
Institut für
Höchstleistungsrechnen

Ayşe Bağbaba

OPTIMIZING I/O PERFORMANCE
W I T H M AC H I N E L E A R N I N G
S U P P O R T E D AU TO -T U N I N G

 FORSCHUNGS- UND ENTWICKLUNGSBERICHT

ISSN 0941 - 4665 Mai 2023 HLRS-25

OPTIMIZING I/O PERFORMANCE
W I T H M AC H I N E L E A R N I N G
S U P P O R T E D AU TO -T U N I N G

Höchstleistungsrechenzentrum
Universität Stuttgart

Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h. Michael M. Resch
Nobelstrasse 19 - 70569 Stuttgart

Institut für Höchstleistungsrechnen

von der Fakultät Energie-, Verfahrens- und Biotechnik
der Universität Stuttgart zur Erlangung der Würde
eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung
vorgelegt von

Ayşe Bağbaba
aus Ankara, Türkei

Hauptberichter: Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h.
 Michael M. Resch
Mitberichter: Prof. Dr.-Ing. Stefan Wesner

Tag der Einreichung: 16. Mai 2022
Tag der mündlichen Prüfung: 16. Januar 2023

ISSN 0941 - 4665 Mai 2023 HLRS-25

D93

2

Declaration of Authorship

I hereby declare that I have written this dissertation entitled Optimizing I/O
Performance with Machine Learning Supported Auto-tuning independently. I
have clearly identified as quotes all passages and ideas from the literature or
from other sources such as e.g. websites, and I have given the source.

i

Acknowledgements

There are many people whom I would like to thank for their contributions
to this thesis.
In the beginning, I would like to thank my supervisor, Prof. Dr. Michael

Resch, for all his guidance, support and understanding. His insightful com-
ments pushed me to improve my thinking and my work. I am grateful to
Dr. José Gracia, for the support and encouragement he gave me during my
PhD study. I also appreciate the help of all colleagues at HLRS for the many
inspiring discussions we have had, especially Christoph Niethammer, for his
invaluable advice and feedback on my research. I am also thankful to Dr.
Thomas Bönisch and Dr. Xuan Wang for always being so supportive of my
work. I want to thank Dr. Loic Salles and Jiri Blahos from my secondment at
Imperial College London for their collaboration.
I gratefully acknowledge the funding provided by the European Union’s

Horizon 2020 research and innovation program under the project EXPER-
TISE, the POP, and the HPC-EUROPA3.

I feel great gratitude towards my big family for their constant encourage-
ment. I want to thank my husband, Ahmet, for always being there for me.
And my mom and dad, Behiye and Mustafa, for their continuous support
throughout my life. Without the love and help of you, this was not possible.
Thank you!

iii

Contents

Acknowledgements iii

Abstract xi

Zusammenfassung xiii

List of Figures xv

List of Tables xix

1. Introduction and Motivation 1
1.1. Introduction . 1
1.2. Motivation . 2

1.2.1. Problem Definition . 2
1.2.2. Related Work . 4
1.2.3. The Proposed Approach 7

1.3. Organization of Dissertation . 10

2. State of the Art 11
2.1. User Applications . 11
2.2. HPC Platforms . 13

v

2.3. Distributed Parallel File Systems 13
2.3.1. Lustre . 14
2.3.2. GPFS . 16
2.3.3. BeeGFS . 17

2.4. Parallel I/O . 18
2.4.1. Overview . 18
2.4.2. MPI-IO . 19
2.4.3. Parallel I/O Optimizations 31

3. General I/O Auto-tuning Framework 35
3.1. Design Requirements . 35
3.2. I/O Performance Factors . 36
3.3. MPI and PMPI Wrapper . 40
3.4. Running Modes . 41

4. Heuristic Search Based I/O Auto-tuning 43
4.1. Heuristic Search . 43
4.2. Architecture . 45

4.2.1. IO_Optimizer: Configuration Search 46
4.2.2. IO_Tuner: Setting I/O Parameters at Runtime 47

4.3. Implementation . 48
4.3.1. Benchmarks . 48
4.3.2. System setup . 49
4.3.3. Parameter space . 49
4.3.4. Scale and data set sizes . 50

4.4. Results . 50

5. Performance Modelling Based I/O Auto-tuning 55
5.1. Performance Modelling . 55

5.1.1. Performance Models . 57
5.2. Architecture . 60

5.2.1. IO_Tracer: Monitoring I/O Activity 61
5.2.2. IO_Predictor: Modelling I/O Performance 62

vi Contents

5.2.3. IO_Tuner: Setting I/O Parameters at Runtime 65
5.3. Implementation . 65

5.3.1. Benchmarks . 65
5.3.2. System setup . 66
5.3.3. Parameter space . 66
5.3.4. Scale and data set sizes . 68
5.3.5. Log files and creating data set 68

6. Results 71
6.1. I/O Variability on Single Node . 71
6.2. I/O Variability on Multiple Nodes 73
6.3. Training Process . 74
6.4. Evaluations: I/O Benchmarks . 79
6.5. Engineering Use Case : ls1 mardyn 84

6.5.1. Analyzing Application . 84
6.5.2. Training . 86
6.5.3. Optimization and Results 88
6.5.4. Conclusion . 91

7. Conclusion and Future Work 93

A. Code and File Segments 97

Bibliography 107

Contents vii

Acronyms

ADIOS Adaptable I/O System
CFD Computational Fluid Dynamics
CPU Central Processing Unit
CSV Comma-Separated Values
DKRZ German Climate Computing Centre
FLOPS Floating Point Operations Per Second
GPFS General Parallel File System
HDF5 Hierarchical Data Format 5
HLRS High-Performance Computing Center Stuttgart
HPC High-Performance Computing
I/O Input and Output
IBM International Business Machines Corporation
IOR Interleaved-Or-Random
JSON JavaScript Object Notation
MDS MetaData Server
MDT MetaData Target
MGS Management Server

ix

MPI Message Passing Interface
NetCDF Network Common Data Form
OSC Object Storage Client
OSS Object Storage Server
OST Object Storage Target
POSIX IEEE Portable Operating System Interface for UniX
RAID Redundant Array of Inexpensive Disks
SIOX Scalable I/O for extreme performance
UHH University of Hamburg
XML EXtensible Markup Language
ZIH Center for Information Services

x Contents

Abstract

Data access is a considerable challenge because of the scalability limitation of
I/O. In addition, some applications spend most of their total execution times
in I/O. This causes a massive slowdown and wastage of useful computing
resources. Unfortunately, there is not any one-size-fits-all solution to the I/O
problems, so I/O becomes a limiting factor for such applications.
Parallel I/O is an essential technique for scientific applications running

on high-performance computing systems. Typically, parallel I/O stacks offer
many parameters that need to be tuned to achieve an I/O performance as
good as possible. Unfortunately, there is no default best configuration of
these parameters; in practice, these differ not only between systems but
often also from one application use case to the other. However, scientific
users might not have the time or the experience to explore the parameter
space sensibly and choose a proper configuration for each application use
case. I present a line of solutions to this problem containing a machine
learning supported auto-tuning system which uses performance modelling
to optimize I/O performance. I demonstrate the value of these solutions
across applications and at scale.

xi

Zusammenfassung

Der Datenzugriff ist aufgrund der Skalierbarkeitsbeschränkung von E/A eine
beträchtliche Herausforderung. Darüber hinaus verbringen einige Anwen-
dungen den größten Teil ihrer Gesamtausführungszeit mit E/A. Dies führt
zu einer massiven Verlangsamung und Verschwendung nützlicher Rechen-
ressourcen. Leider gibt es keine Einheitslösung für die I/O-Probleme, sodass
I/O für solche Anwendungen zu einem einschränkenden Faktor wird.
Parallele I/O ist eine wesentliche Technik für wissenschaftliche Anwen-

dungen, die auf Hochleistungscomputersystemen ausgeführt werden. Typ-
ischerweise bieten parallele I/O-Stacks viele Parameter, die abgestimmt
werden müssen, um eine möglichst gute I/O-Leistung zu erzielen. Lei-
der gibt es keine standardmäßige beste Konfiguration dieser Parameter; in
der Praxis unterscheiden sich diese nicht nur zwischen Systemen, sondern
oft auch von Anwendungsfall zu Anwendungsfall. Allerdings haben wis-
senschaftliche Benutzer möglicherweise nicht die Zeit oder die Erfahrung,
den Parameterraum sinnvoll zu erkunden und eine geeignete Konfiguration
für jeden Anwendungsfall auszuwählen. Ich stelle eine Reihe von Lösungen
für dieses Problem vor, die ein durch maschinelles Lernen unterstütztes
Autotuning-System enthalten, das die Leistungsmodellierung verwendet, um
die E/A-Leistung zu optimieren. Ich demonstriere den Wert dieser Lösungen
anwendungsübergreifend und in großem Maßstab.

xiii

List of Figures

1.1. Typical I/O stack of an HPC system. 2

2.1. System usage of different professional areas at HLRS in 2019. 12
2.2. Components of a Lustre file system. 14
2.3. Lustre file system striping mechanism. 16
2.4. Components of a GPFS. 17
2.5. Type maps of contiguous, vector and indexed datatypes for

given base type. 23
2.6. Each process has its own view of the file, defined by a dis-

placement, an elementary type, and a file type. 24
2.7. Writing contiguous data into a contiguous block defined by

a file view. 24
2.8. Writing contiguous data into two separate blocks defined by

a file view. 25
2.9. Collective I/O operations. 26
2.10. The abstracted ROMIO architecture. 27
2.11. The abstracted architecture of OMPIO frameworks and mod-

ules. 28
2.12. File write performances for contiguous, strided and indexed

data layouts on OMPIO and ROMIO. 28

xv

2.13. Collective and individual file read performances with the
MPI-Tile-I/O benchmark. 30

2.14. Data sieving. 32
2.15. Reading a distributed array by using two-phase I/O. 33

3.1. I/O simulation results by applying different MPI hints. 38
3.2. I/O simulation results by applying different Lustre stripe size. 38
3.3. MPI wrapper for MPI_Init() flow chart. 40

4.1. Procedure of genetic algorithm. 44
4.2. Overall architecture of the heuristic search-based auto-tuning

approach. 45
4.3. Overall architecture of the IO_Search. 47
4.4. Optimizing process. 48
4.5. Default vs. optimized write bandwidth on the IOR for var-

ious transfer sizes running on 240 cores and 1,200 cores
of Vulcan. Y-axis represents I/O bandwidth in MBps and
x-axis represents transfer sizes (in MB). The scales of the
I/O bandwidth axes are different in the plots. 52

4.6. Default vs. optimized write bandwidth on the MPI-Tile-IO
for various transfer sizes running on 64 cores and 256 cores
of Vulcan. Y-axis represents I/O bandwidth in MBps and
x-axis represents element sizes in number of tiles (in KB).
The scales of the I/O bandwidth axes are different in the plots. 53

5.1. Basic structure of a decision tree [60]. 57
5.2. The schematic diagram of the random forest regression. . . . 60
5.3. Overall architecture of performance modelling-based I/O

auto-tuning. 61
5.4. Tracing process of the IO_Tracer. 62
5.5. Tracing and optimizing processes. 63
5.6. Implementation of the performance model. 63

xvi List of Figures

6.1. I/O performance variability and effect of interference on a
single node writing to a file. 72

6.2. I/O performance variability and effect of interference on
multiple nodes writing to a file. 73

6.3. Correlation between actual (observed) and predicted write
bandwidths on training (70%) and testing subsets (30%). . 76

6.4. Default vs. optimized write bandwidth on the IOR for various
transfer sizes. 82

6.5. Default vs. optimized write bandwidth on the MPI-Tile-IO
for various transfer sizes. 83

6.6. ls1 mardyn performance output. 85
6.7. Default setup vs. optimizing for ls1 mardyn checkpointing

time. 86
6.8. Default vs. optimized write times for checkpointing on ls1

Mardyn for various data sizes. 90

List of Figures xvii

List of Tables

3.1. Configurations’ search scope . 39

4.1. A list of the tunable parameters and ranges used for experi-
ments. The last column shows the number of distinct values
used for each parameter. 50

4.2. I/O speedups of applications with optimized parameters over
default parameters. 54

5.1. Configurations’ searching scope for training process 67
5.2. Breakdown of training set for the I/O model. 68

6.1. Comparison of regression algorithms on I/O performance
prediction. 74

6.2. The IO_Predictor performance modelling times and validation
results. 77

6.3. Found good configurations for different file size groups. . . . 78
6.4. I/O speedups of applications with optimized parameters over

default parameters. 81
6.5. Found some good configurations for the IOR and the MPI-

Tile-IO benchmarks. 81

xix

6.6. A fragment of a CSV file obtained after tracing process on ls1
mardyn. 88

6.7. Configurations’ searching scope for training process ls1 mardyn. 88
6.8. Found optimal configurations after training process ls1 mardyn. 88

xx List of Tables

Ch
ap

te
r 1

Introduction and
Motivation

1.1. Introduction

Data-intensive scientific applications running on high-performance comput-
ing (HPC) systems are correspondingly bottlenecked by the time that it
takes to perform input and output (I/O) [1] of data from/to the file system.
Moreover, some applications spend most of their total execution times in
I/O [2]. This causes a massive slowdown and wastage of useful computing
resources. Thus, I/O becomes probably the most limiting factor for such
applications [3].
Figure 1.1 indicates a typical parallel I/O stack of many current HPC

systems that is in order of user application; high-level I/O library, such as
parallel Hierarchical Data Format version 5 (HDF5) [4]; I/O middleware,
such as Message Passing Interface I/O (MPI-IO) [5]; low-level I/O library,
such as Portable Operating System Interface I/O (POSIX-IO) [6]; parallel
file systems, such as Lustre [7] and storage hardware. A parallel I/O stack

1

offers many optimizations that can help in improving the performance of
I/O. Because of the theoretical hardware limits, various algorithms have
been developed within each layer of the parallel I/O stack. Understanding
the I/O behaviours of user applications and the specification of the parallel
I/O stack optimizations help the HPC systems to increase their efficiency.
However, analyzing the I/O activity and achieving efficient parallel I/O are
challenging tasks due to the complex inter-dependencies between the layers
of the parallel I/O stack.

Figure 1.1.: Typical I/O stack of an HPC system.

1.2. Motivation

1.2.1. Problem Definition

Each layer of the parallel I/O stack offers a set of tunable parameters to
improve I/O performance, such as Lustre file system stripe size and count, the
optimization of collective I/O, the number of data aggregators, buffer size,
and so on. The configuration of these parameters depends on diverse factors
such as the application, storage hardware, problem size, and concurrency
[8], [9], [10]. Unfortunately, there is no default best configuration of these

2 1 | Introduction and Motivation

parameters; in practice, these differ not only between systems but often also
from one application use case to the other.
When a parameter space gets larger, it becomes difficult to monitor the

interactions between configuration options. Users who are not experts on
the parallel I/O stack might have no time or experience for tuning their
applications to the optimal level. Sometimes they might even drop down the
I/O performance by mistake [8]. Application developers work on application
code optimizations rather than I/O optimization [10]. In most cases, the
default settings are used, often leading to poor I/O efficiency on parallel file
systems [9]. As the complexity of large-scale applications and HPC systems
increases, this brings more challenges in achieving high-performance I/O
due to the lack of global optimizations. Available I/O profiling tools can not
tell the optimal system default setups by easily monitoring and analyzing
applications [9]. Identifying sources of I/O performance bottlenecks requires
a multi-layer view of the I/O activity in user applications [11]. These issues
make it increasingly difficult for users to find out the good configuration
settings for their applications and use cases. Therefore, every achievement
in I/O optimization in any layer of the parallel I/O stack is of the utmost
importance to scientists and application users.
In the long benchmarking step with various I/O benchmarks, a lot of

potential I/O optimization has been identified to improve the efficiency
of HPC systems by avoiding unsuccessful tuning attempts. In order to
increase the HPC system’s efficiency, the following five requirements should
be considered:

• Hiding the complexity of the parallel I/O stack layers from users
• Avoiding the configurations leading to a poor I/O performance
• Finding good configurations in a reasonable time
• Improving the application I/O performance transparently
• Considering the dynamic runtime conditions of a parallel I/O system
To address these requirements, auto-tuning can help users by automati-

cally tuning good I/O parameters at various layers [12]. There are many

1.2 | Motivation 3

auto-tuning works to improve I/O performance which are based on various
approaches such as heuristic search, analytical models, empirical models, etc.
However, some of these approaches are time-consuming and not applicable.
Thus, there is still a need for new studies that automatically improve the I/O
performance of user applications and save core hours of HPC systems.

1.2.2. Related Work

Among various optimizing potentialities, the I/O optimization is mostly
requested. Therefore, several approaches exist to determine good configura-
tions in a large parameter search space through auto-tuning to improve the
I/O performance.

Darshan1 is designed as a scalable HPC I/O characterization tool to analyze
application I/O behaviour and properties, such as access patterns within
the files with minimum overhead [13], [14]. Prior Darshan versions (in
versions before Darshan 3.0.0) have instrumented data from the POSIX, and
MPI-IO layers of the I/O stack, as well as the high-level HDF5 and Parallel
netCDF data interface layers [13]. Darshan can instrument I/O functions
in executables that are both statically and dynamically. Darshan provides
a post-processing utility to get helpful reports. To determine the good
configurations for an HPC system, system administrators need to implement
I/O applications, save the I/O configurations, and understand the Darshan
reports. Darshan can be used for I/O monitoring and analysis; however, it
cannot determine and tune values of I/O configurations.
Scalable I/O for extreme performance (SIOX) [15], developed by HLRS,

ZIH2, UHH3, DKRZ4 and IBM5, offers a real-time parallel I/O optimization.
SIOX assigns an I/O tracing thread running on each compute node to monitor
real-time. SIOX modular architecture covers instrumentation of POSIX,
MPI, and other high-level I/O libraries; the monitoring data is recorded

1https://www.mcs.anl.gov/research/projects/darshan/
2http://tu-dresden.de/zih
3http://www.uni-hamburg.de/
4http://www.dkrz.de/
5http://www.ibm.com/de-de/

4 1 | Introduction and Motivation

asynchronously into a global database and recorded traces can be visualized
[15]. However, the overhead produced by the MPI instrumentation is too
high in production environment.
Behzad et al. approached the idea of pattern-driven parallel I/O tuning

to optimize the I/O performance of HDF5 applications across platforms
automatically [16]. This auto-tuning framework begins by tracing high-level
I/O accesses and analyzing data write patterns. The framework then chooses
the best-performing configurations at runtime based on these patterns and
the available tuning parameters for similar patterns. If the previous history
for a pattern is not available, the framework initiates model-based training
to obtain an efficient set of tuning parameters. The framework includes a
runtime system to apply the selected configurations using dynamic linking
without the need for changing the application source code. This framework
works only for HDF5 applications, while various engineering applications
also use MPI-IO. A solution based on the MPI-IO library could be more widely
used.
[8] presented a semi-automatically I/O-tuning solution for engineering

applications. Standing upon the MPI-IO library allows it to be compatible
with MPI-IO-based high-level I/O libraries, such as parallel HDF5 and par-
allel NetCDF. However, in auto-tuning, using a naïve strategy, running an
application using all possible combinations of tunable parameters to find the
best is like a bit of manual tweaking. It is an exhaustive search through the
large parameter space with many thousands of combinations and is infeasible
because of the long execution times of trial runs. This becomes a highly time
and resource-consuming approach depending on the size of the parameter
space. Using statistical methods in such a framework would improve I/O
performance and save core hours. Investigating how to improve the ranking
of configurations and improve I/O performance is still an essential issue in
auto-tuning.
Several studies have attempted to include various approaches, such as

heuristic search, machine learning, analytical models, etc., in the I/O analysis
and optimization steps. However, due to the complexity of the state-of-the-art
file systems, using analytical models is often inadequate and time-consuming

1.2 | Motivation 5

for expected predictive accuracy [17]. Upon this, many researchers have
focused on empirical and machine learning approaches to model the I/O per-
formance. In [18], Behzad et al. worked towards an auto-tuning framework
for determining the parallel I/O parameters that achieves good I/O perfor-
mance for different data write patterns. They characterized parallel I/O and
discussed predictive models to reduce the parameter space effectively. Isaila
et al. [19] integrated analytical and machine learning approaches to model
the performance of ROMIO collectives. In [20], [21] Behzad et al. imple-
mented a genetic algorithm-based I/O auto-tuning to traverse the search
space systematically. In [22], manual-tuning HDF5 applications was studied;
it is unmanageable for users and application developers. Megha et al. used
Bayesian optimization and performance prediction for tuning parameters
automatically [10]. However, due to application-specific parameter values,
most of these approaches are time-consuming and could not be applied to
each application use case.

