
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Heft 299 Farid Mohammadi 

A Surrogate-Assisted Bayesian Framework for 

Uncertainty-Aware Validation Benchmarks 



 

 

 



 

 

 

 

A Surrogate-Assisted Bayesian Framework for Uncertainty-

Aware Validation Benchmarks 

 

  
 

von der Fakultät Bau- und Umweltingenieurwissenschaften  

der Universität Stuttgart und dem Stuttgart Center for Simulation Science 

zur Erlangung der Würde eines  

Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung 

 

 

 

 

 

vorgelegt von 

Farid Mohammadi 

aus Rasht, Iran 

 

 
 

 

 

Hauptberichter:  apl. Prof. Dr. rer. nat. Bernd Flemisch 

Mitberichter:  apl. Prof. Dr.-Ing Sergey Oladyshkin 

 Prof. Dr. Bruno Sudret 

 

 

Tag der mündlichen Prüfung: 14. Februar 2023 
 
 
 
 

Institut für Wasser- und Umweltsystemmodellierung  
der Universität Stuttgart 

2023  



 

 

  



 

 

 

 

 

 

 

Heft 299 A Surrogate-Assisted 
Bayesian Framework for 
Uncertainty-Aware Validation 
Benchmarks 

 
 
 
 

 
 

 von  
Dr.-Ing. 
Farid Mohammadi 
 
 

 
 
 
 
 

Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung 
der Universität Stuttgart



 

 

D93 A Surrogate-Assisted Bayesian Framework for Uncertainty-Aware 

Validation Benchmarks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bibliografische Information der Deutschen Nationalbibliothek 

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen 

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über 

http://www.d-nb.de abrufbar 

 

 

Mohammadi, Farid: 
A Surrogate-Assisted Bayesian Framework for Uncertainty-Aware Validation 

Benchmarks, Universität Stuttgart. - Stuttgart: Institut für Wasser- und 
Umweltsystemmodellierung, 2023 

 
(Mitteilungen Institut für Wasser- und Umweltsystemmodellierung, Universität 
Stuttgart: H. 299) 
Zugl.: Stuttgart, Univ., Diss., 2023 
ISBN 978-3-910293-03-8 
NE: Institut für Wasser- und Umweltsystemmodellierung <Stuttgart>: Mitteilungen 

 
 

Gegen Vervielfältigung und Übersetzung bestehen keine Einwände, es wird lediglich 
um Quellenangabe gebeten. 
 
 
 
Herausgegeben 2023 vom Eigenverlag des Instituts für Wasser- und Umweltsystem-
modellierung 
 
Druck: DCC Kästl e.K., Ostfildern 



Für Mama, Oma und Onkel Hamid.

Ich widme diese Dissertation auch den iranischen Frauen,

meinen kurdischen und belutschen Landsleuten.

”Jen, Xian, Azadi”

Frau, Leben, Freiheit!





Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisors, Bernd Flemisch

and Sergey Oladyshkin, whose unwavering guidance, relentless support, and profound

belief in my abilities have been invaluable throughout this study.

I would also like to thank the following people, without whom I would not have been

able to complete this research and without whom I would not have made it through

my Ph.D. study!

To my co-authors, Aline, Johannes, Martin Schneider, Elisa, Iryna, Gabi, Ilija, Wolf-

gang, and Holger: Thank you very much for the insights into your fields and the great

cooperation.

To my student, Stefania: you have made a great contribution to the success of this

work. A big thank you for that!

To my jogging pals: Felix, Ned, Sina, Katharina, Gabi, Martin Beck, Roman and

Holger. It was my absolute pleasure to be able to run alongside you. I really enjoyed

the discussions while we were out of breath.

I would also like to extend my sincere thanks to the team at LH2, especially, Steffi,

Beate, Pru, David and Michelle, who have been a great source of support.

To conclude, my biggest thanks to my family for all the unparalleled support they have

shown me throughout my life and especially during the compilation of this dissertation.





Contents

List of Figures IX

List of Tables XIII

Nomenclature XV

Abstract XIX

Zusammenfassung XXI

1 Introduction 1

1.1 Quality assessment of computational models . . . . . . . . . . . . . . 2

1.1.1 Model assessment tools . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Challenges in model assessment . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Uncertainties and errors . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Quantitative model validation . . . . . . . . . . . . . . . . . . 10

1.2.3 Multi-model comparison in Bayesian setting . . . . . . . . . . 13

1.2.4 Computational costs of Bayesian model validation . . . . . . . 16

1.3 Goals, contributions and structure . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Structure of this dissertation . . . . . . . . . . . . . . . . . . . 18

2 Bayesian Validation Framework 21

2.1 Bayesian analysis of computer simulators . . . . . . . . . . . . . . . . 22

2.1.1 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.2 Statistical modeling via Bayes’ theorem . . . . . . . . . . . . . 24

2.1.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . 27

V



2.2 Validation workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Bayesian hypothesis testing . . . . . . . . . . . . . . . . . . . 33

2.2.2 Bayesian multi-Model comparison . . . . . . . . . . . . . . . . 35

2.3 Two-stage surrogate-based Bayesian multi-model comparison . . . . . 43

2.3.1 Corrected BME for surrogate-based BMS . . . . . . . . . . . . 46

2.3.2 Corrected model weights for surrogate-based justifiability analysis 48

3 Surrogate Modeling 53

3.1 Polynomial Chaos Expansion . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Polynomial basis functions . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Calculation of the coefficients . . . . . . . . . . . . . . . . . . 57

3.1.3 On the accuracy of surrogate models . . . . . . . . . . . . . . 72

3.1.4 Comparison of sparse solvers . . . . . . . . . . . . . . . . . . . 73

3.1.5 Treating spatial and temporal dependencies . . . . . . . . . . 77

3.1.6 Bootstrap-based prediction confidence interval . . . . . . . . . 79

3.1.7 Surrogate model properties . . . . . . . . . . . . . . . . . . . . 80

3.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Learning strategies for SAED . . . . . . . . . . . . . . . . . . 86

3.2.2 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . 95

4 BayesValidRox: a Python Package for Bayesian Multi-Model Comparison 101

4.1 Model coupling with PyLink . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Uncertain Input Parameters . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Surrogate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 Training a meta-model . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Surrogate-assisted calibration . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Validation / Model comparison . . . . . . . . . . . . . . . . . . . . . 118

4.5.1 Single model validation via TOM . . . . . . . . . . . . . . . . 119

4.5.2 Multimodel comparison via justifiability analysis . . . . . . . . 120

5 Application I: Flow Simulation Models in Fractured Porous Media 123

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.2 Conceptual models . . . . . . . . . . . . . . . . . . . . . . . . 125

VI



5.2.3 Errors and uncertainties . . . . . . . . . . . . . . . . . . . . . 126

5.2.4 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Analysis of the predictive capabilities . . . . . . . . . . . . . . 130

5.3.3 Model validation and comparison . . . . . . . . . . . . . . . . 133

5.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Application II: Bayesian Comparison of Conceptually Simplified Models

to a Detailed Reference Model: Application to Coupling Free Flow and

Porous-Medium Flow 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.1 Reference pore-scale resolved model . . . . . . . . . . . . . . . 139

6.2.2 Subdomain models . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.3 Coupling concepts . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.4 Benchmark scenarios . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.5 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.1 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . 154

6.3.2 Analysis of predictive abilities . . . . . . . . . . . . . . . . . . 156

6.3.3 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . 161

6.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Application III: Surrogate-Based Bayesian Comparison of Computation-

ally Expensive Models: Application to Microbially-Induced Calcite Pre-

cipitation 167

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.2 Conceptual models and related uncertainty . . . . . . . . . . . 173

7.2.3 Solution procedure . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.1 Approximation quality of MICP surrogate models . . . . . . . 176

7.3.2 Two-stage Bayesian multi-model comparison . . . . . . . . . . 178

VII



7.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Summary and Outlook 187

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A MCMC Convergence 193

Bibliography 197

VIII



List of Figures

1.1 The process of model development . . . . . . . . . . . . . . . . . . . 3

2.1 A schematic illustration of constructing the model confusion matrix . 40

2.2 An example of a model justifiability analysis for a set of four models

(adapted from Schöniger et al. [2015a]). . . . . . . . . . . . . . . . . . 41

2.3 A schematic illustration of constructing the model confusion matrix for

two-stage model comparison . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 The workflow of the proposed validation framework. . . . . . . . . . . 52

3.1 Graphical model of FastARD algorithm . . . . . . . . . . . . . . . . . 64

3.2 Graphical model of FastLaplace algorithm. . . . . . . . . . . . . . . . 68

3.3 Results of solver comparison for the Ishigami model (d = 3, p = 14,

q = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Results of solver comparison for the borehole function (d = 8, p = 4,

q = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Results of solver comparison for the O’Hagan model (d = 15, p = 7,

q = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 The global exploration weight for i > 1. . . . . . . . . . . . . . . . . . 95

3.7 The surrogate-based posterior distributions after 5, 25, and 45 sequential

learning steps with AL-ALM versus the original posterior for the 2D case

of the analytical function using MCMC method (Section 2.1.3) . . . . 96

3.8 The surrogate-based posterior distributions after 5, 25 and 45 sequential

learning steps with BAL-KLD versus the original posterior for the 2D

case of the analytical function using MCMC method (Section 2.1.3) . 97

3.9 Evolution of BME with increasing training samples using BaSaPCE-

SAED for the analytical function (d = 10, p = 12, q = 0.5) . . . . . . 98

IX



3.10 Evolution of KLD with increasing training samples using BaSaPCE-

SAED for the analytical function (d = 10, p = 12, q = 0.5) . . . . . . 98

4.1 The available modules in BayesValidRox and their dependencies. . . . 102

5.1 Two experimental setups: (a) connected and (b) disconnected fracture

networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 The model domains of the connected case for (a) Model B01 and (b)

Model B03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 The pressure distributions of nine sensors used for the calibration for (a)

the connected and (b) the disconnected case . . . . . . . . . . . . . . 127

5.4 The Sobol indices of the model B01. . . . . . . . . . . . . . . . . . . . 129

5.5 The Sobol indices of the model B03. . . . . . . . . . . . . . . . . . . . 130

5.6 The posterior parameter distributions of model B01. . . . . . . . . . . 131

5.7 The posterior predictive plots of the model B01. . . . . . . . . . . . . 131

5.8 The Posterior parameter distribution of model B03. . . . . . . . . . . 132

5.9 The posterior predictive plots of the model B03. . . . . . . . . . . . . 133

5.10 The BME distributions for the competing models with the perturbed

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.11 The pairwise comparison of models via BHT. . . . . . . . . . . . . . . 135

6.1 Geometrical setting at the considered scales. . . . . . . . . . . . . . . 139

6.2 Schematic contribution to total conduction for the PNM. . . . . . . . 142

6.3 Schematic representation of a local interface for the free-flow/PNM. . 144

6.4 Schematic description of the coupled flow problem (left), unit cell and

non-dimensional effective parameters for the interface location γ = 5.05mm

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5 Schematic configuration of case studies II and III. . . . . . . . . . . . 147

6.6 Data extraction points for the calibration and validation scenarios. . . 148

6.7 Streamlines of the pore-scale (reference) simulation. . . . . . . . . . . 152

6.8 Total Sobol indices of the Stokes–Darcy model with the Classical IC for

the calibration (blue) points in Figure 6.6. . . . . . . . . . . . . . . . 155

6.9 Total Sobol indices of the Stokes–Darcy model with the Generalized IC

for the calibration points. . . . . . . . . . . . . . . . . . . . . . . . . 156

6.10 Total Sobol indices of the Pore-Network model for the calibration points. 156

X



6.11 Posterior parameter distribution of the Stokes–Darcy model with the

Classical IC after calibration to the reference data from the pore-scale

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.12 Posterior parameter distribution of the Stokes–Darcy model with the

Generalized IC after calibration to the reference data from the pore-

scale model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.13 Posterior parameter distribution of the Pore-Network model after cali-

bration to the reference data from the pore-scale model. . . . . . . . . 159

6.14 The velocity predictions of all models in the validation step against the

reference data from the pore-scale model. . . . . . . . . . . . . . . . . 160

6.15 The pressure predictions of all models in the validation step against the

reference data from the pore-scale model. . . . . . . . . . . . . . . . . 160

6.16 Distributions of log10 (Bayes Factor) for the pairwise comparison of com-

peting models based on the validation scenario. . . . . . . . . . . . . 162

6.17 Distributions of log10 (Bayes factor) of the Pore-Network model, with

the surface averaging against competing models based on the validation

scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.18 Comparison of log10(BME) distributions of models with that of TOM. 164

7.1 Schematic view of relevant processes and phases during MICP after Hom-

mel et al. [2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2 Column experiment setup by Hommel et al. [2015] with measurement

locations for calcite content and calcium concentration with analyzed

column D1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3 Relative mean LOOCV errors for SRQs during Bayesian updating. . . 177

7.4 Model weights for the prediction of SRQs over the increasing amount of

used spatial data points ND,spatial. . . . . . . . . . . . . . . . . . . . . 178

7.5 Model confusion matrices for calcite content [%] and calcium concentra-

tion [mol/m3] of the three models and the measurement data (MD) over

increasing amount of used spatial data points ND,spatial. . . . . . . . . 179

7.6 Average model weights for the data-generating process of the two SRQs

of the three models and the measurement data (MD) over the increasing

amount of used spatial data points ND,spatial. . . . . . . . . . . . . . . 181

7.7 Mean R2 between the different model outputs and the measurement data. 183

XI





List of Tables

2.1 Interpretation of Bayes Factor according to Jeffreys [1961] . . . . . . 35

3.1 Classical families of orthogonal polynomials . . . . . . . . . . . . . . 57

3.2 Borehole function: Input random variables and their distributions . . 74

5.1 List of considered uncertain parameters and their defined distributions

for both models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Posterior model weights after validation. . . . . . . . . . . . . . . . . 133

6.1 List of uncertain parameters and their defined distributions for the clas-

sical coupled Stokes–Darcy model. . . . . . . . . . . . . . . . . . . . . 150

6.2 List of uncertain parameters and their associated distributions for the

Stokes–Darcy model with the generalized interface conditions. . . . . 150

6.3 List of uncertain parameters and their specifications for the pore-network

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Statistical summary of posterior model weights after validation. . . . 161

7.1 Times in hours for measurement of the calcium concentration. . . . . 173

7.2 Key differences of the investigated models. . . . . . . . . . . . . . . . 174

7.3 Uncertain parameters and their prior distributions for the MICP models. 175

XIII





Nomenclature

Abbreviations

(a)PCE (Arbitrary) Polynomial chaos expansion

AIC Akaike information criterion

AIES Affine invariant ensemble sampler

AL Active learning

ALM Active learning MacKay

BAL Bayesian active learning

BaSaPCE Bayesian sparse arbitrary polynomial chaos expansion

BHT Bayesian hypothesis testing

BIC Bayesian information criterion

BMA Bayesian model averaging

BME Bayesian model evidence

BMS Bayesian model selection

ED Experimental design

ED Experimental design

XV



EIGF Expected improvement for global fit

KLD Kullback–Leibler divergence

LOOCV Leave-one-out cross validation

MAP Maximum a posteriori

MCMC Markov-Chain Monte Carlo

MH Metropolis-Hasting algorithm

MICP Microbially induced calcite precipitation

OLS Ordinary least square method

OM Original model

OMP Orthogonal matching pursuit

PCA Principal component analysis

PDE Partial differential equation

PDF Probability density function

SAED Sequential adaptive sampling experimental design

SM Surrogate model

SMV Statistical model validation

SRQ System response quantity

TOM Theoretically optimal model

UQ Uncertainty quantification

V&V Verification and validation

XVI



Greek symbols

α A multi-index representing the components of the multivariate polynomials

Σ Covariance matrix

ϵ Discrepancy term

θ Vector of model parameters

Ψ(·) Multivariate orthogonal polynomials

σ Standard deviation

Θ Parameter space

Number sets

N Natural number

R Real numbers

Other symbols

c Vector of PCE coefficients

µ Mean

E[·] Expected value

y Model response

M(θ) Model evaluation of a parameter set

var(·) Variance

BF(·, ·) Bayes factor

N Number of measurement points

XVII



Nm Number of models

Np Number of model parameters

NED Number of samples in experimental design

NMC Number of Monte-Carlo samples

ND,spatial Number of spatial data

p Selected polynomial degree

P (· | ·) Posterior probability density function

p(· | ·) Likelihood function

P (·) Prior probability density function

P (M | Y) Posterior model weight

P (Y) Marginal likelihood

Roman symbols

D Design space

M Computational model

N (·, ·) Normal distribution

U(·, ·) Uniform distribution

Wpost Expected posterior weight

Y Reference data set (measured or ”synthetic truth”)

M̃ Surrogate model

XVIII



Abstract

Over the last century, computational modeling in geoscience, especially in porous media

research, has witnessed tremendous improvement. After decades of development, the

state-of-the-art simulators can now solve coupled partial differential equations govern-

ing the complex subsurface multiphase flow system within a practically large spatial

and temporal domain. Given the importance of computational modeling, quality as-

sessment of these models in light of the purpose of a given simulation is of paramount

importance to engineering designers and managers, public officials, and those affected

by the decisions based on the predictions.

Users and developers of computational simulations deal with a challenging question:

How should confidence in modeling and simulation be critically assessed? Validation

is one of the primary methods for building and quantifying confidence in modeling

and simulation. It investigates the degree to which a model accurately represents

reality from the perspective of the intended application of the model. Usually, this

comparison between model outputs and experimental data constitutes plotting the

model results against data on the same axes to provide a visual assessment of agreement

or lack thereof. While comparisons between model and data are at the heart of any

validation procedure, there are several concerns with such naive comparisons. First,

these comparisons tend to provide qualitative rather than quantitative assessments and

are clearly insufficient as a basis for making decisions regarding model validity. Second,

naive comparisons often disregard or only partly account for existing uncertainties in the

experimental observations or the model input parameters. Third, such comparisons can

not reveal whether the model is appropriate for the intended purposes, as they mainly

focus on the agreement in the observable quantities.

These pitfalls give rise to the need for an uncertainty-aware framework that includes

a validation metric. This metric shall provide a measure for comparison of the system



response quantities of an experiment with the ones from a computational model while

accounting for uncertainties in both in a rigorous way. To address this need, we devel-

oped a statistical framework incorporating a probabilistic modeling technique using a

fully Bayesian approach. The dissertation aims to help modelers perform uncertainty-

aware model validation benchmarks. A two-stage Bayesian multi-model framework is

discussed for modeling tasks where a set of models are at hand. To make this framework

applicable for computationally demanding models, it is extended to a surrogate-assisted

framework, keeping the computational costs at a reasonable level. Moreover, correction

factors were introduced to compensate for the surrogate error in the Bayesian hypoth-

esis testing and Bayesian model selection, as using surrogate representations instead

of the full-fidelity computational models introduces additional errors to the validation

metrics.

In this dissertation, I show how the Bayesian formalism could be materialized by em-

ploying the concept of polynomial chaos expansion to achieve more accurate surrogates

with a sparse representation and account for the uncertainty in the surrogate’s pre-

dictions. I also highlight how such surrogate models could be constructed with as

few simulations as the computational budget allows. To this end, sequential adaptive

sampling strategies are discussed, in which one attempts to augment the initial design

iteratively. By doing so, informative regions in the parameter space are adequately ex-

plored. These regions are more likely to provide valuable information on the behavior

of the original model responses. Using a sequential sampling strategy avoids the waste

of computational resources, as opposed to the so-called one-shot designs. A series of

benchmark studies are conducted to investigate the predictive capabilities of different

sparsity and sequential adaptive sampling methods.

Moreover, I introduce BayesValidRox , an open-source, object-oriented Python package

that provides an automated workflow for surrogate-based sensitivity analysis, Bayesian

calibration, and validation of computational models with a modular structure. The

uncertainty-aware validation framework was applied to a range of cases in the field of

subsurface hydro-system modeling, mainly to flow and transport in porous media, such

as flow simulation models in fractured porous media, coupling free flow and porous

medium flow, and microbially induced calcite precipitation. However, this validation

framework can be transferred to other disciplines in which models are used for predic-

tion.

XX



Zusammenfassung

Im Laufe des letzten Jahrhunderts hat die rechnergestützte Modellierung in den Geowis-

senschaften, insbesondere in der Erforschung poröser Medien, enorme Verbesserungen

erfahren. Nach jahrzehntelanger Entwicklung sind die modernsten Simulatoren heute

in der Lage, gekoppelte partielle Differentialgleichungen zu lösen, die das komplexe

unterirdische Mehrphasenströmungssystem in einem großen räumlichen und zeitlichen

Bereich bestimmen. In Anbetracht der Bedeutung der computergestützten Modellie-

rung ist die Qualitätsbewertung dieser Modelle im Hinblick auf den Zweck einer be-

stimmten Simulation von größter Bedeutung für Ingenieure und Manager, öffentliche

Entscheidungsträger und diejenigen, die von den auf den Vorhersagen basierenden Ent-

scheidungen betroffen sind.

Nutzer und Entwickler von Computersimulationen stehen vor einer schwierigen Frage:

Wie sollte das Vertrauen in Modellierung und Simulation kritisch bewertet werden? Die

Validierung ist eine der wichtigsten Methoden zum Aufbau und zur Quantifizierung des

Vertrauens in die Modellierung und Simulation. Es wird untersucht, inwieweit ein Mo-

dell die Realität aus der Perspektive der beabsichtigten Anwendung des Modells korrekt

wiedergibt. Dieser Vergleich zwischen den Modellergebnissen und den experimentellen

Daten besteht in der Regel darin, dass die Modellergebnisse den Daten auf denselben

Achsen gegenübergestellt werden, um eine visuelle Bewertung der Übereinstimmung

oder des Fehlens einer solchen zu ermöglichen.

Obwohl Vergleiche zwischen Modell und Daten das Herzstück eines jeden Validierungs-

verfahrens sind, gibt es Bedenken gegenüber solchen naiven Vergleichen. Erstens liefern

diese Vergleiche eher qualitative als quantitative Bewertungen und sind als Grundlage

für Entscheidungen über die Gültigkeit von Modellen eindeutig unzureichend. Zweitens

lassen naive Vergleiche oft bestehende Unsicherheiten in den experimentellen Beob-

achtungen oder den Modellinputparametern außer Acht oder berücksichtigen sie nur
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teilweise. Drittens können solche Vergleiche nicht aufzeigen, ob das Modell für die be-

absichtigten Zwecke geeignet ist, da sie sich hauptsächlich auf die Übereinstimmung

der beobachtbaren Größen konzentrieren.

Aus diesen Einschränkungen ergibt sich die Notwendigkeit eines Frameworks, der die

Unsicherheiten berücksichtigt und eine Validierungsmetrik enthält. Diese Metrik soll

ein Maß für den Vergleich der Systemreaktionsgrößen eines Experiments mit denen ei-

nes Berechnungsmodells bieten, wobei die Unsicherheiten in beiden Modellen streng zu

berücksichtigen sind. Um diesen Bedarf zu decken, haben wir ein statistisches Frame-

work entwickelt, der eine probabilistische Modellierungstechnik mit einem vollständig

Bayes’schen Ansatz beinhaltet.

Diese Dissertation zielt darauf ab, Modellierer bei der Durchführung von Benchmarks

zur Modellvalidierung unter Berücksichtigung von Unsicherheiten zu unterstützen. Es

wird ein zweistufiges Bayes’sches Multi-Modell-Framework für Modellierungsaufgaben

diskutiert, bei denen eine Reihe von Modellen zur Verfügung steht. Um dieses Frame-

work für rechenintensive Modelle anwendbar zu machen, wird er zu einem Surrogat-

gestützten Framework erweitert, der die Rechenkosten auf einem vernünftigen Niveau

hält. Darüber hinaus wurden Korrekturfaktoren eingeführt, um den Surrogatfehler bei

der Bayes’schen Hypothesenprüfung und der Bayes’schen Modellauswahl auszugleichen,

da die Verwendung von Surrogatdarstellungen anstelle von originalgetreuen Berech-

nungsmodellen zusätzliche Fehler in die Validierungsmetriken einbringt.

In dieser Dissertation wird gezeigt, wie der Bayes’sche Formalismus durch den Einsatz

des Konzepts der polynomialen Chaos-Expansion materialisiert werden kann, um ge-

nauere Surrogate mit einer dünnbesetzter Darstellung zu erhalten und die Unsicherheit

in den Vorhersagen des Surrogats zu berücksichtigen. Es wird auch gezeigt, wie solche

Ersatzmodelle mit so wenigen Simulationen wie möglich erstellt werden können. Zu

diesem Zweck werden sequentielle adaptive Sampling-Strategien diskutiert, bei denen

man versucht, das anfängliche Trainings-Set iterativ zu ergänzen. Auf diese Weise wer-

den informative Regionen im Parameterraum angemessen untersucht. Diese Regionen

liefern mit größerer Wahrscheinlichkeit wertvolle Informationen über das Verhalten der

ursprünglichen Modellantworten. Durch die Verwendung einer sequenziellen Sampling-

Strategie wird die Verschwendung von Rechenressourcen im Gegensatz zu den so ge-

nannten One-Shot-Designs vermieden. Es werden eine Reihe von Benchmark-Studien
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durchgeführt, um die Vorhersagefähigkeiten verschiedener Löser für Sparse-PCE und

sequentieller adaptiver Sampling-Methoden zu untersuchen.

Außerdem stelle ich BayesValidRox vor, ein objektorientiertes Open-Source-Python-

Paket, das einen automatisierten Ablauf für Surrogat-basierte Sensitivitätsanalysen,

Bayes’sche Kalibrierung und Validierung von Berechnungsmodellen mit einer modu-

laren Struktur bietet. Das Unsicherheit-bewusste Validierung-Framework wurde auf

eine Reihe von Anwendungsfällen im Bereich der Modellierung von Hydro-Systemen

im Untergrund angewandt, hauptsächlich auf Strömung und Transport in porösen Me-

dien, wie z. B. Strömungssimulationsmodelle in geklüfteten porösen Medien, Kopp-

lung von freier Strömung und Strömung in porösen Medien sowie mikrobiell induzierte

Kalzitausfällung. Dieser Validierungsrahmen kann jedoch auch auf andere Disziplinen

übertragen werden, in denen Modelle zur Vorhersage verwendet werden.
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1 Introduction

Modeling assists in the conceptualization and exploration of the processes’ behavior and

their interaction to better understand these and generate hypotheses concerning them.

Moreover, it can facilitate the development of numerical experiments to test hypotheses

and predict outcomes. In scientific research, a model is an abstraction of a system that

describes a complex phenomenon in the most straightforward way that is adequate for

the aim of modeling. This simplification contains only those components believed to

be important to the problem at hand. That means a model is affected by the modelers’

perception of the actual system. Since the 1950s, modeling has witnessed significant

growth as a research activity. This growth is primarily due to conceptual developments

in modeling techniques and advances in computational power. This advancement in

modeling has also led to increased scientific understanding and identification of more

complex interactions and relationships between processes and cause-effect relationships.

There has been a growing need to study environmental systems, especially subsurface

systems. Subsurface environmental systems are open and complex, in which intricate

hydrologic, microbiologic, mechanical, and geochemical processes occur and interact at

multiple scales. Understanding and predicting system responses to natural forces (e.g.,

climate changes) and human activities (e.g., contaminant remediation and CO2 seques-

tration) is indispensable for managing water resources, cleaning subsurface contamina-

tion and providing expert analysis to inform policy-making on long-term stewardship of

nuclear waste disposal and CO2 storage sites. Environmental scientists use modeling as

an essential instrument to study the causes and effects of environmental problems, with

an increasing level of detail and complexity. This tool helps engineers to approximate

complex processes in nature and give sufficiently accurate estimates, predictions, and

forecasts. These predictions are advantageous in decision-making, which is the basis for

developing public policy, preparing safety procedures, and establishing legal liability.
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1.1 Quality assessment of computational models

Computational modeling in geoscience, particularly in porous media research, has

evolved tremendously over the last century. With decades of development under their

belts, modern simulators are now able to solve coupled partial differential equations gov-

erning the complex subsurface multiphase flow system within a practically large spatial

and temporal domain. Given the importance of computational modeling, assessment of

the quality of models in light of the purpose of a given simulation is of paramount im-

portance to engineering designers and managers, public officials, and those affected by

the decisions based on the predictions. Various complementary measures exist for this

quality assessment, such as unit testing of individual components of the computational

model, comparisons with analytical solutions, or other computational models.

While assessing the simulation results with the measures mentioned above could hint

us towards the correctness of the model, measuring the computational model perfor-

mance against experimental data can enhance the confidence in the models. However,

comparisons with experimental data can be highly cumbersome since the experiment

in question has probably not been designed to meet the objective of the validation of a

computational model. Moreover, disagreement with experimental data can have other

reasons than the deficiency of the simulation code, such as an insufficient description

of the experimental set-up or considerable uncertainties associated with the measure-

ments. On the other hand, pure code intercomparison studies cannot ensure that a

successfully participating model maps reality. Users and developers of computational

simulations deal with a challenging question: How should confidence in modeling and

simulation be critically assessed?

1.1.1 Model assessment tools

To answer the question posed above, let us look at the essential components of model

development. Figure 1.1 provides a comprehensive overview of the modeling steps and

the tools for model assessment.

Conceptual model is the idealized representation of the physical behavior of the reality

of interest. It comprises all relevant information concerning the system of interest,

modeling assumptions, simplifications, and approximations regarding the processes of
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Figure 1.1: The process of model development

interest within the system, as well as the specification of the interaction of the surround-

ings with the system of interest. It is heavily dependent on the modeler’s perception

of the governing processes of the system under investigation. The fundamentals of

the conceptual models are formulated in two forms: physical model and mathematical

model. While the former is a smaller or larger copy of the system under investiga-

tion, the latter describes the physical processes represented in this conceptual model

using a set of variables and a set of equations that establish relationships between the

variables. A typical mathematical model contains the elements such as governing equa-

tions, supplementary sub-models (defined by constitutive equations), assumptions, and

constraints (e.g., initial and boundary conditions).
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A computational model is the numerical implementation of the mathematical model

that will be solved on a computer to yield the computational predictions of the system

response. This model allows scientists to conduct thousands of simulated experiments

by a computer given that its execution is not time-consuming. On the other spectrum,

an experimental setup can be established in a laboratory to resemble the physical model.

Computational models allow you to control many variables much more precisely than

real systems, and you can replicate results exactly. As a consequence, different compo-

nents can be explored in ways that would otherwise be impossible in an experimental

setup.

In what follows, the tools available to critically assess the accuracy of the models are

discussed:

Verification is the process of examining whether the results of a computational model

are close enough to the corresponding solutions of the underlying mathematical model.

The fundamental strategy is to identify, quantify and reduce errors caused by mapping

the mathematical model to a computer code. Objective verification of the mathemati-

cal model does not address the question whether it has any relationship to reality. Two

types of verification are generally recognized in computational modeling: code verifi-

cation and solution verification. Oberkampf et al. [2004] divided the code verification

into numerical algorithm verification and software quality assurance. The primary goal

of numerical algorithm verification is to accumulate sufficient evidence to demonstrate

that the numerical algorithms in the code are implemented correctly and functioning

as intended.

Software quality assurance deals with determining whether or not the code as a soft-

ware system is reliable (implemented correctly). It provides reproducible results on

specified computer hardware and a specified system with a selected software environ-

ment, including compilers, libraries, etc. Solution verification, a.k.a. numerical error

estimation, deals with the quantitative assessment of the numerical accuracy of a given

solution to the partial differential equations (PDEs) . Assessment of numerical accuracy

is a critical issue in computations used for validation activities and in the application

of the code for the intended application.
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Calibration is the process of tuning parameters in the computational model to achieve

some degree of agreement with experimental data. This approach has proven effective

as it permits the estimation of the poorly known model compartments in the compu-

tational models. Calibration is fundamentally an optimization (estimation) problem.

To specify a calibration problem, one has to define calibration parameters, targets, and

objective functions.

• Calibration parameters are either those weakly identifiable physical attributes

whose true values cannot be measured in physical experiments, or tune adjust-

ment parameters of the computer code with no physical meaning to represent a

better surrogate for the physical process.

• Calibration targets are the data against which the model output is compared.

Calibration aims to select parameter values that produce model outputs that are

“close” to the calibration targets (while “close” may be assessed graphically or

visually, it is preferably encoded quantitatively by an objective function). Cal-

ibration targets are chosen based on model quantities of interest, availability of

”high-quality” data, and modeling goals.

• Objective functions are typically scalar functions of the calibration parameters

used to quantitatively assess the “closeness” of the estimated and true values.

Common choices include a distance of the calibration target data from model out-

puts, a convexity-preserving distance transformation, or a likelihood or pseudo-

likelihood. Example distances are the sum of absolute or squared differences

between model outputs and calibration targets (L1- and L2-norms, respectively).

Examples of convexity-preserving transformations of distances are various chi-

squared statistics. Distances are convex objective functions; for many problems,

the likelihood and pseudo-likelihood are also convex. As mentioned above, the

convexity of the objective function is an essential property because convex prob-

lems are much easier to solve than non-convex ones [Dahabreh et al., 2017].

Solving the calibration problem requires optimization algorithms. These algorithms

search for values of calibration parameters in the feasible domain, i.e., parameter space,

that optimize the objective function. They range from simple manual tuning to more

sophisticated statistical approaches such as Markov-Chain Monte Carlo (MCMC) . The

latter will be discussed in Chapter 2.
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Validation is an assessment of model accuracy relative to available experimental data.

Its focus is on assessing the error due to the approximations and assumptions made in

formulating the conceptual and mathematical models. It investigates how accurately a

computational model describes reality. Validation deals with a broader range of issues:

• Assessment of the fidelity of the mathematical modeling of physical processes.

• Evaluation of the consistency, or relevance, of the mathematical model to the

physical experiment being conducted.

• The influence of the experimental diagnostic techniques on the measurements

themselves.

• Estimation of experimental measurement uncertainty.

Validation rests on evidence that the appropriate experiments were executed correctly

and on evidence that supports the mathematical accuracy of the computed solution.

These issues are practically coupled in nontrivial ways in complex validation problems,

although they are logically distinct.

Comparing computational results with experimental data is a common practice in all

fields of engineering and science. Researchers usually make graphical comparisons by

plotting some computational system response quantity (SRQ) with the experimentally

measured response over a range of input parameters. SRQs can ideally range from

globally integrated to local quantities. Generally, the computational model is consid-

ered ’validated’ if the computational results agree with experimental data. With this

graphical comparison, the effects of uncertainty in the computational results and ex-

perimental data are not typically quoted, nor is its statistical character quantified. To

address these issues, methods for quantitative comparison, i.e., validation metrics, have

gained interest in the research community. These validation metrics use statistical pro-

cedures to compare the simulation results with the experimental data quantitatively.

They include uncertainties and variability due to the range of the independent variables,

such as a spatial coordinate or time.

Verification and validation (V&V) of computational simulations are the primary meth-

ods for building and quantifying confidence in modeling and simulation [Oberkampf and

Roy, 2010]. While verification comprises the process of determining that a model im-

plementation accurately represents the developer’s conceptual description of the model
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and the solution to the model, validation investigates the degree to which a model is an

accurate representation of reality from the perspective of the intended application of

the model [Oberkampf and Roy, 2010]. As Roache [1998] succinctly states, ”Verifica-

tion deals with mathematics; validation deals with physics.” Model calibration can be

regarded as a valuable and pragmatic path forward for applying the calibrated model

in future predictions similar to the experimental database. However, calibration rarely

addresses the underlying weaknesses of the models. These weaknesses are typically at-

tributed to many modeling approximations, or deficiencies, that could be contributing

to the disagreement [Oberkampf and Trucano, 2002]. The calibration process must not

be undertaken as a replacement but as a response to V&V assessment [Trucano et al.,

2006]. Refsgaard and Henriksen [2004] state that ”Validation tests against independent

data that have not also been used for calibration are necessary in order to be able to

document the predictive capability of a model.” In other words, the major validation

challenge is assessing the model in a ”blind” test with experimental data. In contrast,

the critical calibration issue is adjusting the physical modeling parameters to improve

agreement with experimental data.

1.2 Challenges in model assessment

In scientific modeling, it is relatively common to use the word validation to refer to

simple comparisons between model outputs and experimental data. Usually, this com-

parison constitutes plotting the model results against data on the same axes to provide

a visual assessment of agreement or lack thereof. According to Moser and Oliver [2015],

while comparisons between model and data are at the heart of any validation proce-

dure, there are several concerns with such naive comparisons. First, these comparisons

tend to provide qualitative rather than quantitative assessments. Such qualitative as-

sessments are often essential and informative. However, they are insufficient for making

decisions regarding model validity. Second, naive comparisons often disregard or only

partly account for existing uncertainties in the experimental observations or the model

input parameters. It is impossible to appropriately determine whether the model and

data agree without accounting for these uncertainties. Third, such comparisons can

not reveal whether the model is appropriate for the intended purposes, as they mainly

focus on the agreement in the observable quantities.
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These pitfalls of straightforward but naive comparisons give rise to the need for a

framework that includes a validation metric. This metric must compare the system

response quantities of an experiment with the ones from a computational model while

accounting for uncertainties in both in a rigorous way. Probability theory methods are

widely acknowledged and well-developed approaches to handle uncertainties in model

validation. However, these methods require statistical convergence to produce reliable

results. This convergence can be achieved when many simulations are run for different

settings. Computationally expensive models with a runtime of minutes to days render

the probability-based methods intractable. Therefore, the computational cost of the

model validation also needs to be accounted for, especially when an uncertainty-aware

model validation is envisaged.

The rest of this section is dedicated to addressing the challenges introduced above.

First, a discussion on the difference between errors and uncertainties is provided, fol-

lowed by all uncertainty forms. Second, validation metrics, their properties, and exist-

ing approaches are introduced. The last part of this subsection deals with the compu-

tational challenge of using probabilistic approaches for model validation.

1.2.1 Uncertainties and errors

Complex subsurface environmental systems are never entirely predictable. Model pre-

dictions of the subsurface system are inherently uncertain. This uncertainty is one of

the most significant major obstacles in simulating subsurface environments. A critical

component of assessing a model’s predictive power is quantifying the complex sys-

tem’s predictive uncertainty, assisting decision-making, and guiding the experimental

design and data collection to reduce uncertainty. Uncertainty quantification (UQ) is an

essential part of the model assessment via V&V, both in terms of experimental mea-

surement uncertainty and computational simulation. That is because input quantities

needed from the experiment are either unavailable or imprecisely characterized.

In a computational model, uncertainties can either be random variables, such as mea-

surement uncertainty in experiments, or unknown quantities that are not measured in

experiments but are needed for input, e.g., boundary conditions. However, the main

cause of errors is numerical solutions inaccuracy, such as lack of convergence of the
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spatial grid and lack of time-step resolution in unsteady phenomena [Oberkampf and

Barone, 2006].

Analysts commonly believe that uncertainty may manifest in aleatory and epistemic

forms. The word ”aleatoric” is derived from the Latin alea or dice, referring to a

game of chance. Aleatory uncertainty arises from randomness or unpredictability due

to stochasticity. It includes variability over time, across space, or among individual

components in a system. It represents unknowns that lead to changes in outcomes each

time we run the same experiment. Epistemic uncertainty, also known as systematic

uncertainty, stems from imperfect knowledge, ignorance, and limitations to information.

It includes data censoring and other forms of measurement uncertainty and often doubts

about the correct form of the model itself.

Aleatoric and epistemic uncertainty can also co-occur in a single term, for example,

when experimental parameters show aleatoric uncertainty and are passed to a computer

simulation. A surrogate model trained using these computer simulations for uncertainty

quantification will then show epistemic uncertainty dependent on or interacting with

the aleatoric uncertainty of the experimental parameters [Ranftl et al., 2021]. Rather

than being confined to aleatoric or epistemic uncertainty, such uncertainty is more

generally inferential.

UQ intends to express both types of uncertainty separately. Quantifying the aleatoric

uncertainties can be relatively straightforward, where the well-developed and widely

acknowledged (frequentist) probability theory is the most basic form. Recently, tech-

niques such as the Monte Carlo method, Karhunen–Loève, and polynomial chaos are

frequently used for quantifying aleatoric uncertainties. These methods estimate an

SRQ by a probability distribution, represented by its moments (in the Gaussian case,

the mean and covariance suffice). Regarding the estimation of epistemic uncertain-

ties, Bayesian probability is generally used to understand epistemic uncertainty, where

probabilities indicate how certain a rational person can be about a claim. Still, there

has been controversy as to whether other methods might be needed to properly or

fully treat epistemic uncertainty [Oberkampf et al., 2001, Nikolaidis and Haftka, 2001,

Ferson et al., 2003].
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1.2.2 Quantitative model validation

According to Oberkampf and Trucano [2008], we should build predictive capability di-

rectly on quantitatively assessed model accuracy instead of making vague or ambiguous

declarations that the model is “valid” or a foundation built on the calibration of the

model to all available data. Oberkampf and Trucano [2000, 2002] believe that com-

paring computational results to experimental results should be viewed as evaluating a

computable measure or a collection of these measures. The input data to the metric

are the computational results and the experimental measurements of the same SRQ

of interest. The authors refer to these types of measures as a validation metric and

recommend that both uncertainties and errors be included in comparing computational

and experimental results. The challenge in quantitative model assessment is how to

include the uncertainties and errors in the computational model and experimental data

in the calculation of validation metrics.

Different types of validation metrics have been studied in the literature to express

the accuracy of a computational model through comparison of its prediction against

observed data and to determine whether the model is adequate for its intended use.

