simulation volume boundaries,
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which are removed again after the force computation. The first approach leads to
increased distance calculation costs cdist. The second approach leads to an increased
number of particles to be iterated over.

The modified distance based approach is not very flexible and requires the adaptation
of the force kernel for the specific target scenario dependent on the chosen periodicity
and geometry. The copy based approach is more flexible and can easily be imple-
mented together with the often used parallelization via domain decomposition, which
already handles the periodicity and geometry. So the later approach will be used in
the following and the cost model is adapted accordingly.

To estimate the number of additional molecule copies N ′ necessary for the boundary
handling in the model, the best case of a cubic simulation domain with volume V

is assumed. Therewith, the approximate number of additional molecules is given
by

N ′ = ρ
(
6rcl

2 + 12r2
c l + 8r3

c

)
with l = 3

√
N/ρ (4.4)

and the modified cost model becomes

C
(NA)
dist = cdistN(N + N ′ − 1) . (4.5)

Linked-cell algorithm

The link cell algorithm reduces the necessary number of distance calculations by
binning of the molecules into cells with a length of the cut-off radius as described in
Section 2.3.3. Thus, the neighbour molecules of a molecule are found in its own and
the neighbouring cells. The search space for neighbour molecules shrinks from the
entire simulation volume to 27r3

c .

So, the algorithmic costs C(LC) for the link cell algorithm consist of the costs for
binning molecules into cells C

(LC)
bin , the distance calculations C

(LC)
dist , and the potential

evaluation Cpot:
C(LC) = C

(LC)
bin + C

(LC)
dist + Cpot . (4.6)

Here the binning costs are
C

(LC)
bin = cbinN , (4.7)
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with cbin describing the binning cost per molecule. The distance calculation costs
are

C
(LC)
dist = cdistN

(
27ρr3

c − 1
)

, (4.8)

with the factor in brackets approximating the number of molecules to be checked for
a single molecule to interact with its own and the surrounding 26 cells of diameter
rc.

This model for the linked-cell algorithm includes already the boundary handling with
a boundary width of rc and implies the computational overheads due to additional
halo volume management around the regular simulation volume. In the case of peri-
odic boundaries, the halo contains modified copies of molecules as already discussed
for the näıve algorithm.

Verlet neighbour list algorithm

The Verlet neighbour list approach stores neighbour information for each molecule
as described in Section 2.3.3. This information is updated in regular intervals. Here-
after, the update frequency shall be denoted by p. Therewith, the update interval
becomes 1/p time steps. Molecules are added to the neighbour list of a molecule, if
they are within a skin radius rc + rs = krc with k > 1, which guarantees that no
molecule from r > rs enters r ≤ rc until the next neighbour list update. So, the com-
putational costs in the model consist of the neighbour list creation costs occurring
every 1/p time steps and the distance calculation and potential evaluation costs in
each time step:

C(NL) = pC
(NL)
list + C

(NL)
dist + Cpot . (4.9)

Commonly, the neighbour lists are created with the help of the linked-cell algorithm,
so the list creation costs are

C
(NL)
list = cbinN + cdistN

[
27ρ(krc)3 − 1

]
. (4.10)

The distance calculation costs for the Verlet neighbour list algorithm are

C
(NL)
dist = cdistN

[4
3πρ(krc)3 − 1

]
. (4.11)
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4.1.3 First exploration of the model

In order to get a first impression for the computational cost parameters and the
algorithm cost models, a set for cdist, cbin, and cpot is obtained using streaming
kernels, written in pure C, which perform distance calculations, sorting into bins,
and potential evaluation for the Lennard-Jones (LJ) potential, respectively. All
input arrays for the streaming kernels have a size of 1000 elements to reflect the
small amount of molecules. As a consequence, all kernels will run out of the CPU
cache.

Table 4.1 presents the obtained results on different hardware architectures. The dis-
tance computation parameter is found to be the smallest and the potential parameter
the largest. This can be explained by the fact that the potential evaluation uses a
division operation, which is more expensive to be performed by the hardware than
simple additions or multiplications. For example, on the Intel Haswell the SSE/AVX
division operation VDIVPD alone has a reciprocal throughput of 8 − 14 cycles [39].
The also large binning parameter is caused by expensive rounding operations in the
index calculation. Despite the lower frequency of the SX-ACE CPU, which is run-
ning at only 1 GHz, it shows comparable performance to the x86 processors. Hence,
it makes effective use of its vector architecture even for this small vector length of
1000 elements [34].

Intel Haswell Intel Skylake NEC SX-ACE
gcc 8.2.0 gcc 8.2.1 sxcc 1.0r112

-O3 -mavx2 -O3 -mavx2

cdist in ns 18.7 1.9 1.0 1.6
cbin in ns 71.0 3.8 5.0 8.9
cpot in ns 77.8 3.8 7.0 7.4

Table 4.1: Cost parameters for MD algorithm cost models obtained from stream-
ing kernel runs. In each streaming kernel run the average time for 1000
distance computations, binning operations, and potential evaluations is
determined. The final cost parameters are chosen as the minimal value
found over a set of 100 runs.

Based on the obtained cost parameters for the Intel Skylake, a first impression for
the cost models is given in Figure 4.1 using the typical factor k = 1.3 and update
frequency p = 1/20.
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Figure 4.1a shows the runtime prediction from the models for a scenario of den-
sity ρ = 0.8 using a cut off rc = 2.5. It can be seen that the näıve algorithm is
supposed to be faster than the link cell for less than 340 molecules and faster than
the neighbour list algorithm for less than 150 molecules. Also, the neighbour list
algorithm is expected to be faster than the linked-cell algorithm for all numbers of
molecules.

Figure 4.1b shows the predicted runtime for scenarios with N = 150 and N = 1000
molecules using a cut off rc = 2.5. For the former, the model suggests the näıve
algorithm to be more efficient than the linked-cell and neighbour list algorithm for
densities below 0.3 and 0.8, respectively. For the latter, the neighbour list algorithm
is predicted to be the best choice.

Figure 4.1c shows the predicted runtime for scenarios with N = 150, N = 340, and
N = 1000 molecules using a density ρ = 0.8. Here the crossover point for the linked-
cell and neighbour list algorithm to be more efficient than the näıve algorithm moves
to larger cut off values for higher number of molecules. According to the model, the
näıve algorithm can compete for N = 1000 with the two other algorithms down to a
cut off rc = 5.

4.1.4 Algorithm selection

With the mathematical cost models to describe the performance of the algorithms,
it is now possible to make predictions which algorithm should be best for a given
scenario. The theoretical efficiency crossover function between the basic algorithms
can be determined from the computational costs per molecule. To make the decision
easier, the difference of the cost models is calculated and assigned to functions. Here,
the cost parameters are assumed to be the same for the algorithms. Depending on
the function value being positive or negative, the one or the other algorithm is more
efficient.

Crossover between NA and LC Subtracting the per molecule costs of the link cell
algorithm from the näıve one gives

fNA↔LC(N, ρ, rc) = 1
N

{
C(NA) − C(LC)

}
= cdist(N − 27ρr3

c) − cbin . (4.12)
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Figure 4.1: Predicted single time step runtime from the algorithm cost models
using parameters obtained from the streaming kernels tdist = 0.95 ns,
tbin = 5.01 ns, and tpot = 7.15 ns.
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So, the linked-cell algorithm is more efficient for

N − 27ρr3
c >

cbin

cdist
. (4.13)

Crossover between NA and NL Subtracting the per molecule costs of the neigh-
bour list algorithm from the näıve one gives

fNA↔NL(N, ρ, rc) = 1
N

{
C(NA) − C(NL)

}
= cdist

(
N −

[(4
3π + 27p

)
ρ(krc)3 − p

])
− pcbin

(4.14)

So, the neighbour list algorithm is more efficient for

N −
(4

3π + 27p
)

ρ(krc)3 − p > p
cbin

cdist
. (4.15)

Crossover between LC and NL Subtracting the per molecule costs of the neighbour
list algorithm from the link cell one gives

fLC↔NL(ρ, k, p) = 1
N

{
C(LC) − C(NL)

}
= (1 − p)cbin + cdist

[
27ρr3

c

(
1 − k3(p + 4

3π)
)

+ p
]

.
(4.16)

So, the neighbour list algorithm is more efficient for

27ρr3
c

(
k3(p + 4

3π − 1)
)

+ p > (1 − p) cbin

cdist
. (4.17)

Interestingly, this crossover is independent of the number of particles N . Also, the
update frequency 1/p turns out to play only a minor role as p is typically much
smaller than one.

Algorithm selection diagrams From Equations (4.13) and (4.15), it is obvious that
the crossover function for best performance between the linked-cell and näıve algo-
rithm as well as the one between the neighbour list and näıve algorithm depend on
the number of molecules N and the fraction cbin/cdist. However, looking at Equa-
tion (4.17), the crossover function between the linked-cell and the neighbour list
algorithm depends only on the fraction cbin/cdist.
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The three Equations (4.13), (4.15) and (4.17) are summarized for the common values
cdist/cbin = 5, k = 1.3, and p = 1/20 in the algorithm selection diagrams shown in
Figure 4.2. Herein, the solid lines represent the crossover condition f∗(ρ, k, p) = 0
for different number of molecules N . To the right of the crossover line, the näıve
algorithm is favoured and to the left of the line, the linked-cell and neighbour list
algorithm are advantageous. In Figure 4.2a, the dotted lines mark the end of the
applicability of the linked-cell algorithm. To the right of this, the cutoff radius
becomes larger than the diameter of the simulation volume and therefore a single cell
used in the link-cell algorithm will cover the entire volume. In Figure 4.2b, the grey
area on the left marks the region, where the linked-cell algorithm is advantageous over
the neighbour-list algorithm—independently of the number of molecules according
to Equation (4.17).
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(a) Linked-cell to näıve algorithm perfor-
mance crossover for different number of
molecules. Linked-cell is faster in the
filled areas left of the crossover line (solid
lines). The dashed lines mark the upper
limit up to which the link cell algorithm
can be used with a cell length of rc.
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(b) Neighbour list to näıve algorithm per-
formance crossover for different number
of molecules. Neighbour list is faster in
the filled areas left of the crossover line
(solid line). The black line marks the
crossover between the link cell and the
näıve algorithm, in the grey area link cell
is favoured.

Figure 4.2: Algorithm selection diagrams for cdist/cbin = 5, k = 1.3, p = 1/20

Two interesting results can be found from the performance models. First, the linked-
cell algorithm is found to be advantageous over the neighbour list algorithm for small
cutoffs and lower densities, independently of the number of molecules. Conversely, the
neighbour-list algorithm is favoured for larger cutoffs and higher densities. Second,
the näıve algorithm may be of interest as well for scenarios with a small number
of molecules. Thinking of highly parallel simulations running with many processes,
often less than 1000 molecules per process are used. With a typical cutoff of rc = 5
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for higher precision simulations, all of a sudden the näıve algorithm is expected for
densities above around 0.6.

4.1.5 Cost model validation

To validate the cost models, the basic algorithms were implemented as benchmark
kernels in C++, which were then used to compute different scenarios. To make the
benchmark kernels good representatives of real applications, the linked-cell and neigh-
bour list benchmark kernels were implemented according to [80].

As scenarios, two different particle distributions are used with the initial state: (1)
random placement, which represents gases and liquids, and (2) placement on a regu-
lar lattice, which represents solids. The different spatial particle distributions affect
the distribution of particles to the cells in the linked-cell algorithm parts as well
as the length of the neighbour lists. Examples for the distribution of particles to
cells are shown in Figure 4.3a. The corresponding neighbour list length distribu-
tion is shown in Figure 4.3b. The randomly placed distribution shows a Gaussian
distribution-like population of the cells as well as neighbour list lengths. The lat-
tice based distribution shows a clear structure with some distinct values being more
likely.

The time to perform the computation of those scenarios with different densities ρ,
particle numbers N , cut-off radii rc, and the common algorithms is determined and
fitted to the obtained cost models using the cost-parameters cdist, cbin, and cpot as
fitting parameters. As a starting point for the fitting parameters, the values ob-
tained from the streaming kernels are used. However, these values are obviously
not perfect as they do not take into account the interaction of the different code
parts.

Runtimes obtained with the benchmark kernels for the scenarios for different numbers
of molecules and densities using a cut-off rc = 2.5 are provided in Table 4.2 and
Table 4.3. In case of the lattice based initialization, the initial distance between
molecules end up larger than the cutoff as long as the cutoff is not chosen to be
larger than rc = 10. Because it is not common to use larger cutoff radii than this
with the studied algorithms in real applications, these values are omitted for this
scenario.

57



4 Node level performance analysis/engineering

0 5 10 15 20 25 30
# molecules in cell

0

5

10

15

20

25

# 
ce

lls

Molecule per cell distribution (random)

0 5 10 15 20 25
# molecules in cell

0

20

40

60

80

100

# 
ce

lls

Molecule per cell distribution (lattice)

(a) Particles per cell distribution

0 20 40 60 80 100 120 140
# neighbour list length

0

10

20

30

40

# 
ce

lls

Neighbour list length distribution (random)

0 20 40 60 80 100 120
# neighbour list length

0

200

400

600

800

# 
ce

lls

Neighbour list length distribution (lattice)

(b) Neighbour list length distribution

Figure 4.3: Characteristics for the linked-cell and neighbour list algorithms when used
with a random and lattice based particle distribution in a scenario with
N = 1000, ρ = 0.8, rc = 2.5.

