
Total Variation Minimization via
Dual-Based Methods and its

Discretization Aspects
Von der Fakultät Mathematik und Physik der Universität Stuttgart zur

Erlangung der Würde eines Doktors der Naturwissenschaften
(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Stephan Hilb

aus Stuttgart

Hauptberichter: Prof. Dr. Bernard Haasdonk
Mitberichter: Dr. Andreas Langer

Prof. Dr. Carola-Bibiane Schönlieb
Tag der mündlichen Prüfung: 18.07.2022

Institut für Angewandte Analysis und Numerische Simulation
der Universität Stuttgart

2023

Contents
Abstract 7

Acknowledgements 11

1 Introduction 13
1.1 Background and Motivation 13

1.1.1 Digital Image Processing 13
1.1.2 The Variational Principle as a Modeling Tool . 14
1.1.3 The Role of Total Variation 15
1.1.4 Duality in Convex Minimization 16

1.2 Outline and Contributions 16

2 Fundamentals 19
2.1 Functional Analysis . 19

2.1.1 Banach Spaces 20
2.1.2 Mollifiers . 21
2.1.3 Hilbert Spaces 25
2.1.4 Γ-Convergence 26

2.2 Convex Optimization 28
2.3 Total Variation . 36

3 The L1-L2-TV-Functional and Duality 41
3.1 Model and Motivation 42

3.1.1 Applications 42
3.1.2 Primal Formulation 46
3.1.3 The Bilinear Form aB 48
3.1.4 Dualization in H1(Ω)m 51

3.2 Regularized Model . 54
3.2.1 Predual Problem and Dualization 54

3

3.2.2 Dual Characterization of the Huber-TV-Func-
tional . 62

3.2.3 Γ-Convergence 66

4 Decomposition 71
4.1 Introduction . 71

4.1.1 Related Work 75
4.2 Algorithm . 76
4.3 Convergence Analysis 78
4.4 Comparison . 87
4.5 Surrogate Technique 90

5 Discretization and Algorithms 95
5.1 Finite Differences . 96
5.2 Finite Elements . 98

5.2.1 On Image Interpolation Methods 101
5.2.2 Primal-Dual A-Posteriori Error Estimator . . . 104
5.2.3 Residual A-Posteriori Error Estimator 110

5.3 Classic Algorithms . 119
5.3.1 Semi-Implicit Dual Algorithm 119
5.3.2 Semi-Implicit Primal-Dual Algorithm 122

5.4 Primal-Dual Semi-Smooth Newton Algorithm 125
5.4.1 Derivation . 125
5.4.2 Numerical Behaviour 130

5.5 Applications . 130
5.5.1 Denoising . 132
5.5.2 Inpainting . 133
5.5.3 Optical Flow 133

5.6 Decomposition . 136

6 Implementation 147
6.1 Optical Flow Utilities 147
6.2 Kernel Operations . 148
6.3 Stateful Parallelism . 150

4

6.4 Domain Decomposition 153
6.4.1 Algorithm Interface 153

6.5 Finite Elements . 154

7 Outlook 159
7.1 Finite Element Discretization of L1-Type Functionals 159
7.2 Software . 160

7.2.1 Sparse Jacobians for Kernel Operations 160
7.2.2 Broadcasted Kernel Fusion 161
7.2.3 Differentiable Finite Element Toolbox 161

References 163

5

Abstract

The total variation has been widely used as a regularizing term in
variational image processing methods for its ability to preserve sharp
edges. Corresponding denoising models with L1 or L2 data terms have
previously been analyzed and discretized in various ways, as well as
extended to incorporate a linear operator to allow for a wider range of
applications, including image reconstruction and analysis.

In this work we aim to analyze, discretize and evaluate one par-
ticular, previously proposed, widely applicable total variation model
with a combined L1-L2 data term using the convex duality principle
and thereby extend previous results, as well as improve upon them
selectively. In particular, we derive suitable optimization algorithms,
adaptive finite element and domain decomposition methods, and apply
them to various image processing tasks, including denoising, inpainting
and optical flow estimation.

7

Zusammenfassung

Die Totale Variation wird als Regularisierungsterm oft in der varia-
tionellen Bildverarbeitung genutzt, da sie scharfe Kanten zu erhalten
vermag. Entsprechende Modelle zur Entrauschung von Bildern mittels
eines L1- oder L2-Datenterms wurden bereits mit verschiedenen Me-
thoden analysiert und diskretisiert. Die Erweiterung um einen linearen
Operator erlaubt darüber hinaus den Einsatz in vielen weiteren Anwen-
dungsgebieten, einschließlich der Bilderkennung und -rekonstruktion.

In der vorliegenden Arbeit wird ein vorgeschlagenes, spezielles, kom-
biniertes L1-L2-Modell, das weitreichende Anwendungen erlaubt, mit
Hilfe des Prinzips der konvexen Dualität analysiert, diskretisiert und
ausgewertet. Im Zuge dessen erweitern wir bisherige Resultate und
verbessern diese stellenweise. Insbesondere leiten wir sowohl geeignete
Optimierungsalgorithmen, als auch Finite-Elemente- und Gebietszerle-
gungsmethoden her und wenden diese in der Bildverarbeitung unter
anderem zur Rauschreduktion, Bildrekonstruktion und zur Bestim-
mung des optischen Flusses an.

9

Acknowledgements

First and foremost, I thank Andreas Langer for his patience and rigour
in guiding me throughout my studies. Without his professional support
and encouragement, this work would not have taken place. He has
provided grounding and perspective in all of our discussions and thus
shaped the way I think about mathematics and the world. I further
thank the Institute of Applied Analysis and Numerical Simulation at
the University of Stuttgart for my employment, most notably Kunibert
Siebert for initially supervising me and Bernard Haasdonk for officially
taking over this role.

I am very grateful to Martin Alkämper who showed me the ropes in
Stuttgart, kindly assisted me in various tasks, collaborated with me
and teached me about the pareto principle for working efficiently, which
I still find difficult to apply up to this day. I thank Carola-Bibiane
Schönlieb for hosting my research stay in Cambridge and Robert Tovey
for invaluable interesting discussions and collaborative work during
that time, which I, sadly, did not quite manage to fit into this thesis.

Furthermore, I have received feedback and support from various
people, including Michael Eisermann, Fernando Gaspoz, Mišo Gav-
rilović, Arthur Günthner, Claus-Justus Heine, Birane Kane, Jim Magi-
era, Björn de Rijk, Stephan Schmid and Alexander Thumm. Discus-
sions with them, no matter how minor, have helped to shape bits and
pieces of this work to various degrees and I am very grateful for that.

Finally, I would like to thank the university staff for their help with
organizational concerns, friends and family for their emotional support
and everyone else who inspired me to stay motivated.

11

Funding
Part of this work was supported by the Ministerium für Wissenschaft,
Forschung und Kunst Baden-Württemberg (Az: 7533.-30-10/56/1)
through the RISC-project ”Automatische Erkennung von bewegten
Objekten in hochauflösenden Bildsequenzen mittels neuer Gebietszer-
legungsverfahren”.

12

1 Introduction

1.1 Background and Motivation

Without being constrained by excessive rigour and detail, we would like
to take the opportunity in this section to try and provide a generally
intelligible introduction to and motivation for our topic of research,
namely the total variation and its dual characterization in the context
of variational image processing.

1.1.1 Digital Image Processing

Images are widely used to record static visual data. Captured with a
camera or created in some other way, they make archiving, processing
or distribution of this data possible. Especially with the advent of
digital cameras in smartphones, being able to capture and share digital
images has today become something which is mostly taken for granted.
Compared to analogue images, they may readily become subject to
various forms of image processing. Well-known processing tasks include
e.g. removal of the flash-induced red-eye effect in photographs and
lightning correction of images. For smartphones, in fact, advanced
image post processing features have become standard [38].

More specialized processing tasks may include noise removal (denois-
ing) or the reconstruction of missing parts of an image (inpainting).
Even motion detection from an image sequence (optical flow estimation)
or reconstructing visual data from certain measured signals (tomo-
graphy or imaging) may be viewed as image processing tasks. They
find application in various fields, including medicine, art conservation
and forensics [9].

13

Recently, machine learning approaches have made promising ad-
vances in the field of image processing due to their outstanding ability
to learn and generalize from trained data [64]. While their good prac-
tical performance is well-recognized, they are generally sensitive to bias
in training data, lack a transparent model to explain their output and
are often expensive to train. More traditional mathematical modeling,
on the other hand, features a transparent pre-defined objective, does
not require an expensive training process and can build upon a vast
literature of existing mathematical analysis tools. Thus, arguably,
mathematical modeling of image processing tasks is still a valuable
approach.

1.1.2 The Variational Principle as a Modeling Tool

It is often convenient to describe target solutions of a problem as
minimizers of a certain quantity, a property known as the variational
principle [27]. Just as e.g. the shape of a water droplet on a flat surface
is given by minimizing the sum of its potential and surface energy
[27], in variational image processing we set out to find a target image,
which minimizes a certain quantity of interest, often called energy.

For image processing the energy functional of an image u is tradition-
ally composed by a sum of two quantities, the image term and the data
term. The data term describes how well the image corresponds to given
input data g, while the image term describes how probable the image
is, irrespective of input data. This formulation is often motivated by
viewing the image processing task in reverse as a two-step random
process, where first, some original image is chosen at random and then
a certain random process is applied, to arrive at some observed data
corresponding to the image processing task input data. One may then
ask for the most probable original image given this observed data.
Due to the Bayesian principle, this posterior probability P (u|g) to be
maximized is proportional to the product of the prior probability P (u)
of the original image and the likelihood P (g|u) of the observation given
that original image. Maximizing this product can equivalently be seen
as minimizing its negative logarithm, which yields the sum formulation

14

mentioned above.
For denoising in particular, this approach may be used to explicitly

derive the data term, given a probabilistic noise model. It is well-
known, for example, that the sum of squared errors corresponds to
additive Gaussian noise [9, 29], while the sum of absolute errors is
to be used for impulse noise [6, 25, 73]. For other applications more
sophisticated data terms are used, e.g. [9, 25]. These are not necessarily
always explicitly derived from a probabilistic model, but may as well
follow some heuristic.

The image term, on the other hand, captures some a-priori knowledge
about how the original image is conditioned and thus, in a way, guides
the image processing task towards solutions which are favored by it.
Since the range of all possible original images is usually unmanageable,
instead of trying to capture the full probabilistic model as an image
term, again, heuristics are employed. Another role of the image term is
to act as a regularizer for the minimization problem, i.e. to supplement
the problem with additional information when the data term is not
sufficient, e.g. due to missing or uncertain data. As image term one
may, for example, choose to penalize image gradients quadratically,
which readily yields to minimization techniques and provides smooth
solutions [9]. Seeing, however, that images often contain sharp edges
and therefore, smoothened solutions are not preferred, the so-called
total variation as an alternative measure of change for an image over
its domain has established itself as a suitable alternative [21].

1.1.3 The Role of Total Variation

Originally used in denoising audio signals (which may be viewed as
one-dimensional images), the total variation has found its way into
image processing. Its distinguishing effect as an image term is to
promote coherent regions in an image, while preserving sharp edges
between them.

The total variation of an image, viewed as a real-valued brightness
function over a two-dimensional domain, may loosely be defined as
the total sum of absolute gradient lengths. Functions with finite total

15

variation may form a complete normed vector space with interesting
properties and therefore, have been an object of interest in functional
analysis.

Compared to the sum of squared gradient lengths, the total variation,
as a function of its input image, is non-smooth, which makes it hard
to design minimization algorithms for it. One approach is to consider
a related, so-called dual problem, which under certain conditions can
be shown to be equivalent to the original minimization problem in
question.

1.1.4 Duality in Convex Minimization

Loosely speaking, a dual formulation of some problem is given by a
changed perspective. For example, instead of maximizing profits in
economics, one may instead take the viewpoint of minimizing total
production cost. This duality principle is well-known e.g. for linear
programs, where in general a linear objective with linear inequality
constraints is considered, and can be extended to more general, convex
minimization objectives.

For the problem of minimizing a convex, not necessarily smooth
function, the field of convex optimization has celebrated the so-called
Fenchel duality, which defines a corresponding dual problem and
provides sufficient conditions as to when its solution agrees with the
primal one [43]. Here, convex constraints may be incorporated directly
into the convex objective function by use of a characteristic func-
tion, which evaluates to 0 in feasible regions and to positive infinity
otherwise.

1.2 Outline and Contributions

We will now provide the reader with an overview of the following
chapters and highlight the major contributions of this thesis. Its focus
will lean towards the theoretical side and numerical examples are
mostly provided as a proof-of-concept.

16

Beginning in Chapter 2, we cover some well known results from
functional analysis and convex optimization, which are essential for
our presentation.

In Chapter 3 we extend a variational scalar model originally proposed
for image restoration to support vector-valued functions for application
to a wider class of problems, including optical flow estimation. A
dual formulation as well as optimality conditions for an optionally
regularized extended version of this model are derived and existence
and uniqueness of both the primal and dual formulation are analyzed
in the infinite-dimensional setting. Finally we establish Γ-convergence
for the regularized functional to the original one.

In Chapter 4 we extend parallel and sequential versions of an existing
decomposition algorithm to a more general pointwise constrained
quadratic problem and modify it to incorporate approximate local
minimization. For these methods we derive improved theoretical
convergence results using a different proof strategy and compare these
to existing work.

Chapter 5 considers discretization of the continuous models from
Chapters 3 and 4 in the context of image processing. First we propose
a new pixel-adapted method to interpolate an image onto an unstruc-
tured finite element grid and compare it to other alternatives. For the
regularized model from Chapter 3, we derive two different a-posteriori
error estimates, formulate a semi-smooth Newton algorithm and evalu-
ate their performance numerically in an adaptive finite element setting
for various applications. Lastly, we apply the decomposition algorithm
given in Chapter 4 to various image processing tasks, numerically verify
the theoretical convergence bounds and evaluate the performance of a
parallel implementation.

Chapter 6 gives an overview of the newly developed numerical soft-
ware, which is available publicly under a permissive license. Apart from
being able to reproduce the numerical examples present in Chapter 5,
it includes a utility package for handling the optical flow file format, a
package for defining custom kernel operations on arrays of arbitrary
dimension, a tiny finite element framework and a helper library for
managing stateful parallelism.

17

Finally, Chapter 7 provides a short overview of some interesting
areas for further research, mainly concerning discretization and software
development.

18

2 Fundamentals
We assume the reader to be at least somewhat familiar with the basics
of functional analysis and finite elements and recommend [4, 34] for
further reference. Before analyzing the variational model central to
our work in Chapter 3, this chapter will fix notation, cover necessary
results from functional analysis and convex optimization, as well as
introduce the total variation and its basic properties. The contents
here are considered to be common knowledge within their respective
domains and contain no particularly new results. We do, however,
try to give proofs for statements in this chapter whenever they are
reasonably easy, self-contained or educational.

2.1 Functional Analysis
We will denote by R := R ∪ {−∞,∞} the extended real number line,
equipped with its order topology. For a Banach space V the expression
V ∗ denotes the continuous dual space, i.e. the space of bounded linear
functionals V → R, while we use ⟨ · , · ⟩V,V ∗ for the duality pairing. A
sequence (vj)j∈N ⊆ V is called (weakly) V -convergent, if it converges
(weakly) in the space V . For a bounded linear operator A : V → W
between two Banach spaces V and W we use ∥A∥ for the operator
norm and denote the adjoint operator by A∗ : W ∗ → V ∗. The inner
product of an inner product space V is generally written as ⟨ · , · ⟩V
and correspondingly ∥ · ∥V will denote its induced norm. For finite
dimensional V specifically, we use single strokes for the norm: | · |V .
For standard Euclidean spaces Rn, n ∈ N, we may omit the norm
subscript, | · |, to denote the standard Euclidean norm.

Throughout this work, Ω ⊆ Rd with domain dimension d ∈ N will
denote a connected bounded open set with Lipschitz boundary as in

19

e.g. [34, Ch. 1, §1.2]. The expression ”a.e. in Ω” denotes a condition
that holds pointwise almost everywhere in Ω, i.e. everywhere up to
a subset of Lebesgue measure zero. We use the notation L2(Ω)n,
n ∈ N to denote the space of square-integrable vector-valued functions,
accompanied with the inner product ⟨ · , · ⟩ :

(︁
(uk)

n
k=1, (vk)

n
k=1

)︁
↦→∑︁n

k=1⟨uk, vk⟩L2(Ω). Apart from notational convenience, we treat a
matrix-valued space L2(Ω)d×m, m ∈ N as equivalent to L2(Ω)dm using
any fixed isomorphism. Finally, we may use the shorthand ⟨ · , · ⟩ :=
⟨ · , · ⟩L2 := ⟨ · , · ⟩V for any L2 function space V and similarly ∥ · ∥ :=
∥ · ∥L2 := ∥ · ∥V for the norm. Often, operations are applied in a
pointwise sense, such that for a vector-valued function u : Ω → Rm,
m ∈ N the expression |u| denotes the function |u| : Ω → R, x ↦→ |u(x)|.
Naturally, we extend the definition such that e.g. u ∈ Lp(Ω)m implies
|u| ∈ Lp(Ω) for 1 ≤ p ≤ ∞.

2.1.1 Banach Spaces

Since the norm and weak topologies for infinite dimensional spaces are
different [4, Theorem 6.26], we collect some convenient tools to help us,
which are mainly related to weak convergence and convex closed sets.

Lemma 2.1 ([4, Theorem 6.25]). A Banach space V is reflexive if
and only if the closed unit ball of V is weakly compact.

Lemma 2.2. Let V be a reflexive Banach space and F : V → R
coercive, i.e. for any sequence (vn)n∈N ⊆ V we have

∥vn∥V → ∞ =⇒ F (vn) → ∞.

Then F is weakly coercive with regard to weak convergence, i.e.
infv∈V F (v) = infv∈K F (v) for some sequentially weakly compact set
K.

Proof. Since F is coercive, we have infX F = infK F for some suffi-
ciently large ball ∅ ̸= K ⊆ X. Then because V is reflexive, K is weakly
compact due to Lemma 2.1.

20

Lemma 2.3 ([42, Corollary 8.74]). Let V be a Banach space. A convex
set K ⊆ V is closed if and only if it is weakly closed.

Lemma 2.4 ([4, Theorem 13.6]). Let (fn)n∈N ⊆ Lp(Ω), 1 ≤ p ≤ ∞,
fn → f be an Lp(Ω)-convergent sequence. Then there exists g ∈ Lp(Ω)
and a subsequence (gn)n∈N ⊆ (fn)n∈N with |gn| ≤ g for all n ∈ N and
gn → f pointwise almost everywhere.

Lemma 2.5. The set A := {f ∈ Lp(Ω) : |f | ≤ α} ⊆ Lp(Ω), 1 ≤ p ≤
∞ is (weakly) closed, convex and bounded for any α ∈ Lp(Ω).

Proof. It is easy to see that A is convex by a pointwise consideration
of the constraint and bounded in Lp(Ω) by α. For showing closedness
let (pn)n∈N ⊆ A, pn → p ∈ Lp(Ω) be a convergent sequence in A.
Due to Lemma 2.4 there exists a subsequence (qn)n∈N ⊆ (pn)n∈N
with qn → p pointwise almost everywhere. In particular we have
|p| ≤ supn∈N |qn| ≤ α almost everywhere and therefore conclude p ∈ A.
Finally, using Lemma 2.3 we find that A is weakly closed as well.

2.1.2 Mollifiers

We briefly review the central properties of mollifiers, which are useful
to construct smooth function approximants.

Definition 2.6 (Convolution, c.f. [2, page 38]). For f, g ∈ L1(Rd) we
define the convolution f ∗ g ∈ L1(Rd) by

(f ∗ g)(x) :=
∫︂
Rd

f(x− y)g(y)dy.

If f or g in Definition 2.6 are vector-valued, then f ∗ g is defined in
a component-wise manner. Further, if f, g ∈ L1(Ω) are defined on Ω,
then one defines the convolution f ∗g ∈ L1(Rd) by implicitly extending
f and g to Rd ⊇ Ω with zero.

21

Proposition 2.7 (Mollifier, c.f. [2, Theorem 2.29]). Let ϱ ∈ C∞
0 (Rd)

be given by

ϱ(x) :=

{︄
e
− 1

1−|x|2 if |x| < 1,
0 else.

For ε > 0 the mollifier ϱε ∈ C∞
0 (Rd) is defined by ϱε(x) :=

1
cϱεd

ϱ(xε),
cϱ :=

∫︁
Rd ϱ(x)dx, such that

∫︁
Rd ϱε(x)dx = 1.

If u ∈ L1
loc(Rd), then the mollified function u ∗ ϱε satisfies the

following properties:

(i) supp(u ∗ ϱε) ⊆ suppu+Bε(0),

(ii) u ∗ ϱε ∈ C∞(Rd),

(iii) if u ∈ C∞(Ω), then ∂α(u ∗ ϱε) = (∂αu) ∗ ϱε on Ω for α ∈ Nd
0,

(iv) if u ∈ C(Ω), then u ∗ ϱε → u pointwise on Ω and uniformly on
any compact subset K ⊆ Ω for ε → 0,

(v) if u ∈ C(Ω), then u ∗ ϱε → u uniformly on Ω for ε → 0.

(vi) if u ∈ Lp(Ω) with 1 ≤ p < ∞, then ∥u ∗ ϱε∥Lp(Ω) ≤ ∥u∥Lp(Ω) and
∥u ∗ ϱε − u∥Lp(Ω) → 0 for ε → 0,

(vii) if u ≤ v a.e. for some v ∈ L1(Rd), then u ∗ ϱε ≤ v ∗ ϱε.

Proof. It is straightforward to see that ϱ and ϱε are infinitely differ-
entiable and have compact support. We now prove the properties in
order, following along the lines of [2, Theorem 2.29].

(i) Having x ̸∈ suppu + Bε(0) implies x − y ̸∈ suppu for all y ∈
Bε(0) = supp ϱε. Therefore

(u ∗ ϱε)(x) =
∫︂
Rd

u(x− y)ϱε(y)dy

=

∫︂
supp ϱε

u(x− y)ϱε(y)dy = 0,

i.e. x ̸∈ supp(u ∗ ϱε).

22

(ii) Since ϱε ∈ C∞
0 (Rd) has compact support and u ∈ L1

loc(Ω) we
have for α ∈ Nd

0, x ∈ Ω a well-defined derivative

∂α(u ∗ ϱε)(x) = ∂α
x

∫︂
Rd

u(x− y)ϱε(y)dy

= ∂α
x

∫︂
Rd

u(z)ϱε(x− z)dz

=

∫︂
Rd

u(z)∂α
x ϱε(x− z)dz,

where we transformed with z = x− y.

(iii) Since u ∈ C∞(Ω) we have

∂α(u ∗ ϱε)(x) =
∫︂
Rd

∂α
xu(x− y)ϱε(y)dy

=

∫︂
Rd

(∂αu)(x− y)ϱε(y)dy = (∂αu ∗ ϱε)(x).

(iv) Let δ > 0. Since
∫︁
Rd ϱε(x)dx = 1 for any ε > 0, we have for

x ∈ Ω:

(u ∗ ϱε − u)(x) =

∫︂
Rd

(︁
u(x− y)− u(x)

)︁
ϱε(y)dy

≤ sup
y∈Bε(0)

|u(x− y)− u(x)| < δ (2.1)

whenever we choose ε > 0 small enough, because u is continuous
on Ω. Additionally ε in (2.1) may be chosen uniformly, i.e.
independent of x, for all x ∈ K if K is compact by selecting the
smallest such ε for a finite subcover of

⋃︁
z∈K Bε(z) ⊇ K.

(v) Since Ω is bounded, Ω ⊆ Rd is compact and u on Ω uniformly
continuous. The statement then follows from (2.1).

(vi) For 1 < p < ∞ and 1 < p′ < ∞ with 1
p + 1

p′ = 1 we get using

23

Hölder’s inequality

|(u ∗ ϱε)(x)| ≤
∫︂
Rd

|u(x− y)|ϱε(y)dy

=

∫︂
Rd

|u(x− y)|ϱε(y)
1
p ϱε(y)

1
p′ dy

≤
(︂∫︂

Rd

|u(x− y)|pϱε(y)
)︂ 1

p
(︂∫︂

Rd

ϱε(y)dy
)︂ 1

p′

=
(︂∫︂

Rd

|u(x− y)|pϱε(y)
)︂ 1

p
.

(2.2)

Making use of this it follows for 1 ≤ p < ∞:

∥u ∗ ϱε∥pLp(Ω) ≤
∫︂
Rd

|(u ∗ ϱε)(x)|p dx

≤
∫︂
Rd

∫︂
Rd

|u(x− y)|pϱε(y)dy dx

=

∫︂
Rd

|u(z)|p
∫︂
Rd

ϱε(x− z)dxdz

= ∥u∥pLp(Ω),

(2.3)

where for p = 1 the inequality (2.2) is not required.
Let now δ > 0. Since C0(Ω) ⊆ Lp(Ω) is dense, we may choose
ϕ ∈ C0(Ω) with ∥ϕ − u∥Lp(Ω) < δ

3 and due to (2.3) also ∥ϕ ∗
ϱε − u ∗ ϱε∥Lp(Ω) < δ

3 for any ε > 0. Because ϕ is continuous
with compact support, it is uniformly continuous and we may
thus choose ε uniformly in (2.1) to get ∥ϕ ∗ ϱε − ϕ∥Lp(Ω) <

δ
3 ,

resulting in

∥u ∗ ϱε − u∥Lp(Ω) ≤ ∥u ∗ ϱε − ϕ ∗ ϱε∥Lp(Ω)

+ ∥ϕ ∗ ϱε − ϕ∥Lp(Ω) + ∥ϕ− u∥Lp(Ω)

< δ.

(vii) Since ϱε is non-negative one gets u ∗ ϱε ≤ v ∗ ϱε immediately
from the monotonicity of the integral.

24

Note that Proposition 2.7 directly generalizes to vector-valued func-
tions in a component-wise manner.

2.1.3 Hilbert Spaces
We review some central statements for real Hilbert spaces, namely the
metric projection map onto closed convex sets and the Lax-Milgram
theorem to show existence and uniqueness of weak solutions. Further,
we define the Sobolev space of bounded weak divergence functions. In
this work we only consider Hilbert spaces which are real, as opposed
to complex ones, and any use of the term shall implicitly contain this
assumption.

Lemma 2.8 (Metric projection, c.f. [4, Theorem 6.53, Lemma 6.54]).
Let H be a Hilbert space and K ⊆ H a closed, convex set. Then the
projection map onto K, i.e. πK : H → K such that ∥πK(u)− u∥H =
infv∈K ∥v − u∥H for all u ∈ H is well-defined with

∥πK(u)− πK(v)∥H ≤ ∥u− v∥H .

In particular, πK is uniformly continuous.

Theorem 2.9 (Fréchet-Riesz representation, [42, Corollary 3.19]). Let
V be a Hilbert space, then the map ϕ : V → V ∗, v ↦→ (w ↦→ ⟨v, w⟩V)
is a linear isometric isomorphism.

Theorem 2.10 (Lax-Milgram, c.f. [34, Theorem 1.1.3, Remark 1.1.3]).
Let V be a Hilbert space, aB : V × V → R a bilinear function and
l ∈ V ∗. If aB is both

(i) continuous, i.e. |a(v, w)| ≤ CB∥v∥V ∥w∥V for all v, w ∈ V , and

(ii) coercive, i.e. |a(v, v)| ≥ cB∥v∥2V for all v ∈ V ,

then the problem

a(u, v) = l(v) ∀v ∈ V,

has a unique solution u ∈ V which depends continuously on l owing to
∥u∥V ≤ c−1

B ∥l∥V ∗.

25

A continuous bilinear function aB : V × V → R may equival-
ently be described using the linear operator B : V → V ∗ defined by
⟨Bv,w⟩V ∗,V := aB(v, w). Theorem 2.10 then asserts that the inverse
B−1 : V ∗ → V exists and is bounded through ∥B−1v∗∥V ≤ c−1

B ∥v∗∥V ∗

for all v∗ ∈ V ∗ where cB denotes the coercivity constant of a. This
is a particularly useful point of view which we will make use of in
Chapter 3.

Lemma 2.11 (Poincaré-Wirtinger inequality, c.f. [8, Corollary 5.4.1]).
There exists C > 0 such that

∥v − v∥L2(Ω) ≤ C∥∇v∥L2(Ω)d

for any v ∈ H1(Ω) and v := 1
|Ω|

∫︁
Ω v(x)dx denoting the mean value of

v.

Definition 2.12 (Hdiv(Ω)m, c.f. [37]). Let the space of bounded weak
divergence functions be defined by Hdiv(Ω)m := {v ∈ L2(Ω)d×m :
div v ∈ L2(Ω)m}, m ∈ N with norm

∥u∥2Hdiv(Ω)m := ∥u∥2L2(Ω)d×m + ∥divu∥2L2(Ω)m ,

where the operator div denotes the row-wise weak divergence (in d).
The space of bounded weak divergence functions with zero normal

boundary Hdiv
0 (Ω)m is then defined as the closure of C∞

0 (Ω)d×m with
regard to ∥ · ∥Hdiv(Ω)m.

2.1.4 Γ-Convergence
We may equip functionals with a certain weak notion of convergence,
called Γ-convergence [19], which still allows us to make statements
about how sequences of minimizers of those functionals behave in the
limit. The notion of Γ-convergence and Γ-limit is made precise in the
following and we refer to [19] for further reference.

Definition 2.13 (Gamma-convergence, [19, Definition 1.5]). Let V
be a metric space. A sequence (Fj)j∈N of functions Fj : V → R
is said to Γ-converge in V to its Γ-limit F : V → R (also written
F = Γ- limj→∞ Fj), if for all v ∈ V we have

26

(i) F (v) ≤ lim infj→∞ Fj(vj) for every sequence (vj)j∈N ⊆ V con-
verging to v,

(ii) F (v) ≥ lim supj→∞ Fj(vj) for some sequence (vj)j∈N ⊆ V con-
verging to v.

Note that the choice of metric (or more generally the notion of
convergence) in Definition 2.13 directly affects the Γ-limit. For a
constant sequence (Fj)j∈N of functions Fj = F : V → R it holds
Γ- limj→∞ Fj = F if and only if F is lower semi-continuous [19, Remark
1.8], while in general one has Γ- limj→∞ Fj ≤ limj→∞ Fj pointwise [19,
Remark 1.10]. If the functions Fj are lower semi-continuous and
increasing there is a simple characterization given by the pointwise
limit.

Lemma 2.14 (Gamma-limit of increasing sequences, [19, Remark
1.40 (ii)]). Let V be a metric space and (Fj)j∈N a sequence of lower
semi-continuous functions Fj : V → R. If (Fj)j∈N is increasing, i.e.
Fj(v) ≤ Fj+1(v) for all v ∈ V and j ∈ N, then the Γ-limit is given by
the pointwise limit (︁

Γ- lim
j→∞

Fj

)︁
(v) = lim

j→∞
Fj(v)

for all v ∈ V .

If the sequence of functions Fj are minimized over a common compact
subset, then Γ-convergence implies the convergence of those minimizers
to the minimum of the Γ-limit.

Theorem 2.15 (Convergence of minimizers, c.f. [19, Theorem 1.21]).
Let V be a metric space and (Fj)j∈N a sequence of uniformly mildly
coercive functions Fj : V → R, i.e. there exists a non-empty compact
K ⊆ X such that infv∈K Fj = infv∈V Fj for all j ∈ N. If (Fj)j∈N Γ-
converges to F∞ = Γ- limj→∞ Fj, then there exists a minimizer v̂ ∈ V
of F∞ such that

F∞(v̂) = lim
j→∞

inf
v∈V

Fj(v).

27

Further if (vj)j∈N is any sequence satisfying limj→∞ Fj(vj) =
limj→∞ infv∈V Fj(v), then every limit point of (vj)j∈N is a minimizer
of F∞. In particular if (vj)j∈N is a sequence with Fj(vj) = infv∈V Fj,
then limj→∞ vj → v̂ ∈ V .

2.2 Convex Optimization
Minimizing a convex function F : V → R over some Banach space
V will be a recurring theme throughout this thesis. The field of
convex optimization and, more generally, convex analysis provides tools
and structure to make statements about existence and uniqueness
of such minimizers as well as to formalize optimality conditions and
equivalent dual problems. One may as well see convex optimization
as a generalization of smooth convex optimization which generally
assumes differentiable F over finite-dimensional V . We are going to
review the basic tools of convex optimization in this section.

The generalization to non-smooth optimization allows to incorporate
domain constraints directly within the minimization objective as so-
called indicator functionals χ : V → R which evaluate to ∞ for
infeasible v ∈ V and to zero otherwise.

Definition 2.16 (Indicator functional). For a boolean value w ∈
{true, false} we define the indicator χw ∈ R by

χw :=

{︄
0 if w is true,
∞ if w is false,

while for a predicate w : Ω → {true, false} (e.g. |u| ≤ 1 in a pointwise
sense) we define χw ∈ R by

χw :=

{︄
0 if w(x) is true for almost every x ∈ Ω,

∞ else.

Thus χ|w|≤1 would evaluate to ∞ if and only if |w| is greater than 1
on a set of non-zero measure.

28

Allowing convex functions to assume values within the extended real
numbers R does come with some peculiarities. Indeed, if F : V → R
assumes F (u) = −∞ at a single point u ∈ V , then on each ray starting
in u, F may assume only one single finite value without violating
convexity [43, Section I.2]. For convenience, we distinguish these
special cases with the following definition.

Definition 2.17 (Proper function). Let V be a set. A function
F : V → R is called proper if F (u) < ∞ for at least one u ∈ V and
F (v) > −∞ for all v ∈ V .

With the following property we want to ensure that discontinuities
of functions are well-behaved for minimization in the sense that in
particular for function values of some convergent sequence of points,
the value does not jump upwards at the limit.

Definition 2.18 (Lower semi-continuity). Let V be a topological space.
A function F : V → R is called (sequentially) lower semi-continuous
at v ∈ V if for any sequence (vk)k∈N ⊆ V with limk→∞ vk = v we have

F (v) ≤ lim inf
k∈N

F (vk).

It is important to note, that the definition above depends on the
notion of convergence used. Indeed, since strong convergence of a
sequence implies weak convergence, a weakly lower semi-continuous
function is also strongly lower semi-continuous.

We have the following important set-based characterization of lower
semi-continuity.

Proposition 2.19. A function F : V → R is lower semi-continuous
if and only if all level sets La := {v ∈ V : F (v) ≤ a}, a ∈ R are
sequentially closed.

Proof. Assume F is lower semi-continuous and let a ∈ R. If La = ∅
then it is closed. Otherwise let (uk)k∈N ⊆ La ̸= ∅ with uk → u ∈ V .
Then F (u) ≤ lim infk∈N F (uk) ≤ a and therefore u ∈ La.

29

Assume on the other hand that La is sequentially closed for any
a ∈ R and let (uk)k∈N ⊆ V with uk → u ∈ V . If lim infk∈N F (uk) ∈ R
define a := lim infk∈N F (uk) + ε for some ε > 0. Then (uk)k≥k̂ ⊆ La

for some k̂ ∈ N. Thus since La is sequentially closed we have u ∈ La,
i.e.

F (u) ≤ a = lim inf
k∈N

F (uk) + ε.