Coleman and Stern [1997] and Oberkampf and Trucano [2002] discuss conceptual and

practical aspects of model validation and provided guidelines for conducting valida-

tion experiments and developing validation metrics. Available approaches for quanti-

tative model validation are based on statistical confidence intervals [Oberkampf and

Barone, 2006], computing distance between the model prediction and experimental

data by computing the area metric [Ferson et al., 2008, Sankararaman et al., 2011],

normalizing residuals [Hills and Leslie, 2003], classical statistics-based hypothesis test-

ing [Urbina et al., 2003], Bayesian hypothesis testing [Gelfand and Dey, 1994, Zhang

and Mahadevan, 2003, Mahadevan and Rebba, 2005, Geweke, 2007, Sankararaman and

Mahadevan, 2011], and reliability analysis-based techniques [Rebba and Mahadevan,

2008, Sankararaman and Mahadevan, 2013, Thacker and Paez, 2014]. Liu et al. [2011],

and Ling and Mahadevan [2013] investigated several of these validation approaches in

detail and discussed their practical implications in engineering.

Statistical model validation (SMV) can be used to assess the prediction of compu-

tational models based on observed data in a statistical fashion [Hills and Trucano,

1999, Oberkampf and Barone, 2006, Oberkampf and Roy, 2010, Kat and Els, 2012,

Sankararaman and Mahadevan, 2015, Lee et al., 2019, Kim and Youn, 2019]. SMV
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requires statistical validation metrics and hypothesis testing as tools for statistical

decision-making of whether a computational model is valid or not. A statistical val-

idation metric measures the discrepancy between predicted and observed results that

is used for the decision-making process [Dowding, 2001, Paez and Urbina, 2002, Hills

and Trucano, 2002, Oberkampf and Trucano, 2002, Hills and Leslie, 2003, Dowding

and Rutherford, 2003, Chen et al., 2004, Dowding et al., 2004, Oberkampf et al., 2004,

Trucano et al., 2006, Oberkampf and Barone, 2006, Mahadevan and Rebba, 2005, Hills,

2005, Rebba et al., 2006, Xiong et al., 2009, Thonhofer et al., 2014, Zhao et al., 2017].

Scholars in related fields have discussed the features desired for statistical validation

metrics according to specific scenarios [Liu et al., 2011, Ling and Mahadevan, 2013,

Bi et al., 2017, Maupin et al., 2018]. These studies deal with the extended capabil-

ity of statistical validation metrics for use with observation data that have particular

characteristics. However, the validation metrics used in existing studies tend to be

very sensitive to the distance between the observation and prediction and only weakly

consider the discrepancy of the distribution with respect to the distributed degree of

each dataset. For an accurate SMV, statistical validation metrics must quantify the

difference between the distributions with respect to not only the difference in mean

but also the variance. A discrepancy of variance between observation and prediction

can occur in various situations. For example, when the uncertainty of the predicted

response varies according to an input parameter, the distributions of the observed and

predicted results would have a difference in variance. This dissertation focuses on sta-

tistical validation metrics, which enable us to capture the variance difference between

observation and prediction to reduce decision errors in validation.

Statistical validation metrics play a crucial role in SMV; they can change the result of

the decision-making process. Under various uncertainty sources, SMV can statistically

adopt several previously developed validation metrics. Previous studies adopted the

distribution function’s shape to consider a global region discrepancy [Kullback, 1997,

Hills and Trucano, 2002, Mahadevan and Rebba, 2005, Oberkampf and Barone, 2006,

Ferson et al., 2008, Jeon et al., 2015]. The area metric is one popular metric. Developed

by Ferson et al. [2008], the area metric generally employs a U-pooling method to solve

practical problems using SMV. The likelihood is a metric for the goodness of fit, which

measures the fidelity of a dataset to a designated distribution [Hills and Trucano, 2002,

Oberkampf and Roy, 2010, Keysers et al., 2020]. In other work, the Bayes factor

has been used to quantify the likelihood ratio of two possible distribution models for
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given data [Kass and Raftery, 1995, Berger and Mortera, 1999, Keysers et al., 2020].

Kullback–Leibler divergence (KLD) has been used to imply the relative entropy of a

probability density function with respect to another reference distribution [Kullback,

1997, Smith et al., 2006, Pérez-Cruz, 2008]. Probability of separation quantifies the

separated degree of two distributions and is generally used for classifying two datasets

[Jeon et al., 2015]. Probability residual is the squared form of the area discrepancy

between two probability density functions [Oh et al., 2019, Son et al., 2020].

Hypothesis testing evaluates the plausibility of rejecting a null hypothesis according

to a designated confidence level [Naylor and Finger, 1967, Balci and Sargent, 1982,

Koch, 1999, Johnson et al., 2000, Wilcox, 2011, Ross, 2020] and has been employed

in validation studies [Hills and Trucano, 2002, Hills and Leslie, 2003, Dowding and

Rutherford, 2003, Dowding et al., 2004, Chen et al., 2004]. In this approach, the

validation assessment is formulated as a decision on whether the model’s predictions are

consistent with the available empirical information. In SMV, the null hypothesis is that

there is no significant discrepancy between the prediction and observation. Hypothesis

testing constructs a distribution of the validation metric, assuming that the observation

data belong to the predicted distribution. When the value of the computed validation

metric exists within the confidence level of this validation metric’s distribution, the

hypothesis testing cannot reject the null hypothesis. Using this information, SMV

determines the validity of the computational model.

Hypothesis testing approaches can be divided into two groups: classical and Bayesian

hypothesis testing. Classical hypothesis testing is well established and has been ex-

plained in detail in many statistics textbooks, [e.g., Lehmann et al., 2005]. In classical

hypothesis testing, a test statistic is first formulated, and the probability distributions

of this statistic under the null (H0) and alternative (H1) hypotheses are derived theoret-

ically or by approximations. Based on the validation data, one can compute the value

of the test statistic and thus the corresponding p-value. This value is the probability

that the test statistic falls outside the range defined by its computed value under the

null hypothesis. In general, p-values can be considered as indicators of the quality of a

null hypothesis, because a better null hypothesis corresponds to a narrower range de-

fined by the test statistic’s computed value, so there is a higher chance the test statistic

will fall outside that range [Ling and Mahadevan, 2013]. Note that failing to reject the

null hypothesis indicates that the accuracy of the model is acceptable, but it does not

prove that the null hypothesis is true.
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In the past decade, alternatively, Bayesian methods have been developed to determine

the predictive capabilities of computational models (see e.g., Kennedy and O’Hagan

[2001], Chen et al. [2004, 2007], Mahadevan and Rebba [2005], Rebba et al. [2006],

Rebba and Mahadevan [2008], Jiang and Mahadevan [2007, 2008a,b, 2009a,b]). Bayesian

hypothesis testing (BHT) incorporates the use of the Bayes factor (or factors). This

factor is interpreted as the ratio of the relative likelihood of the null hypothesis that

the experimental data support the model predictions divided by the alternative hy-

pothesis that the data does not support the prediction. Bayes factors aid the decision

regarding accepting or rejecting the null hypothesis test. However, as pointed out by

some researchers [Ferson et al., 2008, Liu et al., 2011, Oberkampf and Barone, 2006,

Oberkampf and Roy, 2010], it is not clear how a designer or policy maker should inter-

pret this factor in a decision context concerning how much error is incurred by using

the model.

One significant difference between the Bayesian and classical hypothesis testing ap-

proaches is that the Bayesian approach focuses on accepting the null hypothesis. In

contrast, Edwards et al. [1963] claims that the classical approaches often tend to reject

the null hypothesis based on data that do not severely distract its credibility. This is

because these methods do not consider whether the observation is even less likely if the

null hypothesis is false. Note that not having enough evidence to reject a hypothesis

is not the same as having enough evidence to accept it. For more details about the

differences between classical and Bayesian hypothesis testing methods, the reader is

referred to Berger and Delampady [1987], Hwang et al. [1992].

1.2.3 Multi-model comparison in Bayesian setting

In some engineering applications, several representations, i.e., models, might exist with

different approaches and assumptions to analyze the occurring processes. Therefore, a

significant research challenge is to accurately assess competing modeling concepts and

validate the corresponding computational models against an experiment or a reference

solution. In the case of the multi-model comparison, the validation hypothesis is which

model within the pool of available models can represent the data-generating process.

The data could be observed values in the experiments or the reference data resulting
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from a detailed simulation. The uncertainty concerning the choice of adequate repre-

sentation of the system of interest is known as conceptual uncertainty. We may analyze

this multi-model problem in a validation benchmark.

Bernardo and Smith [2009] define the following multi-model settings from a decision-

theoretic perspective:

• M-closed setting: the true data-generating model is among the finite set of can-

didate models,

• M-complete: the true model exists and can be approximated but is outside the

model set,

• M-open: the true model is not within the model set and cannot even be described

given the existing information.

We deal with a finite set of distinct and fully defined models in most engineering

applications. These models share at least one objective, such as an SRQ in anM-open

setting, where a true data-generating model is unavailable. Thus, aiming to identify a

true data-generating model is not a suitable objective. Then, dealing with conceptual

uncertainty in a model ranking problem does not relate to the probability of being the

true model anymore. However, the ranking may only provide the best choice in an

imperfect set of models.

An objective model ranking can help us in a multi-model comparison and prevent us

from an unreasonable preference for one model over its variants [Elliott and Brook,

2007]. This ranking must follow the qualitative heuristic of Occam’s razor (e.g., Hut-

ter [2007], and references therein). This principle states that a model is best among

competing hypotheses if it requires the fewest assumptions; hence is the simplest model

while still being consistent with the observations. This implies that, for a given amount

of data, there is an optimal complexity of a model [Claeskens, 2016], which is neither

too complex nor too simple. A model that follows this principle is called parsimonious

[Angluin and Smith, 1983].

According to Schöniger [2016], model complexity could be quantified using three ap-

proaches: a) counting the number of the calibration input parameters, b) investigating

the possible parameter correlations by undertaking a factor analysis, or c) accounting

for data-parameter sensitivity to assess model’s flexibility in prediction space instead



1.2 Challenges in model assessment 15

of in parameter space. The latter can be investigated in a Bayesian setting, where the

flexibility in parameter values is considered by prior probability functions and sensitiv-

ity to data via likelihood functions. For a detailed discussion and a didactic example,

the reader is referred to Schöniger et al. [2015a], Schöniger [2016].

Several multi-model frameworks are related to these model ranking methods and allow

for statistical model selection and averaging (e.g., Gelman et al. [1995], Burnham and

Anderson [1998]). The most prominent example might be Bayesian model selection

(BMS) or averaging (BMA) [Draper, 1995, Hoeting et al., 1999, Raftery et al., 2005],

in which model probabilities are used to express uncertainty between models in terms

of how likely it is that a certain candidate model generated the observed data. BMS

and BMA are often the first choices to deal with conceptual uncertainty over many

disciplines (e.g., Trotta [2008], Faust et al. [2013], Hooten and Hobbs [2015], Schöniger

[2016]). Similarly, the so-called Pseudo-BMA [Geisser and Eddy, 1979, Yao et al.,

2018] is used to handle uncertainty between multiple models concerning their individual

ability to predict potential future data. Likewise, model rating methods like the famous

Akaike information criterion (AIC) [Akaike, 1974, 1998] serve as a basis for model

selection. Other frameworks such as (Bayesian) stacking [Le and Clarke, 2017, Yao

et al., 2018] allow combining model competitors in a set for predictive purposes rather

than quantifying the uncertainty about one being relatively best. BMA is out of the

scope of this dissertation because it aims to average or combine the predictions instead

of making model comparisons solely.

In a validation benchmark problem, one also tends to identify the impact of the data

size on the ranking outcome and the similarity of the models or lack thereof. The

first issue answers the question: how much data are required to achieve reasonable

ranking, or which level of complexity is justified given the available data? However,

the similarity can be addressed by the question: how would the models be ranked

given that one of them is the data-generating problem? These aspects were included

in a so-called justifiability analysis introduced by Schöniger et al. [2015a] and applied

to environmental applications, e.g., reactive transport models [Schäfer Rodrigues Silva

et al., 2020].
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1.2.4 Computational costs of Bayesian model validation

The probabilistic nature of the Bayesian techniques such as BHT, BMS requires prop-

agating the parametric uncertainty through all competing models – i.e., a significant

number of model evaluations – to reach statistical convergence. In practice, however,

the computational complexity and total computational budget severely limit the num-

ber of evaluations that can be performed. This challenge renders the brute-force com-

putation of the Bayesian metrics required for the model validation infeasible. Therefore,

Bayesian estimation resorts to using cheap-to-evaluate surrogate models to approximate

the actual model evaluations for computationally expensive solutions.

The primary goal here is to replace computational models with their easy-to-evaluate

surrogates that replicate the behavior of the underlying physical models from a limited

set of runs without sacrificing accuracy. A surrogate-assisted Bayesian analysis has

been applied to many applications, including hydrology [e.g., Yoon et al., 2022, Xu

et al., 2022], groundwater contamination [Jiang et al., 2021], sediment transport [e.g.,

Mohammadi et al., 2018, Beckers et al., 2020], processes in subsurface reservoirs [e.g.,

Bazargan et al., 2015, Bazargan and Christie, 2017], and subsurface flow models [e.g.,

Elsheikh et al., 2014].

1.3 Goals, contributions and structure

1.3.1 Goals

This dissertation aims to help modelers to perform an uncertainty-aware model valida-

tion and/or comparison. A two-stage Bayesian multi-model framework is discussed for

modeling tasks where a set of models are at hand. This framework employs Bayesian

hypothesis testing and Bayesian model selection and can be used to establish validation

benchmarks. It is extended to a surrogate-assisted framework to make this framework

applicable for computationally demanding computational models, keeping the computa-

tional costs at a reasonable level. Using surrogate representations instead of full-fidelity

computational models introduces additional errors to the validation metrics. Therefore,

a correction factor is introduced to compensate for the surrogate error.
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I employed polynomial chaos expansions (PCE) to build a surrogate representation of

the computational model. PCE is commonly used for uncertainty propagation thanks

to its solid mathematical basis and ability to provide functional representations of

stochastic quantities. However, the accuracy of the prediction of these surrogate models,

trained with only a handful of simulations, is debatable. This argument is rooted

in the fact that the surrogates do not attempt to quantify the epistemic uncertainty

associated with their predictions. In this dissertation, I show how Bayesian formalism

can be materialized by employing the concept of PCE to achieve better surrogates

with a sparse PCE representation and account for the uncertainty in the surrogate’s

predictions.

I also highlight how a surrogate model using a PCE can be constructed for computa-

tionally intensive models with as few simulations as the computational budget allows.

To do so, I discuss a sequential adaptive sampling strategy, in which one attempts to

augment the initial design iteratively. By doing so, interesting regions in the param-

eter space are adequately explored. These regions are more likely to provide valuable

information on the behavior of the original model responses. Using a sequential sam-

pling strategy avoids the waste of computational resources as opposed to the so-called

one-shot designs.

To my knowledge, no open-source programming package exists that deals specifically

with the uncertainty-aware Bayesian multi-model comparison. There is a need for a

software package that provides an automated workflow for Bayesian calibration/valida-

tion for computationally expensive models. I introduce BayesValidRox, an open-source,

object-oriented Python package for surrogate-based sensitivity analysis, Bayesian cali-

bration, and Bayesian comparison of computational models with a modular structure.

In the field of subsurface hydro-system modeling, many approaches could be adopted to

describe the processes of interest. Comparing these model variants in light of available

data can be addressed in validation benchmarks. Another goal of this dissertation is to

apply the proposed uncertainty-aware validation framework to a range of topics dealing

with flow and transport in porous media. However, this validation framework can be

transferred to other disciplines in which models are used, such as psychology, ecology,

economics, and other engineering disciplines.
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1.3.2 Contributions

This dissertation aims to make the following contributions to the scientific community:

• Developing a surrogate-assisted uncertainty-aware validation framework via a

Bayesian setting,

• Improving PCE prediction accuracy by exploring the Bayesian sparse learning

and sequential adaptive sampling,

• Providing an open-source Python package for model calibration and validation of

computational models,

• Establishing benchmarks in the field of flow and transport in porous media.

The first contribution focuses on developing a Bayesian calibration/validation frame-

work incorporating parameter and conceptual uncertainty. Incorporating a fully Bayesian

approach yields an optimal bias-variance trade-off against the experimental data and

provides an integrative quantity for model validation. Additionally, to guarantee the

feasibility of the Bayesian validation framework for computationally expensive models,

we accelerate the computations for expensive models via model reduction techniques.

1.3.3 Structure of this dissertation

The remainder of this dissertation is structured as follows. Chapter 2 introduces com-

ponents of the Bayesian validation framework. This is followed by Chapter 3, which

elucidates the contribution of surrogate modeling to offset the computational cost.

This chapter includes a comparison of some sparse learning strategies for aPCE and

sequential sampling strategies. Chapter 4 introduces BayesValidRox python package

and serves as a guide for the users to couple models, define input parameters’ prior

distributions, specify options, and post-process the results.

The remaining chapters present the framework’s application to different case studies

dealing with modeling flow and transport in porous media. Chapter 5 provides the

application of the proposed framework to flow simulation in the fractured porous media.

Chapter 6 discusses a comparison of three modeling concepts for coupling free flow and

porous medium. A comparison study of the models describing the property changes
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in subsurface reservoirs due to microbially-induced calcite precipitation is presented

in Chapter 7. Lastly, this dissertation is concluded with a summary and outlook in

Chapter 8.
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Bayesian epistemology offers a robust framework for characterizing scientific inference

since its simple concept lies in the fact that rational belief comes in degrees that can

be measured in terms of probabilities. Moreover, Bayesian epistemology has resulted

in the useful elucidation of notions such as confirmation. Thus, it is proven to form

a viable method for data-driven validation of computer simulations and can provide a

solid basis for a sound evaluation of computer simulations.

Bayesian epistemology dates back to ideas by Thomas Bayes and has been reinforced

by many scientists in the twentieth century, such as Bruno de Finetti, Frank P. Ramsey,

and Leonard Savage, among others. Bayesianists believe that trust comes in degrees

that are measured in terms of probabilities or probability densities when dealing with

characteristics with a continuous range of values. They generally tend to proceed

with the following three steps. First, they formulate plausible hypotheses related to

a simulation. Second, they consider rational degrees of belief in these hypotheses.

Thirdly, they apply the Bayesian principles. Following these steps yields posterior

probabilities that reveal the degree of trust that one should rationally invest in the

hypotheses.

What are the relevant hypotheses regarding the validation of a simulation? These could

be building up or losing trust in simulations. In terms of validation, the hypothesis is

whether the model can satisfactorily represent the real system of interest. Moreover,

for the assessment of the physical phenomena in question, several representations, i.e.,

models, might exist with different approaches and assumptions to analyze the occurring

processes. In this case, the hypothesis is which model within the pool of available

models can represent reality, i.e., observed values in the experiments. But, how can we

arrive at the probabilities above? This can be achieved by updating the prior belief

based on Bayesian notions. For this purpose, simulation results need to be compared

with data.
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In what follows, I will introduce Bayes’ theorem and show how it is used for inference

problems, such as calibration. Then, the validation workflow used in this work will

be presented. The last section of this chapter is dedicated to the framework with a

two-stage surrogate-based Bayesian multi-model comparison.

2.1 Bayesian analysis of computer simulators

Complex models are built in almost all science and engineering fields to simulate real-

world systems’ behavior. These models may be empirical or represent detailed scientific

understandings of the real-world process. They are usually implemented in computer

programs, which can run thousands of lines of code and take a fraction of a second

to several days to run. I will refer to both the mathematical model and the computer

program that implements it as a simulator. Note that the numerical implementation

of the mathematical model is referred to as computational model.

Simulators produce output that predicts the real-world phenomenon the model esti-

mates. However, these outputs are bound to be imperfect. Whether the simulator’s

output will correspond closely to the real-world quantities is uncertain. This uncer-

tainty emerges from many sources, particularly uncertainty due to the correct value of

the input parameters and uncertainty about the correctness of the model in represent-

ing the processes involved in the system under investigation. Kennedy and O’Hagan

[2001] provide a more comprehensive taxonomy of the uncertainties involved in using

simulators.

Many uncertainty quantification tasks in the sciences and engineering, such as calibra-

tion, require incorporating data into a model. This approach can significantly reduce

the uncertainty in model predictions and is a crucial step in many applications. In the

context of computational modeling, model calibration benefits from Bayes’ theorem,

allowing data into a model. Bayesian model calibration focuses on identifying the in-

put parameters of a computational model to allow one to recover the observations. A

typical scenario in this respect is identifying unknown properties of crucial components

of a complex system based on their observed response to controlled external loads in a

laboratory experiment. Through this procedure, the inferred values (and possibly the

uncertainty of the estimation) can then be used to predict the response of the same
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system to different external loads or even to design different systems sharing the same

calibrated model component. This approach lays the foundation for the V&V under the

uncertainty paradigm, commonly used in the engineering practice [Oberkampf et al.,

2004, Oberkampf and Roy, 2010, Hu and Orient, 2016]. The purpose of this section

is to introduce Bayes’ theorem and show how it can be used for statistical modeling.

This also establishes a rigorous framework for developing uncertainty-aware validation

benchmarks. Moreover, this section reviews different approaches to the Bayesian inverse

problems, i.e., how the possible values of parameters can be inferred.

2.1.1 Bayes’ theorem

The Bayesian approach to validation extensively exploits Bayes’ theorem. This theorem

is a combination of traditional probabilities and statistics. Let us assume A and B are

two events. The conditional probability of event A given that we know that the event

B has occurred, P (A | B) , can be cast as:

P (A | B) =
P (A ∩B)

P (B)
, (2.1)

where P (B) denotes the probability of event B, which poses a positive value, and

P (A ∩B) signifies the probability that both A and B occurred. Given that P (A ∩B)

is equal to P (B ∩ A), Equation (2.1) can be recast as follows:

P (A ∩B) = P (A | B)P (B) = P (B | A)P (A). (2.2)

Bayes’ theorem can simply be obtained by dividing Equation (2.2) by P (B), which

gives:

P (A | B) =
P (B | A)P (A)

P (B)
. (2.3)

Bayes’ theorem, as expressed in Equation (2.3), connects the conditional probability

P (B | A) to the other conditional probability P (A | B). P (A) is the prior probability

and P (A | B) stands for posterior probability, which are two basic concepts specific to

Bayesian methods. While the posterior is the conditional probability based on event B,

the prior is the unconditioned probability, which is used to integrate expert knowledge

or previous experience into analyses.
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2.1.2 Statistical modeling via Bayes’ theorem

Bayesian statistics uses Bayes’ theorem, described earlier, to fit a statistical model to

the problem at hand. This is achieved by updating the prior knowledge on hyper-

parameters θ , defined by the conditional probability θ ∼ P (θ), with possibly few ob-

servation data points. These hyper-parameters are treated as random variables, whose

subjective definition must disclose the available information before any measurement

of the quantity of interest, Y , is performed.

Bayes’ theorem in the context of statistical inference can be recast as the following:

P (θ | Y) = p(Y | θ)P (θ)
P (Y) , (2.4)

where P (θ | Y) denotes the posterior distribution of the hyper-parameters, p(Y | θ)
the likelihood function and P (Y) is the probability of the data or marginal likelihood.

Likelihood function Inverse Bayesian problems require three ingredients: a compu-

tational forward model M, a set of input parameters θ ∈ Θ and a set of observed

measurement data Y . The forward modelM is a computational model that receives a

set of parameters θ and generates outputs. This computational model uses computer

programs to simulate complex systems using an algorithmic or mechanistic approach.

Still, they involve simplifications of the real system and are often in error due to the lack

of proper understanding of governing phenomena. Therefore, no models can precisely

simulate reality; thus, a discrepancy always exists. As a result, the observed measure-

ments Y can be related to the model by introducing a discrepancy term ϵ ∈ RNout ,

which represents the effects of measurement error and model inaccuracy. This relation

can be cast as follows:

Y =M(θ) + ϵ. (2.5)

A common choice for the additive discrepancy term in engineering disciplines is a

simple Gaussian distribution. Other distribution types are also used in a more general

setting [Schoups and Vrugt, 2010]. This choice of ϵ indicates that the discrepancy is a

random value from a normal distribution ϵ ∼ N (0,Σ), which is centered at zero and

has a covariance matrix of Σ. For the sake of simplicity, the distribution is chosen to

be centered at zero. However, one can include a model discrepancy function as a bias
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term to account for systematic model error. Ling et al. [2014] provides a good guideline

for selecting an appropriate prior form for the model discrepancy. This approach was

used in many engineering applications, such as Bayesian calibration of urban drainage

model Nagel et al. [2020] and heat transfer models for fire insulation panels [Wagner

et al., 2020].

According to the discussion above, a measurement point yi ∈ Y is a realization of

a multivariate Gaussian (normal) distribution N (yi | M(θ),Σ), which is centered at

M(θ) and have a covariance matrix Σ [Prince, 2012]. Assuming that a measured data

set of Y = (y1, · · · , yN)T with the independent realization is available, the probability

of observing the data can be defined by the likelihood function as the following:

p(Y | θ) :=
N∏
i=1

N (yi | M(θ),Σ)

=
1√

(2π)N detΣ
exp

(
−1

2
(M(θ)− Y)TΣ−1(M(θ)− Y)

)
.

(2.6)

Posterior distribution By combining the prior and the likelihood in Equation (2.6),

the posterior distribution in Equation (2.4) can be computed by

P (θ | Y) = 1

P (Y)P (θ) ·
N∏
i=1

N (yi | M(θ),Σ). (2.7)

After conditioning on the observed data, the posterior distribution summarizes the

inferred information regarding the hyper-parameters θ. However, the practical com-

putation of the posterior distribution P (θ | Y) is not trivial. Analytical expressions

exist only for particular choices of the prior distribution P (θ). One approach for more

involved cases is to use sampling methods, such as Monte Carlo or Markov Chain

Monte Carlo, to approximate the posterior distribution. The posterior distribution

approximation is a task of inference and will be detailed in Section 2.1.3.

Marginal likelihood The denominator in Equation (2.4), P (Y), is a normalization

factor, which ensures that the posterior probability sums up to one. It is also known as

Bayesian model evidence (BME), or prior predictive since it quantifies the likelihood
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of the observed data based on the prior distribution of the parameters. It can take the

following form:

P (Y) =
∫
Θ

p(Y | θ)P (θ)dθ. (2.8)

The marginal likelihood is not analytically tractable and must be approximated via

numerical methods. Numerous methods have been proposed in the literature, such as

the Laplace approximation, harmonic mean estimator, annealed importance sampling,

nested sampling, path sampling, bridge sampling, parallel tempering with thermody-

namic integration, and reversible jump MCMC. For comprehensive studies about differ-

ent methods for the marginal likelihood approximation, see Han and Carlin [2000], Chen

et al. [2012], Robert and Wraith [2009], Marin and Robert [2009], Friel and Wyse [2012].

This study employs the most straightforward method for estimating marginal likeli-

hood, which is the naive Monte Carlo method [Hammersley, 2013, Raftery and Ban-

field, 1991]. This method relies on the idea that the marginal likelihood can be written

as an expected value with respect to the prior distribution, i.e., P (Y) = EP (θ) [p(Y | θ)].
This expected value can be approximated by evaluating the likelihood in (2.6) for NMC

samples, drawn from the prior, P (θ) and averaging the resulting likelihoods. This

procedure yields a naive Monte Carlo estimator P̂ (Y), which reads

P̂ (Y) = 1

NMC

N∑
i=1

p
(
Y | θ̃i

)
, θ̃i ∼ p(θ). (2.9)

Predictive distributions One advantage of using the Bayesian inference in the task

of model validation is that the uncertainty on hyper-paramters θ can be incorporated

into prior and posterior evaluations of quantities of interest y by so-called predictive

distributions. The following expression gives the prior predictive distribution:

P ′
pred(y) :=

∫
Θ

p(y | θ)P (θ)dθ, (2.10)

which is the average of the conditional distribution of the prior distribution over the

prior distribution P (θ). Similarly, the posterior predictive distribution P ′′
pred(y | Y)

can be computed by averaging the conditional distribution P (y | θ) over the posterior
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parameter distribution P (θ | Y), defined in Equation (2.4). It reads

P ′′
pred(y) :=

∫
Θ

p(y | θ)P (θ | Y)dθ =
1

P (Y)

∫
Θ

p(y | θ)p(Y | θ)P (θ)dθ. (2.11)

2.1.3 Bayesian inference

The posterior distribution P (θ | Y) in Equation (2.4) provides a summary of inferred

information concerning the uncertain parameters after updating the prior knowledge

in light of the observed data. Its practical computation, however, is a non-trivial

task. There exist only ad-hoc solutions for particular choices of prior and likelihood

distributions. However, for more involved cases, the posterior distribution can only

be numerically approximated using Monte Carlo sampling methods. In what follows,

two methods for approximating the posterior distribution P (θ | Y) are introduced:

rejection sampling and Markov Chain Monte Carlo. Both methods relate to the general

field of Monte Carlo techniques and use a proxy distribution to approximate the target

posterior distribution.

Rejection sampling

The rejection sampling algorithm draws samples from difficult-to-approximate distri-

butions by using a proxy distribution. This method is also known as the acceptance-

rejection or accept-reject method. Using this method, sampling values θ from a target

distribution with an arbitrary probability density function f(θ) are generated via a

proposal distribution θ(∗) with a probability density g(θ(∗)). The idea behind rejection

sampling is that one can generate a sample value θ(∗) from g instead of sampling from

f and accept the sample with probability f(θ)/(Mg(θ)), repeating the draws from

g(θ(∗)) until a value is accepted. M is a constant, finite bound on the likelihood ratio

f(θ)/g(θ), satisfying 1 < M <∞ over the support of θ; in other words, M must meet

f(θ) ≤ Mg(θ) for all values of θ. This can be the maximum of p(θ | Y). It is worth

mentioning that this requires that the support of θ(∗) must include the support of θ—in

other words, g(θ) > 0 whenever f(θ) > 0.

Suppose that g(θ) is a positive function for all θ for which p(θ | Y) > 0. The following

steps should be taken:
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1. Draw sample θ(∗) randomly from the probability proportional to g(θ).

2. Draw sample u from U(0, 1), and

3. Check whether p(θ(∗) | Y)/(M · g(θ(∗))) ≤ u.

• If holds, accept θ(∗) as a sample drawn from p(θ | Y),

• if not, reject the value of θ(∗) and return to step 1.

The accepted samples θ correspond to drawn samples from p(θ | Y).

Despite a simple algorithm, the rejection sampling method has some challenges and

drawbacks. As per of challenges, the selection of the appropriate proposal function g(θ)

and finding its scaling constantM are not trivial. Rejection sampling can lead to many

unwanted samples being taken if the function being sampled is highly concentrated in a

particular region, for example, a function with a spike at some location [Gilks and Wild,

1992]. Generally, this method is inefficient especially in higher dimensions, because

most samples are rejected for high-dimensional complex distribution [Law, 2019].

MCMC: Markov Chain Monte Carlo sampling

As indicated earlier, there is no closed-form solution for the posterior distribution for

any prior and likelihood distribution choices. Therefore, Monte Carlo methods are

commonly used to approximate the posterior distribution P (θ | Y) in Equation (2.4).

One common technique for performing such inference tasks is to employ the MCMC

methods [Robert et al., 1999, Liu and Liu, 2001]. These methods were first proposed

by Metropolis et al. [1953] and extended by Hastings [1970], but their impact in the

field of Statistics was not felt until much later. Gelfand and Smith [1990], however,

underscored that it was possible to produce a Markov chain with a specified stationary

distribution f .

The main goal of MCMC methods is to draw samples θ from the posterior probability

density P (θ | Y) by generating a random walk in the parameter space. Note that

MCMC, similar to rejection sampling, uses a proxy distribution to approximate the

target posterior distribution. Moreover, there is no need to compute the normalization
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factor P (Y) once the goal is to perform a parameter inference. Therefore, the non-

normalized posterior probabilities can be computed by

P (θ | Y) ∝ p(Y | θ)P (θ). (2.12)

MCMC constructs a Markov chain {θ(1),θ(2), · · · } in the parameter space Θ with an

invariant distribution that is equivalent to the target posterior distribution. Markov

chains can be defined by their transition probability κ(θ(k+1) | θ(k)) from the step θ(k)

of the chain at iteration k to the step θ(k+1) at the subsequent iteration k+1. Moreover,

the so-called detailed balance condition for a Markov chain reads

p(θ(k) | Y)κ(θ(k+1) | θ(k)) = p(θ(k+1) | Y)κ(θ(k) | θ(k+1)), (2.13)

which ensures the reversibility of the Markov chains and states that the probability

of being at θ(k) and moving to θ(k+1) is equal to the probability of being at θ(k+1)

and moving to θ(k). If the specified transition probability meets the detailed balance

condition, the posterior is believed to be the invariant distribution of the Markov chains.

By integrating the condition in (2.13) over dθ(k) which reads

p(θ(k+1) | Y) =
∫
Θ

p(θ(k) | Y)κ(θ(k+1) | θ(k))dθ(k), (2.14)

one can show that the transition distribution of the Markov chain at its equilibrium

state is equal to the posterior distribution. One needs to record states from the chains

to obtain samples of the desired posterior distribution.

A Metropolis-Hasting algorithm (MH) [Metropolis et al., 1953, Hastings, 1970] is one

method of the Monte Carlo class that ensures that the state of the detailed balance

condition in (2.13) is met. By generating a sequence of sample values, the algorithm

will create a distribution of values that approaches the desired distribution as more

and more samples are produced. The algorithm selects a candidate for the next sample

value at each iteration based on the current sample value, forming a Markov chain.

The candidate is then either accepted with some probability or rejected. In the former

case, the candidate value is used in the next iteration, and in the latter, the candidate

sample is excluded, and the current value is reused in the next iteration. To calculate
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the probability of acceptance, the current and candidate sample values of the proposal

function are compared with respect to the desired posterior distribution.

Let us assume that a chain is initialized at a particular seed point θ(0), which belongs

to the parameter space Θ. Then, we can draw a candidate point θ(⋆) from a proposal

distribution p(θ(⋆) | θ(k)) at the iteration k from the current point θ(k). In practice,

to accept or reject the candidate θ(⋆), we first select a random value u from a uniform

distribution u ∼ U(0, 1). Then, we compare u with the ratio α, which reads

α
(
θ(⋆) | θ(k)

)
= min

{
1,
p(θ(⋆) | Y) p(θ(k) | θ(⋆))

p(θ(k) | Y) p(θ(⋆) | θ(k))

}
. (2.15)

The candidate θ(⋆) is accepted with the probability α, if α ≥ u. Otherwise, θ(⋆) is

rejected and the proposal at the iteration k+1 is set to the current point (θ(k+1) = θ(k)).

In Equation (2.15), the proposal distribution is denoted by p(θ(⋆) | θ(k)). A commonly

used proposal distribution is the Gaussian distribution p(θ | θ(k)) = N (θ | θ(k),Σp).

This proposal is symmetric and centered at the value of the current iteration, θ(k)

with a covariance matrix Σp. Using a symmetric proposal distribution, a candidate

is accepted if p(θ(⋆) | Y) ≥ p(θ(k) | Y), that means that the candidate more likely

belongs to the posterior distribution than the current candidate θ(k). However, if

p(θ(⋆) | Y) < p(θ(k) | Y), the proposed candidate is accepted only with the probability

α = p(θ(⋆) | Y)/p(θ(⋆) | θ(k)).

Wagner et al. [2021] argue that Metropolis-Hastings algorithms have a practical weak-

ness in that they require a proposal distribution p(θ(⋆) | θ(k)). In principle, this distribu-

tion has to resemble that of the posterior distribution. However, in most applications,

the posterior shape is seldom known a priori. Additionally, a poorly chosen proposal

distribution significantly deteriorates the MCMC algorithm’s performance, resulting

in the algorithm failing since no new candidates are accepted. This phenomenon is

typically more prominent in high dimensions with strongly correlated posterior distri-

butions. Haario et al. [2001] propose an extension of MH, known as adaptive Metropolis

algorithm (AM), in which the Gaussian proposal distribution of MH is adapted during

sampling based on the previously generated samples. The MH and AM follow a random

walk concept in finding proposals. Duane et al. [1987] introduce Hamiltonian Monte

Carlo algorithms (HMC) that exploits the gradient of the posterior distribution using

Hamiltonian dynamics to construct a Markov chain. For more details, see Neal et al.
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[2011], Nagel and Sudret [2016].

MCMC algorithms often do not perform well when the target distribution (i.e., posterior

distribution) exhibits a strong correlation between the parameters. A considerable

amount of tuning is typically needed to improve the performance of these algorithms. To

alleviate this problem, Goodman and Weare [2010] present the affine invariant ensemble

sampler (AIES). As opposed to the classical MCMC algorithms, AIES can draw samples

from both types of distributions with or without correlation without explicitly requiring

the affine transformation of the target distribution [Wagner et al., 2021].

The AIES algorithm runs an ensemble of L Markov chains, also known as walkers{
θ1,θ2, · · · ,θL

}
. The current location of the points θ

(k)
i is updated by random selection

of a conjugate walker θ
(k)
j from the walker sets, excluding the current i-th walker (i ̸= j).

A so-called stretch move can be used to generate proposed samples that ensure the affine

invariant property of the algorithm. The candidate is proposed by

θ
(⋆)
i = θ

(k)
i + Z

(
θ
(k̃)
j − θ

(k)
i

)
, (2.16)

where k̃ = k+1 if j < i and k̃ = k, otherwise. Z is randomly drawn from the probability

distribution function p(z | a) which reads

p(z | a) =


1√

2
(
2
√
a− 2√

a

) if z ∈ [1/a, a]

0 otherwise,
(2.17)

where a is the tuning parameter, which is greater than one.

For the i-th walker in the ensemble, the candidate point θ
(⋆)
i is accepted with the

following probability as the new location

α
(
θ
(⋆)
i ,θ

(k)
i , z

)
= min

1, zM−1
p
(
θ
(⋆)
i | Y

)
p
(
θ
(k)
i | Y

)
 . (2.18)

Similar to other MCMC algorithms, α is then compared with a randomly drawn value

u ∼ U(0, 1). This procedure will be repeated for all L walkers in the ensemble. As

opposed to MCMC algorithms, AIES has only one scalar tuning parameter a, whose

value can be set to 2, suggested by Goodman and Weare [2010], Allison and Dunkley
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[2013] and Wicaksono [2018]. In this dissertation, we use the Python implementation

of AIES, emcee [Foreman-Mackey et al., 2019].

One of the significant challenges for MCMC users is determining when the convergence

is reached, i.e., when it is safe to terminate sampling and use the samples to estimate

the characteristics of the poster distribution. Most MCMC users address this problem

by performing convergence diagnostics. Cowles and Carlin [1996] provide an exhaustive

review of thirteen convergence monitoring strategies for convergence diagnostics. They

recommend that a combination of tools can be beneficial for evaluating the performance

and convergence of the MCMC sampler. The proposed framework benefits from two

convergence methods: Robin & Gelman method and integrated autocorrelation time,

whose definitions can be found in Appendix A.

2.2 Validation workflow

This section introduces the workflow of the Bayesian validation framework. This work-

flow aims to simplify the framework implementation for an easy-to-follow validation

task. In the very first step, the goal of validation needs to be clearly defined by deter-

mining the essential physical phenomena to be investigated. Then, models are designed

to describe these physical phenomena and expose the parameters in these models for

the task of uncertainty quantification. In addition to the parameters, the SRQ must be

selected for the study. These are the quantities based on which the model simulations

and the observed reality in the form of a controlled experiment are compared to.

Once all parameters and SRQs are available, the next step involves constructing the

parameter probability density functions (PDFs). The parameter PDFs are usually con-

structed based on expert opinion. This opinion is based on the experience of someone

knowledgeable about the field. Most often, they provide a uniform parameter distri-

bution with estimates of the lower and the upper bounds. Since running simulations

using these parameters influence curve fits to experimental data, this approach is highly

error-prone unless the expert has detailed knowledge of the experiment. To avoid this

subjective judgment in the validation of models, Jiang et al. [2019] argue that Bayesian

validation methods must be fully integrated with the model parameter calibration to

yield more accurate prediction results in light of both data and modeling uncertainties.
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For the task of parameter calibration in light of uncertainties, Bayesian calibration

can be employed to complement the very subjective approach, such as expert opinion,

with a precise and mathematically sound approach like Bayesian calibration, outlined

in Section 2.1.3. It is thus easier to defend the parameter distribution since it and all

implied uncertainties are precisely defined, and this is a process that a quantification

analyst can repeat. This step yields a so-called posterior parameter distribution, which

is an updated belief on the parameter distribution after comparing with data.

The posterior parameter distribution is then used as the parameter distribution for the

validation phase. In validation, the statistical hypothesis testing method can be used

to investigate the validity of a computational model in light of data obtained from an

experiment or a detailed reference model. This data must be different from what has

been used already in the Bayesian inference step. In a multi-model setting, where more

than one model is available to simulate SRQs, one can additionally analyze the models

via a Bayesian multi-model comparison. The benefit of this comparison is twofold. The

models are compared to each other based on their predictive abilities in reproducing

the reference. Moreover, the models can also be compared to each other, revealing their

similarities.

The rest of this section is structured as follows: first, a description of Bayesian hypoth-

esis testing is presented. This section will be followed by a description of the Bayesian

multi-model comparison.

2.2.1 Bayesian hypothesis testing

As mentioned in Section 1.2.2, statistical hypothesis testing is commonly used to per-

form uncertainty-aware validation of computational models. Two types of hypothesis

testing methods, namely classical and Bayesian methods, can be employed to develop

model validation metrics. Berger and Sellke [1987], Edwards et al. [1963] and Leamer

[1978] argue that the results of the classical hypothesis testing are hard to interpret and

often misleading. Alternatively, the Bayesian approach to hypothesis testing incorpo-

rates assumptions on the prior distribution under the alternative hypothesis [Jeffreys,

1961]. Therefore, we will use BHT in the proposed validation framework.
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The key component in BHT is the Bayes factor. It can be used to compare the per-

formance of two candidate models or to compare many models in pairs based on their

ability to reproduce the observed data. The review paper of Kass and Raftery [1995]

provides an extensive description in the context of practical applications. The authors

define the Bayes factor as the ratio of BME for two alternative models.