In [23], Ryan et al. used supervised machine learning algorithms (i.e., deci-
sion trees, random forest, and k-nearest neighbours) to predict performance
characteristics such as runtime and I/O traffic of batch jobs on high-end clus-
ters, using only user job scripts as input. It is shown that decision trees can
accurately predict the runtime of 73% of jobs. PRIONN [24] is another study
that automates the prediction of per-job runtime and I/O resource usage, en-
abling IO-aware scheduling on HPC systems. The tool’s novelty is the ability
to feed entire job scripts into deep learning models, allowing for complete
automation of runtime and I/O resource predictions. It shows the power
of PRIONN by applying runtime and I/O resource predictions to IO-aware
scheduling for real HPC data. In [25], a Gaussian process-based machine
learning algorithm was implemented for I/O performance modelling and
variability as a function of parallel file system and application characteristics.
The results demonstrate that the presented sensitivity-based models are
more promising at prediction when compared with application-partitioned
or unpartitioned models. Furthermore, it shows modelling techniques robust
to the outliers that may occur in production parallel file systems. This study
provides insights into the file system metrics that have a significant impact

6 1 | Introduction and Motivation

on I/O performance by using the developed metrics and modelling approach.
Several studies have attempted to include statistical modelling and ma-

chine learning in the I/O auto-tuning. For example, Anatoliy et al. developed
a theory, methodology, and tools for automated program design, synthesis,
and auto-tuning, based on Glushkov’s systems of algorithmic algebras and
term rewriting technique [26]. Furthermore, the TuningGenie auto-tuning
framework and modelling for parallel programs were proposed in [26] to
automate the adjustment of programs to a target platform. However, due to
the empirical evaluation of many parameter combinations of an initial paral-
lel program in a target environment, auto-tuning for complex and nontrivial
parallel systems is usually time-consuming. In [27] and [28], they extend
their approach with statistical modelling and neural network algorithms
that allow reducing the space of possible parameter combinations signifi-
cantly. The improvement automatically trains a neural network model on
“traditional” tuning steps and replaces some auto-tuning calls with statistical
model evaluations. While some of these studies are very complex, some have
limitations in their applicability.

At this point, there is a demand for an auto-tuning solution to search I/O
parameter space effectively and auto-tune good configurations transparently
to the users for MPI-IO and Lustre parallel file systems, which are widely used
in scientific applications. It would also offer optimization possibilities for the
other file systems such as IBM Spectrum Scale and BeeGFS. Furthermore,
standing upon the MPI-IO library allows it to be compatible with MPI-IO-
based high-level I/O libraries, such as parallel HDF5 and parallel NetCDF.

1.2.3. The Proposed Approach

I researched and attempted to find a solution to solve the previously men-
tioned problems and fulfil the five requirements in Section 1.2.1. However,
some solutions described in Section 1.2.2 can not be used for general engi-
neering applications, and some can not run with production processes due to
the high overhead. Furthermore, available I/O profiling tools can not tell the
optimal system default setups and provide statistical information to system

1.2 | Motivation 7

administrators by easily monitoring and analyzing applications.
Finding good I/O configurations is challenging due to the large parameter

space in today’s HPC systems and the potentially long execution time of a trial
run. In addition, the size of the parameter space can increase exponentially
and become unmanageably large for brute-force approaches, depending on
the granularity with which the parameter values are set.
A simple strategy for finding good I/O configurations is to run a user

application or a representative I/O kernel with all possible combinations of
tunable parameters for all layers of the I/O stack. However, because a typical
parameter space has many thousands of combinations, this is an extremely
time- and resource-consuming approach. In order to see if a combination
gives good I/O performance, it is necessary to run the application with this
configuration and evaluate the results. However, we also use resources for
combinations that do not perform well for the I/O in this case. Therefore,
instead of relying on the most straightforward approach, I have worked on
two different approaches:

1. Heuristic search with IO_Search: Adaptive heuristic search meth-
ods can traverse a parameter space and recommend a good set of
parameters for a problem. The IO_Search uses a "genetic algorithm"
for sampling the parameter space by testing a set of combinations and
then adjusting the combination for the next runs to maximize the I/O
performance with an objective function.

2. Performance modelling with IO_Predict: Regression methods in ma-
chine learning can investigate the relationship between variables and
outcomes. A regression model can be used for predictive modelling, in
which an algorithm is used to predict outcomes. The IO_Predict uses a
"random forest algorithm" to build a model for I/O performance. The
good set of parameter values is determined by using predicted values
by the IO_Predict rather than running the application.

Both approaches recommend a good set of parameter values for an applica-
tion on a given system [29–31]. These approaches have been currently tested

8 1 | Introduction and Motivation

with Lustre parameters and MPI-IO hints. The first approach runs the appli-
cation to determine parameter values, whereas the second approach uses an
I/O performance prediction model. With the second approach, the time is
significantly reduced compared to the first approach for the training step.
Furthermore, both models provide flexibility to focus on the improvement
of I/O performance.
This study makes the following contributions:

• Design and implementation of an I/O auto-tuning system that can hide
the complexity of multiple I/O stack layers from users and improve
I/O performance

• Development of an approach to search the huge parameter space for
good configurations with a small number of tests

• Development of an approach to generate an I/O performance model
and extract expert knowledge from observations automatically in a
negligible time

• Use of the models to reduce the parameter search space and save core
hours

• Demonstration of how I/O benchmarks and engineering applications
with different access patterns and problem sizes can benefit from the
auto-tuning system

• Consideration of the dynamic runtime conditions of a parallel I/O
system

The implementation of the auto-tuning system is currently based on the
MPI-IO ROMIO library, which can be widely used and supports parallel
HDF5 and parallel NetCDF applications. It is designed for Lustre parallel file
system; it also offers optimization possibilities for the other file systems such
as IBM Spectrum Scale and BeeGFS. The parameters discussed in this work
are system-dependent, but new parameters can be easily integrated into the
system.

1.2 | Motivation 9

1.3. Organization of Dissertation

This dissertation is organized as follows: Chapter 1 depicts the typical par-
allel I/O stack in an HPC system environment and introduces my research
work. In Chapter 2, today’s software technologies and their ability to ac-
celerate parallel I/O operations are investigated in detail. Chapter 3 shows
the conception of a general I/O auto-tuning system. The architecture, im-
plementation details, and results are given in Chapter 4 for the heuristic
search-based I/O auto-tuning system, while in Chapter 5 for the performance
modelling-based I/O auto-tuning system. Chapter 6 presents the evaluation
results and performance improvements using two popular I/O benchmarks,
namely IOR and MPI-Tile-IO. Chapter 7 uses a real molecular dynamics code,
namely ls1 Mardyn, as an engineering use case to present optimization
results in a production environment. Finally, Chapter 8 summarizes my work
and presents my future work to extend and improve the current approaches.

10 1 | Introduction and Motivation

Ch
ap

te
r 2

State of the Art

2.1. User Applications

I investigated the system usage at HLRS to determine which professional
areas have the most potential to benefit from I/O optimizations. Among all
professional areas, computational fluid dynamics1 (CFD) consumed over 72%
of annual computational capabilities at HLRS (Figure 2.1). For example,
ANSYS Fluent2 is a general-purpose CFD code which uses parallel HDF5
high-level I/O library, MPI-IO as well as POSIX I/O to read/write data.
However, the software has few instructions for I/O performance because it
is primarily concerned with solving computational problems rather than I/O
optimizations. As another example, amolecular dynamics simulation code ls1
mardyn3 is a highly scalable code that is optimized for parallel execution on
supercomputing architectures aiming at investigating challenging use cases
with up to trillions of molecules. The spatial distribution of the molecules
may be heterogeneous and subject to rapid, unpredictable differences. This

1http://en.wikipedia.org/wiki/Computational_fluid_dynamics
2http://www.ansys.com/Products/Fluids/ANSYS-Fluent
3https://www.ls1-mardyn.de

11

is imaged by the algorithms and I/O structures as well as highly modular
software engineering methods [32].

Figure 2.1.: System usage of different professional areas at HLRS in 2019.

Developers can utilize any I/O layer in self-implemented software to access
parallel file systems based on their research needs. This type of software
is sometimes developed on a single HPC platform but is intended to run
on multiple HPC platforms. Users who are not experts might have no time
or experience tuning their applications to the optimal level on different
platforms. Application developers focus on application code optimizations
rather than I/O optimization [10]. Most of the time, the default settings are
used, which often results in poor I/O efficiency [9]. Identifying sources of
I/O performance bottlenecks requires a multi-layer view of the I/O activity
[11]. These issues make it more difficult for users to find out the good
settings for their applications.

12 2 | State of the Art

2.2. HPC Platforms

The experiments were conducted on Hazel Hen1 (Cray XC40) and Vulcan2

(the NEC Cluster platform) at HLRS3 (High Performance Computing Center
Stuttgart). The Hazel Hen was shut down on 25. February 2020.
With a peak performance of 7.42 PFLOPS, Hazel Hen was one of the

most powerful HPC systems in the world (position 17 of Top500 list in June
2017). There are two Intel Xeon E5-2680 v3 CPUs on each compute node
with 24 CPU cores and 128 GB shared memory installed. In addition, the
Lustre file system is deployed on a Cray Sonexion scale-out Lustre storage
system with 7 metadata targets (MDTs) and 54 object storage target (OSTs).
The theoretical peak bandwidth of each Lustre OST is 3.75 GB/s, which
leads to an aggregated 202.5 GB/s (3.75GB/s×54) peak bandwidth on the
experimental Lustre file system. Vulcan consists of several front-end nodes
for interactive access and several compute nodes of different types to execute
parallel programs. It has 761 nodes with 24 cores, Centos 7 operating system,
PBSPro Batch system, Infiniband + GigE node-node interconnect, 500 TB
(Lustre) for Vulcan global disk, and the bandwidth is about 3 GB/sec. The
Lustre file system consists of 54 OST storage targets, each of them one RAID6
lun, 8+PQ, 2 TB disks.
On Hazel Hen and Vulcan, various compilers (GNU and Intel), program-

ming environments, MPI implementations, (parallel) HDF5 libraries, and
(parallel) NetCDF libraries are available4.

2.3. Distributed Parallel File Systems

To meet the demands of parallel I/O, a number of commercial and research
file systems have been developed in recent years. I briefly describe some of
them below.

1https://www.hlrs.de/de/systems/cray-xc40-hazel-hen/
2https://kb.hlrs.de/platforms/index.php/Vulcan
3https://www.hlrs.de/
4https://kb.hlrs.de/platforms/index.php/Platforms

2.3 | Distributed Parallel File Systems 13

2.3.1. Lustre

Lustre1 is a GNU General Public Licensed, open-source distributed parallel
file system developed and maintained by Sun Microsystems Inc. [33]. Lustre
is one of the most popular distributed file systems thanks to its open archi-
tecture and high scalability. Because of these benefits, many supercomputers
in the TOP500 list use this file system [34].

Figure 2.2 illustrates the Lustre architecture. Lustre clients are installed in
the compute nodes or I/O nodes of an HPC system, connected with metadata
servers and object storage servers via high-speed connecting networks.

Figure 2.2.: Components of a Lustre file system.

• MDS (metadata server): MDS is referred to metadata services, and a
metadata client is a client of those services. One MDS per file system
manages one (till Lustre software release 2.3) or multiple (since Lustre
software release 2.4) metadata targets.

1http://www.lustre.org/

14 2 | State of the Art

• MDT (metadata target): Each MDT stores file metadata, such as file
names, directory structures, and access permissions.

• MGS (management server): MGS serves configuration information
of the Lustre file system.

• OSS (object storage server): OSS exposes block devices and serves
data. Correspondingly, OSC (object storage client) is the client of the
services. Each OSS controls one or more object storage targets (OSTs).

• OST (object storage target): OSTs are like multiple disks connecting
to OSSs where the application data are stored. The total data capacity
of the Lustre parallel file system is the sum of all OST capacities.

Both MDT and OST can be constructed out of one disk or disk RAID to
increase the capacity and I/O performance [8]. Users can choose how many
OSTs to stripe their files over. The ability to stripe data across multiple OSTs
in a round-robin fashion is one of the main factors contributing to Lustre file
systems’ high performance. Files can be divided into multiple chunks, which
are then stored on different OSTs throughout the Lustre file system. This
approach allows concurrent access to multiple OSTs, eventually accelerating
the I/O requests. Besides the number of OSTs, users can also decide the
stripe size, which specifies how many bytes can be stored in one OST stripe
before moving to the next OST or next stripe. Different settings of these
factors result in a significant difference in I/O performance.
The five segments of the linear sequence of bytes are striped across four

OSTs in the physical view, as seen in Figure 2.3. Striping provides two
advantages: 1) increased bandwidth because multiple processes can access
the same file simultaneously, and 2) the capability to store large files that
would take up more space than a single OST. On the other hand, striping
has drawbacks: 1) increased network overhead and server contention; and
2) risk of file damage because of hardware failure.

2.3 | Distributed Parallel File Systems 15

Figure 2.3.: Lustre file system striping mechanism.

2.3.2. GPFS

IBM’s general parallel file system (GPFS)1, a high-performance distributed
parallel file system, was renamed Spectrum Scale. GPFS is a shared-disk
file system for cluster computers. GPFS is used on many of the largest
supercomputers in the world [35].

GPFS’s extreme scalability is achieved through its shared-disk architecture
[36]. A GPFS system is made up of cluster nodes that are connected to disks
or disk subsystems via a switching fabric. All disks are accessible to all nodes
in the cluster. Files are striped across all disks in the file system. Striping
balances the load on the disks and achieves the maximum throughput of the
disk. Figure 2.4 illustrates the GPFS architecture.

Files in GPFS are striped across all disks and divided into multiple blocks.
Large files are striped and stored in blocks, while small files are stored in
so-called sub-blocks. After the file system is established, the block size cannot
be changed. Therefore, system administrators have to either deploy multiple
file systems with varying block sizes or search for an acceptable compromise
to maximize the throughput with one block size in one file system. GPFS also
introduces another mechanism, page pool, for tuning its I/O performance.
The page pool is an allocated part of physical memory that caches data and
metadata. It supplies memory for buffering operations like prefetch (read)

1https://researcher.watson.ibm.com/researcher/view_group.php?id=4840

16 2 | State of the Art

and write-behind. Its size can be very different depending on the types of
nodes [8].

Figure 2.4.: Components of a GPFS.

2.3.3. BeeGFS

BeeGFS 1 is a parallel file system developed and optimized for high-performance
computing at the Fraunhofer Center in Germany. BeeGFS is being used on a
wide range of computer clusters, ranging from installations with only a few
machines to several systems of the Top500 of the world’s fastest supercom-
puters. Furthermore, the file system is a fundamental component of many
research projects led by different research organizations and governmental
institutions [37].

BeeGFS is a parallel cluster file system designed with a strong focus on per-
formance and easy installation and management [36]. With the constantly
increasing performance of modern processors and network technologies,
processed data sets rapidly grow. In order to handle this vast amount of data

1https://www.beegfs.io/c/

2.3 | Distributed Parallel File Systems 17

and deliver it to the computing cores as fast as possible, the HPC community
has been working on the parallel file system BeeGFS for several years now.
The individual files are distributed across multiple servers chunk by chunk
and, in doing so, can be read or written in parallel [37].

Users can simply scale the performance and capacity of the file system to
the level that they require by increasing the number of servers and disks in
the system, seamlessly scaling from small clusters to systems with thousands
of nodes.

2.4. Parallel I/O

2.4.1. Overview

As the capabilities of HPC systems in achieving high-performance I/O in-
crease, scientists use them more to solve large-scale problems that need
a large amount of data and computing power [38]. For example, many
parallel applications require access to large amounts of data stored in files
for various reasons, including reading the initial input, writing the results,
check-pointing for later restart, data analysis, and visualization [38]. In
such cases, the I/O performance significantly impacts total execution time.
Prior research indicates that I/O behaviour can be a dominant factor in

determining the overall performance of many HPC applications [38–44].
Understanding the parallel I/O operations is therefore critical to meeting
the requirements for an HPC system and solving I/O performance issues.
Keeping a balance of computing and I/O performance is a significant

challenge for future cost-effective HPC systems [45]. In recent years, signifi-
cant progress has been achieved in parallel applications’ computation and
communication performances, whereas similar progress in I/O performance
has not been achieved. Since I/O is slow compared to the CPU and commu-
nication performance, data-intensive scientific applications running on HPC
systems are correspondingly bottlenecked by the I/O speed. Nevertheless,
good I/O performance in parallel applications can be achieved by combining
various conditions such as a sufficient amount of high-speed I/O hardware,

18 2 | State of the Art

appropriate file-system software and an API for I/O, a high-performance
implementation of the API, and using that API correctly [38].

Parallel I/O is essential for scientific applications running on HPC systems.
To achieve high performance, many current HPC systems use a multi-layer
parallel I/O stack, which consists of a high-level I/O library, I/O middleware,
low-level I/O library, parallel file system, and storage hardware (Figure 1.1)
[44]. The multi-layer parallel I/O stack offers a number of optimizations
that can help in improving the performance of I/O within each layer. For
example, the parallel file system typically stripes files across the disks by
dividing the file into many smaller units called striping units and assigning
the striping units to disks in a round-robin manner [38]. Thus, file striping
enables multiple compute nodes to simultaneously access distinct portions
of a file and provides higher bandwidth.
Parallel I/O is defined as concurrent requests from multiple processes of

a parallel program for data stored in files [38]. At least two scenarios are
possible:

• Each process accesses a separate file; no file is shared among processes:
Although it can be thought of as parallel I/O because it represents I/O
performed by a parallel program, it is just sequential I/O performed
independently by a number of processes.

• All processes access a single, shared file: It can be considered as parallel
I/O. That is to say; the I/O is parallel from the application’s perspective.

2.4.2. MPI-IO

2.4.2.1. Background

MPI is a message-passing library interface specification. It primarily addresses
a message-passing parallel programming model, in which data is moved
from one process’s address space to another process’s address space via
cooperative operations on each process [5]. The complexity of inter-process
communication is hidden from application users and developers.