Letting ε → 0 concludes lower semi-continuity. If lim infk∈N F (uk) =
−∞ then the above argument may be carried out for any a ∈ R
thus showing F (u) = −∞. If finally lim infk∈N F (uk) = ∞ then
F (u) ≤ lim infk∈N F (uk) holds immediately.

Using this characterization, one may easily show the following state-
ment about pointwise suprema of functions.

Lemma 2.20. Let Fk : V → R, k ∈ N, be lower semi-continuous func-
tions. Then the pointwise supremum F : V → R, F (v) := supk∈N Fk(v)
is lower semi-continuous.

Proof. The level sets La, a ∈ R of F are given by

La =
{︁
v ∈ V : supk∈N Fk(v) ≤ a

}︁
=

⋂︂
k∈N

{v ∈ V : Fk(v) ≤ a}.

Since the countable intersection of closed sets is closed, the statement
follows from the characterization in Proposition 2.19.

For convex functions, lower semi-continuity with regard to weak
convergence agrees with lower semi-continuity.

Lemma 2.21. Let F : V → R be a convex function. Then F is lower
semi-continuous if and only if it is weakly lower semi-continuous.

Proof. Since F is convex, the level sets La, a ∈ R of F are convex.
Then due to Lemma 2.3, all La, a ∈ R are closed if and only if they
are weakly closed.

30

The introduced properties, together with a compactness condition,
allow to show existence of minimizers by directly analyzing a potential
minimizing sequence.

Theorem 2.22 (Direct Method, c.f. [19, Remark 1.36]). Let V be a
metric space and F : V → R be

(i) weakly coercive, i.e. infv∈V F (v) = infv∈K F (v) for some (sequen-
tially) compact set ∅ ̸= K ⊆ V ,

(ii) (sequentially) lower semi-continuous and

(iii) proper.

Then F has at least one minimizer v̂ ∈ V with finite F (v̂).

Proof. Since F is weakly coercive, we have

inf
v∈V

F (v) = inf
v∈K

F (v) = lim
n→∞

F (wn),

for some compact set K ⊆ V and some sequence (wn)n∈N ⊆ K ̸= ∅.
Since K is compact, there exists a convergent subsequence (vn)n∈N ⊆
(wn)n∈N, vn → v̂ ∈ K. Due to F being lower semi-continuous at v̂ ∈ K,
we have

inf
v∈V

F (v) = lim
n→∞

F (vn) ≥ F (v̂).

Consequently, v̂ ∈ K is a minimizer of F with finite F (v̂) since F is
proper.

The topology or, more generally, the notion of convergence in The-
orem 2.22 for lower semi-continuity and weak coercivity need to agree,
but may be chosen at will. In practice it should be chosen as weak as
necessary to ensure weak coercivity, while at the same time being as
strong as possible to relax the precondition on lower semi-continuity.
Often weak coercivity of the functional F in Theorem 2.22 is ensured
by checking for coercivity of F (note the unfortunate naming) thanks
to Lemma 2.2.

31

Convex functions allow for a set-valued generalization of the deriv-
ative, which, roughly speaking, at a given point represents the set of
all tangent hyperplanes bounding the function from below.

Definition 2.23 (Subdifferential). For a convex function F : V → R
the subdifferential ∂F (u) ⊆ V ∗ of F at u ∈ V is defined by

u∗ ∈ ∂F (u)

⇐⇒ F (u) < ∞ ∧ ∀v ∈ V : ⟨u∗, v − u⟩V ∗,V ≤ F (v)− F (u).

For a function F : V → R, v ∈ V we will make use of the shorthand
⟨∂F, v⟩V ∗,V = {⟨u∗, v⟩V ∗,V : u∗ ∈ ∂F}. Also, statements containing
∂F (u) are to be understood as being valid for all elements of ∂F (u),
e.g. ⟨∂F (u), v⟩V ∗,V ≤ 0 is a shorter way of writing ∀u∗ ∈ ∂F (u) :
⟨u∗, v⟩V ∗,V ≤ 0.

The upcoming notion sits at the heart of convex duality theory and
defines a mapping between functions V → R and certain conjugate
functions V ∗ → R.

Definition 2.24 (Convex conjugate function). Let F : V → R be a
function. Then F ∗ : V ∗ → R denotes the convex conjugate (also called
polar function or Legendre transform), defined by

F ∗(v∗) := sup
v∈V

{︁
⟨v∗, v⟩V ∗,V − F (v)

}︁
.

With the following propositions we collect some important properties
of the convex conjugate.

Proposition 2.25 (Convex conjugate identities). Let F : V → R
be proper, lower semi-continuous and convex. Then the following
identities apply:

(i) (F ∗)∗ = F ,

(ii) (λF + c)∗ = λF ∗(·
λ)− c, where λ > 0, c ∈ R,

(iii) F (λ · + u)∗ = F ∗(·
λ)− ⟨ · , uλ⟩V ∗,V , where λ ∈ R \ {0}, u ∈ V ,

32

(iv) Let F : V → R be an absolutely homogeneous function, i.e.
F (αv) = |α|F (v) for all α ∈ R, v ∈ V . Then

F ∗(v∗) = χg(v∗)≤1,

where v∗ ∈ V ∗ and g(v∗) := supv∈V,F (v)≤1⟨v∗, v⟩V ∗,V . In particu-
lar ∥ · ∥∗ = χ∥ · ∥∗≤1 for any norm ∥ · ∥ : V → R and corresponding
dual norm ∥ · ∥∗ : V ∗ → R.

(v) If V is a Hilbert space and A : V → V is an invertible symmetric
bounded linear operator, then(︂

1
2⟨ · , A · ⟩V

)︂∗
= 1

2⟨ · , A
−1 · ⟩V .

Proof. (i) We refer to [43, Proposition II.4.1].

(ii) We calculate

(λF + c)∗ = v∗ ↦→ sup
v∈V

{︁
⟨v∗, v⟩V ∗,V − (λF (v) + c)

}︁
= v∗ ↦→ λ sup

v∈V

{︁
⟨v∗λ , v⟩V ∗,V − F (v)

}︁
− c

= λF ∗(v
∗

λ)− c.

(iii) We calculate

F (λ · + u)∗ = v∗ ↦→ sup
v∈V

{︁
⟨v∗, v⟩V ∗,V − F (λv + u)

}︁
= v∗ ↦→ sup

v′∈V

{︁
⟨v∗, v′−u

λ ⟩V ∗,V − F (v′)
}︁

= v∗ ↦→ sup
v′∈V

{︁
⟨v∗λ , v′⟩V ∗,V − F (v′)

}︁
− ⟨v∗, uλ⟩V ∗,V

= F ∗(·
λ)− ⟨ · , uλ⟩V ∗,V .

(iv) Due to absolute homogeneity of F , we see that for the convex

33

conjugate

F ∗(v∗) = sup
v∈V

⟨v∗, v⟩V ∗,V − F (v)

≤ sup
α≥0

α
(︂

sup
w∈V

F (w)≤1

⟨v∗, w⟩V ∗,V − F (w)
)︂
∈ {0,∞},

depending on whether ⟨v∗, w⟩ − F (w) > 0 for any w ∈ W with
F (w) ≤ 1. Per definition of g, this is the case if g(v∗) > 1. On
the other hand, if ⟨v∗, w⟩ > F (w) for some w ∈ V , F (w) ≤ 1,
then due to homogeneity F (w) ̸= 0 and ⟨v∗, αw⟩ > F (αw) = 1
for α = |F (w)|−1, which implies g(v∗) > 1. Thus, by full case
distinction we get

F ∗(v∗) =

{︄
0 if g(v∗) ≤ 1,
∞ if g(v∗) > 1.

(v) We have (12⟨ · , A · ⟩V)∗ = v∗ ↦→ supv∈V ⟨v∗, v⟩V ∗,V − 1
2⟨v,Av⟩V .

Identifying v∗ ∈ V ∗ with its Riesz representative in V due to
Theorem 2.9, the supremum is attained for

0 = v∗ − 1
2(A+A∗)v,

i.e. v = A−1v∗, since A is symmetric. Consequently, again using
the Riesz representation from Theorem 2.9, we get

(12⟨ · , A · ⟩V)∗ = v∗ ↦→ ⟨v∗, A−1v∗⟩V ∗,V − 1
2⟨A

−1v∗, AA−1v∗⟩V
= v∗ ↦→ 1

2⟨v
∗, A−1v∗⟩V .

Proposition 2.26 (Convex conjugate separability, [43, III, Remark
4.3]). Let V = V1×V2 be a Banach space. If F : V → R is separable, i.e.
F (v1, v2) = F1(v1)+F2(v2) for functions F1 : V1 → R and F2 : V2 → R,
then so is F ∗:

F ∗(v∗1, v
∗
2) = F ∗

1 (v
∗
1) + F ∗

2 (v
∗
2).

34

Proof. From the definition we see immediately that for v∗ = (v∗1, v
∗
2) ∈

V ∗:

F ∗(v∗) = sup
v∈V

⟨v∗, v⟩V ∗,V − F (v)

= sup
(v1,v2)∈V

⟨v∗1, v1⟩V ∗
1 ,V1 + ⟨v∗2, v2⟩V ∗

2 ,V2 − F1(v1)− F2(v2)

= F ∗
1 (v

∗
1) + F ∗

2 (v
∗
2).

Proposition 2.27. For a proper function F : V → R, u ∈ V , u∗ ∈ V ∗

the following statements are equivalent:

(i) u∗ ∈ ∂F (u),

(ii) u ∈ ∂F ∗(u∗),

(iii) ⟨u∗, u⟩V ∗,V = F (u) + F ∗(u∗).

Proof. Observe that F ∗ is proper. Thus, the statement of (iii) is
symmetric in the terms F (u), F ∗(u∗) and it suffices to show the
equivalence between (i) and (iii) since the equivalence with (ii) can be
established analogously.

Let now (i) be true. Rearranging gives ∀v ∈ V : ⟨u∗, v⟩V ∗,V −F (v) ≤
⟨u∗, u⟩V ∗,V −F (u). Since F is proper, F (u) > −∞ holds and from the
definition of the subdifferential we infer

F ∗(u∗) = sup
v∈V

{⟨u∗, v⟩V ∗,V − F (v)} = ⟨u∗, u⟩V ∗,V − F (u) < ∞,

which shows (iii). From (iii), on the other hand, we see that F (u) < ∞
since F ∗ is proper, and ⟨u∗, u⟩V ∗,V − F (u) = F ∗(u∗) ≥ ⟨u∗, v⟩V ∗,V −
F (v) for all v ∈ V , which yields (i).

Proposition 2.27 shows that F and F ∗ are closely related through
their subdifferentials ∂F and ∂F ∗. For minimization problems a duality
theory due to Fenchel (see [43] for details) then allows to formulate
equivalent dual problems. We present a specific version of the duality
theorem for the type of minimization problem that will be relevant in
Chapter 3.

35

Theorem 2.28 (Fenchel duality, [43, Remark III.4.2]). Let V and W
be reflexive Banach spaces, A : V → W be a continuous linear operator
and F : V → R, G : W → R be proper, convex, lower semi-continuous
functions such that there exists v0 ∈ V with F (v0) +G(Av0) < ∞ and
G continuous at Av0. Then the following holds:

inf
v∈V

F (v) +G(Av) = sup
w∗∈W ∗

−F ∗(A∗w∗)−G∗(−w∗). (2.4)

The problem on the right hand side in (2.4) has at least one solution. In
addition v̂ ∈ V , ŵ∗ ∈ W ∗ are solutions to both optimization problems
if and only if

A∗ŵ∗ ∈ ∂F (v̂),

−ŵ∗ ∈ ∂G(Av̂).

2.3 Total Variation
The total variation of some real-valued function is a measure for its
change or oscillation over its whole domain. For weakly differentiable
f one may think of it as the Sobolev W 1,1 semi-norm, as will become
clear through Proposition 2.33. The following definition applies more
generally to non-smooth, vector-valued functions.

Definition 2.29 (Total variation). For u ∈ L1(Ω)m let the total
variation be defined as

TV(u) :=

∫︂
Ω
|Du|F := sup

|ppp|F≤1
⟨u,divppp⟩

:= sup
{︂∫︂

Ω
u · divpppdx : ppp ∈ C∞

0 (Ω)d×m,

|ppp(x)|F ≤ 1 for almost every x ∈ Ω
}︂
,

(2.5)

where the operator div : C∞
0 (Ω)d×m → C∞

0 (Ω)m is the column-wise
divergence (in d), while | · |F : Rd×m → R denotes the Frobenius norm.

36

Note that in Definition 2.29 we defined the whole expression
∫︁
Ω |Du|F

in u as is without specifying its components. The integral notation is
natural due to a characterization of the total variation as a measure
|Du|F [7]. We record the following two central properties of the total
variation.

Proposition 2.30 (c.f. [7, Remark 3.5]). The total variation TV :
L1(Ω)m → R is

(i) lower semi-continuous

(ii) convex

Proof. (i) Since L1(Ω)m → R, u ↦→
∫︁
Ω u · div pdx is continuous for

any fixed p ∈ C∞
0 (Ω)d×m, we conclude lower semi-continuity of

the supremum using Lemma 2.20.

(ii) As a supremum of affine functions, TV is convex.

Remarkably, the set of all L1-functions with bounded total variation
forms a Banach space in the following way.

Theorem 2.31 ([8, Theorem 10.1.1]). The vector space BV (Ω)m :=
{u ∈ L1(Ω)m : TV(u) < ∞} together with the norm

∥u∥BV (Ω)m := ∥u∥L1(Ω)m + TV(u)

is a Banach space, called the space of m-vector-valued bounded vari-
ation functions BV (Ω)m.

We note that there are different ways to define the total variation
for vector-valued functions and refer to [47] for a short overview.
Nevertheless, the topological properties remain the same, as we record
with the following remark.

Remark 2.32. If one replaces the pointwise norm | · |F in Defin-
ition 2.29 with any other norm, the defined total variation TV (u)
may be different but the resulting space BV (Ω)m will be topologically
equivalent.

37

Indeed, since any two norms | · |a, | · |b : Rm → [0,∞) are equivalent,
i.e. c|x|b ≤ |x|a ≤ C|x|b for all x ∈ Rm for constants c, C > 0, we
observe for any homogeneous functional F : C1

c (Ω)
d×m → R that

1
C sup

|ppp(x)|b≤1
F (ppp) ≤ 1

C sup
1
C |ppp(x)|a≤1

F (ppp) = sup
|ppp(x)|a≤1

F (ppp)

≤ sup
c|ppp(x)|b≤1

F (ppp) = 1
c sup
|ppp(x)|b≤1

F (ppp).

Consequently, the corresponding norms ∥ · ∥a and ∥ · ∥b on BV (Ω)m are
equivalent and BV (Ω)m carries the same topology as e.g. the space of
bounded variation from the extensive work [7].

The total variation displays some remarkable elementary properties
which we try to summarize with the following proposition. The choice
of | · |F in particular allows for rotational invariance of the total
variation in both the domain (change of coordinates) and the range
(global rotation of vector field) of u.

Proposition 2.33. Let u, v ∈ L1(Ω)m. The total variation has the
following basic properties:

(i) TV(u+ c) = TV(u) for c ∈ R,

(ii) TV(u+ v) ≤ TV(u) + TV(v),

(iii) TV(λu) = |λ|TV(u) for λ ∈ R,

(iv) TV(R ◦ u ◦ Q) = TV(u) for any rotation Q ∈ Rd×d, QTQ = I
of the domain and any rotation R ∈ Rm×m, RTR = I of the
codomain,

(v) If u ∈ H1(Ω)m then TV(u) =
∫︁
Ω |∇u|F ,

Proof. We prove the statements by extensive use of the divergence
theorem.

38

(i) Due to linearity of the inner product and since ppp has compact
support, we deduce

TV(u+ c) = sup
|ppp|F≤1

⟨u+ c,divppp⟩

= sup
|ppp|F≤1

⟨u,divppp⟩+ c

∫︂
Ω

divppp = TV(u).

(ii) Splitting the supremum for u and v individually yields the in-
equality

TV(u+ v) = sup
|ppp|F≤1

⟨u+ v, divppp⟩

≤ sup
|ppp|F≤1

⟨u,divppp⟩+ sup
|qqq|F≤1

⟨u,divqqq⟩

= TV(u) + TV(v).

(iii) By moving the sign sgn(λ) into the dual variables, we get

TV(λu) = sup
|ppp|F≤1

⟨λu,divppp⟩

= |λ| sup
| sgn(λ)ppp|≤1

⟨u,divppp⟩ = |λ|TV(u).

(iv) For ppp ∈ C∞
0 (Ω)d×m, let pppk ∈ C∞

0 (Ω)m, k = 1, . . . , d denote its
k-th row component. We then evaluate

TV(R ◦ u ◦Q) = sup
|ppp|F≤1

⟨R ◦ u ◦Q,divppp⟩L2(QTΩ)m

= sup
|ppp|F≤1

⟨R ◦ u,div(ppp ◦QT)⟩L2(Ω)

= sup
|ppp|F≤1

⟨u,RT ◦ div(ppp ◦QT)⟩L2(Ω)

= sup
|ppp|F≤1

⟨u,div((RT ◦ pppk ◦QT)dk=1)⟩L2(Ω)

= TV(u).

39

(v) We refer to [8, Section 10.1] at this point and note that we
will be able to prove this more generally in Proposition 3.14
ourselves as soon as a certain density argument is established by
Theorem 3.12.

We remark that while rotational invariance in the domain space in
particular is a desirable property, it is difficult to achieve in a discrete
setting, as we will point out in Chapter 5.

40

3 The L1-L2-TV-Functional and
Duality

After having laid some of the groundwork for total variation functionals
in Chapter 2 the current chapter will introduce the optimization model
which will be the focus of both our decomposition methods in Chapter 4
and our discretization efforts in Chapter 5. In this chapter we cover
basic applications of the model, primal and dual formulations, existence
and uniqueness of their solutions as well as regularization.

The meticulous dualization of the combined L1-L2-TV model and
its regularized variant for vector-valued functions in a general Hilbert
space setting in particular may be considered a new contribution.
Compared to the primal-dual methods in [40, 62, 65, 67], where the
dualization is performed either on smooth or on discrete function
spaces, our approach applies to non-smooth, vector-valued functions
in BV (Ω)m ∩ L2(Ω)m, m ∈ N as well. Due to this vector-valued
setting, dualization results for the scalar case derived in [58] and [60]
need to be adjusted accordingly. Compared to [60] we also explore a
new alternative proof of the density argument necessary for the dual
characterization of the total variation.

A preliminary primal-dual formulation for the corresponding scalar
version was kindly contributed by Andreas Langer and used as a basis
for the derivation. Results of this chapter paired with corresponding
numerical examples from Chapter 5 are in preparation to be published
separately [56].

41

3.1 Model and Motivation

As in Chapter 2, let Ω ⊆ Rd be an open, bounded and simply connected
domain with Lipschitz boundary, where d ∈ N denotes the spatial
dimension, e.g. d = 1 for signals or d = 2 for typical images. Functions
Ω → Rm may be viewed as general images, where m ∈ N denotes
the number of output channels, e.g. m = 1 for grey-scale images or
m = d for motion fields. We will concern ourselves with minimizing
a non-smooth functional consisting of a combined L1-L2 data fidelity
term and a total variation term. More precisely, letting g ∈ L2(Ω) be
the given data, T : L2(Ω)m ↦→ L2(Ω) be a bounded linear operator
and α1, α2, λ ≥ 0 be adjustable weighting parameters, we consider the
so-called L1-L2-TV model

inf
u∈L2(Ω)m

∩BV (Ω)m

α1∥Tu− g∥L1(Ω)+
α2
2 ∥Tu− g∥2L2(Ω)+λ

∫︂
Ω
|Du|F , (3.1)

which was first proposed in a slightly more general way in [59] for
the scalar-valued case m = 1. Modifications of the L1-L2-TV model
have been presented in [48], where the total variation is replaced by
∥Wu∥L1 with W being a wavelet tight frame transform, and in [70],
where the second order total generalized variation [20] has been used
as regularization term and box-constraints were incorporated, which
assure that the reconstruction lies in the respective dynamic range.

Before we proceed to analyze (3.1) through its upcoming extensions
(3.5) and (3.13), we will first motivate its study by giving some example
applications.

3.1.1 Applications

The model (3.1) may be applied to imaging problems in various ways
by choosing the operator T appropriately. We highlight some of these
approaches to give a rough sense of the practical applicability of
the model. These will also come up later as numerical examples in
Chapter 5.

42

Figure 3.1: left: input image g with mixed noise (original image from
[11]), right: denoised output image u, see Section 5.5.1

Denoising

Given a noisy image g ∈ L2(Ω), the removal of noise in order to obtain
a clear image u ∈ L2(Ω) is called denoising, see Figure 3.1. This
operation may be performed by using the identity operator T := I in
(3.1). The usage of total variation as a regularization term for noise
removal is well-known to preserve edges. In particular, it has been
demonstrated [59, 66, 68] that the optimization problem (3.1) is well
suited for removing a mixture of Gaussian and impulse noise, which is
relevant when the input data has been affected by both noise types,
possibly by separate processes. Moreover it is easy to see that (3.1)
is a generalization of two well-known total variation models. Namely,
for α1 = 0 we obtain the so-called L2-TV model, which has been
successfully used to remove additive Gaussian noise in images [29],
while for α2 = 0 we get the so-called L1-TV model which is used to
remove impulse noise [6, 72, 73].

Inpainting

Restoring a given defective image g ∈ L2(Ω \ D) to obtain a recon-
struction u ∈ L2(Ω) covering the defective region D ⊆ Ω is called
inpainting, see Figure 3.2. We may perform inpainting using the model

43

Figure 3.2: left: input image g [11] with corrupted regions, right: in-
painted output image u, see Section 5.5.2

(3.1) by setting T := IdΩ\D as a masking operator defined by

(IdΩ\Du)(x) :=

{︄
u(x) x ∈ Ω \D,

0 x ∈ D,
(3.2)

which may be interpreted as a restriction of the data functional to
the known area Ω \D. A solution u to (3.1) will thus intuitively, try
to match g on Ω \ D where data is given, while having small total
variation overall. In particular, this formulation matches the denoising
setting for D = ∅.

Optical Flow

The problem of optical flow is to compute the apparent motion field
of an image sequence. One approach, given two grey-scale images
f0, f1 : Ω → [0, 1], is to estimate a displacement field u : Ω → Rm,
m = d which maps points of similar brightness, see Figure 3.3, i.e. for
all x ∈ Ω

f0(x) = f1(x+ u(x)). (3.3)

Here exceeding displacements x + u(x) ̸∈ Ω are ignored. Equation
(3.3) is called the brightness constancy assumption. It is usually
underdetermined since u is vector-valued while (3.3) is scalar, and
depending on f0, f1 there might not even exist a solution, e.g. due to
occlusion or brightness change. Nevertheless, (3.3) may be still applied

44

Figure 3.3: from left to right, top to bottom: input frames f0, f1 [11],
image difference f1−f0, estimated optical flow displacment
field u, see Section 5.5.3

in a minimization setting as a data term, e.g. using the L2 residual,
together with suitable regularization to arrive at an approximate
motion field u [9].

Assuming smooth f0, f1 and expanding the right hand side of (3.3)
at x+ u0(x) for some smooth initial guess u0 : Ω → R2 one arrives at

f0(x) = f1(x+ u0(x) + (u− u0)(x))

≈ f1(x+ u0(x)) +∇f1(x+ u0(x)) · (u− u0)(x)

≈ fw(x) +∇fw(x) · (u− u0)(x)

= fw(x) +∇fw(x) · u(x)−∇fw(x) · u0(x),

(3.4)

where fw, defined as fw(x) := f1(x+ u0(x)) is a (backwards-)warped
version of f1. Note that in the derivation sketched above we generally
have

∇fw(x) = (I + u′0(x)
T)∇f1(x+ u0(x)) ̸= ∇f1(x+ u0(x)).

45

We call (3.4) the optical flow equation linearized at the initial guess
u0. Note that for any solution u to (3.4), u+ v with ∇fw · v = 0 is a
solution as well, i.e. the linearized optical flow equation provides flow
information only in the image gradient direction, a phenomenon also
known as aperture problem.

We use model (3.1) to estimate a solution to (3.4) by setting

Tu := ∇fw · u,
g := ∇fw · u0 − (fw − f0).

The parameters α1, α2, λ in (3.1) allow us to control the optical flow
model and special cases have been used in their discrete forms for
calculating the optical flow of image sequences, e.g. discrete L1-TV
optical flow in [82] and a comparison of L1-TV and L2-TV in [39].

Since (3.4) is linearized, it is intuitively clear that we cannot expect
large displacements to be resolved without providing a close initial
guess u0. Nevertheless, we will see in Chapter 5 that an iterative
warping algorithm, namely Algorithm 5.18, can alleviate this problem
and produce adequate results.

3.1.2 Primal Formulation

We return to study our L1-L2-TV model (3.1). In its general form,
it exhibits undesirable properties: namely, existence and uniqueness
of the solution may not be guaranteed, as we show by the following
simple examples.

Example 3.1. Let Ω := (0, 1) ⊆ R1. Counter-examples to existence
and uniqueness of solutions of (3.1) are given as follows.

(i) Let α1 = 1, α2 = 0, λ = 0, (Tu)(x) := xu(x) and g(x) := 1 for
x ∈ Ω. Observe the sequence (vk)k∈N ∈ BV (Ω) with vk(x) :=

46

min{k, 1x}. Since for k ∈ N the functional in (3.1) becomes

0 ≤ ∥Tvk − g∥L1 =

∫︂ 1

0
|xmin{k, 1x} − 1|dx

=

∫︂ 1
k

0
1− kx dx = 1

2k → 0,

we infer that ∥Tuk − g∥L1 → 0 must hold for any minimizing
sequence (uk)k∈N ⊆ BV (Ω). Further, by restricting (uk) to
some subsequence, we have uk(x) → 1

x =: û(x) for a.e. x ∈ Ω.
But û ̸∈ L1(Ω) and therefore, no solution to (3.1) exists in
BV (Ω) ⊆ L1(Ω).

(ii) Let T = 0. Then any constant function u ∈ BV (Ω) minimizes
(3.1) since the total variation vanishes:

0 ≤ λ

∫︂
Ω
|Du|F = 0.

We will address these issues by formulating a coercivity condition in
Proposition 3.2 for the following extended version of (3.1).

Hilbert Space Setting
As in (3.1), let Ω ⊆ Rd, d ∈ N be an open, bounded and simply
connected domain with Lipschitz boundary. Let V ⊆ L2(Ω)m be a
continuously embedded Hilbert space, T : V → L2(Ω) a bounded linear
operator, S : V → VS a bounded linear operator for some Hilbert space
VS and α1, α2, λ, β ≥ 0. Then the penalized version of (3.1) in a Hilbert
space setting reads

inf
u∈V

α1∥Tu− g∥L1 + α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
VS

+ λ

∫︂
Ω
|Du|F . (3.5)

Here β ≥ 0 is an optional penalization parameter. We do want to
note that searching for solutions u ∈ V in (3.5) instead of in the space
V ∩ BV (Ω)m as in (3.1) does not affect the orginal problem in its
intended purpose. Indeed, for λ > 0 any u ∈ V ⊆ L2(Ω)m ⊆ L1(Ω)m

47

with finite energy (3.5) will have finite total variation and therefore be
an element of BV (Ω)m.

For the operator S and its related spaces we will restrict ourselves
to the choices

(S.i) S = I : V → VS where V ⊆ L2(Ω)m and VS ⊆ L2(Ω)m, and

(S.ii) S = ∇ : V → VS where V ⊆ H1(Ω)m and VS ⊆ L2(Ω)d×m,

which we will refer to as Setting (S.i) and Setting (S.ii), respectively.
Note that Setting (S.ii) has V ⊆ H1(Ω)m, which restricts u ∈ V to
allow for weak derivatives, while Setting (S.i) does not.

3.1.3 The Bilinear Form aB

To describe the differentiable part of (3.5) it is convenient to define
the symmetric bilinear form aB : V × V → R by

aB(u,w) := α2⟨Tu, Tw⟩+ β⟨Su, Sw⟩ = ⟨Bu,w⟩V ∗,V (3.6)

with B : V → V ∗ denoting the operator B := α2T
∗T + βS∗S. Thus

Bu = v for u ∈ V , v ∈ V ∗ if and only if

aB(u,w) = ⟨v, w⟩V ∗,V (3.7)

for all w ∈ V . The bilinear form aB(·, ·) induces a respective energy
norm defined by ∥u∥2B := aB(u, u) for u ∈ V . Since T and S are
bounded linear operators, it is easy to see that aB is bounded as well.
The definition of aB allows us to give the following simple condition
for existence and uniqueness of solutions to (3.5).

Proposition 3.2. If aB is coercive, then (3.5) has a unique solution
û ∈ V . If additionally λ > 0, then û ∈ V ∩BV (Ω).

Proof. We denote by F the functional from (3.5) and aim to apply the
direct method from Theorem 2.22. Since it is clear that F is proper
by having a lower bound of 0 and satisfying F (0) < ∞, it remains to
check that F is weakly coercive and lower semi-continuous.

48

Since T : V → L2(Ω) is bounded, V → R, u ↦→ α1∥Tu − g∥L1 +
α2
2 ∥Tu− g∥2L2 is continuous and due to convexity weakly lower semi-

continuous, see Lemma 2.21. By the same argument, since S : V →
VS ∈ {L2(Ω)m, L2(Ω)d×m} is bounded, V → R, u ↦→ β

2 ∥Su∥
2
L2 is

weakly lower semi-continuous. The total variation is weakly lower
semi-continuous on L1(Ω)m, see Proposition 2.30, and in particular on
V because of the continuous embeddings V ⊆ L2(Ω)m ⊆ L1(Ω)m. In
total, F : V → R is weakly lower semi-continuous.

Since aB is coercive we know that for ∥u∥V → ∞ we have F (u) ≥
1
2aB(u, u) → ∞. Therefore infu∈K F (u) = infu∈V F (u) for some suffi-
ciently large bounded closed convex set K ⊆ V . Since V is reflexive,
K is weakly compact and the existence of a minimizer û ∈ V now
follows from Theorem 2.22.

For uniqueness, we note that F is strongly convex since aB is coercive
and we may write F (u) = 1

2aB(u, u) + α1∥Tu− g∥L1 − α2⟨Tu, g⟩L2 +
∥g∥2L2 + λTV(u) with all other terms being convex. Following the
standard argument, assuming there are two different minimizers u, v ∈
V , u ̸= v of F with minimum F̂ we have in particular u+v

2 ∈ V with

F (u+v
2) < 1

2F (u) + 1
2F (v) = F̂ ,

which contradicts the assumption. Therefore the minimizer û of F
must be unique.

Since 0 ∈ V has finite energy F (0), the minimizer û will have finite
energy as well and in particular finite total variation

∫︁
Ω |Dû|F if λ > 0.

In this case we conclude û ∈ V ∩BV (Ω)m since û ∈ V ⊆ L1(Ω)m.

Specifically for our two main choices S ∈ {I,∇} we can describe
coercivity of the bilinear form aB in slightly more explicit terms as
given by the following proposition.

Proposition 3.3. The bilinear form aB : V × V → R is coercive in
any of the following cases:

(i) α2 > 0 and T = I,

(ii) β > 0 and S = I, or

49

(iii) β > 0, S = ∇ and 1 /∈ kerT .

Proof. If T = I with α2 > 0 or S = I with β > 0 we see directly

aB(v, v) = α2∥Tv∥2L2 + β∥Sv∥2L2 ≥ max{α2, β}∥v∥2V

for all v ∈ V , which shows the statement for items (i) and (ii).
For item (iii) with S = ∇ we show coercivity in H1(Ω)m from which

coercivity in the subspace V follows immediately. Split u ∈ H1(Ω)m

into u = v + w with wi :=
1
|Ω|

∫︁
Ω ui(y)dy being the componentwise

mean and v ∈ H1(Ω)m such that
∫︁
Ω vi(x)dx = 0 for i = 1, . . . ,m. Due

to the Poincaré-Wirtinger inequality, see Lemma 2.11 we have

∥u∥2H1(Ω)m = ∥v + w∥2L2 + ∥∇v∥2L2

≤ ∥v∥2L2 + 2∥v∥L2∥w∥L2 + ∥w∥2L2 + ∥∇v∥2L2

≤ 2∥w∥2L2 + 2∥v∥2L2 + ∥∇v∥2L2

≤ 2∥w∥2L2 + c1∥∇v∥2L2

(3.8)

for a constant c1 > 0, where we used 0 ≤ (a − b)2 = a2 − 2ab + b2,
a, b ≥ 0 to obtain the second inequality. Because the operator T
cannot annihilate constant functions, there is cT > 0 independent
of w such that ∥Tw∥L2 ≥ cT ∥w∥L2 . This means that if ∥w∥L2 ≥
2c−1

T ∥T∥L(L2,L2)∥v∥L2 , then

∥Tu∥L2 = ∥Tw + Tv∥L2 ≥ cT ∥w∥L2 − ∥T∥L(L2,L2)∥v∥L2 ≥ cT
2 ∥w∥L2 .

This together with (3.8) yields

∥u∥2H1(Ω)m ≤ 2∥w∥2L2 + c1∥∇v∥2L2

≤ 8
c2T
∥Tu∥2L2 + c1∥∇u∥2L2 ≤ c2aB(u, u)

for some constant c2 > 0.
If on the other hand ∥w∥L2 < 2c−1

T ∥T∥L(L2,L2)∥v∥L2 then (again
using the Poincaré-Wirtinger inequality, see Lemma 2.11) we have

∥w∥L2 < 2c−1
T ∥T∥L(L2,L2)∥v∥L2 ≤ c3∥∇v∥L2

50

for some constant c3 > 0 and hence

∥u∥2H1(Ω)m ≤ 2∥w∥2L2 + c1∥∇v∥2L2

≤ (c1 + 2c23)∥∇u∥2L2 ≤ c1+2c23
β aB(u, u)

which concludes coercivity of aB for item (iii).

Note that injectivity of α2T suffices to guarantee that B is invertible
but does not necessarily imply coercivity of aB.

From now on we will assume coercivity of aB and due to The-
orem 2.10 invertibility of B = α2T

∗T + βS∗S : V → V ∗ in particular.

(A1) The bilinear form aB : V × V → R is coercive.

While this is not required for dualization in itself, it will allow us to
state the dual problem to (3.5) in a more explicit form in Theorem 3.4
and (3.12) using the inverse of B. Namely, we introduce the dual norm
on V ∗ by ∥u∗∥2B−1 := ⟨u∗, B−1u∗⟩V ∗,V for u∗ ∈ V ∗. Coercivity of aB
will also be useful later in showing other uniqueness properties such as
Theorems 3.8 and 5.15.

3.1.4 Dualization in H1(Ω)m

In this subsection we fix Setting (S.ii) with V = H1(Ω)m and aim
to derive the dual problem to (3.5) which will later motivate the
regularized predual formulation (3.12) in a more general setting. We
recall from Proposition 2.33 that for this choice of V the total variation
reduces to

∫︁
Ω |Du|F =

∫︁
Ω |∇u|F dx.