The posterior probability P (M | Y) of model M given data Y , is given by Bayes’

theorem as

P (M | Y) = P (Y | M)P (M)

P (Y) , (2.19)

where P (M) is the prior model weight and P (Y | M) denotes the probability that

some data is generated by the modelM and can be computed by BME.

LetMk andMl be two models under investigation, parameterized by model parameter

vectors θk and θl. Also, we denote their prior probabilities to be accepted with P (Mk)

and P (Ml), respectively. In a model comparison problem, we aim to compare two

models based on their ability to reproduce the observed data Y . The relative posterior
probabilities of two hypotheses when an observation is made can be cast as:

P (Mk | Y)
P (Ml | Y)

=

[
P (Y | Mk)

P (Y | Ml)

] [
P (Mk)

P (Ml)

]
. (2.20)

The first set of square brackets on the right-hand side is data dependent and is called

the Bayes factor (BF), also known as (weighted) likelihood ratio of Mk to Ml. By

rearranging Equation (2.20) and the Bayes factor reads:

BF(Mk,Ml) =

[
P (Mk | Y)
P (Ml | Y)

] [
P (Ml)

P (Mk)

]
=
P (Y |Mk)

P (Y |Ml)
. (2.21)

The Bayes factor, BF(Mk,Ml), can be regarded as a measure of significance in BHT

and can be interpreted as the ratio between the posterior and prior odds of model Mk

being the more plausible one compared to the alternative modelMl. In other words,

one can say data is to favor Mk over Ml. It quantifies the evidence (literally, as in

Bayesian model evidence) of the hypothesisMk against the null hypothesisMl.

Jeffreys provided a rule of thumb in his book, Theory of probability [Jeffreys, 1961] for

the interpretation of the Bayes factor for model acceptance on log10-scale in units of

1/2. According to him, log10BF > 1/2 expresses ”substantial” evidence in favor ofMk
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over Ml. A ”strong” evidence can be represented by log10BF > 1 and log10BF > 2

shows a ”decisive” evidence. Note that one has increasing confidence in the hypothesis

Mk over its counterpart Ml, as the Bayes factor increases. Kass and Raftery [1995]

proposed widely used alternative grades of evidence that are summarized in Table 2.1.

Table 2.1: Interpretation of Bayes Factor according to Jeffreys [1961]

BF Interpretation

1 - 3 anecdotal evidence
3 - 10 substantial evidence
10 - 100 strong evidence
> 100 decisive evidence

Following this suggestion, a Bayes factor which lies between 1 and 3 indicates ”anec-

dotal” evidence in favor ofMk that is ”not worth more than a bare mention”, a factor

of up to 10 represents ”substantial” evidence, and a factor between 10 and 100 can be

regarded ”strong” evidence. Finally, a Bayes factor greater than 100 admits ”decisive”

evidence, i.e., it can be used as a threshold to reject models based on poor performance

in comparison to the best performing model in the set.

2.2.2 Bayesian multi-Model comparison

In a multi-model setting, the individual models are compared against each other. The

benefits of this comparison are twofold. First, this evaluates their strengths and weak-

nesses. Second, their predictive ability is assessed. The model comparison can be

performed with the help of model weights. These weights are determined according to

the predictive capability of the models and often a penalty for complexity, thus favoring

models with greater robustness [Schöniger, 2016].

Various strategies have been suggested in the literature to compare alternative compu-

tational models with possibly distinct conceptual models. The most prominent example

is BMS or BMA proposed by Draper [1995] and Hoeting et al. [1999]. BMS is a formal

statistical approach that allows for comparing alternative conceptual models, testing

their adequacy, combining their predictions into a more robust output estimate, and

quantifying the contribution of conceptual uncertainty to the overall prediction un-

certainty. The BMS method is grounded on Bayes’ theorem, which, as mentioned
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earlier, combines a prior belief about the efficacy of each model with its performance

in replicating a common measurement data set. It returns model weights representing

posterior probabilities for each model to be the most appropriate from the set of pro-

posed competing models. Additionally, the computed weights can provide a ranking

and a quantitative comparison of the competing models.

BMS closely follows the principle of parsimony or Occam’s razor [Angluin and Smith,

1983], in that, the posterior model weights offer a compromise between model complex-

ity and goodness of fit, also known as the bias-variance trade-off [Geman et al., 1992].

That means, if competing models make equally likely predictions, a less complex model

is given more weight.

Bayesian Model Selection

Let us consider that Nm plausible, competing modelsMk are available. The posterior

predictive distribution of a quantity of interest θ in Equation (2.11) given the vector

of observed data Y can be expressed as:

P ′′
pred(θ | Y) :=

Nm∑
k=1

p(θ | Y ,Mk)P (Mk | Y), (2.22)

with P (Mk | Y) being discrete posterior model probabilities or weights, which describe

the plausibility of the modelMk to be the data-generating model after observing the

data. The weights can be interpreted as the Bayesian probability of the individual

models to be the best representation of the system from the pool of competing models.

The model weights (posterior probabilities of models) are given by Bayes’ theorem,

which can be recast for a set of Nm competing modelsMk as:

P (Mk | Y) =
p(Y | Mk)P (Mk)∑Nm

i=1 p(Y | Mi)P (Mi)
, (2.23)

where P (Mk) denotes the prior probability, also known as the subjective model cred-

ibility that model Mk could be the most plausible model in the set of models before

any comparison with observed data have been made. Hoeting et al. [1999] proposed

that a ”reasonable, neutral choice” could be equally likely priors, i.e., P (Mk) = 1/Nm,

in case of paucity of prior knowledge regarding the merit of the different models under
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study. However, one may decide to assign lower prior probabilities to models with many

parameters than to models with few parameters [Wilson et al., 2010, Consonni et al.,

2018].

The denominator in Equation (2.23) is the normalizing constant of the posterior dis-

tribution of the models and can simply be obtained by determination of the individual

weights. It ensures that the posterior model weights sum up to one. In Equation

(2.23), the term p(Y | Mk) represents BME, as introduced in Section 2.1.2. The BME

of modelMk can be estimated by integration over the full parameter space Θk, which

is known as Bayesian integral by Kass and Raftery [1995], and takes the following form:

p(Y | Mk) =

∫
Θk

p(Y | Mk,θk)P (θk | Mk)dθk, (2.24)

with θk being the parameter vector of model Mk with the dimension of Np,k. Θk

denotes the parameter space of modelMk, and P (θk | Mk) is the corresponding prior

distribution. In Equation (2.24), the likelihood or probability of the parameter set θk of

modelMk to have generated the measurement data set is represented by p(Y | Mk, θk).

For more information about the computation of this term, see Section 2.1.2. For more

details on the properties of BME and a comparison of available techniques to evaluate

this term, the reader is referred to Schöniger et al. [2014].

BMS does not necessarily involve identifying the true model, but rather identifying the

model that one should have the strongest belief in, given the assumptions made [Hinne

et al., 2020]. This belief is conditioned on the data as well as the collection of models

considered. For a more in-depth discussion of this issue, see Gronau and Wagenmakers

[2019a,b]. A practical limitation of BMS is that the approach requires the specification

of prior distributions on the parameters of each model and the models’ distribution.

Identifying appropriate prior distributions is not always straightforward, and even uni-

form or vague priors may substantially influence the outcome. See Wagenmakers et al.

[2018] for more discussion on this topic. As for models’ prior parameters, we seek to

use the posterior of the Bayesian calibration as the prior for BMS in the validation.
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Model Justifiability Analysis

Compared to other multi-model approaches, BMS follows the principle of parsimony

(Occam’s razor). This leads to an optimal trade-off between goodness-of-fit in light

of limited data during calibration, and it helps identify the robustness of future pre-

dictions. In the unlikely event that the ”true” model is in the chosen set of models

(which is never the case), then BMS will tend to prefer simpler models over the true

model up to a certain point where the available data cannot justify the true complex-

ity. In contrast, if there are infinite data points, BMS will detect the true model with

absolute certainty, no matter how simple or complex it may be. This behavior is an

essential characteristic of model selection frameworks, but many other model ranking

techniques, especially those with the information criteria, such as AIC or BIC, cannot

guarantee it [Burnham and Anderson, 2004, Schöniger, 2016].

To investigate this trade-off, Schöniger et al. [2015a] introduced a so-called justifiability

analysis. This analysis aims at addressing the question how much data are needed to

reasonably calibrate a highly complex model, or which level of complexity is justified

given the available data? In this framework, one tests the modeling alternatives against

each other, and tries to address the following question: How would the models be

ranked given that one of them is actually the data generating model? In BMA terms,

this is referred to as a justifiability analysis because it evaluates whether the level of

complexity can be justified by the amount and type of data available. To identify

the most efficient measurement design, one can run the proposed analysis before the

actual data collection. Schöniger et al. [2015a] demonstrate this analysis in a case

of model selection between groundwater models with different complexity. Schäfer

Rodrigues Silva et al. [2020] used this method in determining how similar the simplified

reactive transport models are to a reference model.

The Concept of model justifiability Assume that a set of models exists with different

levels of complexity. Each of the models is used to generate a number of synthetic data

sets, i.e., samples from the predictive distribution of a model are now used as data sets.

Then, one needs to perform a standard BMS analysis to obtain the model weights.

These weights are averaged over all generated synthetic data set that were generated

from a specific model. As a result, this procedure yields as many sets of model weights



2.2 Validation workflow 39

as the number of compared models. These averaged weights can then be reported in a

form of a so-called confusion matrix.

Using the model confusion matrix, we can determine the maximum complexity that

might be justified based on the experimental setup. If a given model receives the

highest model weight in the set when it generates data, the complexity of the model

is considered to be justified. Having a model weight near one means that the model’s

complexity is perfectly justified. On the other hand, the almost equal weights of all

variants suggest each model’s justifiability is highly uncertain. The degree of complexity

that is most justifiable is the complexity of the most complicated model within the set.

According to Schöniger [2016], a model justifiability analysis based on a model confusion

matrix reveals the degrees of similarity between the alternative models. This insight is of

importance in a multi-model setting and helps a modeler to reconsider a specific choice

of prior model weights for models that some degree of similarity has been detected.

Moreover, the confusion matrix makes the interpretation of the posterior model weights

resulting from a conventional BMA/BMS easier. Using the latter, interpreting similar

weights of two or more models is typically difficult. One conclusion is that the models

are actually fairly similar in their predictions, while the similar model weights may just

result from a similar overall goodness-of-fit. One can investigate the former case further

via a model justifiability analysis and the resulting confusion matrix.

Practical implementation To compute the confusion matrix, one needs to compute

the Bayesian model weights for all models in the set, adopting Equation (2.23). How-

ever, in the justifiability analysis, each competing model generates a finite series of

prior predictions that serve as realizations of the ”synthetic truth” instead of the mea-

surement data Y . These prior predictions are obtained by running models for NMC

samples drawn from the prior parameter distributions. Then, each synthetic data set

is compared to the competing models by first computing the likelihood function as

described in Equation (2.6), for example, for a single realization i of modelMk using

the j-th data set of the model Ml. The marginal likelihood (or BME) of the model

Mk given the i-th realization of the model Ml can be obtained by calculating the

arithmetic average of all likelihoods p(Ml,j | Mk).

Figure 2.1 shows a schematic illustration of constructing a confusion matrix for two

competing modelsMk andMl. The green cell in this figure represents the likelihood
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Figure 2.1: A schematic illustration of constructing the model confusion matrix

of a single realization of model Mk given a single realization of the reference model

Ml. The cell marked in orange shows the BME (averaged likelihood) of the model

Mk given a single realization of the reference model Ml. This BME value is then

normalized by the sum of the BME values of all models given a single realization of the

synthetic truth, shown in red, resulting in posterior model weights over all synthetic

data of the reference modelMk. In the last step, the values in each box, marked with

bold borders, will provide the expected posterior weight (Wpost) of all models given

that modelMk is true. This expected value can be written as

Wpost
l|k =

1

NMC

NMC∑
j=1

p (Ml | Mk,j)

=
1

N2
MC

NMC∑
j=1

NMC∑
i=1

p (Ml,i | Mk,j) .

(2.25)

Interpretation of model justifiability results Figure 2.2a presents a didactic example

of a model confusion matrix using the whole data set. The main diagonal entries reflect

how well each model identifies itself as the data-generating process, given a specific
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data set size. The values of the diagonal entries tend to be 1.00 using a data set with

infinite size. However, for finite data sets, models might ”confuse” their own predictions

(misclassification) with that of the competing models. The off-diagonal entries of the

model confusion matrix indicate the similarity between pairs of models. This finding

can be helpful when comparing possible simplifications to a detailed reference model.

A model confusion matrix helps to identify the model that provides the most identical

results to the reference model at reduced computational cost [Schäfer Rodrigues Silva

et al., 2020].

The schematic illustration in Figure 2.2b shows the model weights for the data-generating

model as a function of the data set size and the complexity. The curves in the figure are

based on the diagonal entries of the confusion matrix for increasing data set size. The
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Figure 2.2: An example of a model justifiability analysis for a set of four models (adapted
from Schöniger et al. [2015a]).

simplest model (M1) obtains a significantly higher weight than the competing models

when it generated the data. This model weight reaches its maximum 100%, when all

data are considered. This observation indicates that its complexity is perfectly sup-

ported by the largest data set. Following the same argumentation, the slightly more

complex modelM2 is also justified in all configurations, but with less confidence than

the simpler modelM1.

ModelM3 can hardly be self-identified when using few observations. This means that

either the complexity of this model is not justified given all the observations, and/or the

models make very similar predictions such that they cannot be discriminated. When
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including more data, the interpolated model can be self-identified and justified with

increasing confidence. However, it never reaches a model weight of more than 50%,

which means that there is never an “absolute majority” in favor of justifiability for this

model.

The most complex model (M4) cannot be justified with these measurement configura-

tions. Including more test data yields a clearer decision as indicated by the increasing

deviation of the posterior model weights from the prior weights. However, this decision

is in favor of the less complex, but similarly structured modelM3, and not in favor of

the modelM4, even though it is now the one that in fact generated the data. Therefore,

one can conclude that using all data points does not yet suffice to justify this model’s

high level of complexity and a drastically larger data set would be required to justify

this model.

The justifiability method introduced above suggests which level of complexity could be

derived from the chosen experimental setup. It does not aim at providing a ranking

based on model adequacy. The combination of the latter with the justifiability analysis

can be of great help in the task of model comparison.

Theoretical Upper Limit for Model Performance

Bayes Factor, in the context of Bayesian hypothesis testing, provides a performance

comparison of pairwise competing models. However, in a validation benchmark task, we

are also interested in comparing their performance to the best achievable performance.

Schöniger et al. [2015b] argue that this theoretical upper limit for model performance

exists when the measurement data set has noise. They propose that this limit can be

established via determining a distribution of BME for a so-called theoretically optimal

model (TOM), which is also dubbed as a sure-thing hypothesis by Jaynes [2003]. They

define the observed data set as TOM, as it gives an exact fit with zero bias while

having a minimum number of parameters, i.e., precisely zero, which is equivalent to zero

variance. Stated differently, the TOM indicates the expected best possible performance

in the presence of measurement error.

This theoretically optimal distribution of BME can be defined as the distribution of

likelihoods of the observed data set given the perturbed data sets. Assuming that
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measurement errors follow a Gaussian distribution and are independent and identi-

cally distributed, the TOM performance (shown as log-BME) has a distribution of

the weighted sum of normal squared residuals. Consequently, this distribution can be

defined by the chi-square distribution [Hald, 1998] as:

χ2(x) =
1

2(k/2)Γ(k/2)
xk/2−1 exp (−x/2), (2.26)

with k being the number of degrees of freedom, which is equal to the size of the observed

data setN . The upper limit of performance as represented by the TOM does not depend

on the actual level of measurement error variance because the chi-square distribution is

only a function of the data set size. Following Schöniger et al. [2015b], I do not include

the TOM in the actual model ranking in this dissertation but use it only as an upper

limit to the BME scale.

2.3 Two-stage surrogate-based Bayesian multi-model

comparison

In this dissertation, the proposed framework includes a two-stage multi-model compar-

ison based on the Bayesian perspective as suggested by Schöniger et al. [2015a]. First,

a standard BHT and/or BMS is performed to rank the models based on the actually

observed experimental data. This step is followed by a justifiability analysis in a syn-

thetic setup, where model-generated data is used instead of the actual observed data

from the experiment. The proposed two-step procedure separates model adequacy from

model justifiability. The first stage suggests how the models are ranked in light of the

actual experimental results, while the second stage helps to decide whether the most

appropriate model from the conventional BMS analysis is really the best model in the

model set or whether this model is only optimal given the limited amount of available

measurement data for the chosen experimental setup. Additionally, the justifiability

analysis provides insights about similarities among the tested models [Schöniger et al.,

2015a].

To execute the two-stage Bayesian multi-model comparison explained above, one can

add the measurement data to the model set under investigation. That means we add
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the measurement data as a new row and column to the confusion matrix in Figure

2.1. This modification is shown in Figure 2.3. The cells marked in blue in this figure

Figure 2.3: A schematic illustration of constructing the model confusion matrix for two-stage
model comparison

represent a standard BMS procedure (Section 2.2.2) where the model Mk has been

tested against the measurement data. These values can be computed by Equation (2.24)

approximated via Monte Carlo integration techniques. The resulting extended model

confusion matrix consists only of these entries, i.e., the bold boxes, and therefore has

the size (Nm+1)× (Nm+1) for a set with Nm competing models and the measurement

data.

The process described so far requires repetitive evaluations of the computational mod-

els. For computationally expensive models, e.g., those with run times in the order

of minutes or hours, the Bayesian multi-model comparison becomes exceptionally in-

tractable. One option to circumvent this challenge is to replace the original com-

putational models with an easy-to-evaluate surrogate or proxy. The benefit of this

substitution is two folds. On one hand, the overall required time for performing the

model validation and comparison will drastically decrease. On the other hand, one
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can take advantage of the surrogate model properties to scrutinize models further via

sensitivity analysis, uncertainty quantification, and model calibration.

Surrogate models are, however, only approximations of full-complexity models. Conse-

quently, any conclusions derived from BME values based on surrogates are only valid

to the extent we are confident in the accuracy of the approximation. There are two

possibilities to consider this potential inaccuracy in calculating the marginal likeli-

hoods (BME), which is the basis for the model comparisons. First, one can estimate

a surrogate-approximation error by comparing the prediction of the original and the

surrogate models using a validation (test) set. This set must be different from the

training set. A root-mean-square error can be used as a metric of approximation error.

This value then can be included in the variance matrix Σ in Equation (2.6).

Nevertheless, it is not always feasible to perform so many simulations to split them

into training and test sets. A notable example is when working with computationally

demanding models. In these cases, care must be taken when interpreting model rank-

ing/comparison results based on Bayesian model evidence for surrogate models. Using

BME, a model may have been penalized for showing a low approximation quality; hence

ranking a model via reduced models might be considered a conservative estimate of the

accuracy of the full-complexity models. However, the opposite may also happen: the

surrogate model might match the observed data better than the full-complexity model,

just by chance. This would result in an overestimation of the evidence for the model.

Therefore, the model ranking could be different for surrogate models than for full-

complexity models, leading to wrong conclusions and possibly incorrect management

decisions. Mohammadi et al. [2018] propose accounting for approximation errors explic-

itly by introducing a correction factor into model ranking to prevent such misleading

results. The goal is to achieve model ranking results for full-complexity models using

their surrogates that are more representative of the desired results. In what follows,

the derivation of such a correction factor is presented.

As discussed earlier, the models are compared against the realizations of their counter-

parts in a justifiability analysis in the context of the Bayesian multi-model comparison.

For computationally expensive models, the analysis must be performed using the sur-

rogates for both the model under investigation and the reference model. BME values

based on comparing surrogates against surrogates might also yield misleading com-

parison results. Therefore, the rest of this section is dedicated to derivation of a new
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correction factor for a justifiability analysis. This extension is one contribution of this

work to this research field.

2.3.1 Corrected BME for surrogate-based BMS

A robust surrogate-assisted Bayesian model selection requires corrected BME values.

Let M̃k be the surrogate representation of the full-complexity model Mk with an

approximation error Ek so that M̃k =Mk+Ek. Employing this property of additivity,

Equation (2.24) can be reformulated as

p(Y | Mk) =

∫
Θk

p(Y | M̃k + Ek,θk)P (θk | Mk)dθk. (2.27)

Assuming that the approximation errors are independent of the measurement errors

in the definition of the likelihood function in Equation (2.6), Equation (2.27) can be

rewritten as

p(Y | Mk) =

∫
Θk

p(Y | M̃k,θk)p(Mk | M̃k,θk)P (θk | Mk)dθk, (2.28)

where p(Y | M̃k,θk) denotes the likelihood of the predictions generated by the orig-

inal computational model Yk given the approximate predictions Ỹk generated by its

surrogate. This term can be computed by

p(Y | M̃k,θk) =
1√

(2π)N detS
exp

(
−1

2
(Yk(θ)− Ỹk(θ))TS−1(Yk(θk)− Ỹk(θk))

)
,

(2.29)

where Yk(θk) is the simulation output generated by the computational model for the

parameter set θk. Ỹk(θk) is the corresponding surrogate approximation and S stands

for the covariance matrix of approximation errors, which reflects the uncertainty in the

approximation.

By multiplying and dividing the right-hand side of Equation (2.28) by the BME value

of the surrogate model p(Y | M̃k), we have

p(Y | Mk) = p(Y | M̃k)

∫
Θk

p(Mk | M̃k,θk)
p(Y | M̃k,θk)P (θk | Mk)

p(Y | M̃k)
dθk, (2.30)
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Using the Bayes theorem in Equation (2.4) and knowing that the parameter priors of

the original and its surrogate model are equal, the BME of the computational model

can be recast as

p(Y | Mk) = p(Y | M̃k)

∫
Θk

p(Mk | M̃k,θk)p(θk | M̃k,Y)dθk. (2.31)

This representation of BME indicates that the corrected BME value of the computa-

tional model (BMEOM) is a product of the BME value obtained by the surrogate model

(BMESM) and the correction factor (WeightSM). Equation (2.31) can be written as

BMEOM = BMESM ·WeightSM. (2.32)

where

BMEOM = p(Y | Mk)

BMESM = p(Y | M̃k)

WeightSM =

∫
Θk

p(Mk | M̃k,θk)p(θk | M̃k,Y)dθk.

(2.33)

The correction factor Weightsurr is defined as the integral of the likelihood p(Mk |
M̃k,θk) over the posterior parameter space. When using computationally expensive

models, computing the likelihood for many samples from the posterior parameter space

is not tractable. One strategy to approximate this correction factor is to reuse the

simulations and predictions of the original and surrogate model in the training step,

using

WeightSM ≈
P∑
i=1

p(Mk | M̃k,θ
⋆
k,i) · p(θ⋆

k,i | M̃k,Y). (2.34)

This approach yields a corrected BME value that is more representative (although

still an approximation) of the full-complexity model’s BME. Moreover, the correction

factor in Equation (2.33) could be approximated using only a maximum a posteriori

parameter set θMAP
k as

WeightSM ≈
1√

(2π)N detS
exp

(
−1

2
F T

⋆ S−1F⋆

)
, (2.35)

where F⋆ corresponds to the vector of approximation errors obtained for the maximum
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a posteriori parameter set θMAP
k , i.e., F⋆ =Mk(θ

MAP
k )−M̃k(θ

MAP
k ). This method also

gives a very rough estimation of the correction factor and could be reliable only if the

posterior was (very close to) a Dirac function.

2.3.2 Corrected model weights for surrogate-based justifiability

analysis

In this section, the methodologies presented earlier in Section 2.2.2 are extended towards

a surrogate-based Bayesian model justifiability analysis, where models are mutually

examined against each other’s predictions. Let us assume a case with two models,

modelMk and modelMl. The comparison of two models implies that one model,Mk

in this case, is assumed to be the data generating process. The BME of the modelMl

given the data generated byMk takes the following form:

p(Mk | Ml) =

∫
Θl

p(Mk | Ml,θ)p(θ | Ml)dθ. (2.36)

For analyzing the computationally expensive models, one can calculate the BME value

p(M̃l | M̃k) of the easy-to-evaluate surrogate models, instead of computing the BME

value for the original models p(Ml | Mk). The surrogate representations of each

analyzed model contains an approximation error: Ml = M̃l +El andMk = M̃k +Ek.

Therefore, Equation (2.36) can be rewritten as:

p(Mk | Ml) =

∫
Θl

p(Mk | M̃l + El,θ)p(θ | Ml)dθ (2.37)

p(Mk | M̃l + El,θ) = p(Mk | M̃l,θ)p(Ml | M̃l,θ). (2.38)

By plugging (2.38) in (2.37), we get:

p(Mk | Ml) =

∫
Θl

p(Mk | M̃l,θ)p(Ml | M̃l,θ)p(θ | Ml)dθ. (2.39)

By multiplying and dividing the right-hand side of (2.39) by p(Mk | M̃l), the equation
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can be written as:

p(Mk | Ml) = p(Mk | M̃l)

∫
Θl

p(Mk | M̃l,θ)p(θ | Ml)

p(Mk | M̃l)
p(Ml | M̃l,θ)dθ. (2.40)

Knowing that p(Mk|M̃l,θ)p(θ|Ml)

p(Mk|M̃l)
is equal to p(θ | M̃l,Mk), one obtains:

p(Mk | Ml) = p(Mk | M̃l)

∫
Θl

p(Ml | M̃l,θ)p(θ | M̃l,Mk)dθ. (2.41)

The first term before integral can be cast as:

p(Mk | M̃l) =

∫
Θl

p(M̃k + Ek | M̃l,θ)p(θ | M̃l)dθ

=

∫
Θl

p(M̃k | M̃l,θ)p(θ | M̃l)p(Mk | M̃k,θ)dθ

= p(M̃k | M̃l)

∫
Θl

p(M̃k | M̃l,θ)p(θ | M̃l)

p(M̃k | M̃l)
p(Mk | M̃k,θ)dθ.

(2.42)

Since p(M̃k|M̃l,θ)p(θ|M̃l)

p(M̃k|M̃l)
is equal to p(θ | M̃l,M̃k), we have:

p(Mk | M̃l) = p(M̃k | M̃l)

∫
Θl

p(Mk | M̃k,θ)p(θ | M̃l,M̃k)dθ. (2.43)

By inserting (2.43) in (2.41), one obtains:

p(Mk | Ml) = p(M̃k | M̃l)×
∫
Θl

p(Mk | M̃k,θ)p(θ | M̃l,M̃k)dθ

×
∫
Θl

p(Ml | M̃l,θ)p(θ | M̃l,Mk)dθ

(2.44)

or

BMEOMOM = BMESMSM ·WeightSM1 ·WeightSM2, (2.45)



50 2 Bayesian Validation Framework

where

BMEOMOM = p(Mk | Ml)

BMESMSM = p(M̃k | M̃l)

WeightSM1 =

∫
Θl

p(Mk | M̃k,θ)p(θ | M̃l,M̃k)dθ

WeightSM2 =

∫
Θl

p(Ml | M̃l,θ)p(θ | M̃l,Mk)dθ.

(2.46)

Above, BMEOMOM denotes the BME value when two original models are compared,

while BMESMSM corresponds to the BME value when comparing two surrogate models.

The latter can be computed by the method presented in Section 2.1.2, using the pre-

diction of the modelMl evaluated on a certain model parameter set θ instead of the

measurement data Y .

Similar to Section 2.3.1, one can use the training set of the surrogate models to compute

the correction factors for both models:

WeightSM1 ≈
P∑
i=1

p
(
Mk | M̃k,θ

∗
i

)
p
(
θ∗
i | M̃l,M̃k

)
WeightSM2 ≈

P∑
i=1

p
(
Ml | M̃l,θ

∗
i

)
p
(
θ∗
i | M̃l,Mk

)
.

(2.47)

To extend the Bayesian justifiablity analysis for the computationally demanding mod-

els, the posterior model weights in Equation (2.25) need to be corrected by two factors

WeightSM1 and WeightSM2 computed by Equation (2.47):

Wpost
l|k =

1

NMC

NMC∑
j=1

p (Ml | Mk,j)

=
1

NMC

NMC∑
j=1

p
(
M̃l | M̃k,j

)
· Weight SM1 · Weight SM2.

(2.48)

In this chapter, I introduced Bayes’ theorem and showed how it is used for inference

problems, such as calibration. Then, the validation workflow used in this work has

been presented. The last section of this chapter presented the framework with a two-

stage surrogate-based Bayesian multi-model comparison. The first stage suggests how
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the models are ranked in light of the actual experimental results, while the second

stage helps to decide whether the most appropriate model from the conventional BMS

analysis is really the best model in the model set or whether this model is only optimal

given the limited amount of available measurement data for the chosen experimental

setup. Additionally, the justifiability analysis provides insights about similarities among

the tested models.

Figure 2.4 illustrates the flow diagram of the proposed framework, which describes the

actual workflow.

In the next chapter, I will show how we can make use of surrogate modeling to offset

the computing cost of the framework when analyzing models with high runtimes.
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Model Specifications

Define input variables and their
prior distributions
Select model SRQ(s)
Prepare calibration data sets

Surrogate Model (Calibration)

Select a regression method (Section 3.1)
Define the type and size of the
experimental design (Section 1.2)
Train the surrogate model
Postprocessing (Section 3.1.7)

Model Calibration

Create a statistical model with Bayes
theorem (Equation 2.4)
Compute likelihoods (Equation 2.6)
Approximate posteriors with Bayes
inference (Section 2.1.3)

Surrogate Model (Validation)

Use calibration posteriors
as priors for validation
Define model SRQ(s)
Select new Experimental
design (Section 1.2)

Stage II: Comparing models with models

Generate synthetic data using models
Compute model weights for surrogate-
based justifiability analysis (Equation
2.45-2.47)
Create confusion matrix (Figure 2.2a)

Stage I: Comparing models with data

Compute corrected BME for surrogate-based
BMS (Equation 2.32-2.34) 
Compute BME for TOM (Equation 2.25)
Comparison using Bayes Hypothesis testing
(Section 2.2.1) and Posterior Model weights
(Equation 2.22)

Figure 2.4: The workflow of the proposed validation framework.
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The Bayesian framework, discussed in the previous chapter, requires the propagation

of the parametric uncertainty through the given computational model. This task is

also known as uncertainty propagation (UP). Typically, a significant number of model

evaluations are required to yield statistical convergence. In practice, however, the com-

putational complexity of the underlying computational model and the total available

computational budget severely restrict the number of evaluations one can actually carry

out. In such situations, the estimates produced by the Bayesian analysis lack sufficient

trust, as the limited number of model evaluations can yield additional uncertainty.

The most common approach when dealing with computationally expensive models is to

replace them with easy-to-evaluate surrogates. Simply put, one evaluates the model on

a set of training (design) points and then strives to establish an accurate relationship

between the model responses and the design points. Then, the original computational

model can be substituted by its surrogate in the Bayesian analysis. Polynomial chaos

expansion (PCE) is one of the most rigorous approaches to UP, thanks to its solid math-

ematical basis and ability to provide functional representations of stochastic quantities.

However, the accuracy of the prediction of these surrogate models, trained with only

a handful of simulations, is debatable. This argument is rooted in the fact that the

surrogates do not attempt to quantify the epistemic uncertainty associated with their

predictions.

This chapter highlights how a surrogate model using a PCE can be constructed for

computationally intensive models with as few simulations as the computational budget

allows. It is also shown how the Bayesian formalism can be materialized by employ-

ing the concept of PCE to account for the uncertainty in the surrogate’s predictions.

Moreover, we introduce a set of sequential adaptive sampling strategies in which one

attempts to augment the initial design iteratively. In doing so, informative regions in
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the parameter space are properly explored, avoiding the waste of computational re-

sources as opposed to the so-called one-shot designs. These regions are more likely to

provide valuable information on the behavior of the original model responses.

3.1 Polynomial Chaos Expansion

Over the past 20 years, the PCE methodology has become increasingly popular in the

mathematical and engineering communities. In a probabilistic framework, uncertainties

in input parameters are modeled via random variables. These input uncertainties can be

investigated using PCE. This method provides the means to develop an approximation

to the map between inputs and the SRQ(s). This mapping is both computationally

tractable and sufficiently accurate. In addition to being a surrogate model, PCEs

are also often used for uncertainty propagation and sensitivity analysis as one can

analytically compute moments and sensitivity measures such as Sobol indices [Sudret,

2007].

The main idea of PCE is to expand an SRQ with a finite variance in a suitably built

basis of multivariate polynomials that are orthogonal to the joint probability density

functions of the inputs. It is worth noting that the random variables are assumed

to be statistically independent or may be linearly correlated. The linear correlation

can be handled by adequate linear transformation [Oladyshkin and Nowak, 2012]. In

this thesis, I employ a non-intrusive regression-based PCE that works well for globally

smooth problems, commonly used in many engineering applications. In contrast to

intrusive PCE employed for solving stochastic PDEs and requiring code modifications,

its non-intrusive variant treats the computational model as a black box.

A PCE is a linear regression that includes linear combinations of a fixed set of nonlinear

functions with respect to the input variables, known as basis functions (Section 3.1.1).

Let X be a d-dimensional random vector with independent components on a domain

D ⊂ Rd. Moreover, consider the model M ∈ L2
fX
(D) with L2

fX
(D) representing the

space of all scalar-value models with finite variance in fX =
∏d

i=1 fXi
(xi).

The PCE representation of the output random variable Y of the modelM can be cast
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as the following:

Y =M(X) =
∑
α∈Nd

cαΨα(X), (3.1)

where Ψα(X) represents multivariate polynomials orthogonal with respect to fX and α

denotes a multi-index that represents the components of the multivariate polynomials

Ψα. The cα ∈ R are the corresponding coefficients (coordinates). For practical reasons,

the sum in Equation (3.1) needs to be truncated to a finite sum by introducing the

truncated polynomial chaos expansion:

M(X) ≈MPC(X) =
∑
α∈A

cαΨα(X), (3.2)

where A ⊂ Nd denotes the set of selected multi-indices of the multivariate polynomials.

A standard truncation scheme can be defined as all polynomials in the d input variables

of total degree less or equal to p:

Ad,p = {α ∈ Nd : | α |≤ p}

card Ad,p ≡ P =

(
d+ p

p

)
.

(3.3)

A modification of the standard scheme, the hyperbolic truncation scheme uses the

so-called q-norm to define the truncation [Blatman and Sudret, 2011], which reads

Ad,p,q =
{
α ∈ Ad,p : ∥α∥q ≤ p

}
∥α∥q =

(∑d
i=1 α

q
i

)1/q (3.4)

The hyperbolic truncation with q < 1 includes all the univariate high-degree terms

but excludes high-degree terms with many interacting variables. For q = 1, hyperbolic

truncation turns into the standard total-degree truncation scheme in Equation (3.3).

For other truncation schemes, the reader is referred to Marelli et al. [2021].
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3.1.1 Polynomial basis functions

The multivariate polynomials Ψα(X) are the tensor product of the univariate polyno-

mials:

Ψα(X) :=
d∏

i=1

ψ(i)
αi
(xi). (3.5)

The univariate orthonormal polynomials ψ
(i)
αi (xi) must satisfy the following expression:

⟨ψ(i)
j , ψ

(i)
k ⟩ :=

∫
DXi

ψ
(i)
j (xi)ψ

(i)
k (xi)fXi

(xi)dxi = δjk. (3.6)

where i represents the input variable with respect to which they are orthogonal as well

as the corresponding polynomial family, j and k the corresponding polynomial degree.

fXi
(xi) denotes the ith input marginal distribution and δjk is the Kronecker delta, which

is equal to 1 when j = k and 0 otherwise. The classical families of univariate orthonor-

mal polynomials can be obtained by applying the Gram-Schmidt orthogonalization pro-

cedure [Strang and Freund, 1986] to the canonical family of monomials {1, x, x2, · · · }.
The associated families of orthogonal polynomials for standard distributions are well-

known. For example, for a uniformly distributed variable Xi ∼ U(−1, 1), the family of

polynomials is that of Legendre polynomials, whereas a normally distributed variable

with zero mean and unit standard deviation Xi ∼ N (0, 1) follow Hermite polynomi-

als. Table 3.1 summarizes the univariate polynomial families of standard distributions

[Sudret, 2007]. For detailed description of each of these classical families, the reader is

referred to Xiu and Karniadakis [2002].

The calculation of polynomial basis via the classical families is grounded in the fact

that exact knowledge about the probability density functions is available. However,

the information about the parameter distribution is distinctly restricted in engineering

applications, most importantly when environmental influences or natural phenomena

are of interest or when prediction is involved. For instance, the material properties of

subsurface reservoirs are not readily available to shed light on their distribution. This is

also the case for the posterior parameter distribution obtained through a Bayesian cal-

ibration, which may not necessarily follow any known family of distributions presented

in Table 3.1.

To overcome this challenge, Oladyshkin and Nowak [2012] demonstrate that statisti-
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Table 3.1: Classical families of orthogonal polynomials

Type of
variable

Distribution
Orthogonal
polynomials

Hilbertian basis
ψk(x)

Uniform 1[−1,1](x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

U(−1, 1)
Gaussian 1√

2π
e−x2/2 Hermite Hek(x) Hek(x)/

√
k!

N (0, 1)

Gamma xae−x1R+(x) Laguerre La
k(x) La

k(x)/
√

Γ(k+a+1)
k!

Γ(a, λ = 1)

Beta 1[−1,1](x)
(1−x)a(1+x)b

B(a)B(b)
Jacobi Ja,b

k (x) Ja,b
k (x)/Ja,b,k

B(a, b)
J2
a,b,k =

2a+b+1

2k+a+b+1
·

Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

cal moments are the only source of information that is propagated in all polynomial

expansion-based stochastic approaches. The authors leverage this fact to propose a

data-driven approach called arbitrary polynomial chaos expansion (aPCE), which can

operate with probability measures that may be implicitly and incompletely defined via

their statistical moments. Using aPCE, one can build the orthonormal polynomials

even in the absence of the exact probability density function fX(x). An aPCE gener-

alizes chaos expansion techniques to arbitrary distributions with arbitrary probability

measures, which can either be discrete, continuous or discretized continuous and can be

specified either analytically (as probability density/cumulative distribution functions),

numerically as a histogram, or as raw data sets. Unlike PCE, an aPCE only requires the

existence of a finite number of moments at a finite expansion order and does not need

complete knowledge or even the existence of a probability density function supported

by limited available data. For more on the mathematical concept and the derivations,

see the original paper [Oladyshkin and Nowak, 2012].

3.1.2 Calculation of the coefficients

Once the truncated multivariate basis Ψα for the selected multi-index A in Equation

(3.2) has been computed, the coefficients cα need to be estimated. There are two

approaches for estimating the coefficients, namely intrusive and non-intrusive. Intrusive
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computation schemes have been developed within the framework of stochastic finite

element analysis [Ghanem and Spanos, 2003]. In an intrusive scheme, the constitutive

equations of the physical problem are discretized both in the physical space via standard

finite element techniques and in a random space via the polynomial chaos expansion.

This procedure leads to coupled systems of equations that require ad-hoc solvers; thus,

the term “intrusive” [Sudret, 2007, Debusschere, 2015].

On the other hand, non-intrusive methods make use of repeated runs, as in a Monte

Carlo simulation. As a result, the computational model remains unchanged and is

regarded as a black box that generates outputs for selected sets of random input vector

X. Non-intrusive methods make use of the multivariate orthogonal basis to compute

the coefficients via the orthogonal projection of the random model response Y onto the

corresponding basis function Ψα(X), which can be written as

cα = E [Ψα(X) ·Y] =

∫
D
M(x)Ψα(x)fX(x)dx. (3.7)

The integral in Equation (3.7) can be solved using Monte Carlo Simulation or numerical

integration. The former estimates the expectation but has low efficiency. The latter

uses Gaussian quadrature, sparse grids, or stochastic collocation methods to solve the

integral on the right-hand side of Equation (3.7). For more detail, see the review paper

by Xiu [2009].

The least-square minimization method, also known as regression approach, proposed

in Berveiller et al. [2004, 2006], is regarded as a commonly used non-intrusive method.

After selection of a truncation scheme A, for example, Ad,p in (3.3), the infinite series

in Equation (3.2) can be written as the sum of the truncated series and a residual ε:

Y =M(X) =
∑
α∈A

cαΨα(X) + ε. (3.8)

The residual includes the error induced by truncated terms excluded from multi-index

A. The goal of the least-square minimization approach is to find the set of coefficients

c that minimizes the mean square error, which reads

E
[
ε2
]
= E

(Y −∑
α∈A

cαΨα(X)

)2
 . (3.9)
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This minimization can be written as

c = arg min
c∈RcardA

E

(M(X)−
∑
α∈A

cαΨα(X)

)2
 . (3.10)

To perform this minimization step, one can turn the problem to a discretized version of

it in that the expectation operator in Equation (3.10) is substituted with the empirical

mean over a training sample set

ĉ = arg min
c∈RcardA

1

NED

NED∑
i=1

(M(x(i))−
∑
α∈A

cαΨα(x
(i))

)2
 , (3.11)

where X = {x(i), i = 1, · · · , NED} denotes the training sample set, also known as

experimental design (ED) . This sample set is typically obtained by performing sim-

ulations using the input random vector X and will be discussed in detail in Section

3.2.