2.4 | Parallel I/O 19

In April 1992, the basic features essential to a standard message-passing
interface were discussed in a workshop of Standards for Message-Passing
in a Distributed Memory Environment [5]. May 1994 witnessed the first
version of the Message-Passing Interface standard released as MPI-1, fol-
lowed by version 2.0, released in July 1997 as MPI-2, which introduced and
standardized parallel I/O as MPI-IO [5]. MPI Forum has listed several MPI
implementations such as MPICH1, Open MPI2, Cray MPI3, Intel MPI4, IBM
Spectrum MPI5 and so on.

MPI-IO aims for portability and optimization for parallel I/O, which cannot
be achieved with the POSIX interface [5]. The MPI applications can be mi-
grated easily among different HPC platforms without modifying the source
codes. In addition to point-to-point communication, MPI defines collective
communication, which results in significant I/O performance improvements
for parallel I/O tasks with the proper algorithms. MPI-IO provides an in-
terface for controlling file layout on the file system, partitioning file data
among processes logically, issuing collective and asynchronous/non-blocking
data access, and applying parallel I/O algorithms [8].

MPI supports and defines the blocking and non-blocking I/O routines [5]:
• A blocking I/O call blocks all processes until finishing reading/writing

data; it will not return until it is completed.
• A non-blocking I/O call does not block other processes from running;

starts reading/writing data but does not wait for it to finish.
Application developers can choose either blocking or non-blocking I/O. Due

to synchronization and data consistency requirements, using non-blocking
I/O is more complex in application design and implementation. The non-
blocking I/O routines are named as MPI_FILE_IXXX, where the I stands for
immediate [5].
MPI-IO supports three kinds of basic data-access functions based on [5]:
1http://www.mpich.org/
2http://www.open-mpi.org/
3http://www.cray.com/
4http://software.intel.com/en-us/intel-mpi-library
5http://www-03.ibm.com/systems/spectrum-computing/products/mpi/index.html

20 2 | State of the Art

• an explicit offset which takes as an argument the offset in the file from
which the read/write should begin.

• an individual file pointer that reads/writes data from the current loca-
tion of a file pointer that is local to each process.

• a shared file pointerwhich reads/writes data from the location specified
by a shared file pointer shared by a set of processes that together
opened the file.

Users can specify a non-contiguous data layout in memory and file in
all of these functions. These functions are available in both blocking and
non-blocking modes. In addition, MPI-IO has collective versions of these
functions that all processes that opened the file together must be called. The
collective functions enable an implementation to perform collective I/O [5].

MPI-IO provides a mechanism, called info, that allows users to pass hints
to the MPI-IO implementation or underlying parallel file system in a portable
and extensible manner [38]. These hints have parameters for file striping,
caching, access pattern information, etc., to improve I/O performance.

2.4.2.2. Non-contiguous Accesses in MPI-IO

Many parallel applications require each process to access a large number of
relatively small pieces of data that are non-contiguously located throughout
the file, such as distributed arrays [46], [47]. Thus, one of the main reasons
for poor I/O performance is that I/O systems are optimized for large accesses,
whereas many parallel applications make lots of small requests [47].

The amount of data that a function sends or receives is specified in terms
of instances of a datatype [38]. In MPI, there are two kinds of datatypes:

• Basic datatypes corresponds to the basic data types such as integers,
floating-point numbers, and so on.

• Derived datatypes consists of multiple basic data types that are either
contiguously or non-contiguously.

2.4 | Parallel I/O 21

MPI offers datatype-constructor functions to create derived datatypes
consisting of multiple basic datatypes located either contiguously or non-
contiguously [47].
The different types of datatype constructors in MPI are as follows:

• contiguous: The simplest derived type is the contiguous type, created
with MPI_Type_contiguous. It creates a new datatype consisting
of contiguous copies of a datatype.

• vector/hvector: The simplest non-contiguous datatype is the vector
type, created with MPI_Type_vector. It creates a new datatype
consisting of equally spaced copies of the existing datatype.

• indexed/hindexed/indexedblock: The indexed datatype, created
with MPI_Type_indexed. It allows replicating a datatype into a
sequence of blocks containing multiple copies of an existing datatype;
the blocks may be unequally spaced.

• struct: It is created with MPI_Type_create_struct. The most
general datatype constructor allows each block to consist of replications
of different datatypes [48].

• subarray: It is created with MPI_Type_create_subarray. It
creates a data type corresponding to a multidimensional array’s subar-
ray.

• darray: It is created with MPI_Type_create_darray. It creates
a data type that describes a process’s local array obtained from a
regular distribution of a multidimensional global array.

As an example, contiguous, vector, and indexed are layouts that can quite
easily be expressed in terms of existing MPI datatypes are shown in Figure
2.5.

MPI-IO uses MPI data types to define the data layout in the user’s buffer
in memory and also to define the data layout in the file. The data layout
in memory is called datatype argument; while the data layout in the file is
called file view in each I/O operation in MPI-IO [47].

22 2 | State of the Art

Figure 2.5.: Type maps of contiguous, vector and indexed datatypes for
given base type.

When the file gets opened first, the whole file is the default file view of the
process. Thus, the process can see the entire file and operate the I/O function
contiguously by starting from the position defined by the I/O function. The
file view of the process can be changed when needed by calling the function
MPI_File_set_view with an MPI datatype parameter called the file
type. That means the process can operate I/O operation on only those visible
and accessible parts of the file defined by the file type; any holes are skipped
[48] as shown in Figure 2.6.

A file view and a data layout in memory can be constructed using any MPI
basic or derived datatype; hence, any non-contiguous access pattern can be
represented [48].
Figure 2.7 indicates writing contiguous data into a contiguous block

defined by a file view. A different file view is defined for each process using
MPI_File_set_view so that together, the processes lay out a series of
blocks in the file, one block per process (Listing 2.1).
Figure 2.8 indicates writing contiguous data into two separate blocks

2.4 | Parallel I/O 23

Figure 2.6.: Each process has its own view of the file, defined by a displace-
ment, an elementary type, and a file type.

defined by a file view. Each block is a contiguous type in memory, but the
pair of blocks is a vector type in the file view. Displacements are used again
to lay out a series of blocks in the file so that two blocks are written per
process in a repeating fashion (Listing 2.2).

Figure 2.7.: Writing contiguous data into a contiguous block defined by a
file view.

1 #define N 100

MPI_Datatype arraytype;

3 MPI_Offset disp;

24 2 | State of the Art

5 disp = rank*sizeof(int)*N; etype = MPI_INT;

MPI_Type_contiguous(N, MPI_INT, &arraytype);

7 MPI_Type_commit(&arraytype);

9 MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

MPI_MODE_CREATE | MPI_MODE_RDWR,

11 MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, disp, etype, arraytype, "native",

MPI_INFO_NULL);

13 MPI_File_write(fh, buf, N, etype, MPI_STATUS_IGNORE);

Listing 2.1: Code segment for writing contiguous data into a contiguous
block defined by a file view.

Figure 2.8.: Writing contiguous data into two separate blocks defined by a
file view.

int buf[NW*2];

2 MPI_File_open(MPI_COMM_WORLD, "/data",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh);

4 /* want to see 2 blocks of NW ints, NW*npes apart */

MPI_Type_vector(2, NW, NW*npes, MPI_INT, &fileblk);

6 MPI_Type_commit(&fileblk);

disp = (MPI_Offset)rank*NW*sizeof(int);

8 MPI_File_set_view(fh, disp, MPI_INT, fileblk,

"native", MPI_INFO_NULL);

10 /* processor writes 2 ’ablk’, each with NW ints */

MPI_Type_contiguous(NW, MPI_INT, &ablk);

2.4 | Parallel I/O 25

12 MPI_Type_commit(&ablk);

MPI_File_write(fh, (void *)buf, 2, ablk, &status);

Listing 2.2: Code segment for writing contiguous data into two separate
blocks defined by a file view.

Parallel I/O applications have constantly been challenged to efficiently
store and retrieve the increasing amount of contiguous or non-contiguous
data [49]. Therefore, it is essential that an access pattern can be expressed by
the I/O interface, as it allows an implementation to improve the performance
of I/O requests. A critical optimization in parallel I/O is to take advantage of
collective operations instead of individual operations (Figure 2.9). Collective
I/O operations typically allow users to specify multiple non-contiguous
accesses with a single I/O function call by building large, contiguous blocks
[39]; so that reads/writes will be more efficient.

Figure 2.9.: Collective I/O operations.

2.4.2.3. MPI-IO Libraries

In parallel I/O, multiple processes of parallel program access any part of one
file or multiple files, as contiguous or non-contiguous. As a result, the I/O
access patterns of a parallel program often contain a large number of small
and non-contiguous data accesses. This means that the application needs to
make many small I/O requests, which degrades I/O performance drastically.
Parallel I/O systems or distributed memory architectures need a mech-

anism to define collective operations and non-contiguous data layouts in
memory and the file. MPI-IO allows users to access non-contiguous data by

26 2 | State of the Art

using MPI derived datatypes in a single collective I/O function call. This
feature provides MPI-IO implementations with an opportunity to optimize
data access [40], [50].
Two widely used MPI implementations MPICH1 and Open MPI2 have

implemented different MPI-IO libraries, which are designed with different
architectures. ROMIO, a portable MPI-IO library, has been integrated into
most of the MPI implementations (Figure 2.10), while OMPIO [51] is a
specialized MPI-IO library only for Open MPI and its derivatives (Figure
2.11). ROMIO and OMPIO are two coexisting but independent parallel
I/O-libraries in Open MPI.
OMPIO provides two main advantages compared to ROMIO [51]:

• more fine-grained separation of functionality under the favour of dif-
ferent frameworks

• no modification needed on the end-user application with non-file sys-
tem specific module selection

Figure 2.10.: The abstracted ROMIO architecture.

OMPIO has a highly modular approach to parallel I/O by dividing I/O
functionality into smaller frameworks (fs, fcoll, fbtl, and sharedfp) and
modules in each framework [51].

As parallel I/O algorithms, data sieving and two-phase I/O are integrated
to achieve higher performance for non-contiguous I/O requests and small

1https://www.mpich.org/
2https://www.open-mpi.org/

2.4 | Parallel I/O 27

Figure 2.11.: The abstracted architecture of OMPIO frameworks and mod-
ules.

data accesses in ROMIO, while the fcoll framework in OMPIO has different
algorithms: two-phase I/O, static segmentation, dynamic segmentation, the
individual algorithm to use depending on the functionality of the framework
and external parameters [51].

Figure 2.12.: File write performances for contiguous, strided and indexed
data layouts on OMPIO and ROMIO.

To better understand, I want to compare two MPI-IO libraries, ROMIO

28 2 | State of the Art

and OMPIO, based on the access pattern of an application and the underly-
ing file system [52]. Particular focus is on collective I/O and its potential
performance improvements over individual I/O operations. All evaluations
were made on Hazel Hen (Cray XC40) with an InfiniBand connected Lustre
file system at HLRS.

For the first experiment, a self-implemented I/O benchmark is performed
to simulate collective write operations with contiguous and non-contiguous
data layouts on Hazel Hen (Figure 2.12). Widely used contiguous and
non-contiguous data layouts in user applications have been searched, and
consequently, contiguous, strided and indexed data layouts are defined by
derived MPI data types and file views for collective write operations in the
benchmark. Type maps of contiguous, vector, and indexed data types for a
given base type are shown in Figure 2.5. These data types are constructed in
the benchmark accordingly by using MPI_Type_contiguous function
for the contiguous layout, MPI_Type_vector function for the strided
layout, and MPI_Type_indexed function for the indexed layout. The
performance results of different data layouts and MPI-IO libraries, ROMIO
and OMPIO, are investigated as seen in Figure 2.12. Single node exper-
iments were performed on Hazel Hen using OMPIO default settings and
ROMIO default settings. Each test case is executed multiple times for all
measurements, taking the average achievable bandwidth across those runs.
Figure 2.12 shows the benefits of using the OMPIO library in all layouts

for the given benchmark compared to the ROMIO library. When we look
at data types, we see that choosing a contiguous data layout gives higher
performance than the other data layouts in all experiments. Different trans-
action sizes are worked on in the first experiment. It is seen that small
transaction sizes result in very poor I/O performance. If the transaction size
is too small, the increased parallelism does not make up for the many small
writes because overall latency increases simultaneously. In Figure 2.12, the
use case is shown when the data transfer size is assigned to 256 MB. The
contiguous data type seems x2 times faster than the vector and indexed data
types with OMPIO default settings. It is understood that changing the I/O
implementation of an application to favour large transaction sizes needs a

2.4 | Parallel I/O 29

detailed investigation of the different data layouts. Choosing an appropriate
MPI-IO library has a significant impact on I/O performance.

For the second experiment, collective and individual I/O read performance
are compared for a different number of nodes on Hazel Hen. For both
individual and collective operations, default settings are used for OMPIO
and ROMIO. The MPI-Tile-I/O benchmark is used to implement tile accesses
on two-dimensional dense data sets using 256 x 256 x 16 bytes per process
(left), 256 x 256 x 4096 bytes per process (right) is presented in Figure
2.13.

Figure 2.13.: Collective and individual file read performances with the MPI-
Tile-I/O benchmark.

Figure 2.13 shows the performance improvements of collective I/O oper-
ations over individual I/O operations in both ROMIO and OMPIO for two
different data transaction sizes. The results encourage using collective I/O
operations in I/O intensive user applications. The comparison here shows the
benefits of using the OMPIO library, especially its collective I/O framework,
instead of individual I/O. Each test case is executed multiple times for all
measurements, taking the average achievable bandwidth across those runs.
Note that all evaluations were performed with default configurations of the
Lustre file system on Hazel Hen; 4 OSTs and 1 MB striping unit. All data
are written as stripe-aligned.
The results show that one cannot reliably choose a single data layout or

approach and expect uniform performance portability among these two
implementations. As it is understood, changing the I/O implementation of a

30 2 | State of the Art

user application to favour larger transactions needs a detailed investigation
of the data layouts and MPI-IO library.
Understanding MPI-IO libraries allows end-users to select the best I/O

approach depending on the application’s data layout and helps to increase
their efficiency accordingly. The comparison here shows the benefits of
using the OMPIO library, but the ROMIO library is widely used in today’s
engineering applications. Therefore, this study is currently based on the MPI-
IO ROMIO library. It is designed for Lustre parallel file system; it also offers
optimization possibilities for the other file systems such as IBM Spectrum
Scale and BeeGFS.

2.4.3. Parallel I/O Optimizations

2.4.3.1. Data Sieving

It is critical to make a few requests to the file system as possible to reduce
the impact of high I/O latency. Data sieving is a parallel I/O algorithm
that was introduced in ROMIO to access non-contiguous I/O requests in
large chunks [50]. It minimizes the network load, although at the cost of
reading more data than needed. Instead of making independent requests for
non-contiguous data, ROMIO uses data sieving to avoid separately accessing
each contiguous data. The basic idea is to allocate a piece of local memory
for caching the entire file or a relatively large portion of the file (the data
transfer size of each non-contiguous I/O request) [8].
Assume that the user has made a single read request for five small non-

contiguous data chunks. Without data sieving, each chunk is read separately,
so the connection with the file system is established five times. Figure
2.14 shows an example of the data sieving. First, the data is read into the
temp buffer in the local memory as a large and contiguous chunk. Then the
requested portions are extracted from the temporary buffer and placed in the
user’s buffer [50]. The subsequent I/O operations are performed within the
local memory, which requires almost no seek time. Accessing local memory
for reading/writing operations is far faster than accessing a file system.

2.4 | Parallel I/O 31

Figure 2.14.: Data sieving.

A potential problem with this algorithm is its memory requirement [50].
Reading a large chunk of data into memory and the locking mechanism to
block other processes are the drawbacks of data sieving [8].

2.4.3.2. Collective I/O

Although each process may require access to several non-contiguous portions
of a file in many parallel applications, the requests of different processes
are frequently interleaved. As a result, they may collectively span large
contiguous portions of the file [50]. If the MPI-IO implementation provides
the complete non-contiguous access information of all processes, I/O perfor-
mance can be significantly improved by merging the requests of different
processes. Such optimization is referred to as collective I/O.

Collective I/O can be performed at the disk, server, or client levels. ROMIO
performs collective I/O at the client level using a generalized version of
two-phase I/O. It has been shown to improve performance significantly [47].

Two-phase I/O is a collective I/O algorithm at the client level for accessing
distributed arrays from files. The basic idea of two-phase I/O is to avoid
making lots of small I/O requests by dividing the entire I/O process into two
phases: an I/O phase and a communication phase.
Figure 2.15 shows an example of the two-phase I/O. Assume that the

user has requested reading a distributed array from a file using two-phase
I/O. In the first phase, all processes access data according to a distribution

32 2 | State of the Art

Figure 2.15.: Reading a distributed array by using two-phase I/O.

that results in each process making a single, large, contiguous access. In the
second phase, data is redistributed among processes to achieve the desired
distribution [47]. This method can significantly reduce I/O time by making
all file accesses large and contiguous even though the additional cost of
interprocess communication for redistribution [38].

The two-phase I/O abstraction may introduce an overhead due to the MPI
communication required to organize the collection of segments. Additionally,
modern distributed file systems often already provide similar internal opti-
mizations, which may conflict with the collective buffering implementation
[53].

2.4.3.3. MPI Hints

MPI info is an object that stores a set of (key, value) pairs, and they are
passed to MPI functions [5]. MPI standard defines various MPI infos, such
as communicator info, window info, and file info (also called MPI file hints),
for users to provide information for direct optimization [8].
The following MPI functions can interpret its file info:

• MPI_FILE_OPEN

• MPI_FILE_DELETE

• MPI_FILE_SET_VIEW

2.4 | Parallel I/O 33

• MPI_FILE_SET_INFO

Bypassing the MPI file info, file access information can be given from user
applications to MPI-IO libraries or even the underlying distributed parallel file
systems so that the parallel I/O performance can be improved [8]. ExceptMPI
reserved file hints, different MPI implementations and MPI-IO libraries can
define their own file hints/info [8]. For example, striping_factor and
striping_unit reserved file hints are defined for the underlying Lustre
file system stripingmechanism, romio_cb_read andromio_cb_write
file hints are defined by ROMIO to enable the collective I/O for MPI collective
reading/writing functions.

34 2 | State of the Art

Ch
ap

te
r 3

General I/O Auto-tuning
Framework

3.1. Design Requirements

In Section 1.2.3, heuristic search-based and performance modelling-based
I/O auto-tuning approaches to accelerate the I/O requests of engineering
applications were introduced. The proposed I/O auto-tuning framework
owns the following four abilities:

• Compatibility: This framework should be compatible with as many
engineering applications as possible. Designing based on the MPI-IO
library ensures the software compatibility with not only MPI but also
parallel HDF5 or parallel NetCDF applications.

• Scalability: Time and resource consumption should be acceptable.
The engineering applications usually scale out to hundreds of thou-
sands of compute nodes to solve large-scale engineering problems.

• Usability: To encourage more scientists and engineers to use this

35

system, it should not require additional skills or knowledge and be
easy to use. Scientists remain focused on their simulations and take
little consideration about the I/O performance.

• Portability: The framework must be designed for not only one HPC
platform. Sometimes there is more than one HPC system in an HPC
centre, which is updated or upgraded regularly; therefore, it should
also be able to run on multiple platforms.