Comparing the runtime of the two scenarios, the computations for the scenarios using
lattice initialisation are overall faster than the ones using random placement. There
are two reasons for this. First, the overall number of interactions to be computed
is on average around 5 % higher for the random placed initial configurations, e.g.,
for 1000 molecules 29 290 interactions versus 28 000 interactions. Second, there are
more distance calculations to be performed. Both is the result of the particle dis-
tribution and the fact that the cell population and neighbour list length contribute
quadratically to the computational costs.

The runtime data from Table 4.2 are used as input for the fitting of the algorithm
models. The fit is performed using the lmfit python module [68], which implements
an extended version of the Levenberg–Marquardt algorithm [79], to achieve a least-
squares fit. The fit parameters are constrained to positive values below 1 millisecond.
An additional constant c0 was added to the model to take into account any constant
overhead from the benchmark setup. While not relevant for real applications, data
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N 0.9 0.8 0.7 0.003 0.002 0.001

1 9.54 · 10−7 9.54 · 10−7 1.07 · 10−6 0 9.54 · 10−7 9.54 · 10−7

8 4.05 · 10−6 4.05 · 10−6 7.03 · 10−6 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7

27 3.7 · 10−5 3.6 · 10−5 3.46 · 10−5 3.1 · 10−6 3.1 · 10−6 2.15 · 10−6

64 1.2 · 10−4 1.16 · 10−4 1.09 · 10−4 1.91 · 10−5 8.11 · 10−6 1.79 · 10−5

125 2.84 · 10−4 2.74 · 10−4 2.43 · 10−4 5.15 · 10−5 3.6 · 10−5 3.39 · 10−5

216 5.8 · 10−4 5.18 · 10−4 5.12 · 10−4 7.89 · 10−5 7.81 · 10−5 8.5 · 10−5

512 1.86 · 10−3 1.72 · 10−3 1.63 · 10−3 3.61 · 10−4 3.44 · 10−4 3.04 · 10−4

1,000 4.92 · 10−3 4.51 · 10−3 4.27 · 10−3 1.09 · 10−3 1.04 · 10−3 9.88 · 10−4

(a) näıve algorithm
N 0.9 0.8 0.7 0.003 0.002 0.001

1 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7 1.55 · 10−6 1.91 · 10−6

8 1.91 · 10−6 1.55 · 10−6 1.91 · 10−6 4.05 · 10−6 4.05 · 10−6 1.36 · 10−5

27 4.89 · 10−5 5.04 · 10−5 4.8 · 10−5 1.88 · 10−5 1.98 · 10−5 2.19 · 10−5

64 1.66 · 10−4 1.63 · 10−4 1.55 · 10−4 2.91 · 10−5 2.98 · 10−5 4.49 · 10−5

125 2.92 · 10−4 2.53 · 10−4 2.44 · 10−4 4.41 · 10−5 5.01 · 10−5 6.81 · 10−5

216 5.46 · 10−4 5.04 · 10−4 4.97 · 10−4 6.89 · 10−5 7.81 · 10−5 1.21 · 10−4

512 1.13 · 10−3 1 · 10−3 9.42 · 10−4 1.57 · 10−4 1.97 · 10−4 2.59 · 10−4

1,000 1.93 · 10−3 1.85 · 10−3 1.75 · 10−3 2.97 · 10−4 3.42 · 10−4 4.92 · 10−4

(b) linked-cell algorithm
N 0.9 0.8 0.7 0.003 0.002 0.001

1 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7 2.15 · 10−6 2.5 · 10−6 1.44 · 10−5

8 1.91 · 10−6 2.15 · 10−6 1.91 · 10−6 1.94 · 10−5 2 · 10−5 3.9 · 10−5

27 6.91 · 10−6 8.58 · 10−6 7.7 · 10−5 4.65 · 10−5 5.7 · 10−5 8.65 · 10−5

64 3.19 · 10−4 3.1 · 10−4 2.95 · 10−4 7.56 · 10−5 9.89 · 10−5 1.83 · 10−4

125 7.77 · 10−4 7.15 · 10−4 6.65 · 10−4 1.28 · 10−4 1.87 · 10−4 3.51 · 10−4

216 1.46 · 10−3 1.37 · 10−3 8.62 · 10−4 2.03 · 10−4 2.99 · 10−4 5.63 · 10−4

512 3.15 · 10−3 2.94 · 10−3 2.79 · 10−3 5.29 · 10−4 6.71 · 10−4 1.26 · 10−3

1,000 5.02 · 10−3 4.7 · 10−3 4.44 · 10−3 9.64 · 10−4 1.33 · 10−3 2.62 · 10−3

(c) neighbour list algorithm

Table 4.2: MD benchmark kernel runtimes for different densities and numbers of
molecules N using the random initialisation method and a cut-off of rc =
2.5. Values are the median of at least five measurements given in seconds.
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N 0.9 0.8 0.7

1 9.54 · 10−7 0 1.19 · 10−6

8 4.05 · 10−6 5.01 · 10−6 8.11 · 10−6

27 3.7 · 10−5 3.7 · 10−5 3.1 · 10−5

64 1.07 · 10−4 1.04 · 10−4 8.2 · 10−5

125 2.06 · 10−4 2.29 · 10−4 1.84 · 10−4

216 4.46 · 10−4 4.46 · 10−4 3.72 · 10−4

512 1.42 · 10−3 1.4 · 10−3 1.24 · 10−3

1,000 3.65 · 10−3 3.71 · 10−3 3.44 · 10−3

(a) näıve algorithm
N 0.9 0.8 0.7

1 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7

8 2.15 · 10−6 1.91 · 10−6 9.54 · 10−7

27 4.41 · 10−5 4.91 · 10−5 4.01 · 10−5

64 1.46 · 10−4 1.48 · 10−4 1.27 · 10−4

125 2.2 · 10−4 2.47 · 10−4 2.04 · 10−4

216 4.58 · 10−4 4.54 · 10−4 3.63 · 10−4

512 8.62 · 10−4 8.86 · 10−4 6.85 · 10−4

1,000 1.65 · 10−3 1.68 · 10−3 1.5 · 10−3

(b) linked-cell algorithm
N 0.9 0.8 0.7

1 9.54 · 10−7 9.54 · 10−7 9.54 · 10−7

8 1.19 · 10−6 1.91 · 10−6 1.19 · 10−6

27 4.05 · 10−6 6.91 · 10−6 6.48 · 10−5

64 2.65 · 10−4 2.63 · 10−4 2.26 · 10−4

125 4.91 · 10−4 5.41 · 10−4 4.9 · 10−4

216 9.87 · 10−4 9.73 · 10−4 6.3 · 10−4

512 2.38 · 10−3 2.37 · 10−3 2.14 · 10−3

1,000 4.24 · 10−3 4.23 · 10−3 3.74 · 10−3

(c) neighbour list algorithm

Table 4.3: MD benchmark kernel runtimes for different densities and number of
molecules N using the lattice initialisation method and a cut-off radius
of rc = 2.5. Values are the median of at least five measurements given in
seconds.
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measurements for a single molecule are included to help with the fit of the c0 pa-
rameter here. The resulting parameters are listed in the Tables in Figure 4.4 and
Figure 4.5.

The fitted models are in good accordance with the measured data, especially for the
dense scenarios. However, the obtained fitting parameters differ noticeably between
the dense and sparse scenarios.

For the scenarios with higher density, the fits for the random and the lattice based
state are good. Especially the näıve algorithm is modelled very well in its behaviour.
The distance computational cost parameter cdist for all algorithms is found to be in the
range 1.3 ns to 4.5 ns. This is close to the 1.9 ns obtained from the streaming kernel
in Table 4.1. The binning cost parameter cbin from the fits is in the range 0.3 µs to
5.7 µs. This is around two orders of magnitude higher than expected when comparing
to the 3.8 ns from the streaming kernel version. The potential cost parameter cpot is
in the range 4.8 ns to 44.5 ns and slightly higher than the expected 3.8 ns from the
streaming kernel. The additional overhead constant c0 is relatively constant for all
models and in the range 1.1 µs to 41.3 µs.

The scenarios with low density and random initial positioning show a very flat run-
time behaviour compared to the higher density scenarios. This is explained by the
fact that there are now very few interactions within the cut-off radius. Again, the
näıve algorithm is modelled very well and the cost models from the fits are close to
the streaming kernel results. However, the data for the linked-cell and neighbour list
algorithm are not as well in accordance with the model. The distance computational
cost parameter cdist for them is found to be in the range 1.9 ns to 41.0 ns and the
binning cost parameter cbin is in the range 0.8 µs to 3112.3 µs. So these values exhibit
a very high uncertainty with a trend towards high values. The overhead constant c0

is found to be in the range 6.7 µs to 21.4 µs, and therefore fluctuates less than for the
higher density scenarios.

In summary, the cost parameters resulting from the fits are overall higher than the
once obtained from the streaming kernels. One reason is the increased complexity of
the benchmark code compared to the streaming kernels. This complexity comes along
with some minor additional computational overheads. Also the increased complexity
prevents some compiler optimizations, e.g., vectorization.
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ρ c0 cdist cpot
in µs in ns in ns

0.900 27.0 2.7 39.1
0.800 1.1 2.5 40.1
0.700 2.0 2.3 44.5
0.003 20.0 1.1 1.2
0.002 16.0 1.0 0.8
0.001 16.0 1.0 0.4

(a) Fitting parameters

(b) Original data and fit
ρ c0 cdist cbin cpot

in µs in ns in µs in ns

0.900 36.4 2.2 0.7 7.9
0.800 25.6 4.0 0.3 4.8
0.700 27.5 2.4 0.5 12.1
0.003 21.4 30.8 0.1 26.9
0.002 6.7 1.9 0.8 0.8
0.001 9.3 38.8 3.0 2,374.1

(c) Fitting parameters

(d) Original data and fit
ρ c0 cdist cbin cpot

in µs in ns in µs in ns

0.900 40.9 2.7 1.4 22.9
0.800 41.3 2.8 1.3 24.1
0.700 15.8 4.5 0.5 15.7
0.003 10.9 20.2 2.0 1,473.5
0.002 13.2 26.8 2.0 1,447.5
0.001 10.2 41.0 5.7 3,112.3

(e) Fitting parameters

(f) Original data and fit

Figure 4.4: Fit of algorithm cost models for different scenarios initialized with random
particle positions and using a cut-off of radius rc = 2.5
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ρ c0 cdist cpot
in µs in ns in ns

0.900 37.3 1.9 31.1
0.800 36.6 2.0 33.0
0.700 14.9 2.1 29.0

(a) Fitting parameters

(b) Original data and fit
ρ c0 cdist cbin cpot

in µs in ns in µs in ns

0.900 21.1 2.8 0.3 5.3
0.800 24.5 2.3 0.4 9.2
0.700 6.8 2.5 0.3 8.8

(c) Fitting parameters

(d) Original data and fit
ρ c0 cdist cbin cpot

in µs in ns in µs in ns

0.900 5.9 1.3 2.3 14.0
0.800 0.2 3.3 0.7 15.5
0.700 1.2 2.3 0.6 33.3

(e) Fitting parameters

(f) Original data and fit

Figure 4.5: Fit of algorithm models for different scenarios initialized with lattice
based particle positions and using a cut-off radius of rc = 2.5
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4.2 Analysis of the näıve algorithm

The cost model developed in Section 4.1 showed that the näıve algorithm is more ef-
ficient for small number of molecules and higher molecule densities, compared to the
linked-cell and neighbour list algorithms. Also, the distance and force computation in
the linked-cell algorithm itself is often implemented by calculating all interactions be-
tween molecules in two cells using the näıve algorithm. Therefore, it is of importance
to have a very efficient implementation of it. To find such an efficient implementation
for a specific system is the target of this section.

4.2.1 Näıve algorithm implementations

To compute intermolecular forces for all pair interactions, the näıve algorithm in its
basic form uses two loops over all molecules. For short range potentials, it skips
interactions based on a cutoff distance as described in Section 2.3.3. However, it can
be implemented in many different ways.

In general, the computation of the forces between N molecules with the näıve algo-
rithm can be interpreted as a force matrix F with dimensions N ×N , where columns
and rows correspond to the molecules and the matrix elements Fij to the interaction
forces between pairs of them. Depending on the association of the matrix dimen-
sions to molecules in the force calculation, a matrix element Fij is either the force
on molecule i or j. In the following, the matrix elements Fij represent the force on
molecule i caused by molecule j. Due to Newton’s 3rd law, the force matrix is anti-
symmetric and so Fij = −Fji. Figure 4.6 shows the force matrix and the different di-
rections used to loop through the interactions in the following algorithm implementa-
tions. The total force Fi onto a molecule i is then the sum of all contributions in a row
Fi = ∑

j Fij or alternatively the sum in a column Fj = ∑
i Fij.

The following list contains the different variants of näıve kernel implementations eval-
uated in this work. In the code listings interaction(i, j) computes the interac-
tion between molecule i and j and adds the result to the total value for molecule i.
The apply_newton(i, j) method is used as a placeholder for the application of
Newton’s 3rd law to reuse an already computed force contribution from molecule i

and add it to the total value for molecule j. For each implementation that does not
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i

j

offset

diag

Figure 4.6: Visualization of the force matrix (Fij) in the näıve algorithm. Cells rep-
resent the inter-molecular forces Fij. Black cells are excluded as they
represent self-interactions. Gray cells represent the upper part of the
force matrix. Arrows indicate the directions of the loops used in the dif-
ferent algorithm implementations.

use Newton’s 3rd law, two versions are implemented, from which one updates the
forces for Fi and the other for Fj. This influences the memory access pattern and is
therefore likely to have an influence on the performance.