The minimization task in Equation (3.11) can be solved by taking the following steps:

1. The simulations with the computational modelM are performed for each sample

in ED and the resulting outputs are stored in a vector

Y = {Y(1) =M(x(1)), · · · ,Y(n) =M(x(NED))}⊤. (3.12)

2. A so-called information matrix is computed by evaluating the basis polynomials

at each point in the ED:

A =
{
Aij

def
= Ψj

(
x(i)
)
, i = 1, . . . , NED, j = 1, . . . , cardA

}
. (3.13)

3. The solution to the minimization problem takes the following form:

ĉ =
(
A⊤A

)−1
A⊤Y. (3.14)
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The surrogate model, which approximates the random response, denoted by Ŷ, reads

Ŷ =MPCE(X) =
∑
α∈A

ĉαΨα. (3.15)

Two issues require special attention in the minimization solution in Equation (3.14):

ill-condition and well-posedness. As for the former, a singular value decomposition

shall be employed to overcome the potential ill-conditioning of the information matrix

[Sudret, 2014]. The latter requires that the number of unknowns cardA is smaller than

the ED size NED = cardX. Sudret [2007] and Blatman [2009] suggest NED to be two

or three times cardA as a rule of thumb.

This approach, however, becomes intractable for high dimensional input spaces or high-

degree PCEs when considering computationally expensive models as the computational

budget is limited. To overcome this, one can employ the concept of sparsity which offers

elegant complexity control, over-fitting control, and feature extraction and has the

potential for characterization of meaningful input variables along with the practical

computational speed. As PCEs belong to linear regression models, employing the

concept of sparsity can lead to zero values for many cα in the expansion in Equation

(3.2), thus, fewer simulations are required for the surrogate training.

There are many mathematical approaches when dealing with a regression problem that

leads to a sparse solution. These approaches have led to the emergence of numerous

sparse solvers in the compressed sensing (e.g., Arjoune et al. [2017]) and in the sparse

PCE. Lüthen et al. [2021] put the proposed solvers in the context of PCE into four cate-

gorizes: convex optimization solvers, greedy methods, iteratively re-weighted methods,

and Bayesian sparse learning, also known as compressive sensing. For further details

on different solvers in each category, the reader is referred to Lüthen et al. [2021].

In this chapter, I consider one greedy solver, Orthogonal Matching Pursuit, and two

Bayesian sparse learning methods, FastARD and FastLaplace, whose mathematical

concepts and algorithms follow. The Bayesian sparse learning methods can provide a

probabilistic prediction, i.e., a prediction with the associated uncertainty. This predic-

tion uncertainty can be used as the expected error when replacing the original compu-

tational model with a possibly less accurate surrogate. This property can be leveraged

to refine the surrogate model and the Bayesian calibration and validation task.
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Orthogonal matching pursuit

Greedy methods are stepwise regression methods where the regression terms (orthog-

onal polynomial basis) are added to the model one at a time according to a selection

criterion. These methods aim to heuristically solve the intractable l0-minimization

problem. One of the most prominent greedy algorithms is Orthogonal Matching Pur-

suit (OMP) . It was first proposed by Pati et al. [1993] and explored extensively in the

literature by e.g., Tropp and Gilbert [2007] and Doostan and Owhadi [2011]. In OMP,

the regressors are iteratively retrieved one by one based on their correlation with the

current residual approximation and are added to the active set of regressors. OMP uses

OLS, described earlier in this section, to compute the PCE coefficients c.

The OMP algorithm is a linear regression tool that minimizes the norm of the approxi-

mation residual at each iteration. The algorithm uses the leave-one-out error estimator

(Section 3.1.3) to adaptively include the most relevant PCE basis term to the active

set. Algorithm 1 summarizes the steps of the OMP solver.
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Algorithm 1: Orthogonal Matching Pursuit

Inputs: Model evaluations Y, regressors Ψ

Initialize:

• c0α = 0, ∀α ∈ Ad,p,q;

• Candidate set: ΨC,0 = Ψα;

• Active set: ΨA,0 = ∅;

• Residual: R0 = Y

Result: Sparse regressor basis

1 while itr number < min(cardAd,p,q, NED) and ϵLOO < ϵmin
LOO do

2 Find the polynomial Ψαj
most correlated with the current approximation

residual Rj−1;

3 Add the polynomials Ψαj
to the active set ΨA,j = ΨA,j−1 ∪Ψαj

;

4 Calculate the new polynomial coefficient cjα using ΨA,j via OLS;

5 Calculate the new approximation residual via Rj = Y −ΨA,jc
j
α;

6 Calculate ϵjLOO via (3.38) and store it;

7 end

8 Select the active set of polynomials with the lowest ϵLOO

ϵmin
LOO in the stop criterion is the minimum value of ϵLOO for at least 10% of the maximum

number of possible iterations. Moreover, cardAd,p,q and NED denote the number of

polynomial basis elements and the size of the experimental design.

Bayesian sparse learning solvers

Using Bayesian sparse learning, one imposes a sparsity-inducing prior on the coefficients

(weights) of the predictors (Ψα in the expansion (3.2)), whose parameters are considered

to be random variables with a hyperprior. Then, the posterior of the weights are

inferred via a sparse regression solver, such as the fast marginal likelihood maximization

algorithm (FastARD) [Tipping et al., 2003] or its extension called FastLaplace [Babacan

et al., 2009]. Henceforth, I will call the sparse extension of the aPCE, Bayesian sparse

aPCE (BaSaPCE). This learning process leads to extremely sparse inferred predictors

since they yield relatively few non-zero coefficients. That means a significant number
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of the predictors give posterior distributions centered at zero and can be pruned out

from the expansion in PCE.

BaSaPCE with FastARD Let the target variable be Y, which is given by a surrogate

functionMPCE with an additive Gaussian noise that reads:

Y =MPCE(X, c) + ε, (3.16)

where ε ∼ N (0, β−1) is a zero mean Gaussian random variable with precision (inverse

of variance) β. The uncertainty over the value of the target variable Y can be expressed

by a probability distribution. Hence, the equation can be cast as:

p(Y | X, c, β) = N (Y | MPCE(X, c), β−1). (3.17)

Let X = {X1, · · · ,XNED
}⊤ be a data set of inputs with the corresponding model re-

sponses Y = {Y1, · · · ,YNED
}⊤. We can use the training set (ED) {X,Y} to determine

the values of the unknowns, c and β. Assuming these data points are drawn indepen-

dently of the distribution in Equation (3.17), and using Equation (3.1), a multivariate

Gaussian likelihood function can be derived as:

p (Y | X, c, β) =
NED∏
i=1

N (Yi | c⊤Ψ(Xi), β
−1)

=
(
2πβ−1

)−NED/2
exp

(
−β
2
||Y − c⊤Ψ(X)||2

)
.

(3.18)

We introduce a Gaussian prior distribution over the parameter vector c by giving each

of the weight parameters ci a separate hyper-parameter αi. Thus, the prior of the

weights reads as:

p(c | α) =
M∏

m=1

N (cm | 0, α−1
m )

=
M∏

m=1

[
(2π)−1/2αm

1/2 exp

(
−1

2
αmc

2
m

)]
,

(3.19)

where α = {α1, · · · , αM}⊤ denotes the precision of the prior over its associated weight
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parameter c. M represents the number of the predictors, i.e., cardA. The form of prior

is ultimately responsible for the sparsity properties of the model (for more details, see

Tipping [2001]). Figure 3.1 displays the hierarchical framework of FastARD [Faul and

Tipping, 2002, Tipping et al., 2003].

Figure 3.1: Graphical model of FastARD algorithm

The posterior distribution, conditioned on the model responses, is given by combining

the likelihood in Equation (3.18) and the prior in Equation (3.19) according to Bayes’

rule. This posterior, given α, can take the form:

p(c | Y,α, β) = p(Y | X, c, β)p(c | α)

p(Y | X,α, β) , (3.20)

which also follows a Gaussian distribution, N (c | µ,Σ) with:

µ = βΣΨ⊤Y

Σ =
(
A+Ψ⊤βΨ

)−1
,

(3.21)

where Ψ is the design matrix of the size NED ×M with elements Ψni = ψi(xn), and

A = diag(αi).

Marginal likelihood maximization: The values of α and β can be determined via type-

II maximum likelihood [Berger, 2013], also known as evidence approximation in the

machine learning literature [Gull, 1989, MacKay, 1992a]. The ultimate goal in evidence

approximation is to maximize the maximum likelihood function obtained by integrating
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out the weight parameters c:

p(Y | X,α, β) =
∫
p(Y | X, c, β)p(c | α)dc. (3.22)

This integral can be readily evaluated to obtain the log-likelihood form since it rep-

resents the convolution of two Gaussian distributions. The log-likelihood form reads

as:

ln p(Y | X, α, β) = lnN (Y | 0,C)

= −1

2

[
N ln (2π) + ln |C|+Y⊤C−1Y

]
,

(3.23)

where the matrix C with the size of NED ×NED is defined as:

C = β−1I+ΨA−1Ψ⊤. (3.24)

Let us denote the log marginal likelihood in Equation (3.23) by L(α). Following Tipping

et al. [2003], the Equation (3.23) can be written as:

L(α) = −1

2

[
N ln (2π) + ln |C−i|+Y⊤C−1

−iY

− lnαi + ln (αi +Ψ⊤
i C

−1
−iΨi)−

(Ψ⊤
i C

−1
−iY)

2

αi +Ψ⊤
i C

−1
−iΨi

]
,

= L(α−i) +
1

2

[
lnαi − ln (αi + si) +

q2i
αi + si

]
= L(α−i) + l(αi),

(3.25)

where C−i is C with the contribution of basis vector i removed. The objective function

has now been decomposed into L(α−i) and l(αi). While the former is the marginal like-

lihood with Ψi excluded, the latter gives the same value for the isolated αi. Moreover,

the sparsity factor si and the quality factor qi are defined as:

si := Ψ⊤
i C

−1
−iΨi and qi := Ψ⊤

i C
−1
−iY. (3.26)

According to Tipping et al. [2003], the sparsity factor can be regarded as a measure of

the extent that the basis factor Ψi overlaps those already present in the model. The
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quality factor, however, can be seen as a measure of alignment of Ψi with the error

of the model with that vector excluded. Analysis of l(αi) in Faul and Tipping [2002]

reveals that L(α) has a unique maximum with respect to αi as follows:

αi =


s2i

q2i −si
, if q2i > si,

∞, otherwise.
(3.27)

We compute qi and si for all the basis functions Ψi in the pool Ψ, including those

not currently utilised in the model (i.e., for which αi = ∞). To do so, we iteratively

maintain and update values si and qi using the following expression:

sm =
αmSm

αm − Sm

, qm =
αmQm

αm − Sm

, (3.28)

where Sm and Qm are obtained using:

Sm = Ψ⊤
mβΨm −Ψ⊤

mβΨΣΨ⊤βΨm, (3.29)

Qm = Ψ⊤
mβY −Ψ⊤

mβΨΣΨ⊤βY. (3.30)

Here, quantities Ψ and Σ include only those basis functions that are currently included

in the model. The sequential Bayesian sparse learning algorithm is presented in Algo-

rithm 2. We start with an ”empty” model, and sequentially include basis functions to

increase the marginal likelihood, while modifying the weights. Further, we can increase

the objective function within the same principled framework by removing basis func-

tions which subsequently become redundant. For more details on the mathematical

approach of the maximization, see Tipping et al. [2003].

It has been observed that the optimal values of many hyperparameters are typically

infinite [Tipping, 2001]. Stated differently, parameter posterior distributions for many

weights ci are infinitely centered at zero. Consequently, the associated basis functions

Ψ with these parameters play insignificant roles in the model’s predictions and can be

pruned out, leading to a sparse structure.

Prediction with BaSaPCE Having found values α∗ and β∗ for the hyperparameters

that maximize the marginal likelihood, one can evaluate the predictive distribution over
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Algorithm 2: Bayesian sparse learning with FastARD algorithm

Inputs: Model evaluations Y, regressors Ψ, maximum iteration number

Nmax, and stopping threshold η

Initialize:

• β ← initial value (e.g. 1/var[Y]);

• Select a single basis vector Ψi with the largest projection on targets Y ;

• Set αi =
||Ψi||2

||Ψ⊤
i Y||2/||Ψi||2−β−1

and all other αm to infinity ;

Result: The mean µ, the variance Σ of coefficients, and precision of the

weight parameters α

1 for n← 1 to Nmax do

2 Compute Σ and µ of posterior distribution via (3.21);

3 Calculate sm and qm for all M bases Ψm using Equations (3.27) and (3.29);

4 Update β with β = (N −M +
∑

m αmΣmm)/||Y − y||2;
5 Compute θi = q2i − si of all M bases;

6 if θi > 0 and αi <∞ then

7 re-estimate αi;

8 else if θi > 0 and αi =∞ then

9 add Ψi to the model with updated αi;

10 else

11 delete Ψi from the model and set αi =∞;

12 end

13 if no features to add or delete and change of α < η then

14 break;

15 else

16 Update precision parameters of coefficients αi = s2i /θi;

17 end

18 end

Y′ for a new input x′ by:

p(Y′ | x′,X,Y,α∗, β∗) =

∫
p(Y | x′, c, β∗)p(c | X,Y,α∗, β∗)dc

= N (Y′ | µ⊤Ψ(x′), σ2(x′)),

(3.31)
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where the variance of the predictive distribution is given by:

σ2(x′) = (β∗)−1 +Ψ(x′)⊤ΣΨ(x′). (3.32)

µ and Σ are calculated by Equation (3.21) in which α and β are set to their optimized

values α∗ and β∗. The first term in Equation (3.32) represents the noise on the data

whereas the second term reflects the uncertainty associated with the coefficient c.

BaSaPCE via FastLaplace Babacan et al. [2009] provide an extension of Relevance

vector machine (RVM) [Tipping, 2001] called FastLaplace with an additional layer

of hyperparameters. This approach has been proven to provide even sparser solu-

tions compared to FastARD. Figure 3.2 illustrates the hierarchical framework used

in FastLaplace. All quantities are random variables with distributions parametrized

by hyperparameters. The hierarchical structure and the choice of priors and hyper-

priors results in a sparsity-encouraging posterior distribution for the PCE coefficients

c. Each of the quantities and auxiliary variables is considered to be random with a

Figure 3.2: Graphical model of FastLaplace algorithm.

certain parametrized distribution, except for β, which is chosen a priori and ν = 0.

Figure 3.2 can be described as follows: The model outputs Y are assumed to be in-
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dependent and identically distributed realizations of a random variable parameterized

by PCE coefficients c and the parameter β (inverse of the noise variance parameter

σ2), which is a given hyperparameter of the framework. This results in the likelihood

p(Y | c, β) = N (Y | cΨ, β−1).

The coefficients c are random variables, each following a normal distribution centered

at zero and a variance of γi: p(ci | αi) = N (ci | 0, γi). The γi’s are i.i.d and follow an

exponential distribution with the shared parameter λ: p(γi | λ) = λ
2
exp(−λ

2
γi). The

final layer in the framework, λ, is drawn from a Gamma distribution p(λ | ν) = Γ(λ |
ν
2
, ν
2
) with ν being zero, resulting in an uninformative prior. The goal is to compute the

posterior distribution p(c,γ, λ, β | Y) for a set of experimental design {X,Y}. Using

Bayes’ theorem, this posterior distribution can be computed by

p(c,γ, λ, β | Y) =
p(c | Y,γ, β, λ)p(γ, β, λ | Y)

p(Y)
(3.33)

with

p(Y) =

∫∫∫∫
p(c,γ, λ, β,Y)dc dγ dλ dβ. (3.34)

For the sake of clarity, the dependency on ν is dropped. The marginal likelihood in

(3.34) cannot be computed analytically. Similar to FastARD, one can perform the in-

ference using type-II maximization likelihood [Berger, 2013]. Since the likelihood and

prior (first and second terms in the denominator in Equation (3.33)) are normally dis-

tributed, the posterior distribution p(c,γ, λ, β | Y) also follows a multivariate Gaussian

distribution N (c | µ,σ), presented in Equation (3.21), with A = diag(γ).

The logarithm of the marginal likelihood as a function of L(γ) takes the following form

L(γ) =− 1

2

[
log |C−i|+Y⊤C−1

−iY +
λ

2

∑
j ̸=i

γj

]

+
1

2

[
log

1

1 + γisi
+

q2i γi
1 + γisi

− λγi
]

=L (γ−i) + l (γi) ,

(3.35)

where qi and si are computed by Equation (3.26). A closed-form solution of the maxi-

mum of L(γ) is required to examine whether the i-th basis needs to be included in the

model. This can be explored by taking the derivative of L(γi) or l(γi) with respect to
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γi and setting it to zero. The result is

γi =


−si(si+2λ)+si

√
(si+2λ)2−4λ(si−q2i +λ)
2λs2i

, if q2i − si > λ

0, otherwise.
(3.36)

For further details on the derivation of the solution, see Babacan et al. [2009]. In the

case of γi = 0, the associated basis/regressor ψi in the expansion has no contribution;

thus, it is inactive and the corresponding coefficient ci must obtain a zero value as well.

On the contrary, a term with γi > 0 is considered to be active and included in the

calculation. At every iteration, one regressor is selected. It can be either added to the

pool of active basis, deleted from it, or reassessed via re-estimation of its variance γi.

To do this, we compute the hypothetical updated value of γi for each regressor if this

regressor alone was updated. Then, we calculate the associated hypothetical change in

L(γ). To select the next basis vector to be added to the model, we only need to choose

the basis Ψ that accounts for the largest increase in L. This procedure is repeated until

none of the regressors increases L, or if the increase in L divided by the current value

of L has been smaller than η twice in a row. Algorithm 3 summarizes the iterative

algorithm of FastLaplace introduced by Babacan et al. [2009].
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Algorithm 3: Bayesian sparse learning with FastLaplace algorithm

Inputs: Model evaluations Y, regressors Ψ, precision β, maximum iteration

number Nmax, and stopping threshold η

Initialize:

• Select the constant regression Ψα0 as the only regressor in the model ;

• Set γi =
||Ψi||2

||Ψ⊤
i Y||2/||Ψi||2−β−1

and all other γm to infinity ;

• Compute Σ and µ of posterior distribution via (3.21);

• Calculate sm and qm for all M bases Ψm using Equations (3.27) and (3.29);

• Compute λ using λ = NED−1

Σ
NED
i=0 αi/2

;

Result: The mean µ, the variance Σ of coefficients, and precision of the

weight parameters γ

1 for n← 1 to Nmax do

2 Select the basis ψi that accounts for the largest increase in L;
3 if no features to add or delete and change of L/Lcurrent < η then

4 break;

5 Compute δ = nonzero(γcurrent)− nonzero(γ);

6 if δ = 0 then

7 re-estimate γi;

8 else if δ = 1 then

9 add Ψi to the model with updated γi;

10 else if δ = −1 then

11 delete Ψi from the model;

12 Update Σ and µ;

13 Update sm and qm;

14 Update λ;

15 end

Babacan et al. [2009] use a fixed value for the hyperparameter β = 100/∥Y∥22. However,
one can use k-fold cross-validation for computing β following Marelli et al. [2021].
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Several candidates for βs are generated. The realizations Y are divided into k equally

sized training and test chunks. Averaging over the k validation errors results in the

corresponding cross-validation error. This process is repeated for each candidate β

and the one with the smallest cross-validation error is selected. As the final step, the

algorithm is run last time with the selected β and the entire experimental design to

obtain the final solution.

3.1.3 On the accuracy of surrogate models

Once the surrogate model is constructed, its accuracy and predictive capability need to

be assessed. In case, an independent set of inputs and outputs, also known as validation

set {(xV al
1 ,M(xV al

1 )), ..., (xV al
Nv
,M(xV al

Nv
))}, is available in addition to a training set for

training the surrogate model, the validation error can be computed as:

εVal =
Nv − 1

Nv

[∑Nv

i=1

(
M(xV al

i )−MPC(xV al
i )

)2∑Nv

i=1

(
M(xV al

i )− µ̂YV al

)2
]
, (3.37)

where µ̂YV al
= 1

Nv

∑Nv

i=1M(xV al
i ) denotes the mean of model responses for the validation

set. Since computation of the aforementioned error requires a large number of model

evaluations, it is only computationally tractable for models with low computational

time.

To avoid additional model evaluations for assessing the accuracy of the surrogate model,

an error based on the already evaluated ED is more desirable. One common approach

is the leave-one-out cross validation (LOOCV) error, proposed by Geisser [1975], Stone

[1974] explicitly introduced for PCE. This error, denoted by εLOO, is composed of

rebuilding NED surrogate models in sequential (MPC\i), using the original experimental

design excluding i-th set (X \x(i)). Then the prediction error at the excluded set (x(i))

is computed. For more details, see Blatman and Sudret [2011].

Blatman [2009] shows that training independent surrogates is not needed, when using

the linear superimposition of orthogonal terms, which is the case for PCE. Alternatively,

the error can be calculated analytically from a single surrogate based on all sets in the
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ED using the following equation:

εLOO =

∑NED

i=1

(
M(xi)−MPC(xi)

1−hi

)2
∑NED

i=1 (M(xi)− µY )
2
, (3.38)

where hi is the i-th diagonal entry of the experimental matrix A(A⊤A)−1A⊤, where

A is the information matrix, defined in Equation (3.13). µY = 1
NED

∑Nv

i=1M(xi) is the

mean of model responses for the training set.

3.1.4 Comparison of sparse solvers

In this section, I compare the following models: the Ishigami function, O’Hagan func-

tion and the borehole model. The Ishigami model is the widely-used highly nonlinear

analytical function with three input parameters. The Ishigami function reads:

f (θ1, θ2, θ3) = sin(θ1) + a sin2(θ2) + bθ43 sin(θ1) (3.39)

with uniform input θ ∼ U([−π, π]3). The typical choices for a and b are 7 and 0.1,

respectively.

The borehole function computes the water flow through a borehole between two aquifers

in m3/yr [Harper and Gupta, 1983]. The function’s simplicity and quick evaluation

make it a popular choice in computer experiments for testing various uncertainty quan-

tification methods. This function is also nonlinear and has an analytical form, but it

is difficult to approximate. The borehole function takes the following form

f (rw, L,Kw, Tu, Tl, Hu, Hl, r) =
2πTu (Hu −Hl)

ln (r/rw)
(
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

) . (3.40)

Table 3.2 summarizes the input random variables and the respective distributions.

In Table 3.2, the normal distribution is defined with mean µ and variance σ2. The

log-normal distribution of the last variable is defined with parameters µ and σ2 such

that the natural logarithm of this variable follows a normal distribution.



74 3 Surrogate Modeling

Table 3.2: Borehole function: Input random variables and their distributions

Parameter name Range/Parameters Unit Distribution type

Borehole radius, rw (0.10, 0.0161812) m normal
Borehole length , L [9855, 12045] m uniform
Borehole hydraulic conductivity, Kw [9855, 12045] m/yr uniform
Transmissivity of upper aquifer, Tu [63070, 115600] m2/yr uniform
Transmissivity of lower aquifer, Tl [63.1, 116] m2/yr uniform
Potentiometric head of upper aquifer, Hu [990, 1110] m uniform
Potentiometric head of lower aquifer, Hu [700, 820] m uniform
Radius of influence, r (7.71, 1.0056) m log-normal

As the third model, I use the O’Hagan function [Oakley and O’Hagan, 2004], which

reads

f(θ) = a1
⊤θ + a2

⊤ sin(θ) + a3
⊤ cos(θ) + θ⊤Mθ. (3.41)

The values of the coefficients vectors a1, a2 and a3 and the Matrix M are known. The

input random variables θ are independent and follow normal distributions θi ∼ N (0, 1)

for i = 1, · · · , 15.

For each model, a fixed basis is used. Generally, the best total degree p and the hyper-

bolic truncation q are not a priori known. However, here for the sake of comparability,

the following values are selected:

• Ishigami function (d = 3): p=14 and q=1 with 680 regressors

• Borehole function (d = 8): p=5 and q=1 with 1287 regressors.

• O’Hagan function (d = 15): p=7 and q=0.65 with 1401 regressors.

As for the experimental design, ten and thirty samples were selected via the LHS

method as the initial experimental design for the Ishigami and Borehole functions,

respectively. These initial experimental designs were then augmented iteratively with

a space-filling approach to generate an experimental design in which the samples in the

training set are distributed evenly over the design (parameter) space. The details are

presented in Section 3.2.1. To account for the variabilities in the results, 50 replications

of the computations were performed.

Figures 3.3 to 3.5 show boxplots of the validation error over the increasing size of

the experimental design for three sparse learning solvers, namely OMP, BaSaPCE via
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FastARD, and FastLaplace versus the commonly used OLS method. Unlike the bench-

marking effort in Lüthen et al. [2021], I used aPCE instead of the regular PCE. The

difference between these approaches is highlighted in Section 3.1.1. In the plots, the

lines and the line inside the boxplots denote the median of the validation error.
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Figure 3.3: Results of solver comparison for the Ishigami model (d = 3, p = 14, q = 1)
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Figure 3.4: Results of solver comparison for the borehole function (d = 8, p = 4, q = 1).

The findings of the solver comparison can be summarized as follows:

• For the low-dimensional Ishigami function, all solvers perform similarly for small
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Figure 3.5: Results of solver comparison for the O’Hagan model (d = 15, p = 7, q = 0.5)

experimental designs. However, for larger experimental designs, a significant

difference can be noticed.

• With increasing training samples, OMP and FastARD outperform FastLaplace

for the Ishigami function.

• For the 8-dimensional borehole model, however, the Bayesian sparse learning

solvers, namely FastARD and FastLaplace show lower validation errors, especially

for larger experimental designs.

• For O’Hagan’s model with 15 parameters, OMP can not show good accuracy and

has a lower error reduction rate with increasing training samples compared to the

Bayesian sparse learning methods.

• Comparing Bayesian sparse learning methods, FastARD and FastLaplace for the

high dimensional example, it can be observed that the FastARD algorithm tends

to have better accuracy (lower validation error) for the smaller size of the exper-

imental design. However, as the experimental design gets larger, the FastLaplace

algorithm outperforms FastARD.

• The OLS solver shows no significant change in validation error for all considered

numerical examples with the increasing experimental design.
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3.1.5 Treating spatial and temporal dependencies

What is presented so far is applicable for single-output computational models, i.e.,

the estimated outputs are only delivered for one instance in time or space. In many

engineering applications, most of the developed computational models give responses at

a fixed set of discrete time instances T = {t1, · · · , tnt} and spatial positions (X,Y,Z) =

{(x1, y1, z1), · · · , (xns , yns , zns)} for many SRQs R = {R1, · · · ,Rnout}. Following the

commonly used approach of individual surrogate modeling that treats each of these

scalar outputs separately, the training and prediction costs dramatically increase, which

is proportional to nt×ns×nout. Furthermore, individual surrogate modeling may lead

to a high degree of redundancy, as the simulation outputs are highly correlated [Nagel

et al., 2020].

To circumvent this computational issue, Higdon et al. [2008] proposed to treat the

temporal dependency of the outputs by deploying dimensionality reduction techniques

in a way that the correlations in space and time are preserved. Dimensionality reduction

involves the compression of high-dimensional data into a representation with reduced

dimensionality. Moreover, it is important in many fields, since it mitigates the curse of

dimensionality and other unwanted characteristics of high-dimensional spaces.

Principal component analysis (PCA) is a well-established method for analyzing the

relationships between dependent variables and obtaining linearly uncorrelated variables

with decreasing variances by applying an orthogonal transformation. Recently, several

attempts have been made to introduce PCA for uncertainty quantification. Aversano

et al. [2019] employed PCA to compress a large number of predicted SRQs into a smaller

set of scalars and trained surrogate models using a combination of PCA with Kriging for

uncertainty analysis. Manfredi and Trinchero [2020] and Memon et al. [2020] used PCA

for data compression and fed it to two compact surrogate models (i.e., sparse PCE and

least-square support vector machine regression) for efficient uncertainty quantification.

Nagel et al. [2020] applied PCA in conjunction with a sparse PCE to perform sensitivity

analysis and calibration for a stormwater management model.

Let us consider a random vector Y ∈ Rnt×ns×nout containing N realizations of model

outputs Y = {Y(1), · · · ,Y(N)}⊤. The first two moments, mean (µY = E [Y]) and the
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covariance (ΣY = Cov [Y]) are approximated by

µ̄Y =
1

N

N∑
n=1

Y(n), Σ̄Y =
1

N − 1

N∑
n=1

(
Y(n) − µ̄Y

) (
Y(n) − µ̄Y

)⊤
. (3.42)

The PCA transformation can be performed by

ζ̃(n) = Φ̄⊤
N⋆

(
Y(n) − µ̄Y

)
for n = 1, · · · , N, (3.43)

where Φ̄⊤
N⋆ = (Φ̄1, · · · , Φ̄N⋆) are composed of N⋆ < N eigenvectors for which the

proportion
∑N⋆

i=1 λ̄i/
∑N

i=1 λ̄i of the total empirical variance is equal or larger than a

user-defined threshold. The eigenvectors Φ̄i and the eigenvalues λ̄i must meet the

following condition

Σ̄YΦ̄i = λ̄iΦ̄i for i = 1, . . . , N. (3.44)

where the eigenvalues are arranged in the descending order λ̄0 ≥ λ̄1 ≥ · · · ≥ λ̄N . Equa-

tion (3.43) represents the reduced PCA representation of Yn in terms of the principal

components ζ̃
(n)
i = Φ̄⊤

i

(
Y(n) − µ̄Y

)
for i = 0, · · · , N ⋆

. The reduced model output can

be represented by

Z =


ζ̃(1)⊤

ζ̃(2)⊤

...

ζ̃(N)⊤

 =


ζ̃
(1)
0 ζ̃

(1)
1 . . . ζ̃

(1)
N⋆

ζ̃
(2)
0 ζ̃

(2)
1 . . . ζ̃

(2)
N⋆

...
...

. . .
...

ζ̃
(N)
0 ζ̃

(N)
1 . . . ζ̃

(N)
N⋆

 . (3.45)

The expression in Equation (3.45) shows the compressed data set that maintains the

majority of the total variation. One can reconstruct the original observed samples

n = 1, · · · , N approximately by

Y(n) ≈ µ̄Y + Φ̄⊤
N⋆ ζ̃(n) = µ̄Y +

N⋆∑
i=0

ζ̄
(n)
i Φ̄i. (3.46)

Once the transformation of the model outputs Y are obtained by a few principal com-

ponents, a surrogate model ζ̃p(X) ≈∑α∈A ĉp,αΨα(X) for p = 0, · · · , N⋆ via BaSaPCE

(Section 8) can map the input parameter set X to the principal components Z. For a

new input x′, Equations (3.31) and (3.32) yield the predictive distribution over ζ̃ ′. The
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conditional expectation of Y′ with respect to x′ can be approximated by

E [Y′ | x′] ≈ µ̄Y +
N⋆∑
p=0

ζ̃p(x
′)Φ̄p ≈ µ̄Y +

N⋆∑
p=0

(∑
α∈A

ĉp,αΨα(x
′)

)
Φ̄p. (3.47)

Note that when using more and more components, the metamodel error increases.

According to Blatman and Sudret [2013], it is required to dynamically augment the

experimental design’s size dynamically to have better global control over the error.

Doing so allows us to capture the details of the higher-order principal components.

3.1.6 Bootstrap-based prediction confidence interval

To assess the variability of the estimated coefficients c in Equation (3.16), one can

make use of the bootstrap resampling method [Efron, 1982]. Let us assume that the

SRQ, ω, is a function of a training set (experimental design) X with a finite size

NED. For bootstrapping, it is required to construct b new sample sets from the original

training set X = {X (1), · · · X (b)} and Y = {Y(1), · · · Y(b)}. This resampling can be

performed with substitution, which means b times NED realizations might include the

same realization multiple times. Then, a family of b surrogate models is trained using

the resampled training subsets. The estimated quantities from each of the b surrogate

models, Ω = {ω(1), · · ·ω(b)}, yield a set of estimates, that can be directly used to assess

the variability of the SRQ due to the finite size of the training set X.

Marelli and Sudret [2018] proposed using the bootstrap technique to provide local error

estimates (i.e., confidence interval) to the PCE predictions. This can be achieved by

resampling the PCE coefficients using cα via bootstrapping. To do so, a set of coeffi-

cients c
(i)
α is estimated for each generated design in the set of bootstrapped experimental

design {X (i),Y(i)} with i = 1, · · · , b. Consequently, the prediction of each PCE using

Equation (3.15) at a new point x can be collected in a set of full responses (trajecto-

ries) {Ỹ(i)(x), i = 1, · · · , b}. Then, one can employ the empirical quantities to provide

a confidence interval on the PCE prediction at each new sample x, or any other derived

quantities, such as sensitivity indices [Dubreuil et al., 2014] or probability of failure in

structural reliability applications [Notin et al., 2010, Picheny et al., 2010, Marelli and

Sudret, 2018, Cheng and Lu, 2020, Guo et al., 2020]. The process of bootstrap based
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resampling to better estimate point-wise confidence intervals has extensively been inves-

tigated in the Gaussian process modeling literature, see e.g., [Den Hertog et al., 2006,

Van Beers and Kleijnen, 2008, Kleijnen and Van Beers, 2013, Mehdad and Kleijnen,

2015].

The computational complexity of the bootstrap-PCE is significant, especially for large

experimental designs (N ∼ 1000) and high dimensional input parameters when using

BaSaPCE or any other sparse regression method. To circumvent this problem, Marelli

and Sudret [2018] suggest using a fast version of bootstrap-PCE, in that the sparse

polynomial bases are determined first by the sparse learning algorithm for the full

experimental design X. This step is followed by bootstrapping, which only recalculates

the coefficients (cα) for other bootstrap-resampled experimental designs via an OLS

method on the identified sparse basis. The deployment of the classical OLS method can

be justified by the fact that accurate PCE predictions are not necessary for estimating

confidence intervals. However, Marelli and Sudret [2018] recommend employing full

bootstrapping for computationally expensive models, whose single run may take several

hours. For the full bootstrapping, the (Bayesian) sparse learning algorithm is used to

compute the PCE coefficients for each of the bootstrap-resampled experimental designs.

As discussed earlier, BaSaPCE provides a prediction error for a new sample x us-

ing Equation (3.32). This prediction confidence bound reflects the variability due to

the choice of polynomial terms included in the expansion. Using bootstrap-BaSaPCE,

however, includes the variability due to the finite size of the experimental design. More-

over, when treating the spatial and temporal dependencies of the model outputs with

dimensionality reduction methods, transforming the prediction uncertainty, estimated

by Equation (3.32), computed for the principal components to the original output space

is not trivial. Employing bootstrapping, in turn, allows us to produce trajectories in

the reduced space and transform them back to the output space. Consequently, one

can use these trajectories to compute the prediction confidence bounds.

3.1.7 Surrogate model properties

Once the PC bases have been set up, and the coefficients have been estimated, the post-

processing of the expansion provides valuable metrics that help analyze the model under

investigation. These metrics can reveal the average behavior of the SRQs and their
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spreads using mean and variance, respectively. Moreover, one can estimate confidence

intervals of SRQs and perform a sensitivity analysis, which shows how the variability

of the model response quantities is affected by the variability of each input variable or

combinations thereof.

Moment analysis The mean and standard deviation of a PCE truncated series Ỹ =∑
α∈A cαΨα(X) can be readily computed given the orthonormality of the PCE basis

expressed in Equation (3.6). Since each polynomial is orthogonal to Ψ0 ≡ 1, that

is E [Ψα(X)] = 0 ∀α ̸= 0. Therefore, the first term of the expansion represents the

expected value of Ŷ:

E[Ỹ] = E

[∑
α∈A

cαΨα(X)

]
= c0. (3.48)

Similar to the mean, the variance of Ŷ reads

σ2
Ỹ
= Var[Ỹ] = E

[(
Ỹ − c0

)2]
=
∑
α∈A
α ̸=0

c2α. (3.49)

Higher-order moments, such as skewness and kurtosis, may also be computed. However,

numerical computational methods such as quadrature must be employed to estimate

their values since they require the expectation of products of three and four multivariate

polynomials, respectively. More details can be found in Sudret [2008].

Global Sensitivity analysis Various sensitivity analysis approaches have been devel-

oped in recent years. For an extensive review of different techniques, see Iooss and

Lemâıtre [2015]. Here, I leverage the connection of polynomial representation to global

sensitivity measures and use the so-called Sobol indices [Sobol’, 1993]. These indices

are derived from a variance decomposition of model outputs in terms of contributions

of each input parameter or combinations thereof. Using Sobol decomposition, one can

describe the total variance of model responses in terms of the sum of the summands’

variances. This variance decomposition is extensively explained in Sudret [2008].

Sudret [2008] also derives PC-based Sobol indices by leveraging the orthonormality of

the polynomial chaos basis. The idea behind these indices is as follows: once the PC

representation of the model in Equation (3.15) is available, the expansion coefficients
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cα are simply gathered according to the dependency of each basis polynomial, square-

summed and normalized, which can be written as

SPCE
i =

∑
α∈Ai

c2α∑
α∈A

c2α
, Ai = {α ∈ A : αi > 0, αj ̸=i = 0} . (3.50)

In the above equation, SPCE
i is the Sobol index that indicates what fraction of the total

variance of the response quantity can be traced back to the joint contributions of the

parameters i.

A complementing measure for sensitivity analysis is the Sobol Total Index. It expresses

the total contribution to the variance of model output due to the uncertainty of an

individual parameter in all cross-combinations with other parameters, which reads

ST,PCE
i =

∑
α∈AT

i

c2α∑
α∈A

c2α
, AT

i = {α ∈ A : αi > 0} , (3.51)

where ST,PCE
i is simply a summation of all Sobol indices in which the variable i appears

as univariate as well as joint influences. The total Sobol index can take values larger

than 1 when the impact of interactions among parameters on the total output vari-

ance is not negligible. This characteristic is particularly prominent in highly nonlinear

problems that are common in engineering applications.

As explained in Section 3.1.5, many computational models provide temporal and/or

spatial responses, possibly for more than one SRQ. When PCA is used to reduce the

dimensionality of SRQs, the Sobol indices of the principal components need to be

computed first. Then, one needs to relate these indices to those for the model outputs.

Nagel et al. [2020] establish this link for the models with multivariate outputs. The

variance of this conditional expectation reads

Var
[
E
[
Ỹt | Xi

]]
=

N∑
p=0

Var
[
E
[
ζ̃p | Xi

]]
Φ̄2

p,t+2
∑
p<q

Cov
[
E
[
ζ̃p | Xi

]
,E
[
ζ̃q | Xi

]]
Φ̄p,tΦ̄q,t,

(3.52)

where Cov
[
E
[
ζ̃p | Xi

]
,E
[
ζ̃q | Xi

]]
denotes the covariances of the conditional expec-

tations E
[
ζ̃p | Xi

]
and E

[
ζ̃q | Xi

]
for p, q = 1, · · · , N with p ̸= q. These expectations
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can be calculated by

E
[
ζ̃p | Xi

]
= cp,0 +

∑
α∈A{i}

cp,αΨα(X). (3.53)

One can now relate the first-order Sobol’ index of the output Ỹ with respect to the

input Xi to the corresponding indices of the principal components ζ̃p for p = 0, · · · , N .

By dividing Equation (3.52) by the total variance Var
[
Ỹ
]
, one obtains the first-order

Sobol’ index with respect to Xi as follows:

St
i =

Var
[
E
[
Ỹt | Xi

]]
Var

[
Ỹt

] =
N∑
p=0

S
ζ̃p
i

Var
[
ζ̃p

]
Var

[
Ỹt

]ϕ2
p,t+2

∑
p<q

Cov
[
E
[
ζ̃p | Xi

]
,E
[
ζ̃q | Xi

]]
Var

[
Ỹt

] ϕp,tϕq,t

(3.54)

where S
ζ̃p
i denotes the Sobol index of the principal component ζ̃p with respect to an

input variable Xi. This value can be readily determined from the PCE coefficients as

follows

S
PCE,ζ̃p
i =

∑
α∈Ai

c2α∑
α∈A

c2α
, Ai = {α ∈ A : αi > 0, αj ̸=i = 0} . (3.55)

The terms of covariance in Equation (3.54), given the orthogonality of the polynomial

basis, can be written as follows

Cov
[
E
[
ζ̃p | Xi

]
,E
[
ζ̃q | Xi

]]
=
∑

α∈A{i}

cp,αcq,α. (3.56)

Note that using bootstrap-BaSaPCE allows us to compute credible intervals for the

quantities introduced above. Every design from a family of b experimental design

results in moments and Sobol indices collections. For example, the empirical confidence

interval for the sensitivity analysis with Sobol indices is Ŝi[α/2] ≤ Si ≤ Ŝi[1−α/2] using

the α and 1 − α/2 empirical quantiles for significance level α = 0.05 [Dubreuil et al.,

2014].
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3.2 Experimental design

The computational cost of constructing a surrogate model and its accuracy crucially de-

pends on the number of required evaluations of the computationally expensive model

in the experimental design (ED) . This is a set of training samples from the joint

distribution of the input parameters. Properly designed ED has proved vital for the

simultaneous reduction of the effect of noise and bias errors which can raise confidence

in the task of Bayesian analysis. This has motivated researchers to examine assorted

strategies for constructing the training set {Ψα(Xi)}NED
i=1 beyond the standard MC sam-

pling. In this context, the influence of different experimental designs on predictions

have been adequately addressed in the literature [Simpson et al., 2001, Giunta et al.,

2003, Simpson et al., 2004, Queipo et al., 2005, Fajraoui et al., 2017, Hadigol and

Doostan, 2018].

In general, the sampling approaches can be categorized into two groups: classical sam-

pling and sequential sampling. The common practice in classical sampling is to choose

the experimental design P grounded only in the information available before any model

evaluation, e.g., noise, the relevance of the input parameters, and measurement preci-

sion. Then, the computational model is evaluated on the selected samples in the ED,

and the surrogate model is finally created. This approach is also known as the one-

shot approach, as all the sample points in the ED are specified at once, and no later

evaluations of additional samples are made. The a priori selection of ED is a fairly

challenging task since the determination of optimal sample size is hindered by the lack

of prior knowledge about the model behavior.