To fulfil these abilities, the auto-tuning framework needs to follow the
current MPI standard, run transparently to the users, produce acceptable
little overhead and improve I/O performance automatically.

3.2. I/O Performance Factors

Many performance factors of the I/O stack are involved in the I/O efficiency.
By researching the application characteristics, Lustre file system, and the
MPI-IO ROMIO library, it can be seen that the following parameters affect
I/O performance significantly:

• number of cores: The number of I/O processes has a significant impact
on the I/O performance. Different numbers of processes participate to
the I/O operations, such as one process, a subset of processes, or all
processes. This performance factor can not be changed at runtime so
that it can be used to identify log and configuration files.

• problem size: Proper configurations change depending on how many
bytes of data are read/written by each MPI-IO process. However, it
would be too expensive to find out a good configuration for every data
transfer size. As suggested in [8], different data transfer sizes which
may have similar good configurations can be grouped into file indexes.
For example, in the prototype, 56 data transfer size groups are defined
from 100 B to 2,000,000,00 B, and any data transfer size larger than
195.31 MB belongs to the 56th file size group.

36 3 | General I/O Auto-tuning Framework

• MPI-IO subroutine: Good configurations depend on the type of MPI-
IO subroutines (collective vs individual access pattern). Saving the type
of the MPI-IO subroutine used in applications can help users analyse
the I/O bottlenecks of their applications. This performance factor can
not be changed at runtime.

• MPI info: The MPI info has runtime I/O tuning options for MPI-IO
libraries such as:

– romio_cb_read: The collective buffering optimization (two-phase
I/O) for reading operations can be enabled or disabled to acceler-
ate applications’ I/O requests.

– romio_cb_write: The collective buffering optimization (two-
phase I/O) for writing operations can be enabled or disabled
to accelerate applications’ I/O requests.

– striping_factor: It specifies the number of Lustre OSTs to stripe
new files (stripe_count).

– striping_unit: It specifies the size (in bytes) of each Lustre file
system OST stripe unit (stripe_size) used for new files.

The first challenge was determining how to choose the values of previ-
ously mentioned MPI info objects to test, particularly the Lustre striping
parameters. I used Interleaved or Random (IOR)1 benchmark to compare
an efficient optimization to an inefficient one. It simulates the applications’
I/O write requests in different problem sizes with 1,200 processes on Hazel
Hen 2 with Lustre file system at HLRS. The IOR ran with various random
configurations considering the characteristics of parallel I/O stack layers.
The results of each configuration obtained from 10 running samples are
presented in Figure 3.1 and Figure 3.2 through four box plot diagrams3.

1http://github.com/LLNL/ior
2https://www.hlrs.de/systems/cray-xc40-hazel-hen/
3Box plots use graphic to illustrate groups of numerical data through their quartiles in

descriptive statistics. They provide the maximum, median, and minimum results, as well as
upper and lower quartiles.

3.2 | I/O Performance Factors 37

Figure 3.1.: I/O simulation results by applying different MPI hints.

Figure 3.2.: I/O simulation results by applying different Lustre stripe size.

The I/O simulations ran with different configuration parameters such
as data transfer size, the number of processes, Lustre striping values, and
collective I/O optimizations in ROMIO. In Figure 3.1, the I/O simulations
were configured with MPI collective I/O write operations that access a single
shared file, using the same data transfer size on each process for each case
and by using MPI hints to control the Lustre striping setups. In the left case
of Figure 3.1, for a small data transfer size (32 KB) on Lustre, the writing
performance of striping over 4 OSTs with 1 MB stripe size is about 71
% better than the performance of striping over 16 OSTs with 1 MB stripe
size. Disabling the collective buffering optimization in ROMIO, which is
usually not recommended, achieved about 269 % improvement in write
performance in the right case of Figure 3.1 for a non-small data transfer
size of 64 MB. Figure 3.2 shows that there is an optimal range for Lustre
stripe size depending on data transfer size because I/O performance

38 3 | General I/O Auto-tuning Framework

does not keep rising together with stripe size. I want to highlight that,
while in principle, there are many suggestions to improve IO performance,
in practice, this is very challenging due to the complex interactions between
different parameters. The problems shown in Figure 3.1, and Figure 3.2
are just the tip of the iceberg. The challenge is that those configuration
parameters need to be carefully evaluated and tuned by an expert.
For the training process, I selected a few meaningful parallel I/O param-

eters for all the layers of the I/O stack based on previous research efforts
and experience. Increasing the number of OSTs for large jobs improves the
I/O performance accordingly, but the resources (Lustre OSTs and network
connections) are limited. To avoid potential conflicts between concurrently
running I/O applications, the maximum striping_factor was set as
16. Since large values of striping_unit may result in longer lock hold
times, the values of striping_unit were selected from 1 MB to 16 MB
with powers-of-two. As for the collective buffering, values are defined as
automatic, disable and enable.

The search scope of the configuration parameters worked on in this study
is given in Table 3.1. A user can set the parameter space by simply modifying
the parameter list. The auto-tuning framework can help users and developers
to explore how these parameters interact with each other.

Table 3.1.: Configurations’ search scope
Name Value
number of cores 24 - 2400
data transfer size 100 B - 195 MB
striping factor 1 - 16
striping unit 1 MB - 16 MB
collective I/O automatic; disable; enable
access pattern collective; individual

3.2 | I/O Performance Factors 39

3.3. MPI and PMPI Wrapper

The two most widely used MPI implementations, MPICH and Open MPI are
implemented in C. Both of them redirect the MPI subroutines in Fortran to
the profiling MPI (PMPI) interface in C [8]. Every standard MPI function
can be called with an MPI_ or PMPI_ prefix. The MPI standard lets one
to write functions with the MPI_ prefix that call the equivalent PMPI_
function. Specifically, a function written in this manner has the standard
function’s behaviour plus any additional desired behaviour. This is useful for
MPI performance analysis because it captures program MPI calls as well as
important performance data.

The MPI wrapper is compiled as the shared library for C applications. It is
implemented with the dynamic symbol in POSIX specification and can be dy-
namically loaded by setting the system environment variable LD_PRELOAD
(Listing A.1).

MPI wrapper for MPI_Init() subroutine is depicted in Figure 3.3. The
address of a symbol pointing to the profiling MPI subroutine PMPI_Init()
is obtained by dynamic link function. The same input parameters used in user
applications are passed to PMPI_Init() directly. By successfully execut-
ing the PMPI_Init() subroutine, modules of the auto-tuning framework
starts according to the user running modes. It is analogous to implementing
the MPI wrapper for other MPI or PMPI subroutines.

Figure 3.3.: MPI wrapper for MPI_Init() flow chart.

40 3 | General I/O Auto-tuning Framework

3.4. Running Modes

Depending on user needs, it is sometimes desirable to monitor the user
application, sometimes optimize it, and sometimes both. In the auto-tuning
framework, three running modes were designed. This way, more flexibility
is given to end-users, and unnecessary overhead is also eliminated.

• Optimizing: This mode sets good configurations for all file operations
transparently. Because the tracing component is not activated in this
mode, no memory is allocated for tracing I/O operations.

• Tracing: This mode records the I/O-related information and gives
users as well as system administrators a clear view to profile the appli-
cations’ I/O behaviours. The log files generated in this mode are the
sources of the learning module to search for good configurations.

• Optimizing and tracing: This mode initiates the tracing and optimiz-
ing modules together. It sets the good configurations and records their
performance results into log files.

3.4 | Running Modes 41

Ch
ap

te
r 4

Heuristic Search Based
I/O Auto-tuning

This section describes the background of the heuristic search-based I/O
auto-tuning approach developed in this thesis. I show how the approach
determines and auto-tunes I/O parameters using the genetic algorithm.

4.1. Heuristic Search

A naïve strategy-based auto-tuning requires running an application with all
possible combinations of I/O parameters to determine the best-performing
parameter set. This approach is an exhaustive search through the huge
parameter space due to the long execution times of trial runs. It consumes
time and resources even for unsuccessful parameter sets for the given ap-
plication and system. Adaptive heuristic search-based approaches can solve
this problem by searching the parameter space with a few tests.
Genetic evolution algorithms, simulated annealing, and other adaptive

heuristic search approaches can traverse the search space with fewer trials

43

[21]. I explore genetic algorithm for sampling the parameter space by testing
a set of parameter combinations and then, based on the I/O performance,
adjusting the combination of tunable parameters for further testing. As a
result, better parameter combinations emerge through multiple generations
(i.e., sets of tunable parameters with high I/O performance).

A genetic algorithm is a metaheuristic that reflects the process of natural
evolution by modifying a population of individual solutions as a randomized
search algorithm [54]. It randomly selects individuals of the initial popula-
tion from the current population as parents. Then, it uses these individuals
to generate the children for the next generation. The bad individuals are
eliminated through iterative generations, and the good individuals are saved.
Good parents produce good children.

A set of operators such as reproduction, crossover, and mutation is used
to set the initial population to generate successive populations with time
(Figure 4.1) [55]. Reproduction is a procedure based on the objective
function (fitness function) of each individual to determine how “good” the
individual is [55]. Thus, individuals with higher fitness values can contribute
to the next generation. Crossover is a genetic operator in which members
of the last population are mated at random in the mating pool [55]. The
mutation is the random change portions of the individual with a small
probability [55]. Random mutations provide a sampling of the remainder of
the space [21]. A genetic algorithm is expected to converge to an optimal or
near-optimal solution in fewer iterations [21].

Figure 4.1.: Procedure of genetic algorithm.

44 4 | Heuristic Search Based I/O Auto-tuning

4.2. Architecture

Figure 4.2 shows the overall architecture of heuristic search-based I/O
auto-tuning approach that has two modules: IO_Optimizer and IO_Tuner.
The IO_Tuner automatically tunes a good I/O parameter set suggested by
a genetic algorithm engine; IO_Search that is located in the IO_Optimizer
module. The IO_Search executes the I/O application with a preselected
random initial set of tunable parameters. I/O parameter search space is
also given as input. It searches the parameter space to find out the best-
performing parameter set iteratively. When a successful parameter set is
found, the IO_Tuner takes the set and dynamically links to MPI-IO calls of
the I/O application. Then, I/O performance results can be used to refit the
IO_Search with the dynamic conditions of a parallel I/O system adaptively
for scientists and engineers to find out the latest good configurations.

Figure 4.2.: Overall architecture of the heuristic search-based auto-tuning
approach.

4.2 | Architecture 45

4.2.1. IO_Optimizer: Configuration Search

In genetic evolution algorithms, selecting fewer combinations of parameters
and running a few tests is reasonable to search for huge and complex param-
eter space. The IO_Search is a genetic evolution algorithm engine included
in the IO_Optimizer module to traverse the search space.
The IO_Search randomly selects individuals of the initial parameter set.

Then, it modifies the values of parameters for further testing based on
the I/O performance. Thus, over consecutive generations, the population
can approach a parameter set that gives better I/O performance than the
performance of the default settings.

Figure 4.3 shows the workflow of the genetic algorithm engine IO_Search.
The IO_Search starts the genetic algorithm for a given concurrency and prob-
lem size with the I/O application. Predefined parameter space is given to the
IO_Search as an input that includes all possible values of tunable parameters.
At first, the IO_Search generates an initial population of I/O parameters and
creates a configuration file containing the selected parameters to be used by
the IO_Tuner in auto-tuning the I/O application.
In the experiments, population size is selected 10 by the IO_Search, it

can be configured. The fitness value of an individual is defined as the I/O
bandwidth. As the IO_Search passes through a new generation, it calculates
the fitness of individuals, namely I/O bandwidth. The best individuals
named as the elite members who give high I/O performance are transferred
to the next generation. The rest of the population in the next generation is
generated by applying crossovers and mutations to the current population.
These steps are repeated for each generation until stop criteria are reached.
The IO_Search defines the number of generations as 30 so that the maximum
of 300 runs of the given I/O application can be executed by the IO_Search.
The mutation rate is defined as 15% in the IO_Search, which means

mutation is applied to 15% of the current population for each generation.
Finally, the I/O parameters found for the given application and scale are
stored in the configuration file.

46 4 | Heuristic Search Based I/O Auto-tuning

Figure 4.3.: Overall architecture of the IO_Search.

4.2.2. IO_Tuner: Setting I/O Parameters at Runtime

The IO_Tuner component is a parallel I/O tuning module that takes the
I/O parameters found by the IO_Search included in the IO_Optimizer and
then dynamically sets these parameters at different layers of the I/O stack.
Currently, the IO_Tuner works on the MPI-IO ROMIO library and Lustre
parallel file system.

At first, the IO_Tuner reads the configuration file, including good configu-
rations found by the IO_Search. As soon as I/O applications or benchmarks
call MPI-IO subroutines, the IO_Tuner is triggered to apply these good config-
urations before executing the I/O operation transparently. Finally, it passes
the intercepted MPI-IO functions of the application or benchmark in the PMPI

4.2 | Architecture 47

wrapper. The good parameters are set at this step, and then the original
MPI-IO function is called. In this way, auto-tuning can be done transparently
to the users without source code modification.
Figure 4.4 shows how the IO_Optimizer module accesses the config-

uration pool, fetches the proper configuration and then passes it to the
MPI_FILE_OPEN andMPI_FILE_WRITE subroutines through IO_Tuner.

Figure 4.4.: Optimizing process.

The previously found good configurations could be outdated and no longer
optimal. On the other hand, sometimes, users achieve better I/O perfor-
mance with some "brand new" configurations. After executing I/O operations,
performance results can be used to refit the IO_Search with the dynamic
conditions of a parallel I/O system adaptively for scientists and engineers to
find out the latest good configurations.

4.3. Implementation

4.3.1. Benchmarks

I chose two I/O benchmarks to evaluate the heuristic search-based I/O auto-
tuning approach: IOR and MPI-Tile-IO. These represent different I/O write
patterns with different problem sizes.

• IOR [56]: The IOR (LLNL 2015) is an I/O benchmark developed at
Lawrence Livermore National Laboratory (LLNL). It is one of the main
HPC I/O benchmarks because it is highly configurable and supports
various APIs to simulate I/O load.

• MPI-Tile-IO [57]: The MPI-Tile-IO benchmark tests the I/O perfor-
mance in a real-world scenario. The purpose of the MPI-Tile-IO is to

48 4 | Heuristic Search Based I/O Auto-tuning

test the performance of an underlying MPI-IO and file system imple-
mentation under a non-contiguous access workload. It tests how it is
performed when challenged with a dense 2D data layout.

4.3.2. System setup

The experiments were conducted on the NEC Cluster platform (Vulcan) at
HLRS. Section 2.2 shows the technical details about the Vulcan. As for the
experimental Lustre file system, the default setup of Lustre striping con-
figuration is striping_factor=4 and striping_unit=1048576.
OpenMPI version is from version 4.0.3.

4.3.3. Parameter space

The IO_Search can take arbitrary values as input for a parameter space.
However, the evolution of the genetic algorithmwill require more generations
to search a parameter space with arbitrary values.
To shorten the search time, I selected a few meaningful parallel I/O

parameters for all the layers of the I/O stack based on previous research
efforts and experience. I have chosen most parameter values to be powers-
of-two except for some parallel file system parameters. To avoid potential
conflicts between concurrently running I/O applications, the maximum
striping_factor was set as 16. Since large values of striping_unit
may result in longer lock hold times, the values of striping_unit were
selected from 1 MB to 16 MB with powers of two. As for the collective I/O
operations, values are defined as automatic, disable and enable. Setting
parameter values to reasonable ranges based on knowledge of page sizes,
min/max striping ranges, and powers-of-two values can be done by someone
with a basic understanding of the system. Furthermore, this task needs to
be performed only once per-system basis.
Table 4.1 shows ranges of various parameter values. A user can set the

parameter space by simply modifying the parameter list in the IO_Search.
Adding new parameters to the search needs simple modifications to the

4.3 | Implementation 49

IO_Tuner. The following is a list of parameters that are used as part of the
parameter space.

• Lustre:
– Stripe count (striping_factor)
– Stripe size (striping_unit)

• MPI-IO
– The collective buffering optimization (romio_cb_write)

Table 4.1.: A list of the tunable parameters and ranges used for experiments.
The last column shows the number of distinct values used for
each parameter.

Name Value Quantity of Values
striping_factor 1; 2; 4; 8; 16 5
striping_unit 1 MB; 2 MB; 4 MB; 8 MB; 16 MB 5
romio_cb_write automatic; disable; enable 3

4.3.4. Scale and data set sizes

I designed a weak-scaling configuration to test the performance of the auto-
tuning framework at different concurrencies, i.e., 64 and 256 cores for the
MPI-Tile-IO; 240 and 1,200 cores for the IOR benchmark. There are 24 CPU
cores on each Vulcan compute node. The amount of data each core writes
is constant for a given benchmark, i.e., the amount of data the benchmark
writes increases proportional to the number of cores used.

4.4. Results

I conducted experiments for two benchmarks, the IOR and the MPI-Tile-IO, in
different data transfer sizes on Vulcan. The experiments have been repeated
multiple times, both default and tuned configurations, and plotted average

50 4 | Heuristic Search Based I/O Auto-tuning

values. The default experiments are measured by applying the system default
settings that system administrators define.
Performance improvements obtained by using the parameters that the

auto-tuning system detected for the IOR benchmark are shown in Figure
4.5 on Vulcan at 240 and 1,200 cores concurrencies and for the MPI-Tile-IO
benchmark in Figure 4.6 on Vulcan at 64 and 256 cores concurrencies.
Y-axis represents I/O bandwidth in MB/s, and the x-axis represents data
sizes. The scales of the I/O bandwidth axes are different in the plots. Note
that only a subset of the combinations was run due to limited access to the
platform. The default experiments correspond to the system default settings
that a typical user of the HPC platform would encounter in the absence of
an auto-tuning framework.

For all experimental tests, the I/O bandwidth is calculated as the ratio of
the amount of data to be written into a file to the time taken to write the data.
In the measured I/O time, opening, writing, and closing the file overhead is
included. The overhead of MPI-IO call interception by the IO_Tuner, which
is included in the time taken, was negligibly small, even at a high core count.
The IO_Search ran for ∼ 6.5 hours for the IOR, ∼ 2.5 hours for the MPI-

Tile-IO to search through the parameter space of each experiment. In most
cases, the IO_Search passed through 10 to 30 generations. It selects the
configuration that achieves the best I/O performance through the course
of the genetic algorithm evolution. The heuristic search-based auto-tuning
approach achieved an increase in I/O bandwidth of up to 7.74×over the
default parameters for the IOR benchmark and 5.59×over the default pa-
rameters bandwidth for the MPI-Tile-IO benchmark, as shown in Figure 4.5
and Figure 4.6.

Table 4.2 shows the I/O performances of the default, and the optimized
experiments for two use cases in Figure 4.5 and Figure 4.6. I also show the
speedup that the optimized settings achieved over the default settings for
each experiment.

The heuristic search-based auto-tuning approach’s runtime is proportional
to the amount of time it takes to run the application. The benefit of using a
genetic algorithm is selecting the parameter values for the next run. Thus,

4.4 | Results 51

(a) 240 cores

(b) 1200 cores

Figure 4.5.: Default vs. optimized write bandwidth on the IOR for various
transfer sizes running on 240 cores and 1,200 cores of Vulcan.
Y-axis represents I/O bandwidth in MBps and x-axis represents
transfer sizes (in MB). The scales of the I/O bandwidth axes are
different in the plots.