The following implementations were studied:

1. ij-loop with if i!=j: This version is a straightforward way of the imple-
mentation using two loops over all molecules and an if statement to compute
contributions only when i ̸= j.

for(i = 0; i < N; i++)

for(j = 0; j < N; j++)

if(i != j)

interaction(i, j);

2. ij-loop with continue: This version is a straightforward way of the imple-
mentation using two loops over all molecules and an if statement to skip com-
putations with a continue in the case of i = j.
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for(i = 0; i < N; i++)

for(j = 0; j < N; j++)

if(i == j)

continue;

interaction(i, j);

3. ij-loop with Newton: This version computes only the elements in the upper
half of the force matrix and uses Newton’s 3rd law to fill the lower half.

for(i = 0; i < N-1; i++)

for(j = i+1; j < N; j++) {

interaction(i, j);

apply_newton(j, i);

}

4. two ij-loops: This version computes the upper and lower triangular part of
the force matrix separately, skipping the diagonal elements with i = j.

for(i = 0; i < N-1; i++)

for(j = i+1; j < N; j++)

interaction(i, j);

for(i = 1; i < N; i++)

for(j = 0; j < i; j++)

interaction(i, j);

5. two ji-loops: This version computes the upper and lower triangular part of
the force matrix separately, skipping the diagonal elements with i = j. The
loop order is interchanged compared to the two ij-loops version.

for(j = 0; j < N-1; j++)

for(i = j+1; i < N; i++)

interaction(i, j);

for(j = 1; j < N; j++)

for(i = 0; i < j; i++)

interaction(i, j);
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6. ij-loop + ji-loop: This version computes the upper and lower triangular part
of the force matrix separately, skipping the diagonal elements with i = j. The
loop order is interchanged between the two parts: One part using ij and the
other ji ordering.

for(j = 0; j < N-1; j++)

for(i = j+1; i < N; i++)

interaction(i, j);

for(i = 0; i < N-1; i++)

for(j = i+1; j < N; j++)

interaction(i, j);

7. ij-loop from diagonal: This version computes the elements of the force ma-
trix row-wise. Computation starts from the diagonal of the force matrix to the
right and continues periodically on the left, when reaching the right end. The
i = j diagonal is skipped by starting from offset one and ending at offset N −1.

for(i = 0; i < N; i++)

for(long offset = 1; offset < N; offset++) {

j = (i + offset) % N;

interaction(i, j);

}

8. diagonal with offset: This version computes the force matrix along diagonals.
The diagonals are shifted cyclically from left to right. Self-interactions are left
out by skipping the matrix diagonal itself.

for(long offset = 1; offset < N; offset++) {

for(i = 0; i < N; i++)

j = (i + offset) % N;

interaction(i, j);

}
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9. diagonal with offset Newton: This version computes the upper triangular
part of the force matrix looping diagonally over the upper triangular force
matrix part by increasing the offset to the diagonal. Newton’s 3rd law is used
to obtain the lower triangular part.

for(offset = 1; offset < N-1; offset++)

for(i = 0; i < N-offset; i++) {

j = i + offset;

interaction(i, j);

apply_newton(j, i);

}

10. diagonal two loop blocks: This version uses two loop blocks to compute the
upper and lower triangular part of the force matrix looping diagonally over the
force matrix parts by increasing the offset to the diagonal.

for(offset = 1; offset < N; offset++)

for(i = 0; i < N-offset; i++) {

j = i + offset;

interaction(i, j);

}

for(offset = 1; offset < N; offset++)

for(i = 0; i < N-offset; i++) {

j = i + offset;

interaction(j, i);

}

11. diagonal using two loop blocks ji: This version uses two loop blocks to
compute the upper and lower triangular part of the force matrix looping diag-
onally over the force matrix parts by increasing offset to the diagonal. Loop
order is interchanged compared to the diagonal using two loop blocks ij version.
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for(offset = 1; offset < N; offset++)

for(j = 0; j < N-offset; j++) {

i = j + offset;

interaction(i, j);

}

for(offset = 1; offset < N; offset++)

for(j = 0; j < N-offset; j++) {

i = j + offset;

interaction(j, i);

}

4.2.2 Näıve algorithm implementation performance and
numerical differences

The näıve algorithm implementations described in the previous section were imple-
mented as benchmark kernels with the C++ programming language. The molecules’
positions, forces, and potential energies are stored in a structure of arrays (SoA) lay-
out using multiple std::vector with elements of type double . Elements are ac-
cessed via the index operator std::vector::operator[] as other access methods,
e.g., std::vector::at() , introduce overheads due to bounds checking. The inter-
action kernel computes the distance and LJ potential with cut-off for the molecule
pairs. The number of interactions is checked to be the same for all kernels as a sanity
measure.1

The results from the ij-loop with if i!=j implementation are used as a reference
to identify influences of numerical rounding effects, which can, e.g., be caused by
different hardware instruction execution orders. As a metric for the comparison,
the normalized root mean square deviation (NRMSD) for the molecular forces is
used.

For the following tests, a homogeneous scenario with rc = 3.0, ρ = 0.9, and N = 125
were used. This set of parameters represents a typical scenario for which the pre-

1The counting of computed interactions is preformed in a separate run so it does not disturb the
actual performance measurement due to the additional overhead.
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viously derived algorithm selection diagram in Figure 4.2 favours the näıve algo-
rithm.

The algorithm implementations are run on different systems with a variety of differ-
ent compilers. The used systems include different nodes from the HLRS Laki/Vulcan
cluster as well as HLRS Kabuki. The specifications of the CPUs on those nodes
are listed in Table 4.4. Compilers include gcc, Intel, PGI and NEC. For the com-
piler options, the following optimization levels are used: -O3 for the gcc and In-
tel, -O3 -Minline=level:20 for the PGI compiler and -Caopt -pi,auto for the
NEC SX compiler. The obtained execution times for the kernels are listed in Ta-
ble 4.5 and are shown together with the NRMSD values for the forces in Figure 4.7a.
The results show clear differences between the various implementations and plat-
forms in terms of performance and exhibit smaller differences when it comes to the
numerical result.

CPU f in GHz fmax in GHz cores

Intel Sandy Bridge (Intel Xeon E5-2670) 2.6 3.3 8
Intel Haswell (Intel Xeon E5-2680 v3) 2.5 3.3 12
Intel Skylake (Intel Xeon Gold 6138) 2.0 3.7 20
NEC SX-ACE 1.0 1.0 4

Table 4.4: Specifications of CPUs used in the näıve algorithm implementation com-
parison. f : nominal frequency for all cores, fmax: maximal turbo frequency
for a single core, cores: number of physical cores

The x86 based Intel Sandy Bridge, Haswell and Skylake systems show identical be-
haviour when it comes to the different algorithms. All results are close together in
terms of performance and accuracy. As expected, the newer CPU generations are
slightly faster than their predecessors. The best implementation for the scenario
here is diagonal with offset Newton. Looking at the results obtained with the
gcc 8.2.0 compiler, Haswell is 21 % faster than Sandy Bridge, and Skylake is 21 %
faster than Haswell. However, the kernels are executed on a single core and there-
fore, the CPUs run at their maximum turbo speed. Skylake has an 6 % performance
advantage against Haswell due to its higher turbo speed. Comparing the results
for the different compilers on Skylake, the Intel compiler achieves the best results.
On average over all implementations, its results are around 6 % faster than the gcc
once. Though, the fastest implementation diagonal with offset Newton is only
marginally faster with an 0.7 % advantage for Intel over gcc. On the older Haswell,
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the gcc compiler turns out to provide the best results with an average performance
advantage of 4 % over the Intel compiler. For the fastest implementation diagonal
with offset Newton gcc achieves even a 7.6 % lead here.

The times for the PGI compiler are overall much slower than the other compilers, even
though its inline level was increased from the default 10 to 20 to help with the opti-
mization of the C++ vectors. Without this adjustment, the used PGI compiler could
not inline and optimize the standard vector element access operator operator[] at
all.

The NEC SX-ACE results exhibit huge differences in performance across the algo-
rithm implementations. The best algorithm implementations for the SX-ACE turn
out to be the ij and ji loop based ones without Newton. These implementa-
tions are 35 times faster than the slowest implementation ji loop from diagonal.
This can be explained by looking at the optimization report. It turns out that
the SX compiler vectorized the fast versions, while was not able to vectorize the
slow ones. Despite the SX-ACE low operational frequency and the disadvantages
of the vector architecture for short loops, its per core performance is 14 % bet-
ter than the Intel Haswell core. However, it is 10 % worse than the Intel Skylake
core.

Looking at the NRMSD for the forces in Figure 4.7, around half of the algorithms
produce slightly different results compared to the chosen reference. The NRMSD
values are between 0.000 410 and 0.001 440. All the algorithms iterating diagonally
through the force matrix show here numerical differences to the row wise iterating
ij-loop with if i!=j reference implementation. Also, some algorithms iterating over
the force matrix in two blocks deviate numerically. The SX-ACE results differ to
the reference for the fastest implementations. However, the small differences are not
critical for most MD simulations, as they use correction methods for small numerical
rounding errors, e.g., in form of thermostats, anyway.
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ij-loop with if i != j Fi 0.099 0.079 0.079 0.066 0.062 0.110 0.856
ij-loop with if i != j Fj 0.105 0.078 0.079 0.067 0.057 0.108 0.038
ji-loop with if i != j Fi 0.105 0.077 0.084 0.067 0.068 0.106 0.038
ji-loop with if i != j Fj 0.104 0.079 0.084 0.066 0.069 0.101 0.837
ij-loop with continue Fi 0.104 0.076 0.079 0.066 0.063 0.101 0.863
ij-loop with continue Fj 0.107 0.077 0.079 0.066 0.062 0.099 0.038
ji-loop with continue Fi 0.103 0.076 0.082 0.065 0.058 0.099 0.038
ji-loop with continue Fj 0.100 0.077 0.083 0.066 0.063 0.101 0.857

ij-loop with Newton 0.058 0.045 0.048 0.037 0.036 0.061 0.462
ji-loop with Newton 0.056 0.045 0.049 0.037 0.035 0.060 0.462

two ij-loops Fi 0.102 0.077 0.079 0.067 0.059 0.102 0.670
two ij-loops Fj 0.105 0.078 0.080 0.068 0.058 0.100 0.054
two ji-loops Fi 0.104 0.082 0.079 0.071 0.059 0.100 0.054
two ji-loops Fj 0.098 0.076 0.079 0.068 0.060 0.102 0.672

ij-loop + ji-loop Fi 0.100 0.076 0.077 0.066 0.057 0.101 0.432
ij-loop + ji-loop Fj 0.103 0.077 0.077 0.065 0.059 0.100 0.434

ij-loop from diagonal Fi 0.271 0.226 0.241 0.189 0.191 0.208 1.347
ij-loop from diagonal Fj 0.275 0.235 0.240 0.193 0.191 0.208 1.348
diagonal with offset Fi 0.264 0.219 0.231 0.185 0.185 0.211 0.557
diagonal with offset Fj 0.266 0.228 0.234 0.185 0.181 0.210 0.635

diagonal with offset Newton 0.056 0.044 0.047 0.035 0.035 0.060 0.464
diagonal with offset if else 0 Newton 0.093 0.076 0.082 0.060 0.061 0.060 0.715

diagonal two loop blocks Fi+Fj 0.099 0.072 0.077 0.058 0.056 0.100 0.054

Table 4.5: Execution times for the Näıve algorithm implementations on various plat-
forms using different compilers for a scenario with ρ = 0.9, rc = 3.0, and
N = 150. Molecules are initialized on a lattice. Minimum times for each
system are marked in grey. Times are in milliseconds and the average over
100 kernel invocations.
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(b) NRMSD for the forces using ij-loop with if i! = j as reference.

Figure 4.7: Comparison of näıve algorithm implementations on different platforms using different compilers for a scenario
with ρ = 0.9, rc = 3.0, and N = 150 with molecules initialized on a lattice.
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Section summary

In this section, different implementations for the näıve algorithm were evaluated
with respect to their performance with small number of molecules. The obtained
results show that there can be huge differences in the performance. The fastest
implementation on x86 was found to be 5 times faster than the slowest one. On the
NEC SX-ACE vector system, even a factor 35 was between the performance of the
best and worst implementation. On cache based x86 systems, the diagonal with
offset Newton implementation was found to be the best. However, the standard
implementations with loops over the rows and columns of the force matrix were
close. On vector systems, the row and column based algorithms with conditionals in
the computation were the best. With respect to the numerical differences between
the different implementations, the NRMSD was mostly below 0.1 %. Differences are
mostly caused by the different directions to iterating over the force matrix or by
splitting loops into two blocks.

4.3 Task graph based parallelization of the linked-cell
algorithms

The number of cores in high performance computing (HPC) systems is steadily in-
creasing and current HPC systems already provide millions of them. This leads to
problems parallelizing with pure Message Passing Interface (MPI) due to memory
and communication overheads. Therefore, shared memory parallelization is typically
applied at the node level to decrease the number of MPI processes. The most com-
mon combination here is MPI + OpenMP. However, achieving a good parallelization
with classical loop based OpenMP constructs is becoming increasingly difficult with
the higher core counts of the nodes due to the limited number of sufficiently long
loops in the codes. Task dependency based parallelization models as described in
Section 2.2.3 provide a potential solution here.