Theorem 3.4. Let V = H1(Ω)m and W = W1 × W2 = L2(Ω) ×
L2(Ω)d×m. Then the problem

inf
ppp=(p1,ppp2)∈W ∗

1
2∥T

∗p1 +∇∗ppp2 + α2T
∗g∥2B−1 − α2

2 ∥g∥2L2

− ⟨g, p1⟩+ χ|p1|≤α1
+ χ|ppp2|F≤λ,

(3.9)

51

is dual to (3.5). Furthermore, solutions u ∈ V and ppp ∈ W ∗ to (3.5)
and (3.9) respectively are characterized by

T ∗p1 +∇∗p2 = Bu− α2T
∗g, (3.10)

|Tu− g| p1 = −α1(Tu− g), |p1| ≤ α1,

|∇u|F ppp2 = −λ∇u, |ppp2|F ≤ λ.

Proof. The proper, convex and lower semicontinuous functions F :
V → R, G : W → R and the linear operator A : V → W are set as
follows:

F(u) := α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
L2 ,

G(Au) := α1∥Tu− g∥L1 + λ

∫︂
Ω
|∇u|F dx, A := (T,∇).

Using the definition of the conjugate function, we compute F∗ and
G∗. We have:

F∗(u∗) = sup
u∈V

{︂
⟨u∗, u⟩V ∗,V − α2

2 ∥Tu− g∥2L2 − β
2 ∥Su∥

2
L2

}︂
= sup

u∈V

{︂
⟨u∗ + α2T

∗g, u⟩V ∗,V

− 1
2⟨(α2T

∗T + βS∗S)u, u⟩V ∗,V − α2
2 ∥g∥2L2

}︂
A function u ∈ V is a supremum of the above set if

0 = ∂u{⟨u∗, u⟩V ∗,V −F(u)} = u∗ + α2T
∗g − (α2T

∗T + βS∗S)u.

and hence the supremum is obtained at

u = (α2T
∗T + βS∗S)−1(u∗ + α2T

∗g) = B−1(u∗ + α2T
∗g).

Thus we obtain an explicit formulation for F∗ : V ∗ → R as

F∗(u∗) = 1
2

⟨︁
u∗ + α2T

∗g,B−1(u∗ + α2T
∗g)

⟩︁
V ∗,V

− α2
2 ∥g∥2L2

= 1
2∥u

∗ + α2T
∗g∥2B−1 − α2

2 ∥g∥2L2 .

52

For the computation of G∗ we split according to Proposition 2.26:

G∗(vvv∗) = G∗
1(v

∗
1) + G∗

2(vvv
∗
2),

with G1(v1) := α1∥v1 − g∥L1 , G2(vvv2) := λ∥vvv2∥L1 . Then we have

G∗
1(v

∗
1) = sup

v1∈L2(Ω)

{⟨v1, v∗1⟩ − α1∥v1 − g∥L1}

= sup
v′1=v1−g∈L2(Ω)

{︂∫︂
Ω
v∗1 · v′1 − α1|v′1|+ v∗1 · g dx

}︂
= ⟨g, v∗1⟩+ χ|v∗1 |≤α1

.

Analogously we find

G∗
2(vvv

∗
2) = sup

vvv2∈L2(Ω)d×m

{︂
⟨vvv2, vvv∗2⟩ − λ

∫︂
Ω
|vvv2(x)|F dx

}︂
=

{︄
0 if |vvv∗2(x)|F ≤ λ,

∞ if |vvv∗2(x)|F > λ.

Combining these calculations we obtain

G∗(vvv) = ⟨g, v∗1⟩+ χ|v∗1 |≤α + χ|v∗2 |F≤λ.

Applying the Fenchel duality from Theorem 2.28 yields the correspond-
ing dual formulation and the optimality conditions A∗p ∈ ∂F(u) and
−p ∈ ∂G(Au). The former reads

T ∗p1 +∇∗p2 = α2T
∗(Tu− g) + βS∗Su = Bu− α2T

∗g.

The latter resolves pointwise to

−p1 = α1
Tu−g
|Tu−g| ,

−ppp2 = λ ∇u
|∇u|F ,

whenever Tu−g ̸= 0 or ∇u ̸= 0 respectively and |p1| ≤ α1 or |ppp2|F ≤ λ
otherwise. Equivalently one has |p1| ≤ α1, |ppp2|F ≤ λ a.e. on Ω and

|Tu− g| p1 = −α1(Tu− g),

|∇u|F ppp2 = −λ∇u.

53

Note that (3.10) is a relation in the dual space V ∗ and the term
∇∗ may be understood as ∇∗ : L2(Ω)d×m → V ∗, ppp ↦→ (w ↦→ ⟨ppp,∇w⟩).
Further, equation (3.10) can be rewritten using the bilinear form aB
from equation (3.6) as

−⟨p1, T v⟩ − ⟨ppp2,∇v⟩ = aB(u, v)− l(v) ∀v ∈ V, (3.11)

where l(v) := α2⟨g, Tv⟩.

3.2 Regularized Model
The dual problem (3.9) is convex but does not necessarily have a
unique solution due to the nontrivial kernel of ∇∗. For us to be able to
enforce a unique solution, we slightly modify the objective function in
(3.9) by adding terms γ1

2α1
∥p1∥2L2 and γ2

2λ∥ppp2∥
2
L2 with γ1, γ2 ≥ 0. Setting

γ1, γ2 > 0 will then guarantee strong convexity of the dual energy (see
Lemma 3.7 below), which will become essential for solution algorithms
taking advantage of that property, e.g. Theorem 5.15. Similar to [62],
adding these two terms corresponds to using a Huber-type function
in the primal problem, which will be made explicit by Theorem 3.5
and Proposition 3.9.Additionally, compared to the motivation by The-
orem 3.4 in a smooth setting, we will generalize the space V to allow
for discontinuous functions as originally intended by (3.5).

3.2.1 Predual Problem and Dualization
Let V ⊆ L2(Ω)m be as in (3.5). We aim to choose W as a Hilbert
space such that the linear operator Λ := (T,∇) : V → W = (W1,W2),
corresponding to A in the proof of Theorem 3.4, remains bounded.
In particular we restrict ourselves to W1 ⊆ L2(Ω) and the following
choices for ∇ : V → W2 and its corresponding spaces:

(∇.i) V ⊆ H1(Ω)m allowing for Settings (S.i) and (S.ii) and W2 ⊆
L2(Ω)d×m,

(∇.ii) V ⊆ H1
0 (Ω)

m allowing for Settings (S.i) and (S.ii) and W2 ⊆
L2(Ω)d×m,

54

(∇.iii) V ⊆ L2(Ωm) with Setting (S.i), and W2 ⊆ (Hdiv
0 (Ω)m)∗, by

defining ∇ : u ↦→ (p ↦→ ⟨u,−div p⟩).

Note that for Settings (∇.ii) and (∇.iii) we have ∇∗ = −div due to
vanishing boundary terms, while for Setting (∇.i) this is not necessarily
true.

Using γ1, γ2 ≥ 0 we propose the following regularized dual problem:

inf
ppp=(p1,ppp2)∈W ∗

{︂
1
2

⃦⃦
Λ∗ppp− α2T

∗g
⃦⃦2
B−1 − α2

2 ∥g∥2L2

+ ⟨g, p1⟩+ χ|p1|≤α1
+ γ1

2α1
∥p1∥2L2

+ χ|ppp2|F≤λ + γ2
2λ∥ppp2∥

2
L2 =: E∗(ppp)

}︂
,

(3.12)

Note that if α1 = 0, then it follows immediately that p1 = 0 due
to the box-constraint χ|p1|≤α1

. Analogously if λ = 0, then ppp2 = 0.
In these cases we use the convention that the terms γ1

2α1
∥p1∥2L2 and

γ2
2λ∥ppp2∥

2
L2 vanish respectively. This convention both makes sense as a

continuous extension of the limit process α1, λ → 0 and agrees with
setting α1, λ = 0 prior to dualization.

Theorem 3.5. The dual problem to (3.12) reads

inf
u∈V

{︂
α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
L2

+ F ∗
1 (Tu) + F ∗

2 (∇u) =: E(u)
}︂ (3.13)

where F ∗
1 , F ∗

2 are the convex conjugates to F1 : W
∗
1 → R, F2 : W

∗
2 → R

given by

F1(p1) := ⟨g, p1⟩+ χ|p1|≤α1
+ γ1

2α1
∥p1∥2L2 ,

F2(ppp2) := χ|ppp2|F≤λ + γ2
2λ∥ppp2∥

2
L2 .

Furthermore solutions p = (p1, ppp2) ∈ W ∗, u ∈ V of (3.12) and (3.13)
respectively are characterized by

0 = Λ∗ppp− α2T
∗g +Bu,

Tu ∈ ∂F1(p1),

∇u ∈ ∂F2(ppp2).

(3.14)

55

Proof. We again use the Fenchel duality from Theorem 2.28, choosing
F : W ∗ → R, G : V ∗ → R and A : W ∗ → V ∗ as follows

F(ppp) := F1(p1) + F2(ppp2)

= ⟨g, p1⟩+ χ|p1|≤α1
+ χ|ppp2|F≤λ + γ1

2α1
∥p1∥2L2 +

γ2
2λ∥ppp2∥

2
L2

G(Appp) := 1
2∥Appp− α2T

∗g∥2B−1 − α2
2 ∥g∥2L2 ,

Appp := Λ∗ppp = T ∗p1 +∇∗ppp2.

For G∗ we get by the definition of the convex conjugate

G∗(u) = sup
v∈V ∗

{︂
⟨v, u⟩V ∗,V − 1

2

⟨︁
v − α2T

∗g,B−1(v − α2T
∗g)

⟩︁
V ∗,V

+ α2
2 ∥g∥2L2

}︂
where the supremum is attained whenever

0 = ∂v
(︁
⟨v, u⟩V ∗,V − G(v)

)︁
= u−B−1(v − α2T

∗g),

which implies v = Bu+ α2T
∗g. Hence we have

G∗(u) = ⟨Bu+ α2T
∗g, u⟩

Ŵ ,Ŵ
∗ − 1

2⟨B
−1Bu,Bu⟩

Ŵ
∗
,Ŵ

+ α2
2 ∥g∥2L2

= ⟨u,Bu⟩
Ŵ ,Ŵ

∗ + ⟨u, α2T
∗g⟩ − 1

2⟨u,Bu⟩
Ŵ ,Ŵ

∗ + α2
2 ∥g∥2L2

= 1
2⟨u, (α2T

∗T + βS∗S)u⟩V,V ∗ + ⟨u, α2T
∗g⟩+ α2

2 ∥g∥2L2

= α2
2 ⟨Tu, Tu⟩+ β

2 ⟨Su, Su⟩+ α2⟨Tu, g⟩+ α2
2 ∥g∥2L2

= α2
2 ∥Tu+ g∥2L2 +

β
2 ∥Su∥

2
L2 .

For F ∗, since F is separable in p1 and ppp2, we only apply Proposition 2.26
without resolving F ∗

1 and F ∗
2 explicitly. The optimality conditions in

Theorem 2.28 correspond to Λu ∈ ∂F (ppp) and −u = B−1(Λ∗ppp−α2T
∗g)

which yield (3.14).

Theorem 3.5 established the duality of (3.12) and (3.13) based on the
predual formulation (3.12) similar to the approach of [58]. It is, however,
interesting to note that the spaces V and W used for dualization are

56

reflexive and thus the Fenchel duality from Theorem 2.28 may be used
to equivalently establish the duality of (3.13) and (3.12) based on the
primal formulation (3.13) (the only difference being a change in sign
as can be seen when comparing (3.9) with (3.12)).

Proposition 3.6. If aB is coercive, then (3.13) has a unique solution
û ∈ V . If additionally λ > 0, then û ∈ V ∩BV (Ω).

Proof. The proof is similar to the one of Proposition 3.2. To see that
û ∈ BV (Ω) if λ > 0, we additionally refer to Proposition 3.14.

The primal functional E from (3.13) satisfies the following strong
convexity property.

Lemma 3.7. If û ∈ V is a minimizer of E, then we have
1
2∥u− û∥2B ≤ E(u)− E(û)

for all u ∈ V.

Proof. We apply the same method as in [13, Lemma 10.2]. For the
energy E from (3.13) we write E(u) = F (u) +G(u) with

G(u) := F ∗
1 (Tu) + F ∗

2 (∇u),

F (u) := α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
L2 .

Note, that F is Frechet-differentiable with

⟨F ′(u), w⟩V = α2⟨Tu− g, Tw⟩+ β⟨Su, Sw⟩

for all w ∈ V . Expanding F (u) at û then yields

F (u) = F (û) + ⟨F ′(û), u− û⟩V + 1
2∥u− û∥2B.

Since û ∈ V is a minimizer, we have 0 ∈ ∂E(û) = F ′(û) + ∂G(û).
Hence −F ′(û) ∈ ∂G(û), i.e.

⟨−F ′(û), u− û⟩V ≤ G(u)−G(û)

⇐⇒ 1
2∥u− û∥2B ≤ F (u)− F (û) +G(u)−G(û),

which proves the assertion.

57

Putting Lemma 3.7 and coercivity of aB from Assumption (A1)
together we obtain that for a minimizer u of E there is a constant
c > 0 such that

E(v)− E(u) ≥ 1
2∥u− v∥2B ≥ c

2∥u− v∥2V

for all v ∈ V as long as aB is coercive.

Theorem 3.8. Problem (3.12) has at least one solution ppp ∈ W ∗, which
is unique if γ1, γ2 > 0.

Proof. We aim to apply the direct method from Theorem 2.22 using
the weak topology on W ∗.

The functional E∗ : W ∗ → R is proper since it is bounded from
below and e.g. E∗(0) < ∞.

Further, since the linear operator Λ∗ : W ∗ → V ∗ is bounded and
B−1 : V ∗ → V is bounded as well due to coercivity of aB, see The-
orem 2.10, the term p ↦→ ∥Λ∗p− α2T

∗g∥2B−1 is continuous and due to
convexity also weakly lower semi-continuous, see Lemma 2.21. Sim-
ilarly, the terms p ↦→ −α2

2 ∥g∥2L2 + ⟨g, p1⟩ + γ1
2α1

∥p1∥2L2 + γ2
2λ∥p2∥

2
L2

are weakly lower semi-continuous. For the box-constraints the set
K̃ := {p ∈ L2(Ω) × L2(Ω)d×m : |p1| ≤ α1, |ppp2|F ≤ λ} is weakly
closed in L2(Ω) × L2(Ω)d×m by an application of Lemma 2.5. With
the continuous embedding W ∗ ⊆ L2(Ω) × L2(Ω)d×m we follow that
K := K̃ ∩W ∗ must be weakly closed in W ∗. Noticing that K defines
the only non-trivial levelset of p ↦→ χ|p1|≤α1

+ χ|ppp2|F≤λ we conclude by
Proposition 2.19 that this term is weakly lower semi-continuous as well
and as such E∗ in total.

Since W ∗ is reflexive, to show that E∗ : W ∗ → R is weakly coercive
with regard to weak convergence, it is sufficient to show ∥ppp∥W ∗ →
∞ =⇒ E∗(ppp) → ∞, see Lemma 2.2. Due to the box-constraints
χ|p1|≤α1

+χ|ppp2|F≤λ it is easy to see that ∥ppp∥L2 → ∞ implies E∗(ppp) → ∞.
It therefore remains to check the case when W2 ⊆ Hdiv

0 (Ω)m and
∥divppp2∥L2 → ∞. Since aB is coercive with coercivity constant cB > 0,

58

we have

∥v∥2V ∗ ≤ ∥B∥2∥B−1v∥2V
≤ ∥B∥2

cB
aB(B

−1v,B−1v)

≤ ∥B∥2
cB

⟨BB−1v,B−1v⟩V ∗,V = ∥B∥2
cB

∥v∥2B−1 ,

which allows us to bound

E∗(ppp) ≥ ∥T ∗p1 − divppp2 − α2T
∗g∥B−1

≥ ∥ divppp2∥B−1 − ∥T ∗p1 − α2T
∗g∥B−1

≥ c2∥divppp2∥V ∗ − c3 → ∞

for some constant c > 0 independent of ppp2, which shows coercivity
of the functional E∗. The direct method from Theorem 2.22 then
concludes the existence of a solution ppp ∈ W ∗.

Uniqueness in case γ1, γ2 > 0 follows from strict convexity in the
terms γ1

2α1
∥p1∥2L2 and γ2

2λ∥ppp2∥
2
L2 similar to the proof of Proposition 3.2.

For special choices of V the regularized terms in the primal problem
(3.13) may be formulated in a more explicit way. They form integral
expressions similar to those of the non-regularized primal problem (3.5)
but including a pointwise so-called Huber-smoothing of the integrand.

Proposition 3.9. The terms F ∗
1 (Tu) and F ∗

2 (∇u) from Theorem 3.5
are called Huber-regularized L1 and Huber-regularized total variation
respectively and may take on the following explicit form:

(i) F ∗
1 (Tu) = α1

∫︁
Ω ϕγ1(|Tu− g|)dx if V ∈ {H1(Ω)m, L2(Ω)m},

(ii) F ∗
2 (∇u) = λ

∫︁
Ω ϕγ2(|∇u|F)dx if V = H1(Ω)m,

where the Huber-function ϕγ : R → [0,∞) for γ ≥ 0 is defined by

ϕγ(x) :=

{︄
1
2γx

2 if |x| ≤ γ,

|x| − γ
2 if |x| > γ.

(3.15)

59

In particular, if V = H1(Ω)m, then the optimality conditions (3.14)
may be written as

0 = Λ∗ppp− α2T
∗g +Bu,

0 = p1 max{γ1, |Tu− g|} − α1(Tu− g), |p1| ≤ α1

0 = ppp2 max{γ2, |∇u|F } − λ∇u, |ppp2|F ≤ λ

(3.16)

where max denotes the pointwise maximum.

Proof. We have

F ∗
1 (q1) = sup

p1∈W ∗
1

{︂
⟨p1, q1⟩W ∗

1 ,W1 − ⟨p1, g⟩ − χ|p1|≤α1
− γ1

2α1
∥p1∥2L2

}︂
.

A function p1 is a supremum of this set if |p1| ≤ α1 with q1−g− γ1
α1
p1 = 0

and hence p1 = α1
γ1
(q1 − g). Thus we have |q1 − g| = γ1

|p1|
|α1| ≤ γ1 and

we deduce

F ∗
1 (q1) =

∫︂
|q1−g|≤γ1

α1
2γ1

|q1 − g|2 dx+

∫︂
|q1−g|>γ1

α1|q1 − g| − α1γ1
2 dx

= α1

∫︂
Ω
ϕγ1(|q1(x)− g(x)|)dx.

For the conjugate F ∗
2 of F2 we get

F ∗
2 (qqq2) = sup

ppp2∈W ∗
2

{︂
⟨ppp2, qqq2⟩W ∗

2 ,W2 − χ|ppp2|F≤λ − γ2
2λ∥ppp2∥

2
L2

}︂
.

After scaling with 1
λ , i.e., substituting www := ppp2

λ , we obtain

F ∗
2 ((∇∗)∗u) = F ∗

2 (∇u) = λ sup
www∈W ∗

2
|www|F≤1

{︂∫︂
Ω
∇u ·www − γ2

2 |www|
2
F dx

}︂
. (3.17)

The pointwise constrained maximization problem on the right hand
side yields the Karush-Kuhn-Tucker (KKT) conditions

∇u− γ2www − 2µwww = 0, |www|2F − 1 ≤ 0,

µ(|www|2F − 1) = 0, µ ≥ 0.

60

Assuming γ2 > 0 implies γ2 + 2µ > 0 and hence we have www = ∇u
γ2+2µ .

If |www|F < 1 then µ = 0 and hence we obtain www = ∇u
γ2

. Inserting this
in (3.17) yields the integrand 1

2γ2
|∇u|2F . If |www|F = 1 then we observe

that 1 = |www|F = 1
γ2+2µ |∇u|F which leads to γ2 + 2µ = |∇u|F and

thus www = ∇u
|∇u|F . Inserting in (3.17) yields the integrand |∇u|F − γ2

2 .
Summarizing our findings we arrive at the integrand

ϕγ2(|∇u|F) =

{︄
1

2γ2
|∇u|2F if |∇u|F < γ2,

|∇u|F − γ2
2 else

and thus

F ∗
2 (∇u) = λ

∫︂
Ω
ϕγ2(|∇u|F)dx.

If γ2 = 0, a similar argument shows that

F ∗
2 (∇u) = λ

∫︂
Ω
|∇u|F dx = λ

∫︂
Ω
ϕ0(|∇u|F)dx.

To show that (3.14) can be written as in (3.16) if V = H1(Ω)m,
we derive from L2(Ω)d×m ∋ ∇u ∈ ∂F2(ppp2) for γ2 > 0 that necessarily
|ppp2|F ≤ λ and pointwise

∇u ∈

{︄
{γ2

λ ppp2} if |ppp2|F < λ,

{µppp2 : µ ≥ 0} if |ppp2|F = λ,

⇐⇒ p2 =

{︄
λ∇u

γ2
if |∇u|F < γ2,

λ ∇u
|∇u|F if |∇u|F ≥ γ2,

= λ ∇u
max{γ2,|∇u|F } .

For γ2 = 0 the same argument applies, except for ∇u = 0, in which
case only |ppp2|F ≤ λ holds. In any case, we can summarize for γ2 ≥ 0
that ∇u ∈ ∂F2(ppp2) is indeed equivalent to

0 = p2 max{γ2, |∇u|F } − λ∇u, |ppp2|F ≤ λ.

For the representation Tu ∈ ∂F1(p1) one may proceed analogously.

61

3.2.2 Dual Characterization of the Huber-TV-Functional
In Proposition 3.9 we have seen the pointwise representation of the
regularized primal total variation term F ∗

2 (∇u) for V = H1(Ω)m by
utilizing the Huber-function (3.15). We will now extend this represent-
ation to V = L2(Ω) by means of a more generally defined Huber-TV
functional, c.f. Definition 3.11. This functional has been subject of
analysis in e.g. [22, 76] and is recognized to reduce the staircasing
effect of the total variation [22].

Proposition 3.10. The Huber-function (3.15) satisfies the following
properties:

(i) 0 ≤ γ− ≤ γ+ =⇒ ∀x ∈ R : ϕγ−(x) ≥ ϕγ+(x),

(ii) ∀x ∈ R : limγ→0+ ϕγ(x) = ϕ0(x) = |x|.

(iii) ∀x ∈ R : |ϕ′
γ(x)| ≤ 1,

(iv) limγ→0+
∫︁
Ω ϕγ(f(x))dx =

∫︁
Ω |f(x)|dx for any f ∈ L2(Ω).

Proof. (i) We distinguish depending on x ∈ R the cases

|x| ≤ γ− ≤ γ+ : 1
2γ+

x2 ≤ 1
2γ−

x2,

γ− ≤ |x| ≤ γ+ : |x| − γ+
2 ≤ 1

2 |x| ≤
1

2γ−
x2,

γ− ≤ γ+ ≤ |x| : |x| − γ+
2 ≤ |x| − γ−

2 .

(ii) For x = 0 it is clear that ϕγ(x) = |0|. Otherwise one has
ϕγ(x) = |x| − γ

2 → |x| for any small 0 < γ < |x| and x ∈ R.

(iii) We derive for x ∈ R directly

ϕ′
γ(x) =

{︄
1
γx if |x| ≤ γ,

sgn(x) if |x| > γ.

In any case |ϕ′
γ(x)| ≤ 1 for every x ∈ R.

(iv) This is a direct consequence of items (i) and (ii).

62

Definition 3.11 (Huber-TV-Functional, c.f. [76]). For u ∈ L2(Ω)m,
γ ≥ 0, λ ∈ C(Ω), λ ≥ 0 we denote by∫︂

Ω
λϕγ(|Du|) := sup

www∈C∞
0 (Ω)d×m

|www|F≤λ

{︂
⟨u,−divwww⟩ − γ

2∥www∥
2
L2

}︂
(3.18)

the λ-weighted γ-regularized Huber-TV functional.

Definition 3.11, similarly to the total variation from Definition 2.29,
supremizes over pointwise constrained functions in C∞

0 (Ω)d×m, while
F ∗
2 does so over Hdiv

0 (Ω)m. Though C∞
0 (Ω)d×m is a dense subset of

Hdiv
0 (Ω)m, the equivalence of F ∗

2 and (3.18) is non-trivial in view of
the pointwise constraints, c.f. [60]. This kind of equivalence was first
claimed in [58], while the necessary argument was only sufficiently
established later in [60].

We now aim to show that Definition 3.11 indeed matches up to F ∗
2

from Theorem 3.5 using a construction inspired from [60], but instead
making use of the continuity of the projection operator in Hilbert
spaces onto closed convex subsets.

Theorem 3.12. Let W ∗
2 ∈ {Hdiv

0 (Ω)m, L2(Ω)d×m}, λ ≥ 0 with λmin :=
infx∈Ω λ(x) > 0 and denote

Kλ := {ppp ∈ W ∗
2 : |ppp|F ≤ λ}.

Then Kλ ∩ C∞
0 (Ω)d×m

∥ · ∥W∗
2 = Kλ.

Proof. We show the statement for W ∗
2 = Hdiv

0 (Ω)m, since the proof
for L2(Ω)d×m works analogously. Let ppp2 ∈ Kλ ⊆ Hdiv

0 (Ω)m and
(ppp2,n)n∈N ⊆ C∞

0 (Ω)d×m with ∥ppp2,n − ppp2∥Hdiv
0 (Ω)m → 0 by making use

of density.
The projection πKλ

is closed and convex due to Lemma 2.5 and the
continuous embedding Hdiv

0 (Ω)m ⊆ L2(Ω)d×m. The projection πKλ

from Lemma 2.8 then yields πKλ
(ppp2,n) ∈ Kλ with compact support

suppπKλ
(ppp2,n) for every n ∈ N. Let ε > 0. Since πKλ

is continuous,
choose N ∈ N such that ∥πKλ

(ppp2,n)− ppp2∥Hdiv
0 (Ω)m < ε

3 for all n ≥ N .

63

Using the mollifiers from Proposition 2.7, since λ ∈ C(Ω), we have
λ ∗ ϱδ′ → λ uniformly on Ω for δ′ → 0. Let δ > 0 and choose
δ′ > 0 sufficiently small such that supx∈Ω |(λ ∗ ϱδ′)(x) − λ(x)| < δ,
suppπKλ

(ppp2,n) ⊆ Ω and ∥πKλ
(ppp2,n) ∗ ϱδ′ − πKλ

(ppp2,n)∥Hdiv
0 (Ω)m < ε

3 .
Now, similarly to [60] by scaling with

ηδ := (1 + δ
λmin

)−1 ≤ (1 + δ
λ)

−1 =
λ

λ+ δ

≤ λ

λ ∗ ϱδ′
≤ λ

|πKλ
(ppp2,n) ∗ ϱδ′ |F

we guarantee qqq := ηδπKλ
(ppp2,n) ∗ ϱδ′ ∈ Kλ ∩ C∞

0 (Ω)d×m, where ηδ → 1
as δ → 0. In total, by choosing δ sufficiently small we thus achieve

∥qqq − ppp2∥Hdiv
0 (Ω)m ≤ ∥ηδπKλ

(ppp2,n) ∗ ϱδ′ − πKλ
(ppp2,n) ∗ ϱδ′∥Hdiv

0 (Ω)m

+ ∥πKλ
(ppp2,n) ∗ ϱδ′ − πKλ

(ppp2,n)∥Hdiv
0 (Ω)m

+ ∥πKλ
(ppp2,n)− ppp2∥Hdiv

0 (Ω)m

< ε
3 + ε

3 + ε
3 = ε.

This shows that any ppp2 ∈ Kλ may be approximated by smooth functions
in Kλ ∩ C∞

0 (Ω)d×m, respecting the box-constraint, which concludes
the proof.

Note that compared to [60] where a domain scaling argument for
star-shaped domains is used, which requires some regularity of Ω,
the proof of Theorem 3.12 does not and may therefore generalize to
domains with less regular boundary.

Corollary 3.13. The term F ∗
2 (∇u) from Theorem 3.5 is called Huber-

regularized total variation and may take on the following explicit
form:

F ∗
2 (∇u) = λ

∫︂
Ω
ϕγ2(|Du|F)

if V ∈ {H1(Ω)m, L2(Ω)m}.

64

Proof. The statement follows directly by applying Theorem 3.12.

If u ∈ H1(Ω)m, the Huber-TV functional degrades to the Lebesgue
integral over Ω of the Huber function term ϕγ2(|∇u|F) as we see in
the following proposition.
Proposition 3.14. The Huber-TV functional (3.18) satisfies the
following properties

(i) u ∈ BV (Ω)m ⇐⇒
∫︁
Ω ϕγ(|Du|F) < ∞ for any γ ≥ 0,

(ii) If u ∈ H1(Ω)m then∫︂
Ω
ϕγ(|Du|F) =

∫︂
Ω
ϕγ(|∇u|F)dx,

where ϕγ, γ ≥ 0 in the second integral is the Huber-function
(3.15).

(iii) 0 ≤ γ− ≤ γ+ =⇒
∫︁
Ω ϕγ−(|Du|F) ≥

∫︁
Ω ϕγ+(|Du|F),

(iv) limγ→0

∫︁
Ω ϕγ(|Du|F) =

∫︁
Ω |Du|F .

Proof. (i) Since www is box-constrained in the supremum from Defini-
tion 3.11 we can bound

∫︁
Ω ϕγ(|Du|) from above and below:∫︂

Ω
|Du|F − c ≤ sup

www∈C∞
0 (Ω)d×m

|www|F≤1

{︂
⟨u,divwww⟩ − γ

2∥www∥
2
L2

}︂
,

≤
∫︂
Ω
|Du|F

where c := γ
2 |Ω| < ∞.

(ii) Using partial integration we get∫︂
Ω
ϕγ(|Du|F) = sup

www∈C∞
0 (Ω)d×m

|www|F≤1

{︂
⟨u,−divwww⟩ − γ

2∥www∥
2
L2

}︂

= sup
www∈C∞

0 (Ω)d×m

|www|F≤1

{︂∫︂
Ω
∇u ·www − γ

2 |www|
2
F dx

}︂
.

65

We may replace C∞
0 (Ω)d×m by L2(Ω)d×m due to Theorem 3.12.

By the same pointwise consideration as in the proof of Propos-
ition 3.9, we see that the supremum is attained for the Huber
function integrand ϕγ(|∇u|F).

(iii) There exists a sequence (wn)n∈N ⊆ C∞
0 (Ω)d×m, |wn|F ≤ 1 such

that∫︂
Ω
ϕγ+(|Du|F) = lim

n→∞

(︂
−

∫︂
Ω
u · divwn dx− γ+

2 ∥wn∥2L2

)︂
≤ lim

n→∞

(︂
−

∫︂
Ω
u · divwn dx− γ−

2 ∥wn∥2L2

)︂
≤

∫︂
Ω
ϕγ−(|Du|F).

(iv) Because of strict monotonicity from (iii), the limit is achieved by
the supremum

lim
γ→0

∫︂
Ω
ϕγ(|Du|F) = sup

γ>0
sup

|www|F≤1

{︂
−

∫︂
Ω
u · divwww dx− γ

2∥www∥
2
L2

}︂
= sup

|www|F≤1
sup
γ>0

{︂
−

∫︂
Ω
u · divwww dx− γ

2∥www∥
2
L2

}︂
=

∫︂
Ω
|Du|F .

3.2.3 Γ-Convergence

We will now analyze how the minimizers of (3.13) behave for γ :=
(γ1, γ2) → 0 by making use of Γ-convergence.

Lemma 3.15 (Sequential lower semi-continuity). The functional E
defined in (3.13) is lower semi-continuous with regards to weak V -
convergence.

Proof. We show lower semi-continuity of each summand of E:

66

(i) The term F ∗
1 (Tu) is per definition given by the supremum

F ∗
1 (Tu) = sup

p1∈L2(Ω)
|p1|≤α1

{︂
⟨Tu− g, p1⟩L2 − γ1

2α1
∥p1∥2L2

}︂
.

Since the supremum of lower semi-continuous functions is lower
semi-continuous due to Lemma 2.20, it suffices to show that
F̃ 1 : V → R, F̃ 1(u) := ⟨Tu − g, p1⟩L2 − γ1

2α1
∥p1∥2L2 is V -weakly

lower semi-continuous for every fixed p1 ∈ L2(Ω), |p1| ≤ α1. This,
however, is imminent since both T : V → L2(Ω) and the inner
product are V -weakly continuous.

(ii) Similarly, the term F ∗
2 (∇u) is given by the supremum

F ∗
2 (∇u) = sup

ppp2∈W ∗
2

|ppp2|F≤λ

{︂
⟨u,−divppp2⟩L2 − γ2

2λ∥ppp2∥
2
L2

}︂
and we conclude by the same argument.

(iii) Since the terms ∥Tu − g∥2L2 and ∥u∥2L2 are both convex and
continuous in u ∈ V , they are also weakly lower semi-continuous.

(iv) For the term ∥Su∥2L2 we distinguish both possible choices of S. If
S = I : V → VS , V = VS ⊆ L2(Ω)m, then u ↦→ ∥u∥2L2 is weakly
continuous since it is both convex and continuous. If S = ∇ :
V → VS , V ⊆ H1(Ω)m, then u ↦→ ∥∇u∥2L2 is weakly continuous
with the same argument since ∇ : H1(Ω)m → L2(Ω)d×m is a
continuous operator.

The previous lemma together with the properties of the Huber-TV
functional allows us to prove a Γ-convergence result for the functional
E.

Lemma 3.16 (Gamma-convergence). Let (γj1)j∈N, (γ
j
2)j∈N > 0 be

monotonically decreasing sequences with limj→∞ γj1 = limj→∞ γj2 =
0. Denote by Ej : V → R the energy functional in (3.13) for
(γ1, γ2) = (γj1, γ

j
2) for j ∈ N and E∞ the functional in (3.5). Then

Γ- limj→∞Ej = E∞ with respect to weak V -convergence.

67

Proof. By the monotonicity property of the Huber-TV-functional from
Proposition 3.14 (iii), we observe that Ej(u) ≤ Ej+1(u) and Ej(u) →
E∞(u) pointwise for every fixed u ∈ V . Further for every j ∈ N we
have that Ej is (sequentially) weakly lower semi-continuous in V due to
Lemma 3.15. According to Lemma 2.14 we thus have Γ- limj→∞Ej =
limj E

j = E∞ with respect to weak V -convergence.

Lemma 3.17 (Equi-coercivity). Let λ > 0 and (Ej)j∈N, (γj1)j∈N,
(γj2)j∈N as in Lemma 3.16. Then the sequence (Ej)j is equi-mildly
coercive with regard to weak V -convergence, i.e. there exists a non-
empty sequentially (with regard to weak V -convergence) compact set
K ⊆ V such that infV Ej = infK Ej for all j ∈ N.

Proof. As Ej is proper for any j ∈ N, i.e., there exist u ∈ V such that
Ej(u) < ∞, by coercivity of aB from Assumption (A1) we obtain the
coercivity of Ej in V for all j ∈ N.