52 4 | Heuristic Search Based I/O Auto-tuning

(a) 64 cores

(b) 256 cores

Figure 4.6.: Default vs. optimized write bandwidth on the MPI-Tile-IO for
various transfer sizes running on 64 cores and 256 cores of
Vulcan. Y-axis represents I/O bandwidth in MBps and x-axis
represents element sizes in number of tiles (in KB). The scales
of the I/O bandwidth axes are different in the plots.

4.4 | Results 53

Table 4.2.: I/O speedups of applications with optimized parameters over
default parameters.

Application IOR (MB/s) MPI-Tile-IO (MB/s)
#Cores 240 1200 64 256

Use case 1
Default 6238.56 6402.08 1974.462 6138.917
Tuned 12075.01 23859.15 2503.22 11257.42

Speedup 1.93 3.73 1.27 1.83

Use case 2
Default 4238.57 5412.91 1759.326 2122.027
Tuned 11186.23 41859.44 3075.17 11859.23

Speedup 2.64 7.74 1.75 5.59

it eliminates the need for large data sets for training, which are difficult to
obtain due to the long runtime of application codes. However, running a few
iterations of an I/O application on a few nodes can still take hours, especially
for large amounts of data. Therefore, to reduce the overall time required,
I propose a performance prediction model to predict I/O bandwidth and
then further reduce the auto-tuning model runtime. The following section
describes the performance modelling-based auto-tuning approach, which
uses predictions to output the best parameters within a few seconds.

54 4 | Heuristic Search Based I/O Auto-tuning

Ch
ap

te
r 5

Performance Modelling
Based I/O Auto-tuning

This section describes the background of the performance modelling-based
I/O auto-tuning approach that I propose for solving HPC I/O tuning problems.
Then, I show how the auto-tuning approach determines and auto-tunes I/O
parameters using the random forest algorithm.

5.1. Performance Modelling

In auto-tuning, a naïve strategy is to run an application using all possible
combinations of tunable parameters to find the best. However, this is an
exhaustive search through a huge parameter space and is infeasible because
of the long execution times of trial runs on application codes. Furthermore,
this becomes a highly time and resource-consuming approach depending on
the size of the parameter space.

In the previous chapter, the heuristic search-based I/O auto-tuning achieved
I/O write speedups between 1.27X and 7.74X. However, the overhead of

55

the genetic algorithm in heuristic search is significant that may severely
limit the applicability of such an auto-tuning framework to general-purpose
applications.
Rather than the approaches mentioned above, I thought I could use ma-

chine learning algorithms to solve this problem. I developed an I/O per-
formance prediction model that can significantly reduce the search time
and improve the I/O performance. Here, models are considered that can
characterize the I/O performance (e.g., I/O bandwidth, I/O time) in terms
of the parallel I/O stack characteristics. A model can be formally used to
define the I/O performance of an application as follows:

φ = f(α,ζ,ω), (5.1)

where α represents a set of observable parameters that describe appli-
cation characteristics (problem size, I/O pattern, number of cores, etc.), ζ
represents a set of observable parameters that describe file system and/or
MPI-IO characteristics (Lustre parameters, MPI-IO hints, etc.), ω represents
uncontrolled non-observable parameters, and φ represents I/O bandwidth
or I/O time. In the modelling approach, I aim to understand the relationship
between φ and the parameters (α, ζ). For a given set of input parameter
values in (α, ζ), the function f should give a prediction.

Non-linear regression models, such as support vector machines, random
forests, etc., can model the I/O performance in a reasonable amount of time
for a given application. I explore random forest algorithms to predict the
continuous-valued I/O performance because they have a higher classification
accuracy than most tree-based algorithms and a higher noise and outlier
tolerance.

56 5 | Performance Modelling Based I/O Auto-tuning

5.1.1. Performance Models

5.1.1.1. Decision Tree

A decision tree is a kind of supervised learning algorithm. In practical ap-
plications, the decision tree algorithm is particularly suitable for analyzing
discrete data and can be used to solve classification problems and regression
problems [58]. The decision tree contains a root node, several decision
nodes, and several leaf nodes. The leaf nodes correspond to the prediction
results. The data set contained in each node is divided into child nodes
according to the result of the attribute test. The path from the root node
to each leaf node corresponds to a decision sequence as seen in Figure 5.1
[59].

Figure 5.1.: Basic structure of a decision tree [60].

5.1.1.2. Regression Tree

A regression tree is basically a decision tree that is used for the regression that
can be used to predict continuous-valued outputs. Its construction principle
is to divide the input space of training set into subspaces recursively to
construct the tree.

5.1 | Performance Modelling 57

Assuming the data set D is defined as follows:

D = (x1, y1), (x2, y2), ..., (x i , yi), ..., (xn, yn) (5.2)

where the independent parameters (e.g., the stripe count) in the model are
denoted x = [x1, ..., xn] and the scalar-valued output/dependent
variable (e.g., the write time or bandwidth) associated with the configuration
x by y(x).

The steps of generating a regression tree can be summarized as:
a) Selecting the optimal parameter value and solving the objective func-

tion:

min
j,s
[min

c1

∑

x iεR1(j,s)(yi − c1)
2 +min

c2

∑

x iεR2(j,s)(yi − c2)
2] (5.3)

Where xi, j and s are m-dimensional vectors with m features, optimal
segmentation variables and optimal segmentation points, respectively. R1 and
R2 are the two sub-regions after segmentation, and c1 and c2 are predicted
values for each sub-region.

b) Dividing the area with the selected j, s and get the prediction value of
each region:

R1(j, s) = (x |x j ≤ s) (5.4)

R2(j, s) = (x |x j > s) (5.5)

cm =
1

Nm

∑

x iεRm(j,s) yi , xεRm, m= 1, 2 (5.6)

Where, xj and N are the j-th feature and the total number of features,
respectively.
c) Repeating the first two steps (a and b) until the stop condition is met.

58 5 | Performance Modelling Based I/O Auto-tuning

d) Dividing the input space into N areas to generate a regression tree.

5.1.1.3. Random Forests

A random forest is a regression algorithm that trains and also analyzes
previous samples through trees. A regression tree is the basic unit of random
forest.
Random forests are a set of tree predictors that extract knowledge from

numerous decision trees instead of producing a single decision tree [61].
The regression results are the joining of all the tree’s output, which is more
stable and more robust with respect to noise. Here, the selection of samples
is random. The following steps describe random forest regression:

1. Randomly select the data points from the training data sets.
2. Construct a tree correlated with the chosen data points.
3. Step 1 and 2 are iterated m times to generate m decision trees.
4. Predict a data point value using m decision trees. Then calculate the

average of the predicting values.

Random forest is a supervised learning algorithm utilizing the ensemble
learning method to improve the predictive accuracy and control over-fitting.
The trees in random forests can run in parallel. It works by building many
decision trees during the training process and gives the individual trees’ mean
prediction (regression). These decision trees are aggregated into a random
forest ensemble that combines their input. Then, results are aggregated so
that they can outperform any individual decision tree’s output [62]. The
diagram of the random forest regression is shown in Figure 5.2.

5.1 | Performance Modelling 59

Figure 5.2.: The schematic diagram of the random forest regression.

5.2. Architecture

Figure 5.3 shows the overall architecture of performance modelling-based
I/O auto-tuning. First, I/O performance data is collected for a variety of
workloads/parameters, and then the I/O performance model IO_Predictor
is built on the collected data. The model is trained and evaluated in the
optimization module IO_Optimizer. All possible combinations of tunable
parameters (the results from the cartesian product of the values) are given
to the IO_Predictor as input. The IO_Predictor predicts how good I/O perfor-
mance can be achieved if the configuration parameters in each combination
are set. Then, the predictions are sorted from the highest, and the best-
performing configuration settings among the predicted I/O performances

60 5 | Performance Modelling Based I/O Auto-tuning

are selected for the given application and scale. The selected settings are
saved as a configuration file.

Figure 5.3.: Overall architecture of performance modelling-based I/O auto-
tuning.

The tuning module IO_Tuner takes the parameters suggested by the
IO_Predictor and dynamically passes them to the MPI-IO routines of the
application or benchmark in the PMPI wrapper. After executing I/O opera-
tions, performance results are used to refit the IO_Predictor with the dynamic
conditions of a parallel I/O system adaptively.

5.2.1. IO_Tracer: Monitoring I/O Activity

The IO_Tracer is implemented with one process tracing policy. Figure 5.4
shows its tracing process. The rank 0 is responsible for collecting tracing
results and storing them into its allocated local memory. Meanwhile, the
other MPI processes stay idle after contributing to the duration of their I/O
operations. As a result, all other MPI processes keep running while the rank

5.2 | Architecture 61

0 MPI process saves the tracing results into its local memory.

Figure 5.4.: Tracing process of the IO_Tracer.

After tracing the MPI writing operations, the IO_Tracer saves the I/O re-
lated information, such as operations’ duration, data transfer sizes, operation
bandwidths, names of MPI-IO subroutines, MPI info, objects, and so on, into
the allocated memory. As soon as the application calls the MPI_FINALIZE
subroutine, the rank 0 MPI process writes all tracing results into the log file
and finalizes the IO_Tracer.

5.2.2. IO_Predictor: Modelling I/O Performance

I collected a data set for the training phase with the tracing module IO_Tracer
from multiple runs in different problem sizes and settings of tunable config-
uration parameters. Then, I applied several regression methods to construct
a predictive performance model on the data set during the training phase.
Remarkably, the random forest algorithm gave successful prediction results
for such a non-linear relationship between parameters. The model built
is called IO_Predictor. The IO_Predictor predicts I/O performance for all
possible combinations of tunable parameters. It then sorts predictions and
selects the best-performing configuration settings for the given scale.
Figure 5.5 shows tracing and optimizing processes together. For imple-

menting the I/O performance model, I have collected the application log
files by IO_Tracer. These log files are transformed into CSV files and the
training data set is created. To model the IO_Predictor random forest algo-
rithm is used on the training data set. Mainly, configuration parameters are
considered the input variable (independent variable), and I/O bandwidth
or I/O time are considered output variables (dependent variables). The
IO_Predictor predicts the output variables from the input variables.

62 5 | Performance Modelling Based I/O Auto-tuning

Figure 5.5.: Tracing and optimizing processes.

Implementation of the model is described in the following flowchart (Fig-
ure 5.6).

Figure 5.6.: Implementation of the performance model.

A detailed description of Figure 5.6 is given below.

• Input the data set and perform preprocessing: I have used mainly

5.2 | Architecture 63

the previous two years’ data as an input from the year 2019 to 2021.
Data set is needed to preprocess before the training phase, such as
identifying and handling the missing values in order to ensure perfor-
mance.

• Separating the preprocessed data set into training and testing
data set: The train-test split procedure allows us to compare the per-
formance of machine learning algorithms for our predictive modelling
problem. Training data set is used in order to fit the machine learning
model. Testing data set is used to evaluate the fit machine learn-
ing model. For the IO_Predictor, the results are based on the split of
training (70%) and testing subsets (30%).

• Training the IO_Predictor using the training data set: To build the
IO_Predictor random forest algorithm is implemented on the training
data set. In the implementation of the IO_Predictor, there are some
important parameters:

– n_estimators: It indicates the number of trees employed in the
regression forest. It manages the number of trees to compose
and create various decision trees. In this study, it is assigned and
evaluated up to 100.

– criterion: It is a function to measure the quality of a split such
as "squared_error", "absolute_error", "poisson". In this study,
"squared_error" and "absolute_error" are evaluated.

– max_depth: It indicates the maximum depth of the tree, namely
the longest path between the leaf node and the root node. By
using the max_depth parameter, we can specify what depth we
want every tree in the random forest to grow. In this study, it is
assigned and evaluated up to 5.

• Result predicting on test data: Predicting is done on testing data at
first for evaluation of the model.

• Result comparison with the actual results: Here, mainly predicted
results and the actual results are compared.

64 5 | Performance Modelling Based I/O Auto-tuning

5.2.3. IO_Tuner: Setting I/O Parameters at Runtime

The IO_Tuner component is a parallel I/O tuning module that takes the
best-performing I/O parameters found by the IO_Predictor included in the
IO_Optimizer and then dynamically sets these parameters at different layers
of the I/O stack. Currently, the IO_Tuner works on the MPI-IO ROMIO library
and Lustre parallel file system parameters.

At first, the IO_Tuner reads the configuration file, including good configu-
ration settings found by the IO_Predictor. Then, as soon as I/O applications
call MPI-IO subroutines, the IO_Tuner is triggered to apply these configura-
tions before executing the I/O operation transparently. Finally, it passes the
intercepted MPI-IO functions of the application in the PMPI wrapper. The
good parameters are set at this stage, and then the original MPI-IO function
is called. In this way, auto-tuning can be done transparently to the users
without source code modification.

The previously found good configuration settings could be outdated and no
longer optimal. Sometimes users achieve better I/O performance with some
"brand new" configurations. After executing I/O operations, performance
results can be used to refit the IO_Predictor with the dynamic conditions of
a parallel I/O system adaptively for scientists and engineers to find out the
latest good configurations.

5.3. Implementation

5.3.1. Benchmarks

I chose two I/O benchmarks and a real molecular dynamics code to evaluate
performance modelling-based I/O auto-tuning approach: IOR, MPI-Tile-IO
and ls1 Mardyn. These represent different I/O write motifs with different
problem sizes.

• IOR [56]: The IOR (LLNL 2015) is an I/O benchmark developed at
Lawrence Livermore National Laboratory (LLNL). It is one of the main
HPC I/O benchmarks because it is highly configurable and supports

5.3 | Implementation 65

various APIs to simulate I/O load.
• MPI-Tile-IO [57]: The MPI-Tile-IO benchmark tests the I/O perfor-

mance in a real-world scenario. The purpose of the MPI-Tile-IO is to
test the performance of an underlying MPI-IO and file system imple-
mentation under a non-contiguous access workload. It tests how it is
performed when challenged with a dense 2D data layout.

• ls1 Mardyn [11]: ls1 Mardyn is a molecular dynamics simulation
program which is optimized for massively parallel execution on super-
computing architectures. It is a highly scalable code. In this study, it is
used for writing check-points in the different domain sizes to scale the
number of particles.

5.3.2. System setup

The experiments were conducted on the NEC Cluster platform (Vulcan) at
HLRS. Section 2.2 shows the technical details about the Vulcan. As for the
experimental Lustre file system, the default setup of Lustre striping con-
figuration is striping_factor=4 and striping_unit=1048576.
OpenMPI version is from version 4.0.3.

5.3.3. Parameter space

The α configuration parameters which are worked on are a number of cores,
problem size, and I/O pattern (independent or collective), while the ζ
configuration parameters include Lustre file system parameters (striping
size and striping count), MPI-IO parameters (whether or not to perform
collective I/O). [8], [10], [17] and [19] show that these parameters have
an essential effect on the parallel I/O performance.
The optimization criteria φ is the I/O bandwidth or I/O time. In the

modelling approach, the aim is to understand the relationship betweenφ and
the parameters (α, ζ). For a given set of input parameter values in (α, ζ), the
function f should give a prediction. If it provides distributional information
(such as standard deviation), the variability in φ and the ω parameters can

66 5 | Performance Modelling Based I/O Auto-tuning

also be captured. The ω parameters, such as other processes’ load on the
file system, are also potentially important but not easily observable. Thus
these parameters have been ignored for simplicity in this study.
For the training process of the I/O performance model, I selected a few

meaningful parallel I/O parameters for parallel I/O stack layers based on
previous research efforts and experience. I have chosen most of the pa-
rameter values to be powers-of-two except for some parallel file system
parameters. To avoid potential conflicts between concurrently running I/O
applications, the maximum striping_factor was set as 16. Since large
values of striping_unitmay result in longer lock hold times, the values
of striping_unit were selected from 1 MB to 16 MB with powers-of-
two. As for the collective I/O operations, values are defined as automatic,
disable and enable. Table 5.1 shows the different settings that comprised
the set of training configurations in the set of experiments. This leads to 5 x
5 x 3 = 75 configurations used for training the model at each scale from 24
to 2400 for each I/O pattern.
A user can update the parameter space by simply modifying the param-

eter list as needed. Adding new parameters to the search needs simple
modifications to IO_Tuner.

Table 5.1.: Configurations’ searching scope for training process
Name Value Quantity
number of cores 24; 120; 240; 1200; 2400 5
striping_factor 1; 2; 4; 8; 16 5
striping_unit 1 MB; 2 MB; 4 MB; 8 MB; 16 MB 5
romio_cb_write automatic; disable; enable 3
access pattern independent; collective 2

The sum of different combinations of configuration settings listed in Table
5.1 is 375 (5 × 5 × 3 × 5) for independent or collective I/O separately.

5.3 | Implementation 67

5.3.4. Scale and data set sizes

Experimentally, I ran tests using different file sizes and different core counts
on Vulcan. I collected I/O performance data at different concurrencies,
24; 120; 240, 1,200, and 2,400 cores. I consider models that could be
employed in tuning for multiple different file sizes simultaneously. I defined
training sets depending on the core counts and file sizes to use HPC resources
effectively.
The data transfer sizes were chosen from 100 bytes to 2,000,000,00

bytes (56 different sizes) for training at 24; 120, and 240 processes. I have
chosen to decrease the size of the training set as the core counts (and hence
file sizes) increase because of the corresponding increase in computational
resources required. Therefore, the data transfer sizes were chosen from 100
bytes to 61,440,000 bytes (48 different sizes) for training at 1200 and 2400
processes.

The training set for each of the experiments and their file sizes are shown
in Table 5.2. This training process is performed separately for independent
and collective access patterns.

Table 5.2.: Breakdown of training set for the I/O model.
of Cores # of Sizes # of Configurations Training Set Size
24 56 75 4200
120 56 75 4200
240 56 75 4200
1200 48 75 3600
2400 48 75 3600

5.3.5. Log files and creating data set

The I/O performance data set was obtained from the benchmark runs. De-
velopers typically run their application code on a system for an extended
period. They also play around with many different experiments by applying
various configuration settings and other parameters. They typically save
their runs and their results in a database. Thus, in some cases, log files from

68 5 | Performance Modelling Based I/O Auto-tuning

previous runs can also be used in training phase.
A simple log file processing utility is implemented in this study. It converts

log files generated by the tracing module IO_Tracer to CSV files. Thus, system
administrators or engineers can easily process the files with their preferred
tools, such as Microsoft Office, to analyze the MPI-IO operations. This part
can be improved with a visualization utility in future work. I/O behaviours
become easier to interpret for system administrators or engineers in this
way.

5.3 | Implementation 69

Ch
ap

te
r 6

Results

6.1. I/O Variability on Single Node

I begin by investigating the issue of building a model on a single node for
write bandwidths when Lustre and MPI-IO settings are changed. In order
to focus on writing a single shared file on the Lustre file system, I use a
self-implemented program that uses MPI-IO (Listing A.2). Two different
programs are implemented to separately test collective I/O and independent
I/O access patterns.

The data transfer size is fixed to about 20 MB per process (20 * 24 = 480
MB file size for a single node). Table 5.1 shows the different settings that
comprised the set of training configurations in the set of experiments. This
leads to 5 x 5 x 3 = 75 configurations used to train the model at each scale
and the access pattern.
One of my objectives is to analyze write bandwidth variability in simple

settings for a single node. Therefore, I tested all 75 training configurations in
three different experiments (each taking place on different days of a week)
to increase the possibility of exposure to different levels of interference from
the I/O activity of other jobs running on a shared system such as Vulcan.