To tackle this problem, flexible sequential sampling strategies have been proposed,

which sequentially determine the samples in the design using the information from

previous iterations. The sequential sampling approaches can be grouped into two cate-

gories: sequential space-filling sampling and sequential adaptive sampling. Space-filling

approaches make sure that the generated samples cover the entire domain evenly. These

sampling approaches are usually developed from some one-shot sampling criteria by

selecting the training parameter sets in a sequential manner [Fajraoui et al., 2017].

However, adaptive sequential sampling, also known as adaptive sampling and active

learning in machine learning [Settles, 2009], makes more informed choices of samples

via the surrogate model itself or data that it learns from, and hence, achieves better
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performance with fewer samples than the space-filling sampling, resulting in saving the

simulation cost of expensive computational models [Liu et al., 2018].

Here, we adopt a sequential adaptive sampling experimental design (SAED). Algorithm

4 summarizes a typical SAED method. Firstly, an initial batch of samples is selected

via a one-shot experimental design. This design can be produced by a common design

of experiments approach, such as Latin hypercube sampling [McKay et al., 2000] or

random sampling. Next, the model is evaluated provided by the previously selected

samples. Then, the surrogate model is trained to construct a relationship between

the ED and the quantities of interest. After constructing the surrogate model, its

accuracy is estimated using an error metric, e.g., validation error or Leave-one-out

error (Section 3.2). Since the initial ED is chosen to be small, the estimated error

metric most likely indicates that the ED needs to be enriched.

Algorithm 4: A typical sequential design method

Result: Enriched experimental design

1 P ← initial experimental design;

2 Evaluate the computational model at D;

3 Train the surrogate model;

4 Compute the error metric;

5 while error > prescribed error and No. runs < Total No. runs do

6 Select new sample Pnew using sequential design strategy;

7 Evaluate the computational model at d⋆;

8 D ← D ∪ d⋆;

9 Train the surrogate model;

10 end

A sampling strategy based on active learning selects these additional samples. Some of

these strategies will be explained later in detail. Finally, a new surrogate model is built

using all the data gathered thus far, and the model accuracy is estimated again. If the

surrogate model’s prescribed accuracy level or the total number of samples is still not

reached, the entire sample selection process is repeated.

Through the sequential selection of samples, more information is available to improve

sampling compared to the classical design of experiments [Crombecq, 2011]. The ulti-

mate goal of this algorithm is to reduce the overall number of samples, as evaluating the
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samples (running the simulation) is the dominant cost in the entire surrogate modeling

process, especially for computationally demanding models. Hence, when the computa-

tional bottleneck is the evaluation of the SRQ for any given realization, the additional

computational cost of constructing an optimal design via SAED is justifiable.

In what follows, the learning strategies (design criteria) for sequential enrichment of

the ED are introduced. The criteria discussed in what follows can be grouped into two

categories. The first group can be used for cases where no data is involved, and the

goal is to train a surrogate model for uncertainty quantification. The second category

of design criteria can be implemented for emulators being trained for model calibration,

i.e., the measurement data is available and can assist in the task of Bayesian model

validation.

3.2.1 Learning strategies for SAED

To efficiently improve the overall accuracy of a surrogate model, Deschrijver et al. [2011]

and Liu et al. [2016a] suggest that a SAED approach must maximize two conflicting

parts, namely local exploitation and global exploration. While local exploitation assists

in finding regions where most information can be extracted, global exploration ensures

that informative regions that have not been detected yet can be explored. A sampling

approach with only exploitation is often biased since it has an imperfect view of the

entire domain. To deal with this issue, the global exploration term based on, e.g., some

distance criteria is required.

Generally, the new point selected in each sampling iteration given a one-by-one selection

process can be done by maximizing the following score function:

d⋆
new = argmax

d+∈D
Score(global(d+), local(d+)), (3.57)

where global(d+) and local(d+) represent the global exploration term and the local

exploitation, respectively. In what follows, we will introduce these two terms. These

explanations are followed by introducing a trade-off scheme aiming to maintain a bal-

ance between local exploitation and global exploration.
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Local exploitation

Various adaptive sampling (learning) approaches exist in the literature. These ap-

proaches select the new design points based on either an augmented basis or the current

trained surrogate model. Fajraoui et al. [2017] provide a brief review and interpretation

of a major class of augmented basis-based ODE, known as alphabetic optimal design.

Hampton and Doostan [2016] suggest a coherence-optimal sampling in the context of

PCE. Liu et al. [2018] present a comprehensive survey of different adaptive sampling

approaches according to the sampling criteria for identifying informative regions in the

parameter space using the already trained surrogate models. This survey includes all

other types of surrogate models, such as the Kalman filter and Gaussian process em-

ulator. In the context of PCE, Ji et al. [2008] and Seeger and Nickisch [2008] propose

a criterion that minimizes the differential entropy of the posterior distribution of the

coefficients in a Bayesian regression setting. Zhou et al. [2019] also suggest a strategy

based on approximations to the expected quadratic loss function, which means the

mean squared error.

In what comes next, I investigate two general categories of design criteria: Active learn-

ing (AL) and Bayesian active learning (BAL). Mathematical frameworks of different

design criteria (learning strategy) for each category are presented in what follows. The

objective of all these criteria is to identify a new design point to run the original compu-

tational model, among some prospective designs, which maximizes the expected utility,

taking into account the surrogate model at hand and/or the available measurement data

for the task of inference. Moreover, these strategies are investigated with an analytical

example.

Active learning Following Beck and Guillas [2016], I employ the framework of design

and analysis of computer experiments (DACE) proposed by Sacks et al. [1989]. Using

DACE, the computational model’s output is modeled as a realization of a random

field that is typically assumed to be Gaussian. BasaPCE provides Gaussian random

fields obtained by Equation (3.31). Using the predicted random fields, one can take

advantage of information collected during the experimental design process to determine

the next optimal design at which the data need to be collected to refine the surrogate.

This procedure is also known as active learning. Active learning criteria are based on
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the predictive variance. In what follows, I will introduce two design criteria: active

learning MacKay (ALM) and the expected improvement for global fit (EIGF).

Active learning MacKay This strategy was proposed by MacKay [1992b] for active

data selection using information-based objective functions and is one of the popular

design strategies. At each iteration in the sequential adaptive sampling, ALM selects

the design point d⋆ that maximizes the predictive variance of the surrogate:

d⋆
AL = argmax

d+∈D
ALM = argmax

d+∈D
σ̂2
D(d

+). (3.58)

Here, σ̂2
D(d) is the predictive variance of the surrogate model trained with the current

design D evaluated at the candidate design d+. According to Beck and Guillas [2016],

ALM places many design points at the boundary of the design region, i.e., input param-

eter space. However, boundary points are generally considered less informative than

nearby interior points [Krause et al., 2008].

Expected improvement for global fit Lam [2008] proposed EIGF as a variance-based

adaptive sampling strategy, which is a modified version of the expected improvement

criterion proposed by Jones et al. [1998]. The expected improvement over the nearest

observed point can be computed by

d⋆
AL = argmax

d+∈D
EIGF = argmax

d+∈D

[
MPC

D (d+)−MD(d
′)
]2

+ σ̂2
D(d

+), (3.59)

where the first term on the right-hand side tends to a large value when the surrogate

response is significantly different from the model response for the nearest observed

point d′. The second term, however, accounts for the uncertainty of the surrogate

model at the candidate design d+. Simply put, the EIGF criterion hints toward the

region in the parameter space, where either the difference between the prediction and

the output at the nearest known design point or the predictive variance is significant. In

general, ALM outperforms EIGF, although, for nonstationary output, EIGF could be

competitive [Kupresanin and Johannesson, 2011]. Generally, the EIGF is only effective

in special cases, especially when the output is constant except for a small region in the

design space [Maljovec et al., 2013].
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Bayesian active learning BAL was first introduced by Oladyshkin et al. [2020]. The

authors present learning strategies (design criteria) that leverage the connection be-

tween Bayesian inference and information theory to identify a new training set for the

iterative refinement of surrogate models with the Gaussian Process Emulator. Similar

to GPE, BaSaPCE provides predictions as a mean value µy(θ, x, y, z, t) and standard

deviation σy(θ, x, y, z, t), as discussed in Section 3.1.2. Therefore, initial knowledge on

model response y(θ, x, y, z, t) in each point of space (x, y, z) and time t for the given

exploration parameter set d+ from the design space D is encoded in the Gaussian prior

probability distribution N (µy(d
+, x, y, z, t), σy(d

+, x, y, z, t)). Thus, the prior probabil-

ity distribution of model response y(θ, x, y, z, t) for the given candidate parameter set

d+ is forming response space Y that is a multivariate Gaussian, denoted as Nd+(µy, σy).

According to the Bayesian theorem (Section 2.1.2), we can obtain a posterior proba-

bility distribution pd+(y|Y) of the model response for the given parameter set d+,

incorporating the observed data Y :

pd+(y|Y) =
pd+(Y|y)Nd+(µy, σy)

pd+(Y)
, (3.60)

where the term pd+(Y|y) is the likelihood function that quantifies how well the surrogate

model predictions y(d+, x, y, z, t) drawn from the multivariate Gaussian Nd+(µy, σy)

match the observed data Y . The term pd+(Y) denotes the Bayesian model evidence

value for the given parameter set d+.

Assuming independent and Gaussian distributed measurement errors, the likelihood

function pd+(Y|y) can be written as:

pd+(Y|y) = (2π)−Nout/2|Σ|− 1
2 exp

[
−1

2

(
Y − y(d+, x, y, z, t)

)T
Σ−1

(
Y − y(d+, x, y, z, t)

)]
,

(3.61)

where y(d+, x, y, z, t) comes from Nd+(µy, σy) and Nout denotes the number of measure-

ment points. In the following sections, we will first show how three choices of utility

functions will be introduced. These utilities lead to valid measures of information gain,

model evidence and information entropy.

Model evidence-based utility As discussed in Section 2.2.2, BME can be regarded as

a metric to rank competing models. Here, we leverage this property of BME to identify
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the next suitable training point in the parameter space during the sequential design.

In each iteration, we compute the BME value for the prospective design point d+ using

the following expression:

BMEBAL ≡ pd+(Y) =
∫
Y

pd+(Y|y)Nd+(µy, σy)dy. (3.62)

BMEBAL in Equation (3.62) can be approximated by:

BMEBAL = ENd+ (µy,σy) [pd+(Y|y)] , (3.63)

where the term on the right-hand side denotes the expected value ENd+ (µy,σy) of the

likelihood pd+(Y|y) over the prior Nd+(µy, σy) provided by the surrogate’s prediction.

Consequently, the next training point for the surrogate model, i.e., d∗
BAL ∈ D, can be

identified by maximizing the model evidence BMEBAL

d∗
BAL = argmax

d+∈D
BMEBAL. (3.64)

Information gain utility A utility function based on mutual information is known as

one of the most widely used Bayesian design criteria based on relative entropy. This util-

ity function includes Kullback-Leibler divergence (KLD) [Kullback and Leibler, 1951]

and seeks to maximize the expected information gain in moving from the multivariate

Gaussian prior Nd+(µy, σy) to the posterior pd+(y|Y) during the learning procedure.

Formally, the relative entropy KLDBAL [pd+(y|Y),Nd+(µy, σy)] can be defined for each

candidate sampling point d+ from the parameter space D as following:

KLDBAL [pd+(y|Y),Nd+(µy, σy)] =

∫
Y

ln

[
pd+(y|Y)
Nd+(µy, σy)

]
pd+(y|Y)dy. (3.65)

Following Oladyshkin and Nowak [2019], one can avoid multidimensional integration

in Equation (3.65) by:

KLDBAL [pd+(y|Y),Nd+(µy, σy)] = − ln BMEBAL + Epd+ (y|Y) (ln [pd+(Y|y)]) . (3.66)

Therefore, the optimization problem to select the next training point takes the following
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form:

d∗
BAL = argmax

d+∈D
KLDBAL [pd+(y|Y),Nd+(µy, σy)] . (3.67)

Note that Equation (3.67) depends not only on BMEBAL values from Equation (3.66),

but also on the cross entropy represented by term Epd+ (y|Y) (ln [pd+(Y|y)]). This term

reflects how informative the likelihood is (for more details, see Oladyshkin and Nowak

[2019]). Moreover, we obtain the last term via a rejection sampling technique (Sec-

tion 2.1.3) using the evaluations from the already trained surrogate model.

Information entropy-based utility Another utility for selecting the next training

point in a BAL has its root in information entropy [Shannon, 1948] and is often used

in machine learning. Here, we aim to reduce the expected information loss during the

sequential design. The information entropy HBAL [pd+(y|Y)] to assess information loss

for each parameter set d+ as the candidate for next training point can be computed by:

HBAL [pd+(y|Y)] = −
∫
Y

ln [pd+(y|Y)] pd+(y|Y)dy. (3.68)

According to Oladyshkin and Nowak [2019], information entropy in Equation (3.68)

can be written as following:

HBAL [pd+(y|Y)] = lnBMEBAL − Epd+ (y|Y) (ln [Nd+(µy, σy)])

− Epd+ (y|Y) (ln [pd+(Y|y)]) .
(3.69)

We obtain all terms in Equation (3.69) using prior- or posterior-based sampling on the

surrogate model’s prediction, avoiding any multidimensional integration using methods

such as rejecting sampling (Section 2.1.3). Therefore, the optimization problem takes

the following form:

d∗
BAL = argmin

d+∈D
HBAL [pd+(y|Y)] , (3.70)

in that, we seek to identify the parameter set d∗
BAL from the design space D that

corresponds to minimum of information entropy HBAL [pd+(y|Y)].
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Global exploration

As alluded to earlier, a pure exploitation criterion for adaptive sampling is often biased.

To address this issue, we employ a space-filling-based global exploration criterion in ad-

dition to local exploitation to be able to discover the unexplored informative regions

in the parameter space. This exploration can be performed using Global Monte Carlo

methods. In the context of SAED, one uses these methods to generate many random

candidate samples in the parameter (design) space, then computes a score based on a

criterion, and finally selects the sample with the best score. In this dissertation, I em-

ploy a space-filling input-based method for computing the global exploration scores of

design candidates in Equation (3.57). A space-filling design generates an experimental

design D in which the samples in the training set are distributed evenly over the design

space.

Let us assume a d -dimensional experimental design D = {d1, · · · ,dm}T containing m

samples di =
(
d1
i , ...,d

d
i

)
in the (hyper)cube [−1, 1]d. To achieve an acceptable space-

filling design strategy, a candidate sample must maximize certain criteria. I employ

a so-called Intersite-projected distance criterion, first introduced by Crombecq [2011].

This criterion maximizes two properties, namely the max-min distance and projected

distance, by solving a multi-objective optimization problem. The former maximizes

the smallest Euclidean distance of any set of points in the design. The latter, however,

ensures that if the design points from dimension d are projected to a (d−1)-dimensional

space along one of the axes, no two points are ever projected onto each other. The

objective function that gives scores to a new candidate point d+ when it is added to an

existing design D can be cast as:

dist(D, d+) =
d
√

(m+ 1)− 1

2
argmin
di∈D

√√√√ d∑
k=1

|dk
i − d+,k|2 + m+ 1

2
argmin
di∈D

||di − d+||+∞

(3.71)

Trade-off between local exploitation and global exploration

Recall that we define our sampling objective function in Equation (3.57) as a combi-

nation of two competing parts: local exploitation and global exploration, in pursuit of
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locating the informative regions and avoiding the formation of clusters in specific re-

gions. To improve sampling performance, we seek a trade-off between local exploitation

and global exploration using:

ST = wl × Sl + wg × Sg (3.72)

where Sl and Sg are the local exploitation and the global exploration scores, respectively,

as presented earlier. wl and wg denote the weights of the criteria and shall satisfy

wl + wg = 1. A valid trade-off not only conducts effective local exploitation in the

located region but effectively offers the search algorithm also to consider undetected

areas [Liu et al., 2016a].

Various trade-off strategies between local exploitation and global exploration exist in

the literature. Liu et al. [2018] classify these strategies into three categories: decreasing

strategy, switch strategy, and adaptive strategy. In a decreasing strategy, the global

exploration starts with weight wg close to one to explore the entire domain. With

increasing sampling iterations, however, wg decreases, and the local exploitation receives

higher importance weight wl to identify interesting regions, which means the process

converges with a wl close to one. This strategy has been employed in Kim et al. [2009],

Singh et al. [2013] and Turner et al. [2007]. The problem of ignoring global exploration

in a decreasing strategy for the final sampling stage led to the development of switch

or greedy strategies. Singh et al. [2013] suggested this strategy by switching between

exploitation and exploration using a threshold value ε. First, one picks a random value.

If this value is smaller than the threshold value ε, the sampling only occurs via pure

exploration; otherwise, it changes to pure local exploitation. A generalized version of

the switch strategy, namely the adaptive strategy, has been developed to adaptively

switch between exploitation and exploration by comparing gained information among

successive iterations. Singh et al. [2013] found that the adaptive strategy provides the

best results among all strategies.

In this dissertation, I adopt an adaptive trade-off scheme. This approach is based on

comparing the model error for the sample selected in the last iteration with its leave-

one-out error as described in Section 3.1.3. This method may hint us toward a balance

factor wl. Note that the LOOCV error εLOO is an estimation of the true error εTrue.

The accuracy of this estimation plays a major role in the performance of the sampling

process. It is commonly the case that LOOCV error over-/under-estimate the actual
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error [Viana et al., 2009, Liu et al., 2016b]. Consequently, the local exploitation score

becomes biased. To avoid this, we will assign a higher weight to the global exploration

for the iterations in which the difference between the LOOCV error εLOO and the true

error εTrue is significant. To this end, the factor wg in Equation (3.72) can be derived

from the idea of adjusting εLOO so that it is a good representation of the true error

εTrue.

Let i be the iteration number, we have selected a new training sample di−1 in the

(i− 1)-th iteration. Moreover, assume that yi−1 denotes the corresponding true model

response using the simulator. The acquired information in the (i − 1)-th iteration

can help determine the wg value for the i-th iteration. A dynamic adjustment of wg

can be performed by comparing the estimated LOOCV error εLOO(di−1) and the true

prediction error εTrue(di−1). Thus, the global weight wg takes the following form

wg =

{
0.5, q = 1

min
[
0.5× ε2True(di−1)

ε2LOO(di−1)
, 1
]
, q > 1

. (3.73)

The balance factor wg receives 0.5 in the first iteration, meaning that the local ex-

ploitation and the global exploration are treated equally. For iteration i > 1, once di−1

is obtained, one builds the surrogate M̂i−1. Then, the LOOCV error εLOO(di−1) is

obtained using Equation (3.38) and the true prediction error εTrue(di−1) is a root mean

square error. Figure 3.6 illustrates how wg changes with respects to εTrue/εLOO.

The following observation can be made from Figure 3.6:

• if ε2True > ε2LOO, the LOOCV error is an underestimation of the true error. Thus,

the weight wg decreases from 0.5 to 0.5× ε2True(di−1)

ε2LOO(di−1)
, i.e. the global exploration is

favored.

• if ε2True < ε2LOO, the LOOCV error overestimates the true error. Thus, the local

exploitation is favored with a weight min
[
0.5× ε2True(di−1)

ε2LOO(di−1)
, 1
]
.

• ε2True = ε2LOO indicates that the LOOCV error is an accurate estimation of the

true error and as a result the local exploitation and the global exploration are

treated equally.
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Figure 3.6: The global exploration weight for i > 1.

3.2.2 Numerical experiment

SAED for an analytical test case

For the first numerical study, I consider a non-linear analytical function y(θ, t) with

ten (n = 10) uncertain parameters θ = {θ1, ..., θn}, used in Oladyshkin and Nowak

[2019] as:

y(θ, t) = (θ21 + θ2 − 1)
2
+ θ21 + 0.1× θ1 exp (θ2)− 2× θ1

√
0.5t+ 1 +

n∑
i=2

θ3i
i
, (3.74)

where the prior parameter distribution is considered to be independent and uniform

with θi ∼ U(−5, 5) for i = 1, ..., n. Moreover, I construct a test scenario by generating

ten synthetic observed data values y⋆ = y(θ, tk) with k = 1, ..., 10 corresponding to

θi = 0 ∀i.

To assess the prediction accuracy of y(θ, t), in Equation (3.74) comparing to the syn-

thetic observed data y⋆ , I use the likelihood function in (2.6), assuming independent

and Gaussian distributed error of σε = 2. In what follows, I investigate the perfor-

mance of the SAED with different strategies, with a particular focus on different goals



96 3 Surrogate Modeling

of employing surrogate models in a Bayesian framework. These goals are posterior

reconstruction and assessment of likelihood arguments, such as BME and KLD.

Posterior reconstruction In many cases, the objective of using a surrogate model is

to accelerate the Bayesian inference (Section 2.1.3), which yields posterior parameter

distributions. This posterior is an update of the prior distribution on the input model

parameters after comparing it to the observed data. Here, I analyze a 2D case of

the analytical function, i.e., with two parameters θ1 and θ2, for the sake of better

visualization of the posterior parameter space. As a reference, one can generate a true

posterior distribution using the test scenario explained earlier. Next, I will present

the surrogate model’s posterior distribution during the sequential refinement based on

information-based utilities introduced in AL and BAL frameworks (Section 3.2.1).
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Figure 3.7: The surrogate-based posterior distributions after 5, 25, and 45 sequential learning
steps with AL-ALM versus the original posterior for the 2D case of the analytical
function using MCMC method (Section 2.1.3)

Figure 3.7 illustrates the surrogate-based posterior distribution after 5, 25 and 45 itera-

tions against the reference posterior distribution. The initial surrogate was trained with

two training samples using the LHS method [McKay et al., 2000]. Then, SAED was

started with ALM within the active learning framework. Figure 3.8 shows the surrogate-

based posteriors using BAL with KLD utility. These figures indicate that both learning

strategies retrieve the non-Gaussian posterior parameter distribution reasonably well

after a few iterations for the analyzed 2D analytical test case. Additionally, it can

be observed that there is no significant difference concerning the posterior distribution

after 25 iterations. This observation indicates that the SAED algorithm can effectively

refine the surrogate model only with some iterations for this 2D problem.
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Figure 3.8: The surrogate-based posterior distributions after 5, 25 and 45 sequential learning
steps with BAL-KLD versus the original posterior for the 2D case of the analytical
function using MCMC method (Section 2.1.3)

Further assessment of the convergence So far, we visually inspect the posterior

achieved by surrogates with their respective references generated from the original

model for the 2D version of the analytical test case. In what follows, I will explore

the convergence of some scores, which include information regarding the likelihood and

the posterior during the sequential design for the original 10D problem. As discussed

earlier in Section 2.3, a multi-model comparison relies on approximating each model’s

BME value. A BME value can be approximated by taking the average of the likelihood

for the entire prior parameter space in Equation (2.9).

I monitor the changes in surrogate-based BME and Kullback-Leibler divergence be-

tween prior and posterior with their reference values during the learning process. Ola-

dyshkin and Nowak [2019] define and approximate these measures as below:

BME = p(d) =

∫
Θ

p(d | θ)p(θ)dθ = Ep(θ)(p(d | θ)) ≈
1

N

N∑
i=1

(p (d | θi)) (3.75)

DKL[p(θ | d), p(θ)] = − ln BME +
1

Np

Np∑
i=1

(ln [p (d | θi)]) (3.76)

Figures 3.9 and 3.10 present the metrics in Equations (3.75) and (3.76) compared to

their reference values with the increasing number of training samples in SAED. In each

iteration of surrogate model refinement, one sample has been added to the ED. For a

better visibility, the plots show the results for every 15 iterations. Due to the random

nature of the discussed sampling techniques, the results presented in the following are
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Figure 3.9: Evolution of BME with increasing training samples using BaSaPCE-SAED for
the analytical function (d = 10, p = 12, q = 0.5)
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Figure 3.10: Evolution of KLD with increasing training samples using BaSaPCE-SAED for
the analytical function (d = 10, p = 12, q = 0.5)

obtained by running 20 independent replications. The variability of the values due to

these replications are presented with the box plots. The solid lines show the median of

the values resulting from replications.

Figures 3.9 and 3.10 reveal that the BME and DKL values converge to the reference

value using BaSaPCE with only 135 model runs for a highly non-linear problem con-
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taining the parameter space of 10 dimensions. It can also be noticed that BME values

of all design criteria reach convergence after 120 training samples. In terms of BME, the

AL design criteria ALM and EIGF reach the convergence even after 75 iterations (105

simulation runs). The KLD evolution with the increasing training samples Figure 3.10

indicates more or less simultaneous convergence.

In this chapter, I addressed the following research question: how can a better surrogate

prediction accuracy be achieved for computationally demanding models under time

constraint? I investigated two approaches: a) clever selection of the PCE terms using

Sparse Learning approaches, and b) use of a sequential adaptive experimental design

that makes more informed choices of training samples.

A numerical experiment to compare different sparse learning methods introduced in

Section 3.1.2 revealed that the Bayesian Sparse Learning methods showed promising

prediction accuracy with increasing model complexity, i.e., number of input parameters.

A sequential adaptive learning method was presented to refine the surrogate by selecting

the training samples iteratively. This approach strikes a trade-off between exploitation

and exploration utility functions. With the help of a numerical example, it was shown

how surrogate modeling can benefit from this approach to provide good accuracy to

perform surrogate-based model calibration and ranking in a multi-model setting.

The upcoming chapter introduces a Python implementation of the Bayesian multi-

model validation Framework described so far. This python package provides an auto-

mated surrogate-based sensitivity analysis, Bayesian calibration-validation and multi-

model comparison.





4 BayesValidRox: a Python Package

for Bayesian Multi-Model

Comparison

A Python implementation of the Bayesian multi-model validation Framework described

so far is presented in this chapter. The Python package called BayesValidRox has been

developed as an open-source, object-oriented implementation of this framework. With a

modular structure, it provides automated surrogate-based sensitivity analysis, Bayesian

calibration-validation and multi-model comparison. The package is available on The

Python Package Index (PyPI) software repository∗.

Figure 4.1 shows all available modules of BayesValidRox and their dependencies. The

upcoming sections serve as a tutorial to guide users in using different modules of

BayesValidRox to perform UQ analysis of their problems at hand. In what follows,

I show how to couple computational models to BayesValidRox , train surrogate models,

and post-process the trained model. Section 4.4 shows how one can perform calibra-

tion via a surrogate-based Bayesian inference. Validation and model comparison will

be discussed in Section 4.5.

4.1 Model coupling with PyLink

The first step to use BayesValidRox is to connect the computational model(s) to the

package. Analyses can proceed smoothly once this step has been completed. Compu-

tational models can be coupled to BayesValidRox in direct and indirect via a python

∗https://pypi.org/project/bayesvalidrox/
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Figure 4.1: The available modules in BayesValidRox and their dependencies.

wrapper. To use the option with a python wrapper, after instantiating the object

PyLinkForwardModel , the attribute link_type needs to be set to 'Function' . Then, we

can pass the name of the python wrapper (python file) to the object.

1 from bayesvalidrox import PyLinkForwardModel

2

3 Model = PyLinkForwardModel ()

4

5 Model.link_type = 'Function ' # Link type

6 Model.py_file = 'AnalyticalFunction ' # Name of the python wrapper

7 Model.name = 'AnalyticFunc ' # Name of the model

8 Model.Output.names = ['Z'] # List with the names of the model ouputs

Listing 4.1: How to use PyLink when using a Python wrapper

But, what is actually a python wrapper? A wrapper or a binder allows the execution

of a third-party software/solver within the scope of BayesValidRox . This is basically

a function, written in a python file, that takes the parameters in an array of shape

(n_samples, n_params) as an argument and returns a dictionary with the x_values and
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output arrays for given output names passed to Model.Output.names . Here, x_values

is an array or a list of the time steps or point IDs corresponding to the outputs under

investigation. For multi-output cases, each output is expected to be saved in the

output dictionary with the corresponding name as the dictionary key. The x_values

are expected in a dictionary. An example of a python wrapper is shown in Listing 4.2.

1 def python_wrapper(xx):

2

3 # Extract No. of samples and parameters

4 n_samples , n_params = xx.shape

5

6 # Prepare the time steps

7 t = np.arange(0, 10, 1.) / 9

8

9 # Compute output

10 term1 = (xx[:, 0]**2 + xx[:, 1] - 1)**2

11 term2 = xx[:, 0]**2

12 term3 = 0.1 * xx[:, 0] * np.exp(xx[:, 1])

13 outputs = term1 + term2 + term3 + 1

14

15 # Prepare output dictionary

16 output_dict = {

17 'x_values ': t,

18 'Z': outputs

19 }

20 return output_dict

Listing 4.2: An example of a Python wrapper

As for the second option, we need to pass 'PyLink' to the class obj.type_name and

give the command to run the model, path to the input template files, and a python

file to parse the output file written by the third-party software in a file. Let us assume

a model named Beam9points that can be run by an executable with the same name

to be found in the current directory, hence exe_path = os.getcwd () (this the default

value - change if the execution file is not in the same directory) and a text-based

input file SSBeam_Deflection.inp . To run this model, we need to execute the command

myBeam9points SSBeam_Deflection.inp . This action starts a simulation and the outputs

Deflection [m] are saved in a text based SSBeam_Deflection.out file.

1 Model = PyLinkForwardModel ()

2
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3 Model.link_type = 'PyLink '
4 Model.name = 'Beam9points '
5 Model.input_file = "SSBeam_Deflection.inp"

6 Model.input_template = "SSBeam_Deflection.tpl.inp"

7 Model.shell_command = "myBeam9points SSBeam_Deflection.inp"

8 Model.exe_path = os.getcwd ()

9 Model.Output.parser = 'read_Beam_Deflection '
10 Model.Output.names = ['Deflection [m]']
11 Model.Output.file_names = ["SSBeam_Deflection.out"]

Listing 4.3: PyLink to use a third-party solver

After execution of each simulation, the output values are read by means of a parser

python script, whose name is passed to Model.Output.parser . An example of such a

script is presented in Listing 4.4.

1 import numpy as np

2 def read_Beam_Deflection(file_names):

3 # Read the outputs from the output file

4 outputs = np.loadtxt(file_names [0], delimiter=',')
5 # Prepare output dictionary

6 output_dict = {

7 'x_values ': np.arange(0, 5.6, 5./9) ,

8 'Deflection [m]': outputs

9 }

10 return output_dict

Listing 4.4: An example of a parser script to read the simulation outputs

In addition to obj.input_file , we need to create a template for the input file with

the naming convention [input_file_name].tpl.[input_file_extension] . BayesValidRox

copies the template files to the dedicated directories and renames them according to

the simulation run number. It also searches for the keywords with <Xi> pattern and

replaces the parameter set values. Here, i represents the parameter number defined

later in the input section. An example of a template input file is presented in Listing 4.5.

1 % Input file for the simply supported beam model

2 <X1 > % b in m

3 <X2 > % h in m

4 5 % L in m

5 <X3 > % E in Pa
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6 <X4 > % p in N/m

Listing 4.5: An example of a template input file

Observation data To perform uncertainty-aware calibration and/or validation, the

observation (measurement) data must be defined. This can be done in two ways: direct

and indirect, as shown in Listing 4.6. The former can be realized by passing the observa-

tion data in the form of a dictionary to obj.observations and obj.observations_valid

for calibration and validation, respectively. The indirect option is to read the data from

a text-based file, given to obj.meas_file or obj.meas_file_valid for the validation step.

These text-based files must include data for each output with the column headers given

by Model.Output.names .

1 # Direct way

2 Model.observations = {}

3 Model.observations['Time [s]'] = np.arange(0, 10, 1.) / 9

4 Model.observations['Z'] = np.repeat ([2.] , 10)

5

6 # Indirect way

7 Model.meas_file = 'MeasuredData.csv'
8 Model.meas_file_valid = 'MeasuredData_Valid.csv'

Listing 4.6: An example of how to pass observation data

4.2 Uncertain Input Parameters

So far, we defined all the specifications required to link BayesValidRox with a third-

party software/solver. The next step is to define the model input parameters. These

parameters are selected by the user among all the modeling parameters, whose values

are not known a priori. The uncertainties of these parameters are defined by their

distributions or data gathered from experimental campaigns. In the lack of information

on the parameter distribution, uniform distribution with physically meaningful ranges

is advisable.

To define the uncertain parameters, one needs to start with instantiating the Input

class. In the next step, for each parameter, an object needs to be created by calling
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Input.add_marginals() . This will instantiate an object called Marginals . This object

accepts a string as name , a distribution type as dist_type , and distribution parameters

as parameters variables. In case that the input parameters do not follow specific

distribution, one can pass available data directly to the Input.Marginals object and to

the input_data variable.

1 from bayesvalidrox import Input

2 Inputs = Input ()

3

4 # ----- First option -----

5 # Parameter 1

6 Inputs.add_marginals ()

7 Inputs.Marginals [0]. name = '$X_{1}$'
8 Inputs.Marginals [0]. dist_type = 'uniform '
9 Inputs.Marginals [0]. parameters = [-5, 5]

10

11 # Parameter 2

12 Inputs.add_marginals ()

13 Inputs.Marginals [1]. name = '$X_{2}$'
14 Inputs.Marginals [1]. dist_type = 'uniform '
15 Inputs.Marginals [1]. parameters = [-5, 5]

16

17 # ----- Second option -----

18 # Read data from a file

19 input_params = np.load('InputParameters.npy')
20

21 # Parameter 1

22 Inputs.add_marginals ()

23 Inputs.Marginals [0]. name = '$X_{1}$'
24 Inputs.Marginals [0]. input_data = input_params [:, 0]

25

26 # Parameter 2

27 Inputs.add_marginals ()

28 Inputs.Marginals [1]. Name = '$X_{2}$'
29 Inputs.Marginals [1]. input_data = input_params [:, 1]

Listing 4.7: An example of how to define uncertain model parameters

The distribution types implemented in BayesValidRox are: uniform , normal , lognormal ,

exponential , gamma , beta , and weibul . The distribution parameters, such as lower

bound, upper bound for the uniform distribution, mean and standard deviation for the
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normal distribution, location and scale for lognormal distribution need to be passed

to Inputs.Marginals[i].parameters . If the second option in Listing 4.6 is selected, the

distribution is represented by a kernel-density estimate using Gaussian kernels. This

estimate is a way to represent the probability distribution function (PDF) of random

variables in a non-parameteric manner [Scott, 2015].

4.3 Surrogate Modelling

Up until now, we have only defined the model specifications and the distributions for

the input parameters. In this section, I will show how a user can set up and train a

surrogate (meta) model with BayesValidRox . Moreover, the post-processing step after

training will be introduced which can provide useful information about the quality of

the surrogate model, sensitivity analysis, and the statistical moments of the simulations.

4.3.1 Training a meta-model

First, the user must instantiate a MetaModel object and pass the already specified

Input and Model objects as the arguments. Second, the type of the metamodel must

be specified, which can be selected from (classical) polynomial chaos expansion PCE ,

and arbitrary polynomial chaos expansion ( aPCE ). For more details, see Chapter 3.

As discussed in Section 3.1.5, one can employ an output dimensionality reduction

technique to treat the spatial and temporal dependencies. This can be specified by

MetaModelOpts.dim_red_method = 'PCA' . The number of principal components can be de-

fined either directly using n_pca_components or a variance threshold var_pca_threshold ,

for which the components can explain the underlying variance of the simulation outputs.

For the PCE or aPCE , BayesValidRox expects some additional parameters for the re-

gression method ( pce_reg_method ), the polynomial degree ( pce_deg ), and q-quasi-norm

( pce_q_norm ) for the hybrid truncation of α in Equation (3.2). The list of available

regression methods can be found as a comment in Listing 4.8. Bayesian Sparse aPCE,

presented in Section 3.1.2 can be specified using pce_reg_method = 'FastARD' or 'BCS' .

It is advised to use the bootstrapping option to account for the variability of the sur-

rogate predictions due to the finite size of the experimental design, see Section 3.1.6.
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There are two options available: a) normal and b) fast. While the former uses the

selected pce_reg_method for all the bootstrapping phase, the latter only performs the

regression with the selected regression method at the beginning and uses the informa-

tion obtained to update the coefficients with an ordinary least-square (OLS) method.

The number of the bootstrap sampling iteration can be prescribed using the argument

n_bootstrap_itrs . The attribute pce_deg accepts the polynomial degree either as an

integer or as an array containing multiple degrees. For the latter, the algorithm com-

pares the metamodels for all given degrees and selects the one with the lowest LOOCV

error as defined by Equation (3.38). The parameter pce_q_norm must be between 0 and

1 and has a default value of 1.

1 from bayesvalidrox import MetaModel

2 MetaModelOpts = MetaModel(Inputs , Model)

3

4 # Select if you want to preserve the spatial/temporal dependencies

5 MetaModelOpts.dim_red_method = 'PCA'
6 MetaModelOpts.var_pca_threshold = 99.999

7 # or

8 MetaModelOpts.n_pca_components = 10

9

10 # Select your metamodel method

11 # 1) PCE (Polynomial Chaos Expansion) 2) aPCE (arbitrary PCE)

12 MetaModelOpts.meta_model_type = 'aPCE'
13

14 # ------------------------------------------------

15 # ------------- PCE Specification ----------------

16 # ------------------------------------------------

17 # Select the sparse least -square minimization method for

18 # the PCE coefficients calculation:

19 # 1)OLS: Ordinary Least Square 2)BRR: Bayesian Ridge Regression

20 # 3)LARS: Least angle regression 4)ARD: Bayesian ARD Regression

21 # 5) FastARD: Fast Bayesian ARD Regression

22 # 6)BCS: Bayesian Compressive Sensing , a.k.a. FastLaplace

23 # 7)OMP: Orthogonal Matching Pursuit

24 # 8)VBL: Variational Bayesian Learning

25 # 9)EBL: Emperical Bayesian Learning

26 MetaModelOpts.pce_reg_method = 'FastARD '
27

28 # Bootstraping option

29 # 1) normal 2) fast
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30 MetaModelOpts.bootstrap_method = 'fast'
31 MetaModelOpts.n_bootstrap_itrs = 100

32

33 # PCE degree

34 # pce_deg accepts degree as a scalar or a range.

35 MetaModelOpts.pce_deg = np.arange(1, 12)

36

37 # q-quasi -norm 0<q<1 (default =1)

38 MetaModelOpts.pce_q_norm = 0.75

Listing 4.8: An example of the metamodel definition

Experimental design To produce the training set for creating the metamodel, one

needs to add an ExpDesign object to the MetaModel object. This can be done by

MetaModelOpts.add_ExpDesign() . BayesValidRox offers two methods for the computer

experimental design Section 3.2: one-shot ( normal ) or sequential ( sequential ). For

both design methods, the number of the sampling points ( n_init_samples ) and sam-

pling method ( sampling_method ) shall be passed to the ExpDesign object.

The following sampling methods are available: random , latin_hypercube [McKay et al.,

2000], sobol [Sobol’, 1967], halton [Halton, 1964], hammersley [Hammersley, 2013],

chebyshev [Stewart, 1996], grid . The last three options provide full-tensor designs with

Nd samples, where N is the number of requested samples and d number of parameters.

One can also pass the already existing training set by choosing user sampling methd in

two formats: a) directly to MetaModelOpts.ExpDesign.X and MetaModelOpts.ExpDesign.Y

or b) via an hdf5 file. When passing the experimental design using the first op-

tion, special care must be given to the formats. The training parameter sets must

be of size (n_samples,n_params) , whereas MetaModelOpts.ExpDesign.Y receives a dictio-

nary containing the x_values and the model outputs. Using the second option, the

hdf5 file shall contain the samples in EDX/init_ and the corresponding outputs as

EDY/output_name/init_ . The x_values for single output cases must be stored under

the x_values path and for multi-output, they must follow x_values/output_name path.

Note that after the successful execution of the analysis with BayesValidRox the cor-

responding experimental design is stored in an hdf5 file with the described structure.

This approach makes it easy to use the existing experimental design for further analysis.

1 MetaModelOpts.add_ExpDesign ()
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2

3 # One -shot (normal) or Sequential Adaptive (sequential) Design

4 MetaModelOpts.ExpDesign.method = 'normal '
5 MetaModelOpts.ExpDesign.n_init_samples = 100

6

7 # Sampling methods

8 # 1) random 2) latin_hypercube 3) sobol 4) halton 5) hammersley

9 # 6) chebyshev(FT) 7) grid(FT)

10 MetaModelOpts.ExpDesign.sampling_method = 'random '
11

12 # Alternative: If the experimental design already exists as a hdf5

13 # file , pass the experimental design object

14 MetaModelOpts.ExpDesign.sampling_method = 'user'
15 # Option I:

16 MetaModelOpts.ExpDesign.X = samples

17 MetaModelOpts.ExpDesign.Y = output_dict

18 # Option II:

19 MetaModelOpts.ExpDesign.hdf5_file = 'ExpDesign_Model_Name.hdf5'

Listing 4.9: An example of the experimental design

Sequential experimental design For computationally demanding models, a sequen-

tial experimental design can assist in reducing the computational cost of the training

by refining the surrogate model using an informed selection of training parameter sets.

More details can be found in Section 3.2. BayesValidRox offers multiple SAED strate-

gies that can be categorized into three groups: space-filling, variance-based design,

and Bayesian active design. The last group requires data and the discrepancy error to

operate.