Denote by Lj
a := {u ∈ V : Ej(u) ≤ a}, a ∈ R the lower level sets of

Ej for j ∈ N. The level sets Lj
a, j ∈ N, are bounded due to coercivity

of Ej shown above.
Since Ej ≤ Ej+1 due to Proposition 3.14, the level sets Lj

a are nested
for any fixed a ∈ R, i.e. Lj

a ⊇ Lj+1
a , for j ∈ N. Consequently Ej ≤ E∞

and since E∞(0) < ∞ we may chose a := E∞(0) to ensure Lj
a ̸= ∅ for

all j ∈ N.
For all j ∈ N the minimizers of Ej exist in V (see Proposition 3.6)

and are contained within some non-empty weakly closed ball K ⊇ Lj
a

in V centred at the origin. Since V is reflexive K is weakly compact,
concluding the proof.

We are now ready to show our final main result, namely that for
γ → 0 minimizers of (3.13) approach the minimizer of (3.5).

Theorem 3.18. Let λ > 0 and uj , u∞ denote the unique minimizers
of Ej and E∞ as given in Lemma 3.16 respectively for j ∈ N. Then
uj ⇀ u∞ for j → ∞ with respect to weak V -convergence.

68

Proof. As shown in the proof of Lemma 3.17 the minimizers (uj)j∈N
are contained within a sequentially compact (with regard to weak
V -convergence) set K. Then, according to Theorem 2.15, every weak
limit of a subsequence of (uj)j∈N is a minimum point of E∞. Since
the minimum u∞ of E∞ is unique we have uj ⇀ u∞ for j → ∞.

69

4 Decomposition

In order to work with constrained main memory and make use of
parallel computation, it is a standard technique to decompose a given
optimization problem into smaller parts. In this chapter we explore
two decomposition techniques, strikingly similar to the additive and
multiplicative Schwarz methods, which are well known for partial
differential equations [79].

Our contribution involves the extension of the algorithms found in
[33] to our model, i.e. allowing a non-trivial operator B and vector-
valued u, and an improved theoretical convergence proof. Namely, we
only require approximate solutions of the local problems instead of
exact ones and arrive at the same asymptotic convergence guarantee.
Our convergence proof differs from [33] and in the special case of exact
solvers and parallel decomposition our statement reduces to a known
result from [75].

An initial extension proposal and preliminary work are due to An-
dreas Langer and have been used as a basis. Results of this chapter
paired with corresponding numerical examples from Chapter 5 are in
preparation to be published separately [55].

4.1 Introduction
Recall the regularized L1-L2-TV model from (3.13) in the special case
S = I, α1 = 0, α2 = 1, γ1, γ2 = 0:

inf
u∈L2(Ω)m∩BV (Ω)m

1
2∥Tu− g∥2L2(Ω) +

β
2 ∥u∥

2
L2(Ω) + λTV(u). (4.1)

While (4.1) is convex, the total variation term makes the functional both
non-smooth and non-additive with regard to spatial decomposition.

71

Decomposition algorithms which take advantage of these properties
may thus not apply directly or only with limitations.

As already inferred from Chapter 3, there exists a predual problem
which involves constrained minimization of a smooth functional. We
will see that the pointwise constrained smooth formulation allows for
an additive spatial decomposition, around which we can construct a
corresponding decomposition algorithm.
Corollary 4.1 (c.f. Theorem 3.5). Problem (4.1) is dual to

inf
p∈K

{︁
D(p) := 1

2∥Λ
∗p− T ∗g∥2B−1

}︁
, (4.2)

where K := {p ∈ Hdiv
0 (Ω)m : |p(x)|F ≤ λ a.e.}, Λ∗ : Hdiv

0 (Ω)m →
L2(Ω)m, Λ∗p = div p, B : L2(Ω)m → L2(Ω)m denotes the operator
B := α2T

∗T + βI and the norm is given by ∥u∗∥2B−1 := ⟨u∗, B−1u∗⟩L2

for u∗ ∈ L2(Ω)m.
The unique solution û of (4.1) is related to any solution p̂ of (4.2)

by

û = B−1(−Λ∗p̂+ T ∗g) ∧ ∀p ∈ K : ⟨Λû, p− p̂⟩V ∗,V ≤ 0. (4.3)

Proof. We apply Theorem 3.5, omit the first dual variable p1, since
α1 = 0 and thus p1 = 0 is fixed and discard the constant additive term
−α2

2 ∥g∥2L2 .

Corollary 4.1 allows one to solve for p̂ in the predual domain of
(4.2) and to later assemble the original solution û using the optimality
relation (4.3).

Similar to Lemma 3.7 the error with respect to the L2 norm can be
related to the difference in the predual energy as follows.
Proposition 4.2. Let p̂ ∈ Hdiv

0 (Ω)m be a minimizer of (4.2) and
û ∈ L2(Ω)m be the minimizer of (4.1). If the bilinear form aB :
L2(Ω)m ×L2(Ω)m → R, aB(u, v) = α2⟨Tu, Tv⟩+ β⟨u, v⟩ from (3.6) is
coercive, i.e. aB(u, u) ≥ cB∥u∥2 with coercivity constant cB > 0 (e.g.
due to Proposition 3.3 with cB = β > 0) then for all p ∈ Hdiv

0 (Ω) and
u := B−1(−Λ∗p+ T ∗g) we have

cB
2 ∥u− û∥2 ≤ D(p)−D(p̂).

72

Proof. Due to coercivity of a we have for v ∈ L2(Ω)m

cB∥B−1v∥2 ≤ aB(B
−1v,B−1v)

=
⟨︁
(T ∗T + βI)B−1v,B−1v

⟩︁
V

= ⟨v,B−1v⟩ = ∥v∥2B−1 .

By expanding the quadratic functional D at p̂ and using optimality of
p̂, i.e. ⟨D′(p̂), p− p̂⟩V ≥ 0, we then see that

D(p)−D(p̂) = ⟨D′(p̂), p− p̂⟩V + 1
2⟨ΛB

−1Λ∗(p− p̂), p− p̂⟩V
≥ 1

2∥Λ
∗(p− p̂)∥2B−1

≥ cB
2 ∥B−1Λ∗(p− p̂)∥2 = cB

2 ∥u− û∥2,

since due to Corollary 4.1 û is given by û = B−1(−Λ∗p̂+ T ∗g).

To numerically solve (4.1) or (4.2) in a distributed parallel or memory-
constrained setting, decomposition methods dissect the problem into
smaller subproblems that can be solved independently of each other
while still approaching the original solution by means of an iterat-
ive algorithm. One particular approach are domain decomposition
algorithms which subdivide the problem domain.

While we are interested in solving (4.1) and (4.2), we opt to formulate
the decomposition in a slightly more general way. More precisely, in
the rest of this chapter we consider the following general problem.

Decomposition Setting
Let V,W be real Hilbert spaces, Λ∗ : V → W a bounded linear
operator, B−1 : W → W a positive definite self-adjoint bounded linear
operator, K ⊆ V a closed convex set and f ∈ W . We then consider
the minimization problem

inf
p∈K

{︂
D(p) := 1

2∥Λ
∗p− T ∗g∥2B−1

}︂
, (4.4)

where ∥q∥2B−1 := ⟨B−1q, q⟩W , q ∈ W .

73

To ensure existence of a solution to (4.4) we will assume coercivity
in the sense that for any feasible sequence (pn)n∈N ⊆ K

∥pn∥V → ∞ =⇒ D(pn) → ∞. (4.5)

Note that, while ∥ · ∥2B−1 is strictly convex, Λ∗ might not be injective
and thus the solution to (4.4) does not necessarily need to be unique.

We will analyze a decomposition algorithm for problem (4.4) that
requires a suitable partition of unity respecting the closed convex
set K. More precisely we use bounded linear operators θi : V → V ,
i = 1, . . . ,M , M ∈ N such that

I =

M∑︂
i=1

θi and K =

M∑︂
i=1

θiK. (4.6)

Note here that, since θi is a bounded linear operator, θiK = {θip : p ∈
K} ⊆ V stays closed and convex.

The requirements for the partition given in (4.6) are in particular
fulfilled by the following domain decomposition formulation. Let Ωi,
i = 1, . . . ,M , M ∈ N be bounded open sets with Lipschitz boundary
such that

⋃︁M
i=1Ωi = Ω. Denote by θ̃i : Ω → [0, 1], i = 1, . . . ,M a

partition of unity satisfying

(i) θ̃i ∈ W 1,∞(Ω),

(ii) 1 =
∑︁M

i=1 θ̃i,

(iii) supp θ̃i ⊆ Ωi.

We then define the partition of unity operator θi : V → V by pointwise
multiplication

(θip)(x) := θ̃i(x)p(x), (4.7)

for all p ∈ V .

74

Lemma 4.3. The partition of unity operators (θi)
M
i=1 defined in (4.7)

satisfy the requirements of (4.6), where K is given by Corollary 4.1.

Proof. Linearity of θi, i = 1, . . . ,M is inherited from the pointwise
multiplicative definition in (4.7). Let p ∈ V = Hdiv

0 (Ω)m, then

∥θ̃ip∥L2 ≤ ∥θ̃i∥L∞∥p∥L2 ,

∥div(θ̃ip)∥L2 = ∥∇θ̃ip+ θ̃i div p∥L2

≤ ∥∇θ̃i∥L∞∥p∥L2 + ∥θ̃i∥L∞∥div p∥L2 ,

and thus, since θ̃i ∈ W 1,∞(Ω) and in particular ∇θ̃i ∈ L∞(Ω), we have
proven that θi : V → V is indeed well-defined and bounded.

Due to the pointwise nature of (4.7) we see that for p ∈ V :

(︂ M∑︂
i=1

θip
)︂
(x) =

M∑︂
i=1

θ̃i(x)p(x) = p(x)

which shows I =
∑︁M

i=1 θi.
We have K ⊆

∑︁M
i=1 θiK per definition. To show the other inclusion,

let pi ∈ θiK, i = 1, . . . ,M . Then we see that for x ∈ Ω a.e.

⃓⃓⃓ M∑︂
i=1

pi(x)
⃓⃓⃓
F
≤

M∑︂
i=1

|pi(x)|F ≤
M∑︂
i=1

θ̃i(x)λ ≤ λ,

thus showing that pi ∈ K.

4.1.1 Related Work
The authors of [33] have provided parallel and sequential decomposition
methods specifically for the case Λ∗ = div and B−1 = I while assuming
exact local minimization. Their work serves as a motivational basis
for our generalization.

Recently in [75] a general framework for analyzing additive Schwarz
methods of convex optimization problems as gradient methods has been
presented. For the special case of parallel decomposition their analysis

75

covers ours, while we extend our results to sequential decomposition
which [75] does not cover. We also consider a slightly different notion of
approximate minimization (see Definition 4.4) for the local subproblems
which does not seem to map to the approximate notion considered
from [75] in an obvious way.

4.2 Algorithm
Let us first introduce our notion of approximate minimization.

Definition 4.4. For q ∈ V , ϱ ∈ (0, 1] we call

ϱ,q
arg min

p∈K
D(p) :=

{︂
p̃ ∈ K : D(q)−D(p̃) ≥ ϱ(D(q)−D(p̂)),

p̂ ∈ arg min
p∈K

D(p)
}︂ (4.8)

the set of ϱ-approximate minimizers of D on K with respect to q.

The condition in (4.8) means that the improvement in functional
value needs to be at least within a constant factor of the remaining
difference in functional value towards a true minimizer. For ϱ = 1 and
arbitrary q ∈ V this reduces to the usual notion of minimizers.

We present the decomposition procedures, namely Algorithms 4.5
and 4.6, which are structurally similar. Apart from our introduced gen-
eralizations and notation changes these correspond to those presented
in [33].

Algorithm 4.5 (Parallel decomposition).
Initialize: p0 ∈ K and σ ∈ (0, 1

M], ϱ ∈ (0, 1]
for n = 0, 1, 2, . . . do

for i = 1, . . . ,M do
ṽni ∈ arg minϱ,θip

n

vi∈θiK D
(︁
pn + (vi − θip

n)
)︁

end for
pn+1 = pn +

∑︁M
i=1 σ(ṽ

n
i − θip

n)
end for

76

Algorithm 4.6 (Sequential decomposition).
Initialize: p0 ∈ K and σ ∈ (0, 1], ϱ ∈ (0, 1]
for n = 0, 1, 2, . . . do

pn0 = pn

for i = 1, . . . ,M do
ṽni ∈ arg minϱ,θip

n

vi∈θiK D
(︁
pni−1 + (vi − θip

n)
)︁

pni = pni−1 + σ(ṽni − θip
n)

end for
pn+1 = pnM

end for

To treat both algorithms in a similar way, we use the convention
pni−1 := pn for Algorithm 4.5 independent of i ∈ {1, . . . ,M}. Having
defined ṽni ∈ θiK for i ∈ {1, . . . ,M} we also set p̃ni := pni−1 + (ṽni −
θip

n) ∈ K.
We observe that in each step n ∈ N0, i ∈ {1, . . . ,M} of Al-

gorithms 4.5 and 4.6 the subproblem

inf
vi∈θiK

1
2∥Λ

∗vi − fn
i ∥2B−1 (4.9)

with fn
i = f − Λ∗(pni−1 − θip

n) needs to be solved approximately.
For a locally acting operator B−1 and suitable θi these problems

may be solved on supp(θi) ⊆ Ω. If B−1 on the other hand is global
then in order to avoid having to solve the subproblems globally on Ω
a surrogate technique will be introduced in Section 4.5.

Definition 4.7. For p, q ∈ V we introduce the notation

⟨p, q⟩∗ := ⟨ΛB−1Λ∗p, q⟩V , ∥p∥∗ :=
√︁
⟨p, p⟩∗.

Note that we have ∥p∥2∗ = ∥Λ∗p∥2B−1 in particular and that ⟨·, ·⟩∗
and ∥ · ∥∗ are not necessarily positive definite.

Lemma 4.8. Let D′ : V → V be the Fréchet derivative of D. For any
p, q, r ∈ V we have

(i) D(p)−D(q) = ⟨D′(q), p− q⟩V + 1
2∥p− q∥2∗,

77

(ii) ⟨D′(p)−D′(q), r⟩V = ⟨p− q, r⟩∗.

Proof. (i) We expand the quadratic functional D at q to obtain

D(p) = D(q) + ⟨D′(q), p− q⟩V + 1
2⟨ΛB

−1Λ∗(p− q), p− q⟩V
= D(q) + ⟨D′(q), p− q⟩V + 1

2∥p− q∥2∗.

(ii) We see directly

⟨D′(p)−D′(q), r⟩V
= ⟨ΛB−1(Λ∗p− T ∗g)− ΛB−1(Λ∗q − T ∗g), r⟩V
= ⟨ΛB−1Λ∗(p− q), r⟩V = ⟨p− q, r⟩∗.

We first note that Lemma 4.8 actually holds true for any quadratic
functional. Further, while the equations in Lemma 4.8 hold true with
equality, the decomposition in this chapter only requires the left hand
side to be less or equal than the right hand side correspondingly. In
particular, this suggests a generalization to strongly convex, but not
necessarily quadratic D.

4.3 Convergence Analysis

Following [33] we first establish monotonicity for the energy of iterates.

Lemma 4.9. The iterates (pn)n∈N of Algorithms 4.5 and 4.6 with
corresponding constraints on σ satisfy

D(pn)−D(pn+1) ≥ ϱσ
M∑︂
i=1

(︁
D(pni)−D(p̂ni)

)︁
≥ 0

where p̂ni = pni−1+(v̂ni −θip
n), v̂ni ∈ arg minvi∈θiK D(pni−1+(vi−θip

n))
denotes any exact minimizer in the i-th substep of the corresponding
algorithm. The non-negative sequence (D(pn))n∈N is in particular
monotonically decreasing and thus convergent.

78

Proof. The update step for pn+1 in the parallel case of Algorithm 4.5
is given as

pn+1 = pn + σ

M∑︂
i=1

(ṽni − θip
n)

= (1− σM)pn + σ

M∑︂
i=1

(︁
pn + (ṽni − θip

n)
)︁
.

We denote p̃ni = pni−1+(ṽni −θip
n) = pn+(ṽni −θip

n). Since σ ∈ (0, 1
M],

convexity of D yields

D(pn+1) ≤ (1− σM)D(pn) + σ

M∑︂
i=1

D
(︁
p̃ni

)︁
.

We use this and the definition of ṽni to estimate

D(pn)−D(pn+1) ≥ σMD(pn)− σ
M∑︂
i=1

D
(︁
p̃ni

)︁
= σ

M∑︂
i=1

(︂
D(pn)−D

(︁
p̃ni

)︁)︂
≥ ϱσ

M∑︂
i=1

(︂
D(pn)−D

(︁
p̂ni

)︁)︂
,

where we denoted p̂ni = pni−1 + (v̂ni − θip
n) = pn + (v̂ni − θip

n) in the
last inequality.

For the sequential case of Algorithm 4.6 we have similarly

pni = pni−1 + σ(ṽni − θip
n)

= (1− σ)pni−1 + σ(pni−1 − (ṽni − θip
n))

= (1− σ)pni−1 + σp̃ni

and thus D(pni) ≤ (1− σ)D(pni−1) + σD(p̃ni). Rewriting we see that

D(pni−1)−D(pni) ≥ σ(D(pni−1)−D(p̃ni))

≥ ϱσ(D(pni−1)−D(p̂ni)),
(4.10)

79

where we again used the definition of ṽni in the second inequality. A
telescope sum over i = 1, . . . ,M then yields

D(pn)−D(pn+1) =

M∑︂
i=1

(D(pni−1)−D(pni))

≥ ϱσ
M∑︂
i=1

(D(pni−1)−D(p̂ni)).

In particular, Lemma 4.9 shows monotonicity of energies, i.e.
D(pn) ≥ D(pn+1). Because of the coercivity assumption (4.5), the set
of iterates {pn : n ∈ N0} ⊆ V is therefore bounded. We thus denote
for some fixed minimizer p̂ ∈ K of D the finite radius

Rp̂ := sup{∥p− p̂∥V : p ∈ K,D(p) ≤ D(p0)} < ∞. (4.11)

In the following we employ ideas from alternating minimization [18]
to achieve a convergence rate estimate. To that end we first collect
two elementary results.

Lemma 4.10. Let c > 0 and (ak)k∈N0 ⊆ R+ be a sequence such that
for all k ∈ N0:

ak − ak+1 ≥ ca2k.

Then limk→∞ ak → 0 with rate

0 < ak <
1

ck + 1
a0

<
1

ck

for all k ∈ N.

Proof. We proceed similar to [18]. Since the iterates ak, k ∈ N0 are
monotonically decreasing, we can write for k ∈ N0:

1

ak+1
− 1

ak
=

ak − ak+1

ak+1ak
≥ cak

ak+1
> c

80

and use it to reduce the telescope sum for k > 0:

1

ak
=

k−1∑︂
j=0

(︂ 1

aj+1
− 1

aj

)︂
+

1

a0
> ck +

1

a0
.

Inverting the inequality yields the statement.

Lemma 4.11. Let a, b > 0, c, x, y ≥ 0 such that for all µ ∈ (0, 1] the
inequality

y ≤ aµ+
b

µ
x+ c

√
x

holds. Then the following split inequality holds:

y ≤

{︄
(2b+ c

√
b√
a
)x if x > a

b ,

(2
√
ab+ c)

√
x if x ≤ a

b ,
(4.12)

or equivalently

x ≥

{︄
(2b+ c

√
b√
a
)−1y if y > 2a+ c

√
a√
b
,

(2
√
ab+ c)−2y2 if y ≤ 2a+ c

√
a√
b
.

Proof. If x > a
b we choose µ = 1 to arrive at

y ≤ a+ bx+ c
√
x < 2bx+ c

√
x ≤ (2b+ c

√
b√
a
)x.

Otherwise we minimize the expression by choosing µ =
√
b√
a

√
x and get

y ≤ a
√
b√
a

√
x+ b

√
a√
b

√
x+ c

√
x = (2

√
ab+ c)

√
x.

Both statements together yield the estimate.
Noting that the right-hand side of estimate (4.12) is continuous

and monotonic in x, the case distinction can equivalently be written
in terms of y by splitting at x = a

b , y = (2b + c
√
b√
a
)ab = 2a + c

√
ab.

Seperately solving the inequalities for x thus yields the equivalent
representation.

81

Lemma 4.12. We have
M∑︂
i=1

∥θip∥2∗ ≤ ∥B−1∥∥Λ∥2C2
θ∥p∥2V

with C2
θ :=

∑︁M
i=1 ∥θi∥2.

Proof. Application of the Cauchy-Schwarz inequality yields
M∑︂
i=1

∥θip∥2∗ =
M∑︂
i=1

⟨Λ∗θip,B
−1Λ∗θip⟩V

≤
M∑︂
i=1

∥B−1∥∥Λ∥2∥θi∥2∥p∥2V

= ∥B−1∥∥Λ∥2
(︂ M∑︂

i=1

∥θi∥2
)︂
∥p∥2V .

Lemma 4.13. We may estimate the step distance in terms of the
corresponding energy change as follows:

1
2∥p

n
i−1 − pni ∥2∗ ≤ σ

ϱ

(︁
2− ϱ+ 2

√︁
1− ϱ

)︁
(D(pni−1)−D(pni)).

Proof. Let ω > 0 to be chosen later and denote p̃ni := pni−1+(ṽni −θip
n).

1
2σ2 ∥pni−1 − pni ∥2∗

= 1
2σ2 ∥σ(ṽni − θip

n)∥2∗ = 1
2∥p

n
i−1 − p̃ni ∥2∗

≤ 1
2

(︂
(1 + ω)∥pni−1 − p̂ni ∥2∗ + (1 + ω−1)∥p̃ni − p̂ni ∥2∗

)︂
≤ (1 + ω)(D(pni−1)−D(p̂ni)) + (1 + ω−1)(D(p̃ni)−D(p̂ni))

(Lemma 4.8 (i) and optimality)

≤ 1+ω
ϱ (D(pni−1)−D(p̃ni)) +

(1+ω−1)(1−ϱ)
ϱ (D(pni−1)−D(p̃ni))

(due to (4.8))
= 1

ϱ

(︁
1 + ω + (1 + ω−1)(1− ϱ)

)︁
(D(pni−1)−D(p̃ni))

≤ 1
σϱ

(︁
1 + ω + (1 + ω−1)(1− ϱ)

)︁
(D(pni−1)−D(pni)).

(using (4.10))

82

Choosing ω :=
√
1− ϱ to minimize the expression we arrive at

1
2σ2 ∥pni−1 − pni ∥2∗ ≤ 1

σϱ

(︁
2− ϱ+ 2

√︁
1− ϱ

)︁
(D(pni−1)−D(pni)).

Proposition 4.14. Let (pn)n∈N0 be the iterates from either one of
Algorithms 4.5 and 4.6 and let p̂ ∈ K denote a minimizer of D.

Then D(pn) → D(p̂) as n → ∞ owing to

D(pn)−D(p̂)

≤

⎧⎨⎩
2
ϱσα

(︁
D(pn)−D(pn+1)

)︁
if D(pn)−D(pn+1) > 1

2σϱΦ
2,√︂

2
ϱσΦα

√︁
D(pn)−D(pn+1) else,

where α := 1 + Mσ
√︁
2− ϱ+ 2

√
1− ϱ for Algorithm 4.6 and α := 1

for Algorithm 4.5, and Φ :=
√︁

∥B−1∥∥Λ∥CθRp̂.

Proof. Using convexity we expand

D(pn)−D(p̂)

≤ ⟨D′(pn), pn − p̂⟩V =

M∑︂
i=1

⟨D′(pn), θi(p
n − p̂)⟩V

=

M∑︂
i=1

(︂
⟨D′(pni−1), θi(p

n − p̂)⟩V

+

i−1∑︂
j=1

⟨D′(pnj−1)−D′(pnj), θi(p
n − p̂)⟩V

)︂
.

(4.13)

Let Φn := (
∑︁M

i=1 ∥θi(pn − p̂)∥2∗)
1
2 , v̂ni ∈ arg minvi∈θiK D(pni−1 + (vi −

θip
n)) and p̂ni := pni−1+(v̂ni −θip

n). We now estimate the first summand

83

in the expansion above:
M∑︂
i=1

⟨D′(pni−1), θi(p
n − p̂)⟩V

= 1
µ

M∑︂
i=1

⟨D′(pni−1), µθi(p
n − p̂)⟩V

= µ
2

M∑︂
i=1

∥θi(pn − p̂)∥2∗ + 1
µ

M∑︂
i=1

(︁
D(pni−1)−D(pni−1 − µθi(p

n − p̂))
)︁

(Lemma 4.8 (i))

= Φ2
nµ
2 + 1

µ

M∑︂
i=1

(︂
D(pni−1)−D

(︁
pni−1 + ((1− µ)θip

n + µθip̂− θip
n)
)︁)︂

≤ Φ2
nµ
2 + 1

µ

M∑︂
i=1

(D(pni−1)−D(p̂ni)) (optimality)

≤ Φ2
nµ
2 + 1

µϱσ (D(pn)−D(pn+1)), (Lemma 4.9)

where optimality was used by realizing that (1− µ)θip
n + µθip̂ ∈ θiK.

For the second summand we see
M∑︂
i=1

i−1∑︂
j=1

⟨D′(pnj−1)−D′(pnj), θi(p
n − p̂)⟩V

=

M∑︂
i=1

i−1∑︂
j=1

⟨︁
pnj−1 − pnj , θi(p

n − p̂)
⟩︁
∗ (Lemma 4.8 (ii))

≤
M∑︂
i=1

i−1∑︂
j=1

∥pnj−1 − pnj ∥∗∥θi(pn − p̂)∥∗

≤ M
(︂ M∑︂

j=1

∥pnj−1 − pnj ∥2∗
)︂ 1

2
(︂ M∑︂

i=1

∥θi(pn − p̂)∥2∗
)︂ 1

2

≤ MΦn

(︂ M∑︂
j=1

∥pnj−1 − pnj ∥2∗
)︂ 1

2
.

84

Applying Lemma 4.13 completes the estimate of the second summand,
yielding

M∑︂
i=1

i−1∑︂
j=1

⟨D′(pni−1)−D′(pni), θj(p
n − p̂)⟩V

≤ MΦn

√︂
2σ
ϱ (2− ϱ+ 2

√︁
1− ϱ)

(︁
D(pn)−D(pn+1)

)︁ 1
2 .

Combining both estimates and roughly bounding Φn ≤ Φ due to
Lemma 4.12 we have

D(pn)−D(p̂) ≤ Φ2µ
2 + 1

µϱσ

(︁
D(pn)−D(pn+1)

)︁
+MΦ

√︂
2σ
ϱ (2− ϱ+ 2

√︁
1− ϱ)

(︁
D(pn)−D(pn+1)

)︁ 1
2 .

Invoking Lemma 4.11 with the constants a = Φ2

2 , b = 1
ϱσ and c =

MΦ
√︂

2σ
ϱ (2− ϱ+ 2

√
1− ϱ) yields the split bound with the following

coefficients:

2b+ c
√︂

b
a = 2

ϱσ +MΦ
√︂

2σ
ϱ (2− ϱ+ 2

√︁
1− ϱ)

√︂
2

σϱΦ2

= 2
ϱσ (1 +Mσ

√︂
2− ϱ+ 2

√︁
1− ϱ),

2
√
ab+ c = 2

√︂
Φ2

2ϱσ +MΦ
√︂

2σ
ϱ (2− ϱ+ 2

√︁
1− ϱ)

=
√︂

2
ϱσΦ(1 +Mσ

√︂
2− ϱ+ 2

√︁
1− ϱ),

which concludes the proof for Algorithm 4.6.
For Algorithm 4.5, examining the proof above, we notice that for the

parallel version we have pni = pni−1 = pn for i = 1, . . . ,M − 1 and thus
the second summand in (4.13) vanishes completely. This allows us to
invoke Lemma 4.11 with c = 0 and leads to the desired statement.

Theorem 4.15. Let (pn)n∈N0 be the iterates from either one of Al-
gorithms 4.5 and 4.6 and let p̂ ∈ K denote a minimizer of D. Al-
gorithms 4.5 and 4.6 converge in the sense that D(pn) → D(p̂). More

85

specifically,

D(pn)−D(p̂) ≤

{︄
(1− ϱσ

2α)
n
(︁
D(p0)−D(p̂)

)︁
if n ≤ n0

2Φ2

ϱσ α2(n− n0 + 1)−1 if n ≥ n0,

where α := 1 + Mσ
√︁
2− ϱ+ 2

√
1− ϱ for Algorithm 4.6 and α := 1

for Algorithm 4.5, Φ :=
√︁
∥B−1∥∥Λ∥CθRp̂ and n0 := min{n ∈ N0 :

D(pn)−D(p̂) < Φ2α}.

Proof. We first observe that since (D(pn))n∈N0 is monotonically de-
creasing, n0 is well-defined and we have D(pn)−D(p̂) ≥ Φ2α for all
n ∈ N0, n < n0 and likewise D(pn) − D(p̂) < Φ2α for all n ∈ N0,
n ≥ n0.

We now make use of Proposition 4.14. The equivalence in Lemma 4.11
then yields

D(pn−1)−D(pn) ≥

{︄
ϱσ
2α(D(pn−1)−D(p̂)) if n− 1 < n0
ϱσ

2Φ2α2 (D(pn−1)−D(p̂))2 if n− 1 ≥ n0.

In the former case we invert the inequality and add D(pn−1)−D(p̂)
to arrive at

D(pn)−D(p̂) ≤ (1− ϱσ
2α)(D(pn−1)−D(p̂)),

which recursively yields the required statement for all n ≤ n0. In the
latter case we may assume without loss of generality that n0 = 0 since
we can shift the sequence if necessary. Thus for all n ∈ N0:

D(pn)−D(pn+1) ≥ ϱσ
2Φ2α2 (D(pn)−D(p̂))2.

Invoking Lemma 4.10 with constant c := ϱσ
2Φ2α2 we obtain

D(pn)−D(p̂) ≤ 1

cn+ 1
D(p0)−D(p̂)

≤ 1

cn+ 1
Φ2α

≤ 1

cn+ ϱσ
2Φ2α2

=
1

c(n+ 1)

since 0 ≤ σ, ϱ ≤ 1 and α ≥ 1, thereby showing the second inequality.

86

4.4 Comparison
We conclude that in special cases the results obtained here are either
in agreement with or may improve upon other known estimates.

Gradient Method Framework [75]
In the special case of parallel decomposition, i.e. α = 1, and exact
local solutions, i.e. ϱ = 1, the framework of [75] is applicable to our
model and their estimate [75, Algorithm 4.1] reproduces ours. We
show this by specializing and transforming their estimate.

Using notation from [75] we employ [75, Algorithm 4.1] by setting
E(u) = F (u) + G(u) := D(u) + χK . The space decomposition is
specified by the images of θk, k = 1, . . . ,M , i.e. Vk := im θk ⊆ V
with R∗

k : Vk → V then being the inclusion map. We choose to use
exact local solvers, i.e. ϱ = 1 in our notation, since it is not obvious
to us how our notion of approximate minimization maps to theirs. In
particular, dk and Gk are chosen as in [75, (4.3)] and ω := ω0 := 1. We
now verify [75, Assumptions 4.1 to 4.3] in order to apply [75, Theorem
4.7]. [75, Assumption 4.1] is fulfilled due to Lemmas 4.8 and 4.12 with
C0,K := Cθ∥Λ∥

√︁
∥B−1∥ and q := 2. We fulfill [75, Assumption 4.2] by

choosing τ0 :=
1
N (their τ corresponds to our σ). [75, Assumption 4.3]

is trivialized in the case of exact local solvers. Applying [75, Theorem
4.7] with Cq,τ = 2 and κ = 1

τC
2
θ∥Λ∥2∥B−1∥ yields

D(p1)−D(p̂) ≤ (1− σ(1− 1
2))(D(p0)−D(p̂))

= (1− σ
2)(D(p0)−D(p̂))

(4.14)

if D(p0)−D(p̂) ≥ τR2
p̂κ = Φ2 and

D(pn)−D(p̂) ≤ Cq,rR2
p̂κ

(n+1)q−1 = 2Φ2

σ (n+ 1)−1 (4.15)

otherwise. Applying estimate (4.14) recursively and shifting the se-
quence by n0 for the estimate (4.15) finally yields the formulation

D(pn)−D(p̂) ≤

{︄
(1− σ

2)
n
(︁
D(p0)−D(p̂)

)︁
if n ≤ n0

2Φ2

σ (n− n0 + 1)−1 if n ≥ n0,

87

which is in agreement with Theorem 4.15.

Decomposition of the Rudin-Osher-Fatemi Model [33]
In order to compare with the convergence rate in [33], we specialize
our model to their setting by chosing V = Hdiv

0 (Ω), Λ∗ = div : V →
L2(Ω), T = S = I : L2(Ω) → L2(Ω), α2 = β = 1 (thus B = I)
and ϱ = 1. Next we introduce some notation from [33], namely
C0, δ > 0 such that ∥∇θ̃i∥L∞ ≤ C0

δ for i = 1, . . . ,M , c.f. [33, (2.10)],
ζ0 := 2(D(p0) − D(p̂)) (our D has an additional factor of 1

2) and
N0 := maxx∈Ω |{i ∈ {1, . . . ,M} : x ∈ Ωi}|. Then [33, Theorem 3.1]
and [33, Theorem 3.6] provide the following estimate:

1
2∥u

n − û∥2 ≤ D(p)−D(p̂) ≤ Cn−1 (4.16)

where un := −div pn + g, û := −div p̂+ g and

C := 1
2ζ

0
(︂

2
σ (2M + 1)2 + 8

√
2C0λ|Ω|

1
2 (ζ0)−

1
2
M

√
N0

δ
√
σ

+
√
2− 1

)︂2
.