71

Figure 6.1 shows the 225 write bandwidths obtained as part of these three
experiments. The 75 training configurations are sorted by the minimum
write bandwidth across the three experiments. Variability within a particular
configuration is illustrated by a vertical line connecting the three write
bandwidths for that experiment. It can be seen that, even in this single-node
setting, interference/noise can have a significant impact on performance.

Figure 6.1.: I/O performance variability and effect of interference on a single
node writing to a file.

This variability can significantly complicate the modelling process since
it necessitates a more careful definition of the modelling objectives prior
to performing experiments. For example, if one wishes to model “average”
I/O performance, then experimental setups would need sufficient samples
across different system states/sources of the variability. Furthermore, since
this variance is nonstationary (having different magnitudes from configura-
tion to configuration), accurately modelling performance across the entire
configuration space can be a daunting task, requiring one to also model the
variability over the configuration space.

In the context of this study, I am looking to identify sets of high-performing
configurations (that are not already in the training set) for subsequent

72 6 | Results

evaluation. Figure 6.1 shows, for example, that it is observed that the highest-
performing configurations tend to be less sensitive to noise; reordering the
configurations based on the mean or median of the three experiments has
little effect on the constituents of the highest-performing quartile. As a result,
I have decided to use the minimum bandwidth of each of the experiments
in building performance models.

6.2. I/O Variability on Multiple Nodes

Having observed that I/O performance variability when one node writes
to one file, I want to investigate when writing to shared files from multiple
nodes. I use my micro-benchmark with 50 nodes and file size of 20 GB.

I performed three different experiments on each of the 75 configurations,
with the training data is again taken as the minimum write bandwidth over
these runs Figure 6.2.

Figure 6.2.: I/O performance variability and effect of interference on multi-
ple nodes writing to a file.

Note that the empirical data suggests that the variability is smaller for

6.2 | I/O Variability on Multiple Nodes 73

the configurations with lower write bandwidths. Furthermore, although the
models considered in this study do not directly account for the variability, I
observe that the realized predictions tend to yield more accurate predictions
for those configurations where little variability is seen.

6.3. Training Process

I applied several non-linear regression methods to construct a predictive I/O
performance model on the training data set. Table 6.1 gives a comparison
of three popular algorithms; support vector machines, multi-layer perceptron
and random forest over correlation coefficient, mean absolute percentage
error, root mean square percentage error, time taken to build model and
time taken to test model. Remarkably, the random forest regression model
gave successful prediction results for such a non-linear relationship between
parameters in both accuracy and modelling time.

Table 6.1.: Comparison of regression algorithms on I/O performance predic-
tion.

Support vector
machine

Multi-layer
perceptron

Random
forest

Correlation coefficient 0.653 0.942 0.95
Mean absolute percentage error 139.357 49.957 5.231
Root mean square percentage error 999.954 357.882 29.591
Time taken to build model 998.37 seconds 4.25 seconds 2.27 seconds
Time taken to test model 0.03 seconds 0.01 second 0.31 seconds

The training process used a self-implementedMPI program to test different
combinations of configuration settings. The training set for each of the scales
and file sizes are shown in Table 5.2. For example, the data transfer sizes
were chosen from 100 bytes to 2,000,000,00 bytes (56 different sizes)
for training at 24 processes; therefore, 56 x 75 = 4200 data of possible
combinations in the set. This training process was performed separately for
independent and collective access patterns at each scale.
I collected a training data set with the tracing module IO_Tracer from

runs in multiple problem sizes and scales (Section 5.3.4). For example, the

74 6 | Results

self-implemented MPI program (Listing A.2) for the training process created
3,600 (48 × 75) files for a 2400PE experiment and deleted the training
files after closing them. Therefore, the evaluation of the training process
only occupied 0.31 TB of storage space for the most extensive file created by
2,400 processes.

Running the training process once for this search space consumed ≈ 37.8
hours of wall time in total. However, the computing resource consumption
for training specific applications was very little compared to the saved core
hours achieved.
I ran the IO_Predictor for a 70/30 train/test split to predict the write

bandwidth. The model it took around 4.5 seconds to train for a single node.
The resulting model is then evaluated on the testing subset. The primary
objective is to keep these predicted values closer to actual values. Figure
6.3 shows the correlation between actual values of write bandwidths and
predicted values of write bandwidths for a 30/70 split of train/test data
(training (70%) and testing (30%)) by using scatter plots. The ideal graph
should be a dashed black line. The plots are well-centred around the black
dotted line (ideal case with 100% accuracy).
Mean absolute error is the sum of all absolute/positive errors. So we

add the positive values of all errors to find their mean. This is the sum of
absolute differences between actual (observed) and predicted values. It does
not consider the direction, namely, positive or negative. Mean square error
is always positive, and if a value is closer to 0 or a lower value is better.
The square root of mean square error yields root means square error. It is
the standard deviation of the error (residual error). It shows the spread of
the residual errors. It is always positive, and a lower value indicates better
performance. The ideal value would be 0, but it is never achieved. The
effect of each error on root mean square error is directly proportional to the
squared error; therefore, root mean square error is sensitive to outliers and
can exaggerate results if there are outliers in the data set. It is observed that
higher root mean square error for higher core counts because of the high
I/O performance variability. Table 6.2 shows performance modelling times
and validation results.

6.3 | Training Process 75

(a) Single node

(b) Multiple nodes - 50 nodes

(c) Multiple nodes - 100 nodes

Figure 6.3.: Correlation between actual (observed) and predicted write band-
widths on training (70%) and testing subsets (30%).

76 6 | Results

Table 6.2.: The IO_Predictor performance modelling times and validation
results.

1 node 50 nodes 100 nodes
Time taken to build model 4.5 seconds 2.61 seconds 2.47 seconds
Time taken to test model on test split 0.71 seconds 0.39 seconds 0.29 seconds
Correlation coefficient 0.9758 0.9526 0.95
Mean absolute percentage error 4.2186 3.3096 5.2312
Root mean square percentage error 15.1091 30.204 29.5911
Mean absolute error 78.2782 832.1251 980.2587
Root mean squared error 140.708 1604.4709 2349.391

As a result, the training process on a single node (24PE) managed to find
out 56 different configuration sets, and 48 different configuration sets on
100 nodes (2400PE) with acceptable accuracy and error values.

Table 6.3 lists the most of the good configurations found based on the
different file size groups. Listing A.3 shows how these configurations are
stored in the configuration file. Maximum and minimum data transaction
sizes of file size groups are also provided in Table 6.3.

6.3 | Training Process 77

Table 6.3.: Found good configurations for different file size groups.
group Min. Size (B) Max. Size (B) striping factor striping unit collective I/O
1 100 256 4 8 MB automatic
2 256 384 1 2 MB automatic
3 384 512 4 8 MB enable
4 512 640 8 4 MB automatic
5 640 768 4 1 MB enable
6 768 896 4 4 MB automatic
7 896 1024 4 1 MB enable
8 1024 2048 4 4 MB automatic
9 2048 3072 4 1 MB enable
10 3072 4096 4 8 MB enable
11 4096 5120 4 1 MB enable
12 5120 6144 4 1 MB enable
13 6144 7168 4 1 MB enable
14 7168 8192 4 1 MB enable
15 8192 9216 6 1 MB automatic
16 9216 10240 4 1 MB enable
17 10240 20480 8 1 MB enable
18 20480 30720 12 1 MB automatic
19 30720 40960 12 1 MB automatic
20 40960 51200 12 1 MB automatic
21 51200 61440 8 2 MB automatic
22 61440 71680 8 2 MB automatic
23 71680 81920 16 2 MB automatic
24 81920 92160 12 2 MB automatic
25 92160 102400 12 1 MB automatic
26 102400 204800 16 1 MB automatic
27 204800 307200 12 8 MB automatic
28 307200 409600 16 2 MB enable
29 409600 512000 16 2 MB automatic
30 512000 614400 16 1 MB enable
31 614400 716800 16 2 MB automatic
32 716800 819200 16 2 MB automatic
33 819200 921600 16 1 MB automatic
34 921600 1024000 16 2 MB automatic
35 1024000 2048000 16 1 MB automatic
36 2048000 3072000 16 1 MB automatic
37 3072000 4096000 16 1 MB automatic
38 4096000 5120000 16 1 MB automatic
39 5120000 6144000 16 2 MB automatic
40 6144000 7168000 16 1 MB enable
41 7168000 8192000 16 2 MB enable
42 8192000 9216000 16 1 MB enable
43 9216000 10240000 16 8 MB automatic
44 10240000 20480000 16 2 MB automatic
45 20480000 30720000 16 1 MB automatic
46 30720000 40960000 16 8 MB automatic
47 40960000 51200000 16 4 MB automatic
48 51200000 61440000 16 1 MB disable
49 61440000 71680000 8 4 MB disable
50 71680000 81920000 16 1 MB disable
51 81920000 92160000 16 2 MB disable
52 92160000 102400000 12 8 MB disable

78 6 | Results

6.4. Evaluations: I/O Benchmarks

In this section, the training results were evaluated using two I/O benchmarks,
the IOR and the MPI-Tile-IO on Vulcan (Section 5.3.2). The IOR benchmark
was used to simulate collectively writing a single-shared file with 1 MB,
32 MB, and 64 MB data block sizes. On the other hand, the MPI-Tile-IO
benchmark simulated collectively writing a single-shared file with 4 x 4 tiles,
8 x 8 tiles, 16 x 16 tiles, and each tile is 256 x 256 elements, 4096 bytes per
element. The experiments have been repeated multiple times, and average
values are presented.

Proper configurations change depending on how many bytes of data are
written by each MPI-IO process. However, it would be too expensive to
find out a good configuration for every data transfer size as suggested in
[8]. Instead, different data transfer sizes which may have similar good
configurations can be grouped into file indexes. For example, 56 data
transfer size groups in the prototype are defined from 100 B to 2,000,000,00
B (195.31 MB), and any data transfer size larger than 195.31 MB belongs
to the 56th file size group. The model’s optimal configurations of unknown
data sizes (untrained explicitly) were automatically selected based on the
number of processes and data size group.

The default setup of Lustre striping configuration on the experimental file
system was striping_factor=4 and striping_unit=1048576.
The bottleneck of one Lustre OST for collective writing operation was quickly
reached. The found good configurations in the training phase were imple-
mented here for accelerating MPI applications.

Figure 6.4 presents the performance improvements obtained for the IOR
benchmark by collectively writing a single-shared file with 1 MB, 32 MB,
and 64 MB data block sizes, respectively. Y-axis represents I/O bandwidth in
MBps, and the x-axis represents transfer sizes (in MB). The scales of the I/O
bandwidth axes are different in the plots. The improvement kept rising when
the benchmarks scaled out with the found good configurations—for (240PE),
writing performance increased by collective buffering and the larger size of
Lustre striping_unit. This change brought about a 2.34x improvement

6.4 | Evaluations: I/O Benchmarks 79

in I/O performance (240PE). The writing performance improved for the large
jobs such as (1200PE) and (2400PE) by disabling the collective buffering,
increasing the Lustre striping_factor and Lustre striping_unit.
As a result, 5.85x and 18.95x improvements over the default settings are
achieved for (1200PE) and (2400PE), respectively. Disabling the collec-
tive buffering to avoid the inter-processes communication of collective I/O
algorithm like two-phase I/O (Section 2.4.3.2) improved the I/O perfor-
mance. The training process showed that disabling the collective buffering
accelerated large-scaled write operations collectively.

Figure 6.5 presents the performance improvements obtained for the MPI-
Tile-IO benchmark by collectively writing a single-shared file with 4 x 4
tiles, 8 x 8 tiles, and 16 x 16 tiles; each tile is 256 x 256 elements. 4096
bytes, 8092 bytes, and 16184 bytes per element were selected, respectively.
Y-axis represents I/O bandwidth in MBps, and the x-axis represents element
sizes of core times the core number of tiles (in KB). The scales of the I/O
bandwidth axes are different in the plots. The improvement kept rising
when the benchmarks scaled out, even though the number of Lustre OSTs
did not change since 64PE—for (16PE), writing performance increased
by collective buffering and the larger size of Lustre striping_unit
about 1.07x improvement. The writing performance increased for the other
larger jobs such as (64PE) and (256PE) by disabling the collective buffering
and increasing Lustre striping_factor. As a result, 1.61x and 5.07x
improvements over the default settings are achieved for (64PE) and (256PE),
respectively.
Table 6.4 shows the I/O performances of the default and the optimized

experiments for three use cases (in different data sizes) presented in Figure
6.4 and Figure 6.5. Table 6.4 also shows the speedup that the auto-tuned
settings achieved over the default settings for each experiment.

The optimized results were obtained in all experiments by the proper con-
figurations promising good performance found by performance-modelling
based I/O auto-tuning system. Using the IO_Predictor model, an increase
in I/O bandwidth of up to 18.9×over the default parameters for the IOR
benchmark and 5.1×over the default parameters bandwidth for the MPI-

80 6 | Results

Table 6.4.: I/O speedups of applications with optimized parameters over
default parameters.

Application IOR (MB/s) MPI-Tile-IO (MB/s)
#Cores 240 1200 2400 16 64 256

Use case 1
Default 913.89 1659.64 1483.18 854.71 2400.53 7530.95
Tuned 1155.89 2440.42 3654.74 1012.69 3099.70 10078.97

Speedup 1.26 1.47 2.46 1.18 1.29 1.33

Use case 2
Default 6238.56 6400.08 2849.65 875.50 1974.46 6138.91
Tuned 13067.73 25121.44 41475.43 989.94 2792.39 10384.21

Speedup 2.09 3.93 14.55 1.13 1.41 1.69

Use case 3
Default 4645.64 6254.05 2162.98 726.43 1759.32 2122.02
Tuned 10866.29 36557.57 40980.18 783.73 2833.29 10771.1

Speedup 2.34 5.85 18.95 1.07 1.61 5.07

Table 6.5.: Found some good configurations for the IOR and the MPI-Tile-IO
benchmarks.

Application #Cores striping factor striping unit collective I/O

IOR
240 4 4194304 automatic

1200 16 16777216 disable
2400 16 16777216 disable

MPI-Tile-IO
16 4 4194304 automatic
64 16 1048576 disable

256 16 4194304 disable

Tile-IO benchmark were achieved. The found good configurations of the
most successful cases in experimental results for the IOR and the MPI-Tile-IO
benchmarks are given in Table 6.5 as an example. I note bigger improve-
ments for larger transfer sizes because tuning the default parameters matter
more for large data transfers.

Note that only a subset of the combinations was run due to limited access
to the platform.

6.4 | Evaluations: I/O Benchmarks 81

(a) 240 cores

(b) 1200 cores

(c) 2400 cores

Figure 6.4.: Default vs. optimized write bandwidth on the IOR for various
transfer sizes.

82 6 | Results

(a) 16 cores

(b) 64 cores

(c) 256 cores

Figure 6.5.: Default vs. optimized write bandwidth on the MPI-Tile-IO for
various transfer sizes.

6.4 | Evaluations: I/O Benchmarks 83

6.5. Engineering Use Case : ls1 mardyn

Today, molecular dynamics simulations are essential in many areas of re-
search and industry, including biochemistry, solid-state physics, chemical
engineering, etc. The increasing computing power of supercomputers allows
them to handle increasingly complex problems. It enables more sophisticated
molecular models with an increasing number of previously computationally
intensive particles.
A molecular dynamics simulation code ls1 mardyn1 is a highly scalable

code that is optimized for parallel execution on supercomputing architectures
aiming at investigating challenging scenarios. In the regarded systems, the
spatial distribution of the molecules may be heterogeneous and subject to
rapid, unpredictable differences. This is imaged by the algorithms and data
structures as well as a highly modular software engineering method [32].
The source code of ls1 mardyn is made publicly available as free software
under a two-clause BSD license.

The following sections will show how to analyze the I/O bottleneck in the
ls1 mardyn, describe how to use the proposed performance-modelling based
auto-tuning solution, and give the optimization results achieved.

6.5.1. Analyzing Application

There are different bottlenecks in the ls1 mardyn. As seen, communication
and I/O are the main problems for limited scalability. The I/O part is a
significant point for this study, e.g., used for writing checkpoints. After
examining the number of writing operations indicated by the tracing log
files, I realized that the checkpointing process creates a bottleneck.

ls1 mardyn MPI checkpoint writer writes checkpoint files that can be used
to continue the simulation using MPI-IO. A self-programmed data processing
application (written in C++) uses the MPI-IO library to process the results.
The application uses an MPI parallel programming model, while the I/O
requests use MPI-IO.

1https://www.ls1-mardyn.de

84 6 | Results

Users have been complaining about slow I/O performance, particularly
during checkpointing operations. After speaking with project users, I dis-
covered that they use the default MPI info setup, striping_factor=4,
striping_unit=1048576 and let the system decide whether to disable
or enable collective buffering for writing operations. On the other hand,
when analyzing application codes, another critical parameter caught my
attention to optimize: ParticlesBufferSizeMPI, which is the buffer
size for writing particles per rank.
ls1 mardyn plugin "MPICheckpointWriter" gave the performance results

as shown in Figure 6.6 using default configurations without setting the pa-
rameter of ParticlesBufferSizeMPI. Since the output of the plugin
MPICheckPointer is I/O time in seconds, the results will be displayed over
time for clarity.

Figure 6.6.: ls1 mardyn performance output.

The case analyzed for the ls1 mardyn writes 1.9 GB checkpoint files, with
1000 time steps and 100 write frequency. It writes the data starting at the
location specified by the individual file pointer (blocking, non-collective)
by calling the MPI_File_write subroutine. Another subroutine is the
MPI_File_write_at that writes a file at an explicitly specified offset
(blocking, non-collective). In the first step, I chose one of the found good
configurations in a similar case from the evaluation’s training process for
writing operations to set these MPI info objects as below.

• striping_factor = 16
• striping_unit = 4194304

6.5 | Engineering Use Case : ls1 mardyn 85

• romio_cb_unit = automatic

For all cases, I set the application buffer size parameter as below.

• ParticlesBufferSizeMPI=33554432

According to the results, playing with configuration parameters was suc-
cessful in reducing the I/O time of a test process by approximately 71.92%
for (240PE), as seen in Figure 6.7. Note that again, since the output of the
plugin MPICheckPointer is I/O time in seconds, the results will be displayed
over time for clarity.

Figure 6.7.: Default setup vs. optimizing for ls1 mardyn checkpointing time.

Then, we decided to deploy a performance-modelling based I/O auto-
tuning system for ls1 mardyn to search configuration space. Furthermore, the
application parameter ParticlesBufferSizeMPI was also included
in the performance modelling process that enables us to find out a good
value for the buffer size to be used in the application.

6.5.2. Training

First, the data transfer size of each MPI process must be known to deter-
mine the good configurations. To obtain this information, the application is
executed with "tracing mode" (Section 3.4).