In the following, the applicability of the task graph based programming model is
studied for the parallelization of the linked-cell algorithm at the node level. The
task graph based programming model presented in Section 2.2.3 provides an easy
way to parallelize a serial program or to convert an already MPI parallel code into
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4.3 Task graph based parallelization of the linked-cell algorithms

a hybrid MPI + threads code. Assuming infinite resources, the scalability of this
model is limited by the critical path of the task directed acyclic graph (DAG). The
maximal achievable speedup S of the program is determined by the length of the
critical path tcp, as the tasks in this path have to be executed in sequential or-
der:

S = ts

tcp
(4.18)

where ts is the sequential execution time of the program.

The SMPSs [75] and OmpSs [31] runtime systems implement the task graph based
programming model using simple pragma based code annotations that identify func-
tions as tasks, which may be run in parallel. For dependency tracking between the
tasks they use the memory addresses of the specified input and output parameters.
SMPSs supports C and Fortran, OmpSs C, C++, and Fortran. Listing 1 shows the
basic syntax of the code annotations to be used in a C program with the SMPSs
runtime. The annotations for OmpSs use the marker omp instead of css , but are
identical otherwise.

#pragma css task input(...) output(...) inout(...)
void function(...) { ... }

Listing 1: Syntax of the SMPSs code annotations for a C program.

4.3.1 Taskification approach

To parallelize the linked-cell algorithm used in MD codes with the SMPSs/OmpSs
runtime, tasks have to be defined. The runtime of the tasks plays an important
role for the performance as described in Section 2.2.3: Too short tasks lead to high
overheads while too long tasks do not allow to extract enough parallelism by the
runtime system. In the linked-cell algorithm, tasks can be selected at several levels.
One potential, very fine-grained task level is the calculation of a single molecule pair
interaction including the distance and potential calculation. The input and output
parameters for these tasks are the molecule data of the involved molecules as well as
the potential parameters.
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rc

rc

(a) (b)

Figure 4.8: Stencils for 2D (a) and 3D (b) as they are used in the linked-cell algorithm
with actio est reactio. The cell dimensions are equal to the cutoff radius
rc of the interaction potential. The red cell is the centre of the stencil,
the orange cells are the neighbour cells. Red and orange cells are both
updated.

However, a single pair interaction calculation takes around 10 ns on a recent Intel
processor, as shown in Section 4.1.3. This is too short to be scheduled efficiently by
the runtime systems, which require typically tasks of at least 250 µs to achieve good
performance [75].

Therefore, longer running tasks are created by grouping together all computations
related to interactions of molecules within one cell or between two neighbouring cells.
In the following, those tasks will be referred to as cell interaction tasks. The input
and output parameters of those cell interaction tasks are the molecules in the involved
cells. For a typical cut-off of 5 and a density of 0.9, tasks at this level will include
more than 100 molecules and take around 10 ms. This is enough for the efficient
scheduling of the runtime system.

The link cell algorithm includes inter- and intra-cell calculations for the neighbour
cells with a fixed stencil pattern. Therefore, the basic algorithm to be parallelized
is a 9 or 27 point stencil operation for 2D or 3D, respectively. With the application
of Newton’s 3rd law, they reduce to a 5 or 14 point stencil as shown in Figure 4.8.
The stencil is executed for each cell. To iterate over all cells, typically loops moving
over the cells, first in x, then in y, and last in z direction are used. The same
loop ordering is normally used for the inter-cell interactions in the stencil. This
geometrically most appealing approach will be referred to as the näıve version in the
following.

76



4.3 Task graph based parallelization of the linked-cell algorithms

For the following considerations, it is assumed that all tasks have equal execution
time. This simplification can be made, when the computational costs for the po-
tential calculations are not much higher than the distance calculation, such as for
the LJ potential. With this assumption, the critical path length can be given by
the number of executed tasks along the path instead of the overall duration of their
execution.

4.3.2 Benchmark implementation

The basic linked-cell algorithm with taskified cell interaction kernels was implemented
in a benchmark for 2D and 3D using the SMPSs/OmpSs runtime [71]. The kernels
consist of a busy loop to allow arbitrary execution times with a µs resolution. The
kernels include also counters for correctness checks, which allow for the verification
of the result against the original serial code version.

As the SMPSs/OmpSs programming model uses memory addresses to identify task
dependencies, larger structured data are not supported directly as input or output
parameters for a task. Thus, single memory addresses have to be used as a repre-
sentative for larger structured data or arrays in these cases [75]. For the kernels, the
memory address pointing to the cell data structure is used as a representative for
each cell and its related data, i.e., all the molecules in the cell, here. Listing 2 shows
the actual task definitions from the benchmark code.

#pragma css task inout(cell)
void process_cell(Cell *cell);

#pragma css task inout(cell1, cell2)
void process_cell_pair(Cell *cell1, Cell *cell2);

Listing 2: SMPSs task definitions in the link cell algorithm benchmark for intra- and
inter-cell interaction calculations.

4.3.3 Task dependence analysis

Figure 4.9a shows the initial part of the task DAG, which was extracted from a
benchmark run directly from the runtime using the Temanejo debugger [23]. In
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the task DAG, vertices represent tasks and arcs represent the dependencies between
them. Some of the dependencies shown by Temanejo can be neglected as they are re-
dundant with other, longer dependency chains. For example the dependence between
task 3 and 22 is redundant to the dependency chain along tasks 4–6–7–13–14–16–
17–18–19–21–22 and can therefore be omitted. Removing all redundant edges gives
the so-called transitive reduction of the graph [6]. Taking into account the periodic
boundary conditions, the basic structure of the transitive reduction of the bench-
mark’s task DAG is shown in Figure 4.9b.

(a) Task DAG extracted during program ex-
ecution with Temanejo

1

2

3

4

5 6

7

8

9

10 11

(b) Simplified Task DAG where redundant
dependencies are removed

Figure 4.9: Task DAG for the basic 2D link cell algorithm with Newton’s 3rd law
using the näıve stencil implementation (see Figure 4.10a). Intra-cell in-
teraction tasks are depicted in green, these for inter-cell in yellow.

From the transitive reduction of the Task DAG in Figure 4.9b, the critical path is
much easier to identify. The critical path exhibits nearly sequential execution order
of all tasks here, which limits the maximal achievable speedup. The origin for this
graph structure lies in the order how the cell interactions are processed and thereby
the inout dependencies are added to the graph. In the näıve linked-cell version, the
stencil is moved in x direction over cells first and the interaction partners in the
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4.3 Task graph based parallelization of the linked-cell algorithms

stencil itself are processes in a counter-clockwise-like way as shown in Figure 4.10a.
Hereby, the dependency caused by the interaction between the central cell with its
nearest neighbour in x direction is added second to last. This dependency is the
critical one. Due to its inout character, it blocks the execution of all tasks for the
stencil shifted in the x direction.

Fortunately, the ordering of the näıve linked-cell version is not the only possible
one. In 2D there are four inter-cell interaction tasks to be computed for each stencil.
Therefore, there is a total 4! = 24 different permutations for the execution order
of the tasks for this case. In the 3D case, there are 13! possible execution orders,
respectively.

The maximal achievable speedup S for the different execution orders in the stencils
can be expressed using three numbers: The number of total stencil executions k,
the number of tasks in the stencil n, and the stencil displacement ∆, which is the
number of cell-interactions to be calculated within the stencil before the computation
of interactions for the next stencil can be started

S(∆, k, n) = nk

n + ∆(k − 1) . (4.19)

In the limit k → ∞ for an infinite number of cells, the speedup becomes

Smax(∆, n) = lim
k→∞

S(∆, k, n) = n

∆ . (4.20)

In 2D the stencil displacement ∆ varies between 2 and 5 for the different execution
orders of the inter-cell interaction tasks. Figure 4.10a and Figure 4.10b show possible
task execution orders for the 2D-stencil and the corresponding achievable speedup
according to Equation (4.20). The displacement becomes ∆ = 2, if the task com-
puting interactions with the neighbour in x direction is computed directly after the
computation of the intra-cell interaction task, and ∆ = 5, if it is the last interaction
task being evaluated in the stencil. For the 3D case, ∆ is within the interval [2, 14],
respectively. Therefore, in both cases the worst case is thus ∆ = n and so by Equa-
tion (4.20) no speedup is achieved at all! The best case is Smax(2, 5) = 2.5 for 2D
and Smax(2, 14) = 7 for 3D.

However, this can be improved further. If the task interaction with the neighbour in
x direction is evaluated before the intra-cell interaction as shown in Figure 4.10c, then
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∆ = 1. The resulting task DAG then has the form of a pipelined execution and Equa-
tion (4.19) becomes the formula for the speedup of a pipeline

S = nk

n + k − 1 (4.21)

wherein n is the number of operations to perform and k is the pipeline depth. This
improved version for the stencil implementation will achieve at most a speedup of k.
In 2D this is k = 5, in 3D it is k = 14. Therefore, no suitable parallelization across
an entire many-core node with more than 14 cores can be achieved in this way of
parallelizing the link-cell algorithm.

1

2 3

4

5

(a) näıve: Smax = 1.25

1

2 3

5

4

(b) worst case: Smax = 1

5

4 2

1

3

(c) optimal stencil: Smax = 5

Figure 4.10: Different possible execution orders for cell interactions in the 2D-stencil
and their theoretical speedups

4.3.4 Task DAG optimization approaches

As shown, the straightforward taskified stencil implementation, with an outer loop
over the cells and an inner loop over the stencil, runs into severe speedup limita-
tions due to the inout-dependency sequence. To overcome these limitations, different
approaches can be applied.

The first approach to improve the scalability of the task parallel version is to change
the order of the loops. Instead of using an outer loop over all cells and an inner loop
over the stencil, the loops are exchanged and therefore the outer loop iterates over
the stencil and the inner loop over the cells. This reduces the effect of dependencies
between the tasks dramatically and allows the parallel execution of one row for all
cases, but the one of inter-cell interaction in the x direction. The latter and some more
bad dependencies in the DAG can be circumvented by the addition of a colouring
scheme with two-strided loops for the loops over all cells. This prevents blocking of
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Figure 4.11: 2D colouring scheme for the loop exchange implementation of the link-
cell algorithm: Executing computations for one stencil direction at a
time for the cells of one colour does not introduce dependencies between
tasks.

task execution due to dependencies in the forward cell interaction steps for each of
the directions x, y and z.2 Figure 4.11 shows an example of the applied colouring
scheme in 2D.

A second approach to improve the scalability is task nesting. Here, the original loop
over all intra-cell interactions is used, but instead of using a static loop creating the
inter-cell interaction tasks, nesting is used: Each intra-cell interaction task creates an
inter-cell task with one of its neighbours after it has completed its computation. Once
this inter-cell task has finished its computation, it creates the next inter-cell task in
the stencil. This is continued until all neighbours in the stencil are evaluated. With
this approach, the dependencies in the DAG are introduced only when needed during
execution and therefore reduces the number of dependencies at runtime, allowing
more tasks to be executed in parallel. Unfortunately, this is currently only supported
by OmpSs [32].

4.3.5 Evaluation

To evaluate the made theoretical predictions and the task DAG optimization strate-
gies, the benchmark kernel introduced in Section 4.3.2 was used. It was modi-
fied accordingly for the different optimization approaches. Measurements were per-
formed on the Laki and Hermit systems at HLRS using SMPSs 2.4 and the OmpSs
version based on Mercurium 1.3.5.8. Laki is a cluster with 8 core dual socket
Xeon X5560 nodes, Hermit a Cray XE6 system with 32 core dual socket Opteron 6276
nodes.

2Note that a simple colouring scheme without loop reordering cannot extract the same amount of
parallelism.
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Figure 4.12: Effect of the single task duration on the overall program runtime using
OmpSs

At first, the influence of the runtime scheduling system overhead is determined. This
is necessary to ensure that the chosen task duration has no noticeable influence on
the actual study of task dependency effects in the task DAG. Therefore, the execution
time of the single tasks in the benchmark was varied from 100 ns to 100 ms for a run
with 1 thread. The scenario consists out of 50×50 cells for the 2D and a 30×10×10
cells for the 3D experiments. Having more cells along the x direction helps to reduce
the influence of dependencies due to the periodic boundary conditions in the task
DAG later.

The results in Figure 4.12 show a more or less constant execution time for task
durations smaller than 10 µs. So the runtime overhead dominates here over the
actual task execution time. For task durations above 100 µs, the execution time then
is dominated by the task duration. This is in good agreement with the advice of the
runtime developers that the task duration should be around or more than 250 µs [75].

Based on this, a task duration of 5 ms is selected for the 3D and 10 ms for the 2D
in the following experiments. These values lie well within the region in which the
runtime overhead can be neglected.

First, the taskified linked-cell implementation with different execution orders for the
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inter-cell interactions is tested. Out of all the possible orderings, one was selected
for each displacement ∆ between the optimal (∆ = 1) and the worst (∆ = 5)
theoretical case. Figure 4.13 shows the achieved speedups for them in 2D using
different number of threads. As can be seen, for every displacement the speedup
increases nearly perfectly linear until it is limited from some number of threads
on. The experimentally found limit for the speedup of each ordering is in excellent
agreement with the theoretical value from Equation (4.19).
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2D stencil scaling with different displacements

disp-1 (opt)
disp-2
disp-3
disp-4 (naive)
disp-5 (bad)

Figure 4.13: Scaling for different displacements in the 2D stencil obtained with the
SMPSs-2.4 runtime on a single Laki node.

To evaluate the optimization strategies the loop exchange with colouring and nested
versions have been implemented for the 2D and 3D stencil. The corresponding
speedup results are shown in Figure 4.14.