1 # ------------------------------------------------

2 # ----- Initial Exp. Design configuration --------

3 # ------------------------------------------------

4 MetaModelOpts.add_ExpDesign ()

5

6 # One -shot (normal) or Sequential Adaptive (sequential) Design

7 MetaModelOpts.ExpDesign.method = 'sequential '
8 MetaModelOpts.ExpDesign.n_init_samples = 10

9

10 # Sampling methods

11 MetaModelOpts.ExpDesign.sampling_method = 'latin_hypercube '
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12

13 # ------------------------------------------------

14 # ------- Sequential Design configuration --------

15 # ------------------------------------------------

16 # Set the sampling parameters

17 MetaModelOpts.ExpDesign.n_new_samples = 1 # No. samples in each

iteration

18 MetaModelOpts.ExpDesign.n_max_samples = 150 # No. of maximum samples

19

20 # Trade -off schemes

21 # 1) None 2) 'equal ' 3)'epsilon -decreasing ' 4) 'adaptive '
22 MetaModelOpts.ExpDesign.tradeoff_scheme = 'adaptive '
23 # -------- Exploration ------

24 # 1)'Voronoi ' 2)'random ' 3)'latin_hypercube ' 4)'LOOCV ' 5)'dual
annealing '

25 MetaModelOpts.ExpDesign.explore_method = 'random '
26

27 # Use when 'Voronoi ' or 'random ' or 'latin_hypercube ' chosen

28 MetaModelOpts.ExpDesign.n_canddidate = 1000

29 MetaModelOpts.ExpDesign.n_cand_groups = 4

30

31 # -------- Exploitation ------

32 # 1) Space -filling 2) BayesActDesign 3) VarOptDesign

33 MetaModelOpts.ExpDesign.exploit_method = 'BayesActDesign '
34

35 # VarBasedOptDesign -> Active learning

36 # 1)ALM 2)EIGF 3) MI 4) ALC

37 MetaModelOpts.ExpDesign.util_func = 'ALM'
38

39 # BayesActDesign -> Bayesian active learning

40 # 1)DKL 2)BME 3) infEntropy

41 MetaModelOpts.ExpDesign.util_func = 'DKL'

Listing 4.10: An example of the sequential experimental design

We can monitor the accuracy of the metamodel via the LOOCV error with increasing

training samples. Having some test sets available, the evolution of the validation error

can also be examined. In the case of Bayesian calibration, the changes to the BME and

KLD are also computed and displayed in the console. However, the measurement data

and the discrepancy model (see Section 4.4) must be defined, as shown in Listing 4.11.

1 # Defining the measurement error , if it's known a priori
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2 known_sigma_squared = {

3 'Z': np.array ([1.1 , 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])

4 }

5 DiscrepancyOpts = Discrepancy('')
6 DiscrepancyOpts.type = 'Gaussian '
7 DiscrepancyOpts.parameters = known_sigma_squared

8 MetaModelOpts.Discrepancy = DiscrepancyOpts

9

10 # For calculation of validation error in each iteration

11 MetaModelOpts.valid_samples = valid_set

12 MetaModelOpts.valid_model_runs = {'Z': valid_outputs}

Listing 4.11: An example of the necessary definitions for monitoring convergence metrics in

sequential experimental design

Users can plot these convergence measures using a helper function in the postprocessing

steps.

After prescribing all the necessary parameters, the training task can be initiated using

create_metamodel method of the MetaModel object. After training, it is advisable to

store the metamodel using python’s joblib module. The MetaModel object can be

loaded for further analysis later. The code snippet in Listing 4.12 provides an example

of the model training and storing/loading the metamodel object.

1 # Train the meta model

2 meta_model = MetaModelOpts.create_metamodel ()

3

4 # Train the meta -model for sequential design

5 from bayesvalidrox import MetaModelEngine

6 meta_model_engine = MetaModelEngine(MetaModelOpts)

7 meta_model_engine.run()

8 meta_model = meta_model_engine.MetaModel

9

10 # Save Meta models

11 with open(f'MetaModel_{Model.name}.pkl', 'wb') as output:

12 joblib.dump(meta_model , output , 2)

13

14 # Load MetaModel

15 with open(f'MetaModel_{Model.name}.pkl', 'rb') as input:

16 meta_model = joblib.load(input)

Listing 4.12: An example of the about the model training and object storage
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4.3.2 Post-processing

Once the metamodel is successfully trained, one can use some helper functions provided

by the PostProcessing module to perform post-processing and accuracy checks.

Moment analysis As discussed in Section 3.1.7, one can compute and visualize the

moments from the coefficients using Equations (3.48) and (3.49).

1 from bayesvalidrox import PostProcessing

2

3 # Instantiate the post -processing object

4 PostPCE = PostProcessing(MetaModel , name='calib ')
5

6 # Compute the moments

7 pce_means , pce_stds = PostPCE.plot_moments ()

Listing 4.13: An example of the moment analysis for a PCE-based metamodel

Running the code snippet in Listing 4.13 creates a folder named Outputs_PostProcessing_calib

and stores the moment plots.

Sensitivity analysis BayesValidRox also allows you to perform a sensitivity analysis

of the input parameters via Sobol indices based on the theory discussed in Section 3.1.7.

Similar to the moment analysis, the calculations are based on the coefficients of the

metamodel with no extra model evaluations. Listing 4.14 shows an example of a sen-

sitivity analysis with the PostProcessing module. The method sobol_indices returns

the total indices in a dictionary. Moreover, it generates plots of the Sobol indices in

the form of bar plots and line plots for cases with temporal/spatial resolved outputs.

For bar plot, set the argument plot_type to 'bar' . The indices in the plots also come

with confidence intervals resulting from the bootstrapping.

1 from bayesvalidrox import PostProcessing

2

3 # Instantiate the post -processing object

4 PostPCE = PostProcessing(MetaModel , name='calib ')
5

6 # Compute the Sobol indices
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7 total_sobol = PostPCE.sobol_indices ()

Listing 4.14: An example of the sensitivity analysis via Sobol indices for a PCE-based

metamodel

Accuracy check The accuracy of the moment and sensitivity analyses greatly depends

on the surrogate model’s accuracy. There are two ways to inspect the accuracy of

a trained metamodel in BayesValidRox . Using the valid_metamodel method of the

PostProcessing module, one can perform a visual inspection by plotting the surrogate

predictions against the simulation runs, either for specific samples, i.e., parameter sets

or for randomly selected samples taken from the input marginals. For the former, the

samples need to be passed to the method using the samples argument, and if available,

the model outputs in a dictionary format using model_out_dict . The number of samples

for the latter can be prescribed by n_samples argument.

The second option is to quantify accuracy with root-mean-square and validation error

measures. The PostProcessing module offers the check_accuracy method for this pur-

pose. It receives the samples (as a numpy array of shape (n_samples,n_params) ) and

the output as a dictionary containing the simulation outputs for all the model outputs.

Alternatively, one can only define the number of randomly drawn samples from the

input parameter space defined by the Input object.

1 # Plot to check validation visually.

2 PostPCE.valid_metamodel(n_samples =3)

3

4 # Compute and print RMSE error

5 PostPCE.check_accuracy(n_samples =300)

Listing 4.15: An example of the accuracy check for a metamodel

Note that, as for other cases, the valid_metamodel method generates plots containing

the surrogate prediction against the corresponding simulation runs and stores them

in the Outputs_PostProcessing_calib file. However, the valid_metamodel method only

displays the errors in the console.

If the sequential method is selected as the experimental design method, one can plot

the changes of the BME, KLD, Modified LOOCV, and the validation error (if requested)

through the sequential learning iterations using the plot_seq_design_diagnostics method.
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Regression quality check The success of a regression model depends on some fun-

damental assumptions about the underlying data (simulations) that it tries to model.

Therefore, it is vital to check the quality of the regression model by verifying if the

assumptions were reasonably satisfied. The key assumptions that need scrutinization

are independence, homoscedasticity, and normality. The regression Listing 4.16 shows

how to perform this regression quality check via BayesValidRox .

1 # Check the quality of your regression model

2 PostPCE.check_reg_quality ()

Listing 4.16: An example of the regression quality check

BayesValidRox ’s post-processing plot residuals versus predicting variables allow for

checking the independence assumption. The assumption holds if the residuals are dis-

tributed uniformly around the zero horizontal axes and do not form particular clusters.

To check the homoscedasticity assumption, BayesValidRox plots the fitted response

values against the residuals. The assumption of homoscedasticity can be visually in-

spected by looking at the variance change. If the residuals’ variance increases with

the response values’ magnitude, the problem does not respect homoscedasticity. The

assumption of the normality of the data-generating process can be examined using the

histogram and the quantile-quantile (Q-Q) plot of the normalized residuals. The latter

is a graphical method for comparing the distribution of the normalized residuals with

a normal distribution by plotting their quantiles against each other. The points in the

Q–Q plot matching approximately the line with 45 degrees indicate that the residuals

follow a normal distribution.

4.4 Surrogate-assisted calibration

BayesValidRox allows for a Bayesian parameter calibration using a surrogate model

when dealing with computationally demanding models. The model calibration can be

performed either as a part of a model validation workflow (Section 2.2) or only as a

standalone calibration to obtain the posterior parameter distributions. The model cali-

bration with BayesValidRox can be performed via a relatively straightforward rejection

sampling method or a more sophisticated method, MCMC. For more information on

these Bayesian inference methods, see Section 2.1.3.
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As before, an instance of the BayesInference must be created first. It receives the

already created metamodel object as the argument, as shown in line 3 in Listing 4.17.

For selection of the rejection sampling inference method, one only passes the string

'rejection' to the inference_method attribute. However, when an MCMC based in-

ference is preferred, one needs to set the inference_method to 'MCMC' . Moreover, some

MCMC-specific parameters must be prescribed as a dictionary to the mcmc_params at-

tribute. The complete list of these MCMC parameters along with their default values is

presented in Listing 4.17 in lines 14 to 22. Note that the user-defined values overwrite

the default values. Listing 4.17 shows two available inference options with the required

specifications.

1 from bayesvalidrox import BayesInference , Discrepancy

2

3 BayesOpts = BayesInference(MetaModel)

4 BayesOpts.emulator = True # Default

5 BayesOpts.plot_post_pred = True # Plot the posterior predictives

6

7 # Select the inference method

8 # ----- Option I: Rejection Sampling -------

9 BayesOpts.inference_method = 'rejection ' # Default

10

11 # ----- Option II: MCMC -------

12 BayesOpts.inference_method = 'MCMC'
13 # Set the MCMC parameters passed to self.mcmc_params

14 BayesOpts.mcmc_params = {

15 'init_samples ': None , # initial samples

16 'n_walkers ': 100, # Number of walkers (chains)

17 'n_steps ': 100000 , # Number of maximum steps per walker

18 'n_burn ': 200, # Number of burn -in steps

19 'moves ': None , # Moves for the emcee sampler

20 'multiprocessing ': False , # Wether to use multiprocessing or not

21 'verbose ': False # Verbosity

22 }

23

24 # ----- Define the discrepancy model -------

25 # Known discrepancy

26 DiscrepancyOpts = Discrepancy('')
27 DiscrepancyOpts.type = 'Gaussian '
28 known_sigma_squared = {

29 'Z': np.array ([1.1 , 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])
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30 }

31 DiscrepancyOpts.parameters = known_sigma_squared # can be dict or

pandas dataframe

32 BayesOpts.Discrepancy = DiscrepancyOpts

33

34 # Start the calibration/inference

35 Bayes = BayesOpts.create_inference ()

Listing 4.17: An example of the surrogate-assisted Bayesian inference with a metamodel

When None is passed to the MCMC parameter moves , the emcee.StrechMove method

for sampling proposals is selected. The list of the supported moves can be found

on the emcee website†. Setting verbose to True prints the convergence criteria in

the sampling process every 50 steps and plots the chains’ evolution in the sampling

process. This plot alongside the posterior distribution plot and the emcee backend file

are stored in a Outputs_Bayes_ModelName_Calib directory. Moreover, prior (in case of

the rejection sampling) and posterior predictive plots with their corresponding values

in hdf5 formats can also be found in the same directory.

Discrepancy model The model discrepancy, represented by ϵ in Equation (2.5), in-

cludes the effects of the measurement, model inaccuracy, and other sources of errors. In

Listing 4.17, the discrepancy model has been defined to follow a multivariate Gaussian

normal distribution with zero mean and covariance with diagonal entries defined as

known_sigma_squared .

In some cases, the errors are not known or only partly known a priori. BayesValidRox

offers the possibility of jointly inferring the discrepancy for each model output. To

do so, one is expected to pass a discrepancy model containing the known and/or the

unknown part as shown in Listing 4.18. Then, the discrepancy object model needs to

be given to BayesOpts.Discrepancy attribute.

1 # ----- Define the discrepancy model -------

2 # Known discrepancy

3 known_DiscrepancyOpts = Discrepancy('')
4 known_DiscrepancyOpts.type = 'Gaussian '
5 known_sigma_squared = {

6 'Z': np.array ([1.1 , 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])

†https://emcee.readthedocs.io/en/stable/user/moves/
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7 }

8 known_DiscrepancyOpts.parameters = known_sigma_squared

9

10 # Unknown discrepancy -> to be jointly inferred with input parameters

11 DiscOutputOpts = Input()

12 DiscOutputOpts.add_marginals ()

13 DiscOutputOpts.Marginals [0]. name = '$\sigma^2_{\ epsilon}$'
14 DiscOutputOpts.Marginals [0]. dist_type = 'uniform '
15 DiscOutputOpts.Marginals [0]. parameters = [0, 4]

16 unknown_DiscOutputOpts = Discrepancy(DiscOutputOpts)

17

18 # Fully Unknown discrepancy

19 BayesOpts.Discrepancy = unknown_DiscOutputOpts

20

21 # Partially Unknown discrepancy

22 BayesOpts.Discrepancy = {

23 'known ': known_DiscrepancyOpts ,

24 'infer ': unknown_DiscOutputOpts

25 }

Listing 4.18: An example of the discrepancy model definition for surrogate-assisted Bayesian

inference

4.5 Validation / Model comparison

As mentioned in Section 2.2, the updated information on the distribution of the input

parameters resulting from the calibration process can be used for model validation.

In the validation step, models are compared with a different measurement data set

from what has been used to calibrate the model. In a multimodel validation case, a

model inter-comparison step is also desired (see Section 2.2). This approach allows for

a rigorous validation benchmarking that compares the model based on their predic-

tive capabilities and also quantifies their similarities. For single model validation, the

computed BME can be compared with the theoretical upper limit TOM, described in

Section 2.2.2. One can state how likely the model is valid by comparing these two BME

distributions – e.g., using statistical significance measures, such as p-value.
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4.5.1 Single model validation via TOM

For a single validation, the module BayesInference and Discrepancy are required. The

former starts the model validation process, while the latter defined the discrepancy

term, as discussed earlier. We can account for the uncertainties in the validation metric

BME assuming noisy data. This is done by bootstrapping.

1 from bayesvalidrox import BayesInference , Discrepancy

2

3 BayesOpts = BayesInference(MetaModel)

4 BayesOpts.emulator = True # Default

5

6 # Bootstrap for BME and BF

7 BayesOptsValid.bootstrap = True

8 BayesOptsValid.n_bootstrap_itrs = 10

9 BayesOptsValid.bootstrap_noise = 0.05

10

11 # ----- Define the discrepancy model -------

12 # Known discrepancy

13 DiscrepancyOpts = Discrepancy('')
14 DiscrepancyOpts.type = 'Gaussian '
15 known_sigma_squared = {

16 'Z': np.array ([1.1 , 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])

17 }

18 DiscrepancyOpts.parameters = known_sigma_squared # can be dict or

pandas dataframe

19 BayesOpts.Discrepancy = DiscrepancyOpts

20

21 # Start the validation

22 Bayes = BayesOpts.create_inference ()

Listing 4.19: An example of the surrogate-assisted Bayesian single-model validation

Setting bootstrap to True indicates that the bootstrapped Bayesian analysis is per-

formed to assess the model validation. The plot containing the BME distribution of the

model against that of the TOM can be found in the directory Outputs_Bayes_{ModelName}_Valid .
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4.5.2 Multimodel comparison via justifiability analysis

After training the surrogate models for all the competing computational models, the

model comparison can be started. It requires the model objects, stored in a dictionary

and a dictionary containing the required options. Moreover, a discrepancy object is

required similar to the Bayesian calibration. This can be a dictionary containing dif-

ferent Discrepancy objects for different models or one common Discrepancy object for

all models.

1 # ----- Discrepancy model -------

2 # Known discrepancy

3 known_DiscrepancyOpts = Discrepancy('')
4 known_DiscrepancyOpts.type = 'Gaussian '
5 known_sigma_squared = {

6 'Z': np.array ([1.1 , 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0])

7 }

8 known_DiscrepancyOpts.parameters = known_sigma_squared

9

10 # ----- Multimodel comparison -------

11 from bayesvalidrox import BayesModelComparison

12 # Instantiate the object

13 BayesOpts = BayesModelComparison(

14 justifiability=True , # Justifiability analysis

15 n_bootstarp =1000 , # Number of bootstrap iteration

16 perturbed_data=perturbed_data , # pass perturbed observation data

17 just_n_meas =2 # Confusion matrix for every 2 measurement points

18 )

19

20 # Define the metamodel dictionary

21 meta_models = {

22 "linear": L2_MetaModel ,

23 "exponential": NL4_MetaModel ,

24 "cosine": NL4_MetaModel

25 }

26

27 # Define the option dictionary

28 opts_bootstrap = {

29 "n_samples": 10000 , # Number of parameter samples

30 "n_bootstrap_itr": 1000, # number of bootstraping

31 "Discrepancy": known_DiscrepancyOpts , # Discrepancy object

32 "emulator": True , # Use emulator or the original model
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33 "plot_post_pred": True # Plot the posterior predictives

34 }

35

36 # Start the model comparison

37 output_dict = BayesOpts.create_model_comparison(

38 meta_models ,

39 opts_bootstrap

40 )

Listing 4.20: An example of the surrogate-assisted multimodel comparison

If the justifiability parameter for BayesModelComparison is set to False , the mod-

ule will only yield the multi-model comparison using model weights (Section 2.2.2)

and Bayes factor (Section 2.2.1). Otherwise, a justifiability analysis (Section 2.2.2)

is performed, in addition to the mentioned analyses. output_dict includes the Bayes

factor and the model weights dictionaries for the BMS and justifiability analysis. The

corresponding plots are stored in a directory named Outputs_Comparison .

The current chapter introduced BayesValidRox , an open-source, object-oriented pack-

age. This serves as a user guide to perform an automated surrogate-based sensitivity

analysis, Bayesian calibration-validation and multi-model comparison. The next three

chapters are dedicated to the application of the proposed framework in the last chapters

to models describing flow and transport in porous media.





5 Application I: Flow Simulation

Models in Fractured Porous Media

Flow in porous media is often characterized by very strong heterogeneities, particularly

fractures, whose influence is essential for understanding the overall systems’ behavior

in many natural and technical applications. This chapter presents the application of

the proposed surrogate-based Bayesian multi-model comparison framework to perform

an uncertainty-aware comparison of two models for flow simulation in fractured porous

media. This study was a joint effort of the researchers in Collaborative Research Center

1313 of the University of Stuttgart as a project in the 1st Summer School in 2019.

5.1 Introduction

Fractures can be found in many porous media such as glaciers, soils, rocks, woods, and

concrete. They provide conduits or barriers for fluid flow that can alter flow and trans-

port behavior in these media. For example, the flow pattern can be dominated mainly

by the flow through connected channels formed by fractures. Flow in fractured porous

media research has gained attention in the last decade to investigate the subsurface

processes and has been used in biological applications and material science. According

to Berre et al. [2019], the development of the high-resolution models primarily revolves

around three issues: a) accurate representation of flow inside the fracture, b) good flow

representation in the interaction between fractures and the neighboring porous media,

and c) ability to handle complex fracture network structures.

Many approaches for modeling flow processes in fractured porous media have been

developed over the last decades. The modeling challenges include the interaction be-

tween structural properties of fractures and fracture networks with occurring dynamic
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processes in the domain. The strong discontinuities of fluid velocities induced by the

fractures cannot be adequately described in averaged descriptions. Furthermore, an-

other challenge is to account for the alteration of the fracture networks resulting from

the flow-related mechanical and chemical fluid-solid interactions. Berre et al. [2019]

address these challenges and provide an overview of the standard conceptual models

and discretization approaches with an emphasis on the dominating effects of fractures

on flow processes. For more information about the concepts and mathematical models,

the reader is referred to Berkowitz [2002] and Neuman [2005].

5.2 Problem description

The available models to represent the flow in fractured porous media vary drastically in

their geometric details, simplifications, and abstraction level. In this study, two models

were analyzed: the first model (B01) employs a phase-field representation with a flow

model inside the fractures. In contrast, the second model (B03) uses a sharp fracture

representation. As a joint model base, a one-phase Darcy flow was considered in the

porous medium with dominant fractures, resulting in a pressure distribution throughout

the porous medium. The pressure distribution across the fractures is treated slightly

differently in the considered models, but all aim to fit the physical observations. The

pressure values were measured on a manufactured fractured porous media block ad-

justed to the simulation benchmark. The results of the simulations have been compared

with experimental data to validate the solvers and make a model comparison. In what

follows, I introduce the experimental setup and the numerical models.

5.2.1 Experimental setup

The experiments considered two different cases with connected and disconnected frac-

tures. In the first case, the fractures are connected from one side of the sample to the

other, as shown in Figure 5.1a, while they are disconnected in the second case (Fig-

ure 5.1b). Additionally, measuring pressure values were obtained at the inlet, outlet

and eight intermediate points of the disconnected/connected fracture network sample.

This was accomplished with six tested and calibrated sensors (four at the intermediate

points and two at in-/outlet locations).
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(a) Setup with connected fractures (b) Setup with disconnected fractures

Figure 5.1: Two experimental setups: (a) connected and (b) disconnected fracture networks.

Due to the lack of space on the sample for installing sensors at all 8 measurement

points, the pressure values were measured separately on the sample, four sensors at

the time, for different flow rates. The fluid used in this experiment was distilled water.

The fluid’s flow rate was carefully adopted in the range of 0.1 to 0.5 [ml/min] to avoid

inducing critical deformation into the sample, which may cause pressure diffusion.

5.2.2 Conceptual models

As mentioned earlier, I investigate two model variants for flow simulation in fractured

porous media in this study. The first model (B01) employs a phase-field fracture rep-

resentation [Kuhn and Müller, 2010] and simulates the solid-fluid interaction within

the porous medium under the consideration of Biot’s theory of consolidation [Verruijt,

2010]. Moreover, Darcy’s law describes the fluid flow in the porous medium where an

additional permeability tensor increases the permeability within the cracks. It models

Poiseuille-type flow within the cracks and is derived from the lubrication theory. The

solution is obtained by the finite element method in FEAP [Taylor, 2014].

Model B03 takes a discrete fracture network approach. All fractures are geometrically

resolved to conform to the mesh. A mixed-dimensional model is used for Darcy flow

both in the bulk porous medium and the fractures. The permeability of the fractures is

determined by the Poiseuille approximation using the hydraulic diameter. The solution

is obtained by a Finite-Volume method implemented in DuMux [Koch et al., 2021a].
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(a) Model B01 (b) Model B03

Figure 5.2: The model domains of the connected case for (a) Model B01 and (b) Model B03

5.2.3 Errors and uncertainties

Bayesian statistics updates the prior belief on the model by comparing the model

responses with the measured data. It can include not only the errors and uncertainties

in the observed data, but it can also take into consideration other sources of errors,

such as numerical errors and surrogate model’s error. These errors can be considered

in the covariance matrix Σ in Equation (2.6), assuming that they follow a normal

distribution. In the following, the parameter uncertainty and three sources of error

used in the calibration and validation benchmark of the flow simulation models are

introduced.

Parameteric uncertainty Uncertain parameters and their ranges for the model val-

idation analysis are summarized in Table 5.1. The sample’s depth was considered in

Table 5.1: List of considered uncertain parameters and their defined distributions for both
models.

Parameter name Range Unit Distribution type

Permeability (porous medium), k [10−13, 10−11] m/s uniform
Sample’s depth, d [8 · 10−5 , 10−4] m uniform
Outflow pressure, Pout [400, 2000] Pa uniform

the flow calculations at the boundary condition.

Measurement errors In consultation with the experimentalists, I used the standard

deviation of the measured value for each measurement sensor as the experimental er-

ror. These values are extracted separately for two cases and different flow rates for
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calibration and validation. The pressure measurement’s distribution for two different

cases for the calibration step for the connected and disconnected case, respectively, are

shown in Figure 5.3.
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Figure 5.3: The pressure distributions of nine sensors used for the calibration for (a) the
connected and (b) the disconnected case

Numerical errors Here, I only considered the discretization error that originates from

a certain choice of meshing size. Following Oberkampf and Roy [2010], I took a heuristic

approach to quantify this error in which I used a generalized Richardson extrapolation

based on different mesh spacing to estimate the error. The Richardson extrapolation

takes the following form:

fk = f̄ + gph
p̂
k +O

(
hp̂+1
k

)
. (5.1)

fk denotes the solution to the discrete equation on a mesh with spacing hk (known), f̄

stands for the exact solution to the original PDE. gp is the error term coefficient and p̂

indicates the observed order of accuracy. Here, we seek the error with an order of one.

The unknowns, f̄ and gp, can be easily determined via a least square method using the

solutions obtained for different meshing sizes.

Surrogate model’s errors As discussed in previous chapters, replacing the computa-

tional models with surrogates may introduce additional errors to the inference process.

To include this error, we test the surrogate models trained with 20 simulation runs (test

sets) which are different from the training sets consisting of 180 runs. Comparing the

surrogates’ prediction with the results from the test sets, we observed an acceptable
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prediction accuracy with the validation errors (Section 3.1.3) between 10−5 and 10−9

for all models. Moreover, we estimated Mean Square Error (MSE) for each surrogate

model, which is a good estimate of the surrogate error variance [Xu and Valocchi, 2015].

When evaluating the likelihood p(Y|Mk,θk) in Equation (2.6), I added a diagonal ma-

trix ΣPCE with elements σ2
PCE,i = MSEi, i = 1, 2, ..., Nout to Σ, assuming that the

surrogate errors are independent and follow a normal distribution with zero mean.

5.2.4 Solution procedure

The following steps are taken for this model comparison study within the Bayesian

approach. First, a surrogate model is trained based on the simulation results obtained

by the computational models based on the pressure readings at 18 sensors (nine sensors

for connected and nine for the disconnected case) as shown in Figure 5.1. Second, the

Bayesian updating is performed for each model, in that the prior knowledge on the dis-

tribution of uncertain parameters is updated by comparing the model outputs with the

measurement, using Equation (2.4). This step was performed with the MCMC method

(Section 2.1.3) and yielded the so-called posterior distributions with narrower shapes.

Afterward, new surrogate models were trained based on the newly obtained posterior

distributions. Finally, samples (parameter sets) of the resulting posterior distribution

from calibration were evaluated using the newly trained surrogates to obtain the poste-

rior predictive distributions of each sensor. The validation metric BME was computed

by comparing the posterior predictive distribution with a newly observed data set ob-

tained by another flow rate. Moreover, following Schöniger et al. [2015a], we perturbed

the reference data with some additive noise to account for uncertainty associated with

the BME values, the resulting Bayes factors, and posterior model weights. With this

approach, we investigated the impact of other possible ignored sources of errors on the

validation metrics.

5.3 Results and discussions

The current section presents insights into the analysis of predictive abilities and model

comparison using the procedure described earlier. Additionally, the results of global
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sensitivity analyses are discussed in what follows. Moreover, the models’ BME distri-

butions are compared to the upper limit for model performance, TOM, as defined in

Section 2.2.2.

5.3.1 Global sensitivity analysis

The surrogate modeling with PCE offers a property for global sensitivity analysis, as

discussed in Section 3.1.7. This property requires a simple postprocessing step after

training the surrogate models. In this section, I will analyze how the variability of the

model response quantities (pressure readings) at the data extraction points is affected

by the variability of each input variable or combinations thereof. This is achieved via

sensitivity analysis using Sobol indices discussed in Section 3.1.7. Figures 5.4a and 5.4b

display the total Sobol indices for model B01 for two considered cases. The total Sobol
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Figure 5.4: The Sobol indices of the model B01.

indices for model B03 are illustrated in Figures 5.5a and 5.5b.

The Sobol indices of model B01 reveal that permeability (k) has the highest influence

on the pressure variability in the connected case. However, the outflow pressure (Pout)

shows higher sensitivity for the sensors close to the right boundary for the disconnected

case. The sample depth (d) has no impact on the pressure values. In the case of

model B03, the effect of pressure output (Pout) on the results increases, moving from

the inlet to the outlet of the domain. At the same time, the sample depth (d) and

the permeability (k) show approximately similar impacts and decrease from left to
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Figure 5.5: The Sobol indices of the model B03.

right. Comparing Figures 5.4b and 5.5b makes it clear that the parameters of the two

considered models exhibit the same sensitivity behaviors.

5.3.2 Analysis of the predictive capabilities

One of the standard practices for model validation is the visual comparison of the SRQs

against the observed data. An uncertainty-aware validation via a Bayesian framework

yields uncertainties associated with the model predictions. These uncertainties are

related to the posterior predictive pressure distribution for each sensor. In this section,

I will present the result of the analysis of the predictive ability of two discussed models

by showing the parameters’ updated (posterior) distribution after calibration obtained

by the MCMC sampler for all models. Afterward, figures containing the posterior

predictive of models versus the measured data are provided.

Model B01 Figure 5.6 presents the posterior distribution obtained via the Bayesian

inference using the calibration (mean values in Figure 5.3). The 50 percent quantiles,

alongside the 15 and 85 percent quantiles, are displayed on top of the histograms shown

in the diagonal plots. The posterior distributions of the permeability k, and the outflow

pressure Pout follow Gaussian distributions. The distribution of the sample height d is

more concentrated around the values at the lower boundary.

The posterior predictive distribution can be simply obtained by evaluating the surro-

gate model trained after calibration for samples drawn from the posterior distributions
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Figure 5.6: The posterior parameter distributions of model B01.

in Figure 5.6. I will present these distributions using a bar plot, with the bar showing

the mean and 95 % credible interval marked with error bars. Figure 5.7 illustrates

the posterior predictive plots of model B01 for the connected and disconnected cases.

Model B01’s pressure predictions show substantial deviation from the observed data
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Figure 5.7: The posterior predictive plots of the model B01.

in the experiment, especially for the connected case. This so-called model error was

also observed in the calibration phase. Further investigation of the moments and stan-
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dard deviation and the training model evaluations confirmed this hypothesis. As for

the pressure values in the disconnected case, the simulated pressure values slightly

underestimate the observed data.

Model B03 The posterior distribution of model B03 after the calibration is presented

in Figure 5.8. The posterior distribution of the permeability k follows a Gaussian
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Figure 5.8: The Posterior parameter distribution of model B03.

distribution. However, the calibration resulted in a multi-modal distribution for the

sample height d. The distribution of the outflow pressure Pout is more concentrated in

the values to the lower boundary, suggesting that a prior distribution with a broader

range can be used.

Figure 5.9 shows the posterior predictive plots of model B03 for a) the connected and

b) disconnected cases. The visual inspection of the diagrams in Figure 5.9 indicates

that model B03 better matches the validation data. Except for sensors 6 and 7 for the

connected case and 5 and 6 for the disconnected case, all observed pressure values fall

in the posterior predictive credible intervals.
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Figure 5.9: The posterior predictive plots of the model B03.

5.3.3 Model validation and comparison

This subsection presents the results of the Bayesian model validation and multi-model

comparison. I performed a model comparison employing the so-called posterior model

weights according to the BMS explained in Section 4.5. Such an analysis offers an

aggregated comparison of a model’s outputs to the validation data set. The use of the

advanced surrogate representation allows the assessment of the uncertainty of the BME

values and the corresponding model weights. Table 5.2 presents a detailed statistical

summary of the posterior model weights and offers a ranking. It also reports the

information regarding the post-calibration uncertainty with the help of the deviation

regarding 25% and 75% percentiles.

Table 5.2: Posterior model weights after validation.

Model Model weights Rank

B01 0.001+0.000
−0.000 2

B03 0.999+0.000
−0.000 1

The expected model weights under noisy data assumption convey a clear model ranking

favoring model B03. This clear ranking is in accordance with the conclusions drawn

from a visual inspection of the posterior predictive plots in Figures 5.7 and 5.9. The

considerable pressure differences between the simulated and the measured data for the

connected case via model B01 led to smaller BME values than model B01. Conse-

quently, the posterior weights of model B03 obtained a value close to the maximum
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weight possible.

As discussed earlier, Bayesian statistics offers BME as a quantitative metric to assess

the model performance. The model’s validity can be examined by comparing its BME

with that of a theoretically optimal model. Figure 5.10 shows the distribution of the
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Figure 5.10: The BME distributions for the competing models with the perturbed data set

BME for the models B01 and B03, as well as the upper limit performance. These

values are obtained by varying the measurement data set to account for the uncertainty

associated with BME. Model B03 clearly outperforms B01, as its BME distribution is

closer to that of TOM. However, it cannot be considered valid since its BME values do

not overlap the upper limit provided by TOM. This discrepancy can be attributed to

the discrepancies of simulated and measured pressure values in the posterior predictive

plots at some sensors in Figure 5.9.

One approach to further compare models is hypothesis testing in a Bayesian setting.

The competing models are compared pairwise in the BHT based on the so-called Bayes

factors, which comprise the models’ BME values ratio. The Bayes factor is a measure
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of significance and quantifies the evidence of the hypothesis that one model is the data-

generating model against a null hypothesis. The null hypothesis can be defined as one

model being the best model within the model pair under investigation (Section 2.2.1).

In that regard, one can consider TOM as an additional model and formulate hypotheses

so that each model is compared with its counterpart and the TOM. Figure 5.11 presents

the probability density functions of log10(BF) using the perturbed pressure data sets in

a three-by-three matrix. The significance levels in a log10-scale, introduced in Jeffreys

[1961] are marked with vertical lines. Due to the large values for BFs, these vertical

lines have approximately overlapped.
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Figure 5.11: The pairwise comparison of models via BHT.

As expected from the model ranking, there is decisive evidence in favor of the model

B03 against B01. This conclusion is based on the fact that the distribution of Bayes

factors is located on the right-hand side of the significance levels in the plot in the first

column and the second row. The last row indicates that both models are far from the

optimal model described by TOM. This finding does not necessarily suggest further

improvement of both models, but the measurement procedure and the experimental
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results require revision. These considerations were not done due to the limited time of

the summer school.

5.4 Summary and conclusions

In this chapter, I have applied the surrogate-assisted uncertainty-aware Bayesian val-

idation framework to compare two computational models describing the fluid flow in

fractured porous media. The models were compared in light of their abilities to re-

produce the measured data. The parametric and other sources of errors were also

addressed in the computations. In the end, the performance of the models was ana-

lyzed via a quantitative validation metric. The considered computational models were

substituted by their PCE-based surrogate models to accelerate the uncertainty propa-

gation in Bayesian calibration and validation. A benefit of employing these surrogates

is that a sensitivity analysis without additional costs can be performed. This anal-

ysis is achieved using the so-called Sobol indices that are derived analytically from

the expansion coefficients. The results of the analysis indicate that both models re-

quire improvement. Model B03 showed better performance suggested by both visual

inspections of the posterior predictive plots and quantitative comparisons. However,

the posterior predictive plots for this model revealed that the model predictions did

not match the experimental results at some pressure sensors. This was the only reason

that the distribution of the BME (validation metric) did not reach the achievable upper

limit provided by TOM.



6 Application II: Bayesian Comparison

of Conceptually Simplified Models

to a Detailed Reference Model:

Application to Coupling Free Flow

and Porous-Medium Flow

Coupled free-flow and porous-medium systems play a significant role in many industrial,

environmental, and biological settings, such as fuel cells, water flows in karst aquifers,

blood flows in vessels, and living tissues. Flow interaction between the free-flow re-

gion and the porous-medium domain is highly involved and strongly interface-driven.

The correct choice of interface conditions and proper model parameters for these sys-

tems is vital for physically consistent modeling and accurate numerical simulations of

applications.

This chapter deals with the application of the surrogate-assisted Bayesian validation

framework to coupling free flow and porous-medium flow. We studied the coupled flow

problems’ behaviors considering some benchmark cases, where a pore-scale resolved

model provides the reference solution. We quantified the sensitivity of the models’

parameters and their uncertainties after calibration. Moreover, the performance of

models against the reference solution was compared within a Bayesian hypothesis test-

ing framework. In what follows, I present the result of this benchmark study via

a surrogate-assisted uncertainty-aware Bayesian validation framework. This study has

been submitted to the Journal of Computational Geosciences [Mohammadi et al., 2022].
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6.1 Introduction

A physically consistent description of flow processes in the entire coupled system, es-

pecially near the interface, is crucial for a better grasp of the interface-driven processes

in applications such as solid-atmospheric interactions, drying processes during evap-

oration, and industrial filtration [Hanspal et al., 2009, Beaude et al., 2019, Jarauta

et al., 2020]. A lot of effort has been made during the last decades in mathematical

modeling and analysis of coupled flow systems. These mathematical models preserve

mass, momentum, and energy conservation in both flow domains and across the fluid-

porous interface. Navier-Stokes equations are generally applied to describe fluid flow

in the free-flow domain, and multi-phase Darcy’s law describes the fluid flow in porous

media [Discacciati and Quarteroni, 2009, Eggenweiler and Rybak, 2020].

Based on the application of interest and the flow regime, this general system may be

simplified in various ways. The most widely studied free-flow and porous-medium flow

system is described by the coupled Stokes–Darcy equations with different sets of inter-

face conditions, [e.g., Angot et al., 2017, Discacciati and Quarteroni, 2009, Goyeau et al.,

2003, Jäger and Mikelić, 2009, Lācis and Bagheri, 2017, Ochoa-Tapia and Whitaker,

1995, Eggenweiler and Rybak, 2021]. The possibilities to conceptualize these coupling

conditions could be regarded as conceptual uncertainty. This conceptual uncertainty is

mainly related to the description of processes in the porous medium and near the inter-

face, for which different mathematical models and coupling strategies are considered.

Besides the conceptual uncertainty, each computational model contains parametric un-

certainty, such as material parameters or interface location that must also be rigorously

addressed.

A significant research challenge is to assess competing modeling concepts for coupling

free flow and porous medium accurately and validate the corresponding computational

models against an experiment or a reference solution in light of uncertainties. To this

end, we analyzed three coupling concepts in a validation benchmark study using the

reference data resulting from a detailed simulation. We used the literature’s most widely

studied coupled flow problem, namely the Stokes–Darcy problem. In this setting, the

free-flow conceptualization is based on the Stokes equations in the free-flow domain

for all discussed models. However, the way these models simulate the fluid flow in the

porous medium and the set of coupling conditions imposed on the fluid–porous interface
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varies. In what follows, the Stokes–Darcy problem and the mathematical description of

the governing equations in the different system domains will be presented in Section 6.2.

6.2 Problem description

From a pore-scale perspective, we consider a two-dimensional flow domain Ωflow con-

sisting of the free-flow domain Ωff and the pore space Ωpore of the porous medium. The

porous-medium domain Ωpm has a periodic structure composed by the repetition of the

representative elementary volume (REV) (scaled unit cell) Y ℓ = (0, ℓ)×(0, ℓ), where ℓ is
the microscopic length scale (Figure 6.1a). From a macroscopic point of view, the cou-

pled domain Ω = Ωff ∪ Ωpm comprises the free-flow region Ωff and the porous-medium

domain Ωpm, separated by a sharp fluid–porous interface Γ (Figure 6.1b).

Ωff

d

`

L

Y `

∂Ω

Ωpore

(a) Pore scale

Ωff

Ωpm

Γ

L

H

n

τ

(b) REV scale

Figure 6.1: Geometrical setting at the considered scales.

We consider isothermal single-phase steady-state flow at low Reynolds numbers. The

same fluid occupies the free-flow domain and fully saturates the porous medium. This

fluid is supposed to be incompressible and to have constant viscosity. The porous

medium is considered non-deformable, resulting in constant porosity.

6.2.1 Reference pore-scale resolved model

At the pore scale, fluid flow in the flow domain Ωflow is governed by the Stokes equations,

∇·v = 0, −∇·T(v, p) = 0 in Ωflow, (6.1)
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completed with the no-slip condition on the boundary of solid inclusions

v = 0 on ∂Ωflow \ ∂Ω, (6.2)

and appropriate conditions on the external boundary ∂Ω. Here, v and p denote the

fluid velocity and pressure, T(v, p) = µ∇v − pI the stress tensor, I the identity tensor

and µ the dynamic viscosity.

Resolving pore-scale information is computationally expensive for practical applica-

tions. Therefore, REV-scale model formulations, which accurately reflect the pore-scale

flow processes, are often preferred and are investigated in this study. The pore-scale

resolved model is used only as a reference for the model validation purposes. A finite-

volume scheme on staggered grids, also known as MAC scheme [Harlow and Welch,

1965], is used to discretize the pore-scale model in Equations (6.1) and (6.2).

6.2.2 Subdomain models

In this study, we considered two different types of coupled models, for which the Stokes

equations are used in the free-flow region Ωff . However, the porous domain Ωpm is

treated by different modeling concepts. The first type of model relies on the REV-scale

description of the porous-medium domain using Darcy’s law, whereas the second type of

model follows a hybrid-dimensional approach, where a lower-dimensional pore-network

model (PNM) is used to describe the fluid flow in the porous domain [Weishaupt et al.,

2019, 2020].

Free-flow model As a common feature, both coupled models (REV-scale model,

pore-network model) contain the incompressible, stationary Stokes equations for the

description of fluid flow in the free-flow domain

∇·vff = 0, −∇·T(vff , pff) = 0 in Ωff , (6.3)

where vff and pff represent the fluid velocity and pressure, respectively. Similar to the

pore-scale model (Section 6.2.1), we employ MAC scheme for discretizing the Stokes

equations in (6.3).
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REV-scale porous-medium model At the REV-scale, fluid flow through the porous

medium is described by the Darcy flow equations, which reads

∇·vpm = 0, vpm = −K

µ
∇ppm in Ωpm, (6.4)

where vpm is the Darcy fluid velocity, ppm is the fluid pressure, and K is the intrinsic per-

meability tensor, which is symmetric, positive definite, and bounded. Equations (6.4)

are discretized with a vertex-centered finite-volume scheme, also known as box method

[Hackbusch, 1989].