The IO_Tracer generated a log file of 36K, including the tracing results of
MPI-IO subroutines in ls1 mardyn. Besides the configuration parameters,

86 6 | Results

the IO_Tracer logs the time stamp when the MPI-IO operations are called.
The timestamp information gives a timeline of ls1 mardyn I/O requests. This
information can be used in performance modelling for analyzing log file
searching range. To understand the I/O behaviour of the application, the
IO_Tracer saves the aggregated data transfer size for all I/O processes in bytes
(bytes) and the duration of the slowest process in seconds (duration). Based
on bytes and duration, the I/O bandwidth (bandwidth) is also calculated and
recorded for each checkpoint file.
The log file in JavaScript Object Notation (JSON)-like format has been

transformed into a CSV file with the help of the file processing utility (Section
5.3.5). Table 6.6 presents a fragment of tracing results from ls1 mardyn log
file for 1,200 processes. According to this, it has extracted 6 data transfer
sizes for writing. Six data transfer sizes, 3 (3,600 ÷ 1,200), 4 (4,800 ÷
1,200), 7 (8,400 ÷ 1,200), 8 (9,600 ÷ 1,200), 20 (24,000 ÷ 1,200) and
1,607,876 (1,929,451,200 ÷ 1,200) bytes, are assigned in the 1st and the
35th file size groups. In training process three of them; 8 (9,600÷ 1,200), 20
(24,000 ÷ 1,200) and 1,607,876 (1,929,451,200 ÷ 1,200) bytes have been
used. It takes about 3.72 seconds for the MPI_File_write subroutine to
finish writing 1.9 GB (1,929,451,200 B) data with the given MPI info objects
as default. This example shows that the I/O performance of writing 1.9 GB
data striped over 4 OSTs with 1 MB striping unit reaches about 494.828
MB/S. Thus, understanding the I/O behaviour of the ls1 mardyn has become
more effortless by using IO_Tracer.

Table 6.7 presents configurations’ searching scope used in training process
ls1 mardyn. Besides the previously mentioned factors, MPI info objects are
chosen based on the experience of the evaluations in Section 6.4. The
maximal number of striping_factor was set to 16, considering the
I/O performance and the Lustre OSTs’ resource competition. 16 MB was
chosen for maximal stripe_size because of the evaluations in Section
6.4.

Since no training process was done with independent I/O operations, I
implemented a self-implemented program that uses MPI-IO, an independent
version of the code given in (Listing A.2). Executing the training process

6.5 | Engineering Use Case : ls1 mardyn 87

Table 6.6.: A fragment of a CSV file obtained after tracing process on ls1
mardyn.

group time_stamp operation bytes duration bandwidth str_factor str_unit romio_cb_write
1 18.717881 MPI_File_write 24000 0.048611 0.471 4 1048576 automatic
1 18.717947 MPI_File_write 4800 5E-06 917.914 4 1048576 automatic
1 18.718002 MPI_File_write 9600 3E-06 3452.215 4 1048576 automatic
1 18.718037 MPI_File_write 8400 3E-06 3178.914 4 1048576 automatic
1 18.718071 MPI_File_write 3600 2E-06 1590.930 4 1048576 automatic
1 18.718112 MPI_File_write 9600 2E-06 4172.868 4 1048576 automatic
1 19.076904 MPI_File_write_at 9600 0.357778 0.026 4 1048576 automatic
1 19.116025 MPI_File_write_at 9600 0.039074 0.234 4 1048576 automatic
1 19.166615 MPI_File_write_at 9600 0.050565 0.181 4 1048576 automatic
1 19.31351 MPI_File_write_at 9600 0.146863 0.062 4 1048576 automatic
1 19.358743 MPI_File_write_at 9600 0.045212 0.203 4 1048576 automatic
1 19.456525 MPI_File_write_at 9600 0.097745 0.094 4 1048576 automatic
1 19.506593 MPI_File_write_at 9600 0.050042 0.183 4 1048576 automatic
1 19.627125 MPI_File_write_at 9600 0.120202 0.077 4 1048576 automatic
35 23.351185 MPI_File_write 1929451200 3.718603 494.828 4 1048576 automatic

Table 6.7.: Configurations’ searching scope for training process ls1 mardyn.
Name Value Quantity
number of processes 1200 1
data transfer size (bytes) 8; 20; 1,607,876 3
striping_factor 1; 2; 4; 8; 16 5
striping_unit 1 MB; 2 MB; 4 MB; 8 MB; 16 MB 5
romio_cb_write automatic; disable; enable 3
particles’ buffer size 1; 4; 8; 16; 32 5

took about 67,8 seconds (about 22,6 core hours) for each case and generated
1125 files for write (3×5×5×3×5= 1125 files) operations in total. Table
6.8 lists the optimal configurations found by the training utility.

Table 6.8.: Found optimal configurations after training process ls1 mardyn.
data size (B) striping factor striping unit collective write particles’ buffer size

9600 2 2097152 enable 16777216
24000 2 2097152 enable 16777216

1929451200 16 2097152 disable 33554432

6.5.3. Optimization and Results

The training process results presented that disabling the collective buffer-
ing accelerated large-scaled I/O requests writing large data collectively. I

88 6 | Results

investigated the two-phase I/O algorithm again, and realized that it aimed
to optimize the I/O requests for small data transfer sizes, which was also
confirmed by the training process. For small data transfer sizes, better per-
formances were achieved by "enabling" (enable) or "letting the system decide
to enable or disable" (automatic) the collective buffering. For large data
transfer sizes, better performances were achieved by "disabling" (disable)
the collective buffering when applications scaled out.
Default vs optimized write I/O times on ls1 mardyn for various transfer

sizes running on 240 cores and 1200 cores of Vulcan is given in Figure 6.8.
Y-axis represents I/O time in seconds, and the x-axis represents different
numbers of molecules. Lower I/O time is better. The scales of the I/O time
axes are different in the plots. Note that since the output of the plugin
MPICheckPointWriter is I/O time in seconds, the results are displayed over
time for clarity.
The optimization effects are represented with the output of the plugin

MPICheckPointWriter is I/O time in seconds for the ls1 mardyn process. It
took the original setup 3774,91 seconds to complete checkpointing with de-
fault configurations and without setting ParticlesBufferSizeMPI.
Only adding the parameter ParticlesBufferSizeMPI to the mod-
elling has successfully accelerated the process enormously. Writing target
files has managed to accelerate ls1 mardyn with the found good configu-
ration settings including ParticlesBufferSizeMPI. Optimized ls1
mardyn took about 126.4 seconds for the same case in this way.

6.5 | Engineering Use Case : ls1 mardyn 89

(a) 240 cores

(b) 1200 cores

Figure 6.8.: Default vs. optimized write times for checkpointing on ls1 Mar-
dyn for various data sizes.

In all experiments, the optimized results were obtained by the configura-
tion promising the best performance predicted by the IO_Predictor. Using
the IO_Predictor for performance modelling on parameters such as applica-
tion (ParticlesBufferSizeMPI), Lustre (striping_factor and
striping_unit) and MPI-IO (romio_cb_write), the ls1 mardyn

90 6 | Results

I/O time got to 32×improvements compared to the default I/O time.

6.5.4. Conclusion

The performance modelling-based auto-tuning system has been shown to be
capable of accelerating engineering applications in a production environment
in addition to being an I/O monitoring and analyzing tool. In this use case,
I used a self-implemented training utility written in C and implemented it
with the MPI-IO library to successfully find the good configuration settings
for ls1 mardyn, a parallel MPI-IO application written in C++. The I/O time
is used here as the performance criterion. Setting the found configurations
has saved computing resources each time ls1 mardyn run. Creating files
using the recommended setups would improve the reading performance of
the following processes.

6.5 | Engineering Use Case : ls1 mardyn 91

Ch
ap

te
r 7

Conclusion and Future
Work

In this dissertation, I have presented and evaluated two different I/O auto-
tuning approaches to auto-tune the parallel I/O stack parameters in engineer-
ing applications; heuristic search-based and performance modelling-based
auto-tuning. These approaches can be understood by users with little knowl-
edge of parallel I/O without any post-processing step. They are implemented
upon the MPI-IO library, widely used in modern HPC systems.

Following the current MPI standard allows compatibility with MPI-based
scientific and engineering applications while being portable to different
HPC platforms deploying different MPI implementations. Evaluating ap-
proaches with widely used I/O benchmarks (the IOR and the MPI-Tile-IO)
has proved compatibility, scalability, and portability. Tracing utility provides
less detailed I/O tracing information than Darshan dose. Therefore, engi-
neers or scientists can easily understand the tracing results without any
post-processing utility. Furthermore, its intuitive log files present enough
I/O tuning information for the users with little knowledge of parallel I/O to

93

carry on the analysis and optimizations.
I presented an I/O performance model; the IO_Predictor to estimate I/O

performance based on the results of the previous runs. It achieves I/O perfor-
mance improvements for write performance in the popular I/O benchmarks
and a real molecular dynamics code on Vulcan. Thereby, the training time
to find the best parameters is drastically reduced from hours (application-
dependent) for a naïve strategy to only several seconds(data-dependent).
This is an enormous improvement in training time over past models for
auto-tuning. Furthermore, it increases I/O bandwidth by a factor of up to
18 over the default parameters for collective I/O in the IOR and a factor of
up to 5 for the non-contiguous write in the MPI-Tile-IO. The ls1 mardyn I/O
time got to 32×improvements compared to the default I/O time. Thus, I
demonstrate that this approach can indeed be helpful for the I/O tuning of
parallel applications in HPC. Furthermore, the model can be trained with
negligible effort for any benchmark or I/O application.

The IO_Predictor uses random forest regression and obtains less than 10%
median prediction errors for most cases. Looking at the parameters of the
random forest regression algorithm, for example, the value of the depth of
the tree can be increased, and accuracy can be higher. However, it seems the
model is subject to overfitting in this case. A more comprehensive training
data set can give better prediction results. My future efforts will further
explore more accurate model generations. I plan to feed the IO_Predictor
with more input data in the future to learn in case of various applications
comprehensively. Furthermore, this work can be extended to different data
layouts and I/O libraries; such as OMPIO in order to cover more applications.

The parameters discussed are system-dependent, but new parameters can
be easily integrated into the configuration files. With a fast and straightfor-
ward training utility, searching for new suitable configurations on another
HPC platform allows covering more applications and more HPC platforms.
Moreover, with the help of statistic utility and log files, scientists and engi-
neers can analyze the I/O behaviours of their applications easily.

Future efforts will further explore more accurate configuration parameters
and statistical methods representations. In future work, the auto-tuning

94 7 | Conclusion and Future Work

framework will be tested on engineering applications in different professional
areas to show usability.

6.5 | Engineering Use Case : ls1 mardyn 95

Ap
pe

nd
ix A

Code and File Segments

2 int MPI_File_write_all(MPI_File fh, const void *buf, int count

,

MPI_Datatype datatype, MPI_Status *status) {

4 int ret;

double time_stamp_1, time_stamp_2;

6

if (running_mode == OPTIMIZE|| running_mode ==

OPTIMIZE_TRACE) {

8 MPI_Info info;

PMPI_File_get_info(fh, &info);

10 set_mpi_info_for_write(info, count, datatype,

mpi_rank_size);

PMPI_File_set_info(fh, info);

12

MPI_Offset disp;

14 MPI_Datatype etype;

MPI_Datatype filetype;

16 char datarep[32];

int rc = 0;

18 rc = PMPI_File_get_view(fh, &disp, &etype, &filetype,

datarep);

97

if (rc == 0) {

20 PMPI_File_set_view(fh, disp, etype, filetype, datarep,

info);

}

22 }

24 // real MPI function call

__real_PMPI_File_write_all = dlsym(RTLD_NEXT, "

PMPI_File_write_all");

26 time_stamp_1 = PMPI_Wtime();

ret = __real_PMPI_File_write_all(fh, buf, count, datatype,

status);

28 time_stamp_2 = PMPI_Wtime();

30 if (ret != MPI_SUCCESS) {

fprintf(stderr, "PMPI function call with MPI error number:

%d\n", ret);

32 return ret;

}

34

double write_time = time_stamp_2 - time_stamp_1,

longest_write_time;

36 PMPI_Allreduce(&write_time, &longest_write_time, 1,

MPI_DOUBLE, MPI_MAX, mpi_comm);

38 if (rank == MASTER_RANK) {

ret = record_IO_info(mpi_comm, info, count, datatype,

40 mpi_rank_size, "MPI_File_write_all",

longest_write_time);

}

42 return ret;

}

Listing A.1: Code segment for MPI_File_write_all() wrapper.

2 int train_collective_write(char *file_name, int local_size,

int offset, int my_rank, MPI_Info info) {

MPI_File fh;

4 int *local_array;

int i, ret;

98 A | Code and File Segments

6 ret = MPI_File_delete(file_name, MPI_INFO_NULL);

local_array = (int*) malloc((size_t) (local_size * sizeof(

int)));

8 if (local_array == NULL) {

return -1;

10 }

for (i = 0; i < local_size; i++) {

12 local_array[i] = offset + i;

}

14 ret = MPI_File_open(MPI_COMM_WORLD, file_name,

MPI_MODE_CREATE | MPI_MODE_WRONLY, info, &fh);

if (ret != MPI_SUCCESS) {

16 fprintf(stderr, "Could not open training file\n");

MPI_Abort(MPI_COMM_WORLD, ret);

18 }

ret = MPI_File_set_view(fh, my_rank * (MPI_Offset)

local_size * sizeof(int), MPI_INT, MPI_INT, "native",

info);

20 if (ret != MPI_SUCCESS) {

fprintf(stderr, "Could not set view\n");

22 MPI_Abort(MPI_COMM_WORLD, ret);

}

24 ret = MPI_File_write_all(fh, local_array, local_size,

MPI_INT, MPI_STATUS_IGNORE);

if (ret != MPI_SUCCESS) {

26 fprintf(stderr, "Could not write training file\n");

MPI_Abort(MPI_COMM_WORLD, ret);

28 }

ret = MPI_File_close(&fh);

30 if (ret != MPI_SUCCESS) {

fprintf(stderr, "Could not close training file\n");

32 MPI_Abort(MPI_COMM_WORLD, ret);

}

34 free(local_array);

return ret;

Listing A.2: Self-implemented training program for collective writing.

1

{"group":6,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

6.5 | Engineering Use Case : ls1 mardyn 99

},{"cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit

":"4194304"}]}

3 {"group":8,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit

":"4194304"}]}

{"group":1,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit

":"8388608"}]}

5 {"group":15,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"6"},{"striping_factor":"6"},{"striping_unit

":"1048576"}]}

{"group":2,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"1"},{"striping_factor":"1"},{"striping_unit

":"2097152"}]}

7 {"group":21,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"8"},{"striping_factor":"8"},{"striping_unit

":"2097152"}]}

{"group":22,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"8"},{"striping_factor":"8"},{"striping_unit

":"2097152"}]}

9 {"group":4,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"8"},{"striping_factor":"8"},{"striping_unit

":"4194304"}]}

{"group":18,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

striping_unit":"1048576"}]}

11 {"group":19,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

striping_unit":"1048576"}]}

{"group":20,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

100 A | Code and File Segments

striping_unit":"1048576"}]}

13 {"group":25,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

striping_unit":"1048576"}]}

{"group":24,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

striping_unit":"2097152"}]}

15 {"group":23,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

{"group":5,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

17 {"group":9,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

{"group":11,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

19 {"group":12,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

{"group":13,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

21 {"group":7,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

{"group":14,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

6.5 | Engineering Use Case : ls1 mardyn 101

23 {"group":16,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

1048576"}]}

{"group":10,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

8388608"}]}

25 {"group":3,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"4"},{"striping_factor":"4"},{"striping_unit":"

8388608"}]}

{"group":17,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"8"},{"striping_factor":"8"},{"striping_unit":"

1048576"}]}

27 {"group":27,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"12"},{"striping_factor":"12"},{"

striping_unit":"8388608"}]}

{"group":33,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

29 {"group":35,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

{"group":36,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

31 {"group":26,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

{"group":37,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

33 {"group":38,"mpi_info":[{"cb_buffer_size":"16777216"},{"

102 A | Code and File Segments

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

{"group":39,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

35 {"group":32,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

{"group":29,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

37 {"group":31,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

{"group":34,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

39 {"group":43,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"8388608"}]}

{"group":30,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit":

"1048576"}]}

41 {"group":42,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit":

"1048576"}]}

{"group":40,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit":

"1048576"}]}

43 {"group":28,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

6.5 | Engineering Use Case : ls1 mardyn 103

cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit":

"2097152"}]}

{"group":41,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"enable"},{"

cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit":

"2097152"}]}

45 {"group":45,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"1048576"}]}

{"group":44,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"2097152"}]}

47 {"group":47,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"4194304"}]}

{"group":46,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"automatic"

},{"cb_nodes":"16"},{"striping_factor":"16"},{"

striping_unit":"8388608"}]}

49 {"group":48,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit"

:"1048576"}]}

{"group":49,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"8"},{"striping_factor":"8"},{"striping_unit":"

4194304"}]}

51 {"group":50,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit"

:"1048576"}]}

{"group":51,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"16"},{"striping_factor":"16"},{"striping_unit"

:"2097152"}]}

53 {"group":0,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"12"},{"striping_factor":"12"},{"striping_unit"

104 A | Code and File Segments

:"4194304"}]}

{"group":53,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"12"},{"striping_factor":"12"},{"striping_unit"

:"4194304"}]}

55 {"group":52,"mpi_info":[{"cb_buffer_size":"16777216"},{"

romio_cb_read":"automatic"},{"romio_cb_write":"disable"},{

"cb_nodes":"12"},{"striping_factor":"12"},{"striping_unit"

:"8388608"}]}

Listing A.3: A configuration file example.

6.5 | Engineering Use Case : ls1 mardyn 105

Bibliography

[1] X. Ma, X. Ma. ‘I/O’. In: Encyclopedia of Parallel Computing. Ed. by D. Padua.
Boston, MA: Springer US, 2011, pp. 975–984. url: https://doi.org/
10.1007/978-0-387-09766-4_290 (cit. on p. 1).

[2] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley. ‘24/7 Characterization
of petascale I/O workloads’. In: 2009 IEEE International Conference on Cluster
Computing and Workshops. 2009, pp. 1–10 (cit. on p. 1).

[3] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, Y. Yao. ‘A Multiplatform Study of I/O Behavior on Petascale Su-
percomputers’. In: Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing. HPDC ’15. Portland, Oregon,
USA: Association for Computing Machinery, 2015, pp. 33–44. url: https:
//doi.org/10.1145/2749246.2749269 (cit. on p. 1).

[4] M. Folk, A. Cheng, K. Yates. ‘HDF5: A file format and I/O library for high per-
formance computing applications’. In: Proceedings of Supercomputing. Vol. 99.
1999, pp. 5–33 (cit. on p. 1).

[5] M. P. I. Forum. MPI: A Message-passing Interface Standard, Version 3.1 ; June 4,
2015. High-Performance Computing Center Stuttgart, University of Stuttgart,
2015. url:https://books.google.de/books?id=Fbv7jwEACAAJ
(cit. on pp. 1, 19–21, 33).

[6] url: https://www2.opengroup.org/ogsys/catalog/c165
(cit. on p. 1).

[7] P. Schwan. ‘Lustre: Building a File System for 1,000-node Clusters’. In: (Jan.
2003) (cit. on p. 1).