Figure 4.14 shows the speedup results for the 3D case obtained on Hermit for the
worst stencil, optimal stencil as well as the improved approaches loop reordering with
colouring and nesting. Again perfect agreement with the predicted speedups for the
stencil implementations can be seen. In contrast, the loop exchanged version shows
perfect scaling up to the full node with 32 threads. Up to 23 threads nearly perfect
scaling is achieved with the nested version. Above, the behaviour becomes jittery
and is found to differ between different runs. The parallel efficiency is not perfect
any more. The detailed cause for this is unknown, but is not found to be caused
directly from the task DAG and seems to be related to the runtime implementation.
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Figure 4.14: Scaling of the four different taskification approaches for the 2D and 3D
stencil on a single Hermit node: serializing stencil (bad), optimal stencil
(optimal), loop reordered (loop exchanged), and nested tasks.

Hence, it is not further analyzed in this work.

4.3.6 Section summary

In this section the applicability of the task graph based programming model to par-
allelize the link cell algorithm was studied. Therefore, a benchmark reproducing the
algorithmic structure of the linked-cell algorithm was implemented and parallelized
with the SMPSs and OmpSs runtime. It uses concurrent cell updates as it is found
in the most common linked-cell implementation. The SPMSs/OMPSs tasks have
been defined at the level of cell interactions. For this implementation, serialization
effects were observed leading to a limited speedup. The cause for the serialization
was identified as the order in which the tasks are created. Here, the intuitive or-
der leads to a serializing dependency chain because of the inout nature of the task
parameters. A detailed analysis of the dependencies resulted in a theoretical limit
for the speedup of the basic parallelization approach, which was confirmed in exper-
iments.

Two optimization approaches were made to overcome this limitation: a loop and
colouring based version as well as a version using nested tasks. Both versions are not
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4.3 Task graph based parallelization of the linked-cell algorithms

limited in their theoretical speedup as long as the number of tasks is large enough.
The applicability of those two techniques was proven by experiments and the results
showed their good scalability. The version breaking dependencies based on loop
exchange and colouring showed perfect scaling. The task nesting based approach
scaled well, but the task scheduling of the runtime showed effects for higher thread
counts. However, the nesting based approach was found to be much simpler to
implement as it required less code changes.

As a conclusion, the task graph based parallelization of the linked-cell algorithm
showed that it can be applied very easily to a stencil based code selecting the right
level of task granularity. However, care has to be taken when it comes to the resulting
task dependencies, otherwise the achievable speedup may be limited. The obtained
results were presented to the SPMSs/OMPSs runtime developers, who now added a
concurrent statement in OMPSs specifically for such use cases.
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5 Inter node level performance
engineering/analysis

The parallelization across multiple nodes of Molecular Dynamics (MD) codes for
large systems and short range potentials is commonly based on domain decomposi-
tion. With the increasing number of nodes of HPC systems, the necessary degree of
parallelism at the inter-node level is rising. Thus, the efficiency of the communication
is becoming more important than it already is. While the domain decomposition
approach is used since the beginnings of MD simulations, there are many imple-
mentation details. These details are mostly based around different communication
patterns and the overlapping of communication and computation. In the following,
these two aspects are investigated on the basis of a synthetic benchmark as well as
the ls1-MarDyn simulation code.

5.1 Direct corner vs. indirect corner exchange

In a distributed application that uses domain decomposition for its parallelization,
each process has to communicate halo information with neighbouring processes that
are responsible for the adjacent volumes as described in Section 2.3.4. In the standard
domain decomposition, where each process has 26 neighbours in 3D, two approaches
to implement the communication are common: Direct communication with all neigh-
bours and indirect corner communication via folding.

In the direct communication approach, each process exchanges necessary halo data
directly with its neighbours using 26 send/recv operations. Instead, the indirect cor-
ner communication via the folding approach sends data only along the spatial axes
in x, y, and z direction in a coordinated manner. Corner halo data are exchanged
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by flipping them over neighbour processes by adding them to the halo data for this
direction. This reduces the number of send/recv operations to 6, but comes with
the disadvantage of synchronization between the different directions x, y, and z as
well as a slightly higher overall communication volume due to the repeated sending
of the corners and edges. Both patterns are shown in Figure 5.1 for two dimen-
sions.

(a) direct communication

2

2

11

22

22

(b) indirect corner communication via
folding, first in x (1), then y (2) di-
rection

Figure 5.1: Communication schemes used in the standard domain decomposition for
the 2D case. Data from the border areas (red) of a process are transferred
to the corresponding halo areas (grey) of the neighbouring processes.

5.1.1 Benchmark implementation

To test the efficiency of the direct and corner communication via a folding pattern,
a benchmark was created. The benchmark is implemented as a C++ program and
uses MPI point to point communication for the data transfer.

Each process is assumed to hold a cubic volume with a homogeneous particle density
of ρ = 1. The diameter of the volume and the width of the halo can be changed. The
amount of data to be communicated per molecule in the halo shall include values for
position, velocity, orientation and angular momentum as well as a unique molecule ID
and a component identifier. This results in the exchange of twelve double precision
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floating point and two 64 bit integer numbers per molecule, which corresponds to a
total of 112 B to be transferred per molecule.

Communication buffers are allocated as contiguous memory and transferred as a
single byte stream using the MPI_CHAR datatype. Note that a real application is
likely to use a derived datatype constructed using vector and struct types. This
is likely to introduce additional overhead compared to the benchmark implementa-
tion.

The two communication patterns are implemented on the basis of MPI’s Carte-
sian communicator interface. The dimensions of the process grid are determined
with the MPI_Dims_create function, which selects the grid dimensions to be as
close to each other as possible. The Cartesian communicator is created using the
MPI_Cart_create function. For both patterns a blocking and a non-blocking ver-
sion is implemented.

The communication pattern details of the implementations using MPI are shown in
Figure 5.2. The actual data transfer for the patterns is performed with MPI_Sendrecv
for the blocking and MPI_Isend , MPI_Irecv , and MPI_Waitall for the non-
blocking versions. In the non-blocking case, for the direct communication, all commu-
nication requests are synchronized at the end of an iteration, for the indirect corner
communication scheme, communication is synchronized for each spatial direction
within the iteration.

Each communication pattern is repeated several times and the overall time for all
iterations is reported for each rank.

5.1.2 Benchmark results

With the benchmark, a weak scaling experiment was performed on the HLRS Hazel-
Hen system. For the experiment, different numbers of particles per process were
used, including typical values for large simulations of 203 = 8000 and 503 = 125 000
particles. Scaling up to 2048 nodes / 49 152 cores of Hazel Hen, this corresponds to
scenarios with up to 393.2 million and 6.144 billion particles. The halo width was cho-
sen to be 5, matching the commonly used cut-off radius rc = 5.
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for( neighbour in neighbours) {
MPI_Sendrecv( ... );

}

(a) direct, blocking communication

for( neighbour in neighbours) {
MPI_Irecv( ... );
MPI_Isend( ... );

}
MPI_Waitall( ... )

(b) direct, non-blocking communication

for( dim in {x,y,z} ) {
for( disp in {-1, +1} ) {

MPI_Sendrecv( ... );
}

}

(c) indirect, blocking communication

for( dim in {x,y,z} ) {
for( disp in {-1, +1} ) {

MPI_Irecv( ... );
MPI_Isend( ... );

}
MPI_Waitall( ... )

}

(d) indirect, non-blocking communication

Figure 5.2: MPI call sequences of the communication patterns in the neighbour com-
munication benchmark

Figure 5.3 shows the average communication time for one iteration. As can be seen,
the indirect corner communication based approach is always faster than the direct
communication approach. The blocking and non-blocking versions of a pattern are
mostly of comparable performance within the error margins, even though the non-
blocking versions seem overall a bit slower. This is expected, as there is no potential
for overlapping of communication and computation due to the lack of computation
in this implementation of the benchmark. So, the pattern follows exactly the self-
consistent MPI performance requirements [90].

Overall, the communication time increases with the number of cores. Comparing
the time of a single node and the largest runs with 2048 nodes, the time increases
for the direct communication pattern by a factor of roughly 6 and 20 for 203 and
503 molecules per process, respectively. For the indirect pattern, time increases
by a factor of roughly 20 and 11 for 203 and 503 molecules per process, respec-
tively.

The main cause for this behaviour lies in the inter-node communication. Figure 5.4
shows the message distribution for inter-node, inter-socket, and intra-socket messages
for the two approaches. As can be seen, the fraction of slower inter-node messages
increases with more cores. Consequently, communication time increases for both
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Figure 5.3: Weak scaling experiment of communication time for the direct communi-
cation and indirect corner communication patterns using blocking and
non-blocking MPI communication from the neighbour communication
benchmark on HLRS HazelHen for two different per process scenario sizes.
Times are the average halo exchange time over 100 iterations. Black lines
mark the variance across multiple measurements based on min and max
times. The used halo width is 5 molecules.

approaches with larger number of processes.

Further, it can be seen from Figure 5.4 that for runs with more than 2400 nodes,
the number of inter-node messages in the direct communication approach accounts
for more than 92 % of the total message count. In contrast, in the indirect corner
communication approach, the inter-node messages make up only a fraction of around
70 % here. So, despite the overall increased communication volume, the indirect
corner communication via folding is faster than the direct approach, as the faster
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intra-socket communication overcompensates for this. This advantage is even more
pronounced for the smaller per process volume case. Here, the communication volume
along edges is smaller and therefore latency plays a more important role, which is
even better for intra-node communication.
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(b) indirect corner communication via folding

Figure 5.4: Message distribution for inter-node, inter-socket and intra-socket commu-
nication for two communication approaches

5.2 Overlapping halo communication in ls1-MarDyn

As shown in the previous section, the communication pattern for the indirect cor-
ner communication via folding is still favourable for the particle exchange in domain
decomposition based MD simulations on current HPC systems. However, no clear re-
sult for the choice between blocking and non-blocking communication could be given
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5.2 Overlapping halo communication in ls1-MarDyn

with the simple synthetic benchmark. So, the use of non-blocking communication
with MPI and potential overlapping opportunities will be studied in the following
based on the real world code ls1-MarDyn MD.

5.2.1 Particle exchange implementation in ls1-MarDyn

The original ls1-MarDyn code uses the indirect corner communication pattern in the
version with two consecutive blocking MPI Sendrecv calls for each exchange direc-
tion. In contrast to the neighbour communication benchmark, ls1-MarDyn exhibits
potential for overlapping of communication and computation. There are two main
parts in a simulation step, which can be overlapped: The computation of all inner
molecule interactions and the preparation of the send buffers after updating molecule
properties. Due to the structure of the code, the first approach is left out because
this requires a major rewrite of the computational kernels. So, the second approach
will be studied in the following.

The ls1-MarDyn code implements for every folding step the following substeps for
the particle exchange in order: (1) Allocation of send buffers of appropriate size,
(2) packing of particles to be exchanged from the data structure used during the
force calculation into the send buffers, (3) exchanging the number of particles to
be exchanged with the other process via MPI_Sendrecv , (4) allocation of receive
buffers with appropriate size based on the exchanged molecule count, (5) send-
ing/receiving the actual particle data via MPI_Sendrecv , and (6) unpacking the
received particles into the data structures used for the force calculation and freeing
the buffers.

While this implementation is straightforward, it has two major drawbacks: First,
it requires two communication steps, one to exchange the buffer sizes and one to
transmit the actual data. Second, the used blocking MPI calls do not allow to
overlap communication and computation and are therefore also not capable to hide
load balancing issues, if the numbers of particles to be sent in the different directions
x, y, and z differ.
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5.2.2 Alternative implementations

In the following, three alternative implementations for the particle exchange in ls1-
MarDyn are described: Isend-probe-recv, Isend-probe-irecv, and Out-of-order.

Isend-probe-recv

The first drawback—the separate communication of the number of sent molecules
and actual data—can be omitted by using MPI_Probe and MPI_Get_count , which
allow to extract the number of received data elements from the message header. So,
no extra communication step is needed to obtain the appropriate size for the receive
buffer. To prevent deadlocks, the MPI_Isend operation is used. The exchange
steps become then MPI_Isend , MPI_Probe , MPI_Get_count , allocate memory,
MPI_Recv .

Isend-probe-irecv

The second issue—overlapping of communication and computation—can be addressed
by the use of non blocking operations for the receive step. So, the first send and
receive in each direction x, y and z can be overlapped with the second send, re-
ceive buffer allocation and receive. The necessary steps for the communication with
one neighbour are MPI_Isend , MPI_Probe , MPI_Get_count , allocate memory,
MPI_Irecv . These steps are repeated for the second neighbour in the same di-
rection and is followed by MPI_Wait to synchronize the exchanges before unpacking
the received data.

Out-of-order

Additional potential lies in the improvement of load balancing for the message ex-
change. If the second message in a direction is smaller and therefore arrives earlier
than the first one at the destination, the unpacking order can be swapped. So the
unpacking of the earlier message can be overlapped with the receive-operation for
the other message. This out of order approach is implemented by checking the mes-
sage status with MPI_Test . If a message is received, it starts immediately with the
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5.2 Overlapping halo communication in ls1-MarDyn

unpacking and insertion of data into the data structures used for the computational
kernel. The steps to perform here start with buffer packing and MPI_Isend for both
neighbours in a direction. This is followed by MPI_Iprobe , MPI_Get_count , receive
buffer allocation, and the posting of the receives with MPI_Irecv . After this, the
processes check for the first message to arrive via MPI_Test .