Pore-network porous-medium model Pore-network models [Blunt, 2017] consider a

simplified yet equivalent representation of the porous geometry by separating the void

space into larger pore bodies connected by narrow pore throats. Despite their low

computational demand, a rather high degree of pore-scale accuracy can be achieved

[Oostrom et al., 2016]. PNMs can also be combined with modeling approaches on

different scales [Scheibe et al., 2015], such as Darcy-type continuum models [Balhoff

et al., 2007, 2008, Mehmani and Balhoff, 2014] or free-flow models [Beyhaghi et al.,

2016].

For the PNM, we require the conservation of mass for each pore body i (the intersection

of two or more pore throats):∑
j

Qij = 0, Qij = gij(pi − pj). (6.5)

Here, Qij is the discrete volume flow rate in a throat connecting the pore bodies i and

j, and the pressures defined at the centers of the pore bodies i and j are given by pi and

pj (Figure 6.2). Equation (6.5) represents a finite-volume discretization scheme with a

two-point flux approximation, see Weishaupt et al. [2020], Koch et al. [2021b] for further

details. The pore throat geometry and fluid properties determine the total conductance

gij. Considering the pressure losses both within the pore bodies and throats, we use

gij =
(
g−1
t,ij + g−1

p,i + g−1
p,j

)−1
, (6.6)

where gt,ij is the conductance of a throat ij while gp,i and gp,j are the conductances

of the adjacent pore-body halves (Figure 6.2). In Figure 6.2, throat ij connects the
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Figure 6.2: Schematic contribution to total conduction for the PNM.

pore bodies i and j at the centers of which the pressures pi and pj are defined. gt,ij is

the throat conductance valid for the region marked in light red. gp,i and gp,j are the

conductances defined for the pore body halves marked in teal.

Simple analytical expressions for gij are available in the literature [Patzek and Silin,

2001] for certain geometries. Usually, we determine gij via numerical upscaling [Mehmani

and Tchelepi, 2017], whereas for this study, we consider it to be an additional uncertain

parameter. In the following, we only refer to gp,i, as for the given geometry gp,i = gp,j

for interior throats. At interface throats, one of the half-pore-body conductance is zero.

6.2.3 Coupling concepts

A variety of REV-scale coupling concepts for the Stokes–Darcy system (6.3)–(6.4) is

available in the literature. In this study, we considered the most widely used set of

interface conditions, based on the Beavers–Joseph condition and the recently developed

generalized conditions [Eggenweiler and Rybak, 2021]. If the PNM (6.5) is used in the

porous medium, separate coupling conditions, suitable for the pore-scale description of

interface exchange processes, must be considered.

Classical coupling conditions (REV-scale model) The most commonly used inter-

face conditions are the conservation of mass

vff·n = vpm·n on Γ, (6.7)

the balance of normal forces

−n·T(vff , pff)n = ppm on Γ, (6.8)
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and the Beavers–Joseph condition [Beavers and Joseph, 1967] for the tangential com-

ponent of velocity

(vff − vpm)·τ −
√
K

αBJ

τ ·∇vffn = 0 on Γ. (6.9)

Here, αBJ > 0 is the Beavers–Joseph parameter, n is the normal unit vector on Γ

pointing outward from the porous medium, τ is a tangential unit vector on Γ and√
K =

√
τ ·Kτ (Figure 6.1).

The Beavers–Joseph interface condition (6.9) was postulated for flows parallel to the

interface [Beavers and Joseph, 1967]. Eggenweiler and Rybak [2020] and Eggenweiler

and Rybak [2021] show that this condition is not suitable for arbitrary flow directions

to the porous bed. However, it is routinely applied in the literature to multidimensional

flows [Discacciati and Gerardo-Giorda, 2018, Hanspal et al., 2009].

Generalized coupling conditions for arbitrary flows (REV-scale model) An alterna-

tive to the classical interface conditions for Stokes–Darcy problems are the generalized

coupling conditions derived rigorously in Eggenweiler and Rybak [2021] via homog-

enization and boundary layer theory. These conditions are valid for arbitrary flow

directions to the fluid–porous interface and read

vff·n = vpm·n on Γ, (6.10)

ppm = −n·T(vff , pff)n

+ µNbl
s τ ·∇vffn on Γ, (6.11)

vff·τ = −ℓNbl
1 τ ·∇vffn

+ µ−1ℓ2
2∑

j=1

∂ppm
∂xj

Mj,bl·τ on Γ. (6.12)

Here, Mj,bl, Nbl
1 and Nbl

s are boundary layer constants introduced in Eggenweiler and

Rybak [2021]. For the generalized coupling conditions, the interface can be located at

a distance O(ℓ) from the top of the first row of solid inclusions, where ℓ denotes the

characteristic pore size. Based on the chosen interface position and the pore geometry,

the effective coefficients appearing in conditions (6.10)–(6.12) are computed numerically

using the theory of homogenization and boundary layers [Carraro et al., 2015, Hornung,
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1996, Jäger and Mikelić, 2000, 2009]. This is the main advantage of the generalized

interface conditions, besides their suitability for arbitrary flows in coupled Stokes–Darcy

systems.

Coupling conditions for the pore-network model Each intersection of a pore body i

with the free-flow domain boundary yields a pore-local discrete interface Γi (Figure 6.3).

We formulate coupling conditions on each Γi. Moreover, we assume no-flow/no-slip

condition for the free flow at the location of solid grains (no intersecting pore throat).

This results in the following coupling conditions for the free-flow/pore-network model

vff·n = vpm·n on Γi , (6.13)

ppm = pff on Γi , (6.14)

vff·τ =

vslip on Γi ,

0 else ,
(6.15)

with

vslip=−
1

βpore

[
(∇v+∇vT )n·τ

]
ff
+[v·τ ]pm . (6.16)

Figure 6.3: Schematic representation of a local interface for the free-flow/PNM.

We approximate the tangential component of the pore-body interface velocity as

[v·τ ]pm =
Qij

|Γi|
[nij·τ ]pm , (6.17)

where nij is a unit normal vector parallel to the throat’s central axis and pointing

towards the interface Γi. The volume flow through the pore throat ij is given by Qij

and |Γi| is the area of the discrete coupling interface. Equations (6.15) and (6.16) can
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be seen as the pore-scale analog to Equation (6.9) with a pore-local slip coefficient βpore,

which is determined numerically in a preprocessing step. See Weishaupt et al. [2020]

for more details.

The three sets of coupling conditions (6.7)–(6.9), (6.10)–(6.12) and (6.13)–(6.15) are

discretized corresponding to the adjacent subdomain models’ discretizations, and the

resulting coupled discrete models are treated by a monolithic strategy, assembling all

contributions in a single system of equations for each model.

6.2.4 Benchmark scenarios

Corresponding to Figures 6.1 and 6.4, we investigated three scenarios with different

flow problems induced by varying positions of inflow opening and solid inclusions. We

considered laminar fluid flow through the coupled flow domain with viscosity µ = 10−3

Pa · s. In what follows, Section 6.2.4 describes the geometrical configuration and

the boundary conditions, followed by a description of the system response quantities

in Section 6.2.4 and the uncertainties in Section 6.2.4.

Geometrical setting and boundary conditions

We considered the free-flow region Ωff = (0, L)×(γ,H) and the porous-medium domain

Ωpm = (0, L)× (0, γ) with L = 10.25mm and H = 6mm, separated by the sharp fluid–

porous interface Γ = (0, L)× {γ}, where the value for γ is uncertain.

For the first case (case 1 ), we investigated rectangular solid inclusions of size d and

studied a flow problem where the flow is arbitrary to the fluid–porous interface Γ. The

porous medium is isotropic, K = kI, and consists of 20 × 10 square solid inclusions

of size d = 0.25mm (Figure 6.4) leading to porosity ϕ = 0.75. The inclusions are

positioned in such a way that the line tangent to the top of the upper row of solid

inclusions is given by (0, L) × {5mm} and the characteristic pore size appearing in

coupling condition (6.12) is ℓ = 0.5mm.

For the classical interface conditions (6.7)–(6.9) (Classical IC ) the Beavers–Joseph pa-

rameter is typically taken αBJ = 1 in the literature, although it is often not the optimal

choice [Rybak et al., 2021, Mierzwiczak et al., 2019, Lācis et al., 2020]. Here, we consider
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−1.18× 10−1

−7.16× 10−3
Nbl
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M 1,bl
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.

Figure 6.4: Schematic description of the coupled flow problem (left), unit cell and non-
dimensional effective parameters for the interface location γ = 5.05mm (right).

αBJ as an uncertain parameter, which is quantified in Section 6.2.4. The boundary layer

constants appearing in the generalized coupling conditions (6.10)–(6.12) (Generalized

IC ) are computed numerically based on the geometrical configuration of the interfacial

zone and are presented in Figure 6.4 (right). For details on the computation of these

effective parameters, see Eggenweiler and Rybak [2021]. Note that the boundary layer

constants Nbl
1 and Mbl

1 (Figure 6.4, right) are non-dimensional. For isotropic porous

media, the constantsM2,bl
1 = 0 and Nbl

s = 0, therefore, they do not appear in Figure 6.4

(right).

In order to obtain a closed formulation for the pore-scale problem (6.1)–(6.2), we set

the following boundary conditions on the external boundary

v = vin = (0, V top sin(1000
3
πx)) on Γin, (6.18)

T(v, p)nff = 0 on Γout, (6.19)

v = 0 on Γnf, (6.20)

where the inflow boundary Γin = (3mm, 6mm) × {H}, Γout = {L} × (5.5mm, H),

Γnf = ∂Ω\(Γin∪Γout) and nff is the outward unit normal vector on ∂Ωff . The boundary

conditions for the coupled flow problem are presented schematically in Figure 6.4 (left).

The corresponding boundary conditions for the REV-scale model formulation given

by (6.3)–(6.4) together with either the Classical IC (6.7)–(6.9) or the Generalized
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IC (6.10)–(6.12) read

vff = (0, V top sin(1000
3
πx)) on Γin, (6.21)

T(vff , pff)nff = 0 on Γout, (6.22)

vff = 0 on Γnf,ff, (6.23)

vpm·npm = 0 on Γnf,pm, (6.24)

where Γnf,ff = ∂Ωff \ (Γin ∪ Γout ∪ Γ), Γnf,pm = ∂Ωpm \ Γ and npm denotes the unit

normal vector on ∂Ωpm pointing outward the porous medium. The boundary condi-

tions (6.21)–(6.23) also hold for the hybrid-dimensional free-flow/pore-network model

(Pore-Network), such that no mass enters or leaves the domain through the pores on

Γnf,pm. The coupling conditions (6.13)–(6.15) are set on Γ for PNM.

We have also investigated two other cases: one with the opening boundary condition on

the left side (case II ) and another with circular inclusions in the porous medium (case

III ). These two cases both have similar boundary conditions to the case I. Figure 6.5

shows the configuration of the two cases.

(a) case II (b) case III

Figure 6.5: Schematic configuration of case studies II and III.

System response quantities

A fundamental ingredient of each benchmark is the definition of so-called system re-

sponse quantities (SRQs). These quantities define the prescribed output from the

reference data as well as from the computational models that are compared via the

validation metric. The SRQs can be either local or global quantities. While the for-

mer can take quantities within the solution domain on the PDEs, such as dependent
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variables of the PDEs, the latter represents integral quantities or net flux out of a

system. As part of model validation, we seek to compare system responses generated

by different coupling concepts with the ones from the pore-scale resolved model (Sec-

tion 6.2.1). Figure 6.6 shows the data extraction points for the velocity field (top) and

the pressure (bottom). Since less variability is expected for pressure values, we have

selected fewer extraction points for pressure responses. We train the surrogate models

for all computational models based on the simulation results for the marked points.

The points colored in blue and red provide the corresponding data for the calibration

and validation steps, respectively. The positions of these points are identical for all

investigated cases.

(a) Velocity field (b) Pressure field

Figure 6.6: Data extraction points for the calibration and validation scenarios.

The pore-scale resolved simulation results contain both macroscopic and microscopic

details of the flow field. The latter becomes visible as oscillations of the pore-scale

solutions in the porous medium. To make numerical simulation results comparable, we

need to average them at the pore and REV scale. We consider volume averaging, where

the averaged velocity field at a given point x0 ∈ Ω is obtained as

vavg(x0) =
1

|V (x0)|

∫
Vf(x0)

v(x) dx , (6.25)

where V (x0) is the representative elementary volume corresponding to x0 and Vf(x0)

is its fluid part. The representative elementary volume V (x0) has the same size as the

periodicity cell Y ℓ. Moreover, the simulation results in the free-flow region need to be

averaged correspondingly such that the interpretation of the SRQs is the same in all

cases.
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Uncertainties and errors

So far, various coupling concepts for free-flow and porous-medium flow have been pre-

sented. The uncertainty, due to the choice of adequate representation of the system of

interest, is known as conceptual uncertainty. In addition to the conceptual uncertainty,

each computational model has uncertain parameters, such as material parameters or

interface location, requiring a thorough investigation. This type of uncertainty is known

as parametric uncertainty. Uncertain model inputs, defined later, must be propagated

through the model or simulation (also known as uncertainty propagation) to effectively

assess response quantities of competing modeling concepts and validate the correspond-

ing computational models against a reference solution.

The Stokes–Darcy problem (6.3)–(6.4) with the Classical IC (6.7)–(6.9) contains four

uncertain model parameters: the maximum boundary velocity at the inflow boundary

V top (Figure 6.4), the exact interface position γ, the permeability tensor K = kI and

the Beavers–Joseph slip coefficient αBJ. The exact location of the fluid–porous interface

for REV-scale models is not known a priori. The Beavers–Joseph coefficient αBJ is sup-

posed to contain the information on the surface roughness [Beavers and Joseph, 1967,

Le Bars and Worster, 2006]. An investigation to calibrate this parameter was recently

carried out in Rybak et al. [2021], however, only for isotropic media. There was also

an attempt to determine the Beavers–Joseph coefficient experimentally for flows paral-

lel to the fluid–porous interface, isotropic and orthotropic porous media [Mierzwiczak

et al., 2019], where the Beavers–Joseph parameter was found to be αBJ < 1 and depen-

dent on the intrinsic permeability. Finally, the permeability tensor appearing in the

Beavers–Joseph condition (6.9) is not necessarily the permeability of the porous bulk,

as in the standard models [Discacciati et al., 2002, Discacciati and Quarteroni, 2009],

but could also be permeability of the near-interfacial region [Lācis and Bagheri, 2017,

Zampogna and Bottaro, 2016].

In contrast to the Classical IC, the Generalized IC do not contain the Beavers–Joseph

coefficient. Further, the Generalized IC rely on the assumption that the interface loca-

tion may not be below the top of the solid inclusions. Correspondingly, the parameters

and their associated distributions as prior knowledge for the Stokes–Darcy model with

the Classical IC and the Generalized IC are listed in Tables 6.1 and 6.2, respectively.

As for the Pore-Network model, we considered the total conductance gij in (6.6) (see
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Table 6.1: List of uncertain parameters and their defined distributions for the classical coupled
Stokes–Darcy model.

Parameter name Range Unit Distribution type

Boundary velocity, V top [5 · 10−4 , 1.5 · 10−3 ] m/s uniform
Exact interface location, γ [4.9, 5.1] mm uniform
Permeability, k [10−10, 10−8] m2 uniform
Beavers–Joseph parameter, αBJ [0.1, 4] - uniform

Table 6.2: List of uncertain parameters and their associated distributions for the Stokes–Darcy
model with the generalized interface conditions.

Parameter name Range Unit Distribution type

Boundary velocity, V top [5 · 10−4 , 1.5 · 10−3 ] m/s uniform
Exact interface location, γ [5.0, 5.1] mm uniform
Permeability, k [10−10, 10−8] m2 uniform

Figure 6.2) as uncertain parameter to be inferred during the calibration phase. This

parameter plays the role of permeability in the pore-network setting. Another uncertain

input parameter is the pore-scale slip coefficient βpore. It can be determined numerically

in a preprocessing step, in which it is approximated by solving a simplified, equivalent

problem of free flow over a single pore throat intersecting with the lower boundary of the

free-flow channel [Weishaupt et al., 2020]. The list of considered uncertain parameters

and their associated distribution as prior knowledge for the PNM are presented in

Table 6.3.

Table 6.3: List of uncertain parameters and their specifications for the pore-network model.

Parameter name Range Unit Distribution type

Boundary velocity, V top [5 · 10−4 , 1.5 · 10−3 ] m/s uniform
Total conductance, gij [10−7, 10−5] m3/ (s · Pa) uniform
Pore-local slip coefficient, βpore [103, 105] 1/m uniform

As opposed to uncertainties, errors are defined as the difference between the true value

and the predicted value and have both a sign and a magnitude. We consider the errors

associated with the model discrepancy error, numerical approximation, and surrogate

modeling in our analysis. The analyzed models in our benchmark study could never

perfectly reproduce the reference solution. This difference can be attributed to the
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presence of model discrepancy. This discrepancy can be attributed to simplified as-

sumptions, missing physics, upscaling due to scale differences. We parameterize it as

Σ(θϵ) and treat its parameter θϵ as an additional unknown parameter. Following Wag-

ner et al. [2021], we infer these parameters jointly with model parameters θk in (2.6).

We consider a diagonal covariance matrix as Σ = σ2INout with a scalar unknown pa-

rameter σ2 for each system response quantity, i.e., velocity and pressure (Section 6.2.4).

Nout stands for the number of data points.

The governing equations of the models under investigation in this study require the

approximation of numerical solutions. These approximations provide an additional

source of error. Since quantifying numerical errors is the main focus in the verifica-

tion of numerical schemes, we only investigate the discretization error that originates

from a certain choice of the mesh size. Similar to previous chapter, we take a heuristic

approach from Oberkampf and Roy [2010] to quantify this error, in that we fit gener-

alized Richardson extrapolation (Equation (5.1)) to estimate the error by comparing

three different mesh spacings.

As previously mentioned, the computational models are substituted with the easy-to-

evaluate surrogate models in the Bayesian analysis to offset the computational cost.

This replacement also introduces a new source of error, known as a surrogate pre-

diction error. Ignoring this error could result in a biased posterior distribution. As

for prediction uncertainty, a mean squared error based on a testing set can provide a

good estimate of the surrogate error variance. We incorporated the errors discussed

above in the MCMC simulation method used in the calibration stage to approximate

the posterior distribution. We directly sum up all the covariance matrices of errors to

obtain the likelihood calculations’ total covariance matrix Σ in the likelihood function

in Equation (2.6). Here, we assume that all these errors follow a normal distribution

and are independent of each other.

6.2.5 Solution procedure

In this study, we compared the coupled models (using either REV-scale formulation

or Pore-Network model in Ωpm) with the pore-scale resolved model (6.1)–(6.2). For

the REV-scale model formulation, we consider the Stokes–Darcy problem with the

Classical IC (6.7)–(6.9) and the Generalized IC (6.10)–(6.12). The pore-scale and
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coupled models have been implemented in the open-source simulator DuMux [Koch

et al., 2021a].

Here, our goal is to assess the coupled model’s accuracy compared to the above-

mentioned REV-scale approaches and under the influence of pore-scale parameter

uncertainty. As reference data, we used the fully resolved pore-scale model for the

velocity and pressure (Figure 6.7). However, it is worth mentioning that the Stokes–

Darcy model with Classical IC and Generalized IC can only offer predictions on the

REV scale. Therefore, we average the values of SRQs obtained for the fully resolved

pore-scale model as well as the Pore-Network model for consistency. The averaging

is performed via a volume averaging approach, discussed in Section 6.2.4 to make the

REV-scale numerical simulation results comparable with that of the pore-scale resolved

simulation.

(a) Velocity field (b) Pressure field

Figure 6.7: Streamlines of the pore-scale (reference) simulation.

Replacing the models with their surrogates drastically reduces the total computational

time of the analysis. This gain is essential in computationally demanding uncertainty

quantification tasks, such as propagation or inference. In this study, we observed that

using a well-trained surrogate model could speed up one simulation run from 10 ∼ 15

s to only 0.005 ∼ 0.007 s with acceptable accuracy.

The predictive ability of the models has been analyzed via the surrogate-based Bayesian

procedure. In the calibration phase, we updated the prior knowledge on the uncertain

model parameters according to Section 6.2.4. We conditioned the responses of all

analyzed models on the velocity and pressure values extracted from the pore-scale

simulations that are marked as blue points in Figure 6.6. To do so, we employed MCMC

approach to perform Bayesian inference Section 2.1.3 using surrogate representation,
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presented in Chapter 3. We use an Affine Invariant Ensemble Sampler (AIES) to

approximate the posterior distribution (Section 2.1.3).

We trained each surrogate model with the simulation outcomes of 300 numerical model

runs to accelerate this Bayesian updating step. The AIES-MCMC sampler was run for

an ensemble of 50 Markov chains on each surrogate. We monitor the convergence of

the sampler using the integrated auto-correlation time, which estimates the number of

evaluations of the posterior probability density function to draw independent samples

from the target density [Sokal, 1997]. The MCMC sampler is run until the convergence

criterion of 1% for the difference in the auto-correlation time between two consequent

monitoring steps is met. We retrain a new set of surrogate models in the validation

stage based on the updated parameter distribution (posterior distribution) obtained

after calibration. With these surrogate models, we propagate the posterior parametric

uncertainty to estimate the posterior predictive distribution of models to be passed

to the Bayesian metric calculation step. The abovementioned procedures have been

performed using the Python package BayesValidRox (Chapter 4).

As discussed in Section 6.2.4, using surrogates may introduce additional errors to the

inference process. To include this error, we test the surrogate models with 150 sim-

ulation runs (test sets) which are different from the training sets. Comparing the

surrogates’ prediction with the results from the test sets, we observed a considerably

low validation error between 10−8 and 10−11 for all models, indicating an acceptable

prediction accuracy. Moreover, we estimated Mean Square Error (MSE) for each surro-

gate model, which is a good estimate of the surrogate error variance [Xu and Valocchi,

2015]. When evaluating the likelihood p(Y|Mk, θk) in (2.6), we add a diagonal matrix

ΣPCE with elements σ2
PCE,i =MSEi, i = 1, 2, ..., Nout to Σ, assuming that the surrogate

errors are independent and follow a normal distribution with zero mean. Moreover,

following Schöniger et al. [2015b], we perturbed the reference data with some additive

noise to account for uncertainty associated with the BME values, the resulting Bayes

factors, and posterior model weights. With this approach, we investigated the impact

of other possible sources of errors on the validation metrics that are not considered in

the calculations.

As mentioned in Section 6.2.4, we jointly inferred the uncertain parameters with the

scalar unknown parameters σ2
vel and σ

2
p for each system response quantity, i.e., velocity
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and pressure. For these parameters, we assumed uniform distributions σ2
vel ∼ U [0, 10−5]

and σ2
p ∼ U [0, 10−3] as priors, for velocity and pressure, respectively.

6.3 Results and discussion

The current section offers insights into the analysis of predictive abilities in Section 6.3.2

and model comparison in Section 6.3.3 using the surrogate-based Bayesian validation

framework. Additionally, we assessed the influence of various modeling parameters on

the final model prediction, performing the global sensitivity analysis in Section 6.3.1.

6.3.1 Global sensitivity analysis

In this section, we analyze how the variability of the model response quantities intro-

duced in Section 6.2.4 at the selected data extraction points (Figure 6.6) is affected

by the variability of each input variable or combinations thereof. This is achieved via

sensitivity analysis. Section 3.1.7 explored the connection of polynomial representation

to global sensitivity measures [Oladyshkin et al., 2012] and used the so-called Sobol in-

dices [Sobol’, 1993], derived from a variance decomposition of model outputs in terms

of contributions of each input parameter or combinations thereof. In what follows, we

present the total Sobol indices for the SQRs and the data extraction points defined in

Section 6.2.4, for all three models for the calibration scenario.

Classical IC In Figure 6.8, we provide the total Sobol indices for the calibration

points in blue (Figure 6.6) for velocity and pressure for the Classical IC (6.7)–(6.9).

We observe that the boundary velocity V top has the most contribution to the velocity

variance (Figure 6.8, left) in the free-flow region and pressure field (Figure 6.8, right)

for the analyzed points in the domain. Moreover, the exact interface location plays an

important role for the velocity field, especially near the interface (Figure 6.8, left) and

influences the pressure field as well (Figure 6.8, right). The value of the Beavers–Joseph

parameter has a higher impact on the velocity near the interface than other parts of the

domain. However, this parameter does not play an essential role for the pressure. The
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permeability k significantly affects the velocity in the porous-medium domain, whereas

its influence on the velocity in the free-flow region and the pressure field is small.
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Figure 6.8: Total Sobol indices of the Stokes–Darcy model with the Classical IC for the
calibration (blue) points in Figure 6.6.

Generalized IC In Figure 6.9, the total Sobol indices for velocity and pressure before

calibration (based on prior distributions of parameters) are presented for the selected

blue points in Figure 6.6. For the Generalized IC, the information about the exact

interface location γ is included in the boundary layer constants Nbl
1 andM1,bl

1 appearing

in condition (6.12). Therefore, the exact position of the interface does not influence

the overall system behavior in comparison to the Classical IC. The permeability k (in

the porous-medium) and the inflow velocity V top have a significant impact both on the

velocity (in the free-flow region) and the pressure field, as in the case of the Classical

IC.

Pore-network model Figure 6.10 shows the total Sobol indices for velocity (left) and

pressure (right) for the blue points in Figure 6.6. As for the REV-scale coupled models,

we observe a dominant influence of V top for all points. As expected, the influence of the

total conductance is more prominent in the porous domain, which is comparable to the

influence of permeability for the REV-scale coupled models. The influence of the pore-

scale slip parameter βpore shows a relatively small influence on the variability of velocity

at point 6 and is hardly visible at other locations in the free-flow region. This matter is

most likely because the slip coefficient only affects the flow field in the free-flow domain
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Figure 6.9: Total Sobol indices of the Stokes–Darcy model with the Generalized IC for the
calibration points.

Ωff very locally, directly above the interface pore. However, the averaging volume used

for the evaluation takes into account a larger portion of the free-flow region, where

the influence of βpore is fairly small. In analogy to the REV models, V top also has a

dominating influence on the pressure and velocity in the free-flow region.

1 2 3 4 5 6 7 8 9 10
Point ID

0.00

0.25

0.50

0.75

1.00

T
ot

al
S

ob
ol

in
d

ic
es

,
S
T V top

gij

βpore

(a) Velocity

1 2 3
Point ID

0.00

0.25

0.50

0.75

1.00

T
ot

al
S

ob
ol

in
d

ic
es

,
S
T V top

gij

βpore

(b) Pressure

Figure 6.10: Total Sobol indices of the Pore-Network model for the calibration points.

6.3.2 Analysis of predictive abilities

In this section, we present the result of the analysis of the predictive ability of all

three discussed conceptual models by showing their parametric posterior and the corre-

sponding predictive distributions. In what follows, we present the parameters’ updated
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(posterior) distribution and model discrepancy errors after calibration obtained by the

MCMC sampler for all three models. Afterward, a figure containing the posterior

predictive of models next to each other versus the reference data is provided.

Classical IC Figure 6.11 presents the posterior distribution obtained via the Bayesian

inference using the calibration (blue) points in Figure 6.6. The 50 percent quantiles,

alongside the 15 and 85 percent quantiles, are displayed on top of the histograms shown

in the diagonal plots. Most posterior distributions of the parameters follow a Gaussian

distribution. However, the distribution of the interface location γ and the Beavers–

Joseph slip coefficient αBJ exhibits a long right tail. Moreover, a slight correlation

between γ and αBJ is observed.

Figure 6.11: Posterior parameter distribution of the Stokes–Darcy model with the Classical
IC after calibration to the reference data from the pore-scale model.
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Generalized IC Similar to the procedure described above, the surrogate-based Bayesian

calibration offers insight into the posterior distributions of modeling parameters for the

Stokes–Darcy model with the Generalized IC (Figure 6.12). As opposed to the Classical

IC, the interface location γ for this coupling condition shows a slightly wider distribu-

tion. This observation indicates that the exact position of interface does not influence

the overall system behavior in comparison to the Classical IC.
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Figure 6.12: Posterior parameter distribution of the Stokes–Darcy model with the Generalized
IC after calibration to the reference data from the pore-scale model.

Pore-network model For the Pore-Network model, we also have used the calibration

(blue) points (Figure 6.6) to perform surrogate-based Bayesian inference. Figure 6.13

illustrates the posterior parameter distribution of the Pore-Network model. The βpore

distribution covers a wider range. This issue can be attributed to the insensitivity of the

model results to this parameter, as presented by the total Sobol indices in Figure 6.10.
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Figure 6.13: Posterior parameter distribution of the Pore-Network model after calibration to
the reference data from the pore-scale model.

Posterior predictives To obtain the models’ posterior predictive distributions, we

need to propagate the posterior parametric uncertainty presented so far through the

models. The result offers a possibility of analyzing how post-calibration uncertainty

affects the SRQs. To perform the post-calibration uncertainty propagation, we have

trained a new surrogate for each competing model using new training sample points

drawn from the posterior parameter distribution. For better visual comparison, we plot

the posterior predictive of models next to each other. Figures 6.14 and 6.15 illustrate

the mean and standard deviations of the model predictive distributions in a bar chart

for the velocity and pressure response quantities, respectively.

In particular, Figure 6.14 reveals that all analyzed models provide accurate predictions

at the points located in the deeper part of the porous medium (1 to 4). However, the

predictions at the points near the interface (5 to 8) suggest that the Stokes–Darcy model
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Figure 6.14: The velocity predictions of all models in the validation step against the reference
data from the pore-scale model.
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Figure 6.15: The pressure predictions of all models in the validation step against the reference
data from the pore-scale model.

with Classical IC and Generalized IC provide more accurate predictions than the Pore-

Network model. The REV-scale model with Generalized IC shows less uncertainty, i.e.,

lower standard deviation, in its prediction at the vicinity of the interface between the

porous medium and the free-flow. Moreover, Figure 6.15 confirms that all models are

able to provide accurate pressure values.
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6.3.3 Model comparison

We perform the model comparison using the so-called posterior model weights via the

BMS explained in Section 2.2.2. Such an analysis offers an aggregated comparison of a

model’s outputs to the validation set of reference data from the pore-scale model that

are marked in red in Figure 6.6. We used the newly constructed surrogate representation

during the validation stage for model comparison analysis to compute the BME values

in Equation (2.8). These values are required to calculate the posterior model weights

in Equation (2.23) and the Bayes factors in Equation (2.21). Additionally, the use of

the advanced surrogate representation provides a possibility to assess the uncertainty

of the BME values and the corresponding model weights. Table 6.4 presents a detailed

statistical summary of the model weights and provides a ranking. It also reports the

information regarding the post-calibration uncertainty with the help of the deviation

regarding 25% and 75% percentiles.

Table 6.4: Statistical summary of posterior model weights after validation.

Model Model weights Rank

Classical IC 0.003+0.002
−0.001 2

Generalized IC 0.997+0.001
−0.002 1

Pore-network 0.000+0.000
−0.000 3

The expected model weights under noisy pore-scale data assumption convey a relatively

clear model ranking in favor of Generalized IC, with Classical IC as second and the

Pore-Network model ranking last. It is worth mentioning that the model weights close

to zero for the Classical IC and Pore-Network models can be attributed to the high

prediction uncertainty of these models. This fact is represented by the error bars in

Figure 6.14. Moreover, a considerable mismatch can be detected between the expected

velocity prediction of the Pore-Network model and the reference data at validation

points 5 and 6. As for the Classical IC, the velocity prediction uncertainty is higher

than that of the Generalized IC. This difference is mainly for the points in the interface’s

vicinity and the free-flow region.

Assessments of confidence in the model ranking have been investigated employing BHT

for pairwise comparison of models based on the validation scenario. In the introduced

uncertainty-aware Bayesian validation framework, Bayes Factors provide an objective
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Figure 6.16: Distributions of log10 (Bayes Factor) for the pairwise comparison of competing
models based on the validation scenario.

measure of significance that quantifies the evidence in favor of one model’s superiority

against another. Figure 6.16 presents the probability density functions of log10(BF)

all perturbed velocity and pressure data sets in a three-by-three matrix. Here, we

compute three Bayes Factors for each model against its counterpart. The significant

levels in a log10-scale, introduced in Jeffreys [1961] are marked with vertical lines. Gray

lines represent equally strong evidence for both models. Orange and red lines indicate

thresholds for strong and decisive evidence in favor of one model against the other,

respectively.

The first plot in the second row in Figure 6.16, e.g., shows the distribution of log10(BF)

in favor of Generalized IC against Classical IC. This plot reveals that for most of the

perturbed data sets, the Bayes factor is in the region where decisive evidence (log10(BF)

greater than two) exists in favor of Generalized IC to outperform Classical IC. Similarly,

in all the analyzed cases (perturbed data sets), Classical IC could be clearly favored

against Pore-Network model based on the decisive evidence (the plot in the first row,
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Figure 6.17: Distributions of log10 (Bayes factor) of the Pore-Network model, with the surface
averaging against competing models based on the validation scenario.

the last column). Moreover, the distribution in the second row, the third column of

Figure 6.16 reveals that the Bayes factor distribution of Generalized IC against Pore-

Network model proves decisive evidence in favor of Generalized IC.

The results presented so far are based on a comparison of the SRQs with averaged

SRQs of the fully resolved Stokes simulation, as the Stokes–Darcy model with Classical

IC and Generalized IC could offer a prediction on the REV scale only. However, one

could directly compare the Pore-Network model to the reference data at the pore scale

without performing volume averaging by calculating the surface-averaged pore-scale

velocity at the pore-throat cross-sections. We denote the Pore-Network model with

the pore-throat surface averaging model as the Pore-Network SA model and its Bayes

factors distribution is shown in Figure 6.17. The velocities of Pore-Network SA model

are not defined within the pore bodies but only at the pore throats, which explains

why the results of Figure 6.17 show stronger evidence in favor of the Pore-Network SA

model compared to the other concepts. Therefore, the Pore-Network SAmodel avoiding

additional averaging steps is a suitable approach when detailed pore-scale information

is considered. Alternatively, the Stokes–Darcy model with Generalized IC adequately

represents the underlying physical processes once only the REV-scale information is

available.

In Section 2.2.2, we introduced an upper limit for the BME value via TOM. In what

follows, I compare the models’ BME distributions with the optimal distribution of BME

(obtained for the TOM) by quantitative measures. Since likelihoods tend to show the

largest mass around zero, the BME distributions used in this quantitative comparison

are transformed in log10 scale, as it is more intuitive. To obtain the probability density
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functions (PDFs) of log-BME, p(Y ) with Y = log10(BME), can be obtained from the

ensemble of 10,000 replications of BME per model by kernel density estimation [Bow-

man and Azzalini, 1997]. The difference between PDFs of log-BME can be estimated

with various distance measures. The following two measures are used for this study:

• Mode distance (Dmode): It measures the distance between the modes Ỹ = maxγ p(Y )

of the respective log-BMD densities:

Dmode(Mk,Ml) = ỸMk
− ỸMl

(6.26)

• Hellinger distance (DHellinger): It is a dimensionless metric with fixed bounds of

0 (identical distributions) and 1 (no overlap at all) and defined as

Dhellinger(Mk,Ml) =
√

1−BC (p(Y | Mk), p(Y | Ml)), (6.27)

where BC represents the Bhattacharyya coefficient, which reads:

BC (p(Y | Mk), p(Y | Ml)) =

∫ √
p(Y | Mk)p(Y | Ml). (6.28)

Figure 6.18 shows the distance measures for the averaged case. Note that the TOM

does not appear in the figure as its distance to itself would result in zero.

(a) Dmode (b) Dhellinger

Figure 6.18: Comparison of log10(BME) distributions of models with that of TOM.

The distance measures in Figure 6.18 can also be interpreted as the remaining distance
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or room for model improvement between the individual models and TOM. Both mea-

sures indicate that for the averaged case, the Generalized IC has the lowest distance

and the Pore Network model has the highest distance to TOM. However, the Pore-

Network SA model is the closest to the TOM when compared to the detailed pore-scale

model.

In addition to the setup presented in Section 6.2.4, we also analyzed two other cases,

shown in Figure 6.5. Firstly, we considered a setup with the same geometrical configu-

ration, but the inlet boundary was located at the left domain edge in the free-flow region

with an opening of 1.5 mm from the top (case II ). This setup induces a flow profile

parallel to the interface. Comparing Classical IC with Generalized IC, we witnessed no

substantial evidence in favor of any model. This observation is in line with the results

from Eggenweiler and Rybak [2021], where the authors showed that the Stokes–Darcy

problem with Classical IC and Generalized IC provides similar simulation results for

parallel flows to the porous layer. The second additional setup (case III ) is based on

the same flow models and boundary conditions as presented in Section 6.2.4, however,

the solid inclusions are circular. We compared the Stokes–Darcy model with Classical

IC and Generalized IC against the reference data. The model comparison with the

Bayes factor suggests strong evidence in favor of the Generalized IC, as expected and

similar to the rectangular inclusions.

6.4 Summary and conclusions

We have applied the surrogate-assisted uncertainty-aware Bayesian validation frame-

work to a benchmark study that addresses both parametric and conceptual modeling

uncertainties due to different formulations of coupling free flow and porous medium

models. To do so, we have considered the Stokes equations coupled to different mod-

els for the porous-medium compartment and corresponding coupling strategies: the

standard REV-scale model using Darcy’s law with classical or generalized interface

conditions as well as the pore-network model. The advantage of employing a surrogate

modeling technique is that one can perform a sensitivity analysis without additional

costs. This analysis is achieved using the so-called Sobol indices that are derived ana-

lytically from the expansion coefficients.
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Applying the suggested Bayesian validation framework, we have observed that there

are matches between the predictions related to the considered models and the reference

data for the points in the deeper part of the porous medium for all coupled models.

However, we have found differences in the predictive capabilities of the models in the

vicinity of the interface and in the free-flow region. Moreover, we have propagated the

post-calibration parametric uncertainty through each analyzed model to validate the

different models against reference data that have not been used during the calibration

phase. This uncertainty-aware Bayesian validation procedure confirmed that the aver-

aged pore-network model has the most difficulties correctly representing the underlying

physical process. This issue is likely due to the averaging approach used for the pore-

network model, where velocities have to be calculated and interpolated from fluxes

only given within pore throats. Addressing the differences in the predictions of the

considered modeling concepts, we have performed a Bayesian model comparison. This

comparison revealed that the Stokes–Darcy model with the generalized interface con-

ditions represents processes on the REV scale best compared to the classical interface

conditions and the correspondingly upscaled pore-network model. The pore-network

model outperforms both Stokes–Darcy models with classical and generalized interface

conditions only if the detailed pore-scale information is considered.

We have also investigated two other cases: one with the opening boundary condition

on the left side and another with circular inclusions in the porous medium. The anal-

ysis of the former setting, which induces parallel flow to the interface, uncovered that

the Stokes–Darcy models with the classical and the generalized interface conditions

provide similar results. This observation was expected for flows parallel to the fluid–

porous interface. The findings of the analysis for the setup with circular inclusions

confirmed that there is decisive evidence in favor of the generalized interface condi-

tion being superior to the classical interface. Concluding, we have observed that the

suggested surrogate-assisted uncertainty-aware Bayesian validation framework helps to

gain insight into underlying physical processes at considerably low computational costs.



7 Application III: Surrogate-Based

Bayesian Comparison of

Computationally Expensive Models:

Application to Microbially-Induced

Calcite Precipitation

Geochemical processes change the material properties of porous media in subsurface

reservoirs caused by microbial activity. These complex Subsurface biogeochemical pro-

cesses are subject to strong conceptual uncertainty at present. That means modelers

face the challenge of choosing one of several modeling approaches to describe the bio-

geochemical process. Different hypotheses about the involved governing processes are

present in these model variants.

When observation data are available, a rigorous Bayesian model selection in conjunc-

tion with a Bayesian model justifiability analysis can be employed to select the most

appropriate model, which best describes the underlying physical processes in the light of

the available data. However, biogeochemical modeling is computationally demanding

as it conceptualizes different phases, biomass dynamics, geochemistry, precipitation,

and dissolution in porous media. As a result, the two-stage Bayesian framework for the

multi-model comparison cannot be based directly on the full computational models due

to the high computational costs involved. To circumvent this problem, the surrogate-

based framework introduced in Section 2.3 has been deployed for the competing biogeo-

chemical models. Given that those surrogate representations are only approximations

of the analyzed original models, the approximation error in the Bayesian analysis is

accounted for by novel correction factors for the resulting model weights, introduced
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in Sections 2.3.1 and 2.3.2. This work has been published in the Journal of Compu-

tational Geosciences titled ”Surrogate-based Bayesian Comparison of Computationally

Expensive Models: Application to Microbially Induced Calcite Precipitation” [Scheurer

et al., 2021].

7.1 Introduction

Porous media undergo biogeochemical changes due to the activity of microbes [Lovley

and Chapelle, 1995]. Due to the presence of these activities in the subsurface, they

profoundly affect ecosystems, which makes them an interesting engineering applica-

tion. Some examples of biogeochemical processes that engineers tried to manipulate

are: enhanced recovery of resources as in microbially enhanced oil recovery, [e.g., Bach-

mann et al., 2014, McInerney et al., 2005, Huang et al., 2018], blocking of preferen-

tial flow paths by the accumulation of biomass or minerals precipitated as a result of

the microbial metabolism, [e.g., Bottero et al., 2013, Suliman et al., 2006] or biore-

mediation of soils by microbial decomposition of organic pollutants, [e.g., Megharaj

et al., 2011, Head, 1998, Mulligan and Galvez-Cloutier, 2003] or in-situ sequestration

of inorganic contaminants (metals, radionuclides) by biotically managed precipitation

[Hamdan et al., 2011].