107

https://doi.org/10.1007/978-0-387-09766-4_290
https://doi.org/10.1007/978-0-387-09766-4_290
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1145/2749246.2749269
https://books.google.de/books?id=Fbv7jwEACAAJ
https://www2.opengroup.org/ogsys/catalog/c165

[8] X. Wang. ‘A light weighted semi-automatically I/O-tuning solution for engi-
neering applications’. PhD thesis (cit. on pp. 2, 3, 5, 15, 17, 20, 31–34, 36,
40, 66, 79).

[9] B. Behzad, S. Byna, S.M. Wild, M. Prabhat, M. Snir. ‘Improving Parallel I/O Au-
totuning with Performance Modeling’. In: Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing. HPDC ’14.
Vancouver, BC, Canada: Association for Computing Machinery, 2014, pp. 253–
256. url: https://doi.org/10.1145/2600212.2600708 (cit. on
pp. 2, 3, 12).

[10] M. Agarwal, D. Singhvi, P. Malakar, S. Byna. ‘Active Learning-based Automatic
Tuning and Prediction of Parallel I/O Performance’. In: 2019 IEEE/ACM Fourth
International Parallel Data Systems Workshop (PDSW). 2019, pp. 20–29 (cit. on
pp. 2, 3, 6, 12, 66).

[11] H. Luu, B. Behzad, R. Aydt, M. Winslett. ‘A multi-level approach for un-
derstanding I/O activity in HPC applications’. In: 2013 IEEE International
Conference on Cluster Computing (CLUSTER). 2013, pp. 1–5 (cit. on pp. 3, 12,
66).

[12] P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris,
R. Vuduc. ‘Autotuning in High-Performance Computing Applications’. In:
Proceedings of the IEEE 106.11 (2018), pp. 2068–2083 (cit. on p. 3).

[13] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, N. J. Wright. ‘Modular
HPC I/O Characterization with Darshan’. In: 2016 5th Workshop on Extreme-
Scale Programming Tools (ESPT). 2016, pp. 9–17 (cit. on p. 4).

[14] S. Snyder, P. Carns, K. Harms, R. Latham, R. Ross. ‘Performance Evaluation
of Darshan 3.0.0 on the Cray XC30’. In: (Apr. 2016). url: https://www.
osti.gov/biblio/1250469 (cit. on p. 4).

[15] J.M. Kunkel, M. Zimmer, N. Hübbe, A. Aguilera, H. Mickler, X. Wang, A. Chut,
T. Bönisch, J. Lüttgau, R. Michel, et al. ‘The SIOX Architecture – Coupling
Automatic Monitoring and Optimization of Parallel I/O’. In: Lecture Notes in
Computer Science Supercomputing (2014), pp. 245–260 (cit. on pp. 4, 5).

[16] B. Behzad, S. Byna, M. Prabhat, M. Snir. ‘Pattern-driven parallel I/O tuning’.
In: Nov. 2015, pp. 43–48 (cit. on p. 5).

108 Bibliography

https://doi.org/10.1145/2600212.2600708
https://www.osti.gov/biblio/1250469
https://www.osti.gov/biblio/1250469

[17] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, S. Wild.
‘Machine Learning Based Parallel I/O Predictive Modeling: A Case Study on
Lustre File Systems’. In: Jan. 2018, pp. 184–204 (cit. on pp. 6, 66).

[18] B. Behzad, S. Byna, S.M. Wild, M. Prabhat, M. Snir. ‘Improving Parallel I/O Au-
totuning with Performance Modeling’. In: Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing. HPDC ’14.
Vancouver, BC, Canada: Association for Computing Machinery, 2014, pp. 253–
256. url: https://doi.org/10.1145/2600212.2600708 (cit. on
p. 6).

[19] F. Isaila, P. Balaprakash, S.M. Wild, D. Kimpe, R. Latham, R. Ross, P. Hovland.
‘Collective I/O Tuning Using Analytical and Machine Learning Models’. In:
2015 IEEE International Conference on Cluster Computing. 2015, pp. 128–137
(cit. on pp. 6, 66).

[20] B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, Prabhat, R. Aydt, Q. Koziol,
M. Snir. ‘Taming Parallel I/O Complexity with Auto-Tuning’. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. SC ’13. Denver, Colorado: Association for Computing
Machinery, 2013. url: https://doi.org/10.1145/2503210.
2503278 (cit. on p. 6).

[21] B. Behzad, S. Byna, Prabhat, M. Snir. ‘Optimizing I/O Performance of HPC
Applications with Autotuning’. In: ACM Trans. Parallel Comput. 5.4 (Mar.
2019). url: https://doi.org/10.1145/3309205 (cit. on pp. 6,
44).

[22] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, J. Shalf. ‘Tuning HDF5 for Lustre
File Systems’. In: (Jan. 2012) (cit. on p. 6).

[23] R. McKenna, S. Herbein, A. Moody, T. Gamblin, M. Taufer. ‘Machine Learning
Predictions of Runtime and IO Traffic on High-End Clusters’. In: 2016 IEEE
International Conference on Cluster Computing (CLUSTER). 2016, pp. 255–258
(cit. on p. 6).

[24] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D.H. Ahn, M. Taufer. ‘PRIONN:
Predicting Runtime and IO Using Neural Networks’. In: ICPP 2018. Eugene,
OR, USA: Association for Computing Machinery, 2018. url: https://doi.
org/10.1145/3225058.3225091 (cit. on p. 6).

Bibliography 109

https://doi.org/10.1145/2600212.2600708
https://doi.org/10.1145/2503210.2503278
https://doi.org/10.1145/2503210.2503278
https://doi.org/10.1145/3309205
https://doi.org/10.1145/3225058.3225091
https://doi.org/10.1145/3225058.3225091

[25] S. Madireddy, P. Balaprakash, P. Carns, R. Latham, R. Ross, S. Snyder, S. Wild.
‘Machine Learning Based Parallel I/O Predictive Modeling: A Case Study on
Lustre File Systems’. In: Jan. 2018, pp. 184–204 (cit. on p. 6).

[26] P. Ivanenko, A. Doroshenko, K. Zhereb. ‘TuningGenie: Auto-Tuning Frame-
work Based on Rewriting Rules’. In: vol. 469. June 2014, pp. 139–158 (cit. on
p. 7).

[27] A. Doroshenko, P. Ivanenko, O. Novak, O. Yatsenko. ‘A Mixed Method of Par-
allel Software Auto-Tuning Using Statistical Modeling and Machine Learning’.
In: Information and Communication Technologies in Education, Research, and
Industrial Applications Communications in Computer and Information Science
(2019), pp. 102–123 (cit. on p. 7).

[28] A. Doroshenko, P. Ivanenko, O. Novak, O. Yatsenko. ‘Parallel software auto-
tuning using statistical modeling and machine learning’. In: Problems In
Programming 2-3 (2018), pp. 046–053 (cit. on p. 7).

[29] A. Bağbaba. ‘Improving Collective I/O Performance with Machine Learning
Supported Auto-tuning’. In: 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). 2020, pp. 814–821 (cit. on p. 8).

[30] A. Bağbaba, X. Wang, C. Niethammer, J. Gracia. ‘Improving the I/O Perfor-
mance of Applications with Predictive Modeling based Auto-tuning’. In: 2021
International Conference on Engineering and Emerging Technologies (ICEET).
2021, pp. 1–6 (cit. on p. 8).

[31] A. Bağbaba, X. Wang. ‘Improving the MPI-IO Performance of Applications with
Genetic Algorithm based Auto-tuning’. In: 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 2021, pp. 798–805
(cit. on p. 8).

[32] C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Hei-
necke, S. Werth, H.-J. Bungartz, C. Glass, H. Hasse, J. Vrabec, M. Horsch. ‘ls1
mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems’.
In: Journal of Chemical Theory and Computation 10 (Aug. 2014) (cit. on pp. 12,
84).

[33] url: https://wiki.old.lustre.org/lid/ulfi/complete/
ulfi_complete.html (cit. on p. 14).

110 Bibliography

https://wiki.old.lustre.org/lid/ulfi/complete/ulfi_complete.html
https://wiki.old.lustre.org/lid/ulfi/complete/ulfi_complete.html

[34] V.O. Rybintsev. ‘Optimizing the parameters of the Lustre-file-system-based
HPC system for reverse time migration’. In: The Journal of Supercomputing
76.1 (Jan. 2020), pp. 536–548. url: https://doi.org/10.1007/
s11227-019-03054-7 (cit. on p. 14).

[35] F. Schmuck, R. Haskin. ‘GPFS: A Shared-Disk File System for Large Computing
Clusters’. In: Proceedings of the 1st USENIX Conference on File and Storage
Technologies. FAST ’02. Monterey, CA: USENIX Association, 2002, 19–es (cit.
on p. 16).

[36] M. Soysal, M. Berghoff, T. Zirwes, M.-A. Vef, S. Oeste, A. Brinkmann,W. E. Nagel,
A. Streit. ‘Using On-Demand File Systems in HPC Environments’. In: 2019
International Conference on High Performance Computing Simulation (HPCS).
2019, pp. 390–398 (cit. on pp. 16, 17).

[37] Fraunhofer Parallel File System – BeeGFS - Fraunhofer ITWM. June 2021. url:
https://www.itwm.fraunhofer.de/en/departments/hpc/

fraunhofer-parallel-file-system-beegfs.html (cit. on
pp. 17, 18).

[38] R. Thakur, W. Gropp. ‘Parallel I/O’. In: 2003 (cit. on pp. 18, 19, 21, 33).
[39] A. Ching, A. Choudhary, K. Coloma, W.-k. Liao, R. Ross, W. Gropp. ‘Non-

contiguous I/O accesses through MPI-IO’. In: CCGrid 2003. 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2003. Proceedings.
2003, pp. 104–111 (cit. on pp. 18, 26).

[40] R. Thakur, W. Gropp, E. Lusk. ‘Data sieving and collective I/O in ROMIO’. In:
Mar. 1999, pp. 182–189 (cit. on pp. 18, 27).

[41] K. Coloma, A. Choudhary, W. Liao, L. Ward, E. Russell, N. Pundit. ‘Scalable
high-level caching for parallel I/O’. In: 18th International Parallel and Dis-
tributed Processing Symposium, 2004. Proceedings. 2004, pp. 96– (cit. on
p. 18).

[42] H. Shan, K. Antypas, J. Shalf. ‘Characterizing and predicting the I/O per-
formance of HPC applications using a parameterized synthetic benchmark’.
In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
2008, pp. 1–12 (cit. on p. 18).

Bibliography 111

https://doi.org/10.1007/s11227-019-03054-7
https://doi.org/10.1007/s11227-019-03054-7
https://www.itwm.fraunhofer.de/en/departments/hpc/fraunhofer-parallel-file-system-beegfs.html
https://www.itwm.fraunhofer.de/en/departments/hpc/fraunhofer-parallel-file-system-beegfs.html

[43] Y. Chen, X.-H. Sun, R. Thakur, H. Song, H. Jin. ‘Improving Parallel I/O Perfor-
mance with Data Layout Awareness’. In: 2010 IEEE International Conference
on Cluster Computing. 2010, pp. 302–311 (cit. on p. 18).

[44] S. J. Kim, Y. Zhang, S.W. Son, M. Kandemir, W.-k. Liao, R. Thakur, A. Choud-
hary. ‘IOPro: a parallel I/O profiling and visualization framework for high-
performance storage systems’. In: The Journal of Supercomputing 71.3 (Mar.
2015), pp. 840–870. url: https://doi.org/10.1007/s11227-
014-1329-0 (cit. on pp. 18, 19).

[45] S. El Sayed, M. Bolten, D. Pleiter. ‘Parallel I/O Architecture Modelling Based
on File System Counters’. In: High Performance Computing. Ed. by M. Taufer,
B. Mohr, J.M. Kunkel. Cham: Springer International Publishing, 2016, pp. 627–
637 (cit. on p. 18).

[46] E. Smirni, D. Reed. ‘Lessons from characterizing the input/output behavior of
parallel scientific applications’. In: Performance Evaluation 33.1 (1998). Tools
for Performance Evaluation, pp. 27–44.url:https://www.sciencedirect.
com/science/article/pii/S0166531698000091 (cit. on p. 21).

[47] R. Thakur, W. Gropp, E. Lusk. ‘Optimizing noncontiguous accesses in MPI–IO’.
In: Parallel Computing 28 (Aug. 2001), pp. 83–105 (cit. on pp. 21, 22, 32,
33).

[48] R. Thakur, W. Gropp, E. Lusk. ‘A Case for Using MPI’s Derived Datatypes
to Improve I/O Performance’. In: SC ’98: Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing. 1998, pp. 1–1 (cit. on pp. 22, 23).

[49] C. Jin, S. Sehrish, W.-k. Liao, A. Choudhary, K. Schuchardt. Improving the
Average Response Time in Collective I/O (cit. on p. 26).

[50] R. Thakur, W. Gropp, E. Lusk. ‘On Implementing MPI-IO Portably and with
High Performance’. In: Proceedings of the Sixth Workshop on I/O in Parallel
and Distributed Systems. IOPADS ’99. Atlanta, Georgia, USA: Association for
Computing Machinery, 1999, pp. 23–32. url: https://doi.org/10.
1145/301816.301826 (cit. on pp. 27, 31, 32).

[51] M. Chaarawi, E. Gabriel, R. Keller, R. Graham, G. Bosilca, J. Dongarra. ‘OMPIO:
Amodular software architecture for MPI I/O’. In: vol. 6960. Sept. 2011, pp. 81–
89 (cit. on pp. 27, 28).

112 Bibliography

https://doi.org/10.1007/s11227-014-1329-0
https://doi.org/10.1007/s11227-014-1329-0
https://www.sciencedirect.com/science/article/pii/S0166531698000091
https://www.sciencedirect.com/science/article/pii/S0166531698000091
https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826

[52] A. Bagbaba. ‘A Comparative Study of MPI-IO Libraries for Offloading of Collec-
tive I/O Tasks’. In: 2021 International Conference on Engineering and Emerging
Technologies (ICEET). 2021, pp. 1–6 (cit. on p. 29).

[53] A. Chiusole, S. Cozzini, D. van der Ster, M. Lamanna, G. Giuliani. ‘An I/O
Analysis of HPC Workloads on CephFS and Lustre’. In: High Performance
Computing. Ed. by M. Weiland, G. Juckeland, S. Alam, H. Jagode. Cham:
Springer International Publishing, 2019, pp. 300–316 (cit. on p. 33).

[54] H. Son, G. Lee, K. Kang, Y.-J. Kang, B. D. Youn, I. Lee, Y. Noh. ‘Industrial issues
and solutions to statistical model improvement: a case study of an automobile
steering column’. In: Structural and Multidisciplinary Optimization 61 (Apr.
2020) (cit. on p. 44).

[55] W. Roetzel, X. Luo, D. Chen. ‘Optimal design of heat exchanger networks’. In:
Jan. 2020, pp. 231–317 (cit. on p. 44).

[56] Llnl. LLNL/ior: Parallel filesystem I/O benchmark. url: http://github.
com/LLNL/ior (cit. on pp. 48, 65).

[57] url: https://www.mcs.anl.gov/research/projects/pio-
benchmark (cit. on pp. 48, 66).

[58] T. S. Tamir, G. Xiong, Z. Li, H. Tao, Z. Shen, B. Hu, H.M. Menkir. ‘Traffic
Congestion Prediction using Decision Tree, Logistic Regression and Neural
Networks’. In: IFAC-PapersOnLine 53.5 (2020). 3rd IFAC Workshop on Cyber-
Physical & Human Systems CPHS 2020, pp. 512–517. url: https://www.
sciencedirect.com/science/article/pii/S2405896321002627

(cit. on p. 57).
[59] E. Dumitrescu, S. Hué, C. Hurlin, S. Tokpavi. ‘Machine learning for credit

scoring: Improving logistic regression with non-linear decision-tree effects’.
In: European Journal of Operational Research (2021). url: https://www.
sciencedirect.com/science/article/pii/S0377221721005695

(cit. on p. 57).
[60] I. H. Sarker. ‘Machine Learning: Algorithms, Real-World Applications and

Research Directions’. In: SN Computer Science 2.3 (Mar. 2021), p. 160. url:
https://doi.org/10.1007/s42979-021-00592-x (cit. on
p. 57).

Bibliography 113

http://github.com/LLNL/ior
http://github.com/LLNL/ior
https://www.mcs.anl.gov/research/projects/pio-benchmark
https://www.mcs.anl.gov/research/projects/pio-benchmark
https://www.sciencedirect.com/science/article/pii/S2405896321002627
https://www.sciencedirect.com/science/article/pii/S2405896321002627
https://www.sciencedirect.com/science/article/pii/S0377221721005695
https://www.sciencedirect.com/science/article/pii/S0377221721005695
https://doi.org/10.1007/s42979-021-00592-x

[61] L. Breiman. ‘Random Forests’. In: Machine Learning 45.1 (Oct. 2001), pp. 5–
32. url: https://doi.org/10.1023/A:1010933404324 (cit. on
p. 59).

[62] S. Benedict, R. Rejitha, P. Gschwandtner, R. Prodan, T. Fahringer. ‘Energy
Prediction of OpenMP Applications Using Random Forest Modeling Approach’.
In: 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop. 2015, pp. 1251–1260 (cit. on p. 59).

114 Bibliography

https://doi.org/10.1023/A:1010933404324

	Cover
	Title
	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	1 Introduction and Motivation
	1.1 Introduction
	1.2 Motivation
	1.2.1 Problem Definition
	1.2.2 Related Work
	1.2.3 The Proposed Approach

	1.3 Organization of Dissertation

	2 State of the Art
	2.1 User Applications
	2.2 HPC Platforms
	2.3 Distributed Parallel File Systems
	2.3.1 Lustre
	2.3.2 GPFS
	2.3.3 BeeGFS

	2.4 Parallel I/O
	2.4.1 Overview
	2.4.2 MPI-IO
	2.4.3 Parallel I/O Optimizations

	3 General I/O Auto-tuning Framework
	3.1 Design Requirements
	3.2 I/O Performance Factors
	3.3 MPI and PMPI Wrapper
	3.4 Running Modes

	4 Heuristic Search Based I/O Auto-tuning
	4.1 Heuristic Search
	4.2 Architecture
	4.2.1 IO_Optimizer: Configuration Search
	4.2.2 IO_Tuner: Setting I/O Parameters at Runtime

	4.3 Implementation
	4.3.1 Benchmarks
	4.3.2 System setup
	4.3.3 Parameter space
	4.3.4 Scale and data set sizes

	4.4 Results

	5 Performance Modelling Based I/O Auto-tuning
	5.1 Performance Modelling
	5.1.1 Performance Models

	5.2 Architecture
	5.2.1 IO_Tracer: Monitoring I/O Activity
	5.2.2 IO_Predictor: Modelling I/O Performance
	5.2.3 IO_Tuner: Setting I/O Parameters at Runtime

	5.3 Implementation
	5.3.1 Benchmarks
	5.3.2 System setup
	5.3.3 Parameter space
	5.3.4 Scale and data set sizes
	5.3.5 Log files and creating data set

	6 Results
	6.1 I/O Variability on Single Node
	6.2 I/O Variability on Multiple Nodes
	6.3 Training Process
	6.4 Evaluations: I/O Benchmarks
	6.5 Engineering Use Case : ls1 mardyn
	6.5.1 Analyzing Application
	6.5.2 Training
	6.5.3 Optimization and Results
	6.5.4 Conclusion

	7 Conclusion and Future Work
	A Code and File Segments
	Bibliography