Note that we used our notation for M and σ.
In order to compare favorably in this setting, we slightly refine the

estimate Φn ≤ Φ from the proof of Proposition 4.14. First, we quantify
an estimate from the proof of Lemma 4.3. For all p ∈ V we have

M∑︂
i=1

∥div θip∥2L2 ≤
M∑︂
i=1

∥∇θ̃i · p+ θ̃i div p∥2L2

≤
M∑︂
i=1

(︂
(1 + ω)∥∇θ̃i · p∥2L2 + (1 + ω−1)∥θ̃i div p∥2L2

= (1 + ω)

∫︂
Ω

M∑︂
i=1

|∇θ̃i · p|2 dx+ (1 + ω−1)

∫︂
Ω

M∑︂
i=1

|θ̃i div p|2 dx

≤ (1 + ω)

∫︂
Ω

(︂ M∑︂
i=1

|∇θ̃i|2
)︂
|p|2 dx

+ (1 + ω−1)

∫︂
Ω

(︂ M∑︂
i=1

|θ̃i|2
)︂
|div p|2 dx

88

≤ (1 + ω)N0∥∇θ̃i∥2L∞∥p∥2L2 + (1 + ω−1)∥div p∥2L2

≤ (1 + ω)N0
C2

0
δ2
∥p∥2L2 + (1 + ω−1)∥div p∥2L2 ,

for any ω > 0. The pointwise box-constraints |p| ≤ λ imply ∥pn −
p̂∥2L2 =

∫︁
Ω |pn−p̂|2 dx ≤ (2λ)2|Ω|. Combining this allows us to estimate

Φ2
n =

M∑︂
i=1

∥θi(pn − p̂)∥2∗ =
M∑︂
i=1

∥div θi(pn − p̂)∥2L2

≤ (1 + ω)N0
C2

0
δ2
∥pn − p̂∥2L2 + (1 + ω−1)∥div(pn − p̂)∥2L2

≤ (1 + ω) · 4λ2|Ω|N0
C2

0
δ2

+ (1 + ω−1)ζ0

=
(︂
2λ|Ω|

1
2N

1
2
0

C0
δ + (ζ0)

1
2

)︂2
=: Φ̃

2

by optimally choosing ω := (4λ2|Ω|N0
C2

0
δ2
)−

1
2 (ζ0)

1
2 . We therefore con-

clude that in this specific setting Theorem 4.15 holds true with Φ
replaced by Φ̃. Their and our estimate thus amount to

1
2∥u

n − û∥2 ≤ Cn−1,

1
2∥u

n − û∥2 ≤ 2Φ̃
2

σ α2(n− n0 + 1)−1,

where for the lower estimate α and n0 are defined as in Theorem 4.15
and n ≥ n0. Rewriting the involved constants,

C =

(︃(︂√
2
2

(2M+1)2

σ +
√
2− 1

)︂√︁
ζ0 + 8 M√

σ
λ|Ω|

1
2

√︁
N0

C0
δ

)︃2

,

2Φ̃
2
α2

σ ≤ 2(1+σM)2

σ

(︂
2λ|Ω|

1
2

√︁
N0

C0
δ +

√︁
ζ0
)︂2

=

(︃√
21+σM√

σ

√︁
ζ0 + 2

√
21+σM√

σ
λ|Ω|

1
2

√︁
N0

C0
δ

)︃2

,

we see that 2Φ̃
2
α2

σ ≤ C by comparing the relevant terms before
√︁
ζ0

and λ|Ω|
1
2
√
N0

C0
δ under the square separately using 0 < σ ≤ 1 and

89

M ≥ 1:
√
21+σM√

σ
≤

√
2√
σ
(1 +M) <

√
2
σ

(2M+1)2

2 ≤
√
2
2

(2M+1)2

σ +
√
2− 1

2
√
21+σM√

σ
≤ 31+M√

σ
< 42M√

σ
= 8 M√

σ
.

Consequently, Theorem 4.15 provides a strictly better estimate than
[33, Theorems 3.1, 3.6] both for sufficiently large n ∈ N and for all
n ∈ N whenever n0 = 0 (i.e. the initial guess is close enough). While
we expect Theorem 4.15 to prevail for n0 > 0 as well, a complete
comparison in that case seems to be more involved and remains to be
done.

4.5 Surrogate Technique

A surrogate iteration substitutes minimization of one functional with
minimization of different, simpler functionals at the cost of an addi-
tional iterative process. In particular one can substitute the minimiza-
tion problem infp∈K 1

2∥Λ
∗p− f∥2B−1 by the iteration

inf
pn+1∈K

1
2∥Λ

∗pn+1 − fn∥2W , fn = Λ∗pn − 1
τB

−1(Λ∗pn − f),

producing iterates (pn)n∈N for some initialization p0 ∈ V that con-
verge to the same minimizer, provided τ ∈ (∥B−1∥,∞). Though its
properties have been studied extensively in e.g. [71], we will analyze
it as a nested subalgorithm of the domain decomposition scheme for
approximate minimization following the notion from Definition 4.4.
The main motivation for the surrogate technique in our case is to avoid
having the local problems (4.9) depend directly on the potentially
costly operator B−1.

To that end we introduce an auxiliary functional Ds
i defined as

Ds
i (vi, wi) := D(pni−1 + (vi − θip

n)) + 1
2∥Λ

∗(vi − wi)∥2τI−B−1

with τ > ∥B−1∥ for vi, wi ∈ θiK and i = 1, . . . ,M .

90

Algorithm 4.16 (Surrogate approximation).
Parameters: Nsur ∈ N
Input: n ∈ N0, i ∈ {1, . . . ,M}, pn ∈ K, pni−1 ∈ K
Output: ṽni ∈ θiK
vn,0i = θip

n
i−1

for ℓ = 0, 1, . . . , Nsur − 1 do
vn,ℓ+1
i ∈ arg minvi∈θiK Ds

i (vi, v
n,ℓ
i)

end for
ṽni = vn,Ni

i

We note that the subproblems in Algorithm 4.16 can be written as

inf
vi∈θiK

Ds
i (vi, v

n,ℓ
i) ⇐⇒ inf

vi∈θiK
1
2∥Λ

∗(pni−1 + (vi − θip
n))− f∥2B−1

+ 1
2∥Λ

∗(vi − vn,ℓi)∥2τI−B−1

⇐⇒ inf
vi∈θiK

1
2∥Λ

∗vi − fn
i ∥2W ,

where fn
i = Λ∗vn,ℓi − 1

τB
−1(Λ∗(pni−1+(vn,ℓi −θip

n))−f). The depend-
ence on the operator B−1 has thereby been moved into the preparation
of fixed data fn

i for every subproblem, while the subproblem itself for
fixed fn

i is independent of B−1.
Algorithm 4.16 produces approximations vni to be used in Al-

gorithms 4.5 and 4.6. Following ideas from [71, Proposition 2.2] it
will soon become clear, that the surrogate approximation converges
linearly and any fixed number of surrogate iterations Nsur is enough
to receive the convergence rate from Theorem 4.15 for the resulting
combined algorithm.

Lemma 4.17. Using notation and assumptions from Algorithm 4.16
the functional Dn

i : Vi → R,

Dn
i (v) := D(pni−1 + (v − θip

n)),

has quadratic growth in the sense that

Dn
i (v)−Dn

i (v̂) ≥ 1
2∥τI−B−1∥∥B∥∥Λ

∗(v − v̂)∥2τI−B−1

for any minimizer v̂ ∈ θiK of Dn
i .

91

Proof. Using Lemma 4.8 and optimality of v̂ ∈ θiK we see that

Dn
i (v)−Dn

i (v̂) = ⟨D′(pni−1 + (v̂ − θip
n)), v − v̂i⟩V + 1

2∥v − v̂∥2∗
≥ 1

2∥Λ
∗(v − v̂)∥2B−1 .

Further noting that τI −B−1 is positive definite, since τ > ∥B−1∥,

∥Λ∗(v − v̂)∥2τI−B−1 ≤ ∥τI −B−1∥∥Λ∗(v − v̂)∥2W
≤ ∥τI −B−1∥∥B∥∥Λ∗(v − v̂)∥2B−1 .

Combining both inequalities yields the statement.

Proposition 4.18. Using the notation and assumptions from Al-
gorithm 4.16 and Lemma 4.17 the surrogate iterates vn,ℓi satisfy

Dn
i (v

n,ℓ
i)−Dn

i (v
n,ℓ+1
i) ≥ η(Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i))

for any minimizer v̂ni ∈ θiK of Dn
i while η ∈ (0, 1) is given by

η =

{︄
1

4∥τI−B−1∥∥B∥ if ∥τI −B−1∥∥B∥ ≥ 1
2

1− ∥τI −B−1∥∥B∥ else.

Proof. Since Ds
i (v, w) = Dn

i (v) +
1
2∥Λ

∗(w − v)∥2τI−B−1 we have

Dn
i (v

n,ℓ+1
i) + 1

2∥Λ
∗(vn,ℓi − vn,ℓ+1

i)∥2τI−B−1

= Ds
i (v

n,ℓ+1
i , vn,ℓi)

= min
vi∈θiK

Dn
i (vi) +

1
2∥Λ

∗(vn,ℓi − vi)∥2τI−B−1

≤ min
µ∈[0,1]

Dn
i ((1− µ)vn,ℓi + µv̂ni) +

µ2

2 ∥Λ∗(vn,ℓi − v̂ni)∥2τI−B−1

≤ min
µ∈[0,1]

(1− µ)Dn
i (v

n,ℓ
i) + µDn

i (v̂
n
i) +

µ2

2 ∥Λ∗(vn,ℓi − v̂ni)∥2τI−B−1 ,

where we searched for the minimum along the line vi = (1− µ)vn,ℓi +
µv̂ni ∈ θiK, µ ∈ [0, 1] and used convexity afterwards. After reordering

92

we use the quadratic growth property from Lemma 4.17 to see that

Dn
i (v

n,ℓ
i)−Dn

i (v
n,ℓ+1
i)− 1

2∥Λ
∗(vn,ℓi − vn,ℓ+1

i)∥2τI−B−1

≥ max
µ∈[0,1]

µ(Dn
i (v

n,ℓ
i)−Dn

i (v̂
n
i))−

µ2

2 ∥Λ∗(vn,ℓi − v̂ni)∥2τI−B−1

≥ max
µ∈[0,1]

(︁
µ− µ2∥τI −B−1∥∥B∥

)︁
(Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i)).

Discarding the last term on the left-hand side and evaluating the
maximum optimally at µ = min{1, 1

2∥τI−B−1∥∥B∥} ∈ (0, 1] yields

Dn
i (v

n,ℓ
i)−Dn

i (v
n,ℓ+1
i) ≥ η(Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i))

where η ∈ (0, 1) is given by

η =

{︄
1

4∥τI−B−1∥∥B∥ if ∥τI −B−1∥∥B∥ ≥ 1
2

1− ∥τI −B−1∥∥B∥ else.

Proposition 4.18 is sharp in the sense that for trivial B−1 = I and
minimizing 1 < τ → 1, we recover the optimal factor η → 1.

Lemma 4.19. The surrogate iterates (vn,ℓi)ℓ from Algorithm 4.16 yield
approximate solutions to the subproblems in the sense that

Dn
i (v

n,0
i)−Dn

i (v
n,ℓ
i) ≥

(︁
1− (1− η)ℓ

)︁
(Dn

i (v
n,0
i)−Dn

i (v̂
n
i))

for any minimizer v̂ni ∈ θiK of Dn
i , i ∈ {1 . . . ,M}, n ∈ N0 and

η ∈ (0, 1) defined as in Proposition 4.18.

Proof. Elementary calculation using Proposition 4.18 yields a linear
energy decrease

Dn
i (v

n,ℓ+1
i)−Dn

i (v̂
n
i)

= −(Dn
i (v

n,ℓ
i)−Dn

i (v
n,ℓ+1
i)) +Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i)

≤ −η(Dn
i (v

n,ℓ
i)−Dn

i (v̂
n
i)) +Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i)

= (1− η)(Dn
i (v

n,ℓ
i)−Dn

i (v̂
n
i))

93

which we use to find

Dn
i (v

n,0
i)−Dn

i (v
n,ℓ
i)

= Dn
i (v

n,0
i)−Dn

i (v̂
n
i)− (Dn

i (v
n,ℓ
i)−Dn

i (v̂
n
i))

≥ Dn
i (v

n,0
i)−Dn

i (v̂
n
i)− (1− η)ℓ(Dn

i (v
n,0
i)−Dn

i (v̂
n
i))

≥ (1− (1− η)ℓ)(Dn
i (v

n,0
i)−Dn

i (v̂
n
i)).

Finally, combining Theorem 4.15 with Lemma 4.19 then immediately
yields the following corollary.

Corollary 4.20. Algorithms 4.5 and 4.6 with subproblems solved using
Algorithm 4.16 converge in the sense that D(pn) → D(p̂). Furthermore

D(pn)−D(p̂) ≤

{︄
(1− ϱσ

2α)
n
(︁
D(p0)−D(p̂)

)︁
if n ≤ n0

2Φ2

ϱσ α2(n− n0 + 1)−1 if n ≥ n0,

where α := 1 + Mσ
√︁
2− ϱ+ 2

√
1− ϱ for Algorithm 4.6 and α := 1

for Algorithm 4.5, Φ :=
√︁

∥B−1∥∥Λ∥CθRp̂, n0 := min{n ∈ N0 :
D(pn)−D(p̂) < Φ2α} and

ϱ = (1− (1− η)Nsur),

η =

{︄
1

4∥τI−B−1∥∥B∥ if ∥τI −B−1∥∥B∥ ≥ 1
2

1− ∥τI −B−1∥∥B∥ else.

for any fixed number of inner surrogate iterations Nsur ∈ N.

Concluding, in this section we were able to prove a convergence
rate for the nested surrogate algorithm in Corollary 4.20 using The-
orem 4.15 because we successfully managed to apply our notion of
ϱ-approximate minimizers from Definition 4.4 to any fixed number of
surrogate iterations with the help of Proposition 4.18 and Lemma 4.19.

94

5 Discretization and Algorithms

In the preceeding chapters we have been using a continuous setting.
More specifically the topology of Ω ⊆ Rd as a non-empty open set
is inherently non-discrete, the function spaces used by the model
functional (3.13) and its predual (3.12) have no finite basis (indeed
they include polynomials of arbitrary degree) and the duality has been
established by Theorem 2.28 in a general Hilbert space setting. Images
in practice, however, are given in discrete form (e.g. as an array of
brightness values) and algorithms may only act on discrete data, since
available memory and computing resources are limited. In this chapter
we apply the results from previous chapters to show their relevance
and verify their claims numerically.

We consider two standard discretization approaches: finite differences
in Section 5.1 and finite elements in Section 5.2 and discuss how to
apply them in our setting. For finite elements we derive in Sections 5.2.2
and 5.2.3 two distinct a-posteriori error estimates for use in adaptive
algorithms. In Section 5.3 two classic optimization algorithms from [28,
31] are reviewed and reformulated in a general Hilbert space setting,
before we derive and evaluate a practical semi-smooth Newton method
for our model in Section 5.4. Section 5.6 then concludes with selected
numerical examples of the decomposition method from Chapter 4.

New contributions include the discussion of finite element interpol-
ation methods in the context of image processing, the proposal of a
pixel-adapted L2-projection, derivation of two a-posteriori estimates
and a semi-smooth Newton method for our generalized model, proposal
of an adaptive warping scheme for optical flow, as well as numerical
verification of the theoretical convergence results from Chapter 4.

Preliminary work in deriving the finite element residual a-posteriori
error estimate has been carried out by Martin Alkämper. The source

95

code to reproduce all numerical examples of this chapter has been
made publicly available at [50, 53]. Results of this chapter paired
with their theoretical underpinnings from Chapters 3 and 4 are in
preparation to be published separately [55, 56].

5.1 Finite Differences
The method of finite differences is concerned with functions defined on
a finite, discrete subset Ωh ⊆ Ω and provides derivative operators for
those functions, which approximate the corresponding derivatives in the
continuous space. Classically, Ωh is taken as a lattice of equidistantly
spaced points, similar to the arrangement of pixels on a screen or in a
computer image. Functions can then be represented as arrays of point
evaluations, which makes this discretization method a straight-forward
fit for image processing.

Consider a rectangular grid Ωh spanning from a = (a1, . . . , ad) ∈ hZd

to b = (b1, . . . , bd) ∈ hZd with grid gap h > 0 defined by

Ωh := Ωh,[a,b] :=
{︁
x = (x1, . . . , xd) ∈ hZd : a ≤ x ≤ b

}︁
.

Digital images given by an array A ∈ [0, 1]n1×···×nd , n = (n1, . . . , nd) ∈
Nd of intensity values between 0 (black) and 1 (white) are then mapped
to a discrete function u : Ω1,[1,n] → R by defining u(x) := Ax, x ∈∏︁d

i=1[1, ni].

Definition 5.1 (Finite Difference Operators). For uh : Ωh → Rm and
ph = (ph,1, . . . , ph,d) : Ωh → Rd×m let forward differences ∂+

h,k : Ωh →
Rm and backward differences ∂−

h,k : Ωh → Rm be given by

h∂+
h,kuh(x) :=

{︄
0 if xk = bk,

uh(x+ hek)− uh(x) else,
,

h∂−
h,kuh(x) :=

⎧⎪⎨⎪⎩
uh(x) if xk = ak,

−uh(x− hek) if xk = bk,

uh(x)− uh(x− hek) else,

96

where ek ∈ Nd denotes the k-th unit vector, k = 1, . . . , d. The discrete
gradient ∇huh : Ωh → Rd×m and discrete divergence divh ph : Ωh →
Rm are then defined as

∇huh := (∂+
h,kuh)

d
k=1, divh ph :=

d∑︂
k=1

∂−
h,kph,k.

Remark 5.2. The discrete operators ∇h and −divh in Definition 5.1
are adjoint, i.e. ⟨∇huh, ph⟩h = ⟨uh,−divh ph⟩h where ⟨ · , · ⟩h denotes
the L2 discrete inner product on functions Ωh → Rm.

Finite difference discretization following Definition 5.1 often impli-
citly assumes a continuous model using smooth functions u ∈ C1(Ω)m,
p ∈ C1(Ω)d×m. In that model point evaluations are well-defined and
approximation results for the derivative operators in Definition 5.1
hold as h → 0. In image processing h = 1 is often used implicitly in
order to avoid additional interpolation of image data. For the total
variation functional from Definition 2.29 this means: while approx-
imation guarantees for h → 0 are important, discretizing in a way as
to preserve geometric properties of the total variation as faithfully as
possible for fixed h = 1 is generally of more practical value.

Let uh : Ωh → Rm be a discrete image. Discretizing the constraint
on the predual variable in a pointwise sense leads to a primal total
variation discretization well-known as isotropic total variation:

TVF (uh) :=
∑︂
x∈Ωh

|∇huh(x)|F .

Though TVF has been shown to adhere to some of the geometrical
properties in Proposition 2.33, it is also, despite its name, not quite
isotropic (here: invariant under interpolated spatial rotation) [35].
This topic has sparked renewed theoretical interest and new isotropic
discretizations are being proposed [1, 24, 30, 32, 35].

While we will not use TVF directly, the pointwise finite difference
discretization of the predual problem (4.2) corresponds to using TVF

in the primal problem.

97

(a) 3x3 image given by
square pixels

(b) simplicial grid with
nodes in pixel cen-
ters

Figure 5.1: image aligned simplicial grid construction

5.2 Finite Elements

Central to the idea of finite element discretization is the idea to find a
solution within a finite dimensional subspace of the original space. This
discrete space usually consists of cellwise polynomial functions defined
on a mesh of cells, e.g. simplices. In contrast to finite differences the
discretization may be adaptively refined to accomodate for certain local
error indicators, thereby reducing the number of degrees of freedom
needed to represent a solution up to a certain accuracy. For more
details on adaptive finite element schemes in general, we refer the
reader to the survey [74].

For a two-dimensional computer image given by an array A ∈
[0, 1]n1×n2 define the domain Ω := [1, n1] × [1, n2]. If not otherwise
noted, Ω is triangulated using simplices with nodes at integer coordin-
ates (x1, x2) ∈ Z2, 1 ≤ x1 ≤ n1, 1 ≤ x2 ≤ n2 corresponding to pixel
centers as depicted in Figure 5.1.

Let T denote the set of cells and Γ the set of oriented facets (i.e. edges
for d = 2) of the simplicial triangulation. For any cell K ∈ T let Pk(K)
be the space of polynomial functions on K with total degree k ∈ N. We
choose finite subspaces Vh ⊆ H1(Ω)m ⊆ V , W ∗

h ⊆ L2(Ω)×L2(Ω)d×m ⊆

98

W ∗, Zh ⊆ L2(Ω) as follows:

Vh := {u ∈ C(Ω)m : u|K ∈ P1(K)m,K ∈ T },
W ∗

h := {(p1, ppp2) ∈ C(Ω)× L2(Ω)d×m :

p1|K ∈ P1(K), ppp2|K ∈ P0(K)d×m,K ∈ T },
Zh := {g ∈ C(Ω) : g|K ∈ P1(K),K ∈ T },

(5.1)

i.e. piecewise linear continuous elements for u, g, p1 and piecewise
constant discontinuous elements for p2.

There are different options to approach the finite element discret-
ization of (3.13). This is due to the fact, that dualization and dis-
cretization do not necessarily commute. Indeed, the simple pointwise
representations deduced for the dual problem in Proposition 3.9 do not
necessarily hold true for subspaces of V . For that reason a modified
primal discrete energy is introduced in [49], which allows for a man-
ageable dual representation with direct constraints on the degrees of
freedom. Here, we explore a suitable discretization of the continuous
optimality conditions (3.16) instead. Namely, in the discrete finite
element setting we will search for solutions p = (p1, ppp2) ∈ W ∗

h , u ∈ Vh

which satisfy

0 = Λ∗ppp− α2T
∗g +Bu,

0 = p1 max{γ1, |Tu− g|} − α1(Tu− g), |p1| ≤ α1,

0 = ppp2 max{γ2, |∇u|F } − λ∇u, |ppp2|F ≤ λ,

(5.2)

where the last two equations are enforced on vertices only. This is
due to the fact, that the expression |Tu− g| is not necessarily cellwise
linear, even though Tu− g is.

For refinement we bisect triangles using the newest-vertex strategy
[74], i.e. the bisection edge is chosen to be opposite of the vertex which
was inserted last. In an adaptive refinement setting we mark cells
for refinement using the greedy Dörfler marking strategy [74] with
θmark = 0.5, i.e. given error indicators in descending order (ηKn)1≤n≤|T |

99

for triangles Kn ∈ T we refine the first nmark ∈ N triangles that satisfy

nmark∑︂
n=1

ηKn ≥ θmark

|T |∑︂
n=1

ηKn .

We start out with an L2-norm estimate of the gradient operator in
our finite element setting, which will be handy for limiting stepsizes in
the algorithm to come.

Lemma 5.3. Let d = 2. For every cell K ∈ T and every u ∈ Vh we
have the upper bound

∥∇u∥L2(K) ≤ 6
√
2

ϱK
∥u∥L2(K).

Proof. Let F : K̂ → K, x̂ ↦→ Ax + b be the affine transformation
bijectively mapping the reference cell K̂ to K and set û := u ◦F to be
u transformed onto K̂. As in the proof of [80, Proposition 3.38], since
K contains a ball with diameter ϱK and K̂ is contained in a ball with
diameter hK̂ , we have

∥∇u∥L2(K)

∥u∥L2(K)
=

∥A−t∇û∥L2(K̂)

∥û∥L2(K̂)

≤
hK̂
ϱK

∥∇û∥L2(K̂)

∥û∥L2(K̂)

=

√
2

ϱk

∥∇û∥L2(K̂)

∥û∥L2(K̂)

and it remains to bound
∥∇û∥L2(K̂)

∥û∥L2(K̂)
. Representing û in local coordinates:

û(x, y) = ax+ by + c(1− x− y), a, b, c ∈ R we explicitly calculate

∥∇û∥2
L2(K̂)

=

∫︂ 1

0

∫︂ 1−x

0
|∇û(x, y)|2 dy dx

= 1
2(a

2 + b2 + 2c2 − 2ac− 2bc),

∥û∥2
L2(K̂)

=

∫︂ 1

0

∫︂ 1−x

0
|û(x, y)|2 dy dx

= 1
12(a

2 + b2 + c2 + ab+ ac+ bc).

100

Using 0 ≤ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc and 0 ≤
(
√
2x+ c√

2
)2 = 2x2 + c2

2 + 2xc, x ∈ {a, b} we bound

a2 + b2 + 2c2 − 2ac− 2bc ≤ 4a2 + 4b2 + 5c2 + 6ab+ 4ac+ 4bc

≤ 6a2 + 6b2 + 6c2 + 6ab+ 6ac+ 6bc

and infer ∥∇û∥2
L2(K̂)

≤ 6 · 12
2 ∥û∥

2
L2(K̂)

= 36∥û∥2
L2(K̂)

. Combining this
with the transformation above, we get

∥∇u∥L2(K)

∥u∥L2(K)
≤

√
2

ϱk

∥∇û∥L2(K̂)

∥û∥L2(K̂)

≤ 6
√
2

ϱk
.

5.2.1 On Image Interpolation Methods
For aligned grids as in Figure 5.1 image data A ∈ [0, 1]n1×n2 is inter-
polated to a grid function gh ∈ Zh by nodal sampling. This way, when
resampling at pixel centers one receives the original image. For non-
aligned grids , i.e. when pixel centers do not correspond to vertices of
the grid, a mapping of the image A to some grid function gh ∈ Zh has
to be computed. Chosing nodal sampling (e.g. of bilinearly interpol-
ated image data) for this map can result in aliasing and is a well known
undesired effect in image processing [21]. The Shannon-Whittaker
sampling theorem provides ample conditions for correct equidistant
sampling of bandwith-limited functions [21, 78], namely to remove
high-frequency contributions (e.g. by a linear smoothing filter) before
sampling on a coarser grid. It is however unclear to us how to apply
this to general unstructured sampling points.

We evaluate three projection schemes and then explore one alternat-
ive. Let g ∈ C(Ω) be the piecewise bilinear interpolation of the nodal
image data A. For methods involving quadratures the quadrature
over a cell E ∈ T is computed using a simple averaging quadrature
on a Lagrange lattice of degree ⌈diam(E)⌉, i.e. we properly scale the
number of quadrature points depending on the size of the cell (and
thus the number of pixels it covers) to avoid aliasing effects.

The projection schemes are defined as follows:

101

Figure 5.2: Discrete input image for mesh interpolation comparison,
32× 32 pixels

(i) nodal: Nodal interpolation, i.e. gh ∈ Zh such that gh(x) := g(x)
at every mesh vertex x.

(ii) l2_lagrange: Standard L2-projection, i.e. gh ∈ Zh such that∫︁
Ω gh · ϕdx =

∫︁
Ω g · ϕdx for all ϕ ∈ Zh.

(iii) qi_lagrange: The general L1-stable quasi-interpolation operator
as proposed in [45], i.e. the continuous gh ∈ Zh is given by setting
its nodal degrees of freedom at each vertex to the arithmetic mean
of the corresponding local degrees of freedom of a discontinuous
interpolant ˜︁gh ∈ ˜︁Zh := {f ∈ L∞(Ω) : f |K ∈ P1(K),K ∈ T },
which is defined on each cell K ∈ T by its local nodal degrees
of freedom σK,i =

1
|K|

∫︁
K g(x) · ϱK,i(x)dx, i = 1, . . . , 3 where the

test function ϱK,i in our case is given in barycentric coordinates
λK by ϱK,i(λK) = 12λK,i − 3. The reader may refer to [45] for
details on the general construction.

(iv) l2_pixel: Our proposed method, i.e. minimizing the sum of
pointwise squared errors over all pixel coordinates amounting to:
infgh∈Zh

∑︁
x∈Ω∩Z2

1
2∥gh(x)− g(x)∥2.

We note, that l2_pixel may be interpreted as an L2-projection
with a cell-dependent averaging quadrature rule, adapted to the orginal
image pixel locations.

We evaluate these schemes by interpolating the discrete image given
in Figure 5.2 onto Vh for regular meshes of different sizes. In Fig-
ure 5.3 we see the interpolated results as cellwise linear functions.

102

Figure 5.3: Interpolated finite element functions for varying mesh sizes
and interpolation methods. Methods from left to right:
nodal, l2_lagrange, qi_lagrange, l2_pixel. Number
of mesh vertices in each dimension from top to bottom: 32,
16, 13.

Table 5.1: PSNR values (higher is better) of interpolated mesh func-
tions from Figure 5.3, sampled at image coordinates.

mesh_size nodal l2_lagrange qi_lagrange l2_pixel
32 ∞ 55.826 22.606 327.597
16 21.141 22.020 21.483 23.106
13 18.861 19.650 19.053 19.981

Table 5.2: SSIM values (higher is better) of interpolated mesh functions
from Figure 5.3, sampled at image coordinates.

mesh_size nodal l2_lagrange qi_lagrange l2_pixel
32 1.00000 0.99998 0.97846 1.00000
16 0.93868 0.95133 0.94757 0.96693
13 0.89307 0.90888 0.90053 0.92080

103

Note that e.g. for mesh size 16 the results from l2_pixel appear
to be less blurry than nodal or l2_lagrange, while avoiding an
excessive sharpening effect observed for qi_lagrange in the upper
left of the image. Next, we sample the interpolated functions on
the original image grid Ωh and quantify the error to the original
image. In particular, Tables 5.1 and 5.2 list the peak signal-to-
noise ratio PSNR, given for two scalar images u, v : Ωh → [0, 1] by
PSNR(u, v) := −10 log10

(︁
1

|Ωh|
∑︁

x∈Ωh
(u(x) − v(x))2

)︁
, and the struc-

tural similarity index SSIM as defined in [81]. Perhaps unsurprisingly,
due to construction, l2_pixel produces results closest to the original
image for both metrics. We note that, theoretically, l2_pixel in the
finest mesh setting should provide exact results (i.e. infinite PSNR)
and the discrepancy is due to numerical imprecision.

It should be noted, that while l2_pixel seems to provide visually
superior results, it does not necessarily preserve other quantities of
the image, such as the total mass, which may be relevant for the
image processing task in question. Further, it is not necessarily well-
defined for meshes finer than the original image and in that case a
regularization needs to be applied.

We conclude that, since digital images are usually given as an array
of brightness values and the output of image processing algorithms is
expected to be so too, working in unstructured finite element spaces
comes with the drawback of information loss due to mesh interpolation.
Apart from increased complexity, this may be considered a problem
for applying unstructured adaptive finite element methods to image
processing tasks in practice.

5.2.2 Primal-Dual A-Posteriori Error Estimator

In the following we use the same approach as in [12, 14] to derive
a-posteriori error estimates from the primal dual energy gap. We
slightly adjust the arguments to account for the Huber regularization
and potentially non-local operators T and B.

104

Lemma 5.4. Let H be a real Hilbert space with inner product ⟨·, ·⟩H
and associated norm ∥ · ∥H . Then for every v, wh, w ∈ H one has

∥v − w∥2H − ∥v − wh∥2H = ⟨2v − wh − w,wh − w⟩H
≤ (∥v − w∥H + ∥v − wh∥H)∥w − wh∥H .

Proof. For the equality one has

∥v − w∥2H − ∥v − wh∥2H
= ⟨v − w, v − w⟩H − ⟨v − wh, v − w + w − wh⟩H
= ⟨wh − w, v − w⟩H − ⟨v − wh, w − wh⟩H
= ⟨v − w,wh − w⟩H + ⟨v − wh, wh − w⟩H
= ⟨2v − w − wh, wh − w⟩H .

For the inequality one has

⟨2v − wh − w,wh − w⟩H = ⟨v − wh, wh − w⟩H + ⟨v − w,wh − w⟩H
≤ (∥v − w∥H + ∥v − wh∥H)∥w − wh∥H .

Note that we may apply Lemma 5.4 in particular to the weighted
scalar product ⟨·, B−1·⟩ with associated norm ∥ · ∥B−1 .

Let gh ∈ Zh be the L2-projection of g onto Zh. Recalling (3.12) and
(3.13) we define discretized functionals of E∗ and E by E∗

h : W ∗
h → R

and Eh : Vh → R using the discretized data gh as

E∗
h(ppph) :=

1
2∥T

∗ph,1 +∇∗ppph,2 − α2T
∗gh∥2B−1 − α2

2 ∥gh∥2L2 + ⟨gh, ph,1⟩
+ χ|ph,1|≤α1

+ χ|ppph,2|F≤λ + γ1
2α1

∥ph,1∥2L2 +
γ2
2λ∥ppph,2∥

2
L2 ,

Eh(uh) :=
α2
2 ∥Tuh − gh∥2L2 +

β
2 ∥Suh∥

2
L2

+ α1

∫︂
Ω
ϕγ1(|Tuh − gh|)dx+ λ

∫︂
Ω
ϕγ2(|∇uh|F)dx.

105

Theorem 5.5. Let u ∈ V be the solution to (3.13). Further, let
uh ∈ Vh be the discrete minimizer of Eh. Then one has for any
vh ∈ Vh, qqqh ∈ W ∗

h the a-posteriori error estimate

1
2∥uh − u∥2B ≤ η2h(vh, qqqh) + c∥gh − g∥L2

where the estimator ηh : Vh ×W ∗
h → R is given as

η2h(vh, qqqh) := Eh(vh) + E∗
h(qqqh) (5.3)

and c > 0 is a constant depending only on the model parameters, the
domain size |Ω| and data g.

Proof. Let ppp ∈ W ∗ be a solution to (3.12) and ppph ∈ W ∗
h be a discrete

minimizer of E∗
h.

Let vh ∈ Vh and qqqh ∈ W ∗
h be arbitrary. Then we have due to

Lemma 3.7, strong duality from Theorem 2.28, optimality of p in E∗

and optimality of uh and ppph in Eh and E∗
h respectively:

1
2∥uh − u∥2B ≤ E(uh)− E(u)

= E(uh) + E∗(p)

≤ E(uh) + E∗(ppph)

= η2h(uh, ppph) + E(uh)− Eh(uh) + E∗(ppph)− E∗
h(ppph)

≤ η2h(vh, qqqh) + E(uh)− Eh(uh) + E∗(ppph)− E∗
h(ppph).

It remains to bound the data approximation errors E(uh) − Eh(uh)
and E∗(ppph)− E∗

h(ppph).
According to Proposition 3.10 the Huber function satisfies |ϕ′

γ1(x)| ≤
1 for all x ∈ R, so ϕ is in particular Lipschitz-continuous with Lipschitz-
constant 1 and we may use the inverse triangle inequality to obtain

ϕγ1(|Tuh − g|)− ϕγ1(|Tuh − gh|) ≤
⃓⃓
|Tuh − g| − |Tuh − gh|

⃓⃓
≤ |g − gh|.

106

We further note in advance that since gh is the projection of g onto
Zh we have due to Lemma 2.8 ∥gh∥ ≤ ∥g∥ and

∥gh − g∥L2 ≤ ∥g∥L2 ,

∥Tuh − g∥L2 ≤ ∥Tuh − gh∥L2 + ∥gh − g∥L2 .

Using that and Lemma 5.4 we estimate:

E(uh)− Eh(uh)

= α1

∫︂
Ω
ϕγ1(|Tuh − g|)− ϕγ1(|Tuh − gh|)dx

+ α2
2

(︁
∥Tuh − g∥2L2 − ∥Tuh − gh∥2L2

)︁
≤ α1

∫︂
Ω
|g − gh|dx+ α2

2

(︁
∥Tuh − g∥L2 + ∥Tuh − gh∥L2

)︁
∥g − gh∥L2

≤ α1

∫︂
Ω
|g − gh|dx+ α2

2

(︁
2∥Tuh − gh∥L2 + ∥g − gh∥L2

)︁
∥g − gh∥L2

≤ α1|Ω|
1
2 ∥g − gh∥L2 + α2

2

(︁
2Eh(0)

1
2 + ∥g∥L2

)︁
∥g − gh∥L2

= cE∥g − gh∥L2

for the constant

cE := α1|Ω|
1
2 + α2Eh(0)

1
2 + α2

2 ∥g∥L2 > 0

where Eh(0) may be bounded independently of gh:

Eh(0) = α1

∫︂
Ω
ϕγ1(|gh|) + α2

2 ∥gh∥2L2

≤ α1∥gh∥L1 + α2
2 ∥g∥2L2

≤ 2α1|Ω|
1
2 ∥g∥L2 + α2

2 ∥g∥2L2 .