Nevertheless, it is challenging to describe all biogeochemical processes in detail due to

their complex interactions [Steefel and MacQuarrie, 1996]. As a result, it is hard to

control them in a desired manner. A good understanding of these processes is necessary

when aiming to control them in order to predict or even regulate the outcome. Thus,

modeling is a crucial tool to predict the response of systems under certain conditions

[Hunter et al., 1998]. Corresponding models are essential in investigating the coupled

transport of fluids and reactive substances through porous media and the resulting

chemical reactions in the pores [Steefel et al., 2005, MacQuarrie and Mayer, 2005, Xu

et al., 2006].

Several transport models dealing with the biogeochemical process of microbially induced

calcite precipitation (MICP) have been discussed in works by, e.g., Barkouki et al.

[2011], Ebigbo et al. [2012], Hommel et al. [2015, 2016], van Wijngaarden et al. [2016],

Nassar et al. [2018]. This induced calcite precipitation provides a practical technical
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application. By accumulating the precipitated calcite, the porosity and permeability

of a porous medium can be reduced [e.g., Stocks-Fischer et al., 1999, Dupraz et al.,

2009, Phillips et al., 2013, Cuthbert et al., 2013, Mitchell et al., 2013]. MICP has also

been proven to reduce permeability and enhance mechanical strength even at large,

field-relevant scales [e.g., van Paassen et al., 2010, Phillips et al., 2016, Nassar et al.,

2018, Minto et al., 2019, Kirkland et al., 2020]. Additionally, MICP can be used to

reduce erosion or increase soil stability [e.g., Whiffin et al., 2007, Gomez et al., 2017,

van Paassen et al., 2010, Yang et al., 2020].

In porous media, MICP involves several phases: at least three solid phases (biofilm,

calcite, unreactive solid substance), water, and possibly another fluid phase, such as

gas. Moreover, calcium, inorganic carbon, and urea are considered dissolved compo-

nents in the water phase. The complete list of components can be found in Hommel

et al. [2015]. MICP is a reactive transport process consisting of three main parts: (1)

adhesion of biomass on surfaces, detachment of the biomass from the biofilm as well

as growth and decay of the biomass, (2) urea hydrolysis that alters the geochemistry,

and (3) precipitation and dissolution of calcite. The MICP processes are visualized in

Figure 7.1.

water
solute

precipitation/
dissolution

ureolysis

calcite

rock grain

suspended 
biomass

detachment/
attachment

growth/
decay

biofilm

Figure 7.1: Schematic view of relevant processes and phases during MICP after Hommel et al.
[2015].

S. pasteurii are bacteria that are able to produce the enzyme urease and decompose
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urea into carbonic acid and ammonia with the help of urease. In an aqueous solution,

the ammonia reacts with the contained H+ ions. As a result, the pH value increases

so that the carbonic acid decomposes into H+ ions and carbonate ions, while the con-

centration of dissolved carbonate increases. If calcium ions are provided, it reacts with

the carbonate ions and calcite precipitates. These chemical processes can be described

by the following reaction according to Hommel et al. [2015]:

CO(NH2)2 + 2H2O+ Ca2+
Urease−−−→ 2NH4

+ + CaCO3 ↓ . (7.1)

Conceptual uncertainty Biogeochemical models are helpful, for example, to design,

monitor, and evaluate applications, such as mitigating leakages from a geological gas

reservoir into above aquifers in advance, [e.g., Cuthbert et al., 2013, Nassar et al., 2018,

Cunningham et al., 2019, Minto et al., 2019, Landa-Marbán et al., 2021]. Our limited

knowledge about the interaction of the governing processes in biogeochemical systems

leads to several modeling approaches. These approaches differ, e.g., in their level of

complexity. Conceptual uncertainty refers to the uncertainty of selecting between these

modeling alternatives.

Selecting a single model and ignoring possible alternatives might result in a substantial

underestimation of the overall prediction uncertainty as the space of potential models is

not sufficiently covered [Enemark et al., 2019, Refsgaard et al., 2012, Rojas et al., 2008].

Many studies have identified conceptual uncertainty as a key source of uncertainty in

modeling [Burnham and Anderson, 2002, Neuman, 2003, Højberg and Refsgaard, 2005,

Rojas et al., 2008, 2010, Gupta et al., 2012, Troldborg et al., 2007, Refsgaard et al., 2012,

Renard et al., 2010, Schöniger et al., 2015b, Enemark et al., 2019]. These studies suggest

treating modeling concepts with different levels of detail and different assumptions as

competing hypotheses. A statistical technique such as BMS (Section 2.2.2) allows us

to determine the system’s most appropriate representation [Raftery, 1995, Wasserman,

2000].

This study aims to set up a rigorous ranking of biogeochemical computationally ex-

pensive models via the surrogate-based two-stage Bayesian multi-model comparison

framework, introduced in Section 2.3. This framework is an extension of the Bayesian

model justifiability analysis introduced by Schöniger et al. [2015a]. This extension al-

lows the use of surrogate models, making this analysis suitable for computationally
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demanding models. Section 7.2 introduces the experimental setup and the modeling

variants. The results and discussions are provided in Section 7.3.

7.2 Problem description

This section entails the description of the experimental setup as well as the investigated

numerical models. Moreover, the solution procedure used to perform the analysis is

presented.

7.2.1 Experimental setup

The analyzed MICP experiment is described in detail in Hommel et al. [2015]. This

experiment represents a sand-filled column that is 61 cm high with a diameter of 2.54

cm. At the beginning of the experiment, bacteria are injected at the bottom of the

column. In an overnight no-flow period, bacteria can attach throughout the column and

establish a biofilm. Then, biofilm growth is promoted by a 24-hour substrate injection.

From there, two pore volumes of 0.33 mol/l calcium and urea solution are injected at

10 ml/min repeatedly every 24 hours. The no-flow period after the injection allows

the mineralization reactions to take place. That period is followed by another injection

of the substrate to revive the biofilm [Hommel et al., 2015], before the subsequent

injections of calcium and urea start over until a total number of 30 cycles has reached.

A schematic experiment setup is shown in Figure 7.2.

This study considered the model predictions of calcium and calcite over space and time

among various predicted quantities. The predictions of different models are compared

to measurement data as well as among each other. To receive comparable results,

only spatial and temporal points where measurement data are available are used when

comparing models with each other. These data points differ for calcium and calcite.

For the calcite content, the measurement data are only available at the end of the

experiment, which is after 3203460 seconds (about 890 hours or 37 days). The calcium

concentration is measured at 35 different data points in time. Therefore, calcium

concentrations are measured after 6 “main points” in time, the so-called pulses, namely

after 151.35, 218.85, 290.85, 626.85, 698.85, and 866.85 hours. At these points, the
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Column Experiments
measured: final calcite (x), Ca2+(y,t)
xi: sampling locations for calcite content

yi: sampling locations for calcium concentration
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Figure 7.2: Column experiment setup by Hommel et al. [2015] with measurement locations
for calcite content and calcium concentration with analyzed column D1.
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Table 7.1: Times in hours for measurement of the calcium concentration.

After Pulse number

pulse (hrs) 5 7 10 22 24 30

0 151.35 218.85 290.85 626.85 698.85 866.85
0.5 151.85 219.35 291.35 627.35 699.35 867.35
1 152.35 219.85 291.85 627.85 699.85 867.85
2 153.35 220.85 292.85 628.85 700.85 868.85
3 154.35 221.85 293.85 - 701.85 869.85
4 155.35 222.85 294.85 630.85 702.85 870.85

concentration is measured additionally after half an hour, one, two, three, and four

hours, except for pulse 22, where no measurement is available after 3 hours, resulting

in 35 temporal points. Table 7.1 provides the exact measurement times after the first

injection. There are eight measurement locations for the calcite concentration, located

at 3.81, 11.43, 19.05, 26.67, 34.29, 41.91, 49.53 and 57.15 cm distance from the bottom.

For the calcium concentration, there are only five spatial measurement points located

at 10.16, 20.32, 30.48, 39.37 and 49.53 cm distance from the bottom. The measurement

locations in the models are evenly distributed at a respective distance of half an inch

(1.27 cm).

7.2.2 Conceptual models and related uncertainty

This study analyzed three models of MICP for describing biogeochemical processes in

porous media, provided by Hommel et al. [2015, 2016]. The reader is referred to the

original publications for a detailed explanation of their equations and the considered

numerical schemes. All models account for changes in porosity and permeability and

use the same discretization and solution strategy: a fully implicit Euler scheme in time

and a fully-coupled-vertex-centered finite volume (box) scheme [Helmig, 1997] in space;

the system of equations is solved using the BiCGStab solver [Van der Vorst, 1992] after

linearization using the Newton–Raphson method.

An <Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz, 40 Cores> machine was used for

the model evaluations. The computational effort for the most detailed MICP model

referred to as full complexity model, is extremely high with a run time between 16 and



174 7 Application to Microbially-Induced Calcite Precipitation

42 hours, depending on the respective model parameter set. The exact cost depends

on the model parameter set chosen for the evaluation since the time stepping varies

adaptively. Therefore, Hommel et al. [2015] suggest two simplifications of the full

complexity model, MFC, using the certain physical assumptions.

• initial biofilm model (MIB): The suspended biomass is neglected, and the biofilm

is assumed to be already established at the beginning of the experiment.

• simple chemistry model (MSC): The ureolysis rate is the rate limiting reaction

and precipitation of calcite occurs immediately whenever urea is hydrolyzed as

described in the overall reaction Equation 7.1 [Hommel et al., 2016].

Table 7.2 summarizes the key differences relevant to the model simplifications

Table 7.2: Key differences of the investigated models.

model MFC MIB MSC

simplifying assumption - pre-existing biofilm precipitation
determined by
ureolysis

simulated time 3203460 s 3109860 s 3203460 s
biomass transport and attachment yes no yes

sophisticated geochemistry yes yes no
kinetic precipitation rate yes yes no

number of primary variables 12 11 11
neglected component - suspended biomass ammonia/

ammonium

The computational time of the initial biofilm model MIB still remains high and is only

slightly lower than for the full complexity model on the same computational cluster.

The strong assumptions in the simple chemistry model MSC allow obtaining results of

one model run after 40 minutes using the same computational cluster. Apart from de-

creasing the computational cost, model simplification reduces parametric uncertainty.

An extremely detailed (too complex) model with many parameters and without enough

calibration data and therefore parametric uncertainty results in a high predictive vari-

ance (i.e., uncertainty) of the model.

The considered parameters in the following were previously identified as sensitive pa-

rameters of the MICP models and already used for calibration in Hommel et al. [2015]:
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• the coefficient for preferential attachment to biomass ca,1,

• the coefficient for attachment to arbitrary surfaces ca,2,

• the dry mass density of biofilm ρf,

• the enzyme content of biomass kub.

As the initial biofilm model MIB assumes that there are no attachment periods, it is

only dependent on the model parameters ρf and kub. The full complexity model MFC

and simple chemistry model MSC are both dependent on all four model parameters.

Following the physically possible range of the considered uncertain parameters, we

assume that all of the model parameters are uniformly distributed in the intervals

shown in Table 7.3.

Table 7.3: Uncertain parameters and their prior distributions for the MICP models.

Parameter name Range Unit Distribution type

ca,1 [1 · 10−10 , 1 · 10−7 ] s−1 uniform
ca,2 [1 · 10−10 , 1 · 10−6 ] s−1 uniform
ρf [1 , 15 ] kg/m3 uniform
kub [1 · 10−5 , 5 · 10−4 ] kg/kg uniform

7.2.3 Solution procedure

Two surrogate models (one for calcite, one for calcium) have been trained for each of

the three competing MICP models described in Section 7.2.2 (resulting in a total of

six different surrogate models) using a p = 2 order aPC expansion according to the

prior distributions presented in Table 7.3. For this purpose, the three original models

will be evaluated D = card Ad,p = (d + p)!/(d! · p!) times. Since the D evaluations for

constructing the surrogate models are independent, these model runs were parallelized.

Further, we improve the accuracy of the three surrogates using an iterative Bayesian

updating method by incorporating new collocation points at approximate locations of

the maximum a posteriori parameter set [Oladyshkin et al., 2013, Mohammadi et al.,

2018]. The idea is to evaluate the surrogate model M̃ on a high number of parameter
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realizations obtained from their prior distribution, to assign weights to the points by

their posterior probability, and select the parameter set with the highest weight.

The number of Bayesian updates have been restricted to 10 runs due to the high

computational demand and previous experience (see e.g. Beckers et al. [2020]), so

that Dtotal = D + 10 = (d + p)!/(d! · p!) + 10. This results in Dtotal = 15 + 10 = 25

model evaluations for the simple chemistry model (MSC) and the full complexity model

(MFC) and Dtotal = 6+10 = 16 for the initial biofilm model (MIB). During the Bayesian

updating, we consider the standard deviation of measurement errors ϵ at each point in

space (and time) equal to 20% of the associated measurement value for both the calcite

content and the calcium concentration.

7.3 Results and discussion

7.3.1 Approximation quality of MICP surrogate models

When iteratively updating the aPC expansion, a surrogate model’s quality can be

assessed by estimating its validation error in Equation (3.37). This can be computed

for a validation/test set as discussed in Section 3.1.3. Since the computation of the

validation error requires additional model evaluations, it is computationally intractable

for models with significant computational time, such as the MICP models. To avoid

additional model evaluations for assessing the accuracy of the surrogate model, the

LOO error in Equation (3.38) based on the already evaluated training model runs can

be used.

As every point in space and time has its own surrogate model, there are 5·35·10 = 1750

LOOCV errors (5 spatial and 35 temporal points that are used for the comparison, 10

updating steps) computed for calcium and 8 · 10 for calcite (8 spatial points that are

used for the comparison, 10 updating steps) in the analyzed set up. The LOOCV

error is computed after the primal construction of the surrogate models and during the

iterative Bayesian updating. In order to visualize the errors, the respective error values

have been averaged over space (and time) after every updating step. Moreover, since

the two quantities of interest (calcite content [%] and calcium concentration [mol/m3])
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are in different orders of magnitude, the relative errors of the surrogate models for

calcium and calcite need to be computed by normalizing to the mean output value.

Figure 7.3 provides the errors for all considered models for calcite content (left) and

calcium concentration (right) during the Bayesian updating process. The relative mean

LOOCV errors before the first update are not considered in this figure to get a better

visualization, since this error is significantly higher than the ones after the updates.
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Figure 7.3: Relative mean LOOCV errors for SRQs during Bayesian updating.

The figure reveals that the error for calcite decreases more strongly than that of calcium.

It is also remarkable that the error for calcite is in a similar order of magnitude for all

models. This means that all surrogate models are of comparable quality for the calcite

content. For calcium, the error of the simple chemistry model MSC is significantly

larger than that of the other two surrogate models. This can occur if one uses Bayesian

updating and seeks to improve the models only in the region of the measurement data.

This means the surrogate model is similar to the original one in the region of the

measurement data. Still, it deviates greatly from the original model in other regions

(not part of the measurement points). This results in a higher overall LOOCV error.

The larger error of the surrogate model has been compensated in the model weight

calculations by the newly introduced correction factor, as presented in Section 2.3.
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7.3.2 Two-stage Bayesian multi-model comparison

We have performed the two-stage surrogate-based Bayesian multi-model comparison,

consisting of a model selection incorporating the measurement data and a Bayesian

model justifiability analysis according to Section 2.3 using the trained surrogate rep-

resentations of the three analyzed MICP models from Section 7.3.1. Following the

justifiability analysis, we compute the model weights as stated in Section 2.2.2 and

adjust them with the novel correction factors, introduced in Section 2.3.2.

BME convergence was ensured by checking the average likelihood’s evolution over an

increasing data set size. To justify the underlying physical assumptions behind the

MICP models, we have assessed the impact of the data set size on BME values appearing

in the Bayesian model justifiability analysis. This has been achieved by starting with

only one spatial data point, then using half of the available data set size, and finally

including all the spatial data points for calcium and calcite. This division results in

the following data set sizes: ND,spatial ∈ {1, 3, 5} for calcium and ND,spatial ∈ {1, 4, 8}
for calcite.

Bayesian model selection The results of the BMS analysis based on the measurement

data is presented in Figure 7.4.
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Figure 7.4: Model weights for the prediction of SRQs over the increasing amount of used
spatial data points ND,spatial.

The model weights suggest that the simple chemistry model MSC obtains the highest

model weight (normalized BME value) for all data set sizes. A model wins the com-
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petition either because of its low complexity or because of its goodness-of-fit to the

measurement data (or both) Schöniger et al. [2015a]. The justifiability analysis will

further investigate these two aspects in the second stage.

Model justifiability analysis Figure 7.5 shows the corresponding model confusion

matrices for both the calcite content and the calcium concentration predictions. Each

entry corresponds to the weight of one model, which is the probability that model Mk

(rows) is the data-generating process of the predictions made by model Ml (columns)

according to Bayes’ theorem.
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Figure 7.5: Model confusion matrices for calcite content [%] and calcium concentration
[mol/m3] of the three models and the measurement data (MD) over increasing
amount of used spatial data points ND,spatial.

The main-diagonal entries of the model confusion matrices in Figure 7.5 represent the

models’ ability to identify their own predictions. The higher the value of the main

diagonal entry, the higher is the probability of the model identifying itself as the data-

generating process. The diagonal values increase when a larger data set size is used,
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agreeing well with the theory of the Bayesian model justifiability analysis discussed in

Schöniger et al. [2015a].

The diagonal weight of the simplest model, the simple chemistry model MSC, is always

the highest, independent of the data set size, which shows that the analysis identifies

this model as data-generating, even if the data set is large and the model makes strong

assumptions. For both the calcium and the calcite, the diagonal entries achieve the

“absolute majority” of more than 0.50 in favor of justifiability (except for the initial

biofilm modelMIB for calcite) when taking the entire data set into account. This means

that the data set size is sufficient to justify the modeling concepts behind the considered

models.

But even for the full data set, the full complexity model MFC obtains a high weight

when the initial biofilm modelMIB generates the data and vice versa. It reveals that the

initial biofilm model MIB and the full complexity model MFC confuse their predictions

and are not confident in identifying their own predictions (the initial biofilm modelMIB

for calcite is not even able to identify itself). However, only for the simple chemistry

model MSC the weight is 1.00 and therefore, its “level of detail” is perfectly supported

with the full data set. The measurement data (MD) obtain a model weight of 1.00 for

the full data set too since it is clearly able to identify itself with the full data set. The

weights for the models with the measurement data as the data-generating process are

extremely low. In statistical terms, this means that all models are clearly rejected by

the full data set. This is in accordance with the conclusions drawn in Hommel et al.

[2015], that there is at least one relevant process not yet implemented in “sufficient

detail”, which is necessary for better results.

How much data is needed?

The confusion matrices on the left in Figure 7.5 show that considering only one spatial

data point is insufficient since the model weights belonging to diagonal entries for

calcite and calcium are all less than 0.50 except for the measurement data for the

calcium concentration. This means that there is no “absolute majority” in favor of

justification for any model and even the measurement data of the calcite content are

not able to identify itself (which is evident since there is clearly a variance between

the measurements at different spatial data points). The matrices also show that the
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simplest model MSC obtains the highest weight of all three models when the data set

size is small, corresponding to the principle of parsimony.

When using half of the data set shown in Figure 7.5, the second column, the simplest

model MSC and the most complex model MFC for calcium receive an absolute majority

with model weights of 0.63 and 0.52, while the data set size does not suffice for self-

identification of the initial biofilm modelMIB. The weight ofMIB on the diagonal entry

increases with an increasing data set size, but it never gains a weight greater than 0.5. In

contrast, the MIB’s weight for the calcium concentration reaches the absolute majority,

which means that the data set size is sufficient for self-identification. As a result, the

physical model assumptions leading to simplifications are justifiable.

Figure 7.6 reveals the change of self-identification weights (the confusion matrix’s main

diagonal entries) over an increasing data set size. According to the figure, perfect
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Figure 7.6: Average model weights for the data-generating process of the two SRQs of the
three models and the measurement data (MD) over the increasing amount of used
spatial data points ND,spatial.

justification (model weight of 1.00) is achieved very quickly with the simplest model

MSC and clearly for the measurement data. For the initial biofilm model MIB and the

full complexity model MFC, a larger data set size is needed to justify their complexity.

As the weights for the more complex models do not stagnate at some point, it is not

expected that a much larger data set could necessarily justify their complexity. When

comparing both quantities of interest for the same data set size, the data-generating

process for the calcite content is always identified with less confidence (i.e., obtains a

lower weight) than for calcium.
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How similar are the models?

To assess the model similarities, one needs to explore the off-diagonal entries of the

confusion matrix in Figure 7.5. For a single data point, we can clearly see that the

models “confuse” their predictions, as the off-diagonal weights are relatively high. For

the case in which the initial biofilm model MIB or the full complexity model MFC

are the data-generating process for the calcite content, the weights for the competing

models are even larger than the main-diagonal entry. For increasing data set size, the

dissimilarities between the models become more significant, but only for the calcium

concentration.

Contrary to that, the model confusion remains for the calcium predictions, i.e., the

current data set size does not yield a more apparent distinction between the models.

However, using the full data set, the model confusion decreases significantly, only the

similarity between the initial biofilm model MIB and the full complexity model MFC

remains clearly visible. For both calcite and calcium, MIB and MFC are similar since

they both have a relatively high weight when the other one generated the data. Con-

sidering only the calcite content reveals that even when the initial biofilm model MIB

is the data-generating process, the full complexity model MFC obtains a higher weight,

which means that the model cannot be justified with this data set size, according to

Schöniger et al. [2015a].

How do models fit the data?

The goodness-of-fit of the models to the measurement data can be investigated via the

coefficient of determination (R2) between the different model outputs and the corre-

sponding measurement data, averaged over all model runs evaluated on Dtotal different

surrogate training points, which reads

R2 =
1

Dtotal

Dtotal∑
i=1


Ns∑
j=1

(
Mk,j

(
θ(i)
)
− y0

)2
Ns∑
j=1

(y0,j − y0)
2

 . (7.2)
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y0,j is the vector of measurements at position j of total length Ns and its mean is

denoted by y0. Moreover, Mk,j

(
θ(i)
)
represents the model output of model Mk at

position j evaluated at collocation point θ(i).

Figure 7.7 displays the goodness-of-fit to the measurement data for the calcite content

and the calcium concentration. The R2 values for different predictions of the same

model (different evaluations on different collocation points) were averaged to obtain

one representative value per model. For both, the calcite content and the calcium con-
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Figure 7.7: Mean R2 between the different model outputs and the measurement data.

centration predictions, simple chemistry model MSC shows the highest mean R2. With

regard to the BMS analysis, it shows that the small BMS weights of the initial biofilm

model MIB and the full complexity model MFC stem from a lower goodness-of-fit and

a higher complexity than the simple chemistry model MSC. Note that a more complex

model requires a significantly better goodness-of-fit to justify its complexity [Schöniger

et al., 2015a] (and to achieve a similar weight as a simpler model). Furthermore, it is

remarkable that the weight of the initial biofilm model MIB is smaller than the one for

the full complexity model MFC for the same data set size, although the full complexity

model MFC is slightly more complex while their goodness-of-fit is similar. Therefore,

the high computational effort of the initial biofilm model MIB is not justified.

7.4 Summary and conclusions

BMS cannot only be used for ranking models based on their goodness-of-fit to mea-

surement data and parsimony but also to quantify similarities among models. The
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study presented in this chapter applied the surrogate-based Bayesian model justifia-

bility analysis to analyze microbially induced calcite precipitation models in porous

media. The suggested framework offers a rigorous pathway to address the so-called

conceptual uncertainty, i.e., which model best describes the underlying physical sys-

tem. The justifiability analysis compares the models with each other and the available

measurement data.

Applying the justifiability analysis in addition to the BMS analysis yields a better

insight into why a model wins the BMS ranking: either because it fits the measurement

data best or only because the data set size is too small to identify a more complex model

that actually fits better. In the latter case, the apparently best model is only best, given

a too small data set size [Schöniger et al., 2015a].

Applying the Bayesian model justifiability analysis to three different models (simple

chemistry model MSC,initial biofilm model MIB and full complexity model MFC), we

compare the models to measurement data and among each other. The comparison

is based on the calcite content and calcium concentration predictions at different data

points in space and time. The justifiability analysis has shown that the simple chemistry

model MSC and the full complexity model MFC for calcite and calcium and the initial

biofilm model MIB only for calcium identify themselves best, compared to the other

models, when a certain data set size is used. The simple chemistry model MSC even

achieves perfect justification with a weight of 1.00.

The analysis has also revealed that the data set size is too small for justification of the

initial biofilm modelMIB in terms of the calcium concentration since its diagonal entries

of the model confusion matrix are always smaller than 0.5. Further, it shows that the

initial biofilm model MIB and the full complexity model MFC are similar in terms of

both quantities of interest (calcite content and calcium concentration). Additionally,

performing the conventional BMS analysis reveals the simple chemistry model MSC as

the best model in the model set because of its best trade-off between goodness-of-fit to

the measurement data and its sufficiently small degree of complexity.

Combining the insights from the Bayesian model justifiability analysis and the goodness-

of-fit analysis, the following conclusions about the initial biofilm modelMIB and simple

chemistry modelMSC as simplifications of the full complexity modelMFC can be drawn:



7.4 Summary and conclusions 185

• The initial biofilm modelMIB achieves moderate BME values in the BMS analysis

and does not use its full potential according to the Bayesian model justifiability

analysis.

• The MIB model provides unsatisfactory goodness-of-fit to the measurement data

and cannot capture the underlying physical process reasonably well.

• The simple chemistry modelMSC for calcite and calcium obtains the same weight

of 1.00 in the BMS analysis (Figure 7.6) and Bayesian model justifiability (Fig-

ure 7.5) with the full data set.

• Therefore, the simple chemistry modelMSC uses its full potential to represent the

data and appropriately captures the response of the underlying physical system.

The proposed surrogate-based justifiability analysis is an extension of the general justi-

fiability analysis proposed by Schöniger et al. [2015a], making it applicable for compu-

tationally expensive models. However, with increasing computational cost and limited

computational budget, i.e., the number of model evaluations, the justifiability analysis’

results become less reliable, as the surrogates provide imprecise predictions.





8 Summary and Outlook

8.1 Summary

Given the importance of computational modeling in geoscience, especially in porous

media research, assessment of the quality of models in light of the purpose of a given

simulation is of paramount importance to engineering designers and managers, public

officials, and those affected by the decisions based on the predictions. One of these

assessment tools is validation, which investigates how accurately a computational model

describes reality. Graphical comparisons of computational results and experimental

data are common practice in many fields. These graphical comparisons are usually

made by plotting some computational system response quantity with the experimentally

measured response over a range of input parameters. If the computational results

generally agree with the experimental data, the computational model is commonly

declared, “validated”. With this graphical comparison, the effects of uncertainty in

the computational results and experimental data are not typically quoted, nor is its

statistical character quantified.

To address the abovementioned issues, I presented a statistical framework to establish

quantitative uncertainty-aware validation benchmarks. In the multi-model comparison

setting, models are analyzed in a validation benchmark via a statistical model selection

approach called Bayesian Model Selection (BMS). In BMS, model probabilities are

used to express uncertainty between models regarding how likely a candidate model

is to generate the observed data. BMS also allows for determining the impact of the

data size in the ranking outcome and the similarity of the models or lack thereof. The

first issue answers the question: how much data are required to achieve reasonable

ranking or which level of complexity is justified given the available data? However, the

similarity can be addressed by the question: how would the models be ranked given
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that one of them is the data-generating problem? These aspects were included in a

so-called justifiability analysis introduced by Schöniger et al. [2015a].

This framework also utilizes Bayesian hypothesis testing (BHT) as a tool for statistical

decision-making of whether a computational model is superior to this counterpart. BHT

incorporates the use of the Bayes factor to evaluate the plausibility of rejecting a null

hypothesis according to a designated confidence level. The Bayes factor is interpreted as

the ratio of the relative likelihood of the null hypothesis over the alternative hypothesis.

The null hypothesis states that the experimental data support the predictions of one

model, while the alternative hypothesis states that the competing model includes the

data-generating processes.

The probabilistic nature of the Bayesian techniques, such as BHT and BMS used in

the framework, requires propagating the parametric uncertainty through all competing

models – i.e., a significant number of model evaluations – to reach statistical conver-

gence. In practice, however, the computational complexity of the underlying com-

putational model and the total available computational budget severely restrict the

number of evaluations one can perform. By replacing computational models with easy-

to-evaluate surrogates, one can mimic the behavior of underlying physical models using

a limited set of runs without sacrificing accuracy.

The developed methodology aims to help modelers perform uncertainty-aware model

validation benchmarks. A two-stage Bayesian multi-model framework is discussed for

modeling tasks where a set of models are at hand. To make this framework applicable

for computationally demanding models, it is extended to a surrogate-assisted frame-

work, which keeps the computational costs at a reasonable level. I employed polynomial

chaos expansion (PCE) to build a surrogate representation of models. Moreover, cor-

rection factors were introduced to compensate for the surrogate error in the BHS and

BMS, as using surrogate representations instead of the full-fidelity models introduces

additional errors to the validation metrics.

In this dissertation, I showed how Bayesian formalism could be materialized by em-

ploying the concept of PCE to achieve more accurate surrogates with a sparse PCE

representation and account for the uncertainty in the surrogate’s predictions. I also

highlighted how a surrogate model using a PCE could be constructed with as few sim-

ulations as the computational budget allows. I discussed sequential adaptive sampling

strategies, in which one attempts to augment the initial design iteratively. By doing
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so, informative regions in the parameter space are adequately explored. These regions

are more likely to provide valuable information on the behavior of the original model

responses. Using a sequential sampling strategy avoids the waste of computational

resources, as opposed to the so-called one-shot designs. A series of benchmark stud-

ies were conducted to investigate the predictive capabilities of different sparsity and

sequential adaptive sampling methods.

Moreover, I introduced BayesValidRox , an open-source, object-oriented Python pack-

age that provides an automated workflow for surrogate-based sensitivity analysis, Bayesian

calibration, and validation of computational models with a modular structure. The

uncertainty-aware validation framework was applied to a range of cases in the field of

subsurface hydro-system modeling, mainly to flow and transport in porous media, such

as flow simulation models in fractured porous media, coupling free flow and porous

medium flow, and microbially induced calcite precipitation. However, this validation

framework can be transferred to other disciplines in which models are used, such as

psychology, ecology, economics, and other engineering disciplines.

8.2 Outlook

Using the insights and conclusions from this dissertation, one can explore new avenues

in future research. Regarding surrogate modeling, the following aspects can be investi-

gated to improve the performance of the framework:

Surrogate modeling with dependent inputs The traditional PCE can only deal

with independent parameters. However, in my engineering applications, parameter

dependency does exist in computational models. The framework can be extended to

handle the models with interdependent parameters. One approach is to use a proper

function to transform the distribution of the parameters into independent standard

normal distributions leading to independent orthogonal polynomial bases. The common

transformation functions are Nataf, Box-Cox, Rosenblatt, exponential, and logarithmic.

Another approach proposed by Ghaith et al. [2021] is to leverage the potential of

principal component analysis for addressing the parameter dependency. Their proposed

PCA-PCE framework aims to decouple the correlations among dependent parameters
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via principal component analysis (PCA) and to generate independent standard normal

distributions using Johnson distributions for further development of the PCE approach.

Surrogate modeling for time-dependent quantities In Section 3.1.5, I briefly dis-

cussed a data compression approach to handle time-dependent quantities. Instead of

applying PCEs at each time instant, a dimensionality reduction is used to capture the

main stochastic features of the response quantities by a small number of the principal

components. Traditionally, dimensionality reduction is performed using a linear tech-

nique such as Principal Components Analysis. However, these linear techniques cannot

adequately handle complex nonlinear responses. To address this issue, nonlinear di-

mension reductions can be employed to deal with complex nonlinear model responses.

For an overview of these techniques, see, e.g., Saul et al. [2006], Lee and Verleysen

[2007], Venna et al. [2007], Van Der Maaten et al. [2009], Burges [2010].

As principal components increase in order, PCE accuracy reduces [Blatman and Su-

dret, 2013]. Vohra et al. [2020] argue that this is because not all input parameters are

required for mapping the input space to the principal components. They proposed a

framework that employs the so-called active spaces [Constantine, 2015] with typically

fewer dimensions to map to principal components. The combination of this approach

with a PCA-PCE framework could be a promising future direction as far as the surro-

gate modeling of time-dependent quantities is concerned.

A stochastic time-warping method is another option for handling time-dependent re-

sponses. All realizations of the model are rescaled to a common time scale so that they

appear in-phase in a virtual time stamp. In other words, this method increases the

similarities among the realizations in a preprocessing step so that responses vary in a

small neighborhood of a reference realization. Eventually, PCEs are applied to rescaled

realizations, which have lower variability. For more details see Mai and Sudret [2017]

and the references therein.

A model-time allocation strategy The proposed framework in this dissertation dis-

tributes the computer power evenly in a multi-model setting. This even distribution

means that the number of model evaluations is equal for all models. This approach

may lead to the waste of computational budgets in a benchmarking task when models

have different properties, such as the dimension of parameter spaces, smoothness, prior
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probability, and computing time. Since these factors are typically not known before any

evaluations, one can think of a clever way to allocate the computational resources to

the right model in each refinement iteration. Sinsbeck et al. [2021] proposed to equip

the sequential adaptive experimental design (SAED) with the model-time allocation

methods. They consider what is known about the models in each SAED iteration and

then run the model that contributes the largest expected gain in accuracy.

As for the other parts of the proposed framework, future research shall address the

following aspects:

Statistical model discrepancy The model discrepancy always exists for various rea-

sons, such as simplified assumptions, missing physics, and upscaling due to scale differ-

ences. Several methods have been proposed in the literature to incorporate the model

discrepancy in a Bayesian setting. These methods’ treatment of model discrepancy

range from a constant bias to more sophisticated statistical methods in which one

forms a Bayesian hierarchical model to solve a joint parameter and model discrepancy

inference problem [Kennedy and O’Hagan, 2001, Bayarri et al., 2007, Brynjarsdóttir

and O’Hagan, 2014, Ling et al., 2014, Gardner et al., 2021]. Statistical error models

for each process-based model have not been explicitly included within BMS to reduce

prediction bias. It is expected that incorporating model discrepancy into the BMS rou-

tine will further improve the predictive coverage and allow a potentially more realistic

estimation of model parameters and their associated uncertainties.

Validation metrics In many engineering applications, there is no possibility to repli-

cate the measurements many times to estimate a measurement uncertainty to be in-

cluded in the Bayesian setting. In these cases, it is common to assume a measurement

error. However, this assumption could lead to misleading results. Therefore, more suit-

able validation metrics that could measure the difference between a deterministic mea-

surement value and a predictive distribution for the stated cases would generate more

reliable results and reduce the degree of subjectivity in the validation process. One met-

ric is the so-called energy score [Gneiting and Raftery, 2007], which is the deterministic

counterpart of the energy distance [Rizzo and Székely, 2016]. Schäfer Rodrigues Silva

et al. [2022] successfully employed the energy score for diagnosing similarities in prob-

abilistic multi-model ensembles: an application to soil–plant-growth-modeling.





A MCMC Convergence

I use two convergence methods: Robin & Gelman method and integrated autocorrela-

tion time, whose definitions are to follow.

Gelman and Rubin [1992] introduce a quantitative approach to assess the convergence

of an MCMC sampler. Their approach compares a set of L independent Markov chains,

i.e., walkers, initialized at different seed points. The chains are believed to converge

when the empirical second moments (variance) computed from the individual chains are

the same as that of combined samples from all L walkers. Both variances are combined

in a weighted sum to estimate the variance of a parameter θ.

Let {θ1,θ2, · · · ,θL} be the L parallel walkers, starting from different seed points θ
(0)
i .

Moreover, each chain θi contains K +1 sample points (θ
(0)
i , · · · ,θ(K)

i ) with θ
(k)
i ∈ RM .

The covariance matrix of the i-th walker is estimated by

Wi =
1

K

K∑
k=0

(
θ
(k)
i − µi

)(
θ
(k)
i − µi

)⊤
, µi =

1

K + 1

K∑
k=0

θ
(k)
i . (A.1)

To compute the within-chain covariance W , the covariance matrices for all L walkers

are averaged

W =
1

K

L∑
i=1

Wi. (A.2)

The so-called between-chain variance B, which captures the covariance between the

individual chains, are computed by

B =
K

L− 1

L∑
i=1

(µi − µ) (µi − µ)⊤ (A.3)
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where

µ =
1

L(K + 1)

L∑
i=1

K∑
k=0

θ
(k)
i . (A.4)

The estimated variance of θ as the weighted sum of between and within chain variance

can be computed by

var(θ) =

(
1− 1

L

)
W +

1

L
B (A.5)

The potential scale reduction factor (PSRF) is computed by

R̂ =

√
var(θ)

W
(A.6)

The metric in Equation (A.6) must be close to one for a well-converged chain. This

condition indicates that the between-chain variance is small, which means chains mix

around the stationary distribution. Gelman and Rubin [1992] show that R̂ greater than

1.1 indicates that the chains have not yet fully converged and need a longer burn-in

phase. In a burn-in phase, we discard sample points prior to convergence to avoid the

pollution of the posterior estimation.

Brooks and Gelman [1998] later extended the PSRF method for multivariate cases with

a set of parallel independent chains and proposed

R̂p =
K

K + 1
+

(
L+ 1

L

)
λ1, (A.7)

where λ1 represent the largest eigenvalue of the matrix W−1B, which is symmetric and

positive definite. When R̂p approaches one, the sampler’s convergence is achievable.

Additionally, I monitor the convergence of the sampler using the so-called integrated

autocorrelation time. This quantity estimates the number of evaluations of the poste-

rior density function needed to draw independent samples from the target density. A

more efficient chain is expected to have a shorter autocorrelation time. Sokal [1997]

provides a great discussion of methods for autocorrelation estimation. An integrated
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autocorrelation time τθ for an ensemble consisting of L chains can be defined as

τθ =
∞∑

τ=−∞

ρθ(τ), (A.8)

where ρθ(τ) represents the normalized autocorrelation function of the stochastic process

that generated the chain for θ. Using a finite chain {θi}Li=1, one can approximate ρθ(τ)

via

ρ̂θ(τ) = Ĉθ(τ)/Ĉθ(0) (A.9)

where

Ĉθ(τ) =
1

L− τ
L−τ∑
i=1

(
θ(i) − µθ

) (
θ(i+τ) − µθ

)
(A.10)

with µθ being the arithmetic average of the chains µθ = 1/L
∑L

i=1 θi.

To estimate τθ, one can use

τ̂θ(P ) = 1 + 2
P∑

τ=1

ρ̂θ(τ) (A.11)

for some P ≪ L. As discussed in Sokal [1997], using P chains of an ensemble instead of

all L decreases the estimator’s variance at the cost of some added bias. He also suggests

choosing the smallest value of P where P ≥ Cτ̂θ(P ) with the constant C being 5. This

procedure works well with chains longer than 50 · τ . The python package emcee used

for the framework provides an estimation of the integrated autocorrelation time. One

can compute this measure for the chain of each parameter θ and use the maximum and

minimum values τmin = min0≤i<N τ̂θj and τmax = max0≤i<N τ̂θj . The sampler is run until

the sample size j > 100 · τmax. The convergence of the MCMC sampler can be achieved

if the difference in τ̂θ from sample j − τmax to sample j is less than 1 %.
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J. Brynjarsdóttir and A. O’Hagan. Learning about physical parameters: The impor-

tance of model discrepancy. Inverse Problems, 30(11):114007, 2014.

C. J. Burges. Geometric Methods for Feature Extraction and Dimensional Reduction

- A Guided Tour, pages 53–82. Springer US, Boston, MA, 2010. ISBN 978-0-

387-09823-4. doi: 10.1007/978-0-387-09823-4 4. URL https://doi.org/10.1007/

978-0-387-09823-4_4.

K. P. Burnham and D. R. Anderson. Practical use of the information-theoretic ap-

proach. In Model Selection and Inference, pages 75–117. Springer, 1998.

https://doi.org/10.1007/978-0-387-09823-4_4
https://doi.org/10.1007/978-0-387-09823-4_4


Bibliography 201

K. P. Burnham and D. R. Anderson. A Practical Information-Theoretic Approach.

Model Selection and Multimodel Inference, Springer (second edition), New York, 2,

2002.

K. P. Burnham and D. R. Anderson. Multimodel inference: understanding aic and bic

in model selection. Sociological Methods & Research, 33(2):261–304, 2004.

T. Carraro, C. Goll, A. Marciniak-Czochra, and A. Mikelić. Effective interface condi-
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T. Kurz, M. Lipp, F. Mohammadi, S. Scherrer, M. Schneider, G. Seitz, L. Stadler,

M. Utz, F. Weinhardt, and B. Flemisch. Dumux 3–an open-source simulator for

solving flow and transport problems in porous media with a focus on model coupling.

Computers & Mathematics with Applications, 81:423–443, 2021a.

T. Koch, K. Weishaupt, J. Müller, B. Weigand, and R. Helmig. A (dual) network model

for heat transfer in porous media. Transport in Porous Media, 140(1):107–141, Oct

2021b. ISSN 1573-1634.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian

processes: Theory, efficient algorithms and empirical studies. Journal of Machine

Learning Research, 9(2), 2008.

C. Kuhn and R. Müller. A continuum phase field model for fracture. Engineering

Fracture Mechanics, 77(18):3625–3634, 2010.

S. Kullback. Information theory and statistics. Courier Corporation, 1997.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79–86, 1951.

A. Kupresanin and G. Johannesson. Comparison of sequential designs of computer

experiments in high dimensions. Technical report, Lawrence Livermore National

Lab, Livermore, CA (US), 2011.
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