5.2.3 Implementation performance comparison and summary

In the following, a comparison of the performance for the four different implemen-
tations in ls1-MarDyn is presented. The test scenario is in this case a homogeneous
Lennard-Jones (LJ) system with reduced temperature T = 0.95 and reduced den-
sity ρ = 0.6223 consisting of 5 million molecules. This is a typical problem to be
computed with the standard domain decomposition approach. The test is run with
1200 processes on HazelHen. The simulation is executed for 1000 time steps, to
obtain statistically sound data for the communication costs.

The results are shown in Figure 5.5. The three alternative implementations prove
all to be better than the original send-recv based version. The best one of them is
the out-of-order implementation, which saves more than 8 % of communication time
for this scenario. So, the communication time per simulation step goes down from
14.7 ms for the original send-recv to 13.5 ms for the out-of-order implementation. The
standard deviations for all reported times is around 0.15 ms.
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6 Fault tolerant MD

The Molecular Dynamics (MD) simulations in this work target large systems and long
time spans to be simulated. These simulations require extensive compute resources
to handle the large systems and long runtimes for the high number of necessary time
integration steps. With simulations using systems with hundreds of thousands of
CPUs, the mean time between failure (MTBF) is expected to drop to the order of
one day as described in Section 2.5. Therefore, it is important that MD simulations
can cope with the problem of system failures.

This section starts with a short system failure study for a current HPC system. Then
resilience for MD codes is addressed. As the classical Checkpoint/restart (C/R) ap-
proach becomes inefficient for large systems [29], an Application-based fault tolerance
(ABFT) approach for MD simulations is developed in this part of the work. An imple-
mentation of the approach is realized in ls1-MarDyn, which is then used to evaluate
the approach with a real world scenario.

6.1 System failure survey

In order to handle fault tolerance efficiently, it is important to characterize the fre-
quency of failures as well as the hardware levels at which they occur. Therefore, an
initial overview of the current failures in actual HPC systems is obtained using avail-
able data for the Hornet/Hazel Hen systems at HLRS in the time between November
2014 and April 2019. A history of recorded hardware replacement events in each
month is shown in Figure 6.1. As can be seen, there is some variance in the number
of events between months, but no general trend of decrease or increase in failure
rate for this time period. In total, 1665 hardware replacement events were recorded
that were related to faulty behaviour of system components and overall 2261 hard-
ware parts had to be replaced. This corresponds to an MTBF of 24.9 hours for the
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Figure 6.1: Number of hardware replacement events per month for Hornet/Hazel Hen
in the time from November 2014 to April 2019.

system and an MTBF of 17.7 hours for hardware parts. These values confirm the
estimated MTBF for current HPC systems of 24 hours described in Section 2.5 very
well.

Not all the recorded hardware issues resulted in an abnormal abortion of jobs with
data loss in running applications. For example, power supplies are multiple times
redundant in the system, so the job can in most cases finish, and the failed power
supply can be replaced later during a maintenance window. So, it is of interest to
know which parts of the system are affected the most.

Figure 6.2 shows the distribution of failed components across the different parts of
the system. Obviously, half of the hardware replacements were related to the memory
modules (RAM). Failures in the memory system affect in most cases a running job
and will result in crashes and data loss or silent data corruption in a node. The same
applies for the less frequent problems with CPUs. The 26 percent of failures caused
by power supplies are of less importance as stated above. Network, board, and other
failures that can bring down multiple nodes or the entire system at a time are below
10 percent. So, it is important for applications to focus on resilience at the single
node level in first place.
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BOARD
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26.0%

RAM49.7%

Distribution of failure events

Figure 6.2: Origin of failure events on Hornet/Hazel Hen by categories. The cate-
gory “other” includes failures in the cooling system. Values are based
on recorded hardware replacements in the time from November 2014 to
April 2019.

6.2 Failure scenario

Today’s HPC system architecture is based on many shared-memory nodes. Large
simulations, as the targeted MD simulations, run distributed across many of these
nodes via MPI. A typical setup here is to use one MPI process per node and to
use shared memory parallelization, e.g., OpenMP, inside the node. As seen in the
previous failure study, the normal failure scenario is the loss of such a compute-node.
For the typical setup, this means the loss of one MPI processes with all its related
data.

So, for the study in this work, the following failure scenario was assumed: A simu-
lation is running with N processes Pi. At some point of the simulation process PX

fails. The failure causes all local data of process PX to be lost. No more than one
failure is assumed to happen at the same time. However, multiple failures can occur
at different times within one simulation run. After failure, the system provides a new
process P ′

X , e.g., from a pool of spare processes, which takes over the place of the
failed one. Then the recovery mechanism for the simulation is started. The failure
scenario is depicted in Figure 6.3 for a 2D simulation.
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P1 P2 · · ·

· · · PN

PX

Figure 6.3: 2D simulation failure scenario: The 2D data are distributed via a regular
domain decomposition over N processes Pi. Process PX fails and all its
local data for the subdomain are lost. The failed process PX will be
replaced by a new process P ′

X .

6.3 Current fault tolerance approach of ls1-MarDyn

The current approach of failure handling in ls1-MarDyn implements a standard ap-
plication level C/R scheme, which is common practice also in other MD codes such
as LAMMPS [81]. The checkpoint interval can be chosen via the configuration file.
Phase space data are written out after the specified number of timesteps at the end
of a timestep. Checkpoints can be written either as an ASCII file or using a binary
file format.
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Figure 6.4: Optimal checkpoint interval and corresponding checkpointing overhead
for dump time δ = 100 s, restart time R = 100 s, and different MTBF
values based on Equation (2.11).
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The analysis and optimization of the I/O part of ls1-MarDyn was already presented
in Section 3.1. From there the typical I/O time for large multi-million molecule
scenarios is on the order of 100 seconds. Figure 6.4 shows the optimal checkpoint
interval for different MTBF values based on Equation (2.11) assuming an average
checkpoint dump time δ = 100 s and restart time R = 100 s. Using the current
MTBF of M = 24 h, the optimal checkpoint time becomes τopt = 69 min and the
overhead for checkpoint writing is 2.4 %. While this might still be acceptable for
the moment, it gets worse with decreasing MTBF. So, for an MTBF of 1 hour,
the optimal checkpoint interval becomes 14 min and the overhead increases to 12 %.
Hence, there is a clear necessity for improvement targeting large MD simulations on
future HPC systems.

6.4 A new resilience approach for MD

6.4.1 Concept

The execution time model of Daly, outlined in Section 2.5.3, takes into account several
overheads and models them with several parameters. Two of the most important
parameters in it, are the dump time δ, that represents the time to write necessary
restart data to persistent storage, and the restart time R. To increase the efficiency of
a fault tolerant application, the dump time and the restart time have to be minimized.
Both goals can be achieved by shrinking the restart dump size, i.e., the amount of
checkpoint data.

In the failure case, the classical C/R approach restores all processes to the state of
the last checkpoint and re-computes all simulation steps from thereon. However, in
the studied failure scenario for MD simulations, not all data are lost from the last
computed time step: Only simulation data residing in the failed component are lost,
data on the other components are still present and usable.

One idea to take advantage of this fact, is to use all available compute resources
after failure to speed up the re-computation of the lost part. However, to exactly
re-compute the lost data in an MD simulation, data from intermediate steps between
the moment of the checkpoint dump and the failure event are necessary, but these are
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not kept during the simulation, as this would obviously equal a per step checkpoint.
So this idea does not work.

However, one can take another approach, which takes advantage of the not-lost data.
It is based on the idea to omit the expensive exact re-computation by creating ap-
proximate local data that fit the lost ones as good as possible. The simulation shall
then continue after the insertion of the approximate local data. For this approach to
work, the simulation must be stable under a small perturbation, allowing to converge
towards the same result at the end. MD simulations are based on this assumption
already, as they start from an inexact physical state, which undergoes an initial
equilibration phase before collecting results in a following production phase. So,
the problem of exact re-computation is now transformed into the problem of finding
good approximate data that keep the disturbance of the simulated system as small
as possible and then applying a short re-equilibration phase before continuing with
the production phase.

For the first evaluation of this approach, the following techniques to replace the
lost local data are studied in the following: (1) The reuse of historic data without re-
computation for the intermediate simulation, (2) on the fly regeneration of data based
on local properties collected and saved during the simulation, e.g., the number of par-
ticles and temperature within the subdomains of the processes.

6.4.2 Historic data

The historic data strategy is based on the C/R approach. The classical C/R approach
performs a full rollback recovery from a previously saved checkpoint. In contrast, the
historic data approach replaces only the missing data of the failed processes with
checkpoint data while keeping all other current data and continues the computation
without performing a rollback, i.e., re-computing the lost steps.

Figure 6.5 shows the essential parts based on a 2D example with 9 processes: The
phase space data are stored at point 6.5a. Then at point 6.5b the data for the central
subvolume are lost due to a failure. Data from 6.5a are then inserted as a replacement,
while the rest of the data are kept and the simulation is continued from there on.
The corresponding state after the recovery is shown in 6.5c.
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(a) Simulation at the mo-
ment of the last check-
point dump before the
failure

(b) Simulation at the time
of the process failure

(c) Simulation after local
insertion of data from
the checkpoint

Figure 6.5: 2D example of the new resilience strategy using the historic data ap-
proach. The simulation uses a domain decomposition with 9 processes.
The red area in the centre marks the subvolume lost due to a failure.
Gray points where not subject to the failure and therefore kept as is.

This approach requires some care with molecules close to the subvolume boundary
of the lost part. So, the insertion of the old data may result in molecules being very
close to each other at the boundary between the processes’ subdomains resulting in
very high molecule accelerations. This can be addressed to some degree by using a
thermostat that takes care of such cases by limiting the maximal acceleration for the
affected molecules.

Also duplication or loss of molecules may occur with this approach in cases where a
molecule crossed a process’s subdomain boundary between the last checkpoint and
the failure. Here it depends on the scenario if the global or local increase of the num-
ber of molecules is important. However, this is not an issue in most cases for the here
targeted large systems as will be shown in the evaluation part.

6.4.3 Data regeneration

The second approach to create approximate local phase space data for the lost subvol-
ume is the generation from ensemble values. Well suited values here are the number
of particles N and temperature T within each subvolume. These two values are
normally already known or computed in every MD simulation step and therefore do
not require additional computational overhead. Also, having only two values to be
stored reduces the amount of necessary restart data drastically—from O(N) for a
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full checkpoint to O(1). These two facts together now allow to save restart data per
simulation step.

The corresponding steps for the on the data regeneration approach are shown exem-
plarily in Figure 6.6: The number of particles is saved in 6.6a—here N = 5 for the
central subvolume. The simulation continues until the failure occurs in 6.6b. Now the
lost data are replaced by inserting the appropriate number of particles—here 5. The
insertion follows the same method as for the creation of an initial state with a face
centered cubic (fcc) lattice, resulting in the system shown in 6.6c. The simulation
continues then from there on.

(a) Simulation at the mo-
ment of the last restore
data collection point
before the failure

(b) Simulation at the time
of the process failure

(c) Simulation after local
insertion of generated
data

Figure 6.6: 2D example of the new resilience strategy using the on the regeneration
approach. The simulation uses a domain decomposition with 9 processes.
The red area in the centre marks the subvolume lost due to a failure.
Gray points where not subject to the failure and therefore kept as is.

This approach has one downside: The inserted data are not equilibrated and are
likely to need some more re-equilibration time. However, there are several advan-
tages that make up for this: The possibility to store restart data per simulation step
helps to reduce errors made in the creation of approximate data for the lost ones.
For example, with per simulation step coverage, the number of restored molecules
will always be correct. Further, the regeneration approach automatically ensures
the appropriate distances between the inserted molecules at the boundaries pre-
venting the problems of too high particle accelerations from the historic data ap-
proach.

The biggest advantage of this approach is the minimal amount of data to be stored.
While this itself reduces the dump time to persistent storage already, it now allows
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also In-Memory Checkpointing for large scenarios. Here, full In-Memory checkpoints
waste substantial amounts of the memory that are necessary for computations, as at
least two checkpoints have to be present at the moment of checkpoint creation [77].
In contrast, the here presented approach requires only to store a few double precision
floating point values and thus does not require as much memory. The data can
therefore also be distributed easily to multiple processes on other nodes, reducing
potential problems with successive failures of nodes that keep necessary recovery
data. This helps to mitigate the hard problem of optimized checkpoint placement in
future exascale systems [52].

The recovery data transfer to other nodes in this approach can, e.g., make use of the
existing neighbour communication infrastructure from the domain decomposition in
MD codes, by appending the additional values to the per step particle exchange.
This also helps this approach to keep overheads low.

6.5 Implementation in ls1-MarDyn

In order to test the proposed ABFT method, it was implemented into ls1-MarDyn.
Two main functionalities have to be provided: failure detection, and process and
communication recovery. These are tightly connected to the used parallel runtime
system. The parallelization of ls1-MarDyn is based on the Message Passing Inter-
face (MPI). Unfortunately, the current MPI standard is not prepared for continua-
tion of a parallel program subject to failures. The default error handler in MPI is
MPI_ERRORS_ARE_FATAL1 that will terminate the application in case of errors immedi-
ately and the alternative MPI_ERRORS_RETURN leaves the problem of an unrecoverable
MPI_COMM_WORLD communicator. There are discussions over the past years about the
addition of an MPI fault tolerance interface on the basis of the User Level Failure
Mitigation (ULFM) proposal [4, 18]. However, the usage of ULFM for large MD
applications has been shown to be extremely difficult and the application of it was
limited to programs with a small code base so far [58]. So, to work around this
problem, the essential failure detection and recovery parts have to be built inside
ls1-MarDyn for now.