107

Then for the predual data approximation error one has

E∗(ppph)− E∗
h(ppph)

= 1
2∥Λ

∗ppph − α2T
∗g∥2B−1 − 1

2∥Λ
∗ppph − α2T

∗gh∥2B−1

+ α2
2 (∥gh∥2L2 − ∥g∥2L2) + ⟨g − gh, ph,1⟩

≤ 1
2

(︂
∥Λ∗ppph − α2T

∗g∥B−1 + ∥Λ∗ppph − α2T
∗gh∥B−1

)︂
∥g − gh∥B−1

+ α2
2 ⟨gh − g, gh + g⟩+ ∥ph,1∥L2∥g − gh∥L2

≤ 1
2

(︂
2∥Λ∗ppph − α2T

∗g∥B−1 + ∥α2T
∗g − α2T

∗gh∥B−1

)︂
∥g − gh∥B−1

+ α2
2 ∥gh − g∥L2∥gh + g∥L2 + |Ω|

1
2 ∥ph,1∥L∞∥g − gh∥L2

≤ 1
2

(︂
2E∗

h(0)
1
2 + α2∥B−1∥

1
2 ∥T∥∥g − gh∥L2

)︂
∥B−1∥

1
2 ∥g − gh∥L2

+ α2∥g∥L2∥gh − g∥L2 + |Ω|
1
2α1∥g − gh∥L2

= cE∗∥g − gh∥L2

for the constant cE∗ := ∥B−1∥
1
2E∗

h(0)
1
2 + α2

2 ∥B−1∥∥T∥∥g∥L2 +

α2∥g∥L2 + |Ω|
1
2α1 > 0, where E∗

h(0) may be bounded independent of
gh:

E∗
h(0) =

1
2∥α2T

∗gh∥2B−1 − α2
2 ∥gh∥2L2

≤ α2
2
2 ∥T∥2∥B−1∥∥gh∥2L2 − α2

2 ∥gh∥2L2

≤ max{0, α2
2 (α2∥T∥2∥B−1∥ − 1)}∥g∥L2 .

We finish the proof by combining both results:

1
2∥uh − u∥2B ≤ η2h(vh, qqqh) + (cE + cE∗)∥gh − g∥L2

with c := cE + cE∗ independent of gh.

108

Remark 5.6. The estimator (5.3) has the equivalent representation

η2h(vh, qqqh) = α1

∫︂
Ω
ϕγ1(|Tvh − gh|)dx− ⟨Tvh − gh, qh,1⟩+ γ1

2α1
∥qh,1∥2L2

+ λ

∫︂
Ω
ϕγ2(|∇vh|F)dx− ⟨∇vh, qqqh,2⟩+ γ2

2λ∥qqqh,2∥
2
L2

+ 1
2

⃦⃦⃦
B−1(Λ∗qqqh − α2T

∗gh) + vh

⃦⃦⃦2
B

for all vh ∈ Vh, qqqh ∈ W ∗
h with |qh,1| ≤ α1, |qqqh,2|F ≤ λ.

In the limits α1 → 0 or λ → 0 the terms γ1
2α1

∥qh,1∥2L2 and γ2
2λ∥qqqh,2∥

2
L2

vanish respectively due to the constraints on qh,1, qh,2. Thus the above
estimate is to be interpreted for α1 = 0 or λ = 0 by omitting the
corresponding terms.

Proof. We break up the terms of

η2h(vh, qqqh) = Eh(vh) + E∗
h(qqqh)

= α1

∫︂
Ω
ϕ1(|Tvh − gh|)dx+ λ

∫︂
Ω
ϕγ2(|∇vh|F)dx

+ α2
2 ∥Tvh − gh∥2L2 +

β
2 ∥Svh∥

2
L2

+ 1
2∥Λ

∗qqqh − α2T
∗gh∥2B−1 − α2

2 ∥gh∥2L2 + ⟨gh, qh,1⟩
+ γ1

2α1
∥qh,1∥2L2 +

γ2
2λ∥qqqh,2∥

2
L2 .

First we expand

α1

∫︂
Ω
ϕ1(|Tvh − gh|)dx+ γ1

2α1
∥qh,1∥2L2

= α1

∫︂
Ω
ϕ1(|Tvh − gh|)dx− ⟨Tvh − gh, qh,1⟩

+ γ1
2α1

∥qh,1∥2L2 + ⟨Tvh − gh, qh,1⟩

λ

∫︂
Ω
ϕγ2(|∇vh|F)dx+ γ2

2λ∥qqqh,2∥
2
L2

= λ

∫︂
Ω
ϕγ2(|∇vh|F)dx− ⟨∇vh, qh,2⟩

+ γ2
2λ∥qqqh,2∥

2
L2 + ⟨∇vh, qqqh,2⟩

109

which takes care of the first two summands. The remaining terms add
up to

1
2∥Λ

∗qqqh − α2T
∗gh∥2B−1 +

α2
2 ∥Tvh − gh∥2L2 − α2

2 ∥gh∥2L2 +
β
2 ∥Svh∥

2
L2

+ ⟨gh, qh,1⟩+ ⟨Tvh − gh, qh,1⟩+ ⟨∇vh, qqqh,2⟩
= 1

2∥B
−1(Λ∗qqqh − α2T

∗gh)∥2B + α2
2 ∥Tvh∥2L2 − α2⟨Tvh, gh⟩

+ β
2 ∥Svh∥

2
L2 + ⟨vh, T ∗qh,1⟩+ ⟨vh,∇∗qqqh,2⟩

= 1
2∥B

−1(Λ∗qqqh − α2T
∗gh)∥2B + 1

2∥vh∥
2
B

+ ⟨vh, BB−1(Λ∗qqqh − α2T
∗gh)⟩

= 1
2∥B

−1(Λ∗qqqh − α2T
∗gh) + vh∥2B

which constitutes the third summand.

Remark 5.6 motivates a corresponding cell-wise error indicator as
follows.

Definition 5.7. Let uh ∈ Vh, ppph ∈ W ∗
h be feasible discrete approxim-

ations to the solution of (3.16). The primal reconstruction from the
dual variable is given weakly by

w := −B−1(Λ∗ppph − α2T
∗gh).

For every cell K ∈ T we then define the cell indicator as

η2K,1(uh, ph)

:=

∫︂
K
α1ϕγ1(|Tuh − gh|)− (Tuh − gh) · ph,1 + γ1

2α1
|ph,1|2 dx

+

∫︂
K
λϕγ2(|∇uh|F)−∇uh · ppph,2 + γ2

2λ |ppph,2|
2
F dx

+ 1
2

∫︂
K
|w − uh|2 dx.

5.2.3 Residual A-Posteriori Error Estimator
In [61] an a-posteriori error estimate for a smooth functional, composed
of an L2-data term and a total variation term, was derived using

110

residual-based methods for variational inequalities. We try to use a
similar technique for our general setting to establish a suitable guiding
criterion for adaptive spatial discretization.

Our presentation avoids the variational inequality setting in [61]
by making use of strong convexity. Additionally, we consider both
choices of Settings (S.i) and (S.ii), which requires different interpolation
estimates depending on the space V and the corresponding coercivity
of aB stated in Assumption (A1).

Since the derivation requires local (cell-wise) adjoints T ∗, we will
make the following locality assumption on the operator T .

(A2) For almost every x ∈ Ω there exists fx : Rm → R such that:

(Tu)(x) = fx(u(x)). (5.4)

Note that while Assumption (A2) excludes global operators such as
Fourier transforms. Implementing global operators in an unstructured
finite element setting efficiently, however, is considered impractical at
best because of the non-local access pattern and will therefore not be
pursued here.

We fix V := H1(Ω)m and recall E : V → R from (3.13) in the
split form E(u) = F (u) + G(Λu), where Λ = (T,∇) : V → W as in
Chapter 3 and F : V → R, G : W → R are given by

F (u) := α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
L2 ,

G(Λu) := α1

∫︂
Ω
ϕγ1(|Tu− g|)dx+ λ

∫︂
Ω
ϕγ2(|∇u|F)dx.

The optimality conditions in this setting, see Theorem 2.28, are given
by

−Λ∗p ∈ ∂F (u),

p ∈ ∂G(Λu),

where we accounted for the sign change in the dual variable p to be
consistent with the formulation in (3.16). We assume that the discrete

111

solution pair uh ∈ Vh, ph ∈ W ∗
h satisfies the corresponding discrete

optimality conditions

−Λ∗ph ∈ ∂Fh(uh),

ph ∈ ∂Gh(Λuh),
(5.5)

where for clarity we explicitly denoted with Fh : Vh → R, Gh : Wh → R
the restrictions of F , G on the respective discrete spaces, since their
subdifferentials differ from those of F and G respectively. One may
obtain this system analagously to Chapter 3 by application of the
Fenchel duality from Theorem 2.28 on the corresponding discrete
energy functional. Indeed, Theorem 3.5 in general allows for V and W
to be appropriate subspaces. This way existence of a discrete solution
pair uh ∈ Vh, ph ∈ W ∗

h is ensured. Since F is Fréchet-differentiable we
see that

⟨∂F (u), v⟩V ∗,V = α2⟨Tu− g, Tv⟩+ β⟨Su, Sv⟩
= aB(u, v)− l(v)

with l(v) := α2⟨Tv, g⟩. Analogously ⟨∂Fh(uh), vh⟩V ∗
h ,Vh

= aB(uh, vh)−
l(vh) and from (5.5) we infer for all vh ∈ Vh:

−⟨ph,Λvh⟩ = aB(uh, vh)− l(vh). (5.6)

For ∂G on the other hand we have the following non-obvious observa-
tion.

Lemma 5.8. Let ph = (ph,1, ph,2) ∈ W ∗
h satisfy (5.5). If α1 = 0 then

ph ∈ ∂G(Λuh),

where ph ∈ W ∗
h ⊆ W ∗ is identified with an element of the dual space

(W ∗)∗ = W .

Proof. Let q = (q1, q2) ∈ ∂G(Λuh). Due to (3.16) and (5.5) we deduce
q1 = ph,1 = 0 since α1 = 0. From (3.16) we infer for q2, and analogously
for ph,2, due to (5.5) that pointwise, whenever ∇uh ̸= 0, we have

q2 =
λ∇uh

max{γ2, |∇uh|F }
= ph,2.

112

Therefore q2 is piecewise constant whenever ∇uh ̸= 0. Further both
q2 and ph,2 are bounded pointwise by |q2|F ≤ λ and |ph,2|F ≤ λ. On
cells where ∇uh = 0 holds, q2 may assume any value bounded by
|q2|F ≤ λ. Since this holds true for ph,2 in particular, one may choose
q := (0, ph,2) ∈ ∂G(Λuh).

We note that Lemma 5.8 does not necessarily hold true for α1 > 0.
Indeed ∂G(Λuh) = α1

Tuh−g
max{γ1,|Tuh−g|} does not need to be piecewise

linear, even if uh is. We will continue the derivation nevertheless,
noting that theoretical justification is lacking for α1 > 0.

With these observations we are ready to estimate the error ∥uh−u∥B.
Denote eh := uh − u ∈ V and bound using Lemma 3.7:

1
2∥uh − u∥2B ≤ E(uh)− E(u)

= F (uh)− F (u) +G(Λuh)−G(Λu)

≤ ⟨∂F (uh), eh⟩+ ⟨∂G(Λuh),Λeh⟩
= aB(uh, eh)− l(eh) + ⟨∂G(Λuh),Λeh⟩.

In particular due to Lemma 5.8 and discrete optimality (5.6) we have
for any bounded linear operator Ih : V → Vh:

1
2∥uh − u∥2B ≤ aB(uh, eh)− l(eh) + ⟨ph,Λeh⟩

= aB(uh, eh − Iheh)− l(eh − Iheh)

+ ⟨ph,Λ(eh − Iheh)⟩
= ⟨α2(Tuh − g) + ph,1, T (eh − Iheh)⟩

+ ⟨βSuh, S(eh − Iheh)⟩+ ⟨ph,2,∇(eh − Iheh)⟩,

(5.7)

Now choose Ih : V → Vh to be a quasi-interpolation operator which
satisfies the interpolation estimates [80, Proposition 1.3] [3, Theorem
1.7]:

∥v − Ihv∥L2(K) ≤ c1hK∥∇v∥L2(ωK), (5.8)

∥v − Ihv∥L2(F) ≤ c2h
1
2
F ∥∇v∥L2(ωF), (5.9)

∥v − Ihv∥L2(F) ≤ c3h
− 1

2
F ∥v∥L2(ωF), (5.10)

113

where ωK , ωF denote the union of triangles which share a common
vertex with the cell K or the facet F respectively and hK , hF denote
the diameter of K and F respectively. Depending on S, we will now
use the interpolation estimates to further bound the error 1

2∥uh − u∥2B .

Setting (S.ii): the Case S = ∇
Using Setting (S.ii) we have V = H1(Ω)m and will make use of the fact
that aB is coercive on V , see Assumption (A1), to derive an estimate
on the error ∥eh∥H1(Ω)m .

Let F ∈ Γ be an oriented inner facet with adjacent cells K1,K2 ∈
T and ϕ ∈ L2(K1 ∪ K2)

d×m with ϕ|Ki ∈ C(Ki)
d×m, i ∈ {1, 2} a

square integrable function which allows continuous representations
ϕ|Ki on each cell Ki individually. We then define the jump term
[ϕ]F ∈ C(F)d×m by [ϕ]F (x) := ϕ|K1(x)− ϕ|K2(x) and omit the index
as in [ϕ] when the facet in question is clear. For outer facets only the
term corresponding to the existing adjacent cell is considered. Note
that [ϕ]F is in general dependent on the orientation of F , while e.g.
[nTϕ]F for the oriented facet-normal n is not.

We will now bound the error in the norm induced by the bilinear
form aB(·, ·) starting from (5.7).

1
2∥uh − u∥2B

≤
⟨︁
α2(Tuh − g) + ph,1, T (eh − Iheh)

⟩︁
+
⟨︁
β∇uh + ph,2,∇(eh − Iheh)

⟩︁
=

∑︂
K∈T

(︃⟨︂
α2T

∗(Tuh − g) + T ∗ph,1 − β∆uh − div ph,2,

eh − Iheh

⟩︂
L2(K)m

+
⟨︂
nT (β∇uh + ph,2), eh − Iheh

⟩︂
L2(∂K)m

)︃
,

where we used locality of T from Assumption (A2).

114

Denoting

ξ := α2T
∗(Tuh − g) + T ∗ph,1 − β∆uh − div ph,2 ∈ L2(Ω)m

ζ := β∇uh + ph,2 ∈ L2(Ω)d×m

we obtain using interpolation estimates (5.8) and (5.9):

1
2∥uh − u∥2B

≤
∑︂
K∈T

(︂
⟨ξ, eh − Ieh⟩L2(K)m + ⟨nT ζ, eh − Ieh⟩L2(∂K)m

)︂
=

∑︂
K∈T

⟨ξ, eh − Ieh⟩L2(K)m +
∑︂
F∈Γ

⟨[nT ζ], eh − Ieh⟩L2(F)m

≤ max{c1, c2}
(︂ ∑︂

K∈T
∥∇eh∥L2(ωK)d×mhK∥ξ∥L2(K)m

+
∑︂
F∈Γ

∥∇eh∥L2(ωF)d×mh
1
2
F ∥[n

T ζ]∥L2(F)m

)︂
≤ max{c1, c2}

(︂ ∑︂
K∈T

∥∇eh∥2L2(ωK)d×m +
∑︂
F∈Γ

∥∇eh∥2L2(ωF)d×m

)︂ 1
2

(︂ ∑︂
K∈T

h2K∥ξ∥2L2(K)m +
∑︂
F∈Γ

hF ∥[nT ζ]∥2L2(F)m

)︂ 1
2
.

Realizing that ωF ⊆ ωK for some, to F adjacent cell K we may bound

∑︂
F∈Γ

∥∇eh∥2L2(ωF)d×m ≤ 3
2

∑︂
K∈T

∥∇eh∥2L2(ωK)d×m ≤ 3
2c

2
T ∥∇eh∥2L2(Ω)d×m ,

where cT denotes the shape regularity constant of the mesh independent

115

of the mesh size. We thus arrive at

1
2∥uh − u∥2B ≤ max{c1, c2}

(︂
5
2

∑︂
K∈T

∥∇eh∥2L2(ωK)d×m

)︂ 1
2

·
(︂ ∑︂

K∈T
h2K∥ξ∥2L2(K)m +

∑︂
F∈Γ

hF ∥[nT ζ]∥2L2(F)m

)︂ 1
2

≤
√
10
2 max{c1, c2}cT ∥∇eh∥L2(Ω)d×m

·
(︂ ∑︂

K∈T
h2K∥ξ∥2L2(K)m +

∑︂
F∈Γ

hF ∥[nT ζ]∥2L2(F)m

)︂ 1
2

≤
√
10
2 max{c1, c2}cT ∥eh∥H1(Ω)m

·
(︂ ∑︂

K∈T
h2K∥ξ∥2L2(K)m +

∑︂
F∈Γ

hF ∥[nT ζ]∥2L2(F)m

)︂ 1
2
.

Together with coercivity ∥v∥2B = aB(v, v) ≥ cB∥v∥2V = cB∥v∥2H1(Ω)m

from Assumption (A1) we arrive at an a-posteriori error bound

∥uh − u∥2H1(Ω)m

≤ C

(︃ ∑︂
K∈T

h2K∥α2T
∗(Tuh − g) + T ∗ph,1 − β∆uh − div ph,2∥2L2(K)m

+
∑︂
F∈Γ

hF ∥[nT (β∇uh + ph,2)]∥2L2(F)m

)︃

with constant C := 10
cB

max{c21, c22}c2T .

Setting (S.i): the case S = I

Using Setting (S.i) we set V = L2(Ω)m and will make use of the fact
that aB is coercive on V , see Assumption (A1) , to derive an estimate
on the error ∥eh∥L2(Ω)m .

116

Similarly to above we obtain from (5.7) with S = I:

1
2aB(eh, eh) ≤ ⟨α2T

∗(Tuh − g) + T ∗ph,1 + βuh,eh − Iheh⟩
+⟨ph,2,∇(eh − Iheh)⟩

≤
∑︂
K∈T

(︃⟨︂
α2T

∗(Tuh − g) + T ∗ph,1 + βuh − div ph,2,

eh − Iheh

⟩︂
L2(K)m

+
⟨︂
nT ph,2, eh − Iheh

⟩︂
L2(∂K)m

)︃
.

Denoting ξ := α2T
∗(Tuh−g)+T ∗ph,1+βuh−div ph,2 and ζ := nT ph,2

for brevity one continues to derive using (5.10):

1
2aB(eh, eh)

≤
∑︂
K∈T

∥ξ∥L2(K)m∥eh − Iheh∥L2(K)m

+
∑︂
F∈Γ

∥[ζ]∥L2(F)m∥eh − Iheh∥L2(F)m

≤ (1 + 3
2c3)

1
2

(︂ ∑︂
K∈T

∥eh − Iheh∥2L2(ωK)m

)︂ 1
2

·
(︃ ∑︂

K∈T
∥ξ∥2L2(K)m +

∑︂
F∈Γ

h−1
F ∥[ζ]∥2L2(F)m

)︃ 1
2

≤ (1 + 3
2c3)

1
2 c2T ∥eh∥L2(Ω)m(︃ ∑︂

K∈T
∥ξ∥2L2(K)m +

∑︂
F∈Γ

h−1
F ∥[ζ]∥2L2(F)m

)︃ 1
2

Together with L2-coercivity of aB(· , ·) from Assumption (A1) we

117

arrive at

∥uh − u∥2L2(Ω)m

≤ C

(︃ ∑︂
K∈T

∥α2T
∗(Tuh − g) + T ∗ph,1 + βuh − div ph,2∥2L2(K)m

+
∑︂
F∈Γ

h−1
F ∥[nT ph,2]∥2L2(F)m

)︃
for some constant C > 0.

Error Indicators
For a cell K ∈ T we define our local error indicators as follows

η22,K := η̃22,K +
∑︂
F∈Γ

F∩K ̸=∅

η̃22,F , (5.11)

where η̃2,K and η̃2,F are chosen as follows. For Setting (S.ii) and
S = ∇ we set

η22,K := h2K
⃦⃦
α2T

∗(Tuh − g) + T ∗ph,1 − β∆uh − divppph,2
⃦⃦2
L2(K)m

,

(5.12)

η22,F := hF
⃦⃦
[nT (β∇uh + ppph,2)]

⃦⃦2
L2(F)m

, (5.13)

where for piecewise linear uh and piecewise constant ppph,2 the terms
∆uh and divppph,2 in (5.12) vanish. For Setting (S.i) and S = I we set

η22,K :=
⃦⃦
α2T

∗(Tuh − g) + T ∗ph,1 + βuh − divppph,2
⃦⃦2
L2(K)m

, (5.14)

η22,F := h−1
F

⃦⃦
[nTppph,2]

⃦⃦2
L2(F)m

. (5.15)

Note that the indicators are computable locally on each cell again
because of Assumption (A2). For Setting (S.i) with S = I the facet
indicator η2,F scales inversely with the diameter and is therefore not
very useful in the context of adaptive refinement. This is due to aB only
being L2-coercive in that case, which limits our choice of interpolation

118

estimates and it is unclear to us whether this result can be improved.
Showing efficiency of these estimators may be considered in future
work and is expected to work out in a similar way as in [61].

5.3 Classic Algorithms

We now review two classical first-order optimization algorithms from
[28, 31] in the general Hilbert space setting and apply them to our
model (4.1). In particular, this presentation makes the algorithms
applicable for both the finite difference setting as well as the finite
element one.

5.3.1 Semi-Implicit Dual Algorithm

The problem (4.1) may be solved using its (pre-)dual formulation (4.2).
This is especially relevant in our domain decomposition setting of
Chapter 4 since we have to solve subproblems (4.9) of the same general
form and it is unclear how to decompose the primal variable.

One specific such algorithm is the semi-implicit Lagrange multiplier
method due to Chambolle [28] which solves (4.2) for the special case
B = I. While [28] uses finite differences, we present the algorithm in
a Hilbert space setting and for general B.

As in Equation (4.2) let K := {ppp ∈ W ∗ : |ppp|F ≤ λ} denote the
set of feasible dual variables. Similar to [28] there exists a Lagrange
multiplier µ ∈ L2(Ω) corresponding to the constraint in K, c.f. [63,
Theorem 1.6], such that

0 = ΛB−1(Λ∗p− T ∗g) + µp (5.16)

with µ ≥ 0, |p|F ≤ 1 and µ
2 (|p|

2
F −λ2) = 0. Here µp is to be understood

as pointwise multiplication.
Let for now λ > 0. Observing that in a pointwise sense µ = 0

implies ξ := ΛB−1(Λ∗p− T ∗g) = 0 and µ > 0 implies |p|F = λ almost
everywhere, we deduce from the above condition that in either case

119

µ = |ξ|
λ . Thus (5.16) becomes

0 = ξ + |ξ|
λ p.

The semi-implicit iterative method then uses for some starting value
p0 ∈ K and stepsize τ > 0 iterates (pn)n∈N0 ⊆ W ∗ satisfying

pn+1 = pn − τ(ξn + |ξn|
λ pn+1), (5.17)

where ξn := ΛB−1(Λ∗pn − T ∗g), n ∈ N0. Solving (5.17) for pn+1 then
yields the following algorithm.

Algorithm 5.9 (Semi-implicit dual multiplier method [28]).
Initialize: p0 := 0 ∈ K and τ ∈ (0, 1

∥ΛB−1Λ∗∥)
for n = 0, 1, 2, . . . do

ξn = ΛB−1(Λ∗pn − T ∗g)

pn+1 = λ
pn − τξn

λ+ τ |ξn|
end for

Before we prove convergence of Algorithm 5.9 in the upcoming
Theorem 5.11, let us first make some comments on Algorithm 5.9.

Remark 5.10. Regarding Algorithm 5.9, take note of the following:

• In the trivial case λ = 0 one sets pn+1 = 0.

• If B−1 is a local operator, the computation of ξn and pn+1 are
both local. They can therefore be merged together and carried out
in parallel over the whole domain.

• One may solve the domain decomposition subproblems (4.9) by
replacing K with θiK and λ with the pointwise function θiλ.

• A more explicit bound for the maximum stepsize τ to still ana-
lytically ensure convergence is given by

∥ΛB−1Λ∗∥ ≤ max{∥T∥2, ∥∇∥2}∥B−1∥.

120

In the finite element setting we have due to Lemma 5.3:

∥∇∥2 ≤ 72
ϱ2min

,

where ϱmin = mink∈T ϱK denotes the diameter of the largest ball
that fits into every cell. For finite differences on the other hand
we have [28]

∥∇∥2 ≤ 8.

Theorem 5.11 (c.f. [28, Theorem 3.1]). Let (pn)n∈N0 ⊆ W ∗ be the
iterates of Algorithm 5.9 and let p̂ ∈ K denote a minimizer of (4.2).
Then the algorithm converges in the sense that D(pn) → D(p̂) if W ∗

is finite dimensional.

Proof. We follow along the lines of [28, Theorem 3.1]. Notice that
|p0|F ≤ λ and thus inductively

|pn+1|F ≤ λ |pn|F+τ |ξn|F
λ+τ |ξn|F ≤ λ,

i.e. pn ∈ K for all n ∈ N. Let F : W ∗ → W ∗ denote the iteration
function of Algorithm 5.9, such that pn+1 = F (pn), n ∈ N0. Any
fixed point of F or equivalently of (5.17) satisfies the stationary point
condition (5.16) per construction and, since D is convex, will be a
minimizer of (4.2).

Denote ηn := 1
τ (p

n − pn+1) and bound the energy difference

D(pn)−D(pn+1)

= −1
2∥p

n − pn+1∥2∗ + ⟨D′(pn), pn − pn+1⟩ (Lemma 4.8 (i))

= − τ2

2 ∥η
n∥2∗ + τ⟨ξn, ηn⟩

= τ
2 (∥η

n∥2 − τ∥ηn∥2∗) + τ⟨ξn − 1
2η

n, ηn⟩

= τ
2 (∥η

n∥2 − τ∥ηn∥2∗) + τ
2 ⟨ξ

n − |ξn|F
λ pn+1, ξn + |ξn|F

λ pn+1⟩
(applying (5.17))

= τ
2 (∥η

n∥2 − τ⟨ΛBΛ∗ηn, ηn⟩) + τ
2 (∥ξ

n∥2 − ∥ |ξn|F
λ pn+1∥2)

≥ τ
2

(︁
1− τ

⃦⃦
ΛB−1Λ∗⃦⃦)︁∥ηn∥2 + τ

2∥ξ
n∥2

(︁
1−

⃦⃦ |pn+1|2F
λ2

⃦⃦
L∞

)︁
≥ 1

2τ (1− τ∥ΛB−1Λ∗∥)∥pn − pn+1∥2.

121

We see that as long as τ < ∥ΛB−1Λ∗∥−1, the sequence (D(pn))n∈N0

is non-increasing and thus, since it is non-negative, also convergent.
The feasible set K ⊆ W ∗ is closed and bounded, see Lemma 2.5, and
compact since W ∗ is finite dimensional. Consequently there exists a
convergent subsequence (qn)n∈N ⊆ (pn)n∈N ⊆ K, qn → q ∈ K and
with continuity of F we get F (qn) → F (q). Using the estimate above
and the convergence of energies we see that for some c > 0 we have
c∥qn−F (qn)∥2 ≤ D(qn)−D(F (qn)) → 0 and therefore the limit needs
to be a fixed point, q = F (q), and thus a minimizer of (4.2).

We note that Theorem 5.11 guarantees the convergence to a minimal
dual energy, which allows us to reconstruct the optimal primal solution
due to Proposition 4.2. It does, however, not guarantee convergence of
the dual iterates (pn)n∈N themselves.

5.3.2 Semi-Implicit Primal-Dual Algorithm

In [31] the authors derive an accelerated semi-implicit primal-dual
algorithm to minimize a general functional of the form

inf
u∈X

F(u) + G(Λu), (5.18)

where X,Y are Hilbert spaces, Λ : X → Y is a linear bounded operator,
F : X → R, G : Y → R are proper, convex, lower semi-continuous
functionals with F(u0) + G(Λu0) < ∞ and G continuous at Λu0 for
some u0 ∈ X. Note that this is a special case of the Fenchel duality
setting from Theorem 2.28.

Let µ̂ ≥ 0 denote a constant such that for all w∗ ∈ ∂F(w):

F(v)−F(w) ≥ ⟨w∗, v − w⟩+ µ̂
2∥v − w∥2. (5.19)

Since F is convex, the choice µ̂ = 0 will always satisfy (5.19) while for
strongly convex F one can find µ̂ > 0. Then [31] states the following
algorithm.

122

Algorithm 5.12 (Semi-implicit primal-dual algorithm [31, ALG2]).
Parameters: τ0 > 0, σ0 := 1

τ0L2 > 0, θ ∈ [0, 1], 0 ≤ µ ≤ µ̂,
∥Λ∥ ≤ L < ∞
Initialization: u0 ∈ X, u0 = u0, (p01, p02) ∈ Y
for n = 0, 1, 2, . . . do

pn+1 = (I + σn∂G
∗)−1(pn + σnΛu

n)
un+1 = (I + τn∂F)−1(un − τnΛ

∗pn+1)

θn = (1 + 2µτn)
− 1

2

τn+1 = θnτn
σn+1 = θ−1

n σn
un+1 = un+1 + θn(u

n+1 − un)
end for

We note that a practical bound for ∥Λ∥, in order to select L as small
as possible may be obtained through Lemma 5.3. The non-accelerated
variant of Algorithm 5.12, i.e. [31, ALG2], may be obtained by leaving
σ, τ, θ constant throughout the algorithm.

Theorem 5.13 ([31, Theorem 2]). In the setting of Algorithm 5.12 if
µ > 0 then for any ε > 0 there exists n0 ∈ N such that for any n ∈ N,
n ≥ n0 one has the following a-priori error estimate:

∥û− un∥2 + 1+ε
n2

1−L2σ0τ0
σ0τ0

∥p̂− pn∥2

≤ 1+ε
n2

(︁
1

µ2τ20
∥û− u0∥2 + L2

µ2 ∥p̂− p0∥2
)︁
.

Proof. This is exactly [31, Theorem 2] but applied to [31, eq. (42)] and
thereby relaxing L ≥ ∥Λ∥. Also the following notational identifications
were made: F := G, G := F , K := Λ, γ := µ.

We apply Algorithm 5.12 to our setting from Chapter 3, using

F(u) = α2
2 ∥Tu− g∥2L2 +

β
2 ∥Su∥

2
L2 ,

G∗(p) = ⟨g, p1⟩+ χ|p1|≤α1
+ χ|ppp2|F≤λ + γ1

2α1
∥p1∥2L2 +

γ2
2λ∥ppp2∥

2
L2 ,

123

thus yielding the updates

pn+1
1 = proj| · |≤α1

(︂
(1 + γ1σn

α1
)−1(pn1 + σn(Tu

n − g))
)︂

pn+1
2 = proj| · |F≤λ

(︂
(1 + γ2σn

λ)−1(pn2 + σn∇un)
)︂

un+1 = (I + τnB)−1
(︂
un − τn(T

∗pn1 +∇∗pn2 − α2T
∗g)

)︂
Note that if α1 = 0 or λ = 0 one implicitly has p1 = 0 or p2 = 0
respectively.

Algorithm 5.14 (Semi-implicit primal-dual algorithm [31, ALG2]).
Parameters: τ0 > 0, σ0 := 1

τ0L2 > 0, θ ∈ [0, 1], 0 ≤ µ ≤ ∥B∥,
∥Λ∥ ≤ L < ∞
Initialization: u0 ∈ V , u0 = u0, (p01, p02) ∈ W ∗

for n = 0, 1, 2, . . . do
pn+1
1 = proj| · |≤α1

(︂
(1 + γ1σn

α1
)−1(pn1 + σn(Tu

n − g))
)︂

pn+1
2 = proj| · |F≤λ

(︂
(1 + γ2σn

λ)−1(pn2 + σn∇un)
)︂

un+1 = (I + τnB)−1
(︂
un − τn(T

∗pn1 +∇∗pn2 − α2T
∗g)

)︂
θn = (1 + 2µτn)

− 1
2

τn+1 = θnτn
σn+1 = θ−1

n σn
un+1 = un+1 + θn(u

n+1 − un)
end for

Again the non-accelerated variant of Algorithm 5.14 may be obtained
by leaving σ, τ, θ constant throughout the algorithm.

Note that with the exception of un+1 in Algorithm 5.14 all steps can
be performed locally as a simple update, whereas for un+1 in general
the solution of the variational equality

⟨un+1, v⟩+ τn
(︁
α2⟨Tun+1, T v⟩+ β⟨Sun+1, Sv⟩

)︁
= ⟨un, v⟩ − τn

(︁
⟨pn1 − α2g, Tv⟩+ ⟨pn2 ,∇v⟩

)︁ (5.20)

for all v ∈ H1(Ω)m is required.

124

In practice Algorithm 5.12 exhibits sublinear convergence [31] in
agreement with Theorem 5.13 and therefore a high number of iterations
for a sufficient approximation is to be expected. Computing a costly
solution to (5.20) in each step is therefore undesirable in practice. In
the case T = I, S = I, λ = 0, however, (5.20) simplifies to

un+1 = (1 + τn(α2 + β))−1(un − τn(p
n
1 − α2g)),

which can indeed be realized as a simple local update.

5.4 Primal-Dual Semi-Smooth Newton Algorithm

In this section we derive a primal-dual semi-smooth Newton method,
cf. [57], in order to find an approximate solution of (3.13). Note that
such Newton methods have been already used for the L2-TV model
[41, 61, 62, 67] and L1-TV model [40, 65] in image reconstruction, i.e.,
m = 1. We extend the approach of semi-smooth Newton methods to a
vector-valued setting and to the L1-L2-TV model.

Due to the dualization in vector-valued spaces results for the scalar
case derived in [58] and [60] will be adjusted to our setting.

5.4.1 Derivation

In general (3.14) has a solution û ∈ V which can be approximated
using continuous piecewise linear finite elements [12, Chapter 10.2].
Since all such discrete functions uh ∈ Vh are elements of H1(Ω)m, we
derive the semi-smooth Newton system using the spaces H1(Ω)m and
L2(Ω) × L2(Ω)d×m for the primal and predual variable respectively.
This simplification is sufficient for our discrete setting in any case, and
sufficient for the continuous setting as long as V = H1(Ω)m.

125

Let us denote for convenience

m1 := m1(u) := max{γ1, |Tu− g|}, χ1 :=

{︄
1 if |Tu− g| ≥ γ1

0 else
,

m2 := m2(u) := max{γ2, |∇u|F }, χ2 :=

{︄
1 if |∇u|F ≥ γ2

0 else
.

The Newton system of (3.16) in the unknowns du ∈ H1(Ω), dp1 ∈
L2(Ω), dppp2 ∈ L2(Ω)d×m then reads

α2T
∗Tdu + βS∗Sdu + T ∗dp1 +∇∗dppp2

= −
(︂
∇∗(ppp2) + T ∗p1 + α2T

∗(Tu− g) + βS∗Su
)︂
,

(5.21)

χ1
(Tu− g) · Tdu

|Tu− g|
p1 − α1Tdu +m1dp1

= −
(︂
m1p1 − α1(Tu− g)

)︂
,

(5.22)

χ2
∇u · ∇du

|∇u|
ppp2 − λ∇du +m2dppp2

= −
(︂
m2ppp2 − λ∇u

)︂
,

(5.23)

where u ∈ H1(Ω)m, p1 ∈ L2(Ω), ppp2 ∈ L2(Ω)d×m represent the variables
from the previous Newton step.

Rearranging (5.22) and (5.23) for dp1 and dppp2 yields

dp1 = −p1 +
α1

m1
(T (u+ du)− g)− χ1

(Tu− g) · Tdu
|Tu− g|2

p1, (5.24)

dppp2 = −ppp2 +
λ

m2
∇(u+ du)− χ2

∇u · ∇du
|∇u|2

ppp2. (5.25)

Plugging these two equations into (5.21) leads to

0 = T ∗
(︂ α1

m1

(︁
T (u+ du)− g

)︁
− χ1

(Tu− g) · Tdu
|Tu− g|2

p1

)︂
+∇∗

(︂ λ

m2
∇(u+ du)− χ2

∇u · ∇du
|∇u|2

ppp2

)︂
+ α2T

∗(︁T (u+ du)− g
)︁
+ βS∗S(u+ du),

126

which is to be understood in a weak sense.
Recall aB : H1(Ω)m ×H1(Ω)m → R from (3.6) and define a1, a2 :

H1(Ω)m ×H1(Ω)m → R and l : H1(Ω)m → R as follows

aB(du, ϕ) = α2⟨Tdu, Tϕ⟩+ β⟨Sdu, Sϕ⟩

a1(du, ϕ) :=
⟨︂

α1
m1

Tdu − χ1

m2
1
(Tu− g)(Tdu)p1, Tϕ

⟩︂
,

a2(du, ϕ) :=
⟨︂

λ
m2

∇du − χ2

m2
2
(∇u · ∇du)ppp2,∇ϕ

⟩︂
l(ϕ) := −aB(u, ϕ)− ⟨ λ

m2
∇u,∇ϕ⟩

− ⟨ α1
m1

(Tu− g), Tϕ⟩+ ⟨α2g, Tϕ⟩.

We then have the following result.

Theorem 5.15. Let H ⊆ H1(Ω)m be a subspace such that there exists
cS > 0 with ∥∇u∥L2 ≤ cS∥Su∥L2 for all u ∈ H. If p1 ∈ L2(Ω),
ppp2 ∈ L2(Ω)d×m such that |p1| ≤ α1, |ppp2|F ≤ λ holds, then the problem

a(du, ϕ) := a1(du, ϕ)+a2(du, ϕ)+aB(du, ϕ) = l(ϕ), ∀ϕ ∈ H (5.26)

admits a unique solution du ∈ H.

Proof. We verify the prerequisites for the Lax-Milgram Theorem 2.10,
i.e. boundedness of a and l, as well as coercivity of a.

We verify boundedness of l

|l(ϕ)| ≤ ∥B∥∥u∥L2∥ϕ∥L2 + λ|Ω|∥∇ϕ∥L2

+ α1|Ω|∥Tϕ∥L2 + α2∥g∥L2∥Tϕ∥L2

≤ c∥ϕ∥H1(Ω)m

for some constant c > 0, since T and Ω are bounded and u, g ∈ L2(Ω).

127

Boundedness of a1, a2 follows from

|a1(v, w)| ≤
(︂
∥ α1
m1

Tv∥L2 + ∥ χ1

m2
1
(Tu− g)(Tv)p1∥

)︂
∥Tw∥L2

≤ 2α1
γ1

∥T∥2∥v∥L2∥w∥L2 ,

|a2(v, w)| ≤
(︂
∥ λ
m2

∇v∥L2 + ∥ χ1

m2
2
(∇u · ∇v)ppp2∥

)︂
∥∇w∥L2

≤ 2λ
γ2
∥∇v∥L2∥∇w∥L2 .

This implies together with boundedness of the bilinear form aB that
|a(v, w)| ≤ c∥v∥H1(Ω)∥w∥H1(Ω) for some constant c > 0.

Since coercivity of aB(v, v) follows from Assumption (A1), it
is sufficient to show that a1 and a2 are positive semi-definite.
Using the vectorization operator vec : Rd×m → Rdm : X ↦→
(X(k−1mod d)+1,⌊ k−1

d
⌋+1)

k=dm
k=1 applied in a pointwise sense for conveni-

ence we see that

a1(v, w) =
⟨︂(︁

α1
m1

− χ1
p1(Tu−g)

m2
1

)︁
Tv, Tw

⟩︂
=: ⟨A1Tv, Tw⟩,

a2(v, w) =
⟨︂(︁

λ
m2

Idm×dm − χ2
vec(ppp2) vec(∇u)T

m2
2

)︁
vec(∇v), vec(∇w)

⟩︂
=: ⟨A2∇v,∇w⟩,

where Idm×dm ∈ Rdm×dm denotes the unit matrix. It thus remains
to show pointwise positive semi-definiteness for A1 : Ω → R and
A2 : Ω → Rdm×dm. We see this by evaluating for x ∈ Rdm:

A1 ≥ α1
m1

− χ1
|p1|
m1

|Tu−g|
m1

≥ α1
m1

− χ1
α1
m1

≥ 0,

xTA2x ≥ λ
m2

|x|2 − χ2
| vec(ppp2)|

m2

| vec(∇u)|
m2

|x|2 ≥
(︁

λ
m2

− χ2
λ
m2

)︁
|x|2 ≥ 0.

This concludes the coercivity of the sum a = a1+a2+aB and applying
the Lax-Milgram theorem yields the required result.

128

Corollary 5.16. Assume |p1| ≤ α1, |ppp2|F ≤ λ holds. Then the discrete
problem of finding du ∈ Vh such that a(du, ϕ) = l(ϕ) for all ϕ ∈ Vh

admits a unique solution.

Proof. If S = ∇, the statement follows immediately from Theorem 5.15
using cS = 1. Let S = I, then the finite element inverse inequality (see
e.g. [34, Theorem 3.2.6] or [3, Theorem 1.3]) yields

∥∇u∥L2 ≤ ch−1∥u∥L2 = ch−1∥Su∥L2 ,

where h is the smallest cell diameter and c is a constant independent
of h. Then Theorem 5.15 with cS = ch−1 again yields the required
result.

Theorem 5.15 and Corollary 5.16 prove the solvability of the semi-
smooth Newton step and thus ensure that the following semi-smooth
Newton algorithm is well-defined in a general Hilbert space setting.

Let H ⊆ H1(Ω)m satisfy the requirements from Theorem 5.15.
The semi-smooth Newton scheme for (3.13) is given by the following
algorithm.
Algorithm 5.17 (Semi-smooth Newton).

Parameters: model parameters α1, α2, λ, β, regularization paramet-
ers γ1, γ2 > 0
Input: data g ∈ L2(Ω), initial guesses u0 ∈ H1(Ω)m, ppp0 ∈ L2(Ω)×
L2(Ω)d×m

Output: sequence (uk, pppk) approximating the solution to (3.16)
for k = 1, 2, . . . do

solve a(du, ϕ) = l(ϕ), ϕ ∈ H from Theorem 5.15
assign dp1 , dppp2 according to (5.24) and (5.25)
uk = uk−1 + du
pppk = pppk−1 + (dp1 , dppp2)

end for

If not otherwise specified, we use for Algorithm 5.17 the Cauchy
stopping criterion

1
|Ω|

(︂
∥un − un−1∥2 + ∥p1,n − p1,n−1∥2 + ∥ppp2,n − ppp2,n−1∥2

)︂
< εnewton,

129

Figure 5.4: from left to right: 64x64 pixel input image g and respective
denoised outputs for semi-implicit, semi-implicit acceler-
ated and semi-smooth Newton algorithms

for some specified constant εnewton.

5.4.2 Numerical Behaviour

Convergence Rate
To numerically observe the asymptotic convergence properties of Al-
gorithm 5.17, a small image g as depicted in Figure 5.4 has been
chosen along with the denoising setting T = I, S = I, α1 = 0,
α2 = 30, λ = 1, β = 0 and γ1 = 1 ·10−2, γ2 = 1 ·10−3. We iterate until
|Ω|−

1
2 ∥uk−uk−1∥L2 < 1 ·10−10 or k ≥ 10,000. The energy Ê := 112.47

was obtained as the minimal energy over all iterations and algorithms
and assumed by Algorithm 5.17.

From the step lengths and energies in Figure 5.5 one can see the
sublinear convergence of the semi-implicit method and its accelerated
variant. The semi-smooth Newton method displays superlinear con-
vergence, reaches the desired tolerance after only a few iterations and
assumes the minimal energy Ê in the last step which is excluded in
the logarithmic plot.

5.5 Applications

In the following we aim show that our model together with Al-
gorithm 5.17 can indeed be applied in practice to solve the image
processing tasks introduced in Section 3.1.1.

130

100 101 102 103 104
10−11

10−8

10−5

10−2

iteration

|Ω
|−

1 2
∥u

n
−
u
n
−
1
∥ L

2

Algorithm 5.14 non-accelerated
Algorithm 5.14 accelerated
Algorithm 5.17

100 101 102 103 104

10−3

10−1

101

iteration

E
(u

n
)
−
Ê

Figure 5.5: comparison of steps and energy

131

Figure 5.6: from left to right: original image g̃, noisy input image g,
denoised output image u

Figure 5.7: from left to right: inpainting mask, masked input image,
inpainted output image

5.5.1 Denoising

From an original image g̃ we generate an artificial noisy input g :=
ϕ(g̃ + η), where η denotes zero mean additive Gaussian noise with
variance 0.1 and ϕ(x) ∈ {0, 1, x} with probability p

2 ,
p
2 , 1−p respectively

and p = 2 · 10−2.

We denoise the image g in Figure 5.6 by setting T = I as described
in Section 3.1.1, S = I and using manually chosen parameters α1 = 0.2,
α2 = 8, λ = 1, β = 0, γ1 = 1 · 10−4, γ2 = 1 · 10−4 to obtain visually
pleasing results.

The result visible in Figure 5.6 matches the expected behaviour of
total variation denoising, i.e. coherent noisy regions are flattened out,
while hard edges are mostly preserved.

132

5.5.2 Inpainting

For inpainting we aim to use the setting from Section 3.1.1 by use of
the masking operator from (3.2) for T . The inpainting domain D is
specified by an inpainting mask as shown in Figure 5.7.

Special care has to be taken, however, in our finite element setting.
Image interpolation may leak corrupt data from within the inpainting
area and the inpainting mask needs to be extended to cover this area.
In particular, global interpolation methods, such as L2-projection in
the case of cellwise linear continuous elements, should be avoided
and for other interpolation methods, the inpainting mask needs to
be extended to cover the area of influence. We do this by choosing
the interpolation method qi_lagrange for g, interpolating the image
mask using the same method and defining the operator T pointwise to
be zero whenever the image mask is not one.

The parameters are manually chosen by visual preference as follows:
α1 = 0, α2 = 50, λ = 1, β = 1 · 10−5, γ1 = 1 · 10−4, γ2 = 1 · 10−4. The
result can be seen in Figure 5.7, where the lost information within the
masked region has been filled in.

5.5.3 Optical Flow

The application to motion estimation was discussed in Section 3.1.1.
We now additionally introduce a combined warping and adaptation
algorithm.

While the linearized optical flow equation (3.4) has localized the
global condition (3.3) it comes at the cost of misrepresenting large
displacements. One may alleviate this problem by repositioning the
linearization point as in Algorithm 5.18.

133

Algorithm 5.18 (Warping technique for optical flow).
Input: images f0, f1, initial guess u0
Output: motion fields (uk)
for k = 1, 2, . . . do

fw,k−1(x) = f1(x+ uk−1(x)), x ∈ Ω
0 = ∇fw,k−1 · uk −∇fw,k−1 · uk−1 + fw − f0 for uk

end for

A few remarks on Algorithm 5.18 are in order.

• The images f0 and f1 are assumed to be smooth, since otherwise
a measure-theoretic definition of ∇fw,k is necessary and the
existence of solutions seems unclear in that case [9].

• Stopping after the first iteration corresponds to solving the lin-
earized optical flow equation 0 = ∇f1 · u+ f1 − f0.

• The algorithm has resemblence to an underdetermined Newton
algorithm. Indeed, when solving for the minimum norm solution
in each step the algorithm relates to the normal flow algorithm
[69] in a pointwise sense.

• The warping technique may be combined with a coarse-to-fine
scheme, where uk is solved on increasingly finer scales, resolving
large displacements on an early coarse scale and filling in detail
later.

To approximately solve for uk in Algorithm 5.18, we may use our
model (3.13) by choosing Tu := ∇fw,k−1 · u, g := ∇fw,k−1 · uk−1 −
(fw,k−1 − f0).

The images f0, f1, fw,k, except for the warping step detailed below,
use the discrete space Zh, whereas for g we instead use a cellwise linear
discontinuous space to capture the discontinuous component ∇fw,k−1.

134

Algorithm 5.19 (Optical flow algorithm with adaptive warping).
Parameters: warping threshold εwarp and parameters for Al-
gorithm 5.17
Input: images f0, f1, initial guess u0
Output: motion fields (uk)
fw,0(x) = f1(x+ u0(x))
for k = 1, 2, . . . do

find approximate discrete solution uk to (3.13) using Al-
gorithm 5.17

fw,k(x) = f1(x+ uk(x))

if ∥fw,k−f0∥L2−∥fw,k−1−f0∥L2

∥fw,k−1−f0∥L2
> −εwarp then

refine mesh and reproject image data
end if

end for

In Algorithm 5.19 we combine the warping technique from Al-
gorithm 5.18 with adaptive refinement, starting from a coarse grid.
Loosely speaking we solve the linearized optical flow equation for uk
and warp the input data by the computed flow field until we no longer
improve on the data difference fw,k − f0, which indicates displacement.
In that case, the mesh is refined using the indicators from (5.11) and
the process repeats, now including more detailed image data.

The warping step fw,k(x) = f1(x+ uk(x)) is carried out at original
image resolution by evaluating f1 using bicubic interpolation and in a
second step projected onto the current finite element space in order to
capture more detailed displacement information.

We note, that this approach to adaptivity allows us to start off
with a coarse mesh and refine cells only if deemed necessary by the
error indicator. In that respect it is different from the only other
adaptive finite element methods for optical flow we are aware of, see
[15, 16], where the mesh is initialized at fine image resolution first
and iteratively coarsened only after a costly computation of the flow
field and a suitable metric for adaptivity on this fine mesh has been
established.

135

Experiments
For all benchmarks the same manually chosen model parameters were
used. We use α1 = 10, α2 = 0, λ = 1 to obtain visually pleasing
results, cf. superiority of L1-TV in [39], β = 1 · 10−5, γ1 = 1 · 10−4,
γ2 = 1·10−4 to balance between speed and quality of the reconstruction
and u0 := 0. For the interior method εnewton = 1 · 10−3 was chosen.
The mesh is initialized to 1

6 of the image resolution, rounded down
to integer values, εwarp = 5 · 10−2 and a constant number of 6 total
refinements are carried out before stopping the algorithm.

In Figure 5.8 we evaluate Algorithm 5.19 visually against the middle-
bury optical flow benchmark [11]. The color-coded images representing
optical flow fields are normalized by the maximum motion of the ground
truth flow data and black areas of the ground truth data represent
unknown flow information, e.g. due to occlusion. A good resemblance
of the computed optical flow to the ground truth and the effect of
total variation regularization, i.e. sharp edges separating homogeneous
regions, can be seen clearly. Large displacements are resolved quite
well, e.g. the fast moving triangle-shaped object at the bottom of the
RubberWhale benchmark, thanks to the warping algorithm employed.
Using the same example, smaller slow-moving parts adjacent to the
larger moving objects tend to get somewhat distorted however. It
is unclear how much visual improvement more careful or adaptive
parameter selection may give and further study remains to be done.
Exemplary, the adapted mesh for the Dimetrodon benchmark can be
seen in Figure 5.9, where refinement seems to take place largely around
image edges.

5.6 Decomposition

We aim to implement the decomposition from Chapter 4 using the
finite difference setting from Section 5.1. Let for d ∈ N, h = 1, a, b ∈ Zd

the discrete domain be given by Ωh := Ωh,[a,b] ⊆ Zd as in Section 5.1.
For a given discrete overlap r ∈ N and a desired number of domains

M ∈ N we first define a discrete covering of Ωh in dimension d = 1.

136

Figure 5.8: Middlebury Optical Flow Benchmark: columns from left
to right: f0, f1, image difference f1 − f0, ground truth
optical flow and computed optical flow u using the adapt-
ive warping algorithm. Benchmarks from top to bottom:
Dimetrodon, Grove2, Grove3, Hydrangea, RubberWhale,
Urban2, Urban3, Venus.

137

Figure 5.9: Exemplary adapted mesh for adaptive optical flow on the
Dimetrodon Middlebury optical flow benchmark.

Let s := |b − a| be the diameter of Ω, i.e. its length. Define M
approximately equal integer sublengths given recursively by

ai :=
⌊︂s+ (M − 1)r −

∑︁i−1
j=1(aj − r)

M − (i− 1)

⌋︂
, i = 1, . . . ,M.

These give rise to the subdomains

Ωi := {bi, bi + 1, . . . , bi + ai}, bi :=
i−1∑︂
j=1

(aj − r), i = 1, . . . ,M

of diameter ai and the partition functions θi : Ω → [0, 1] by

θi(x) := min
{︁
1, 1r dist(x, [0, s] \ [bi, bi + ai])

}︁
,

where dist is the (Euclidean) distance function. The above construction
in one dimension yields M discrete subdomains Ωi and a corresponding
partition of unity θi for a discrete domain Ω of any size provided M
and r are chosen such that ai ≥ 2r.

Higher dimensions d > 1 are realized through a standard tensor-
product formulation based on the above construction, yielding M =∏︁d

k=1Mk subdomains with overlaps r = (r1, . . . , rd).
In all our decomposition examples we use Algorithm 5.9 as a subprob-

lem solver if not specified otherwise and choose its stepsize τ = 1
8∥B−1∥

in accordance with Remark 5.10.

138

Convergence

We numerically verify the theoretical sublinear convergence properties
of Algorithm 4.5 and Algorithm 4.6 due to Theorem 4.15 for different
applications. In each case small data of size 48× 32 was used together
with M = 2 · 2 = 4 domains and an overlap of r = 5 to make a high
number of iterations timely feasible. For denoising, a maximum of
105 iterations was chosen, while for inpainting and optical flow 106

iterations were made. For denoising we use artificial additive Gaussian
noise (σ = 0.1) on the ground truth image and model parameters
λ = 0.1, β = 0.0.

We observe in Figure 5.10 similar behaviour as in [28], i.e. the
sequential decomposition has a slight edge on the global algorithm due
to domain-overlap, while the energy curve of the parallel averaging
algorithm displays a characteristic bulge in the beginning.

For inpainting we use model parameters λ = 0.05, β = 0.001, while
for optical flow estimation we use model parameters λ = 0.002, β =
0.001. In Figures 5.11 and 5.12 the difference between the sequential
and parallel algorithm is less visible for both inpainting and optical flow
estimation. In all cases the domain decomposition algorithms converge
at a sublinear rate comparable to the respective global algorithm.

Surrogate

For local operators B we compare (i) nesting the surrogate iteration
(Algorithm 4.16) within domain decomposition and (ii) nesting domain
decomposition within a global surrogate iteration. Note that for B = I,
τ → 1 and a single surrogate iteration both of these are identical.

We use the optical flow problem with frames of original size 584×388
and model parameters β = 0.001, λ = 0.01. The number of subdomains
is M = 4 · 4 = 16 with overlap r = 50.

Both nestings perform similarly as can be seen in Figure 5.13, while
nesting the surrogate iteration within the domain decomposition has a
slight edge. This can be attributed to additional evaluations of B in
regions of overlap.

139

100 101 102 103 104
10−7

10−5

10−3

10−1

101

iteration

D
(p

k
)
−
D
(p

1
0
5
)

global
dd sequential
dd parallel

(a) energy

(b) ground truth image (c) noisy input image (d) denoised output im-
age

Figure 5.10: denoising: convergence of energy and results

140

100 101 102 103 104 105
10−4

10−3

10−2

10−1

100

101

iteration

D
(p

k
)
−
D
(p

1
0
6
)

global
dd sequential
dd parallel

(a) energy

(b) ground truth image (c) corrupted input im-
age: half of all pixels
black

(d) inpainted output im-
age

Figure 5.11: inpainting: convergence of energy and results

141

100 101 102 103 104 105
10−7

10−6

10−5

10−4

10−3

10−2

10−1

iteration

D
(p

k
)
−
D
(p

1
0
6
)

global
dd sequential
dd parallel

(a) energy

(b) first image f0 of im-
age sequence

(c) optical flow ground
truth from [11] (ori-
ginal resolution)

(d) optical flow compu-
ted

Figure 5.12: optical flow: convergence of energy and results

142

100 101 102

101

102

outer iteration count

D
(p

k
)
−
D
(p

5
0
0
0
0
)

inner surrogate
outer surrogate

Figure 5.13: Comparison of outer and inner surrogate, 50 inner it-
erations per domain decomposition iteration, one single
inner iteration per surrogate iteration

Wavelet Transformation

To demonstrate feasibility of our method even for global operators, we
aim to apply it to the reconstruction of wavelet coefficients.

Let u : Ωs → R and k ∈ Nd
0 be such that 2k ≤ s ≤ 2k + 1.

Define the d-dimensional n-th level discrete Haar wavelet transform
Tn : RΩs → RΩs through T 0 := I and for n ≥ 1 recursively through

(Tnu)(α · k + x) :=

⎧⎪⎨⎪⎩
(Tn−1T0u|Ω2k

)(x) if α = 0, k ≥ 1,

(Tαu|Ω2k
)(x) if 0 ̸= α ≤ 1, k ≥ 1,

u(α · k + x) else,

for all α · k + x ∈ Ωs where α, x ∈ Nd
0, x < k and the transformation

on the orthant indicated by α ∈ {0, 1}d is given by Tα : RΩ2k → RΩk

with

(Tαu)(x) := 2−
d
2

∑︂
β∈Nd

0
β≤1

(−1)|α·β|u(2x+ β)

143

(a) original image (b) corrupted image (c) reconstruction

Figure 5.14: wavelet inpainting

for all x ∈ Nd
0, x < k.

Since Tα : RΩ2k → RΩk halves the size and for s ≤ 1 we have Tn = I
for any n ∈ N the operator Tn becomes idempotent for large enough n
and we thus conveniently denote by T∞ := limn→∞ Tn the full wavelet
transform.

Let further R : RΩs → RΩs be an operator that sets a fixed set
I ⊆ Ωs, |I| = 1

2 |Ωs| of coefficients to zero. On may simulate corruption
of wavelet coefficients by setting T := R ◦ T∞ and g = Tg0 for some
original image g0 : RΩs → [0, 1].

We use M = 4·4 = 8 domains and an overlap of r = 5. In Figure 5.14
the result of an reconstruction for λ = 0.02 and β = 0.001 can be seen
after 102 outer iterations and 103 inner iterations each.

Parallel scaling

While our decomposition methods Algorithms 4.5 and 4.6 allow us to
dissect the original problem into smaller ones, a computational benefit
can only be achieved when those smaller problems are solved in parallel.
We aim to show the feasibility of a parallel implementation for these
decomposition methods and measure its parallel scaling behaviour.

Note that the subproblems of the parallel method from Algorithm 4.5
are trivially parallelizable, while Algorithm 4.6 may be parallelized
using an appropriate coloring of the subdomains similar to [33] by
calculating the solution on disjoint subdomains of the same color in
parallel and subdomains of different colors in sequence. We test our

144

1 2 4 8
1

10

number of parallel workers

tim
e

(s
)

to
co

m
pl

et
io

n

dd sequential
perfect scaling

Figure 5.15: parallel scaling

parallel implementation on an Intel(R) Core(TM) i7-5820K CPU @
3.30GHz (6 cores, 12 processing units) processor for scaling efficiency.
Data and parameters are chosen as in the surrogate comparison above
while the algorithms are terminated after reaching an energy of 130.0.

In Figure 5.15 one can see that the parallel implementation shows
desirable almost linear scaling (note the logarithmic axes) though
with a bad factor which we attribute to the data preparation and
communication steps that are carried out on a single worker and
apparently do not scale well in this implementation.

Conclusion
We have confirmed the convergence of Algorithms 4.5 and 4.6 nu-
merically and shown applicability of the decomposition to a wider
range of image processing tasks, namely inpainting and optical flow
estimation. When considering the total number iterations of the inner
subalgorithm, both decomposition methods did not differ substantially
in terms of convergence speed from the global one, i.e. applying the
subalgorithm directly to the global problem, which suggests a min-
imal overhead of the decomposition method. An expected runtime
improvement by parallel execution compared to sequential execution
of the same decomposition algorithm could be verified. Using domain

145

decomposition for a memory-constrained computing environment is
expected to be possible but requires a careful implementation and
therefore remains to be shown.

146

6 Implementation
In Chapter 5 all algorithms were presented in a formal mathematical
notation, disregarding any implementation details. While a formal
presentation may be sufficient to fully describe the algorithm in question
and analyze it in a theoretical setting, the implementation details
influence various aspects of practical numerical research: development
time, performance characteristics, independent reproducibility, reuse
and maintainability.

In this chapter we will shortly outline the implementation which
enabled us to produce the results of Chapter 5 and highlight various
deliberate design choices. We used the Julia programming language [17]
for our implementation and note that all Julia source code developed
for this thesis has been made publicly available with permissive license
through [50, 51, 52, 53, 54].

6.1 Optical Flow Utilities
While for digital images standardized image file formats are common,
there seems to be no standardized file format available for storing
the vector-valued optical flow field. The Middlebury optical flow
benchmark [11] contains an informal description of an uncompressed
binary format to store flow field data as flo-files [77]. Since then the
flo file format has been used in various benchmarks as a submission
format or to provide ground-truth optical flow data [11, 23].

Since the Julia package ecosystem did not provide a way to read
or write flow field data, the package OpticalFlowUtils [51] was de-
veloped and published under the MIT ”Expat” License. The imple-
mentation is Julia-native and thus does not derive from the original
C++-implementation provided in [11] which has unclear licensing.

147

This package has since been accepted to the default Julia package
registry and registered as the default handler for reading and writing
flo files by the FileIO framework [36]. It loads flow data as an array
of type Array{Union{Missing, Float32}, 3}, where the last two
ranks extend over the image grid and the first rank over the two vector
field dimensions. The singleton value missing indicates that the flow
data is unavailable, e.g. due to occlusion. For visualization a function
colorflow converts the flow array into a color-coded image as used
for visualization in e.g. Figure 5.8 and similar to [11]. A minimal code
example for loading, plotting and saving of optical flow data is shown
below.

1 using OpticalFlowUtils, FileIO, Plots
2
3 x = load("input.flo")
4 plot(colorflow(x))
5 save("output.flo", x)

6.2 Kernel Operations

Numerical algorithms often perform operations on arrays of data,
evaluating the same function at every index by passing it data from
within a small window (sometimes called ‘stencil’) of array data around
that index. We call the function evaluated this way kernel function
and the resulting operation kernel operation. Best known examples
include finite difference operators, linear and non-linear image filters,
morphological image operations as well as convolutional neural nets.

Implementation usually involves writing a loop ranging over all
indices and performing the kernel operation within the loop body.
Special care has to be taken to account for index ranges and boundary
conditions depending on the window size. When slice indexing over
multiple dimensions is available (e.g. in array programming languages)
one may replace the explicit loop with broadcasted operations over

148

shifted array slices. Both methods involve tedious index-notation and
manual handling of boundary conditions.

The package StaticKernels [54] has been developed to ease the
process of writing custom kernel operations in Julia. It has since been
registered and accepted into the default Julia package registry. The
custom kernel operation is created by defining the kernel function
operating on the window of array data using relative indexing (with
0 being the current position). Applying the two-dimensional Laplace
finite difference operator to an array of random floating point values
may be performed as follows:

1 using StaticKernels
2 a = rand(100, 100)
3
4 k = @kernel w ->
5 w[0,-1] + w[-1,0] - 4*w[0,0] + w[1,0] + w[0,1]
6 b = map(k, a) # size(b) == (98, 98)

The map function, traditionally accepting a function to apply point-
wise to every entry of an array, has been extended to accept a kernel
object k consisting of the kernel function and a window range and
performs here the application of the Laplace finite difference kernel
operation. Note that the resulting array size has diminished since we
did not specify any boundary handling.

The boundary may be incorporated by tagging the array to be
operated on with an extension specification. In the following example
the anisotropic total variation of a grey-scaled image is computed.

1 k = @kernel w ->
2 abs(w[1,0] - w[0,0]) + abs(w[0,1] - w[0,0])
3 sum(k, extend(a, StaticKernels.ExtensionReplicate()))

Note again that sum has been extended to accept a kernel object in
place of a pointwise function.

For more complicated examples when the window size cannot be

149

inferred from the kernel function, explicit creation of the kernel object
is still possible. The following example illustrates this for the kernel
operation of Conway’s game of life.

1 a = rand(Bool, 1000, 1000)
2 k = Kernel{(-1:1,-1:1)}(@inline w ->
3 count(w) - w[0,0] == 3 || count(w) == 3 && w[0,0])
4 a .= map(k, extend(a,
5 StaticKernels.ExtensionConstant(false)))

We see in Table 6.1 for linear image filter operations that the kernel
operation is carried out without heap memory allocations and per-
forms competitively with packages applicable to the same specific task.
Note that for comparison reasons the benchmark does not incorporate
boundary conditions. StaticKernels and the (auto-vectorized) code
produced manages to keep up with the package LoopVectorization
[44] which transforms loop bodies under various additional assump-
tions to vectorized LLVM assembly code using hand-picked optimized
rules. The package LoopVectorization could in principle be used as
a backend for transforming the loop generated by the StaticKernels
package in order to harness these optimizations, which become more
relevant for larger window sizes.

6.3 Stateful Parallelism

For executing CPU-based computing tasks in parallel the Julia lan-
guage natively supports shared-memory multi-threading and distrib-
uted process-parallelism. The former (provided by the standard library
package Threads) schedules a number of computing tasks to run in
parallel on multiple CPU-threads or CPU-cores sharing access to the
same working memory. While the overhead of launching these tasks
is small, care has to be taken to avoid concurrent writes to the same
memory location. Further multi-threading does not scale well beyond
a single computing node due to the shared-memory requirement. Dis-

150

100× 100 1000× 1000
package name time, µs memory time, ms memory
StaticKernels
(v0.6.1) 15.292 0B 2.867 0B

LoopVectorization
(v0.12.89) 12.396 0B 2.657 0B

NNlib
(v0.7.29) 231.295 678.55KiB 57.642 68.39MiB

ImageFiltering
(v0.7.0) 146.377 81.11KiB 20.015 7.63MiB

Table 6.1: Results for benchmark code [54] on an AMD A10-7860K
Radeon R7 CPU using Julia v1.6.3, applying a 3× 3 linear
filter to an array of the specified size.

tributed process-parallelism (provided by the standard library package
Distributed) schedules computing tasks to execute on separate Julia
processes through an asynchronous communication protocol. These
Julia processes run independently and may execute either locally in
order to make use of multi-core CPUs or remotely for use in a com-
puting cluster. While distributed parallelism does not suffer from race
conditions and can scale well beyond a single computing node, an
efficient algorithm design to minimize the communication overhead
between the computing nodes becomes crucial.

Stateless computation can be scheduled with relative ease using
e.g. the method Distributed.pmap, which transfers all inputs to the
worker nodes, executes the computation and collects the outputs
again. The transfer of input and output data thus introduces a latency
overhead for each parallel computation. If the remote computation
can be done incrementally it makes sense to let the remote computing
tasks be stateful, i.e. run computation on demand for an incremental
input while having an internal persistent program state for each remote
task.

The package Outsource [52] was developed to provide a minimal

151

wrapper atop the Distributed interface to ease management of stateful
remote tasks, including spawning and communicating with them using
a simple bidirectional channel-like interface built upon Distributed.
RemoteChannel.

The following minimal example launches one remote worker to
incrementally calculate terms of the Fibonacci sequence upon request.
The bidirectional channel wc (c from the perpective of the remote
worker) is interfaced through put! and take! to convey the request
order and to receive a Fibonacci number as a result. From a remote
perspective this interface appears reversed.

1 using Distributed; addprocs(1)
2 @everywhere using Outsource
3
4 # spawn worker
5 wc = outsource() do c
6 state = (0, 1)
7 while isopen(c)
8 n = take!(c)
9 # compute next n Fibonacci numbers

10 for _ in 1:n
11 state = (state[2], state[1] + state[2])
12 end
13 put!(c, state[1])
14 end
15 end
16
17 # issue stateful work and retrieve result
18 put!(wc, 10)
19 take!(wc) # = 55
20 put!(wc, 10)
21 take!(wc) # = 6765

While the example above may appear trivial, more complex scenarios
may spawn multiple workers with different states by making use of

152

function closures. These workers can then execute remotely in parallel
while being orchestrated on the main thread using one bidirectional
channel per worker.

6.4 Domain Decomposition
The domain decomposition methods featured in Section 5.6 were imple-
mented as the Julia package DualTVDD [50]. Apart from all numerical
experiments of Section 5.6, the package contains general code to
subdivide domains and apply subalgorithms according to the decom-
position Algorithms 4.5 and 4.6, the general surrogate Algorithm 4.16
as well as an implementation of Algorithm 5.9. Notably the imple-
mentation supports arbitrary dimensions.

Finite difference operations make use of StaticKernels from Sec-
tion 6.2 and parallel execution of subdomain algorithms is accomplished
using Outsource from Section 6.3.

6.4.1 Algorithm Interface

An algorithm interface has been designed to allow for efficient execution
and arbitrary nesting of algorithms.

1 abstract type Problem end
2 abstract type Algorithm{P <: Problem} end
3 abstract type State end

The abstract subtype hierarchy of Problem specifies the problem
model interface (problem, available data, available oracles, solution
form) and any concrete type instance fully specifies all problem para-
meters.

Any abstract subtype of Algorithm represents a fully specified iterat-
ive process of usually infinite or a-priori fixed but unknown finite length,
producing iterates that approximate the solution to the dependent
problem in some way. The hierarchy of abstract subtypes of Algorithm
is based on the algorithm interface (e.g. accepted parameters) and

153

the specific numerical scheme. A concrete type Algorithm represents
an implementation of its supertype algorithm and its instance is a
complete specification of the algorithm with all its inputs and should
guarantee to produce a deterministic sequence of iterates (randomized
algorithms should use a seeded pseudorandom number generator). An
concrete algorithm type needs to implement at least

(i) state = init(::Algorithm): allocates and initializes the al-
gorithm state.

(ii) state = step!(::State): performs one iteration of the al-
gorithm by updating state. This method should never allocate
dynamic memory.

(iii) solution = fetch(::State): fetches the solution in a format
specified by the problem. In some cases this can be a non-trivial
operation if the algorithm uses a different internal representation.

Depending on its supertype interface additional methods may be
implemented.

An instance of State represents the algorithm workspace. It con-
tains sufficient information to act as a checkpoint for continuing the
algorithm at that point.

Using the method dispatch capabilities of Julia this interface design
allows to e.g. apply the same algorithm to different problems satisfying
the same problem interface as well as solving the same problem by
different algorithms, provided they adhere to a common problem
interface. Algorithms may also be wrapped to produce e.g. logging
variants without modifying the actual algorithm code.