1except for I/O operations
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A general problem for testing the new ABFT approach is the relatively low frequency
and unpredictability of encountered failures in real systems. This would make a sys-
tematic study of the developed ABFT approaches challenging and time-consuming.
Therefore, it is necessary to have a controlled way to generate and execute well-
defined failure scenarios. So, failure simulation capabilities have to be an essential
part of the implementation.

In order to address these points, a generalized failure infrastructure is introduced
into the ls1-MarDyn code. This infrastructure handles all fault tolerance related
tasks. Its interfaces are designed in a way that allows to use different external fault
tolerance systems, including an upcoming fault tolerant MPI, as well as other failure
detection tools. To achieve the necessary flexibility, the fault tolerance infrastruc-
ture is divided into two parts: failure detection and failure handling as shown in
Figure 6.7. Both parts use a plugin architecture for easy extendability. The details
of the different parts and plugins implemented for this work are described in the
following.

FT infrastructure

Failure detector

Failure handler

Historic data

Data regeneration

...

Failure simulator

Hardware monitor*

MPI*
...

Figure 6.7: Overview of the failure infrastructure implemented in ls1-MarDyn. Fail-
ure detection and failure handling are implemented as plugins. (Plugins
marked with * show possible plugins that are not implemented yet.)

6.5.1 Failure detector

The basic computational unit in ls1-MarDyn is a simulation step. The simulation
should be in a consistent state after each step. Therefore, failures should be detectable
with at least this granularity. Further, one may want to change or combine multiple
failure detection mechanisms.

The failure detection mechanism in ls1-MarDyn is therefore implemented via a plu-
gin infrastructure, where each detection mechanism is put into its own failure de-
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tector plugin. Each failure detector plugin provides a method with the signature
bool failure(int simstep) , which returns true if it detected failures during
the simulation step provided as an argument. In this way, also the failure history of
the simulation may be queried later.

The plugin infrastructure allows different methods of failure identification to be used
easily. For example, a failure detector could identify failures during communication,
e.g., using features provided by a future fault tolerant MPI standard. Another failure
detector could take into account lower-level health information obtained from HPC
system monitoring services. And, for the purpose of testing, the plugin infrastructure
allows for a simple way for failure injection via a simulator plugin. For the studies
in this work, such a failure simulator was implemented and used. The details of it
are described in the following.

Failure simulator

For testing the developed fault tolerance techniques it is not practicable to wait for
real system failures: First, it may take a long time to see a failure and second, it
would require to have a large target system with failure detection capability and fault
resistant MPI. Therefore, ls1-MarDyn is extended with a failure simulator, which is
implemented as a plugin using the failure detector interface.

A simulated failure means the loss of one or multiple processes. The processes affected
by the failure are specified using the MPI ranks of the processes. The moments at
which failures appear are defined by the simulation step at which they shall occur.
The failure simulator provides three different failure scenarios:

Arbitrary failures: In the arbitrary failure scenario, one or multiple processes are
subject to failures at arbitrary points of the simulation. Multiple failures can occur
for a single process or multiple failures at multiple processes or any combination
of both. Also, the failures at different processes may overlap in time. Each sin-
gle failure event is defined by the MPI rank and the simulation step, at which it
shall occur. The necessary failure event definitions are read from a configuration
file.
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Single failure: The single failure scenario is a special case where only one process
fails once. This can be accomplished by the arbitrary failure scenario with only one
failure definition.

Recurring failures: In the recurring failure scenario, one process is subject to re-
curring failures with a fixed interval. The process is specified by the MPI rank
and the recurrence interval by the number of time steps between failures. In ad-
dition, a time can be provided up to which no failures are emitted, e.g., to allow
undisturbed equilibration of the system at the beginning of the simulation. All neces-
sary parameters are read from corresponding entries in the ls1-MarDyn configuration
file.

6.5.2 Failure handler

The failure handler is responsible to recover the simulation from a failure. As it is
currently not possible to recover the MPI environment from failures, its task for now
is only to set up data in replacement for the lost ones while reusing a still running MPI
process. Therefore, it collects necessary data for the chosen recovery method during
simulation. When the recovery is triggered due to a failure, it identifies the affected
subvolume and recovers this based on the chosen recovery method. The two recovery
methods described above are implemented as handler plugins.

Historic data insertion

The historic data insertion handler uses fast in-memory checkpointing to keep a
copy of all molecules for each process. For the purpose of the study in this work,
the checkpoint data are stored in the processes’ local memory. So, this approach
does not work with real process failures for now. In order to add this functionality,
the data have to be stored in neighbouring processes on other nodes as described
in [77].
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Data regeneration

The data regeneration handler saves, for each process, the average temperature and
number of molecules at a specified interval. In case of a failure, it takes the most
recent values to generate phase space data for the failed process. For generation,
the handler uses the infrastructure from the flexible in memory configuration gen-
erator developed in Section 3.2. As a creation method, it uses a FCC lattice and a
simple basis to insert the molecules. Velocities are assigned with the equal velocity
assignment strategy.

6.6 Evaluation

In the following, the fault tolerance approach shall be evaluated with respect to its
applicability to standard MD simulations.

6.6.1 Evaluation criteria

Simple thermodynamic variables

The thermodynamic properties of an ensemble can be described by the extensive
variables NV E and the intensive variables µpT . These values are all accessible in
MD simulations and can be computed from the phase space data [42]. For the
following study, the pressure and potential energy in the system are used. Both are
easy to compute and in most cases already available in the simulation. Also, they
are common indicators used to check for the end of the equilibration phase and,
therefore, make them perfect candidates to study the effects of disturbance in the
approximate checkpoint approach.

Radial distribution function

The radial distribution function (RDF) is a central construct from which many ther-
modynamic variables can be determined [8]. It is accessible in simulations by com-
puting particle pair correlations and in experiments via diffraction experiments. The
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RDF g(r) describes the local density around an atom or molecule with respect to
the distance to a reference molecule or atom and connects it to the average system
density ρ = N/V . It is defined such that the local density ρl in the distance r to the
reference atom or molecule is given by [42]

ρl(r) = ρg(r) . (6.1)

The analytical form for the RDF in the canonical ensemble NV T is

g(r) = N(N − 1)
ρ2ZNV T

∫
· · ·

∫
exp(−βUN) dr3 . . . drN . (6.2)

Here, ZNV T is the canonical partition function and UN the potential energy of
all particles in the system. In MD simulations, it is computed as a time average
via

g(r) = V

N2

〈∑
i

∑
j ̸=i

δ(r⃗ − r⃗ij)
〉

. (6.3)

The RDF is a relatively sensitive value that depends strongly on the state of a
material, which allows to differentiate between solid, liquid, and gas. This makes
it useful to track the state of system equilibration and identify disturbances in MD
simulations.

6.6.2 Recovery behaviour

As the proposed new ABFT approach uses approximate data, it will disturb the
system at the recovery point. Hence, it is of interest to see how the simulation reacts
after the recovery point. For the evaluation of the recovery behaviour, two questions
are here of interest: What are the failure conditions under which the new ABFT
approach allows to achieve the correct final result and how efficient is this approach
compared to the classical C/R.

As scenario for the study, a homogeneous Lennard-Jones (LJ) system consisting out
of 5000 molecules at a reduced density ρ = 0.9 and a reduced temperature T = 0.85 is
equilibrated with ls1-MarDyn. It is simulated using 8 processes. With 625 molecules
per process, this is a scaled down scenario of typical long-running simulations with
many time steps. The system is equilibrated for 10 000 time steps and is followed by
a production phase of 40 000 time steps. Failures are injected during the simulation
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run with the previously described failure simulator according to the single failure and
recurring failure scenario.

Historic data

First, the historic data approach is studied in more detail. Figure 6.8 shows the
time evolution of the potential energy and pressure of the entire system around the
failure event. The failure is corrected immediately after its occurrence using the
historic data approach. The resolution used for the monitoring of the pressure and
potential energy is 10 time steps. Shown values are the average over the preceding
10 time steps. The age of the historic data inserted in place of the lost data is varied,
here. The most recent data inserted are 10 time steps behind, the oldest 200 time
steps.

The results show that after the insertion of the old data, the system is disturbed
heavily as the peaks in the pressure and potential energy indicate. However, the
system recovers fast to its equilibrated production values. After roughly 100 time
steps, the values are already within the uncertainty from a single simulation. Both,
potential energy and pressure are recovered then.

Table 6.1 lists the pressure and potential energy values of the system 1000 time
steps after the failure and recovery for the different data ages. The differences be-
tween the results are within the order of the standard deviation of the failure-free
simulation. So, the age of the inserted data plays a minor role after the initial
equilibration.

age p Upot

reference 2.268 ± 0.015 -6.2326 ± 0.0028
10 2.269 -6.2256
20 2.282 -6.2257
50 2.286 -6.2213

200 2.255 -6.2266

Table 6.1: Pressure p and potential energy Upot 1000 time steps after failure correction
with the historic data approach. For the reference simulation without
errors, the standard deviation for the entire run is provided.
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Figure 6.8: Evolution of the potential energy Upot and pressure p of a LJ system
simulation after failure recovery. The equilibrated system is subject to a
failure at time step 10 000 (vertical red line). Here, 1 of 8 processes fails.
The lost data are replaced by historic data from 10, 20, 50 or 200 time
steps before. The system consists of 5000 molecules and has a reduced
density ρ = 0.9 and a reduced temperature T = 0.85.

Regeneration

The same evaluation is performed for the regeneration based approach. Figure 6.9
shows the time evolution of the potential energy and pressure of the entire system
after a failure event, which was corrected by inserting regenerated data. The re-
generation is based on the number of molecules and average temperature 10 time
steps before the failure. It is compared to the previous results from the historic data
approach.

The results show that the regeneration based approach takes longer to recover than
the historic data approach. The potential energy returns back to the shape of the
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reference curve after around 200 time steps and the pressure after around 400 time
steps.
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Figure 6.9: Evolution of the potential energy Upot and pressure p of a LJ system
simulation after failure recovery. The equilibrated system is subject to
a failure at time step 10 000 (vertical red line). Here, 1 of 8 processes
fails. The lost data are replaced by data, which are regenerated based on
the failed process local number of molecules and temperature 10 time
steps before. The regeneration is performed with a FCC lattice and
equal velocity with random orientation. For comparison the historic data
insertion approach with 10 time step old data is included. The system
consists out of 5000 molecules and has a reduced density ρ = 0.9 and a
reduced temperature T = 0.85.

6.6.3 Tolerance to recurring failures

So far both approaches showed that they can be used to recover from a single failure
within relatively short time. However, it is not clear, if continued application of the
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recovery approaches leads to systematic errors in the simulation. Hence, in this part,
the influence of recurring failures onto the simulation will be explored. The regener-
ation based recovery approach is selected for the following study. Due to the reduced
amount of necessary restore data, this approach is especially well suited for more
frequent recoveries. Also, its slightly longer recovery time has a higher probability
to introduce correlations between successive applications.

The same system as for the single failure study before was used. The difference is
that now one process constantly fails in a regular interval starting from time step
10 000 on. Figure 6.10 shows the time evolution for the potential energy and pressure
of the simulated system for 30 000 time steps after the initial failure. Two different
failure intervals are applied: One of 1000, which is larger than the time observed
to be necessary to recover to a good state in the single failure scenario before, and
one of 200 time steps, which is slightly shorter than this time. Clearly visible are
the failures. Each time the potential energy and pressure of the entire system are
disturbed.

One interesting observation here is that the disturbance for the shorter failure interval
becomes smaller after around 23 000 time steps. At the same time, the values for the
potential energy and pressure shift away from the reference value. The differences
in the obtained values from the end of the simulations are listed in Table 6.2. For
a failure interval of 200 time steps the pressure deviates more than 75 % from the
reference value. So, the frequent failures and recoveries lead in this case to a change
in the observed system, which cannot be corrected by the thermostat of the MD
simulation. For the longer failure interval of 1000 time steps, the system has enough
time for recovery in-between failure events. Hence, there are hardly any correlations
leading to systematic errors in this case.

failure frequency p Upot

reference 2.236 ± 0.067 -6.239 ± 0.013
200 0.558 -5.906

1000 2.125 -6.171

Table 6.2: Average pressure p and potential energy Upot over time steps 39 990 to
39 999 under the influence of contiguous failures of different failure fre-
quencies. For recovery the new ABFT approach with regenerated data
was used.
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Figure 6.10: Time evolution of the potential energy Upot and pressure p of a LJ sys-
tem simulation subject to recurring failures. Here, 1 of 8 processes fails
regularly. The lost data are replaced by data, which are regenerated
based on the failed process local data. For the regeneration strategy,
the local number of molecules and temperature is used. The regenera-
tion is performed with an FCC lattice and equal velocity with random
orientation. The system consists of 5000 molecules and has a reduced
density ρ = 0.9 and a reduced temperature T = 0.85.

6.6.4 Masking

So far errors were corrected by the new ABFT approach and the application went
on computing. While the investigated thermodynamic values recovered fast and the
generated averages were well within the error margins at the end of the simulation,
there is still a difference. To see the effect of the inserted data, we have a look at
the more sensitive RDF. Especially the approach inserting re-generated data on the
basis of a lattice will be visible here in the result. The original RDF pattern of the
lattice used for the particle placement in this approach is visible in the RDF average
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later on. This effect can be seen in Figure 6.11 as small peaks in the RDF, e.g., at
0.9.