6.5 Finite Elements
The numerical results from Section 5.4 use a finite element implement-
ation that has been developed from scratch in Julia. The package
SemiSmoothNewton [53] contains scripts to reproduce the numerical
results and a module which hosts the finite element framework and

154

utility functions. The finite element framework supports the following
main features:

• unstructured conforming two-dimensional triangle grid with local
bisection refinement and prolongation of grid functions,

• elements of type DP0/DP1 (piecewise constant/linear discontinu-
ous), P1 (piecewise linear continuous)

• statically sized array-valued grid functions of arbitrary rank and
pointwise expressions using native Julia syntax

• interpolation and stable projections from pointwise expressions
to grid functions

• sampling of array-valued grid functions to array-valued images

While existing Julia finite element packages (notably [10, 26, 46]) could
have been used and suitably extended to support all of these features,
a minimal reimplementation was expected to be simpler to achieve
and manipulate.

As a minimal example, suppose Ω = (0, 1)2 ⊆ R2, f(x) = 5e−5∥x−p∥2 ,
p = (14 ,

1
2). The screened Poisson equation with natural boundary

conditions in the unknown u is given by:

0 = −∆u+ λ2u− f in Ω,
0 = ∂νu on ∂Ω.

The corresponding weak formulation amounts to finding u ∈ H1(Ω)
with a(u, ϕ) = l(ϕ) for all ϕ ∈ H1(Ω), where a : H1(Ω)×H1(Ω) → R,
l : H1(Ω) → R are given by

a(u, ϕ) :=

∫︂
Ω
∇u · ∇ϕ+ λ2u · ϕdx,

l(ϕ) :=

∫︂
Ω
f · ϕdx.

The following code snippet computes a discrete solution on a 32× 32
grid of piecewise linear continuous finite elements.

155

1 using LinearAlgebra: dot, norm
2 using SemiSmoothNewton
3 using SemiSmoothNewton:
4 vtk_mesh, vtk_append!, vtk_save
5
6 # simple 2d unit square triangulation
7 mesh = init_grid(32, 32)
8
9 # scalar piecewise linear continuous elements

10 space = FeSpace(mesh, P1(), (1,))
11 u = FeFunction(space, name = "u")
12
13 # inhomogenity
14 const p = (0.25, 0.5)
15 f(x) = 5 * exp(-5 * norm(x .- p)^2)
16 # parameter
17 const lambda = 19.7
18
19 # weak formulation
20 a(x, u, d_u, phi, d_phi) =
21 dot(d_u, d_phi) + lambda^2 * dot(u, phi)
22 l(x, phi, d_phi) =
23 dot(f(x), phi)
24
25 # solve u
26 A, b = assemble(space, a, l)
27 u.data .= A \ b
28
29 # vtk output
30 vtk = vtk_mesh("output.vtu", mesh)
31 vtk_append!(vtk, u)
32 vtk_save(vtk)

Notably the weak formulation is provided by defining functions a and

156

0 0.2 0.4 0.6 0.8 1
0

0.5

1
0

0.5

1

·10−2

x1
x2

u
(x
)

0.5

1

·10−2

Figure 6.1: Computed solution u on corresponding mesh.

l which are then passed to the assemble routine. Both functions repres-
ent the pointwise integrand when considering a, l as being functionals
defined by a domain integral, e.g. a(u, ϕ) =

∫︁
Ω ã(x, u,∇u, ϕ,∇ϕ)dx.

They are defined as standard native functions and operate on stack-
allocated fixed-size operands.

The solution u generated by the code above can be seen in Figure 6.1,
where the two-dimensional grid has been visualized as a surface plot.

157

7 Outlook

At last, we use this chapter to describe some related topics, which
could potentially provide interesting experiments or future research.
This is by no means an exhaustive list and mostly reflects the mindset
of the author himself.

7.1 Finite Element Discretization of L1-Type
Functionals

In Chapter 5 we solved the discretized optimality condition (5.2).
This discrete solution does not necessarily agree with minimizing the
continuous primal functional over a discrete subspace. While this
work concentrated on the former discretization, the latter approach
may be interesting to investigate.

Choosing e.g. simplicial, cellwise linear finite elements, the involved
L1-term can be evaluated in the local Lagrange basis as follows. In
one dimension for u : R → R, u(x) = u0(1− x) + u1x, u0, u1 ∈ R we
have ∫︂ 1

0
|u(x)|dx =

|u0|u0 − |u1|u1
2(u0 − u1)

.

While in two dimensions for u : R2 → R, u(x) = u0(1 − x1 − x2) +
u1x1 + u2x2, u0, u1, u2 ∈ R we have∫︂ 1

0

∫︂ 1−x1

0
|u(x)|dx2 dx1

=
|u0|u20(u1 − u2)− |u1|u21(u0 − u2) + |u2|u22(u0 − u1)

6(u0 − u1)(u0 − u2)(u1 − u2)
.

159

These expressions are still convex with respect to the basis coefficients
(it is however unclear whether this is necessarily true for a higher order
Lagrange basis). Using these expressions, one may now apply the
Fenchel duality on the discrete finite element spaces.

While being more involved, by discretizing this way, a solution to the
discrete primal-dual system will also be a minimizer of the continuous
primal functional on the discrete subspace. Being able to guarantee
that the error of discrete and continuous solution is orthogonal to
the chosen subspace is expected to help in deriving approximation
guarantees and a posteriori error estimates. Notably, convergence
results towards a continous solution as the mesh size tends to zero, as
seen e.g. in [5], would no longer be necessary, provided approximation
properties of the involved discrete spaces hold.

7.2 Software

7.2.1 Sparse Jacobians for Kernel Operations

The kernel operations detailed in Section 6.2 may be subject to auto-
matic differentiation. Using e.g. the package ReverseDiff, jacobians
for kernel operations may readily be computed as follows:

1 using StaticKernels
2 using ReverseDiff: jacobian
3 k = @kernel w -> w[-1] - 2*w[0] + w[1]
4 A = jacobian(x -> map(k, x), rand(5))
5 # 3×5 Matrix{Float64}:
6 # 1.0 -2.0 1.0 0.0 0.0
7 # 0.0 1.0 -2.0 1.0 0.0
8 # 0.0 0.0 1.0 -2.0 1.0

Since the kernel operations are generally sparse operations, it is judi-
cious to save time by not computing the dense jacobian. There exists
e.g. the package SparseDiffTools, which facilitates creating sparse
jacobian operators by detecting the sparsity pattern of an arbitrary

160

operation, finding a suitable graph-coloring and evaluating a jacobian
product in only few reverse automatic differentiation passes. But for
our kernel operations in particular, the sparsity pattern is well known
and could be leveraged to implement a sparse jacobian operator.

7.2.2 Broadcasted Kernel Fusion

Kernels from Section 6.2 are not yet subject to composition, i.e. com-
bining multiple kernels by simple operations to produce a new kernel.
For example, we would expect for the following two finite difference
kernels

1 k1 = @kernel w -> w[1] - w[0]
2 k2 = @kernel w -> w[2] - 2*w[1] + w[0]

the code k1 ◦ k1 to produce a kernel equivalent to k2.
While it is straightforward to apply k1 twice, this would loop over

the input array twice. It is therefore desirable to fuse both operations
into one loop. That way, the compiler may optimize the combined
operation further than possible if both operations were separated.

7.2.3 Differentiable Finite Element Toolbox

Differentiable programming is the paradigm to implement algorithms
in a way which allows them to be subjected to automatic differentiation.
This allows e.g. for sensitivity analysis of the algorithm or its integration
into other gradient-based minimization pipelines, such as deep learning
training loops.

While e.g. adjoint models of partial differential equations for sensit-
ivity analysis are not a recent invention, we are not aware of a fully
differentiable finite element toolbox which allows differentiation with
regard to all its primitives. Besides model input and parameters,
this should include differentiation with regard to e.g. mesh vertex
coordinates, quadrature points and weights, potentially allowing for
model-adaptive moving meshes and quadratures.

161

A major roadblock for more practical usage of differentiable pro-
gramming techniques in the finite element community seems to be a
lack of appropriate seamless frameworks.

162

References

[1] Rémy Abergel and Lionel Moisan. ‘The Shannon total variation’.
In: Journal of Mathematical Imaging and Vision 59.2 (Oct. 2017),
pages 341–370. doi: 10.1007/s10851-017-0733-5.

[2] Robert A. Adams and John J. F. Fournier. Sobolev Spaces.
2nd edition. Volume 140. Pure and Applied Mathematics. Aca-
demic Press, June 2003, pages 1–305. isbn: 978-0-12-044143-3.

[3] Mark Ainsworth and J. Tinsley Oden. A Posteriori Error Es-
timation in Finite Element Analysis. Wiley-Interscience, 2000.
doi: 10.1002/9781118032824.

[4] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimen-
sional Analysis. A Hitchhiker’s Guide. 3rd edition. Springer,
2006. doi: 10.1007/3-540-29587-9.

[5] Martin Alkämper and Andreas Langer. ‘Using DUNE-ACFem
for non-smooth minimization of bounded variation functions’.
In: Archive of Numerical Software 5.1 (2017), pages 3–19. doi:
10.11588/ans.2017.1.27475.

[6] Stefano Alliney. ‘A property of the minimum vectors of a regular-
izing functional defined by means of the absolute norm’. In: IEEE
Transactions on Signal Processing 45.4 (Apr. 1997), pages 913–
917. doi: 10.1109/78.564179.

[7] Luigi Ambrosio, Nicola Fusco and Diego Pallara. Functions of
Bounded Variation and Free Discontinuity Problems. Oxford
Mathematical Monographs. New York: Oxford University Press,
May 2000. isbn: 0-19-850245-1.

163

https://doi.org/10.1007/s10851-017-0733-5
https://doi.org/10.1002/9781118032824
https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.11588/ans.2017.1.27475
https://doi.org/10.1109/78.564179

[8] Hedy Attouch, Giuseppe Buttazzo and Gérard Michaille. Vari-
ational Analysis in Sobolev and BV Spaces. Applications to
PDEs and optimization. 2nd edition. MOS-SIAM Series on Op-
timization. Mathematical Optimization Society and Society for
Industrial and Applied Mathematics, 2014. doi: 10.1137/1.
9781611973488.

[9] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in
Image Processing. Partial differential equations and the calculus
of variations. 2nd edition. Volume 147. Applied Mathematical
Sciences. New York: Springer, 2006. doi: 10.1007/978-0-387-
44588-5.

[10] Santiago Badia and Francesc Verdugo. ‘Gridap: an extensible
finite element toolbox in Julia’. In: Journal of Open Source
Software 5.52 (2020), page 2520. doi: 10.21105/joss.02520.

[11] Simon Baker, Daniel Scharstein, James P. Lewis, Stefan Roth,
Michael J. Black and Richard Szeliski. ‘A database and evalu-
ation methodology for optical flow’. In: International Journal of
Computer Vision 92.1 (2011), pages 1–31. doi: 10.1007/s11263-
010-0390-2.

[12] Sören Bartels. Numerical Methods for Nonlinear Partial Differ-
ential Equations. Volume 47. Springer Series in Computational
Mathematics. Springer, 2015. doi: 10.1007/978-3-319-13797-
1.

[13] Sören Bartels. ‘Total variation minimization with finite elements:
convergence and iterative solution’. In: SIAM Journal on Nu-
merical Analysis 50.3 (2012), pages 1162–1180. doi: 10.1137/
11083277X.

[14] Sören Bartels and Marijo Milicevic. ‘Primal-dual gap estimators
for a posteriori error analysis of nonsmooth minimization prob-
lems’. In: ESAIM: Mathematical Modelling and Numerical Ana-
lysis 54.5 (2020), pages 1635–1660. doi: 10.1051/m2an/2019074.

164

https://doi.org/10.1137/1.9781611973488
https://doi.org/10.1137/1.9781611973488
https://doi.org/10.1007/978-0-387-44588-5
https://doi.org/10.1007/978-0-387-44588-5
https://doi.org/10.21105/joss.02520
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/978-3-319-13797-1
https://doi.org/10.1007/978-3-319-13797-1
https://doi.org/10.1137/11083277X
https://doi.org/10.1137/11083277X
https://doi.org/10.1051/m2an/2019074

[15] Zakaria Belhachmi and Frédéric Hecht. ‘An adaptive approach
for the segmentation and the TV-filtering in the optic flow es-
timation’. In: Journal of Mathematical Imaging and Vision 54.3
(2016), pages 358–377. doi: 10.1007/s10851-015-0608-6.

[16] Zakaria Belhachmi and Frédéric Hecht. ‘Control of the effects of
regularization on variational optic flow computations’. In: Journal
of Mathematical Imaging and Vision 40.1 (2011), pages 1–19.
doi: 10.1007/s10851-010-0239-x.

[17] Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B.
Shah. ‘Julia: a fresh approach to numerical computing’. In: SIAM
Review 59.1 (2017), pages 65–98. doi: 10.1137/141000671.

[18] Jakub W. Both. ‘On the rate of convergence of alternating
minimization for non-smooth non-strongly convex optimization in
Banach spaces’. In: Optimization Letters 16.2 (2022), pages 729–
743. doi: 10.1007/s11590-021-01753-w.

[19] Andrea Braides. Γ-convergence for Beginners. Volume 22. Oxford
Lecture Series in Mathematics and its Applications. Oxford Uni-
versity Press, 2002. doi: 10.1093/acprof:oso/9780198507840.
001.0001.

[20] Kristian Bredies, Karl Kunisch and Thomas Pock. ‘Total gen-
eralized variation’. In: SIAM Journal on Imaging Sciences 3.3
(2010), pages 492–526. doi: 10.1137/090769521.

[21] Kristian Bredies and Dirk Lorenz. Mathematical Image Pro-
cessing. Edited by John J. Benedetto. 1st edition. Applied and
Numerical Harmonic Analysis. Birkhäuser, 2018. doi: 10.1007/
978-3-030-01458-2.

[22] Martin Burger, Konstantinos Papafitsoros, Evangelos Papout-
sellis and Carola-Bibiane Schönlieb. ‘Infimal convolution reg-
ularisation functionals of BV and Lp spaces’. In: Journal of
Mathematical Imaging and Vision 55 (2016), pages 343–369. doi:
10.1007/s10851-015-0624-6.

165

https://doi.org/10.1007/s10851-015-0608-6
https://doi.org/10.1007/s10851-010-0239-x
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s11590-021-01753-w
https://doi.org/10.1093/acprof:oso/9780198507840.001.0001
https://doi.org/10.1093/acprof:oso/9780198507840.001.0001
https://doi.org/10.1137/090769521
https://doi.org/10.1007/978-3-030-01458-2
https://doi.org/10.1007/978-3-030-01458-2
https://doi.org/10.1007/s10851-015-0624-6

[23] Daniel J. Butler, Jonas Wulff, Garret B. Stanley and Michael. J.
Black. ‘A naturalistic open source movie for optical flow evalu-
ation’. In: Computer Vision – ECCV 2012. Edited by Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato and
Cordelia Schmid. Volume 7577. Lecture Notes in Computer Sci-
ence. Springer, Oct. 2012, pages 611–625. doi: 10.1007/978-3-
642-33783-3_44.

[24] Corentin Caillaud and Antonin Chambolle. ‘Error estimates for
finite differences approximations of the total variation’. Preprint.
Apr. 2020. url: https://hal.archives-ouvertes.fr/hal-
02539136.

[25] Luca Calatroni, Juan Carlos De Los Reyes and Carola-Bibiane
Schönlieb. ‘Infimal convolution of data discrepancies for mixed
noise removal’. In: SIAM Journal on Imaging Sciences 10.3 (2017),
pages 1196–1233. doi: 10.1137/16M1101684.

[26] Kristoffer Carlsson, Fredrik Ekre and Contributors. Ferrite.jl:
Finite Element Toolbox for Julia. Version 0.3.0. Mar. 2021. url:
https://github.com/Ferrite-FEM/Ferrite.jl.

[27] Kevin W. Cassel. Variational Methods with Applications in Sci-
ence and Engineering. Cambridge University Press, 2013. doi:
10.1017/CBO9781139136860.

[28] Antonin Chambolle. ‘An algorithm for total variation minim-
ization and applications’. In: Journal of Mathematical Imaging
and Vision 20.1-2 (2004), pages 89–97. issn: 0924-9907. doi:
10.1023/B:JMIV.0000011325.36760.1e.

[29] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo
Novaga and Thomas Pock. ‘An introduction to total variation
for image analysis’. In: Theoretical Foundations and Numerical
Methods for Sparse Recovery. Volume 9. Radon Series on Compu-
tational and Applied Mathematics. De Gruyter, 2010, pages 263–
340. doi: 10.1515/9783110226157.263.

166

https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-33783-3_44
https://hal.archives-ouvertes.fr/hal-02539136
https://hal.archives-ouvertes.fr/hal-02539136
https://doi.org/10.1137/16M1101684
https://github.com/Ferrite-FEM/Ferrite.jl
https://doi.org/10.1017/CBO9781139136860
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1515/9783110226157.263

[30] Antonin Chambolle, Stacey E. Levine and Bradley J. Lucier. ‘An
upwind finite-difference method for total variation–based image
smoothing’. In: SIAM Journal on Imaging Sciences 4.1 (2011),
pages 277–299. doi: 10.1137/090752754.

[31] Antonin Chambolle and Thomas Pock. ‘A first-order primal-dual
algorithm for convex problems with applications to imaging’.
In: Journal of Mathematical Imaging and Vision 40.1 (2011),
pages 120–145. doi: 10.1007/s10851-010-0251-1.

[32] Antonin Chambolle and Thomas Pock. ‘Learning consistent dis-
cretizations of the total variation’. In: SIAM Journal on Imaging
Sciences 14.2 (2021), pages 778–813. doi: 10.1137/20M1377199.

[33] Huibin Chang, Xue-Cheng Tai, Li-Lian Wang and Danping Yang.
‘Convergence rate of overlapping domain decomposition methods
for the Rudin–Osher–Fatemi model based on a dual formulation’.
In: SIAM Journal on Imaging Sciences 8.1 (2015), pages 564–591.
doi: 10.1137/140965016.

[34] Philippe G. Ciarlet. The Finite Element Method for Elliptic
Problems. Classics in Applied Mathematics. SIAM, 2002. doi:
10.1137/1.9780898719208.

[35] Laurent Condat. ‘Discrete total variation: new definition and
minimization’. In: SIAM Journal on Imaging Sciences 10.3 (2017),
pages 1258–1290. doi: 10.1137/16M1075247.

[36] Simon Danisch, Tim Holy and Contributors. FileIO: A Com-
mon Framework for Detecting File Formats and Dispatching to
Appropriate Readers/Writers. Version 1.11.1. Sept. 2021. url:
https://github.com/JuliaIO/FileIO.jl.

[37] Robert Dautray and Jacques-Louis Lions. Mathematical Analysis
and Numerical Methods for Science and Technology. Spectral
Theory and Applications. Volume 3. Mathematical Analysis and
Numerical Methods for Science and Technology. Springer, 2000.
isbn: 978-3-540-66099-6.

167

https://doi.org/10.1137/090752754
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1137/20M1377199
https://doi.org/10.1137/140965016
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/16M1075247
https://github.com/JuliaIO/FileIO.jl

[38] Mauricio Delbracio, Damien Kelly, Michael S. Brown and Peyman
Milanfar. ‘Mobile computational photography: a tour’. In: Annual
Review of Vision Science 7 (Sept. 2021), pages 571–604. doi:
10.1146/annurev-vision-093019-115521.

[39] Hendrik Meinert Dirks. ‘Variational methods for joint motion
estimation and image reconstruction’. PhD thesis. University of
Münster, 2015. url: https://nbn-resolving.de/urn:nbn:de:
hbz:6-59219499925.

[40] Yiqiu Dong, Michael Hintermüller and Marrick Neri. ‘An effi-
cient primal-dual method for L1TV image restoration’. In: SIAM
Journal on Imaging Sciences 2.4 (2009), pages 1168–1189. doi:
10.1137/090758490.

[41] Yiqiu Dong, Michael Hintermüller and M. Monserrat Rincon-
Camacho. ‘Automated regularization parameter selection in
multi-scale total variation models for image restoration’. In:
Journal of Mathematical Imaging and Vision 40.1 (2011),
pages 82–104. doi: 10.1007/s10851-010-0248-9.

[42] Manfred Einsiedler and Thomas Ward. Functional Analysis,
Spectral Theory, and Applications. Edited by Sheldon Axler and
Kenneth Ribet. Volume 276. Graduate Texts in Mathematics.
Springer, 2017. doi: 10.1007/978-3-319-58540-6.

[43] Ivar Ekeland and Roger Témam. Convex Analysis and Variational
Problems. English. Volume 28. Classics in Applied Mathematics.
SIAM, 1999. doi: 10.1137/1.9781611971088.

[44] Chris Elrod. LoopVectorization: Macro(s) for vectorizing loops.
Version v0.12.89. 2021. url: https://github.com/JuliaSIMD/
LoopVectorization.jl.

[45] Alexandre Ern and Jean-Luc Guermond. ‘Finite element quasi-
interpolation and best approximation’. In: ESAIM: Mathematical
Modelling and Numerical Analysis 51.4 (2017), pages 1367–1385.
doi: 10.1051/m2an/2016066.

168

https://doi.org/10.1146/annurev-vision-093019-115521
https://nbn-resolving.de/urn:nbn:de:hbz:6-59219499925
https://nbn-resolving.de/urn:nbn:de:hbz:6-59219499925
https://doi.org/10.1137/090758490
https://doi.org/10.1007/s10851-010-0248-9
https://doi.org/10.1007/978-3-319-58540-6
https://doi.org/10.1137/1.9781611971088
https://github.com/JuliaSIMD/LoopVectorization.jl
https://github.com/JuliaSIMD/LoopVectorization.jl
https://doi.org/10.1051/m2an/2016066

[46] Tero Frondelius and Jukka Aho. ‘JuliaFEM - open source solver
for both industrial and academia usage’. In: Rakenteiden Meka-
niikka 50.3 (2017), pages 229–233. doi: 10.23998/rm.64224.

[47] Bastian Goldluecke, Evegeny Strekalovskiy and Daniel Cremers.
‘The natural vectorial total variation which arises from geometric
measure theory’. In: SIAM Journal on Imaging Sciences 5.2
(2012), pages 537–563. doi: 10.1137/110823766.

[48] Zheng Gong, Zuowei Shen and Kim-Chuan Toh. ‘Image res-
toration with mixed or unknown noises’. In: Multiscale Model-
ing & Simulation 12.2 (2014), pages 458–487. doi: 10.1137/
130904533.

[49] Marc Herrmann, Roland Herzog, Stephan Schmidt, José Vidal-
Núñez and Gerd Wachsmuth. ‘Discrete total variation with finite
elements and applications to imaging’. In: Journal of Math-
ematical Imaging and Vision 61.4 (2019), pages 411–431. doi:
10.1007/s10851-018-0852-7.

[50] Stephan Hilb. DualTVDD: Dual total variation decomposition
algorithm and related tools. Version 0.1. 2021. url: https://
gitlab.mathematik.uni-stuttgart.de/stephan.hilb/Dual
TVDD.jl.

[51] Stephan Hilb. OpticalFlowUtils: Basic operations for handling
optical flow vector fields. 2021. url: https://github.com/
stev47/OpticalFlowUtils.jl.

[52] Stephan Hilb. Outsource: Simple and explicit asychronous hand-
ling of stateful worker tasks. 2021. url: https://github.com/
stev47/Outsource.jl.

[53] Stephan Hilb. SemiSmoothNewton: A tiny finite element frame-
work, primal-dual algorithms and numerical examples. Version 0.1.
2021. url: https://gitlab.mathematik.uni-stuttgart.de/
stephan.hilb/SemiSmoothNewton.jl.

169

https://doi.org/10.23998/rm.64224
https://doi.org/10.1137/110823766
https://doi.org/10.1137/130904533
https://doi.org/10.1137/130904533
https://doi.org/10.1007/s10851-018-0852-7
https://gitlab.mathematik.uni-stuttgart.de/stephan.hilb/DualTVDD.jl
https://gitlab.mathematik.uni-stuttgart.de/stephan.hilb/DualTVDD.jl
https://gitlab.mathematik.uni-stuttgart.de/stephan.hilb/DualTVDD.jl
https://github.com/stev47/OpticalFlowUtils.jl
https://github.com/stev47/OpticalFlowUtils.jl
https://github.com/stev47/Outsource.jl
https://github.com/stev47/Outsource.jl
https://gitlab.mathematik.uni-stuttgart.de/stephan.hilb/SemiSmoothNewton.jl
https://gitlab.mathematik.uni-stuttgart.de/stephan.hilb/SemiSmoothNewton.jl

[54] Stephan Hilb. StaticKernels: Julia-native non-allocating kernel
operations on arrays. 2021. url: https://github.com/stev47/
StaticKernels.jl.

[55] Stephan Hilb and Andreas Langer. ‘A general decomposition
method for a convex problem related to total variation minimiz-
ation’. In preparation. 2022.

[56] Stephan Hilb, Andreas Langer and Martin Alkämper. ‘A primal-
dual finite element method for scalar and vectorial total variation
minimization’. In: Journal of Scientific Computing 96.1 (2023),
page 24. issn: 1573-7691. doi: 10.1007/s10915-023-02209-2.

[57] Michael Hintermüller, Kazufumi Ito and Karl Kunisch. ‘The
primal-dual active set strategy as a semismooth Newton method’.
In: SIAM Journal on Optimization 13.3 (2003). doi: 10.1137/
S1052623401383558.

[58] Michael Hintermüller and Karl Kunisch. ‘Total bounded vari-
ation regularization as a bilaterally constrained optimization
problem’. In: SIAM Journal on Applied Mathematics 64.4 (2004),
pages 1311–1333. doi: 10.1137/S0036139903422784.

[59] Michael Hintermüller and Andreas Langer. ‘Subspace correc-
tion methods for a class of nonsmooth and nonadditive convex
variational problems with mixed L1/L2 data-fidelity in image
processing’. In: SIAM Journal on Imaging Sciences 6.4 (2013),
pages 2134–2173. doi: 10.1137/120894130.

[60] Michael Hintermüller and Carlos N. Rautenberg. ‘On the dens-
ity of classes of closed convex sets with pointwise constraints
in Sobolev spaces’. In: Journal of Mathematical Analysis and
Applications 426.1 (2015), pages 585–593. doi: 10.1016/j.jmaa.
2015.01.060.

[61] Michael Hintermüller and Monserrat Rincon-Camacho. ‘An ad-
aptive finite element method in L2-TV-based image denoising’.
In: Inverse Problems and Imaging 8.3 (2014), pages 685–711.
doi: 10.3934/ipi.2014.8.685.

170

https://github.com/stev47/StaticKernels.jl
https://github.com/stev47/StaticKernels.jl
https://doi.org/10.1007/s10915-023-02209-2
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S0036139903422784
https://doi.org/10.1137/120894130
https://doi.org/10.1016/j.jmaa.2015.01.060
https://doi.org/10.1016/j.jmaa.2015.01.060
https://doi.org/10.3934/ipi.2014.8.685

[62] Michael Hintermüller and Georg Stadler. ‘An infeasible primal-
dual algorithm for total bounded variation-based inf-convolution-
type image restoration’. In: SIAM Journal on Scientific Comput-
ing 28.1 (2006), pages 1–23. doi: 10.1137/040613263.

[63] Kazufumi Ito and Karl Kunisch. Lagrange Multiplier Approach
to Variational Problems and Applications. Advances in Design
and Control. SIAM, 2008. doi: 10.1137/1.9780898718614.

[64] Licheng Jiao and Jin Zhao. ‘A survey on the new generation of
deep learning in image processing’. In: IEEE Access 7 (2019),
pages 172231–172263. doi: 10.1109/ACCESS.2019.2956508.

[65] Andreas Langer. ‘Automated parameter selection for total vari-
ation minimization in image restoration’. In: Journal of Mathem-
atical Imaging and Vision 57.2 (Feb. 2017), pages 239–268. doi:
10.1007/s10851-016-0676-2.

[66] Andreas Langer. ‘Automated parameter selection in the L1-L2-
TV model for removing Gaussian plus impulse noise’. In: Inverse
Problems 33.7 (June 2017), page 074002. doi: 10.1088/1361-
6420/33/7/074002.

[67] Andreas Langer. ‘Investigating the influence of box-constraints
on the solution of a total variation model via an efficient primal-
dual method’. In: Journal of Imaging 4.1 (2018), page 12. doi:
10.3390/jimaging4010012.

[68] Andreas Langer. ‘Locally adaptive total variation for removing
mixed Gaussian–impulse noise’. In: International Journal of
Computer Mathematics 96.2 (2019), pages 298–316. doi: 10.
1080/00207160.2018.1438603.

[69] Yuri Levin and Adi Ben-Israel. ‘A Newton method for systems
of m equations in n variables’. In: Nonlinear Analysis: Theory,
Methods & Applications 47.3 (Aug. 2001), pages 1961–1972. doi:
10.1016/S0362-546X(01)00325-X.

171

https://doi.org/10.1137/040613263
https://doi.org/10.1137/1.9780898718614
https://doi.org/10.1109/ACCESS.2019.2956508
https://doi.org/10.1007/s10851-016-0676-2
https://doi.org/10.1088/1361-6420/33/7/074002
https://doi.org/10.1088/1361-6420/33/7/074002
https://doi.org/10.3390/jimaging4010012
https://doi.org/10.1080/00207160.2018.1438603
https://doi.org/10.1080/00207160.2018.1438603
https://doi.org/10.1016/S0362-546X(01)00325-X

[70] Ryan Wen Liu, Lin Shi, Simon C. H. Yu and Defeng Wang. ‘Box-
constrained second-order total generalized variation minimization
with a combined L1,2 data-fidelity term for image reconstruction’.
In: Journal of Electronic Imaging 24.3 (2015), page 033026. doi:
10.1117/1.JEI.24.3.033026.

[71] Julien Mairal. ‘Optimization with first-order surrogate functions’.
In: Proceedings of the 30th International Conference on Machine
Learning. Edited by Sanjoy Dasgupta and David McAllester.
Volume 28. Proceedings of Machine Learning Research 3. 2013,
pages 783–791. url: https://proceedings.mlr.press/v28/
mairal13.html.

[72] Mila Nikolova. ‘A variational approach to remove outliers and
impulse noise’. In: Journal of Mathematical Imaging and Vision
20.1-2 (2004), pages 99–120. doi: 10.1023/B:JMIV.0000011326.
88682.e5.

[73] Mila Nikolova. ‘Minimizers of cost-functions involving nonsmooth
data-fidelity terms. application to the processing of outliers’. In:
SIAM Journal on Numerical Analysis 40.3 (2002), pages 965–994.
doi: 10.1137/S0036142901389165.

[74] Ricardo H. Nochetto, Kunibert G. Siebert and Andreas Veeser.
‘Theory of adaptive finite element methods: an introduction’.
In: Multiscale, nonlinear and adaptive approximation. Edited by
Ronald DeVore and Angela Kunoth. Springer, 2009, pages 409–
542. doi: 10.1007/978-3-642-03413-8_12.

[75] Jongho Park. ‘Additive Schwarz methods for convex optimization
as gradient methods’. In: SIAM Journal on Numerical Analysis
58.3 (2020), pages 1495–1530. doi: 10.1137/19M1300583.

[76] Thomas Pock, Daniel Cremers, Horst Bischof and Antonin Cham-
bolle. ‘Global solutions of variational models with convex regu-
larization’. In: SIAM Journal on Imaging Sciences 3.4 (2010),
pages 1122–1145. doi: 10.1137/090757617.

172

https://doi.org/10.1117/1.JEI.24.3.033026
https://proceedings.mlr.press/v28/mairal13.html
https://proceedings.mlr.press/v28/mairal13.html
https://doi.org/10.1023/B:JMIV.0000011326.88682.e5
https://doi.org/10.1023/B:JMIV.0000011326.88682.e5
https://doi.org/10.1137/S0036142901389165
https://doi.org/10.1007/978-3-642-03413-8_12
https://doi.org/10.1137/19M1300583
https://doi.org/10.1137/090757617

[77] Daniel Scharstein. ”.flo” file format used for optical flow eval-
uation. 2007. url: https://vision.middlebury.edu/flow/
code/flow-code/README.txt. Defined in Simon Baker, Daniel
Scharstein, James P. Lewis, Stefan Roth, Michael J. Black and
Richard Szeliski. ‘A database and evaluation methodology for
optical flow’. In: International Journal of Computer Vision 92.1
(2011), pages 1–31. doi: 10.1007/s11263-010-0390-2.

[78] Claude E. Shannon. ‘A mathematical theory of communication’.
In: The Bell System Technical Journal 27.4 (1948), pages 623–
656. doi: 10.1002/j.1538-7305.1948.tb00917.x.

[79] Andrea Toselli and Olof Widlund. Domain Decomposition Meth-
ods: Algorithms and Theory. Volume 34. Springer Series in Com-
putational Mathematics. Springer, 2005. doi: 10.1007/b137868.

[80] Rüdiger Verfürth. A Posteriori Error Estimation Techniques for
Finite Element Methods. Numerical Mathematics and Scientific
Computation. Oxford University Press, 2013. isbn: 978-0-19-
967942-3.

[81] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh and Eero
P Simoncelli. ‘Image quality assessment: from error visibility to
structural similarity’. In: IEEE Transactions on Image Processing
13.4 (2004), pages 600–612.

[82] Christopher Zach, Thomas Pock and Horst Bischof. ‘A duality
based approach for realtime TV-L1 optical flow’. In: DAGM:
Joint Pattern Recognition Symposium. Volume 4713. Lecture
Notes in Computer Science. Springer. Sept. 2007, pages 214–223.
doi: 10.1007/978-3-540-74936-3_22.

173

https://vision.middlebury.edu/flow/code/flow-code/README.txt
https://vision.middlebury.edu/flow/code/flow-code/README.txt
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1007/b137868
https://doi.org/10.1007/978-3-540-74936-3_22

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Digital Image Processing
	The Variational Principle as a Modeling Tool
	The Role of Total Variation
	Duality in Convex Minimization

	Outline and Contributions

	Fundamentals
	Functional Analysis
	Banach Spaces
	Mollifiers
	Hilbert Spaces
	Γ-Convergence

	Convex Optimization
	Total Variation

	The L¹-L²-TV-Functional and Duality
	Model and Motivation
	Applications
	Primal Formulation
	The Bilinear Form a_B
	Dualization in H¹(Ω)ᵐ

	Regularized Model
	Predual Problem and Dualization
	Dual Characterization of the Huber-TV-Functional
	Γ-Convergence

	Decomposition
	Introduction
	Related Work

	Algorithm
	Convergence Analysis
	Comparison
	Surrogate Technique

	Discretization and Algorithms
	Finite Differences
	Finite Elements
	On Image Interpolation Methods
	Primal-Dual A-Posteriori Error Estimator
	Residual A-Posteriori Error Estimator

	Classic Algorithms
	Semi-Implicit Dual Algorithm
	Semi-Implicit Primal-Dual Algorithm

	Primal-Dual Semi-Smooth Newton Algorithm
	Derivation
	Numerical Behaviour

	Applications
	Denoising
	Inpainting
	Optical Flow

	Decomposition

	Implementation
	Optical Flow Utilities
	Kernel Operations
	Stateful Parallelism
	Domain Decomposition
	Algorithm Interface

	Finite Elements

	Outlook
	Finite Element Discretization of L¹-Type Functionals
	Software
	Sparse Jacobians for Kernel Operations
	Broadcasted Kernel Fusion
	Differentiable Finite Element Toolbox

	References