One strategy to minimize the influence of the inserted data on the final result is to
exclude them for some time steps after the failure from the computation of these
results. Figure 6.11 shows the resulting RDF when masking them out for the next
200, 400 or 500 time steps after the failure event and regeneration of the data.
With increased length of the masking window, the peaks vanish and the resulting
RDF curve gets closer to the reference one. This effect can be seen even better in
Figure 6.12, which shows the difference between the RDF obtained in the runs with
failures and the failure free-reference run. To quantify the difference, the normalized
root mean square deviation (NRMSD) was computed for the difference of the RDFs
and the reference. The results in Figure 6.12b show that the error decreases by up
to a factor of 6 when the 500 time steps after the insertion are masked. This is in
accordance with the results from the recovery behaviour analysis in Section 6.6.2,
where around 400 time steps were necessary to recover the temperature and pressure
values in this scenario.
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Figure 6.11: Radial distribution function obtained as average over 30 000 time steps
while the simulation is subject to recurring failures of one of 8 processes
for two different failure intervals.
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Figure 6.12: Error of the RDF for different masking interval lengths.

6.6.5 Failures during the initial equilibration phase

So far failures were studied that occur after the equilibration phase in MD simu-
lations. However, there is the open question, wether the new ABFT approach can
also be applied successfully within the initial equilibration phase of the simulation,
where often special techniques are applied to prepare the state. Figure 6.13 shows
the time evolution of the potential energy and pressure with recurring failures every
1000 time steps in one process from the start of a simulation. The ls1-MarDyn code
uses here the method of equilibration at increased temperature [47]. In the shown
scenario, the simulation follows a protocol that linearly increases and decreases the
temperature during the first 5000 time steps of the simulation. As can be seen, the
disturbance of the system caused by the inserted data shows the same behaviour as
in the equilibrated state. The system is able to recover quickly enough here too,
allowing it to follow the equilibration protocol in the same way as the reference
curve.

6.6.6 Performance comparison to classical C/R

Now, after showing that the new ABFT approach can be applied to MD simulation
scenarios, a short comparison in terms of its efficiency with respect to the classical
C/R shall be made.
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Figure 6.13: Time evolution of the potential energy Upot and pressure p of a LJ system
simulation subject to recurring failures during the equilibration phase.

For the studied small scenario, the median checkpoint dump time on the Vulcan sys-
tem is found to be δ = 0.12 s. With an average computational time of 4.8 ms per time
step, this corresponds to a time needed for the computation of 25 time steps. Under
the assumption that reading the checkpoint takes the same time, i.e., R = δ and an
MTBF M = 1 d = 18 000 000 timesteps, one gets with Equation (2.11) an optimal
checkpoint interval τopt = 30 000 timesteps. Hence, for the classical C/R, 600 check-
points have to be dumped on average between failure events. The total overhead of
the classical C/R approach is therefore M/τopt ∗δ+R = 15 025 timesteps. In compar-
ison, the overhead of the new ABFT method using the regeneration approach with
masking loses around 500 timesteps during the recovery process, but has a negligible
dump time. Therefore, the presented new ABFT method can save more than 96 %
of the time necessary for fault tolerance handling in this case.
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6.7 Chapter summary

In this section, a new ABFT approach for MD simulations was developed. The
strategy in the new approach includes the replacement of lost simulation data on the
fly. Two replacement strategies were presented: The recovery based on historic data
and the regeneration based on the average system temperature and local particle
count. In comparison to the classical C/R approach, no roll-back of the system is
performed after the replacement step. The main question for the applicability of this
new approach was the convergence behaviour of the simulation under the presence
of one or multiple failure events.

To test the applicability of the new ABFT approach, it was implemented in ls1-
MarDyn. The implementation is split into two functional components: the failure
detector and the failure handler. The failure handler is used to simulate failures in a
controlled way, while the failure handler implements the different recovery strategies.
Different failure scenarios were used during the evaluation: Single failure, recurring
failure after equilibration, and recurring failure during the initial equilibration phase
of the simulation. The pressure, the potential energy, and the radial distribution
function were used as criteria for the evaluation of the equivalence of the simulation
results as well as the study of the recovery behaviour. Results obtained with the
new ABFT approach under simulated failures were compared against results from a
reference simulation without failures.

In the case of single event failures, the chosen scenario was found to require not more
than 400 time steps to recover from the failure. The overall error was shown to be
within the standard deviation of the regular simulation 1000 time steps after the
failure event.

For recurring failures, it was shown that the time between failures can change the
outcome, if the time interval between failures is shorter than the time necessary
for the recovery to a good state. However, the approach worked fine for the cho-
sen scenario when the time between failures was larger than the needed recovery
time.

A masking strategy was introduced to improve the accuracy of simulations with fail-
ures corrected by the new ABFT approach. The masking strategy excludes the sim-
ulation steps after the failure event. For the evaluation, the more sensitive RDF was
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used as metric here. The obtained results show that masking can help increase the ac-
curacy of the simulation results in this case by up to a factor of 6.

Errors during the initial equilibration phase of MD simulations were studied and the
reported results show that even in the case of special equilibration techniques—as
used in ls1-MarDyn—the system will achieve equilibration.

Finally, it was shown that the new ABFT approach can reduce the fault tolerance
overhead by around 96 % for the chosen scenario.

To conclude, the new fault tolerance approach is capable to recover MD simulations
successfully for the chosen scenario in nearly all studied failure scenarios, while the
overhead is much lower than for classical C/R.
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7.1 Summary

In this work, various concepts for Molecular Dynamics (MD) simulations were stud-
ied with respect to the advancement of their scaling on future HPC systems. There-
fore, numerous existing approaches in different areas were evaluated. Based on the
results, improvements were made or new approaches introduced to overcome iden-
tified limitations. Experiments using benchmark kernels and the real-world code
ls1-MarDyn were used to show the applicability and to quantify their performance
gains.

Aspects of initial configuration creation involved the analysis of the current work-
flow for the ls1-MarDyn code. The practice there was found to be based heavily on
input and output (I/O) with an ASCII file format. This was identified as a clear
bottleneck preventing runs at larger scale. The I/O part was therefore first tuned
with existing broadcasting techniques making use of the fast network over MPI com-
munication for the I/O. The achieved improvement allowed to run user scenarios
with up to 100 000 processes, which was not possible before. However, the used ap-
proach does still not scale with the scenario size itself. Therefore, a new concept
of scenario generation was developed. This new approach introduces the possibility
of distributed scenario generation in a transparent way for the users. It was imple-
mented in ls1-MarDyn and evaluated with a real world scenario. The results show
that the approach achieves its goal of an user-friendly interface that allows scalability
up to thousands of processes even for complex scenarios.

As far as parallel computations are concerned, the necessary computation has to
be distributed. Due to the increasing parallelism, subproblem sizes become smaller.
Therefore the most important algorithms for the time consuming force calculation in
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MD simulations were investigated in detail. Performance models for the commonly
used algorithms in MD simulations were created to allow runtime predictions for them
with low number of molecules. The models were evaluated using various benchmarks.
Based on the models, an algorithm selection diagram was introduced. This shows
that the näıve algorithm for a typical cut-off of rc = 5 is comparable to or better than
the commonly used linked-cell and neighbour list algorithm in the region around and
below 1000 molecules. The particle density was found to be relevant as a criterion
for the choice of the best algorithm.

For the most important basic force calculation algorithm, a wide variety of different
implementations was studied with respect to performance and comparability of the
results. The influence of the compiler and target architecture was evaluated in this
context. As a result, it turned out that particularly algorithms looping diagonally
over the elements of the force matrix perform well when compiled with Intel or GCC
on the studied cache based architectures, i.e., Intel Xeon systems. The traditional
implementation approaches using loops over the rows and columns of the force ma-
trix were found to be a bit slower here. However, the latter performed better on
the NEC SX vector system. Concerning the equality of the results of the different
implementations, the normalized root mean square deviation (NRMSD) values for
forces and energy were compared. Here, the algorithms were found to differ slightly,
but not critically.

Regarding parallelization at the node level, the increasingly important task-based
parallelization approach was applied to the linked-cell algorithm. Shared Memory
parallelization was studied using the SmpSs and OmpSs runtime systems. A pitfall
leading to limited speedup caused by dependencies was investigated here. Solutions
for code developers werde presented and shown to provide perfect scaling. Addi-
tionally, suggestions for an extension of the programming model to overcome the
underlying problem were made.

In the context of Distributed Memory parallelization, the two main communication
strategies for the necessary particle exchange in the domain decomposition based
parallelization were re-evaluated: Direct and folding based data exchange. The rec-
ommendation of the past to use the folding approach was found to be still valid for
current HPC systems. However, process placement was identified to be a big issue for
the future. As an improvement to mitigate the negative effects on current systems,
potential for overlapping of communication and computation were identified in the
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ls1-MarDyn code. This allowed for an improvement of the communication time by
up to 8 % running with more than a thousand processes.

Fault tolerance as one of the aspects becoming more and more important was ad-
dressed. A study of failures in the HAWK system at HLRS confirmed the existing
predictions of failure frequencies of more than one failure event per day. The limits
of the classical checkpoint/restart (C/R) approach currently used in the codes was
examined using the state of the art model for the optimal checkpointing time. The
optimal C/R parameters for the ls1-MarDyn code resulted in overheads larger than
2 percent. One of the important parameters to reduce overheads was identified to
be the recovery-data dump-time. Therefore, a new application-based fault tolerance
(ABFT) approach for MD simulations was invented that minimizes the amount of
needed recovery-data. This approach was implemented in the ls1-MarDyn code and
successfully applied to common homogeneous simulation scenarios. It was shown that
the overheads necessary for fault tolerance handling can be reduced by more than
96 percent based on the studied scenarios for current systems.

All these different aspects are important to scale up MD simulations in the future
in terms of the system size as well as runtime. The results from this work help to
improve each one of them. The modifications applied to ls1-MarDyn were helping to
scale up the application to more than 100 000 cores and were the starting point for
further optimizations, which resulted lastly in the simulation of around 20 trillion
atoms [89].

7.2 Outlook

While the results in this work already showed ways to overcome limitations of current
MD codes, there is still room for further research and improvements in each of the
aspects presented.

For example, the new in memory scenario generation system is not aware of load
balancing across processes. For specific systems, this may lead to memory issues
if some processes have to deal with many molecules that exceed the memory of
a single node. Also an excessive and expensive re-distribution of molecules across
processes directly after the initialisation should be prevented for such cases. Beside
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this, methods to simplify the in-memory scenario generation process for the user with
the help of graphical tools instead of the current XML input file based approach would
be a useful addition.

More interesting research questions arise especially in the topics of the automatic
algorithm selection, new task-based parallelization models, process mapping, and
the introduced new ABFT approach, which all seem interesting for follow-up work
to this thesis.

Based on the performance model from this work, applications may dynamically adjust
their behaviour during runtime. They may even decide to select different algorithms
for different subdomains of the simulation domain based on the criteria from this
work, helping to improve the overall efficiency. However, this requires applications to
implement those different algorithms as well as the algorithm-exchange at runtime,
which is not the case for ls1-MarDyn at the moment. One interesting new question
coming up then is the question how the automatic algorithm selection for a subdo-
main of the simulated system interacts with the load balancing schemes used across
processes.

At this point, the task-based parallelization approach studied in this work will become
even more of interest as it allows for a much better and dynamic load balancing. Here,
the focus will be clearly on methods to simplify dependencies to allow the runtime to
extract more parallelism. Also, the task distribution may be applied across processes
as suggested in, e.g., HPX [54]. In this case, the tuning of the scheduling strategies
and task locality will become important.

For the MPI based Distributed Memory parallelization, the folding based neighbour
communication scheme in MD codes was found to be still the best choice. Some
improvements by overlapping communication and computation were made. However,
the results of this work showed that communication suffers from the heavy inter-node
communication on current and future systems, which makes application to hardware
topology mapping important. The resulting performance degradation, especially in
NUMA systems, was already subject to recent research [72] and an extension for a
new API to the MPI standard [73]. Therefore, further studies related to specialized
methods for the process placement and locality optimization are a good candidate
for improvements and are likely to have an impact also on stencil based code outside
the MD simulation community.
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7.2 Outlook

The new ABFT approach developed in this work was applied to homogeneous scenar-
ios. A lot of questions may be posed around its applicability to more sophisticated
scenarios that react sensitively to local properties of the system, e.g., the local parts
of crack propagation or thin interfaces. To handle such situations, the presented
fault tolerance approach may be extended, e.g., to take into account a more detailed
particle distribution by linear or higher order approximations.

To conclude, there are many ideas that could be further explored when preparing MD
simulations for even larger systems based on the results of this work. However new
systems will bring new challenges making this a never ending cycle.

125





Bibliography

[1] NEC Cluster Disk Storage. (accessed 4th November 2018).

[2] NEC SX-ACE. (accessed 4th November 2018).

[3] TOP500 List (November 2020). https://www.top500.org/list/2018/11/.
Accessed: 2020-12-27.

[4] ULFM Specification, February 2017.

[5] The Open Group Base Specifications Issue 7. IEEE Std, IEEE, 2018. Last
accessed December 27, 2020.

[6] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a
Directed Graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[7] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General
Method. J. Chem. Phys., 31:459, 1959.

[8] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon
Press, New York, NY, USA, 1989.

[9] Robert Alverson, Duncan Roweth, and Larry Kaplan. The Gemini System In-
terconnect. In 2010 18th IEEE Symposium on High Performance Interconnects,
pages 83–87. IEEE, August 2010.

[10] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS Spring Joint Computing Conference,
volume 30 of AFIPS Conference Proceedings, pages 483–485. AFIPS / ACM /
Thomson Book Company, Washington D.C., 1967.

127

https://www.top500.org/list/2018/11/


Bibliography

[11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
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